
HANDBOOK OF MAGMA FUNCTIONS

Volume 3

Global Arithmetic Fields

John Cannon Wieb Bosma

Claus Fieker Allan Steel

Editors

Version 2.19

Sydney

April 24, 2013

ii

MAGMA
C O M P U T E R • A L G E B R A

HANDBOOK OF MAGMA FUNCTIONS

Editors:

John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Geoff Bailey, Wieb Bosma, Gavin Brown, Nils Bruin, John

Cannon, Jon Carlson, Scott Contini, Bruce Cox, Brendan

Creutz, Steve Donnelly, Tim Dokchitser, Willem de Graaf,

Andreas-Stephan Elsenhans, Claus Fieker, Damien Fisher,

Volker Gebhardt, Sergei Haller, Michael Harrison, Florian

Hess, Derek Holt, David Howden, Al Kasprzyk, Markus

Kirschmer, David Kohel, Axel Kohnert, Dimitri Leemans,

Paulette Lieby, Graham Matthews, Scott Murray, Eamonn

O’Brien, Dan Roozemond, Ben Smith, Bernd Souvignier,

William Stein, Allan Steel, Damien Stehlé, Nicole Suther-

land, Don Taylor, Bill Unger, Alexa van der Waall, Paul

van Wamelen, Helena Verrill, John Voight, Mark Watkins,

Greg White

Production Editors:

Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:

Claus Fieker Allan Steel

VOLUME 3: OVERVIEW

V LATTICES AND QUADRATIC FORMS 637
30 LATTICES 639
31 LATTICES WITH GROUP ACTION 717
32 QUADRATIC FORMS 743
33 BINARY QUADRATIC FORMS 751

VI GLOBAL ARITHMETIC FIELDS 765
34 NUMBER FIELDS 767
35 QUADRATIC FIELDS 833
36 CYCLOTOMIC FIELDS 847
37 ORDERS AND ALGEBRAIC FIELDS 855
38 GALOIS THEORY OF NUMBER FIELDS 961
39 CLASS FIELD THEORY 997
40 ALGEBRAICALLY CLOSED FIELDS 1035
41 RATIONAL FUNCTION FIELDS 1057
42 ALGEBRAIC FUNCTION FIELDS 1079
43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1189
44 ARTIN REPRESENTATIONS 1215

vi VOLUME 3: CONTENTS

VOLUME 3: CONTENTS

V LATTICES AND QUADRATIC FORMS 637

30 LATTICES . 639

30.1 Introduction 643
30.2 Presentation of Lattices 644
30.3 Creation of Lattices 645
30.3.1 Elementary Creation of Lattices 645
30.3.2 Lattices from Linear Codes 649
30.3.3 Lattices from Algebraic Number Fields 650
30.3.4 Special Lattices 652
30.4 Lattice Elements 653
30.4.1 Creation of Lattice Elements 653
30.4.2 Operations on Lattice Elements 653
30.4.3 Predicates and Boolean Operations 655
30.4.4 Access Operations 655
30.5 Properties of Lattices 657
30.5.1 Associated Structures 657
30.5.2 Attributes of Lattices 658
30.5.3 Predicates and Booleans on Lattices 659
30.5.4 Base Ring and Base Change 660
30.6 Construction of New Lattices 660
30.6.1 Sub- and Superlattices and Quotients 660
30.6.2 Standard Constructions of New Lattices 662
30.7 Reduction of Matrices and Lattices 665
30.7.1 LLL Reduction 665
30.7.2 Pair Reduction 675
30.7.3 Seysen Reduction 676
30.7.4 HKZ Reduction 677
30.7.5 Recovering a Short Basis from Short Lattice Vectors 680
30.8 Minima and Element Enumeration 680
30.8.1 Minimum, Density and Kissing Number 681
30.8.2 Shortest and Closest Vectors 683
30.8.3 Short and Close Vectors 685
30.8.4 Short and Close Vector Processes 691
30.8.5 Successive Minima and Theta Series 692
30.8.6 Lattice Enumeration Utilities 693
30.9 Theta Series as Modular Forms 696
30.10 Voronoi Cells, Holes and Covering Radius 697
30.11 Orthogonalization 699
30.12 Testing Matrices for Definiteness 701
30.13 Genera and Spinor Genera 702
30.13.1 Genus Constructions 702
30.13.2 Invariants of Genera and Spinor Genera 702
30.13.3 Invariants of p-adic Genera 704
30.13.4 Neighbour Relations and Graphs 704
30.14 Attributes of Lattices 708
30.15 Database of Lattices 708
30.15.1 Creating the Database 709
30.15.2 Database Information 709
30.15.3 Accessing the Database 710

VOLUME 3: CONTENTS vii

30.15.4 Hermitian Lattices 712
30.16 Bibliography 714

31 LATTICES WITH GROUP ACTION 717

31.1 Introduction 719
31.2 Automorphism Group and Isometry Testing 719
31.2.1 Automorphism Group and Isometry Testing over Fq [t] 726
31.3 Lattices from Matrix Groups 728
31.3.1 Creation of G-Lattices 728
31.3.2 Operations on G-Lattices 729
31.3.3 Invariant Forms 729
31.3.4 Endomorphisms 730
31.3.5 G-invariant Sublattices 731
31.3.6 Lattice of Sublattices 735
31.4 Bibliography 741

32 QUADRATIC FORMS 743

32.1 Introduction 745
32.2 Constructions and Conversions 745
32.3 Local Invariants 746
32.4 Isotropic Subspaces 747
32.5 Bibliography 750

33 BINARY QUADRATIC FORMS 751

33.1 Introduction 753
33.2 Creation Functions 753
33.2.1 Creation of Structures 753
33.2.2 Creation of Forms 754
33.3 Basic Invariants 754
33.4 Operations on Forms 755
33.4.1 Arithmetic 755
33.4.2 Attribute Access 756
33.4.3 Boolean Operations 756
33.4.4 Related Structures 757
33.5 Class Group 757
33.6 Class Group Coercions 760
33.7 Discrete Logarithms 760
33.8 Elliptic and Modular Invariants 761
33.9 Class Invariants 762
33.10 Matrix Action on Forms 763
33.11 Bibliography 763

viii VOLUME 3: CONTENTS

VI GLOBAL ARITHMETIC FIELDS 765

34 NUMBER FIELDS . 767

34.1 Introduction 771

34.2 Creation Functions 773
34.2.1 Creation of Number Fields 773
34.2.2 Maximal Orders 779
34.2.3 Creation of Elements 780
34.2.4 Creation of Homomorphisms 781

34.3 Structure Operations 782
34.3.1 General Functions 782
34.3.2 Related Structures 783
34.3.3 Representing Fields as Vector Spaces 786
34.3.4 Invariants 788
34.3.5 Basis Representation 790
34.3.6 Ring Predicates 792
34.3.7 Field Predicates 793

34.4 Element Operations 793
34.4.1 Parent and Category 793
34.4.2 Arithmetic 794
34.4.3 Equality and Membership 794
34.4.4 Predicates on Elements 795
34.4.5 Finding Special Elements 795
34.4.6 Real and Complex Valued Functions 796
34.4.7 Norm, Trace, and Minimal Polynomial 798
34.4.8 Other Functions 800

34.5 Class and Unit Groups 800

34.6 Galois Theory 803

34.7 Solving Norm Equations 804

34.8 Places and Divisors 807
34.8.1 Creation of Structures 807
34.8.2 Operations on Structures 807
34.8.3 Creation of Elements 807
34.8.4 Arithmetic with Places and Divisors 808
34.8.5 Other Functions for Places and Divisors 808

34.9 Characters 811
34.9.1 Creation Functions 811
34.9.2 Functions on Groups and Group Elements 811
34.9.3 Predicates on Group Elements 814
34.9.4 Passing between Dirichlet and Hecke Characters 815
34.9.5 L-functions of Hecke Characters 819
34.9.6 Hecke Grössencharacters and their L-functions 820

34.10 Number Field Database 827
34.10.1 Creation 827
34.10.2 Access 828

34.11 Bibliography 830

VOLUME 3: CONTENTS ix

35 QUADRATIC FIELDS 833

35.1 Introduction 835
35.1.1 Representation 835
35.2 Creation of Structures 836
35.3 Operations on Structures 837
35.3.1 Ideal Class Group 838
35.3.2 Norm Equations 841
35.4 Special Element Operations 842
35.4.1 Greatest Common Divisors 842
35.4.2 Modular Arithmetic 842
35.4.3 Factorization 843
35.4.4 Conjugates 843
35.4.5 Other Element Functions 843
35.5 Special Functions for Ideals 845
35.6 Bibliography 845

36 CYCLOTOMIC FIELDS 847

36.1 Introduction 849
36.2 Creation Functions 849
36.2.1 Creation of Cyclotomic Fields 849
36.2.2 Creation of Elements 850
36.3 Structure Operations 851
36.3.1 Invariants 852
36.4 Element Operations 852
36.4.1 Predicates on Elements 852
36.4.2 Conjugates 852

37 ORDERS AND ALGEBRAIC FIELDS 855

37.1 Introduction 861
37.2 Creation Functions 863
37.2.1 Creation of General Algebraic Fields 863
37.2.2 Creation of Orders and Fields from Orders 867
37.2.3 Maximal Orders 872
37.2.4 Creation of Elements 877
37.2.5 Creation of Homomorphisms 879
37.3 Special Options 881
37.4 Structure Operations 883
37.4.1 General Functions 884
37.4.2 Related Structures 885
37.4.3 Representing Fields as Vector Spaces 891
37.4.4 Invariants 893
37.4.5 Basis Representation 897
37.4.6 Ring Predicates 901
37.4.7 Order Predicates 902
37.4.8 Field Predicates 903
37.4.9 Setting Properties of Orders 904
37.5 Element Operations 905
37.5.1 Parent and Category 905
37.5.2 Arithmetic 905
37.5.3 Equality and Membership 906
37.5.4 Predicates on Elements 906
37.5.5 Finding Special Elements 907
37.5.6 Real and Complex Valued Functions 908
37.5.7 Norm, Trace, and Minimal Polynomial 910

x VOLUME 3: CONTENTS

37.5.8 Other Functions 912
37.6 Ideal Class Groups 913
37.6.1 Setting the Class Group Bounds Globally 921
37.7 Unit Groups 922
37.8 Solving Equations 925
37.8.1 Norm Equations 925
37.8.2 Thue Equations 929
37.8.3 Unit Equations 931
37.8.4 Index Form Equations 931
37.9 Ideals and Quotients 932
37.9.1 Creation of Ideals in Orders 933
37.9.2 Invariants 934
37.9.3 Basis Representation 937
37.9.4 Two–Element Presentations 938
37.9.5 Predicates on Ideals 939
37.9.6 Ideal Arithmetic 941
37.9.7 Roots of Ideals 944
37.9.8 Factorization and Primes 944
37.9.9 Other Ideal Operations 946
37.9.10 Quotient Rings 951
37.10 Places and Divisors 954
37.10.1 Creation of Structures 954
37.10.2 Operations on Structures 954
37.10.3 Creation of Elements 955
37.10.4 Arithmetic with Places and Divisors 956
37.10.5 Other Functions for Places and Divisors 956
37.11 Bibliography 958

38 GALOIS THEORY OF NUMBER FIELDS 961

38.1 Automorphism Groups 964
38.2 Galois Groups 971
38.2.1 Straight-line Polynomials 975
38.2.2 Invariants 977
38.2.3 Subfields and Subfield Towers 979
38.2.4 Solvability by Radicals 986
38.2.5 Linear Relations 987
38.2.6 Other 990
38.3 Subfields 990
38.3.1 The Subfield Lattice 991
38.4 Galois Cohomology 994
38.5 Bibliography 995

39 CLASS FIELD THEORY 997

39.1 Introduction 999
39.1.1 Overview 999
39.1.2 Magma 1000
39.2 Creation 1003
39.2.1 Ray Class Groups 1003
39.2.2 Selmer groups 1006
39.2.3 Maps 1008
39.2.4 Abelian Extensions 1009
39.2.5 Binary Operations 1014
39.3 Galois Module Structure 1014
39.3.1 Predicates 1015

VOLUME 3: CONTENTS xi

39.3.2 Constructions 1015
39.4 Conversion to Number Fields 1016
39.5 Invariants 1017
39.6 Automorphisms 1020
39.7 Norm Equations 1022
39.8 Attributes 1025
39.8.1 Orders 1025
39.8.2 Abelian Extensions 1028
39.9 Group Theoretic Functions 1032
39.9.1 Generic Groups 1032
39.10 Bibliography 1033

40 ALGEBRAICALLY CLOSED FIELDS 1035

40.1 Introduction 1037
40.2 Representation 1037
40.3 Creation of Structures 1038
40.4 Creation of Elements 1039
40.4.1 Coercion 1039
40.4.2 Roots 1039
40.4.3 Variables 1040
40.5 Related Structures 1045
40.6 Properties 1045
40.7 Ring Predicates and Properties 1046
40.8 Element Operations 1046
40.8.1 Arithmetic Operators 1047
40.8.2 Equality and Membership 1047
40.8.3 Parent and Category 1047
40.8.4 Predicates on Ring Elements 1047
40.8.5 Minimal Polynomial, Norm and Trace 1048
40.9 Simplification 1050
40.10 Absolute Field 1051
40.11 Bibliography 1055

41 RATIONAL FUNCTION FIELDS 1057

41.1 Introduction 1059
41.2 Creation Functions 1059
41.2.1 Creation of Structures 1059
41.2.2 Names 1060
41.2.3 Creation of Elements 1061
41.3 Structure Operations 1061
41.3.1 Related Structures 1061
41.3.2 Invariants 1062
41.3.3 Ring Predicates and Booleans 1062
41.3.4 Homomorphisms 1062
41.4 Element Operations 1063
41.4.1 Arithmetic 1063
41.4.2 Equality and Membership 1063
41.4.3 Numerator, Denominator and Degree 1064
41.4.4 Predicates on Ring Elements 1064
41.4.5 Evaluation 1064
41.4.6 Derivative 1065
41.4.7 Partial Fraction Decomposition 1065
41.5 Padé-Hermite Approximants 1068

xii VOLUME 3: CONTENTS

41.5.1 Introduction 1068
41.5.2 Ordering of Sequences 1068
41.5.3 Approximants 1072
41.6 Bibliography 1077

42 ALGEBRAIC FUNCTION FIELDS 1079

42.1 Introduction 1087
42.1.1 Representations of Fields 1087
42.2 Creation of Algebraic Function Fields and their Orders 1088
42.2.1 Creation of Algebraic Function Fields 1088
42.2.2 Creation of Orders of Algebraic Function Fields 1091
42.2.3 Orders and Ideals 1096
42.3 Related Structures 1097
42.3.1 Parent and Category 1097
42.3.2 Other Related Structures 1097
42.4 General Structure Invariants 1101
42.5 Galois Groups 1106
42.6 Subfields 1110
42.7 Automorphism Group 1111
42.7.1 Automorphisms over the Base Field 1112
42.7.2 General Automorphisms 1114
42.7.3 Field Morphisms 1116
42.8 Global Function Fields 1119
42.8.1 Functions relative to the Exact Constant Field 1119
42.8.2 Functions Relative to the Constant Field 1121
42.8.3 Functions related to Class Group 1122
42.9 Structure Predicates 1126
42.10 Homomorphisms 1127
42.11 Elements 1128
42.11.1 Creation of Elements 1129
42.11.2 Parent and Category 1130
42.11.3 Sequence Conversions 1131
42.11.4 Arithmetic Operators 1132
42.11.5 Equality and Membership 1132
42.11.6 Predicates on Elements 1132
42.11.7 Functions related to Norm and Trace 1133
42.11.8 Functions related to Orders and Integrality 1135
42.11.9 Functions related to Places and Divisors 1136
42.11.10 Other Operations on Elements 1139
42.12 Ideals 1142
42.12.1 Creation of Ideals 1142
42.12.2 Parent and Category 1142
42.12.3 Arithmetic Operators 1143
42.12.4 Roots of Ideals 1143
42.12.5 Equality and Membership 1145
42.12.6 Predicates on Ideals 1145
42.12.7 Further Ideal Operations 1147
42.13 Places 1153
42.13.1 Creation of Structures 1153
42.13.2 Creation of Elements 1153
42.13.3 Related Structures 1155
42.13.4 Structure Invariants 1155
42.13.5 Structure Predicates 1156
42.13.6 Element Operations 1156
42.13.7 Completion at Places 1159

VOLUME 3: CONTENTS xiii

42.14 Divisors 1159
42.14.1 Creation of Structures 1159
42.14.2 Creation of Elements 1159
42.14.3 Related Structures 1160
42.14.4 Structure Invariants 1160
42.14.5 Structure Predicates 1160
42.14.6 Element Operations 1160
42.14.7 Functions related to Divisor Class Groups of Global Function Fields 1171
42.15 Differentials 1176
42.15.1 Creation of Structures 1176
42.15.2 Creation of Elements 1176
42.15.3 Related Structures 1177
42.15.4 Subspaces 1177
42.15.5 Structure Predicates 1178
42.15.6 Operations on Elements 1178
42.16 Weil Descent 1182
42.17 Function Field Database 1184
42.17.1 Creation 1185
42.17.2 Access 1185
42.18 Bibliography 1186

43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1189

43.1 Ray Class Groups 1191
43.2 Creation of Class Fields 1194
43.3 Properties of Class Fields 1196
43.4 The Ring of Witt Vectors of Finite Length 1199
43.5 The Ring of Twisted Polynomials 1201
43.5.1 Creation of Twisted Polynomial Rings 1201
43.5.2 Operations with the Ring of Twisted Polynomials 1202
43.5.3 Creation of Twisted Polynomials 1202
43.5.4 Operations with Twisted Polynomials 1204
43.6 Analytic Theory 1205
43.7 Related Functions 1211
43.8 Enumeration of Places 1213
43.9 Bibliography 1214

44 ARTIN REPRESENTATIONS 1215

44.1 Overview 1217
44.2 Constructing Artin Representations 1217
44.3 Basic Invariants 1219
44.4 Arithmetic 1222
44.5 Implementation Notes 1224
44.6 Bibliography 1224

PART V
LATTICES AND QUADRATIC FORMS

30 LATTICES 639

31 LATTICES WITH GROUP ACTION 717

32 QUADRATIC FORMS 743

33 BINARY QUADRATIC FORMS 751

30 LATTICES
30.1 Introduction 643

30.2 Presentation of Lattices . . . 644

30.3 Creation of Lattices 645

30.3.1 Elementary Creation of Lattices . . 645

Lattice(X, M) 645
Lattice(n, Q, M) 645
Lattice(S, M) 645
Lattice(X) 645
Lattice(n, Q) 645
Lattice(S) 645
LatticeWithBasis(B, M) 646
LatticeWithBasis(n, Q, M) 646
LatticeWithBasis(S, M) 646
LatticeWithBasis(B) 646
LatticeWithBasis(n, Q) 646
LatticeWithBasis(S) 646
LatticeWithGram(F) 647
LatticeWithGram(n, Q) 647
StandardLattice(n) 647
CoordinateLattice(L) 647
ScaledLattice(L,n) 647

30.3.2 Lattices from Linear Codes 649

Lattice(C, "A") 649
Lattice(C, "B") 649

30.3.3 Lattices from Algebraic Number
Fields 650

MinkowskiLattice(O) 650
Lattice(O) 650
MinkowskiLattice(I) 650
Lattice(I) 650
MinkowskiSpace(K) 651

30.3.4 Special Lattices 652

Lattice(X, n) 652

30.4 Lattice Elements 653

30.4.1 Creation of Lattice Elements . . . 653

. 653
! 653
elt< > 653
CoordinatesToElement(L, C) 653
Coordelt(L, C) 653
! 653
Zero(L) 653

30.4.2 Operations on Lattice Elements . . 653

- 653
+ 653
- 653
* 654
* 654
/ 654

div 654
+:= 654
-:= 654
*:= 654
* 654
InnerProduct(v, w) 654
(v, w) 654
Norm(v) 654
Length(v, K) 655
Length(v) 655
Support(v) 655

30.4.3 Predicates and Boolean Operations 655

in 655
eq 655
ne 655
IsZero(v) 655

30.4.4 Access Operations 655

ElementToSequence(v) 655
Eltseq(v) 655
Coordinates(v) 655
Coordinates(L, v) 656
CoordinateVector(v) 656
CoordinateVector(L, v) 656

30.5 Properties of Lattices 657

30.5.1 Associated Structures 657

AmbientSpace(L) 657
CoordinateSpace(L) 657
Category(L) 657
Type(L) 657

30.5.2 Attributes of Lattices 658

Dimension(L) 658
Rank(L) 658
Degree(L) 658
Degree(v) 658
Content(L) 658
Level(L) 658
Determinant(L) 658
GramMatrix(L) 658
GramMatrix(X) 658
InnerProductMatrix(L) 658
Basis(L) 659
BasisMatrix(L) 659
BasisDenominator(L) 659
QuadraticForm(L) 659

30.5.3 Predicates and Booleans on Lattices 659

eq 659
ne 659
subset 659
IsExact(L) 659
IsIntegral(L) 659
IsEven(L) 659

640 LATTICES AND QUADRATIC FORMS Part VI

30.5.4 Base Ring and Base Change . . . 660

BaseRing(L) 660
CoefficientRing(L) 660
CoordinateRing(L) 660
ChangeRing(L, S) 660
BaseChange(L, S) 660
BaseExtend(L, S) 660

30.6 Construction of New Lattices . 660

30.6.1 Sub- and Superlattices and Quotients 660

sub< > 660
ext< > 661
* 661
* 661
* 661
/ 661
quo< > 661
/ 661
Index(L, S) 661

30.6.2 Standard Constructions of New Lat-
tices 662

Dual(L) 662
PartialDual(L, n) 663
DualBasisLattice(L) 663
DualQuotient(L) 663
EvenSublattice(L) 663
+ 664
meet 664
DirectSum(L, M) 664
OrthogonalSum(L, M) 664
OrthogonalDecomposition(L) 664
OrthogonalDecomposition(F) 664
TensorProduct(L, M) 664
ExteriorSquare(L) 664
SymmetricSquare(L) 665
PureLattice(L) 665
IntegralBasisLattice(L) 665

30.7 Reduction of Matrices and Lat-
tices 665

30.7.1 LLL Reduction 665

LLL(X) 668
BasisReduction(X) 672
BasisReduction(X) 672
LLLGram(F) 672
LLLBasisMatrix(L) 672
LLLGramMatrix(L) 673
LLL(L) 673
BasisReduction(L) 673
SetVerbose("LLL", v) 673

30.7.2 Pair Reduction 675

PairReduce(X) 675
PairReduceGram(F) 675
PairReduce(L) 675

30.7.3 Seysen Reduction 676

Seysen(X) 676

SeysenGram(F) 676
Seysen(L) 676

30.7.4 HKZ Reduction 677

HKZ(X) 678
HKZGram(F) 678
HKZ(L) 679
SetVerbose("HKZ", v) 679
GaussReduce(X) 679
GaussReduceGram(F) 679
GaussReduce(L) 679
30.7.5 Recovering a Short Basis from Short

Lattice Vectors 680

ReconstructLatticeBasis(S, B) 680

30.8 Minima and Element Enumera-
tion 680

30.8.1 Minimum, Density and Kissing Num-
ber 681

Minimum(L) 681
Min(L) 681
PackingRadius(L) 681
HermiteConstant(n) 681
HermiteNumber(L) 682
CentreDensity(L) 682
CenterDensity(L) 682
CentreDensity(L, K) 682
CenterDensity(L, K) 682
Density(L) 682
Density(L, K) 682
KissingNumber(L) 682

