Institut für Mathematik

Vortrag

Modul:   MAT760  Ergodic theory and dynamical systems seminar

Non Algebraic Versions of the p-Adic Littlewood Conjecture and of Duke’s Theorem for Subcollections

Vortrag von Dr. Yuval Yifrach

Sprecher eingeladen von: Prof. Dr. Alexander Gorodnik

Datum: 06.11.23  Zeit: 15.00 - 16.00  Raum: Y27H25

Various algebraic phenomenons in homogeneous dynamics have non algebraic counterparts. For example, the equidistribution of Hecke neighbors can be seen as a non-algebraic counterpart of Duke’s Theorem. In this talk, we consider non-algebraic counterparts of the p-Adic Littlewood Conjecture and of Duke’s Theorem for subcollections.
One of the non-algebraic counterparts of the p-Adic Littlewood Conjecture involves unboundedness of the A-orbits of arbitrary choices of p-Hecke neighbors of a lattice as p goes to infinity along the primes.
We prove, using expanders, a bootstrap argument and the equidistribution of Hecke neighbors, that the set of exceptions for this conjecture has Hausdorff dimension strictly smaller than 1 in [0,1] (where we assign lattices to points in [0,1]). Moreover, we discuss evidence for the conjecture in some cases using GRH.

This talk is based on a joint ongoing work with Erez Nesharim from the Technion.