30.8.2 Shortest and Closest Vectors . . . 683

ShortestVectors(L) 683
ShortestVectorsMatrix(L) 683
ClosestVectors(L, w) 684
ClosestVectorsMatrix(L, w) 684

30.8.3 Short and Close Vectors 685

ShortVectors(L, u) 685
ShortVectors(L, l, u) 685
ShortVectorsMatrix(L, u) 686
ShortVectorsMatrix(L, l, u) 686
CloseVectors(L, w, u) 686
CloseVectors(L, w, l, u) 686
CloseVectorsMatrix(L, w, u) 687
CloseVectorsMatrix(L, w, l, u) 687

30.8.4 Short and Close Vector Processes . 691

ShortVectorsProcess(L, u) 691
ShortVectorsProcess(L, l, u) 691
CloseVectorsProcess(L, w, u) 691
CloseVectorsProcess(L, w, l, u) 691
NextVector(P) 691
IsEmpty(P) 692

30.8.5 Successive Minima and Theta Series 692

SuccessiveMinima(L) 692
SuccessiveMinima(L, k) 692
ThetaSeries(L, n) 692
ThetaSeriesIntegral(L, n) 693

Ch. 30 LATTICES 641

30.8.6 Lattice Enumeration Utilities . . . 693

SetVerbose("Enum", v) 693
EnumerationCost(L) 694
EnumerationCost(L, u) 694
EnumerationCostArray(L) 694
EnumerationCostArray(L, u) 694

30.9 Theta Series as Modular Forms 696

ThetaSeriesModularFormSpace(L) 696
ThetaSeriesModularForm(L) 696

30.10 Voronoi Cells, Holes and Cover-
ing Radius 697

VoronoiCell(L) 697
VoronoiGraph(L) 697
Holes(L) 697
DeepHoles(L) 697
CoveringRadius(L) 697
VoronoiRelevantVectors(L) 698

30.11 Orthogonalization 699

Orthogonalize(M) 699
Diagonalization(F) 699
OrthogonalizeGram(F) 699
Orthogonalize(L) 699
Orthonormalize(M, K) 700
Cholesky(M, K) 700
Orthonormalize(M) 700
Cholesky(M) 700
Orthonormalize(L, K) 700
Cholesky(L, K) 700
Orthonormalize(L) 700
Cholesky(L) 700

30.12 Testing Matrices for Definite-
ness 701

IsPositiveDefinite(F) 701
IsPositiveSemiDefinite(F) 701
IsNegativeDefinite(F) 701
IsNegativeSemiDefinite(F) 701

30.13 Genera and Spinor Genera . 702

30.13.1 Genus Constructions 702

Genus(L) 702
Genus(G) 702
SpinorGenus(L) 702
SpinorGenera(G) 702

30.13.2 Invariants of Genera and Spinor
Genera 702

Representative(G) 702
IsSpinorGenus(G) 702
IsGenus(G) 702
Determinant(G) 702
LocalGenera(G) 703
Representative(G) 703
eq 703
703

SpinorCharacters(G) 703
SpinorGenerators(G) 703
AutomorphousClasses(L,p) 703
AutomorphousClasses(G,p) 703
IsSpinorNorm(G,p) 703

30.13.3 Invariants of p-adic Genera . . . 704

Prime(G) 704
Representative(G) 704
Determinant(G) 704
Dimension(G) 704
eq 704

30.13.4 Neighbour Relations and Graphs 704

Neighbour(L, v, p) 704
Neighbor(L, v, p) 704
Neighbours(L, p) 704
Neighbors(L, p) 704
NeighbourClosure(L, p) 704
NeighborClosure(L, p) 704
GenusRepresentatives(L) 705
SpinorRepresentatives(L) 705
Representatives(G) 705
AdjacencyMatrix(G,p) 705

30.14 Attributes of Lattices . . . 708

L‘Minimum 708
L‘MinimumBound 708

30.15 Database of Lattices 708

30.15.1 Creating the Database 709

LatticeDatabase() 709

30.15.2 Database Information 709

709
NumberOfLattices(D) 709
LargestDimension(D) 709
NumberOfLattices(D, d) 709
NumberOfLattices(D, N) 709
LatticeName(D, i) 709
LatticeName(D, d, i) 709
LatticeName(D, N) 709
LatticeName(D, N, i) 709

30.15.3 Accessing the Database 710

Lattice(D, i: -) 710
Lattice(D, d, i: -) 710
Lattice(D, N: -) 710
Lattice(D, N, i: -) 710
LatticeData(D, i) 710
LatticeData(D, d, i) 710
LatticeData(D, N) 710
LatticeData(D, N, i) 710

30.15.4 Hermitian Lattices 712

HermitianTranspose(M) 712
ExpandBasis(M) 712
HermitianAutomorphismGroup(M) 712
QuaternionicAutomorphismGroup(M) 712
InvariantForms(G) 712

642 LATTICES AND QUADRATIC FORMS Part VI

QuaternionicGModule(M, I, J) 712
MooreDeterminant(M) 712

30.16 Bibliography 714

Chapter 30

LATTICES

30.1 Introduction

Lattices play an important role in various areas, e.g., representation theory, coding theory,
geometry and algebraic number theory.

A lattice in Magma is a free Z-module contained in Qn or Rn, together with a positive
definite inner product having image in Q or R. The information specifying a lattice is a
basis, given by a sequence of elements in Qn or Rn, and a bilinear product (·, ·), given by
(v, w) = vMwtr for a positive definite matrix M .

Central to the lattice machinery in Magma is a fast implementation of the Lenstra-
Lenstra-Lovász lattice reduction algorithm [LLL82]. The Lenstra-Lenstra-Lovász algorithm
(LLL for short) takes a basis of a lattice and returns a new basis of the lattice which is
LLL-reduced which usually means that the vectors of the new basis have small norms.
The Magma algorithm is based on both the floating-point LLL algorithm of Nguyen and
Stehlé [NS09] and the exact integral algorithm as described by de Weger in [dW87], but
includes many optimisations, with particular attention to different kinds of input matrices.
The algorithm can operate on either a basis matrix or a Gram matrix and can be controlled
by many parameters (selection of methods, LLL reduction constants, step and time limits,
etc.).

For each lattice, a LLL-reduced basis for the lattice is computed and stored internally
when necessary and subsequently used for many operations. This gives maximum efficiency
for the operations, yet all the operations are presented using the external (“user”) basis of
the lattice. Lattices are thus a more efficient alternative to R-spaces where R is the integer
ring Z since lattices use a LLL-reduced form of the basis matrix extensively instead of the
Hermite form of a basis matrix used by R-spaces which may have very large entries.

Another important component of the lattice machinery is a very efficient algorithm for
enumerating all vectors of a lattice with norms in a given range. This algorithm is used for
computing the minimum, the shortest vectors, vectors up to a chosen length, and vectors
close to or closest to a given vector (possibly) outside a lattice.

Several interesting lattices are directly accessible inside Magma using standard con-
structions (e.g., root lattices and preimages of linear codes). Additionally, an interface has
been provided to convert lattices in the database of G. Nebe and N.J.A. Sloane [NS01a]
into Magma format.

644 LATTICES AND QUADRATIC FORMS Part VI

30.2 Presentation of Lattices

A lattice in Magma is a free Z-module of rank m inside Zn, Qn, or Rn, where m ≤ n.
We call m the rank or dimension of the lattice and n its degree. A lattice with m = n
is called a full lattice. There are two pieces of information which completely determine a
lattice L: the basis matrix B and the inner product matrix M . M is always a positive
definite matrix (i.e., a matrix M such that vMvtr > 0 for all non-zero vectors v ∈ Rn).

All other information associated with a lattice L is derived from B andM . For example,
the inner product (·, ·) for L is given by (v, w) = vMwtr and thus the Gram matrix F for
L giving the inner products of the basis vectors is BMBtr.

Lattices differ from R-spaces in that a lattice is always a Z-module even if entries of
some elements of the lattice are not integers. For R-spaces the base ring R affects the
module structure but for lattices the “base ring” R is just defined to be the smallest ring
over which the basis and inner product matrices can be represented. Magma basically has
two kinds of lattices: exact lattices for which all of the entries of B and M (and thus F)
lie in either Z or Q, and non-exact lattices for which all of the entries of B and M (and
thus F) lie in a particular approximate real field R.

For exact lattices, the “base ring” Rmay be Z or Q as mentioned above so that elements
are represented over R, but otherwise there is nothing in the lattice which distinguishes be-
tween the Z and Q cases. When exact lattices are printed, the basis matrix B is presented
uniquely as an integral matrix divided by a minimal positive integral denominator. The
inner product matrix M is presented similarly. This tends to be a more natural presen-
tation which reflects the Z-module structure. Another useful feature of this presentation
is that the inner product can be efficiently defined to be the identity matrix divided by
an appropriate integral scale factor. In this way, the basis can be kept rational while still
obtaining an integral primitive Gram matrix (a matrix with integral entries which are co-
prime), thus avoiding the need for rescaling the basis by an irrational square root. This
method is followed in the construction of special lattices provided within Magma.

For non-exact lattices, the basis matrix B is simply presented as it is represented over
the ring R which is an approximate real field. Some operations applicable for exact lattices
are not possible for non-exact lattices. Thus if in the description of a function below it is
said that the function can only be applied to an exact lattice it means that the function
cannot be applied to a lattice over an approximate real field.

Two lattices are said to be compatible if their inner product matrices are equal. Many
operations on lattices assume that their arguments are compatible. Intuitively, two lattices
and their elements are not comparable if their inner product matrices are different.

Associated with a lattice L is its coordinate lattice L′ which has the standard basis
(i.e., its basis matrix is the identity matrix) but has the same Gram matrix as L. Some
operations, e.g., automorphism group, always work with the coordinates of elements of the
lattice, so it is necessary to move to the coordinate lattice.

The category of lattices is Lat.

Ch. 30 LATTICES 645

30.3 Creation of Lattices

Lattices can be created in elementary ways whereby the basis matrix or a generating matrix
and possibly also the inner product matrix are specified. Magma also provides functions
for creating lattices from linear codes or algebraic number fields and for creating some
special lattices.

30.3.1 Elementary Creation of Lattices
This subsection describes the elementary ways of creating lattices by supplying the basis
or the Gram matrix.

There are two ways of specifying the basis of a lattice at creation. First, a generating
matrix can be specified whose rows need not be independent; the matrix is reduced to a
LLL-reduced form and zero rows are removed to yield a basis matrix. Secondly, a basis
matrix (with independent rows) can be specified; this matrix is used for the basis matrix
without any changes being made to it. As well as the basis, a particular inner product can
also be specified by a symmetric positive definite matrix. By default (when a particular
inner product matrix is not given), the inner product is taken to be the standard Euclidean
product.

Instead of giving the basis one can also define a lattice by its Gram matrix F which
prescribes the inner products of the basis vectors. The basis is taken to be the standard
basis and the inner product matrix is taken as F so that the Gram matrix for the lattice
is also F .

Lattice(X, M)

Lattice(n, Q, M)

Lattice(S, M)

CheckPositive BoolElt Default : true

Construct the lattice L specified by the given generating matrix and with inner
product given by the n × n matrix M . The generating matrix can be specified by
an r × n matrix X, an integer n with a sequence Q of ring elements of length rn
(interpreted as a r × n matrix), or an R-space S of dimension r and degree n. In
each case, the generating matrix need not have independent rows (though it always
will in the R-space case). The matrix is reduced to a LLL-reduced form and zero
rows are removed to yield a basis matrix B of rank m (so m ≤ r). The lattice L
is then constructed to have rank m, degree n, basis matrix B and inner product
matrix M . By default Magma checks that M is positive definite but by setting
CheckPositive := false this check will be suppressed. (Unpredictable behaviour
will follow if unchecked incorrect input is given.)

Lattice(X)

Lattice(n, Q)

Lattice(S)

646 LATTICES AND QUADRATIC FORMS Part VI

Construct the lattice L specified by the given generating matrix and with standard
Euclidean inner product. The generating matrix can be specified by an r×n matrix
X, an integer n with a sequence Q of ring elements of length rn (interpreted as
a r × n matrix), or an R-space S of dimension r and degree n. In each case, the
generating matrix need not have independent rows (though it always will in the
R-space case). The matrix is reduced to a LLL-reduced form and zero rows are
removed to yield a basis matrix B of rank m (so m ≤ r). The lattice L is then
constructed to have rank m, degree n, basis matrix B and standard Euclidean inner
product.

LatticeWithBasis(B, M)

LatticeWithBasis(n, Q, M)

LatticeWithBasis(S, M)

CheckIndependent BoolElt Default : true

CheckPositive BoolElt Default : true

Construct the lattice L with the specified m×n basis matrix and with inner product
given by the n×nmatrixM . The basis matrix B can be specified by anm×nmatrix
B, an integer n with a sequence Q of ring elements of length mn (interpreted as an
m×nmatrix B), or an R-space S of dimensionm and degree n (whose basis matrix is
taken to be B). The rows of B must be independent (i.e., form a basis). The lattice
L is then constructed to have rank m, degree n, basis matrix B and inner product
matrix M . (Note that the basis matrix B is not reduced to a LLL-reduced form as
in the Lattice function.) By default Magma checks that the rows of the matrix B
specifying the basis are independent but by setting CheckIndependent := false
this check will be suppressed. By default Magma also checks that M is positive
definite but by setting CheckPositive := false this check will be suppressed.
(Unpredictable behaviour will follow if unchecked incorrect input is given.)

LatticeWithBasis(B)

LatticeWithBasis(n, Q)

LatticeWithBasis(S)

CheckIndependent BoolElt Default : true

Construct the lattice L with the specified m × n basis matrix and with standard
Euclidean inner product. The basis matrix B can be specified by an m× n matrix
B, an integer n with a sequence Q of ring elements of length mn (interpreted as an
m×n matrix B), or an R-space S of dimension m and degree n (whose basis matrix
is taken to be B). The rows of B must be independent (i.e., form a basis). The
lattice L is then constructed to have rank m, degree n, basis matrix B and standard
Euclidean product. (Note that the basis matrix B is not reduced to a LLL-reduced
form as in the Lattice function.) By default Magma checks that the rows of the
matrix B specifying the basis are independent but by setting CheckIndependent

Ch. 30 LATTICES 647

:= false this check will be suppressed. (Unpredictable behaviour will follow if
unchecked incorrect input is given.)

LatticeWithGram(F)

LatticeWithGram(n, Q)

CheckPositive BoolElt Default : true

Construct a lattice with the given Gram matrix. The Gram matrix F can be spec-
ified as a symmetric n × n matrix F , or an integer n and a sequence Q of ring
elements of length n2 or

(
n+1

2

)
. In the latter case, a sequence of length n2 is re-

garded as an n × n matrix and a sequence of length
(
n+1

2

)
as a lower triangular

matrix determining a symmetric matrix F .
This function constructs the lattice L of degree n having the standard basis

and inner product matrix F , therefore having Gram matrix F as well. By default
Magma checks that F is positive definite but by setting CheckPositive := false
this check will be suppressed. (Unpredictable behaviour will follow if unchecked
incorrect input is given.)

StandardLattice(n)

Create the standard lattice Zn with standard Euclidean inner product.

CoordinateLattice(L)

Constructs the lattice with the same Gram matrix as the lattice L, but with basis
equal to the canonical basis of the free module of Rank(L) over the base ring of L.
The identification of basis elements thus determines an isometry of lattices.

ScaledLattice(L,n)

Constructs the coordinate lattice with Gram matrix equal to that of the lattice
L scaled by the integer or rational n. The identification of basis elements thus
determines an similitude of lattices.

Example H30E1

We create the lattice in Z3 of degree 3 and rank 2 generated by the vectors (1, 2, 3) and (3, 2, 1)
in four different ways. The first two (identical) lattices are represented by LLL-reduced bases
since the Lattice function is used to create them, while the latter two (identical) lattices remain
represented by the original basis since the LatticeWithBasis function is used to create them.

> B := RMatrixSpace(IntegerRing(), 2, 3) ! [1,2,3, 3,2,1];

> B;

[1 2 3]

[3 2 1]

> L1 := Lattice(B);

> L1;

Lattice of rank 2 and degree 3

Basis:

(2 0 -2)

648 LATTICES AND QUADRATIC FORMS Part VI

(1 2 3)

> L2 := Lattice(3, [1,2,3, 3,2,1]);

> L2 eq L1;

true

> L3 := LatticeWithBasis(B);

> L3;

Lattice of rank 2 and degree 3

Basis:

(1 2 3)

(3 2 1)

> L4 := LatticeWithBasis(3, [1,2,3, 3,2,1]);

> L4 eq L3, L1 eq L3;

true true

We next create a 3 × 3 positive definite matrix M and create the lattice L with basis the same
as above but also with inner product matrix M . We note the Gram matrix of the lattice which
equals BMBtr where B is the basis matrix.

> B := RMatrixSpace(IntegerRing(), 2, 3) ! [1,2,3, 3,2,1];

> M := MatrixRing(IntegerRing(), 3) ! [3,-1,1, -1,3,1, 1,1,3];

> M;

[3 -1 1]

[-1 3 1]

[1 1 3]

> IsPositiveDefinite(M);

true

> L := LatticeWithBasis(B, M);

> L;

Lattice of rank 2 and degree 3

Basis:

(1 2 3)

(3 2 1)

Inner Product Matrix:

[3 -1 1]

[-1 3 1]

[1 1 3]

> GramMatrix(L);

[56 40]

[40 40]

Finally, we create a lattice C with the same Gram matrix as the last lattice, but with standard
basis. To do this we use the LatticeWithGram function. This lattice C is the coordinate lattice of
L: it has the same Gram matrix as L but is not compatible with L since its inner product matrix
is different to that of L.

> F := MatrixRing(IntegerRing(), 2) ! [56,40, 40,40];

> C := LatticeWithGram(F);

> C;

Standard Lattice of rank 2 and degree 2

Inner Product Matrix:

Ch. 30 LATTICES 649

[56 40]

[40 40]

> GramMatrix(C);

[56 40]

[40 40]

> C eq CoordinateLattice(L);

true

> GramMatrix(C) eq GramMatrix(L);

true

> C eq L;

Runtime error in ’eq’: Arguments are not compatible

30.3.2 Lattices from Linear Codes
This subsection presents some standard constructions (known as constructions ‘A’ and
‘B’) to obtain lattices from linear codes. In some cases the structural invariants of these
lattices (e.g., minimum and kissing number, hence the centre density) can be deduced from
invariants of the codes; in general one still gets estimates for the invariants of the lattices.

Lattice(C, "A")

Let C be a linear code of length n over a prime field K := Fp. Construct the lattice
L ⊆ Zn which is the full preimage of C under the natural epimorphism from Zn

onto Kn.

Lattice(C, "B")

Let C be a linear code of length n over a prime field K := Fp such that all code
words have coordinate sum 0. Construct the lattice L ⊆ Zn which consists of all
vectors reducing modulo p to a code word in C and whose coordinate sum is 0
modulo p2. The inner product matrix is set to the appropriate scalar matrix so that
the Gram matrix is integral and primitive (its entries are coprime).

Example H30E2

The 16-dimensional Barnes-Wall lattice Λ16 can be constructed from the first order Reed-Muller
code of length 16 using construction ‘B’. Note that the inner product matrix is the identity matrix
divided by 2 so that the Gram matrix is integral and primitive.

> C := ReedMullerCode(1, 4);

> C: Minimal;

[16, 5, 8] Reed-Muller Code (r = 1, m = 4) over GF(2)

> L := Lattice(C, "B");

> L;

Lattice of rank 16 and degree 16

Basis:

(1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1)

(0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1)

650 LATTICES AND QUADRATIC FORMS Part VI

(0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1)

(0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2)

(0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1)

(0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2)

(0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2)

(0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2)

(0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1)

(0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2)

(0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2)

(0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2)

(0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2)

(0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2)

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2)

(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4)

Inner Product denominator: 2

30.3.3 Lattices from Algebraic Number Fields
Let K be an algebraic number field of degree n over Q. Then K has n embeddings
into the complex numbers, denoted by σ1, . . . , σn. By convention the first s of these are
embeddings into the real numbers and the last 2t are pairs of complex embeddings such
that σs+t+i = σs+i for 1 ≤ i ≤ t. The T2-norm K → R : α 7→ ∑n

i=1 |σi(α)|2 defines
a positive definite norm on K in which an order or ideal is a positive definite lattice.
We restrict to the r real embeddings and the first s complex embeddings to obtain an
embedding of a rank n order or ideal Rs×Cs = Rn. By rescaling the complex coordinates
by
√

2, we recover the T2-norm of the element as its Euclidean norm under the embedding
in Rn. This embedding, given by

α 7→
(
σ1(α), . . . , σs(α),

√
2Re(σs+1(α)),

√
2 Im(σs+1(α)), . . . ,

√
2 Im(σs+t(α))

)
,

is called the Minkowski map on K.

MinkowskiLattice(O)

Lattice(O)

Given an order O in a number field of degree n, create the lattice L in Rn gen-
erated by the images of the basis of O under the Minkowski map, followed by the
isomorphism O → L.

MinkowskiLattice(I)

Lattice(I)

Given an ideal I of an order O in a number field of degree n, create the lattice in
Rn generated by the images of the basis of I under the Minkowski map, followed
by the isomorphism O → L.

Ch. 30 LATTICES 651

MinkowskiSpace(K)

Construct the real inner product space V defined with respect to the inner product
matrix of the T2-norm on the number field K, followed by the Minkowski map
K → V .

Example H30E3

In this example we create the lattice corresponding to the equation order of the number field
Q(3
√

15). For comparison we apply the Minkowski map to the elements of the basis for the order.

> P<x> := PolynomialRing(Integers());

> R := EquationOrder(NumberField(x^3-15));

> w := R![0,1,0];

> L, f := MinkowskiLattice(R);

> L;

Lattice of rank 3 and degree 3 over Real Field

Basis:

Lattice of rank 3 and degree 3 over Real field of precision 30

Basis:

(1.00000000000000000000000000000 1.41421356237309504880168872421

0.000000000000000000000000000000)

(2.46621207433047010149161132315 -1.74387528160321720079629694216

3.02048058980025565688335869988)

(6.08220199557340018489844499774 -4.30076627561630297914843739812

-7.44914570084621027635727295139)

> B := Basis(R);

> f(B[2]);

> f(B[2]);

(2.46621207433047010149161132315 -1.74387528160321720079629694216

3.02048058980025565688335869988)

Similarly, we create the lattice defined by the ideal generated by w2 + 1, and verify the that the
T2-norm, given by Length on the number field, agrees with the norm of the lattice image.

> I := ideal< R | w^2+1 >;

> L, f := Lattice(I);

> B := Basis(I);

> [Length(B[k]) : k in [1..3]];

[113.9795433448711545671225095419565069230968018982624192080454

3346320196288153038584473344161989557225281060164140817511930289

049332599978630989750057117093892447723724,

693.246605986720200554695334993213407259633012131529936960318255

6345313709169384387254042929336529027528589276741384648056766427

8812020993502245102110970371559009076524,

4216.46589035691627937357288301497314034052453149249823527965295

1232760419192679099060699351691798691646069328322562756396547517

8203732351663613772502545069466948994156]

> [Norm(f(B[k])) : k in [1..3]];

[113.979543344871154567122509542,

652 LATTICES AND QUADRATIC FORMS Part VI

693.246605986720200554695334993, 4216.46589035691627937357288302

]

30.3.4 Special Lattices
This subsection presents functions to construct some special lattices, namely root lattices,
laminated lattices and Kappa-lattices.

A much wider variety of lattices can be found in a database provided by G. Nebe and
N.J.A. Sloane at the web-site [NS01a]. These lattices can easily be made accessible to
Magma by a conversion script also available at this web-site. The database currently
contains (at least):
• The root lattices An and their duals for 1 ≤ n ≤ 24
• The root lattices Dn and their duals for 1 ≤ n ≤ 24
• The root lattices En and their duals for 6 ≤ n ≤ 8
• The laminated lattices Λn for 1 ≤ n ≤ 24 including the 16-dimensional Barnes-Wall

lattice Λ16 and the Leech lattice Λ24

• The Kappa-lattices Kn and their duals for 7 ≤ n ≤ 13 including the Coxeter-Todd
lattice K12

• The perfect lattices up to dimension 7
• The 3-dimensional Bravais lattices
• Various interesting lattices in dimensions 20, 24, 28, 32, 40, 80, 105 including, e.g.,

some of the densest known lattices in dimension 32.

Lattice(X, n)

Given a family name X as a string which is one of "A", "B", "C", "D", "E", "F",
"G", "Kappa" or "Lambda", together with an integer n, construct a lattice subject
to the following specifications:
A: The root lattice An which is the zero-sum lattice in Qn+1.
B: n ≥ 2: The root lattice Bn which is the standard lattice of dimension n.
C: n ≥ 3: The root lattice Cn which is the even sublattice of Zn and is equal to Dn.
D: n ≥ 3: The root lattice Dn which is the even sublattice of Zn, also called the

checkerboard lattice.
E: 6 ≤ n ≤ 8: The root lattice En, also called Gosset lattice.
F: n = 4: The root lattice F4 which is equal to D4.
G: n = 2: The root lattice G2 which is equal to A2.
Kappa: 1 ≤ n ≤ 13: The Kappa-lattice Kn. For n = 12 this is the Coxeter-Todd

lattice.
Lambda: 1 ≤ n ≤ 31: The laminated lattice Λn. For n = 16 this is the Barnes-Wall

lattice, for n = 24 the Leech lattice.

Ch. 30 LATTICES 653

To avoid irrational entries, each lattice is presented with inner product matrix
taken to be the identity matrix divided by a suitable scale factor so that the Gram
matrix is integral and primitive (its entries are coprime).

30.4 Lattice Elements

The following functions allow basic operations on elements of lattices. The elements of
lattices are simply (row) vectors, just as for R-spaces. Most of the operations for R-space
elements are also applicable to lattice elements.

30.4.1 Creation of Lattice Elements

L . i

Return the i-th basis element of the current basis of the lattice L.

L ! Q

elt< L | Q >

Given a lattice L of degree n and a sequence Q of length n, create the lattice element
with the corresponding sequence elements as entries. The sequence must consist of
elements coercible into the base ring of L. The resulting vector must lie within L.

CoordinatesToElement(L, C)

Coordelt(L, C)

Given a lattice L of rank m and a sequence or vector C = [c1, . . . , cm] of length m
of integers, create the lattice element c1 · b1 + . . .+ cm · bm, where [b1, . . . , bm] is the
basis of L.

L ! 0

Zero(L)

Return the zero element of the lattice L.

30.4.2 Operations on Lattice Elements

-v

Given an element v in a lattice L, return its negation −v in L.

v + w

Given elements v and w in a lattice L, return the sum v + w in L.

v - w

Given elements v and w in a lattice L, return the difference v − w in L.

654 LATTICES AND QUADRATIC FORMS Part VI

v * s

s * v

Given an element v in a lattice L and a scalar s of the ring S, return the product
s · v (scalar multiplication of v by s). If s is an integer, the resulting vector will lie
in L; otherwise the resulting vector will lie in the R-space of the appropriate degree
whose coefficient ring is the parent S of s.

v / s

Given an element v in a lattice L and a scalar s of the ring S, return the product
(1/s) · v (scalar multiplication of v by 1/s). The resulting vector will always lie in
the R-space of the appropriate degree whose coefficient ring is the field of fractions
of the parent S of s.

v div d

Given an element v in a lattice L and an integer d, return the vector (1/d) ·v (scalar
multiplication of v by 1/d) as an element of L if the scaled vector lies in L. If the
scaled vector does not lie in L, an error ensues. Note that this is different from v/d.

v +:= w

(Assignment statement.) Replace lattice element v by the sum v + w.

v -:= w

(Assignment statement.) Replace lattice element v by the difference v − w.

v *:= n

(Assignment statement.) Replace lattice element v by the scalar product n ·v, where
n is an integer.

v * T

Given an element v in a lattice L of degree n, return the result of multiplying v
from the right by the n× n matrix T . The matrix T may be any matrix which is n
by n and over the base ring of L. The resulting product must lie in the lattice L.

InnerProduct(v, w)

(v, w)

Given elements v and w of a lattice L, return their inner product (v, w) with respect
to the inner product of L. This is vMwtr where M is the inner product matrix of
L.

Norm(v)

Given an element v of a lattice L, return its norm (v, v) with respect to the inner
product of L. This is vMvtr where M is the inner product matrix of L. Note that
in the case of a lattice with standard Euclidean inner product this is the square of
the usual Euclidean length.

Ch. 30 LATTICES 655

Length(v, K)

Length(v)

Given an element v of a lattice L, return its length
√

(v, v) with respect to the inner
product of L as an element of the real field K. This is

√
vMvtr where M is the

inner product matrix of L. The argument for the real field K may be omitted, in
which case K is taken to be the current default real field. In the case of a lattice
with standard Euclidean inner product this is the usual Euclidean length.

Support(v)

Given an element v of a lattice L, return its support, i.e., the numbers of the columns
at which v has non-zero entries.

30.4.3 Predicates and Boolean Operations

v in L

Given an element v of a lattice which is compatible with the lattice L, return true
if and only if v is in L.

v eq w

Given elements v and w of a lattice L, return true if and only if lattice elements v
and w of lattice L are equal.

v ne w

Given elements v and w of a lattice L, return false if and only if lattice elements
v and w of lattice L are equal.

IsZero(v)

Given an element v of a lattice L, return true if and only if v is the zero element L.

30.4.4 Access Operations

ElementToSequence(v)

Eltseq(v)

Given an element v of a lattice L of degree n, return the sequence of entries of v of
length n.

Coordinates(v)

Given an element v of a lattice L having Z-basis [b1, . . . , bm], return a sequence
[c1, . . . , cm] of elements of Z giving the (unique) coordinates of v relative to the
Z-basis, so that v = c1 · b1 + . . .+ cm · bm.

656 LATTICES AND QUADRATIC FORMS Part VI

Coordinates(L, v)

Given a lattice L of degree n having Z-basis [b1, . . . , bm], together with an element
v of a lattice L′ (also of degree n), return a sequence [c1, . . . , cm] of elements of
Z giving the (unique) coordinates of v relative to the Z-basis of L, so that v =
c1 · b1 + . . .+ cm · bm.

CoordinateVector(v)

Given an element v of a lattice L having Z-basis [b1, . . . , bm], return the vector c =
(c1, . . . , cm) of the coordinate lattice C of L (see the function CoordinateLattice)
giving the (unique) coordinates of v relative to the Z-basis, so that v = c1 · b1 +
. . .+ cm · bm.

CoordinateVector(L, v)

Given a lattice L of degree n having Z-basis [b1, . . . , bm], together with an element v
of a lattice L′ (also of degree n), return the vector c = (c1, . . . , cm) of the coordinate
lattice C of L (see the function CoordinateLattice) giving the (unique) coordinates
of v relative to the Z-basis of L, so that v = c1 · b1 + . . .+ cm · bm.

Example H30E4

This example demonstrates simple uses of the operations on lattice elements.

> L := LatticeWithBasis(3, [1,0,0, 1,2,3, 3,6,2]);

> L;

Lattice of rank 3 and degree 3

Basis:

(1 0 0)

(1 2 3)

(3 6 2)

> Coordelt(L, [1, 2, 1]);

(6 10 8)

> v := L.2;

> w := L ! [2, 4, 6];

> Eltseq(v);

[1, 2, 3]

> Coordinates(w);

[0, 2, 0]

> Coordelt(L, [1, 1, 1]);

(5 8 5)

> Norm(v);

14

> InnerProduct(v, w);

28

> A := MatrixRing(Integers(), 3);

> X := A ! [0,-1,0, 1,0,0, 0,1,2];

> X;

[0 -1 0]

Ch. 30 LATTICES 657

[1 0 0]

[0 1 2]

> u := L.1 + L.3;

> Determinant(X);

2

> Norm(u);

56

> u * X;

(6 -2 4)

> Norm(u * X);

56

30.5 Properties of Lattices

The following functions provide access to the elementary attributes and properties of lat-
tices. Other attributes and invariants of a lattice, e.g., successive minimum, kissing num-
ber, and theta series are described in subsequent sections.

30.5.1 Associated Structures

AmbientSpace(L)

The ambient rational or real vector space in which the lattice L embeds, followed
by the embedding map.

CoordinateSpace(L)

The ambient vector space of the coordinate lattice, i.e., the vector space of dimension
equal to the rank of the lattice L, with inner product matrix equal to the Gram
matrix of L. The embedding map is returned as the second return value.

Category(L)

Type(L)

Returns the category Lat of lattices.

658 LATTICES AND QUADRATIC FORMS Part VI

30.5.2 Attributes of Lattices

Dimension(L)

Rank(L)

Return the rank of the lattice L, which equals the number of basis elements in L.
Note that the rank of the lattice may be smaller than its degree n, which is the
dimension of the real space Rn in which L is defined.

Degree(L)

Return the degree of the lattice L, which is the dimension n of the real space Rn in
which L is defined.

Degree(v)

Return the degree of the lattice element v, which the degree of the lattice to which
it belongs.

Content(L)

Given an exact lattice L, return the largest rational number c such that (u, v) ∈ cZ
for all u, v ∈ L.

Level(L)

Given an integral lattice L, return the smallest integer k such that k(v, v) ∈ 2Z for
all v in the dual of L.

Determinant(L)

Returns the determinant of the lattice L, which is defined to be the determinant of
the Gram matrix F of L. For a full rank lattice the square root of Determinant(L)
is the volume of a fundamental parallelotope of the lattice.

GramMatrix(L)

Return the Gram matrix for the lattice L of rank m, which is the m ×m matrix
F = BMBtr, where B is the basis matrix of L and M is the inner product matrix
of L. Thus the (i, j)-th entry of F equals the inner product of the basis vectors bi
and bj of L.

GramMatrix(X)

Given a matrix X, return XXtr. Note that this function will take half the time as
would be taken for the invocation X*Transpose(X) since the symmetry of the result
is taken advantage of.

InnerProductMatrix(L)

The inner product matrix M of the lattice L, which is an n× n matrix, where n is
the degree of L. If L has the standard Euclidean product, M is the identity matrix.

Ch. 30 LATTICES 659

Basis(L)

Return the basis of the lattice L as a sequence [b1, . . . , bm] of elements of L.

BasisMatrix(L)

Return the m × n matrix having the basis elements of L as rows, where m is the
rank and n the degree of L. The coefficient ring of the matrix is the same as the
base ring of L.

BasisDenominator(L)

Given an exact lattice L, return the common denominator of the entries of the
current basis of L.

QuadraticForm(L)

The quadratic form of the lattice L as a multivariate polynomial.

30.5.3 Predicates and Booleans on Lattices

L eq M

Given lattices L and M , return true if and only if the lattices have the same basis
matrix and inner product matrix.

L ne M

The logical negation of eq.

L subset M

Return true if and only if L is a sublattice of M , i.e., both L and M are lattices,
and L is a subset of M .

IsExact(L)

Return true if and only if L is an exact lattice, i.e., the coefficient ring of L is Z or
Q and (v, w) ∈ Q for all v, w ∈ L.

IsIntegral(L)

Return true if and only if L is an integral lattice, i.e., if and only if (v, w) ∈ Z for
all v, w ∈ L.

IsEven(L)

Return true if and only if L is an even lattice, i.e., if and only if L is integral and
(v, v) ∈ 2Z for all v ∈ L.

660 LATTICES AND QUADRATIC FORMS Part VI

30.5.4 Base Ring and Base Change

BaseRing(L)

CoefficientRing(L)

Return the base ring of the lattice L, which is the ring over which the elements of
L are represented. Note that lattices are always Z-modules even if the base ring is
not Z; the base ring R is just defined to be the smallest ring over which the basis
and inner product matrices can be represented. See the section on presentation of
lattices at the beginning of the chapter for further discussion.

CoordinateRing(L)

Return the ring of coordinate coefficients for the lattice L. This currently will always
return the integer ring Z.

ChangeRing(L, S)

BaseChange(L, S)

BaseExtend(L, S)

Given a lattice L, return the lattice L′ obtained from coercing the entries of the
basis and of the matrix for the inner product into the ring S, together with the
homomorphism from L to L′. This will result in an error if any of the entries is not
coercible into S. This function is only really useful for moving between real fields
of varying precision (it is unnecessary and ineffectual to change a lattice from Z to
Q; see the section on presentation of lattices).

30.6 Construction of New Lattices

30.6.1 Sub- and Superlattices and Quotients

sub< L | S >

Given a lattice L and a list S, construct the sublattice L′ of L generated by the
elements specified by the list S. Each term Si of the list S must be an expression
defining an object of one of the following types:

(a) an element of L or coercible into L,

(b)a set or sequence of elements coercible into L,

(c) a sublattice of L,

(d)a set or sequence of sublattices of L.

The constructor returns the sublattice L′ and the inclusion homomorphism from L′

into L.

Ch. 30 LATTICES 661

ext< L | S >

Given a lattice L lying inside V = Rn and a list S, construct the superlattice L′ of
L generated by L together with the elements specified by the list S. Each term Si

of the list S must be an expression defining an object of one of the following types:

(a) an element of V or coercible into V ,

(b)a set or sequence of elements coercible into V ,

(c) a sublattice of V ,

(d)a set or sequence of sublattices of V .

The constructor returns the superlattice L′ and the inclusion homomorphism from
L into L′.

T * L

Given a lattice L of rank m and an l×m integer matrix, construct the sublattice of
L defined by the transformation matrix T , i.e., the lattice generated by the rows of
the matrix obtained by multiplying the basis matrix of L from the left by T . The
resulting lattice will have rank less than or equal to l.

s * L

L * s

Given a lattice L and a scalar s, construct the sublattice or superlattice of L obtained
by multiplying the basis matrix of L by the scalar s.

L / s

Given a lattice L and a scalar s, construct the sublattice or superlattice of L obtained
by multiplying the basis matrix of L by the scalar 1/s.

quo< L | S >

Given a lattice L and a list S, construct the quotient L/L′, where L′ is the sublattice
of L generated by the elements of the list S. The elements of S must be the same
as for the sub<> constructor. The quotient Q := L/L′ is constructed as an abelian
group. As a second value the function returns the natural epimorphism L→ Q.

L / S

Given two lattices L and S such that S is a sublattice of L, construct the quotient
Q := L/S as an abelian group. As a second value the function returns the natural
epimorphism L→ Q.

Index(L, S)

Given a lattice L and a sublattice S of L, return the index of S in L. This is the
cardinality of the quotient L/S. If the index is infinite, zero is returned.

662 LATTICES AND QUADRATIC FORMS Part VI

Example H30E5

We demonstrate simple uses of the sub-, ext- and quo-constructors.

> L := LatticeWithBasis(4, [1,2,3,4, 0,1,1,1, 0,1,3,5]);

> L;

Lattice of rank 3 and degree 4

Basis:

(1 2 3 4)

(0 1 1 1)

(0 1 3 5)

> E := ext<L | [1,0,0,0]>;

> E;

Lattice of rank 3 and degree 4

Basis:

(1 0 0 0)

(0 1 0 -1)

(0 1 1 1)

> Index(E, L);

2

> Q, f := quo<E | L>;

> Q;

Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*Q.1 = 0

> f(E.1);

Q.1

30.6.2 Standard Constructions of New Lattices
The functions in this section enable one to construct new lattices from old ones using
standard operations. Note that the functions will preserve the basis matrices of their
arguments if possible (e.g., DirectSum), but if this is not possible the basis of the resulting
lattice will be LLL-reduced (e.g., +, meet).

Dual(L)

Rescale BoolElt Default : true

Let L be a lattice in Rn and let V := R ⊗Z L be the real vector space generated
by L. Then the dual lattice L# of L is defined by L# := {v ∈ V |(v, l) ∈ Z ∀l ∈ L}.
For an integral lattice L one always has L ⊆ L#. This function returns a rescaled
version L′ of the dual L# by default so that the basis of L′ is LLL-reduced and L′

is an integral lattice and its Gram matrix is primitive (its entries are coprime). By
setting the parameter Rescale to false, the rescaling can be suppressed and the
proper dual lattice is returned.

Ch. 30 LATTICES 663

PartialDual(L, n)

Rescale BoolElt Default : true

Given an integral lattice L and a positive integer n that divides the exponent e of
the DualQuotient group of L, this function computes the nth partial dual of L.
This is defined by pulling back (e/n) · g for generators g of the DualQuotient and
intersecting with the lattice itself.

DualBasisLattice(L)

Let L be a lattice in Rn and let V := R ⊗Z L be the real vector space generated
by L, then L# := {v ∈ V |(v, l) ∈ Z ∀l ∈ L} is the dual lattice of L. Let B be the
basis matrix of L, M the inner product matrix of L, and F the Gram matrix of L.
This function returns the dual L# as the lattice with basis matrix F−1B and inner
product matrix M (so that its Gram matrix is F−1).

DualQuotient(L)

Given an integral lattice L, construct the dual quotient Q of L, which is defined
to be the finite abelian group L#/L of order Determinant(L), where L# is the
unscaled dual lattice of L (the lattice returned by Dual with the Rescale parameter
set to false). This function returns three values:
(a)The dual quotient Q.
(b)The unscaled dual lattice L#.
(c) The natural epimorphism φ : L# → Q whose kernel is L.

EvenSublattice(L)

Given an integral lattice L, construct its maximal even sublattice together with the
natural embedding into L.

Example H30E6

> L := Lattice(LatticeDatabase(), 541);

> Dimension(L);

29

> IsEven(L);

true

> IsEven(Dual(L));

false;

> G := DualQuotient(L);

> Exponent(G);

8

> Factorization(Determinant(L));

[<2, 31>]

> PartialDual(L,1) eq L;

true

> Factorization(Determinant(PartialDual(L, 2)));

664 LATTICES AND QUADRATIC FORMS Part VI

[<2, 54>]

> Factorization(Determinant(PartialDual(L, 4)));

[<2, 73>]

> Factorization(Determinant(PartialDual(L, 8)));

[<2, 56>]

> Factorization(Determinant(Dual(L)));

[<2, 56>]

L + M

Given compatible lattices L and M , construct the lattice generated by their union.

L meet M

Given compatible lattices L and M , construct their intersection L ∩M .

DirectSum(L, M)

OrthogonalSum(L, M)

Given lattices L and M , construct their orthogonal sum which is their direct sum
with inner product being the orthogonal sum of the inner products of L and M .

OrthogonalDecomposition(L)

Given a lattice L, construct the sequence of indecomposable orthogonal summands
composing L. Additional bilinear forms can be given in F . In this case the decom-
position will be orthogonal wrt. these forms as well.

OrthogonalDecomposition(F)

Optimize BoolElt Default : false

Given a sequence of bilinear forms F , where the first form is positive definite, returns
the basis matrices B1, . . . , Bs of the indecomposable orthogonal summands of the
standard lattice Zn wrt. the forms in F . The second return value is a list of s
sequences. The i-th sequence contains the forms of F wrt. to basis described by Bi.
If Optimize is set, then the basis matrices will be LLL reduced wrt. the first form
in F .

TensorProduct(L, M)

Given two lattices L and M , construct their tensor product with inner product given
by the Kronecker product of the matrices defining the inner products of L and M .

ExteriorSquare(L)

Given a lattice L, construct its exterior square, generated by the skew tensors in
L ⊗ L. The inner product is inherited from the inner product of the tensor square
of the vector space containing L and the exterior square lattice lies inside the tensor
square of the lattice.

Ch. 30 LATTICES 665

SymmetricSquare(L)

Given a lattice L, construct its symmetric square, generated by the symmetric ten-
sors in L⊗ L. The inner product is inherited from the inner product of the tensor
square of the vector space containing L and the symmetric square lattice lies inside
the tensor square of the lattice.

PureLattice(L)

Given a lattice L of degree n with integral or rational entries, return the pure lattice
P = (Q⊗L)∩Zn of L. The pure lattice P generates the same subspace in Qn over
Q that L does but the elementary divisors of its basis matrix are trivial.

IntegralBasisLattice(L)

Given an exact lattice L, return the lattice obtained from L by multiplying the basis
by the smallest positive scalar S so that the resulting basis is integral, and S.

30.7 Reduction of Matrices and Lattices
The functions in this section perform reduction of lattice bases. For each reduction algo-
rithm there are three functions: a function which takes a basis matrix, a function which
takes a Gram matrix and a function which takes a lattice.

30.7.1 LLL Reduction
The Lenstra-Lenstra-Lovász algorithm [LLL82] was first described in 1982 and was imme-
diately used by the authors to provide a polynomial-time algorithm for factoring integer
polynomials, for solving simultaneous diophantine equations and for solving the integer
programming problem. It very quickly received much attention and in the last 25 years
has found an incredible range of applications, in such areas as computer algebra, cryptog-
raphy, optimisation, algorithmic number theory, group theory, etc. However, the original
LLL algorithm is mainly of theoretical interest, since, although it has polynomial time
complexity, it remains quite slow in practice. Rather, floating-point variants are used,
where the underlying Gram-Schmidt orthogonalisation is performed with floating-point
arithmetic instead of rational arithmetic (which produces huge numerators and denomi-
nators). Most of these floating-point variants are heuristic, but here we use the provable
Nguyen-Stehlé algorithm [NS09] (see also [Ste09] for more details about the implementa-
tion).

Let δ ∈ (1/4, 1] and η ∈ [1/2,
√
δ). An ordered set of d linearly independent vec-

tors b1, b2, . . . , bd ∈ Rn is said to be (δ, η)-LLL-reduced if the two following conditions are
satisfied:
(a)For any i > j, we have |µi,j | ≤ η,
(b)For any i < d, we have δ‖b∗i ‖2 ≤ ‖b∗i+1 + µi+1,ib

∗
i+1‖2,

where µi,j = (bi, b∗j)/‖b∗j‖2 and b∗i is the i-th vector of the Gram-Schmidt orthogonalisation
of (b1, b2, . . . , bd). LLL-reduction classically refers to the case where η = 1/2 and δ = 3/4
since it was the choice of parameters originally made in [LLL82], but the closer that η

666 LATTICES AND QUADRATIC FORMS Part VI

and δ are to 1/2 and 1, respectively, the more reduced the lattice basis should be. In the
classical LLL algorithm, the polynomial-time complexity is guaranteed as long as δ < 1,
whereas the floating-point LLL additionally requires that η > 1/2.

A (δ, η)-LLL-reduced basis (b1, b2, . . . , bd) of a lattice L has the following useful prop-
erties:
(a)‖b1‖ ≤

(
δ − η2

)−(d−1)/4 (detL)1/d,

(b)‖b1‖ ≤ (δ − η2)−(d−1)/2 minb∈L\{0} ‖b‖,
(c)

∏d
i=1 ‖bi‖ ≤ (δ − η2)−d(d−1)/4(detL),

(d)For any j < i, ‖b∗j‖ ≤ (δ − η2)(j−i)/2‖b∗i ‖.
The default Magma parameters are δ = 0.75 and η = 0.501, so that (δ−η2)−1/4 < 1.190

and (δ − η2)−1/2 < 1.416. The four previous bounds can be reached, but in practice one
usually obtains better bases. It is possible to obtain lattice bases satisfying these four
conditions without being LLL-reduced, by using the so-called Siegel condition [Akh02];
this useful variant, though available, is not the default one.

Internally, the LLL routine may use up to eight different LLL variants, one of them
being de Weger’s exact integer method [dW87], and the seven others relying upon diverse
kinds of floating-point arithmetic. All but one of these variants are heuristic and implement
diverse ideas from [SE94], Victor Shoup’s NTL [Sho] and [NS06]. The heuristic variants
possibly loop forever, but when that happens it is hopefully detected and a more reliable
variant is used. For a given input, the LLL routine tries to find out which variant should be
the fastest, and may eventually call other variants before the end of the execution: either
because it deems that the current variant loops forever or that a faster variant could be
used with the thus-far reduced basis. This machinery remains unknown to the user (except
when the LLL verbose mode is activated) and makes the Magma LLL routine the fastest
currently available, with the additional advantage of being fairly reliable.

The floating-point variants essentially differ on the two following points:
(a)whether or not the matrix basis computations are performed with the help of a complete

knowledge of the Gram matrix of the vectors (the matrix of the pairwise inner products),
(b)the underlying floating-point arithmetic.

In theory, to get a provable variant, one needs the Gram matrix and arbitrary precision
floating-point numbers (as provided by the MPFR-based [Pro] Magma real numbers). In
practice, to get an efficient variant, it is not desirable not to maintain the exact knowl-
edge of the Gram matrix (maintaining the Gram matrix represents asymptotically a large
constant fraction of the total computational cost), while it is desirable to use the machine
processor floating-point arithmetic (for instance, C doubles). Three of the seven variants
use the Gram matrix, while the four others do not. In each group (either the three or the
remaining four), one variant relies on arbitrary precision floating-point arithmetic, another
on C doubles and another on what we call doubles with extended exponent. These last
variants are important because they are almost as fast as the variants based on C doubles,
and can be used for much wider families of inputs: when the initial basis is made of inte-
gers larger than approximately 500 bits, overflows can occur with the C doubles. To be

Ch. 30 LATTICES 667

precise, a “double with extended exponent” is a C double with a C integer, the last one
being the extended exponent. So far, we have described six variants. The seventh does
not rely on the Gram matrix and is based on an idea similar to “doubles with extended
exponents”. The difference is that for a given vector of dimension n, instead of having
n pairs of doubles and integers, one has n doubles and only one integer: the extended
exponent is “factorised”. This variant is quite often the one to use in practice, because it
is reasonably efficient and not too unreliable.

Important warning. By default, the LLL routine is entirely reliable. This implies the
default provable variant can be much slower than the heuristic one. By setting Proof to
false, a significant run-time improvement can be gained without taking much risk: even
in that case, the LLL routine remains more reliable than any other implementation based
on floating-point arithmetic. For any application where guaranteed LLL-reduction is not
needed, we recommend setting Proof to false.

Recommended usage. The formal description of the function LLL below explains all the
parameters in detail, but we first note here some common situations which arise. The
desired variant of LLL is often not the default one. Since the LLL algorithm is used in
many different contexts and with different output requirements, it seems impossible to
define a natural default variant, and so using the LLL routine efficiently often requires
some tuning. Here we consider three main-stream situations.
- It may be desired to obtain the main LLL inequalities (see the introduction of this

subsection), without paying much attention to the δ and η reduction parameters. In
this case one should activate the Fast parameter, possibly with the verbose mode to
know afterwards which parameters have been used.

- It may be desired to have the main LLL inequalities for a given pair of parameters (δ, η).
In this case one should set the parameters Delta and Eta to the desired values, and set
SwappingCondition to "Siegel".

- It may be desired to compute a very well LLL-reduced basis. In this case one should set
Delta to 0.9999, Eta to 0.5001, and possibly also activate the DeepInsertion option.

In any case, if you want to be absolutely sure of the quality of the output, you need to
keep the Proof option activated.

Example H30E7

This example is meant to show the differences between the three main recommended usages above.
Assume that we are interested in the lattice generated by the rows of the matrix B defined as
follows.

> R:=RealField(5);

> B:=RMatrixSpace(IntegerRing(), 50, 51) ! 0;

> for i := 1 to 50 do B[i][1] := RandomBits(10000); end for;

> for i := 1 to 50 do B[i][i+1] := 1; end for;

The matrix B is made of 100 vectors of length 101. Each entry of the first column is approxi-
mately 10000 bits long. Suppose first that we use the default variant.

> time C:=LLL(B:Proof:=false);

668 LATTICES AND QUADRATIC FORMS Part VI

Time: 11.300

> R!(Norm (C[1]));

5.1959E121

The output basis is (0.75, 0.501)-reduced. Suppose now that we only wanted to have a basis that
satisfies the main LLL properties with δ = 0.75 and η = 0.501. Then we could have used the
Siegel swapping condition.

> time C:=LLL(B:Proof:=false, SwapCondition:="Siegel");

Time: 10.740

> R!(Norm (C[1]));

6.6311E122

Notice that the quality of the output is quite often worse with the Siegel condition than with the
Lovász condition, but the main LLL properties are satisfied anyway. Suppose now that we want
a very well reduced basis. Then we fix δ and η close to 1 and 0.5 respectively.

> time C:=LLL(B:Proof:=false, Delta:=0.9999, Eta:=0.5001);

Time: 19.220

> R!(Norm (C[1]));

1.8056E121

This is of course more expensive, but the first output vector is significantly shorter. Finally,
suppose that we only wanted to “shorten” the entries of the input basis, very efficiently and
without any particular preference for the reduction factors δ and η. Then we could have used the
Fast option, that tries to choose such parameters in order to optimize the running-time.

> time C:=LLL(B:Proof:=false, Fast:=1);

Time: 8.500

> R!(Norm (C[1]));

6.2746E121

By activating the verbose mode, one can know for which parameters the output basis is reduced.

> SetVerbose ("LLL", 1);

> C:=LLL(B:Proof:=false, Fast:=1);

[...]

The output basis is (0.830,0.670)-reduced

LLL(X)

Al MonStgElt Default : “New”
Proof BoolElt Default : true

Method MonStgElt Default : “FP”
Delta RngElt Default : 0.75
Eta RngElt Default : 0.501
InitialSort BoolElt Default : false

FinalSort BoolElt Default : false

Ch. 30 LATTICES 669

StepLimit RngIntElt Default : 0
TimeLimit RngElt Default : 0.0
NormLimit RngIntElt Default :

UseGram BoolElt Default : false

DeepInsertions BoolElt Default : false

EarlyReduction BoolElt Default : false

SwapCondition MonStgElt Default : “Lovasz”
Fast RngIntElt Default : 0
Weight SeqEnum Default : [0, . . . , 0]

Given a matrix X belonging to the matrix module S = HomR(M,N) or the matrix
algebra S = Mn(R), where R is a subring of the real field, compute a matrix Y
whose non-zero rows are a LLL-reduced basis for the Z-lattice spanned by the rows
of X (which need not be Z-linearly independent). The LLL function returns three
values:
(a)A LLL-reduced matrix Y in S whose rows span the same lattice (Z-module) as

that spanned by the rows of X.
(b)A unimodular matrix T in the matrix ring over Z whose degree is the number

of rows of X such that TX = Y ;
(c) The rank of X.

Note that the returned transformation matrix T is always over the ring of integers Z,
even if R is not Z.

The input matrix X does not need to have linearly independent rows: this func-
tion performs a floating-point variant of what is usually known as the MLLL algo-
rithm of M. Pohst [Poh87]. By default the rows of the returned matrix Y are sorted
so that all the zero rows are at the bottom. The non-zero vectors are sorted so that
they form a LLL-reduced basis (except when FinalSort is true; see below).

A detailed description of the parameters now follows. See the discussion and the
example above this function for recommended parameters for common cases.

By default, the Proof option is set to true. It means that the result is guar-
anteed. It is possible, and usually faster, to switch off this option: it will perform
the same calculations, without checking that the output is indeed reduced by using
the L2 algorithm. For the vast majority of cases, we recommend setting Proof to
false.

By default the δ and η constants used in the LLL conditions are set respectively
to 0.75 and 0.501 (except when Method is "Integral", see below). The closer δ
and η are to 1 and 0.5, respectively, the shorter the output basis will be. In the
original description of the LLL algorithm, δ is 0.75 and η is 0.5. Making δ and η
vary can have a significant influence on the running time. If Method is "Integral",
then by default η is set to 0.5 and δ to 0.99. With this value of Method, the
parameter δ can be chosen arbitrarily in (0.25, 1], but when δ is 1, the running time

670 LATTICES AND QUADRATIC FORMS Part VI

may increase dramatically. If Method is not "Integral", then δ may be chosen
arbitrarily in (0.25, 1), and η may be chosen arbitrarily in (0.5,

√
δ). Notice that the

parameters δ and η used internally will be slightly larger and smaller than the given
ones, respectively, to take floating-point inaccuracies into account and to ensure that
the output basis will indeed be reduced for the expected parameters. In all cases,
the output basis will be (δ, η)-LLL reduced.

For matrices over Z or Q, there are two main methods for handling the Gram-
Schmidt orthogonalisation variables used in the algorithm: the Nguyen-Stehlé
floating-point method (called L2) and the exact integral method described by de
Weger in [dW87]. The Nguyen-Stehlé algorithm is implemented as described in the
article, along with a few faster heuristic variants. When Method is "FP", these faster
variants will be tried first, and when they are considered as misbehaving, they will
be followed by the proved variant automatically. When Method is "L2", the provable
L2 algorithm is used directly. Finally, when Method is "Integral", the De Weger in-
tegral method is used. In this case, the DeepInsertions, EarlyReduction, Siegel
SwapCondition, NormLimit, Fast and Weight options are unavailable (the code is
older and has not been updated for these). Furthermore, the default value for Eta
is then 0.5. The default FP method is nearly always very much faster than the other
two methods.

By default, it is possible (though it happens very infrequently) that the returned
basis is not of the expected quality. In order to be sure that the output is indeed
correct, Method can be set to either "Integral" or "L2".

The parameter InitialSort specifies whether the vectors should be sorted by
length before the LLL reduction. When FinalSort is true, the vectors are sorted by
increasing length (and alphabetical order in case of equality) after the LLL reduction
(this parameter was called Sort before V2.13). The resulting vectors may therefore
not be strictly LLL-reduced, because of the permutation of the rows.

The parameter UseGram specifies that for the floating-point methods (L2 and FP)
the computation should be performed by computing the Gram matrix F , using
the LLLGram algorithm below, and by updating the basis matrix correspondingly.
Magma will automatically do this internally for the floating-point method if it
deems that it is more efficient to do so, so this parameter just allows one to stipulate
that this method should or should not be used. For the integral method, using the
Gram matrix never improves the computation, so the value of this parameter is
simply ignored in this case.

Setting the parameter StepLimit to a positive integer s will cause the function
to terminate after s steps of the main loop. Setting the parameter TimeLimit to a
positive real number t will cause the function to terminate after the algorithm has
been executed for t seconds (process user) time. Similarly, setting the parameter
NormLimit to a non-negative integer N will cause the algorithm to terminate after a
vector of norm less or equal to N has been found. In such cases, the current reduced
basis is returned, together with the appropriate transformation matrix and an upper
bound for the rank of the matrix. Nothing precise can then be said exactly about
the reduced basis (it will not be LLL-reduced in general of course) but will at least

Ch. 30 LATTICES 671

be reduced to a certain extent.
When the value of the parameter DeepInsertions is true, Schnorr-Euchner’s

deep insertion algorithm is used [SE94]. It usually provides better bases, but can
take significantly more time. In practice, one may first LLL-reduce the basis and
then use the deep insertion algorithm on the computed basis.

When the parameter EarlyReduction is true and when any of the two floating-
point methods are used, some early reduction steps are inserted inside the execution
of the LLL algorithm. This sometimes makes the entries of the basis smaller very
quickly. It occurs in particular for lattice bases built from minimal polynomial or
integer relation detection problems. The speed-up is sometimes dramatic, especially
if the reduction in length makes it possible to use C integers for the basis matrix
(instead of multiprecision integers) or C doubles for the floating-point calculations
(instead of multiprecision floating-point numbers or doubles with additional expo-
nent).

The parameter SwapCondition can be set either to "Lovasz" (default) or to
"Siegel". When its value is "Lovasz", the classical Lovász swapping condition is
used, whereas otherwise the so-called Siegel condition is used. The Lovász condition
tests whether the inequality ‖b∗i +µi,i−1b

∗
i−1‖2 ≥ δ‖b∗i−1‖2 is satisfied or not, whereas

in the Siegel case the inequality ‖b∗i ‖2 ≥ (δ − η2)‖b∗i−1‖2 is used (see [Akh02] for
more details). In the Siegel case, the execution may be significantly faster. Though
the output basis may not be LLL-reduced, the classical LLL inequalities (see the
introduction of this subsection) will be fulfilled.

When the option Fast is set to 1 or 2, all the other parameters may be changed in-
ternally to end the execution as fast as possible. Even if the other parameters are not
set to the default values, they may be ignored. This includes the parameters Delta,
Eta and SwapCondition, so that the output basis may not be LLL-reduced. How-
ever, if the verbose mode is activated, the chosen values of these parameters will be
printed, so that the classical LLL inequalities (see the introduction of this subsec-
tion) may be used afterwards. When Fast is set to 2, the chosen parameters are
such that the classical LLL inequalities will be at least as strong as for the default
parameters Delta andEta.

If Weight is the list of integers [x1, . . . , xn] (where n is the degree of the
lattice), then the LLL algorithm uses a weighted Euclidean inner product: the
inner product of the vectors (v1, v2, . . . , vn) and (w1, w2, . . . , wn) is defined to
be

∑n
i=1

(
vi · wi · 22xi

)
.

By default, the Al parameter is set to New. If it is set to Old, then the former
Magma LLL is used (prior to V2.13); notice that in this case, the execution is not
guaranteed to finish and that the output basis may not be reduced for the given
LLL parameters. This variant is not maintained anymore.

Note 1: If the input basis has many zero entries, then try to place them in the last
columns; this will slightly improve the running time.
Note 2: If the elementary divisors of the input matrix are fairly small, relative to
the size of the matrix and the size of its entries, then it may be very much quicker

672 LATTICES AND QUADRATIC FORMS Part VI

to reduce the matrix to Hermite form first (using the function HermiteForm) and
then to LLL-reduce this matrix. This case can arise: for example, when one has
a “very messy” matrix for which it is known that the lattice described by it has a
relatively short basis.
Note 3: Sometimes, the EarlyReduction variant can significantly decrease the run-
ning time.

BasisReduction(X)

BasisReduction(X)

This is a shortcut for LLL(X:Proof:=false).

LLLGram(F)

Isotropic BoolElt Default : false

Given a symmetric matrix F belonging to the the matrix module S = HomR(M,M)
or the matrix algebra S = Mn(R), where R is a subring of the real field, so that F =
XXtr for some matrix X over the real field, compute a matrix G which is the Gram
matrix corresponding to a LLL-reduced form of the matrix X. The rows of the
corresponding generator matrix X need not be Z-linearly independent in which
case F will be singular. This function returns three values:
(a)A LLL-reduced Gram matrix G in S of the Gram matrix F ;
(b)A unimodular matrix T in the matrix ring over Z whose degree is the number

of rows of F such that G = TFT tr.
(c) The rank of F (which equals the dimension of the lattice generated by X).

The options available are the same as for the LLL routine, except of course the
UseGram option that has no sense here. The Weight parameter should not be used
either. The routine can be used with any symmetric matrix (possibly not definite
nor positive): Simon’s indefinite LLL variant (which puts absolute values on the
Lovász condition) is used (see [Sim05]).

When the option Isotropic is true, some attempt to deal with isotropic vectors
is made. (This is only relevant when working on an indefinite Gram matrix). In
particular, if the determinant is squarefree, hyperbolic planes are split off iteratively.

LLLBasisMatrix(L)

Given a lattice L with basis matrix B, return the LLL basis matrix B′ of L, together
with the transformation matrix T such that B′ = TB. The LLL basis matrix B′

is simply defined to be a LLL-reduced form of B; it is stored in L when computed
and subsequently used internally by many lattice functions. The LLL basis matrix
will be created automatically internally as needed with δ = 0.999 by default (note
that this is different from the usual default of 0.75); by the use of parameters to
this function one can ensure that the LLL basis matrix is created in a way which is
different to the default. The parameters (not listed here again) are the same as for
the function LLL (q.v.), except that the limit parameters are illegal.

Ch. 30 LATTICES 673

LLLGramMatrix(L)

Given a lattice L with Gram matrix F , return the LLL Gram matrix F ′ of L,
together with the transformation matrix T such that F ′ = TFT tr. F ′ is simply
defined to be B′(B′)tr, where B′ is the LLL basis matrix of L—see the function
LLLBasisMatrix. The parameters (not listed here again) are the same as for the
function LLL (q.v.), except that the limit parameters are illegal.

LLL(L)

Given a lattice L with basis matrix B, return a new lattice L′ with basis matrix B′

and a transformation matrix T so that L′ is equal to L but B′ is LLL-reduced and
B′ = TB. Note that the inner product used in the LLL computation is that given by
the inner product matrix of L (so, for example, the resulting basis may not be LLL-
reduced with respect to the standard Euclidean norm). The LLL basis matrix of L is
used, so calling this function with argument L is completely equivalent (ignoring the
second return value) to the invocation LatticeWithBasis(LLLBasisMatrix(L),
InnerProductMatrix(L)). The parameters (not listed here again) are the same
as for the function LLL (q.v.), except that the limit parameters are illegal. The
BasisReduction shortcut to turn off the Proof option is also available.

BasisReduction(L)

This is a shortcut for LLL(L:Proof:=false).

SetVerbose("LLL", v)

(Procedure.) Set the verbose printing level for the LLL algorithm to be v. Currently
the legal values for v are true, false, 0, 1, 2 and 3 (false is the same as 0, and
true is the same as 1). The three non-zero levels notify when the maximum LLL-
reduced rank of the LLL algorithm increases, level 2 also prints the norms of the
reduced vectors at such points, and level 3 additionally gives some current status
information every 15 seconds.

Example H30E8

We demonstrate how the LLL algorithm can be used to find very good multipliers for the extended
GCD of a sequence of integers. Given a sequence Q = [x1, . . . , xn] of integers we wish to find the
GCD g of Q and integers mi for 1 ≤ i ≤ m such that g = m1 · x1 + . . . + mn · xm.
For this example we set Q to a sequence of n = 10 integers of varying bit lengths (to make the
problem a bit harder).

> Q := [67015143, 248934363018, 109210, 25590011055, 74631449,

> 10230248, 709487, 68965012139, 972065, 864972271];

> n := #Q;

> n;

10

We next choose a scale factor S large enough and then create the n× (n + 1) matrix X = [In|C]
where C is the column vector whose i-th entry is S ·Q[i].

> S := 100;

674 LATTICES AND QUADRATIC FORMS Part VI

> X := RMatrixSpace(IntegerRing(), n, n + 1) ! 0;

> for i := 1 to n do X[i][i + 1] := 1; end for;

> for i := 1 to n do X[i][1] := S * Q[i]; end for;

> X;

[6701514300 1 0 0 0 0 0 0 0 0 0]

[24893436301800 0 1 0 0 0 0 0 0 0 0]

[10921000 0 0 1 0 0 0 0 0 0 0]

[2559001105500 0 0 0 1 0 0 0 0 0 0]

[7463144900 0 0 0 0 1 0 0 0 0 0]

[1023024800 0 0 0 0 0 1 0 0 0 0]

[70948700 0 0 0 0 0 0 1 0 0 0]

[6896501213900 0 0 0 0 0 0 0 1 0 0]

[97206500 0 0 0 0 0 0 0 0 1 0]

[86497227100 0 0 0 0 0 0 0 0 0 1]

Finally, we compute a LLL-reduced form L of X.

> L := LLL(X);

> L;

[0 0 1 0 -15 -6 3 1 2 -3 -3]

[0 -3 5 -3 -11 -1 0 8 -14 4 3]

[0 -5 -2 2 -2 14 8 -6 8 1 -4]

[0 6 1 -3 -10 -3 -14 5 0 8 8]

[0 -1 -2 0 -2 -13 8 6 8 10 -2]

[0 -9 -3 -11 5 7 -1 1 9 -11 -2]

[0 16 0 3 3 9 -3 0 -1 -4 -11]

[0 -6 1 -16 4 -1 6 -6 -5 7 -7]

[0 9 -3 -10 7 -3 1 -7 8 0 18]

[-100 -3 -1 13 -1 -4 2 3 4 5 -1]

Notice that the large weighting on the first column forces the LLL algorithm to produce as many
vectors as possible at the top of the matrix with a zero entry in the first column (since such vectors
will have shorter norms than any vector with a non-zero entry in the first column). Thus the GCD
of the entries in Q is the entry in the bottom left corner of L divided by S, viz. 1. The last n
entries of the last row of L gives a sequence of multipliers M for the extended GCD algorithm.
Also, taking the last n entries of each of the first n− 1 rows of L gives independent null-relations
for the entries of Q (i.e., the kernel of the corresponding column matrix). We check that M gives
a correct sequence of multipliers.

> M := Eltseq(L[10])[2 .. n+1]; M;

[3, 1, -13, 1, 4, -2, -3, -4, -5, 1]

> &+[Q[i]*M[i]: i in [1 .. n]];

-1

Ch. 30 LATTICES 675

30.7.2 Pair Reduction

PairReduce(X)

Given a matrix X belonging to the the matrix module S = HomR(M,N) or the
matrix algebra S = Mn(R), where R is Z or Q, compute a matrix Y whose rows
form a pairwise reduced basis for the Z-lattice spanned by the rows of X. Being
pairwise reduced (i.e., 2|(v, w)| ≤ min(‖v‖, ‖w‖) for all pairs of basis vectors) is a
much simpler criterion than being LLL-reduced, but often yields sufficiently good
results very quickly. It can also be used as a preprocessing for LLL or in alternation
with LLL to obtain better bases. The rows of X need not be Z-linearly independent.
This function returns two values:

(a)The pairwise reduced matrix Y row-equivalent to X as a matrix in S;

(b)A unimodular matrix T in the matrix ring over Z whose degree is the number
of rows of X such that TX = Y .

PairReduceGram(F)

Check BoolElt Default : false

Given a symmetric positive semidefinite matrix F belonging to the the matrix mod-
ule S = HomR(M,M) or the matrix algebra S = Mn(R), where R is Z or Q, so
that F = XXtr for some matrix X over the real field, compute a matrix G which
is the Gram matrix corresponding to a pairwise reduced form of the matrix X.
The rows of the corresponding matrix X need not be Z-linearly independent. This
function returns two values:

(a)The pairwise reduced Gram matrix G of F as a matrix in S;

(b)A unimodular matrix T in the matrix ring over Z whose degree is the number
of rows of F which gives the corresponding transformation: G = TFT tr.
The matrix F must be a symmetric positive semidefinite matrix; if it is not the

results are unpredictable. By default, Magma does not check this since it may be
expensive in higher dimensions and in many applications will be known a priori.
The checking can be invoked by setting Check := true.

PairReduce(L)

Given a lattice L with basis matrix B, return a new lattice L′ with basis matrix B′

and a transformation matrix T so that L′ is equal to L but B′ is pairwise reduced
and B′ = TB. Note that the inner product used in the pairwise reduction compu-
tation is that given by the inner product matrix of L (so, for example, the resulting
basis may not be pairwise reduced with respect to the standard Euclidean norm).

676 LATTICES AND QUADRATIC FORMS Part VI

30.7.3 Seysen Reduction

Seysen(X)

Given a matrix X belonging to the the matrix module S = HomR(M,N) or the
matrix algebra S = Mn(R), where R is Z or Q, compute a matrix Y whose rows
form a Seysen-reduced basis for the Z-lattice spanned by the rows of X. The rows
of X need not be Z-linearly independent. The Seysen-reduced matrix Y is such
that the entries of the corresponding Gram matrix G = Y Y tr and its inverse G−1

are simultaneously reduced. This function returns two values:

(a)The Seysen-reduced matrix Y corresponding to X as a matrix in S;

(b)A unimodular matrix T in the matrix ring over Z whose degree is the number
of rows of X such that TX = Y .

SeysenGram(F)

Check BoolElt Default : false

Given a symmetric positive semidefinite matrix F belonging to the the matrix mod-
ule S = HomR(M,M) or the matrix algebra S = Mn(R), where R is Z or Q,
so that F = XXtr for some matrix X over the real field, compute a matrix G
which is the Gram matrix corresponding to a Seysen-reduced form of the matrix X.
The rows of the corresponding matrix X need not be Z-linearly independent. The
Seysen-reduced Gram matrix G is such that the entries of G and its inverse G−1 are
simultaneously reduced. This function returns two values:

(a)The Seysen-reduced Gram matrix G of F as a matrix in S;

(b)A unimodular matrix T in the matrix ring over Z whose degree is the number
of rows of F which gives the corresponding transformation: G = TFT tr.
The matrix F must be a symmetric positive semidefinite matrix; if it is not the

results are unpredictable. By default, Magma does not check this since it may be
expensive in higher dimensions and in many applications will be known a priori.
The checking can be invoked by setting Check := true.

Seysen(L)

Given a lattice L with basis matrix B, return a new lattice L′ with basis matrix B′

and a transformation matrix T so that L′ is equal to L but B′ is Seysen-reduced
and B′ = TB. Note that the inner product used in the Seysen-reduction computa-
tion is that given by the inner product matrix of L (so, for example, the resulting
basis may not be Seysen-reduced with respect to the standard Euclidean norm).
The effect of the reduction is that the basis of L′ and the dual basis of L′ will be
simultaneously reduced.

Ch. 30 LATTICES 677

Example H30E9

We demonstrate how the function Seysen can be used on the Gram matrix of the Leech lattice
to obtain a gram matrix S for the lattice so that both S and S−1 are simultaneously reduced.
Note that all three reduction methods yield a basis of vectors of minimal length, but the Seysen
reduction also has a dual basis of vectors of norm 4. This is of interest in representation theory,
for example, as the entries of the inverse of the Gram matrix control the size of the entries in a
representation on the lattice.

> F := GramMatrix(Lattice("Lambda", 24));

> [F[i][i] : i in [1..24]];

[8, 4]

> [(F^-1)[i][i] : i in [1..24]];

[72, 8, 12, 8, 10, 4, 4, 8, 8, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 8]

> L := LLLGram(F);

> P := PairReduceGram(F);

> S := SeysenGram(F);

> [L[i][i] : i in [1..24]];

[4, 4]

> [P[i][i] : i in [1..24]];

[4, 4]

> [S[i][i] : i in [1..24]];

[4, 4]

> [(L^-1)[i][i] : i in [1..24]];

[6, 4, 8, 4, 32, 4, 4, 8, 18, 4, 4, 8, 8, 8, 12, 4, 6, 4, 20, 4, 8, 4, 14, 4]

> [(P^-1)[i][i] : i in [1..24]];

[72, 40, 12, 8, 10, 4, 4, 8, 8, 4, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 4, 8]

> [(S^-1)[i][i] : i in [1..24]];

[4, 4]

30.7.4 HKZ Reduction
An ordered set of d linearly independent vectors b1, b2, . . . , bd ∈ Rn is said to be Hermite-
Korkine-Zolotarev-reduced (HKZ-reduced for short) if the three following conditions are
satisfied:

(a)For any i > j, we have |µi,j | ≤ 0.501,

(b)The vector b1 is a shortest non-zero vector in the lattice spanned by b1, b2, . . . , bd,

(c) The vectors b2 − µ2,1b1, . . . , bd − µd,1b1 are themselves HKZ-reduced,

where µi,j = (bi, b∗j)/‖b∗j‖2 and b∗i is the i-th vector of the Gram-Schmidt orthogonalisation
of (b1, b2, . . . , bd).

678 LATTICES AND QUADRATIC FORMS Part VI

HKZ(X)

Proof BoolElt Default : true

Unique BoolElt Default : false

Prune SeqEnum Default : [. . . , [1.0, . . . , 1.0], . . .]

Given a matrix X over a subring of the real field, compute a matrix Y whose non-
zero rows are an HKZ-reduced basis for the Z-lattice spanned by the rows of X
(which need not be Z-linearly independent). The HKZ function returns an HKZ-
reduced matrix Y whose rows span the same lattice (Z-module) as that spanned by
the rows of X, and a unimodular matrix T in the matrix ring over Z whose degree
is the number of rows of X such that TX = Y .

Although the implementation relies on floating-point arithmetic, the result can
be guaranteed to be correct. By default, the Proof option is set to true, thus
guaranteeing the output. The run-time might be improved by switching off this
option.

A given lattice may have many HKZ-reduced bases. If the Unique option is
turned on, a uniquely determined HKZ-reduced basis is computed. This basis is
chosen so that: for any i > j, we have µi,j ∈ [−1/2, 1/2); for any i, the first non-
zero coordinate of the vector b∗i is positive; and for any i, the vector b∗i is the shortest
among possible vectors for the lexicographical order.

The implementation solves the Shortest Vector Problem for lattices of dimensions
1 to d, where d is the number of rows of the input matrix X. The latter instances
of the Shortest Vector Problem are solved with the same enumeration algorithm as
is used for computing the minimum of a lattice, which can be expressed as a search
within a large tree. The i-th table of the Prune optional parameter is used to prune
the i-dimensional enumeration. The default value is:

[[1.0 : j in [1..i]] : i in [1..NumberOfRows(X)]].

See the introduction of Section 30.8 for more details on the Prune option.

HKZGram(F)

Proof BoolElt Default : true

Prune SeqEnum Default : [. . . , [1.0, . . . , 1.0], . . .]

Given a symmetric positive semidefinite matrix F over a subring of the real field so
that F = XXtr for some matrix X over the real field, compute a matrix G which
is the Gram matrix corresponding to an HKZ-reduced form of the matrix X. The
function returns the HKZ-reduced Gram matrix G of F , and a unimodular matrix T
in the matrix ring over Z whose degree is the number of rows of F which gives the
corresponding transformation: G = TFT tr.

Ch. 30 LATTICES 679

HKZ(L)

Proof BoolElt Default : true

Prune SeqEnum Default : [. . . , [1.0, . . . , 1.0], . . .]

Given a lattice L with basis matrix B, return a new lattice L′ with basis matrix B′

and a transformation matrix T so that L′ is equal to L but B′ is HKZ-reduced
and B′ = TB.

SetVerbose("HKZ", v)

(Procedure.) Set the verbose printing level for the HKZ algorithm to be v. Currently
the legal values for v are true, false, 0 and 1 (false is the same as 0, and true
is the same as 1). More information on the progress of the computation can be
obtained by setting the "Enum" verbose on.

GaussReduce(X)

GaussReduceGram(F)

GaussReduce(L)

Restrictions of the HKZ functions to lattices of rank 2.

Example H30E10

HKZ-reduced bases are much harder to compute than LLL-reduced bases, but provide a signif-
icantly more powerful representation of the spanned lattice. For example, computing all short
lattice vectors is more efficient if one starts from an HKZ-reduced basis.

> d:=60;

> B:=RMatrixSpace(IntegerRing(), d, d)!0;

> for i:=1 to d do for j:=1 to d do B[i][j]:=Random(100*d); end for; end for;

> time C1 := LLL(B);

Time: 0.020

> time C2 := HKZ(B);

Time: 1.380

> m := Norm(C2[1]);

> time _:=ShortVectors(Lattice(C1), 11/10*m);

Time: 1.750

> time _:=ShortVectors(Lattice(C2), 11/10*m);

Time: 0.850

> time _:=ShortVectors(Lattice(C1), 3/2*m);

Time: 73.800

> time _:=ShortVectors(Lattice(C2), 3/2*m);

Time: 32.220

680 LATTICES AND QUADRATIC FORMS Part VI

30.7.5 Recovering a Short Basis from Short Lattice Vectors

ReconstructLatticeBasis(S, B)

Given a basis S of a finite index sublattice of the lattice L spanned by the rows of the
integral matrix B, return a matrix C whose rows span L and are not much longer
than those of S. Specifically, the algorithm described in Lemma 7.1 of [MG02] is
implemented, and the rows of the output matrix satisfy the following properties:
(a)For any i, ‖ci‖ ≤ i1/2‖si‖,
(b)For any i, ‖c∗i ‖ ≤ ‖s∗i ‖,
where c∗i (respectively s∗i) denotes the i-th vector of the Gram-Schmidt orthogonal-
isation of (c1, c2, . . . , cd) (respectively (s1, s2, . . . , sd)) .

30.8 Minima and Element Enumeration

The functions in this section are all based on one algorithm which enumerates all vectors
of a lattice in a specified hyperball [FP83, Kan83, SE94]. As the underlying computational
problems (the Shortest and Closest Lattice Vector Problems) are hard [Ajt98, vEB81], the
general application of this algorithm is restricted to lattices of moderate dimension (up
to 50 or 60). However, some tasks like finding a couple of short vectors or finding the
minimum of a lattice without symmetry may still be feasible in higher dimensions. The
function EnumerationCost provides an estimate of the cost of running the enumeration
algorithm on a specified input. This allows to know beforehand if the computation is likely
to terminate within a reasonable amount of time.

For each function which enumerates short vectors of a lattice L, there is a corresponding
function which enumerates vectors of L which are close to a given vector w (which usually
lies outside L). Note that if one wishes to enumerate short vectors of the coset L+w of the
lattice L, where w is any vector of degree compatible with L, one can simply enumerate
vectors v ∈ L close to −w and then just take the vectors v + w for each v as the short
vectors of the coset.

The enumeration routine underlying all the functions described below relies on floating-
point approximations. However, it can be run in a rigorous way in some cases, see [PS08].
By default, the outputs of the functions Minimum, PackingRadius, HermiteNumber,
CentreDensity, Density, KissingNumber, ShortestVectors, ShortestVectorsMatrix,
ShortVectors, ShortVectorsMatrix and ThetaSeries are guaranteed to be correct. This
correctness guarantee can be turned off by setting the optional parameter Proof to false.
However, this comes virtually for free, the additional computations being most often neg-
ligible. In the present version of Magma, the outputs of all other functions are only likely
to be correct.

The enumeration algorithm from [FP83, Kan83, SE94] can be interpreted as a search
within a large tree. This can be extremely time-consuming. Schnorr, Euchner and
Hörner [SE94, SH95] introduced techniques to prune the latter tree: the correct output
might be missed, but the execution of the algorithm is likely to terminate faster. A new
pruning strategy is available for the functions Minimum, PackingRadius, HermiteNumber,

Ch. 30 LATTICES 681

CentreDensity, Density, KissingNumber, ShortestVectors, ShortestVectorsMatrix,
ShortVectors, ShortVectorsMatrix and ThetaSeries. Naturally, if the pruning strat-
egy is used, the result cannot be guaranteed to be correct anymore. Let (b1, b2, . . . , bd) be
a basis of a lattice L, let (b∗1, b

∗
2, . . . , b

∗
d) denote its Gram-Schmidt orthogonalisation, and

let µi,j = (bi, b∗j)/‖b∗j‖2 for i ≥ j. Suppose we are interested in finding all vectors in L of
norm ≤ u. The enumeration algorithm considers the equations:

‖∑d
j=i

(∑d
k=j µk,jxk

)
b∗j‖2 ≤ u, for i = d, d− 1, . . . , 1,

where the xk’s are integers. If the Prune optional parameter is set to [p1, . . . , pd], then the
equations above will be replaced by:

‖∑d
j=i

(∑d
k=j µk,jxk

)
b∗j‖2 ≤ piu, for i = d, d− 1, . . . , 1.

The pi’s must belong to the interval [0, 1]. For a given input ((b1, . . . , bd), u) to the enu-
meration procedure, it is possible to heuristically estimate both the running-time gain and
the probability of missing a solution. See Subsection 30.8.6 for more details.

30.8.1 Minimum, Density and Kissing Number
The functions in this subsection compute invariants of a lattice which are all related to its
minimum. See [JC98] for background about minimum, density and kissing numbers.

Minimum(L)

Min(L)

Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]

Return the minimum of the lattice L, i.e., the minimal norm of a non-zero vector
in the lattice. Note that this is in general a hard problem and may be very time
consuming. See also the attributes section below for how to assert the minimum of
a lattice.

PackingRadius(L)

Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]

The packing radius is half the square root of the minimum of the non-zero lattice L.

HermiteConstant(n)

Return the n-th Hermite constant raised to the power of n. The exact value is
provided if n ≤ 8 or n = 24, and otherwise an upper bound is returned. The n-th
Hermite constant is defined as the maximum of Min(L)/Determinant(L) over all
n-dimensional lattices L.

682 LATTICES AND QUADRATIC FORMS Part VI

HermiteNumber(L)

Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]

Return the Hermite number of the non-zero lattice L, i.e., Min(L)/Determinant(L).

CentreDensity(L)

CenterDensity(L)

CentreDensity(L, K)

CenterDensity(L, K)

Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]

The center density of the lattice L, as an element of the real field K. This is defined
to be the square root of (Min(L)/4)Rank(L)/Determinant(L). The argument for
the real field K may be omitted, in which case K is taken to be the current default
real field.

The product of the centre density by the volume of a sphere of radius 1 in n-
dimensional space gives the density of the lattice-centered sphere packing of L, called
the density of the lattice.

Density(L)

Density(L, K)

Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]

The density of the lattice L, as an element of the real field K, i.e., the density of
the lattice-centered sphere packing. If the argument for the real field K is omitted,
the field K is taken to be the default real field.

KissingNumber(L)

Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]

Return the kissing number of the lattice L, which equals the number of vec-
tors of minimal non-zero norm (twice the length of the sequence returned by
ShortestVectors(L) since that returns only normalized vectors). This is the max-
imum number of nonoverlapping spheres of diameter Minimum(L) with centres at
lattice points which touch a fixed sphere of the same diameter with centre at a
lattice point.

Ch. 30 LATTICES 683

Example H30E11

We create the Leech lattice Λ24 and compute its minimum (4), density, and kissing number
(196560). Note that the computation of the minimum is very fast since the lattice is even and at
least one basis element has norm 4; one has only to prove that there are no vectors of norm 2.

> L := Lattice("Lambda", 24);

> IsEven(L), Norm(L.2);

true 4

> time Minimum(L);

4

Time: 0.020

> Density(L);

0.00192957430940392304790334556369

> time KissingNumber(L);

196560

Time: 0.180

30.8.2 Shortest and Closest Vectors

ShortestVectors(L)

Max RngIntElt Default : ∞
Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]
Return the shortest non-zero vectors of the lattice L, i.e., the vectors v ∈ L such
that (v, v) is minimal, as a sorted sequence Q. The vectors are computed up to sign
(so only one of v and −v appears in Q) and normalized so that the first non-zero
entry in each vector is positive, and Q is sorted with respect to lexicographic order.
By default, all the (normalized) vectors are computed; the optional parameter Max
allows the user to specify the maximal number of computed vectors. Note that
unless the minimum of the lattice is already known, it has to be computed by this
function, which may be very time consuming.

ShortestVectorsMatrix(L)

Max RngIntElt Default : ∞
Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]
Return the shortest non-zero vectors of the lattice L as the rows of a matrix. This
is more efficient or convenient for some applications than forming the sequence of
vectors. Note that the matrix will lie in the appropriate matrix space and the inner
product for L will not be related to the rows of the matrix (which will lie in the
appropriate R-space). By default, all the (normalized) vectors are computed; the
optional parameter Max allows the user to specify the maximal number of computed
vectors.

684 LATTICES AND QUADRATIC FORMS Part VI

ClosestVectors(L, w)

Max RngIntElt Default : ∞
Return the vectors of the lattice L which are closest to the vector w, together with
the minimal squared distance d. w may be any element of a lattice of degree n
or an R-space of degree n compatible with L, where n is the degree of L. The
closest vectors are those vectors v ∈ L such that the squared distance (v − w, v −
w) between v and w (and thus the distance between v and w) is minimal; this
minimal squared distance is the second return value d. The vectors are returned
as a sequence Q, sorted with respect to lexicographic order. Note that the closest
vectors are not symmetrical with respect to sign (while the shortest vectors are) so
the returned closest vectors are not normalized. By default, all the closest vectors
are computed; the optional parameter Max allows the user to specify the maximal
number of computed vectors.

ClosestVectorsMatrix(L, w)

Max RngIntElt Default : ∞
Return the vectors of the lattice L which are closest to the vector w as a matrix,
together with the squared distance d. w may be any element of a lattice of degree n
or an R-space of degree n compatible with L, where n is the degree of L. Note that
the matrix will lie in the appropriate matrix space and the inner product for L will
not be related to the rows of the matrix (which will lie in the appropriate R-space).
The vectors are returned as sequence Q, sorted with respect to lexicographic order.
Note that the closest vectors are not symmetrical with respect to sign (while the
shortest vectors are) so the returned closest vectors are not normalized. By default,
all the closest vectors are computed; the optional parameter Max allows the user to
specify the maximal number of computed vectors.

Example H30E12

We create the Gosset lattice L = E8 and find the shortest vectors of L. There are 120 normalized
vectors so the kissing number is 240, and the minimum is 2.

> L := Lattice("E", 8);

> S := ShortestVectors(L);

> #S;

120

> KissingNumber(L);

240

> { Norm(v): v in S };

{ 2 }

> Minimum(L);

2

We note that the rank of the space generated by the shortest vectors is 8 so that the successive
minima of L are [2, 2, 2, 2, 2, 2, 2, 2] (see the function SuccessiveMinima below).

> Rank(ShortestVectorsMatrix(L));

Ch. 30 LATTICES 685

8

We next find the vectors in L which are closest to a certain vector in the Q-span of L. The vector
is an actual hole of L and the square of its distance from L is 8/9.

> w := RSpace(RationalField(), 8) !

> [-1/6, 1/6, -1/2, -1/6, 1/6, -1/2, 1/6, -1/2];

> C, d := ClosestVectors(L, w);

> C;

[

(-1/2 -1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2),

(-1/2 1/2 -1/2 -1/2 -1/2 -1/2 1/2 -1/2),

(-1/2 1/2 -1/2 -1/2 1/2 -1/2 -1/2 -1/2),

(-1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2),

(1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2),

(0 0 -1 0 0 -1 0 0),

(0 0 -1 0 0 0 0 -1),

(0 0 0 0 0 -1 0 -1),

(0 0 0 0 0 0 0 0)

]

> d;

8/9

> { Norm(v): v in C };

{ 0, 2 }

We verify that the squared distance of the vectors in C from w is 8/9.

> { Norm(v - w): v in C };

{ 8/9 }

We finally notice that these closest vectors are in fact amongst the shortest vectors of the lattice
(together with the zero vector).

> Set(C) subset (Set(S) join {-v: v in S} join { L!0 });

true

30.8.3 Short and Close Vectors

ShortVectors(L, u)

ShortVectors(L, l, u)

Max RngIntElt Default : ∞
Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]
Return the vectors of the lattice L with norm within the prescribed range, together
with their norms, as a sorted sequence Q. The sequence Q contains tuples of the
form < v, r > where v is a vector and r its norm. Either one positive number u can
be given, specifying the range (0, u], or a pair l, u of positive numbers, specifying the

686 LATTICES AND QUADRATIC FORMS Part VI

range [l, u]. The vectors are computed up to sign (so only one of v and −v appears
in Q) and normalized so that the first non-zero entry in each vector is positive, and
Q is sorted with respect to first the norms and then the lexicographic order for the
vectors. By default, all the (normalized) vectors with norm in the prescribed range
are computed. The optional parameter Max allows the user to specify the maximal
number of computed vectors.

ShortVectorsMatrix(L, u)

ShortVectorsMatrix(L, l, u)

Max RngIntElt Default : ∞
Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]

This is very similar to ShortVectors, but returns the vectors of the lattice L with
norm within the prescribed range as the rows of a matrix S rather than as a sequence
of tuples. This is more efficient or convenient for some applications than forming the
sequence. By default, all the (normalized) vectors with norm in the prescribed range
are computed. The optional parameter Max allows the user to specify the maximal
number of computed vectors. Note that the matrix will lie in the appropriate matrix
space and the inner product for L will not be related to the rows of the matrix (which
will lie in the appropriate R-space).

CloseVectors(L, w, u)

CloseVectors(L, w, l, u)

Max RngIntElt Default : ∞
Return the vectors of the lattice L whose squared distance from the vector w

is within the prescribed range, together with their squared distances, as a sorted
sequence Q. The returned sequence Q contains tuples of the form < v, d > where v
is a vector from L and d = (v−w, v−w) is its squared distance from w. w may be
any element of a lattice of degree n or an R-space of degree n compatible with L,
where n is the degree of L. Either one positive number u can be given, specifying
the range (0, u], or a pair l, u of positive numbers, specifying the range [l, u]. Note
that close vectors are not symmetrical with respect to sign (while short vectors are)
so the returned close vectors are not normalized. Q is sorted with respect to first
the squared distances and then the lexicographic order for the vectors. By default,
all the vectors with squared distance in the prescribed range are computed. The
optional parameter Max allows the user to specify the maximal number of computed
vectors.

Ch. 30 LATTICES 687

CloseVectorsMatrix(L, w, u)

CloseVectorsMatrix(L, w, l, u)

Max RngIntElt Default : ∞
This is very similar to CloseVectors, but returns the vectors of the lattice L whose
squared distance from the vector w is within the prescribed range as the rows of a
matrix C rather than as a sequence of tuples. This is more efficient or convenient
for some applications than forming the sequence. w may be any element of a lattice
of degree n or an R-space of degree n compatible with L, where n is the degree
of L. By default, all the close vectors are computed. The optional parameter Max
allows the user to specify the maximal number of computed vectors. Note that the
matrix will lie in the appropriate matrix space and the inner product for L will not
be related to the rows of the matrix (which will lie in the appropriate R-space).

Example H30E13

Let Q = [a1, . . . , an] be a sequence of (not necessarily distinct) positive integers and let s be a
positive integer. We wish to find all solutions to the equation

∑n

i=1
xiai = s with xi ∈ {0, 1}.

This is known as the Knapsack problem. The following lattice-based solution is due to Schnorr
and Euchner (op. cit., at the beginning of this chapter). To solve the problem, we create the
lattice L of rank n + 1 and degree n + 2 with the following basis:

b1 = (2, 0, . . . , 0, na1, 0)

b2 = (0, 2, . . . , 0, na2, 0)

...

bn = (0, 0, . . . , 2, nan, 0)

bn+1 = (1, 1, . . . , 1, ns, 1).

Then every vector v = (v1, . . . , vn+2) ∈ L such that the norm of v is n + 1 and

v1, . . . , vn, vn+2 ∈ {±1}, vn+1 = 0,

yields the solution xi = |vi − vn+2|/2 for i = 1, . . . , n to the original equation.

We first write a function KnapsackLattice which, given the sequence Q and sum s, creates a
matrix X representing the above basis and returns the lattice generated by the rows of X. Note
that the Lattice creation function will automatically LLL-reduce the matrix X as it creates the
lattice.

> function KnapsackLattice(Q, s)

> n := #Q;

> X := RMatrixSpace(IntegerRing(), n + 1, n + 2) ! 0;

> for i := 1 to n do

> X[i][i] := 2;

> X[i][n + 1] := n * Q[i];

> X[n + 1][i] := 1;

688 LATTICES AND QUADRATIC FORMS Part VI

> end for;

> X[n + 1][n + 1] := n * s;

> X[n + 1][n + 2] := 1;

> return Lattice(X);

> end function;

We next write a function Solutions which uses the function ShortVectors to enumerate all
vectors of the lattice L having norm exactly n + 1 and thus to find all solutions to the Knapsack
problem associated with L. (Note that the minimum of the lattice may be less than n + 1.) The
function returns each solution as a sequence of indices for Q.

> function KnapsackSolutions(L)

> n := Rank(L) - 1;

> M := n + 1;

> S := ShortVectors(L, M, M);

> return [

> [i: i in [1 .. n] | v[i] ne v[n + 2]]: t in S |

> forall{i: i in [1 .. n] cat [n + 2] | Abs(v[i]) eq 1} and

> v[n + 1] eq 0 where v is t[1]

>];

> end function;

We now apply our functions to a sequence Q of 12 integers each less than 1000 and the sum 2676.
There are actually 4 solutions. We verify that each gives the original sum.

> Q := [52, 218, 755, 221, 574, 593, 172, 771, 183, 810, 437, 137];

> s := 2676;

> L := KnapsackLattice(Q, s);

> L;

Lattice of rank 13 and degree 14

Determinant: 1846735827632128

Basis:

(0 0 0 0 -2 0 0 0 0 0 2 2 0 0)

(1 1 -1 -1 -1 1 -1 -1 -1 1 1 1 0 1)

(1 -1 -1 -1 -1 1 1 -1 1 1 1 -1 0 1)

(1 1 1 1 -3 1 1 -1 -1 1 -1 -1 0 1)

(1 -1 -3 1 1 -1 -1 1 -1 1 1 1 0 1)

(2 2 0 0 0 -2 2 2 -2 0 -2 0 0 0)

(3 -1 1 1 -1 1 -1 -1 -1 -1 1 1 0 1)

(1 -1 1 1 1 1 3 -1 -1 -1 -1 1 0 -1)

(-1 -1 -1 -1 1 1 1 1 -1 -1 -1 1 0 1)

(2 0 0 2 0 2 0 0 0 0 -2 0 0 -2)

(-1 -1 -1 1 1 -1 -1 1 -1 1 1 -3 0 -1)

(-1 -1 1 -1 -1 1 -1 -1 -1 3 -1 1 0 -3)

(0 -2 0 0 2 0 -2 0 -2 0 0 0 12 0)

> S := KnapsackSolutions(L);

> S;

[

[2, 3, 4, 5, 8, 12],

[3, 4, 5, 7, 8, 9],

Ch. 30 LATTICES 689

[3, 4, 7, 8, 9, 11, 12],

[1, 2, 3, 4, 9, 10, 11]

]

> [&+[Q[i]: i in s]: s in S];

[2676, 2676, 2676, 2676]

Finally, we apply our method to a larger example. We let Q be a sequence consisting of 50 random
integers in the range [1, 21000]. We let I be a random subset of {1 . . . 50} and let s be the sum of
the elements of Q indexed by I. We then solve the Knapsack problem with input (Q, s) and this
time obtain I as the only answer.

> b := 1000;

> n := 50;

> SetSeed(1);

> Q := [Random(1, 2^b): i in [1 .. n]];

> I := { };

> while #I lt n div 2 do

> Include(~I, Random(1, n));

> end while;

> I := Sort(Setseq(I)); I;

[1, 3, 4, 7, 10, 11, 13, 14, 18, 20, 22, 23, 26, 28, 29, 34, 35, 37, 40, 41,

42, 45, 48, 49, 50]

> s := &+[Q[i]: i in I]; Ilog2(s);

1003

> time L := KnapsackLattice(Q, s);

Time: 0.570

> [Ilog2(Norm(b)): b in Basis(L)];

[5, 46, 46, 45, 47, 47, 46, 46, 46, 46, 46, 46, 46, 45, 47, 46, 46, 46, 46,

47,46, 46, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 45, 46, 46,

45, 45, 46, 46, 46, 46, 46, 45, 46, 46, 46, 46, 46]

> time KnapsackSolutions(L);

[

[1, 3, 4, 7, 10, 11, 13, 14, 18, 20, 22, 23, 26, 28, 29, 34, 35, 37, 40,

41, 42, 45, 48, 49, 50]

]

Time: 0.040

Example H30E14

In this example we demonstrate how short vectors of lattices can be used to split homogeneous
components of integral representations. We first define an integral matrix group of degree 8.
The group is isomorphic to A5 and the representation contains the 4-dimensional irreducible
representation of A5 with multiplicity 2.

> G := MatrixGroup< 8, Integers() |

> [-673, -291, -225, -316, 250, -32, 70, -100,

> 252, 274, 349, 272, -156, -94, -296, 218,

> 2532, 1159, 609, 5164, -1450, -181, 188, 742,

> -551, 163, 629, -1763, 285, -162, -873, 219,

690 LATTICES AND QUADRATIC FORMS Part VI

> -2701, -492, 411, -3182, 1062, -397, -1195, 151,

> -5018, -1112, 1044,-12958, 2898, -153, -2870, -454,

> 2581, 90, -1490, 8197, -1553, 261, 2556, -149,

> -3495, -2776, -3218, -2776, 1773, 652, 2459, -1910],

> [2615, 1314, 1633, 400, -950, -1000, -2480, 1049,

> 161, 159, 347, -657, 2, -385, -889, 230,

> -2445, -1062, -1147, 269, 744, 1075, 2441, -795,

> 1591, 925, 1454, -1851, -350, -1525, -3498, 982,

> 10655, 5587, 7476, -1751, -3514, -5575,-13389, 4873,

> 6271, 3253, 4653, -6126, -1390, -5274,-11904, 3219,

> -3058, -1749, -2860, 5627, 392, 3730, 8322, -2009,

> 4875, 1851, 1170, 5989, -2239, 625, 1031, 692] >;

> Order(G);

60

Since the group is small enough we can generate elements in the endomorphism ring by averaging
over the group elements.

> M := MatrixRing(Integers(), 8);

> e := [&+[M!g * MatrixUnit(M, i, i) * M!(g^-1) : g in G] : i in [1..4]];

> E := sub<M | e>;

> Dimension(E);

4

We now transform E into a lattice of dimension 4 and degree 64 and rescale the basis vectors so
that they have lengths of the same order of magnitude.

> L := Lattice(64, &cat[Eltseq(b) : b in Basis(E)]);

> LL := sub<L | [Round(Norm(L.4)/Norm(L.i)) * L.i : i in [1..4]]>;

> Minimum(LL);

910870284600

> SV := ShortVectors(LL, 100*Minimum(LL));

> #SV;

46

> Sing := [X : v in SV | Determinant(X) eq 0 where X is M!Eltseq(v[1])];

> #Sing;

3

We thus have found three singular elements amongst the 46 shortest vectors and use the kernel
of the first of these to get the representation on a subspace of dimension 4.

> ker := LLL(KernelMatrix(Sing[1]));

> ker;

[10 0 -9 5 -2 0 5 -4]

[-3 -4 1 -16 3 5 4 -3]

[-8 -11 -10 -1 4 0 6 -5]

[-13 3 4 10 1 5 8 2]

> H := MatrixGroup<4, Integers() | [Solution(ker, ker*g) : g in Generators(G)]>;

> H;

MatrixGroup(4, Integer Ring)

Generators:

Ch. 30 LATTICES 691

[1 0 0 0]

[-3 -2 -4 -5]

[-2 -3 -3 -4]

[2 3 4 5]

[-1 -1 -1 -1]

[2 1 2 2]

[-4 -2 -1 -2]

[3 2 1 2]

> #H;

60

30.8.4 Short and Close Vector Processes

ShortVectorsProcess(L, u)

ShortVectorsProcess(L, l, u)

Given a lattice L and a range, create a corresponding short vectors lattice enu-
meration process P . This process provides the environment for enumerating each
vector v ∈ L with norm within the range. Either a positive number u can be given,
specifying the range (0, u], or a pair l, u of positive numbers, specifying the range
[l, u]. Successive calls to NextVector (see below) will result in the enumeration of
the vectors.

CloseVectorsProcess(L, w, u)

CloseVectorsProcess(L, w, l, u)

Given a lattice L, a vector w and a range, create a corresponding close vectors lattice
enumeration process P . This process provides the environment for enumerating each
vector v ∈ L such its squared distance (v−w, v−w) from w is within the range. w
may be any element of a lattice of degree n or an R-space of degree n compatible
with L, where n is the degree of L. Either a positive number u can be given,
specifying the range (0, u], or a pair l, u of positive numbers, specifying the range
[l, u]. Successive calls to NextVector (see below) will result in the enumeration of
the vectors.

NextVector(P)

Given a lattice enumeration process P as created by ShortVectorsProcess or
CloseVectorsProcess, return the next element found in the enumeration.

If the process is for short vectors, the next short vector of the specified region of
the lattice is returned together with its norm, or the zero vector together with -1,
indicating that the enumeration process has been completed. The vectors are com-
puted up to sign (so that only one of v and −v will be enumerated) and normalized
so that the first non-zero entry in each vector is positive.

If the process is for the vectors close to w, the next close vector v whose squared
distance d = (v−w, v−w) from w is in the specified range is returned together with

692 LATTICES AND QUADRATIC FORMS Part VI

d, or the zero vector together with -1, indicating that the enumeration process has
been completed. The close vectors are not symmetrical with respect to sign (while
short vectors are) so the returned close vectors are not normalized. Note also that
to test for completion the second return value should be tested for equality with
-1 (or, preferably, the next function IsEmpty should be used) since the zero vector
could be a valid close vector.

Note that the order of the vectors returned by this function in each case is
arbitrary, unlike the previous functions where the resulting sequence or matrix is
sorted.

IsEmpty(P)

Given a lattice enumeration process P , return whether the process P has found all
short or close vectors.

30.8.5 Successive Minima and Theta Series

SuccessiveMinima(L)

SuccessiveMinima(L, k)

Return the first k successive minima of lattice L, or all of the m successive minima
of L if k is omitted, where m is the rank of L. The first k successive minima
M1, . . . ,Mk of a lattice L are defined by the property that M1, . . . ,Mk are minimal
such that there exist linearly independent vectors l1, . . . , lk in L with (li, li) = Mi

for 1 ≤ i ≤ k. The function returns a sequence containing the minima Mi and a
sequence containing the vectors li. The lattice L must be an exact lattice (over Z
or Q). Note that the minima are unique but the vectors are not.

ThetaSeries(L, n)

Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]
Given an integral lattice L and a small positive integer n, return the Theta series
ΘL(q) of L as a formal power series in q to precision n (i.e., up to and including
the coefficient of qn). The coefficient of qk in ΘL(q) is defined to be the number
of vectors of norm k in L. Note that this function needs to enumerate all vectors
of L having norm up to and including n, so its application is restricted to lattices
where the number of these vectors is reasonably small. The lattice L must be an
exact lattice (over Z or Q). Note that the angle bracket notation should be used
to assign a name to the indeterminate for the returned Theta series (e.g., T<q> :=
ThetaSeries(L);).

Example H30E15

We show how a lattice enumeration process can be used to compute the Theta series of a lattice.
We write a simple function Theta which takes a lattice L and precision n and returns the Theta
series of L up to the term qn just as in the function ThetaSeries. The function assumes that the

Ch. 30 LATTICES 693

lattice L is integral. We simply loop over the non-zero vectors of norm up to n and count the
number of vectors for each norm.

> function Theta(L, n)

> Z := IntegerRing();

> P := ShortVectorsProcess(L, n);

> C := [1] cat [0: i in [1 .. n]];

> while not IsEmpty(P) do

> v, norm := NextVector(P);

> C[Z!norm + 1] +:= 2;

> end while;

> return PowerSeriesRing(IntegerRing()) ! C;

> end function;

We now compute the Theta series up to norm 10 of the Gosset lattice E8 using the function Theta.
We compare this Magma-language version with the builtin function ThetaSeries (which is much
faster of course because of the lack of interpreter overhead etc.).

> L := Lattice("E", 8);

> time T<q> := Theta(L, 10);

Time: 0.050

> T;

1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + 30240*q^10

> time TT<r> := ThetaSeries(L, 10);

Time: 0.000

> TT;

1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + 30240*q^10 + O(q^11)

ThetaSeriesIntegral(L, n)

Proof BoolElt Default : true

Prune SeqEnum Default : [1.0, . . . , 1.0]

Restriction of ThetaSeries to integral lattices.

30.8.6 Lattice Enumeration Utilities

SetVerbose("Enum", v)

(Procedure.) Set the verbose printing level for the lattice enumeration algo-
rithm to be v. Currently the legal values for v are true, false, 0, and 1
(false is the same as 0, and true is the same as 1). When the verbose level
is non-zero, some information about the current status of the enumeration al-
gorithm is printed out every 15 seconds. This concerns the functions Minimum,
CentreDensity, CenterDensity, Density, KissingNumber, ShortestVectors,
ShortestVectorsMatrix, ShortVectors, ShortVectorsMatrix and ThetaSeries.

694 LATTICES AND QUADRATIC FORMS Part VI

EnumerationCost(L)

EnumerationCost(L, u)

Prune SeqEnum Default : [1.0, . . . , 1.0]
Estimate the number of nodes in the tree to be visited during the execution of the
enumeration algorithm, for the lattice L and an hyperball of squared radius u. If u
is not provided, an upper bound to the lattice minimum is used. Since the cost
per tree node is relatively constant, this function can be used to obtain a heuristic
estimate of the running-time of the enumeration algorithm. Note that in some cases
the enumeration may run faster than expected, because the tree to be visited may be
shrunk during the execution, as described in [SE94]. Contrary to the enumeration
itself, this function runs in time polynomial in the input bit-size (if the value of the
Prune optional parameter is the default one). It relies on the Gaussian heuristic,
which consists in estimating the number of integral points within an n-dimensional
body by its volume (see [HS07] for more details).

If the Prune parameter is set to [p1, . . . , pd], then EnumerationCost estimates
the cost of the tree pruned with the strategy described in the introduction of the
present section, with pruning coefficients p1, . . . , pd. Although the enumeration itself
is likely to terminate faster, the estimation of the cost may be significantly more
time-consuming.

EnumerationCostArray(L)

EnumerationCostArray(L, u)

Prune SeqEnum Default : [1.0, . . . , 1.0]
Estimate the number of nodes in each layer of the tree to be visited during the
execution of the enumeration algorithm, for the lattice L and an hyperball of squared
radius u. If u is not provided, an upper bound to the lattice minimum is used.

Example H30E16

The algorithm that enumerates short lattice vectors may be very time-consuming. The
EnumerationCost and EnumerationCostArray functions allow one to estimate the running-time
on a given enumeration instantiation, before actually running the algorithm. If the running-time
estimate is too high, then it is unlikely that the execution will terminate within a reasonable
amount of time. A good strategy then consists in reducing the input lattice basis further. If the
running-time estimate remains too high, then pruning the enumeration tree should be considered.
Both the running-time gain and the ”probability” of missing a solution can be estimated.

> B:=RMatrixSpace(IntegerRing(), 50, 51) ! 0;

> for i := 1 to 50 do B[i][1] := RandomBits(1000); end for;

> for i := 1 to 50 do B[i][i+1] := 1; end for;

> B := LLL(B);

> EnumerationCost (Lattice(B));

4.06E18

The value above is an estimate of the number of nodes in the enumeration tree that corresponds
to the computation of the shortest non-zero vectors in the lattice spanned by the rows of B. This

Ch. 30 LATTICES 695

is much too high to have a chance to terminate. Reducing B further allows us to compute these
shortest non-zero vectors.

> B:=LLL(B:Delta:=0.999);

> EnumerationCost(Lattice(B));

1.03E13

> B:=LLL(B:Delta:=0.999, DeepInsertions);

> EnumerationCost(Lattice(B));

7.43E7

> time _:=ShortestVectors(Lattice(B));

3.660

In larger dimensions, reducing the lattice further may not prove sufficient to make the enumeration
reasonably tractable. Then pruning the enumeration tree can be considered.

> B:=RMatrixSpace(IntegerRing(), 65, 66) ! 0;

> for i := 1 to 65 do B[i][1] := RandomBits(1000); end for;

> for i := 1 to 65 do B[i][i+1] := 1; end for;

> B := LLL(B:Delta:=0.999);

> B := LLL(B:Delta:=0.999, DeepInsertions);

> EnumerationCost(Lattice(B));

2.77E12

> p:=[1.0: i in [1..65]];

> for i:=10 to 55 do p[i] := (100-i)/90.; end for;

> for i:=56 to 65 do p[i]:=0.5; end for;

> EnumerationCost(Lattice(B):Prune:=p);

1.75E10

> time _:=ShortestVectors(Lattice(B):Prune:=p);

Time: 422.120

Assuming that the number of visited tree nodes per time unit remains roughly constant, the
execution would have taken around 18 hours without pruning. It is possible to estimate the
likeliness of not missing the optimal solution, by looking at the first coefficient returned by
EnumerationCostArray. Assuming the Gaussian heuristic, this is the ratio between the first
coefficients of EnumerationCostArray with and without the pruning table.

> t1:= EnumerationCostArray(Lattice(B):Prune:=p)[1];

> t2:= EnumerationCostArray(Lattice(B))[1];

> t1/t2;

0.992

Experimentally, it seems that pruning coefficients that decrease linearly (except for the first and
last indices) provide good trade-offs between efficiency gain and success likeliness.

696 LATTICES AND QUADRATIC FORMS Part VI

30.9 Theta Series as Modular Forms
The theta series of an integral lattice L is (the q-expansion of) a modular form whose
weight is half the dimension of the lattice, and whose level and nebentypus are determined
by the quotient L#/L. The space of forms with given weight, level and character is finite
dimensional, which means the theta series is uniquely characterised as an element of that
space from knowledge of finitely many of its coefficients.

The routine described below carries this out explicitly: given an integral lattice, it
returns an element of a Magma space of modular forms, Moreover this is done with the
least possible effort spent determining coefficients via lattice enumeration. Several ideas
are used here, the most important of which is that linear constraints can be obtained from
knowing coefficients of the theta series of L and of its partial dual lattices; in practice, one
needs a certain number of coefficients in total, and the EnumerationCost functionality is
useful for balancing how many to compute for each of the duals.

We say L is q-modular if it is isomorphic to its qth partial dual Lq. Knowledge that
modularities exist is of some use in the algorithm, because q-modularity clearly implies
that L and Lq have the same theta series.

Normalisation of theta series: We use a normalisation that is most natural in this
context, in order that the theta series is a modular form on Γ0(N) with the level N as
small as possible. In this section, the theta series of an even integral lattice L will mean
Σv∈L q

1/2|v|2 , while the theta series of an odd integral lattice L will mean Σv∈L q
|v|2 , where

q = e2iπz.

ThetaSeriesModularFormSpace(L)

Given an integral lattice L, this returns the space of modular forms which contains
the theta series of L. Note: the theta series is normalised as described above.

ThetaSeriesModularForm(L)

KnownTheta RngSerPowElt Default :

KnownDualThetas SeqEnum[Tup] Default :

KnownModularities Set[RngIntElt] Default :

ComputeModularities Set[RngIntElt] Default :

Given an integral lattice L, this returns the theta series of L as a modular form
in the appropriate space: more precisely, in ThetaSeriesModularFormSpace(L).
Note: the theta series is normalised as described above.

If some coefficients of the theta series of L are already known, this information
may be specified by setting the optional argument KnownTheta to be a power series
f , indicating that L has theta series equal to f up to the precision of f .

More generally, if coefficients are known for any partial dual lattices, these may
be specified by setting KnownDualThetas. This argument must be a sequence of
tuples of the form < q, fq >, indicating that the qth partial dual Lq has theta series
equal to fq up to the precision of fq.

If L is known to possess modularities, the optional argument KnownModularities
may be set equal to any set of integers q such that L is q-modular (as defined above).

Ch. 30 LATTICES 697

In addition, ComputeModularities may be specified to control whether the function
checks for q-modularities (for possible q, that are not listed as KnownModularities);
its value may be a boolean, or a set of integers.

30.10 Voronoi Cells, Holes and Covering Radius

The functions in this section compute the Voronoi cell of a lattice around the origin and
associated information. Note that the computation of the Voronoi cell is of truly exponen-
tial complexity and is therefore the use of these functions is restricted to small dimensions
(up to about 10). See [JC98] for the relevant definitions.

A lattice to which any of these functions are applied must be an exact lattice (over Z
or Q).

VoronoiCell(L)

Return the Voronoi cell of the lattice L around the origin which is the convex
polytope consisting of all the points closer to the origin than to any other lattice
point of L. This function returns three values:
(a)A sequence V of vectors which are the vertices of the Voronoi cell.
(b)A set E of pairs, where each pair {i, j} represents an edge connecting V [i] and

V [j].
(c) A sequence P of vectors defining the relevant hyperplanes. A vector p corre-

sponds to the hyperplane given by (x, p) = Norm(p)/2.

VoronoiGraph(L)

Return a graph having the vertices and edges of the Voronoi cell of the lattice L as
vertices and edges, respectively.

Holes(L)

Return a sequence of vectors which are the holes of the lattice L. The holes are
defined to be the vertices of the Voronoi cell around the origin. Note that this
involves computing the Voronoi cell of L around the origin.

DeepHoles(L)

Return a sequence of vectors which are the deep holes of the lattice L. The deep
holes are defined to be the holes of maximum norm and are points of maximum
distance to all lattice points. Note that this involves computing the Voronoi cell of
L around the origin.

CoveringRadius(L)

Return the squared covering radius of the lattice L, which is the norm of the deep
holes of L. Note that this involves computing the Voronoi cell of L around the
origin.

698 LATTICES AND QUADRATIC FORMS Part VI

VoronoiRelevantVectors(L)

Return the Voronoi relevant hyperplanes (as a set of vectors) of the Voronoi cell of
L around the origin. Note that this is the same as the third return value of the
VoronoiCell intrinsic. However, it is usually much faster since it does not compute
the Voronoi cell of L. The algorithm employed is [AEVZ02, Section C].

Example H30E17

We compute the Voronoi cell of a perfect lattice of dimension 6.

> L := LatticeWithGram(6, [4, 1,4, 2,2,4, 2,2,1,4, 2,2,1,1,4, 2,2,2,2,2,4]);

> L;

Standard Lattice of rank 6 and degree 6

Inner Product Matrix:

[4 1 2 2 2 2]

[1 4 2 2 2 2]

[2 2 4 1 1 2]

[2 2 1 4 1 2]

[2 2 1 1 4 2]

[2 2 2 2 2 4]

> time V, E, P := VoronoiCell(L);

Time: 1.740

> #Holes(L), #DeepHoles(L), CoveringRadius(L);

782 28 5/2

The Voronoi cell has 782 vertices, but only 28 of these are of maximal norm 5/2 and therefore
deep holes. We now compute the norms and cardinalities for the shallow holes.

> M := MatrixRing(Rationals(), 6) ! InnerProductMatrix(L);

> N := [(v*M, v) : v in V];

> norms := Sort(Setseq(Set(N))); norms;

[17/9, 2, 37/18, 20/9, 7/3, 5/2]

> card := [#[x : x in N | x eq n] : n in norms]; card;

[126, 16, 288, 180, 144, 28]

So there are 126 holes of norm 17/9, 16 holes of norm 2, etc. We now investigate the Voronoi cell
as a polyhedron.

> #V, #E, #P;

782 4074 104

> { Norm(L!p) : p in P };

{ 4, 6 }

> #ShortVectors(L, 6);

52

The polyhedron which is the convex closure of the holes has 782 vertices, 4074 edges and 104
faces. The faces are defined by vectors of length up to 6 and all such vectors are relevant (since
there are only 104). We finally look at the graph defined by the vertices and edges of the Voronoi
cell.

> G := VoronoiGraph(L);

Ch. 30 LATTICES 699

> IsConnected(G);

true

> Diameter(G);

8

> Maxdeg(G);

20 (-1 0 1/2 1/2 1/2 0)

> v := RSpace(Rationals(), 6) ! [-1, 0, 1/2, 1/2, 1/2, 0]; (v*M, v);

5/2

The graph is (of course) connected, its diameter is 8 and the vertices of maximal degree 20 are
exactly the deep holes.

30.11 Orthogonalization
The functions in this section perform orthogonalization and orthonormalization of lattice
bases over the field of fractions of the base ring. Note that this yields a basis orthogonaliza-
tion of the space in which a lattice embeds; in contrast OrthogonalDecomposition returns
a decomposition into orthogonal components over the base ring. Basis orthogonalization
is equivalent to diagonalization of the inner product matrix of a space.

Orthogonalize(M)

Given a basis matrix M over a subring R of the real field, compute a matrix N
which is row-equivalent over to M over the field of fractions K of R, but whose rows
are orthogonal (i.e., NN tr is a diagonal matrix). This function returns three values:
(a)An orthogonalized matrix N in row-equivalent to X over K;
(b)An invertible matrix T in the matrix ring over K whose degree is the number of

rows of M such that TM = N ;
(c) The rank of M .

Diagonalization(F)

OrthogonalizeGram(F)

Given a symmetric n×n matrix F over R, where R is a subring of the real field,
compute a diagonal matrix G such that G = TFT tr for some invertible matrix T
over K, where K is the field of fractions of R. F need not have rank n. This function
returns three values:
(a)A diagonal matrix G defined over R;
(b)An invertible n×n matrix T over K such that G = TFT tr;
(c) The rank of F .

Orthogonalize(L)

For a lattice L, return a new lattice having the same Gram matrix as L but embedded
in an ambient space with diagonal inner product matrix.

700 LATTICES AND QUADRATIC FORMS Part VI

Orthonormalize(M, K)

Cholesky(M, K)

Orthonormalize(M)

Cholesky(M)

For a symmetric, positive definite matrix M , and a real field K, return a lower
triangular matrix T over K such that M = TT tr. The algorithm must take square
roots so the result is returned as a matrix over the real field K. If the real field K
is omitted, K is taken to be the default real field. Note that this function takes a
Gram matrix M , not a basis matrix as in the previous functions.

Orthonormalize(L, K)

Cholesky(L, K)

Orthonormalize(L)

Cholesky(L)

Given a lattice L with Gram matrix F , together with a real field K, return a new
lattice over K which has the same Gram matrix F as L but has the standard
Euclidean inner product. (This will involve taking square roots so that is why the
result must be over a real field.) The argument for the real field K may be omitted,
in which case K is taken to be the current default real field. This function is
equivalent to the invocation LatticeWithBasis(Orthonormalize(GramMatrix(L),
K)). It is sometimes more convenient to work with the resulting lattice since it has
the standard Euclidean inner product.

Example H30E18

As an example for a lattice with non-trivial basis and inner product matrices we choose the dual
lattice of the 12-dimensional Coxeter-Todd lattice. We compute the inner products of all pairs
of shortest vectors and notice that this gets faster after changing to an isomorphic lattice with
weighted standard Euclidean inner product.

> L := Dual(CoordinateLattice(Lattice("Kappa", 12)));

> SL := ShortestVectors(L);

> SL := SL cat [-v : v in SL]; #SL;

756

> time { (v,w) : v,w in SL };

{ -4, -2, -1, 0, 1, 2, 4 }

Time: 7.120

> M := Orthogonalize(L);

> SM := ShortestVectors(M);

> SM := SM cat [-v : v in SM]; #SM;

756

> time { (v,w) : v,w in SM };

{ -4, -2, -1, 0, 1, 2, 4 }

Ch. 30 LATTICES 701

Time: 1.300

30.12 Testing Matrices for Definiteness

The functions in this section test matrices for positive definiteness, etc. They may applied
to any symmetric matrix over a real subring (i.e., Z, Q, or a real field). Each function
works by calling the function OrthogonalizeGram on its argument and then determining
whether the resulting diagonal matrix has the appropriate form.

IsPositiveDefinite(F)

Given a symmetric matrix F belonging to the matrix module S = HomR(M,M) or
the matrix algebra S = Mn(R), where R is a subring of the real field, return whether
F is positive definite, i.e., whether vFvtr > 0 for all non-zero vectors v ∈ Rn.

IsPositiveSemiDefinite(F)

Given a symmetric matrix F belonging to the matrix module S = HomR(M,M)
or the matrix algebra S = Mn(R), where R is a subring of the real field, return
whether F is positive semi-definite, i.e., whether vFvtr ≥ 0 for all non-zero vectors
v ∈ Rn.

IsNegativeDefinite(F)

Given a symmetric matrix F belonging to the matrix module S = HomR(M,M) or
the matrix algebra S = Mn(R), where R is a subring of the real field, return whether
F is negative definite, i.e., whether vFvtr < 0 for all non-zero vectors v ∈ Rn.

IsNegativeSemiDefinite(F)

Given a symmetric matrix F belonging to the matrix module S = HomR(M,M)
or the matrix algebra S = Mn(R), where R is a subring of the real field, return
whether F is negative semi-definite, i.e., whether vFvtr ≤ 0 for all non-zero vectors
v ∈ Rn.

702 LATTICES AND QUADRATIC FORMS Part VI

30.13 Genera and Spinor Genera

The genus of an exact lattice has a distinct type SymGen which holds a representative
lattice, and the local data defining the genus. Each genus consists of 2n spinor genera,
for some integer n, typically 1. The spinor genera share the same type SymGen. Unlike
the genus, the spinor genus is not determined solely by the local data of the genus, so the
cached representative is necessary to define the spinor class.

Equality testing of genera is fast, since this requires only a comparison of the canonical
local information. It is also possible to enumerate representatives of all equivalences classes
in a genus or spinor genus. This is done by a process of exploration of the p-neighbour
graph, for an appropriate prime p. The neighbouring functions can be applied to individual
lattices to find p-neighbours or the closure under the p-neighbour process. Functions for
computing and comparing the local p-adic equivalence classes of lattices, mediated by the
type SymGenLoc.

30.13.1 Genus Constructions

Genus(L)

Genus(G)

Given an exact lattice L or a spinor genus G this function returns the genus of L.
If given a genus the function returns G itself.

SpinorGenus(L)

Given an exact lattice L, returns the spinor genus of L.

SpinorGenera(G)

Given a genus G, returns the sequence of spinor genera. If G is a spinor genus, then
this function returns the sequence consisting of G itself.

30.13.2 Invariants of Genera and Spinor Genera

Representative(G)

Returns a representative lattice for the genus symbol G.

IsSpinorGenus(G)

Returns true if and only if G is a spinor genus. This is the negation of IsGenus(G).

IsGenus(G)

Returns true if and only if G is a genus. This is the negation of IsSpinorGenus(G).

Determinant(G)

Returns the determinant of the genus symbol G.

Ch. 30 LATTICES 703

LocalGenera(G)

Returns the sequence of p-adic genera of the genus symbol G.

Representative(G)

Returns a representative lattice for the genus symbol G.

G1 eq G2

Given two genus symbols, return true if and only if they represent the same genus.
This computation is fast for genera, but currently for spinor genera invokes a call
to Representatives.

#G

The number of isometry classes in the genus or spinor genus G.
Enumeration of isometry classes is done by an explicit call to Representatives,

so that #G is an expensive computation.

SpinorCharacters(G)

Return the spinor characters of the genus symbol G as a sequence of Dirichlet
characters whose kernels intersect exactly in the group of automorphous numbers.
Consult Conway and Sloane [JC98] for precise definitions and significance of the
spinor kernel and automorphous numbers.

SpinorGenerators(G)

Return the spinor generators of the genus symbol G as a sequence of primes which
generate the group of spinor norms. The primes generate a group dual to that
generated by the spinor characters.

AutomorphousClasses(L,p)

AutomorphousClasses(G,p)

A set of integer representatives of the p-adic square classes in the image of the spinor
norm of the lattice L (respectively the genus symbol G).

IsSpinorNorm(G,p)

Returns true if and only if p is coprime to 2 and the determinant, and p is the norm
of an element of the spinor kernel of G.

704 LATTICES AND QUADRATIC FORMS Part VI

30.13.3 Invariants of p-adic Genera

Prime(G)

Return the prime p for which G represents the p-adic genus.

Representative(G)

Returns a canonical representative lattice of the p-adic genus G, with Gram matrix
in Jordan form. For odd p the Jordan form is diagonalized.

Determinant(G)

This function returns a canonical p-adic representative of the determinant of the
p-adic genus G. The determinant is well-defined only up to squares.

Dimension(G)

Return the dimension of the p-adic genus G.

G1 eq G2

Given local genus symbols G1 and G2, return true if and only if they have the same
prime and the same canonical Jordan form.

30.13.4 Neighbour Relations and Graphs

Neighbour(L, v, p)

Neighbor(L, v, p)

Let L be an integral lattice, p a prime which does not divide Determinant(L) and v
a vector in L \ pL with (v, v) ∈ p2Z. The p-neighbour of L with respect to v is the
lattice generated by Lv and p−1v, where Lv := {x ∈ L|(x, v) ∈ pZ}.

See [Kne57] for the original definition and [SP91] for a generalization of the
neighbouring method.

Neighbours(L, p)

Neighbors(L, p)

For an integral lattice L and prime p, returns the sequence of p-neighbours of L.

NeighbourClosure(L, p)

NeighborClosure(L, p)

Bound RngIntElt Default : 232

For an integral lattice L and prime p, returns the sequence of lattices obtained by
transitive closure of the p-neighbours of L.

Note that neighbours with respect to two vectors v1, v2 whose images in L/pL
lie in the same projective orbit of Aut(L) on L/pL are isometric. Therefore only
projective orbit representatives of the action of Aut(L) on L/pL are used. The large
number of orbits restricts the complexity of this algorithm, hence the function gives
an error if pRank(L) is greater than Bound, by default set to 232.

Ch. 30 LATTICES 705

GenusRepresentatives(L)

SpinorRepresentatives(L)

Representatives(G)

Bound RngIntElt Default : 232

Depth RngIntElt Default :

For an exact lattice L with genus or spinor genus G, this function enumerates the
isometry classes in G by constructing the p-neighbour closure (up to isometry).
This construction used using an appropriate prime or primes p not dividing the
determinant of L. For the genus, sufficiently many primes p are chosen to generate
the full image, modulo the spinor kernel, of each character defining the spinor kernel.
The parameters are exactly as for the NeighbourClosure function.

AdjacencyMatrix(G,p)

For a genus or spinor genus G, this function determines the adjacency matrix of the
p-neighbour graph on the representative classes for G. The integer p must be prime,
and if G is a spinor genus, then an error ensues if p is not an automorphous number
for G.

Example H30E19

We construct the root lattice E8 (the unique even unimodular lattice of dimension 8) as a 2-
neighbour of the 8-dimensional standard lattice.

> Z8 := StandardLattice(8);

> v := Z8 ! [1,1,1,1,1,1,1,1];

> E8 := Neighbour(Z8, v, 2);

> E8;

Lattice of rank 8 and degree 8

Basis:

(2 0 0 0 0 0 0 2)

(2 0 0 0 0 0 0 -2)

(1 1 -1 1 1 -1 1 1)

(1 1 -1 -1 -1 -1 -1 -1)

(1 -1 -1 -1 -1 -1 1 -1)

(0 0 2 0 0 0 0 2)

(0 0 0 0 2 0 0 2)

(0 0 0 0 0 2 0 2)

Basis denominator: 2

The so-obtained lattice is in fact identical to the one returned by the standard construction.

> L := Lattice("E", 8);

> L;

Lattice of rank 8 and degree 8

Basis:

(4 0 0 0 0 0 0 0)

706 LATTICES AND QUADRATIC FORMS Part VI

(-2 2 0 0 0 0 0 0)

(0 -2 2 0 0 0 0 0)

(0 0 -2 2 0 0 0 0)

(0 0 0 -2 2 0 0 0)

(0 0 0 0 -2 2 0 0)

(0 0 0 0 0 -2 2 0)

(1 1 1 1 1 1 1 1)

Basis Denominator: 2

> E8 eq L;

true

Example H30E20

In this example we enumerate representatives for the genus of the Coxeter-Todd lattice, per-
forming the major steps manually. The whole computation can be done simply by calling the
GenusRepresentatives function but the example illustrates how the function actually works.

We use a combination of the automorphism group, isometry and neighbouring functions. The
idea is that the neighbouring graph spans the full genus which therefore can be computed by
successively generating neighbours and checking them for isometry with already known ones.
The automorphism group comes into play, since neighbours with respect to vectors in the same
projective orbit under the automorphism group are isometric.

> L := CoordinateLattice(Lattice("Kappa", 12));

> G := AutomorphismGroup(L);

> G2 := ChangeRing(G, GF(2));

> O := LineOrbits(G2);

> [Norm(L!Rep(o).1) : o in O];

[4, 8, 10]

Hence only the first and second orbits give rise to a 2-neighbour. To obtain an even neighbour,
the second vector has to be adjusted by an element of 2 ∗ L such that it has norm divisible by 8.

> v1 := L ! Rep(O[1]).1;

> v1 +:= 2 * Rep({ u : u in Basis(L) | (v1,u) mod 2 eq 1 });

> v2 := L ! Rep(O[2]).1;

> Norm(v1), Norm(v2);

16 8

> L1 := Neighbour(L, v1, 2);

> L2 := Neighbour(L, v2, 2);

> bool := IsIsometric(L, L1); bool;

true

> bool := IsIsometric(L, L2); bool;

false

So we obtain only one non-isometric even neighbour of L. To obtain the full genus we can now
proceed with L2 in the same way, and do this with the following function EvenGenus. Note that
this function is simply one component of the function GenusRepresentatives.

> function EvenGenus(L)

Ch. 30 LATTICES 707

> // Start with the lattice L

> Lambda := [CoordinateLattice(LLL(L))];

> cand := 1;

> while cand le #Lambda do

> L := Lambda[cand];

> G := ChangeRing(AutomorphismGroup(L), GF(2));

> // Get the projective orbits on L/2L

> O := LineOrbits(G);

> for o in O do

> v := L ! Rep(o).1;

> if Norm(v) mod 4 eq 0 then

> // Adjust the vector such that its norm is divisible by 8

> if not Norm(v) mod 8 eq 0 then

> v +:= 2 * Rep({ u : u in Basis(L) | (v,u) mod 2 eq 1 });

> end if;

> N := LLL(Neighbour(L, v, 2));

> new := true;

> for i in [1..#Lambda] do

> if IsIsometric(Lambda[i], N) then

> new := false;

> break i;

> end if;

> end for;

> if new then

> Append(~Lambda, CoordinateLattice(N));

> end if;

> end if;

> end for;

> cand +:= 1;

> end while;

> return Lambda;

> end function;

>

> time Lambda := EvenGenus(L);

Time: 9.300

> #Lambda;

10

> [Minimum(L) : L in Lambda];

[4, 2, 2, 2, 2, 2, 2, 2, 2, 2]

> &+[1/#AutomorphismGroup(L) : L in Lambda];

4649359/4213820620800

We see that the genus consists of 10 classes of lattices where only the Coxeter-Todd lattice has
minimum 4 and get the mass of the genus as 4649359/4213820620800.

708 LATTICES AND QUADRATIC FORMS Part VI

30.14 Attributes of Lattices

This section lists various attributes of lattices which can be examined and set by the
user. This allows low-level control of information stored in lattices. Note that when an
attribute is set, only minimal testing can be done on the value so if an incorrect value is
set, unpredictable results may occur. Note also that if an attribute is not set, referring to it
in an expression (using the ‘ operator) will not trigger the calculation of it (while intrinsic
functions do); rather an error will ensue. Use the assigned operator to test whether an
attribute is set.

L‘Minimum

The attribute for the minimum of a rational or integer lattice L. If the attribute
L‘Minimum is examined, either the minimum is known so it is returned or an error
results. If the attribute L‘Minimum is set by assignment, it must be a positive
number equal to the minimum of the lattice. Magma will not check that this is
correct since that may be very time-consuming. If the attribute is already set, the
new value must be the same as the old value.

L‘MinimumBound

The attribute for an upper bound to the minimum of a rational or integer lattice L. If
the attribute L‘MinimumBound is examined, either an upper bound to the minimum
is known so it is returned or an error results. If the attribute L‘MinimumBound is set
by assignment, it must be a positive number greater than or equal to the minimum
of the lattice. Magma will not check that this is correct since that may be very
time-consuming. If the attribute is already set, the new value must be the same as
or smaller than the old value.

30.15 Database of Lattices

Magma includes a database containing most of the lattices explicitly presented in the
Catalogue of Lattices maintained by Neil J.A. Sloane and Gabriele Nebe [NS01b].

Many standard lattices included in the Sloane & Nebe catalogue are not in the database
as they may be obtained by applying Magma’s standard lattice creation functions. Also
omitted from the database are a small number of catalogued lattices defined over rings
other than Z or Q.

The information available for any given lattice in the catalogue varies considerably. A
similar variety is found in the Magma database version, although some data (generally
either easily computable or rarely available in the catalogue) is omitted.

Where the Magma database does retain data, it is not altered from the data in the
catalogue. Thus the caveat which comes with that catalogue remains relevant: “Warning!
Not all the entries have been checked!”

A second version of the Lattice Database has been made available with Version 2.16
of Magma. It adds a few more lattices, contains more information about automorphism
groups, and adds Θ-series as attributes. Furthermore, it removes some duplicates. The
user should be warned that the numbering of lattices (and naming in some cases) differs

Ch. 30 LATTICES 709

between the two versions. The newer version, however, does not contain information about
any Hermitian structure at the current time.
The entries of the database can be accessed in three ways:
(i) the i-th entry of the database can be requested;
(ii) the i-th entry of a particular dimension d can be specified;
(iii) the desired entry can be denoted by its name N . This name is specified exactly as

in the catalogue, including all punctuation and whitespace. In the rare event that
two or more entries share a single name, particular entries may be distinguished by
supplying an integer i in addition to N , to denote the i-th entry with name N .

30.15.1 Creating the Database

LatticeDatabase()

This function returns a database object which contains information about the
database.

30.15.2 Database Information
This section gives the functions that enable the user to find out what is in the database.

#D

NumberOfLattices(D)

Returns the number of lattices stored in the database.

LargestDimension(D)

Returns the largest dimension of any lattice in the database.

NumberOfLattices(D, d)

Returns the number of lattices of dimension d stored in the database.

NumberOfLattices(D, N)

Returns the number of lattices named N stored in the database.

LatticeName(D, i)

Return the name and dimension of the i-th entry of the database D.

LatticeName(D, d, i)

Return the name and dimension of the i-th entry of dimension d of the database D.

LatticeName(D, N)

Return the name and dimension of the first entry of the database with name N .

LatticeName(D, N, i)

Return the name and dimension of the i-th entry of the database with name N .

710 LATTICES AND QUADRATIC FORMS Part VI

Example H30E21

We find out the names of the database entries.

> D := LatticeDatabase();

> NumberOfLattices(D);

700

The database contains 700 lattices. We get the set of all names in the database.

> names := {LatticeName(D,i): i in [1..#D]};

> #names;

673;

> Random(names);

S4(5):2

> NumberOfLattices(D, "S4(5):2");

1

There are 673 names, so 27 repeated names in the database, but only one with name “S4(5):2”.

30.15.3 Accessing the Database
The following functions retrieve lattice information from the database.

Lattice(D, i: parameters)

Lattice(D, d, i: parameters)

Lattice(D, N: parameters)

Lattice(D, N, i: parameters)

TrustAutomorphismGroup

Bool Default : true

Returns the i-th entry (of dimension d or name N) from the database D as a lattice
L.

If the TrustAutomorphismGroup parameter is assigned false, then any data
which claims to be the automorphism group will not be stored in L.

LatticeData(D, i)

LatticeData(D, d, i)

LatticeData(D, N)

LatticeData(D, N, i)

Returns a record which contains all the information about the i-th lattice stored in
the database D (of dimension d or name N). The automorphism group is returned
separately from the lattice and not stored in it.

Ch. 30 LATTICES 711

Example H30E22

We look up a lattice in the database. There are 19 lattices of dimension 6 in the database. We
get the 10th.

> D := LatticeDatabase();

> NumberOfLattices(D, 6);

19

> L := Lattice(D, 6, 10);

> L;

Standard Lattice of rank 6 and degree 6

Minimum: 4

Inner Product Matrix:

[4 1 2 2 2 2]

[1 4 2 2 2 2]

[2 2 4 1 2 2]

[2 2 1 4 2 2]

[2 2 2 2 4 1]

[2 2 2 2 1 4]

There may be more information stored than just what is returned by the Lattice function. We
get the record containing all the stored lattice data.

> R := LatticeData(D, 6, 10);

> Format(R);

recformat<name, dim, lattice, minimum, kissing_number,

is_integral, is_even, is_unimodular, is_unimodular_hermitian,

modularity, group_names, group, group_order,

hermitian_group_names, hermitian_group, hermitian_group_order,

hermitian_structure>

This lists all possible fields in the record. They may or may not be assigned for any particular
lattice.

> R‘lattice eq L;

true

> R‘name;

A6,1

> assigned R‘kissing_number;

true

> R‘kissing_number;

42

> assigned R‘group;

false

> A := AutomorphismGroup(L);

> A : Minimal;

MatrixGroup(6, Integer Ring) of order 96 = 2^5 * 3

The result of the Lattice call is equal to the lattice field of the data record. The kissing number
was stored, but the automorphism group wasn’t. We computed the group (as a matrix group over
the integers) and found it has order 96.

712 LATTICES AND QUADRATIC FORMS Part VI

30.15.4 Hermitian Lattices
There are a few facilities for computing with Hermitian lattices over an imaginary quadratic
field or a quaternion algebra. However, these functions apply to a Gram matrix, and not a
lattice per se. The main application is for automorphism groups that preserve a structure.

HermitianTranspose(M)

Given a matrix over an imaginary quadratic field or a quaternion algebra, return
the conjugate transpose.

ExpandBasis(M)

Given a matrix over an imaginary quadratic field or a quaternion algebra, expand
it to a basis over the rationals.

HermitianAutomorphismGroup(M)

QuaternionicAutomorphismGroup(M)

Given a conjugate symmetric Gram matrix, compute the automorphism group.

Various functions for matrix groups over associative algebras are available here,
such as CharacterTable and IsConjugate which simply use a re-writing over the
rationals, and InvariantForms which after using GHom needs to restrict to elements
fixed by the quaterionic structure. Finally, there is QuaternionicGModule which
will split a G-module over a quaternionic structure.

InvariantForms(G)

Given a matrix group over an associative algebra or an imaginary quadratic field,
return a basis for the forms fixed by it.

QuaternionicGModule(M, I, J)

Given a G-module M and I and J in the endomorphism algebra that anti-commute
and whose squares are scalars, write G over the quaternionic structure given by I
and J .

MooreDeterminant(M)

Given a conjugate-symmetric matrix over a quaternion algebra, compute the Moore
determinant. This is the ”normal” determinant, which is well-defined here because
all the diagonal elements are rational, and thus there is no ambiguity between
left/right division.

Ch. 30 LATTICES 713

Example H30E23

We construct the Coxeter-Todd lattice over Q3,∞ starting with the group SU(3, 3).

> G := SU(3, 3);

> chi := CharacterTable(G)[2];

> M := GModule(chi,Integers());

> E := EndomorphismAlgebra (M);

> while true do r:=&+[Random([-2..2])*E.i : i in [1..4]];

> if r^2 eq -1 then break; end if; end while;

> while true do s:=&+[Random([-2..2])*E.i : i in [1..4]];

> if s^2 eq -3 and r*s eq -s*r then break; end if; end while;

> MM := QuaternionicGModule(M, r, s);

> Discriminant(BaseRing(MM));

3

> MG := MatrixGroup(MM);

> IF := InvariantForms(MG); IF;

[

[1 -1/2*i + 1/6*k 1/3*k]

[1/2*i - 1/6*k 1 -1/3*j]

[-1/3*k 1/3*j 1]

]

> assert IsIsomorphic(G, MG);

Example H30E24

We compute the quaternionic automorphism group for the Leech lattice.

> A<i,j,k> := QuaternionAlgebra<Rationals()|-1,-1>;

> v := [];

> v[1] := [2+2*i,0,0,0,0,0]; /* from Wilson’s paper */

> v[2] := [2,2,0,0,0,0];

> v[3] := [0,2,2,0,0,0];

> v[4] := [i+j+k,1,1,1,1,1];

> v[5] := [0,0,1+k,1+j,1+j,1+k];

> v[6] := [0,1+j,1+j,1+k,0,1+k];

> V := [Vector(x) : x in v];

> W := [Vector([Conjugate(x) : x in Eltseq(v)]): v in V];

> M6 := Matrix(6,6,[(V[i],W[j])/2 : i,j in [1..6]]); /* 6-dim over A */

> time Q := QuaternionicAutomorphismGroup(M6);

> assert #Q eq 503193600;

The same can be done for the Coxeter-Todd lattice.

> A<i,j,k> := QuaternionAlgebra<Rationals()|-1,-3>;

> a := (1+i+j+k)/2;

> M3 := Matrix(3,3,[2,a,-1, Conjugate(a),2,a, -1,Conjugate(a),2]);

> time Q := QuaternionicAutomorphismGroup(M3);

714 LATTICES AND QUADRATIC FORMS Part VI

> assert #Q eq 12096;

One can also compute the automorphism group over the Eisenstein field, using InvariantForms

on the realisation of this group as ShephardTodd(34).

> G := ShephardTodd(34);

> IF := InvariantForms(G); // scaled Coxeter-Todd over Q(sqrt(-3))

> A := HermitianAutomorphismGroup(IF[1]);

> assert IsIsomorphic(A,G);

30.16 Bibliography

[AEVZ02] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in
lattices. IEEE Transactions on Information Theory, 48(8):2201–2214, 2002.

[Ajt98] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for Randomized
Reductions (Extended Abstract). In Proceedings of the 30th Symposium on the Theory
of Computing (STOC 1998), pages 10–19. ACM, 1998.

[Akh02] Ali Akhavi. Random lattices, threshold phenomena and efficient reduction
algorithms. Theoretical Computer Science, 287(2):359–385, 2002.

[dW87] Benne M.M. de Weger. Solving exponential Diophantine equations using
lattice basis reduction algorithms. J. Number Th., 26:325–367, 1987.

[FP83] U. Fincke and M. Pohst. A procedure for determining algebraic integers of
given norm. In EUROCAL, volume 162 of LNCS, pages 194–202. Springer, 1983.

[HPP06] F. Hess, S. Pauli, and M. Pohst, editors. ANTS VII, volume 4076 of LNCS.
Springer-Verlag, 2006.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved Analysis of Kannan’s
Shortest Lattice Vector Algorithm (Extended Abstract). In Advances in cryptology—
CRYPTO 2007, volume 4622 of LNCS, pages 170–186. Springer, 2007.

[JC98] N.J.A. Sloane J.H. Conway. Sphere Packings, Lattices and Groups, volume
290 of Grundlehren der Mathematischen Wissenschaften. Springer, New York–Berlin–
Heidelberg, 3rd edition, 1998.

[Kan83] R. Kannan. Improved algorithms for integer programming and related lattice
problems. In Proceedings of the 15th Symposium on the Theory of Computing (STOC
1983), pages 99–108. ACM, 1983.

[Kne57] M. Kneser. Klassenzahlen indefiniter quadratischer Formen. Archiv Math.,
8:241–250, 1957.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a
cryptographic perspective, volume 671 of The Kluwer International Series in Engineer-
ing and Computer Science. Kluwer Academic Publishers, 2002.

Ch. 30 LATTICES 715

[NS01a] G. Nebe and N.J.A. Sloane. The Catalogue of Lattices.
URL:http://www.research.att.com/∼njas/lattices/, 2001.

[NS01b] Gabriele Nebe and Neil J.A. Sloane. A Catalogue of Lattices.
URL:http://akpublic.research.att.com/∼njas/lattices/index.html, 2001.

[NS06] Phong Nguyen and Damien Stehlé. LLL on the Average. In Hess et al.
[HPP06], pages 238–256.

[NS09] Phong Nguyen and Damien Stehlé. An LLL Algorithm with Quadratic
Complexity. SIAM Journal on Computing, 39(3):874–903, 2009.

[Poh87] Michael Pohst. A Modification of the LLL Reduction Algorithm. J. Symbolic
Comp., 4(1):123–127, 1987.

[Pro] The SPACES Project. MPFR, a LGPL-library for multiple-precision floating-
point computations with exact rounding.
URL:http://www.mpfr.org/.

[PS08] Xavier Pujol and Damien Stehlé. Rigorous and efficient short lattice vectors
enumeration. In Advances in Cryptology—AsiaCrypt 2008, LNCS. Springer, 2008.

[SE94] Claus-Peter Schnorr and Michael Euchner. Lattice Basis Reduction: Improved
Practical Algorithms and Solving Subset Sum Problems. Mathematics of Programming,
66:181–199, 1994.

[SH95] Claus-Peter Schnorr and Horst Helmut Hörner. Attacking the Chor-Rivest
Cryptosystem by Improved Lattice Reduction. In Advances in Cryptology—EuroCrypt
1995, volume 921 of LNCS, pages 1–12. Springer-Verlag, 1995.

[Sho] Victor Shoup. NTL, Number Theory C++ Library.
URL:http://www.shoup.net/ntl/.

[Sim05] Denis Simon. Solving quadratic equations using reduced unimodular quadratic
forms. Math. Comp., 74(251):1531–1543 (electronic), 2005.

[SP91] Rainer Schulze-Pillot. An algorithm for computing genera of ternary and
quaternary quadratic forms. In Stephen M. Watt, editor, Proceedings ISSAC’91, pages
134–143, Bonn, 1991.

[Ste09] Damien Stehlé. Floating-point LLL: theoretical and practical aspects.
Springer-Verlag, 2009. To appear.

[vEB81] Peter van Emde Boas. Another NP-complete partition problem and the com-
plexity of computing short vectors in a lattice. Technical report 81-04, Mathematisch
Instituut, Universiteit van Amsterdam, 1981.

31 LATTICES WITH GROUP ACTION
31.1 Introduction 719

31.2 Automorphism Group and
Isometry Testing 719

AutomorphismGroup(L) 719
AutomorphismGroup(L, F) 721
AutomorphismGroup(F) 721
IsIsometric(L, M) 724
IsIsomorphic(L, M) 724
IsIsometric(L, F1, M, F2) 725
IsIsomorphic(L, F1, M, F2) 725
IsIsometric(L, M) 725
IsIsomorphic(L, M) 725
IsIsometric(F1, F2) 725
IsIsomorphic(F1, F2) 725

31.2.1 Automorphism Group and
Isometry Testing over Fq [t] 726

DominantDiagonalForm(X) 726
AutomorphismGroup(G) 727
IsIsometric(G1, G2) 727
ShortestVectors(G) 727
ShortVectors(G, B) 728

31.3 Lattices from Matrix Groups . 728

31.3.1 Creation of G-Lattices 728

Lattice(G) 728
LatticeWithBasis(G, B) 728
LatticeWithBasis(G, B, M) 728
LatticeWithGram(G, F) 728

31.3.2 Operations on G-Lattices 729

IsGLattice(L) 729
Group(L) 729
NumberOfActionGenerators(L) 729
Nagens(L) 729
ActionGenerator(L, i) 729
NaturalGroup(L) 729
NaturalActionGenerator(L, i) 729

31.3.3 Invariant Forms 729

InvariantForms(L) 729
InvariantForms(L, n) 729
SymmetricForms(L) 729
SymmetricForms(L, n) 730
AntisymmetricForms(L) 730
AntisymmetricForms(L, n) 730

NumberOfInvariantForms(L) 730
NumberOfSymmetricForms(L) 730
NumberOfAntisymmetricForms(L) 730
PositiveDefiniteForm(L) 730

31.3.4 Endomorphisms 730

EndomorphismRing(L) 730
Endomorphisms(L, n) 730
DimensionOfEndomorphismRing(L) 731
CentreOfEndomorphismRing(L) 731
CentralEndomorphisms(L, n) 731
DimensionOfCentreOf

EndomorphismRing(L) 731

31.3.5 G-invariant Sublattices 731

Sublattices(G, Q) 731
Sublattices(L, Q) 731
Sublattices(G, p) 732
Sublattices(L, p) 732
Sublattices(G) 732
Sublattices(L) 732
SublatticeClasses(G) 732

31.3.6 Lattice of Sublattices 735

SublatticeLattice(G, Q) 736
SublatticeLattice(G, p) 736
SublatticeLattice(G) 736
737
! 737
! 737
NumberOfLevels(V) 737
Level(V, i) 737
Levels(v) 737
Primes(V) 737
Constituents(V) 737
! 737
+ 737
meet 737
eq 737
MaximalSublattices(e) 738
MinimalSuperlattices(e) 738
Lattice(e) 738
BasisMatrix(e) 738
Morphism(e) 738

31.4 Bibliography 741

Chapter 31

LATTICES WITH GROUP ACTION

31.1 Introduction
In Magma, a G-lattice L is a lattice upon which a finite integral matrix group G acts by
right multiplication. Magma allows various computations with lattices associated with
finite integral matrix groups by use of G-lattices.

The computation of the automorphism group of a lattice (i.e. the largest matrix group
that acts on the lattice) and the testing of lattices for isometry is performed within Magma
by a search designed by Bill Unger, which is based on the Plesken-Souvignier backtrack
algorithm [PS97], together with ordered partition methods. Optionally, this may be com-
bined with orthogonal decomposition code of Gabi Nebe.

If G is a finite integral matrix group, then Magma uses Plesken’s centering algorithm
([Ple74]) to construct all G-invariant sublattices of a given G-lattice L. The lattice of
G-invariant sublattices of L can be explored much like the lattice of submodules over finite
fields.

31.2 Automorphism Group and Isometry Testing
The functions in this section compute the automorphism group of a lattice and test lattices
for isometry. Currently the lattices to which these functions are applied must be exact
(over Z or Q).

AutomorphismGroup(L)

Stabilizer RngIntElt Default : 0
BacherDepth RngIntElt Default : −1
Generators [GrpMatElt] Default :

NaturalAction Bool Default : false

Decomposition Bool Default : false

Vectors Mtrx Default :

This function computes the automorphism group G of a lattice L which is defined to
be the group of those automorphisms of the Z-module underlying L which preserve
the inner product of L. L must be an exact lattice (over Z or Q). The group
G is returned as an integral matrix group of degree m acting on the coordinate
vectors of L by multiplication where m is the rank of L. The coordinate vectors
of L are the elements of the coordinate lattice C of L which has the same Gram
matrix as L, but standard basis of degree m (C can be created using the function
CoordinateLattice). G does not act on the elements of L, since there is no natural

720 LATTICES AND QUADRATIC FORMS Part VI

matrix action of the automorphism group on L in the case that the rank of L is
less than its degree. However, if the rank of L equals its degree, then the parameter
NaturalAction may be set to true, in which case the resulting group has the
natural action on the basis vectors (not the coordinate vectors); note that in this
case the resulting matrix group will have (non-integral) rational entries in general,
even though the image under the group of an integral basis vector will always be
integral.

The algorithm uses a backtrack search to find images of the basis vectors. A
vector is a possible image if it has the correct inner product with the images chosen
so far. Additional invariants which have to be respected by automorphisms are
used by default and are usually sufficient for satisfactory performance. For difficult
examples the parameters described below allow to consider further invariants which
are more sophisticated and harder to compute, but often find dead ends in the
backtrack at an early stage.

The algorithm computes and stores a set of short vectors in the lattice that spans
the lattice and is guaranteed closed under the action of the automorphism group.
This restricts its general application, as for high dimensional lattices the number of
vectors of minimal length may be too large to work with. However, the function
can of course be applied to lattices in higher dimensions with a reasonable number
of short vectors.

Setting the parameter Stabilizer := i will cause the function to compute only
the point stabilizer of i basis vectors. These will in general not be the first i basis
vectors, as the function chooses the basis to speed up the computation.

The parameter Depth is retained for compatibility with previous versions of
Magma(which used Souvignier’s AUTO program) but it is now ignored. The im-
proved backtrack search achieved by using ordered partition methods has made the
Depth concept unnecessary.

In some hard examples one may want to use Bacher polynomials, which are a
combinatorial invariant that usually separates the orbits of the automorphism group
on the short vectors. However, these are expensive to calculate and should only be
used if one suspects that the automorphism group has many orbits on the short vec-
tors. The parameter BacherDepth specifies to which depth the Bacher polynomials
may used and should usually be chosen to be 1, since even small automorphism
groups will have only very few (most likely 1) orbits on the vectors having correct
scalar product with the first image. Setting BacherDepth to zero forbids the use
of Bacher polynomial invariant. Setting it to anything else allows the algorithm to
use this invariant at level 1. Bacher polynomials are computed by counting pairs of
vectors having a certain scalar product with other vectors. This scalar product is
by default chosen to be half the norm of the vector, since this will usually be the
value which occurs least frequent.

In some situations one may already know a subgroup of the full automorphism
group, either by the construction of the lattice or an earlier stabilizer computation.
This subgroup can be made available by setting Generators := Q, where Q is a set
or sequence containing the generators of the subgroup.

Ch. 31 LATTICES WITH GROUP ACTION 721

Since V2.13, the algorithm has had the ability to first attempt to compute an
orthogonal decomposition of L by considering the sublattices spanned by the set
of shortest vectors, and if there is a non-trivial decomposition the automorphism
group is computed via an algorithm of G. Nebe which computes the automorphism
groups for the components and combines these. This decomposition method can be
invoked by setting Decomposition to true.

When decomposition is suppressed, it is possible to supply the backtrack algo-
rithm with the set of vectors to be used as domain for the search. To do this set
the parameter Vectors to be a matrix so that the rows of the matrix give the lat-
tice elements to be used. (Only one of a vector and its negative should be given.)
To guarantee correctness of the result, the rows of the matrix should satisfy two
conditions:

The rows, together with their negations, must be closed under the action of the
full automorphism group, and
The sublattice of L generated by the rows of the matrix must equal L.
These conditions are not checked by the code, and it is up to the user of this

parameter to ensure the correctness of their input. For example, the function
ShortVectorsMatrix returns a matrix which satisfies the first condition. If the
first condition is not satisfied, there are no guarantees about what will happen. The
second condition may be violated and still give a useful result. In particular, if the
sublattice generated by the vectors given has finite index in the full lattice, then
the final result will be the correct automorphism group. The problem is that the
backtrack search may not be particularly efficient. This may still be better than
working with a very large set of vectors satisfying the second condition.

AutomorphismGroup(L, F)

Stabilizer RngIntElt Default : 0
BacherDepth RngIntElt Default : 0
Generators [GrpMatElt] Default :

Vectors Mtrx Default :

This function computes the subgroup of the automorphism group of the lattice L
which fixes also the forms given in the set or sequence F . The matrices in F are
not required to be positive definite or even symmetric. This is for example useful
to compute automorphism groups of lattices over algebraic number fields. The
parameters are as above.

AutomorphismGroup(F)

Stabilizer RngIntElt Default : 0
BacherDepth RngIntElt Default : 0
Generators [GrpMatElt] Default :

This function computes the matrix group fixing all forms given as matrices in the
sequence F . The first form in F must be symmetric and positive definite, while the

722 LATTICES AND QUADRATIC FORMS Part VI

others are arbitrary. The call of this function is equivalent to AutomorphismGroup(
LatticeWithGram(F[1]), [F[i] : i in [2..#F]]). This function can be
used to compute the Bravais group of a matrix group G which is defined to be
the full automorphism group of the forms fixed by G. The parameters are as above.

Example H31E1

In this example we compute the automorphism group of the root lattice E8 and manually transform
the action on the coordinates into an action on the lattice vectors. Note that this exactly the
same as using the NaturalAction parameter for the function AutomorphismGroup.

> L := Lattice("E", 8);

> G := AutomorphismGroup(L);

> #G; FactoredOrder(G);

696729600

[<2, 14>, <3, 5>, <5, 2>, <7, 1>]

> M := MatrixRing(Rationals(), 8);

> B := BasisMatrix(L);

> A := MatrixGroup<8, Rationals() | [B^-1 * M!G.i * B : i in [1 .. Ngens(G)]]>;

> A;

MatrixGroup(8, Rational Field)

Generators:

[0 0 -1/2 1/2 -1/2 1/2 0 0]

[0 0 1/2 1/2 1/2 1/2 0 0]

[0 0 -1/2 1/2 1/2 -1/2 0 0]

[-1/2 1/2 0 0 0 0 -1/2 1/2]

[0 0 -1/2 -1/2 1/2 1/2 0 0]

[-1/2 -1/2 0 0 0 0 -1/2 -1/2]

[-1/2 -1/2 0 0 0 0 1/2 1/2]

[1/2 -1/2 0 0 0 0 -1/2 1/2]

[1/4 1/4 1/4 -1/4 -3/4 -1/4 -1/4 -1/4]

[-1/4 -1/4 3/4 1/4 -1/4 1/4 1/4 1/4]

[-1/4 -1/4 -1/4 1/4 -1/4 1/4 1/4 -3/4]

[-1/4 -1/4 -1/4 1/4 -1/4 1/4 -3/4 1/4]

[1/4 -3/4 1/4 -1/4 1/4 -1/4 -1/4 -1/4]

[3/4 -1/4 -1/4 1/4 -1/4 1/4 1/4 1/4]

[-1/4 -1/4 -1/4 1/4 -1/4 -3/4 1/4 1/4]

[-1/4 -1/4 -1/4 -3/4 -1/4 1/4 1/4 1/4]

[1 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

[0 0 0 1 0 0 0 0]

[0 0 0 0 1 0 0 0]

[0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 1]

[0 0 0 0 0 0 1 0]

Ch. 31 LATTICES WITH GROUP ACTION 723

> [#Orbit(A, b) : b in Basis(L)];

[2160, 240, 240, 240, 240, 240, 240, 240]

> AutomorphismGroup(L: NaturalAction) eq A;

true

Example H31E2

In this example we demonstrate how stabilizers can be used to obtain a big subgroup of the full
automorphism group fairly quickly.

> L := Lattice("Kappa", 13);

> LL, T := PairReduce(L);

> time G2 := AutomorphismGroup(L : Stabilizer := 2);

Time: 0.030

> #G2;

48

> time GG2 := AutomorphismGroup(LL : Stabilizer := 2);

Time: 0.020

> #GG2;

48

> Z := IntegerRing();

> H := MatrixGroup< 13, Z | G2, [T^-1*g*T : g in Generators(GG2)] >;

> #H;

311040

> MatrixRing(Z, 13) ! -1 in H;

false

The pair reduction yields a different basis for the same lattice and both 2-point stabilizers have
order 48. After transforming the automorphisms of LL back to automorphisms of L, the two
stabilizers generate a group of reasonable size which still can be enlarged by an index of 2 by
adding −I. We thus obtain a group of order 622080 which turns out to be the full automorphism
group of the lattice L.

> time G := AutomorphismGroup(L);

Time: 0.020

> #G;

622080

Example H31E3

> L := Lattice("Lambda", 19);

> time G := AutomorphismGroup(L);

Time: 0.300

> #G;

23592960

> DS := DerivedSeries(G);

> [#DS[i]/#DS[i+1] : i in [1..#DS-1]];

[4, 3, 4]

724 LATTICES AND QUADRATIC FORMS Part VI

> [IsElementaryAbelian(DS[i]/DS[i+1]) : i in [1..#DS-1]];

[true, true, true]

> H := DS[#DS];

> C := Core(G, Sylow(H, 2));

> Q := H/C; #Q, IsSimple(Q);

60 true

> LS := LowerCentralSeries(C);

> [#LS[i]/#LS[i+1] : i in [1..#LS-1]];

[256, 16, 2]

Hence, G := Aut(Λ19) has a series of normal subgroups with factors 22, 3, 22, A5, 2
8, 24, 2.

IsIsometric(L, M)

IsIsomorphic(L, M)

BacherDepth RngIntElt Default : 0
LeftGenerators [GrpMatElt] Default :

RightGenerators [GrpMatElt] Default :

LeftVectors Mtrx Default :

RightVectors Mtrx Default :

This function determines whether the lattices L and M are isometric. The method is
a backtrack search analogous to the one used to compute the automorphism group of
a lattice. If the lattices are isometric, the function returns a transformation matrix
T as a second return value such that F2 = TF1T

tr, where F1 and F2 are the Gram
matrices of L and M , respectively.

For isometric lattices the cost of finding an isometry is roughly the cost of finding
one automorphism of the lattice. Again, the computation may be sped up by using
the additional invariants described for the automorphism group computation.

In many applications one will check whether a lattice is isometric to one for which
the automorphism group is already known. In this situation the automorphism
group of the second lattice can be made available by setting RightGenerators :=
Q, where Q is a set or sequence containing the generators of the group. Note however,
that for isometric lattices this may slow down the computation, since generators for
stabilizers have to be recomputed. Similarly, generators for an automorphism group
of the first lattice may be supplied as LeftGenerators.

Corresponding to the Vectors parameter for automorphism group calculation,
the parameters LeftVectors and RightVectors allow the user to. As above, left
refers to the first lattice, right to the second. Either both of these parameters can be
set, or neither, an error results if just one is set. The restrictions on what constitutes
correct values for these parameters are as for the Vectors parameter above. For
correct isometry testing, the vectors given must be such that any isometry will
map the left vectors into the union of the right vectors and their negatives. These
conditions are not checked in the code, they are the responsibility of the user.

Ch. 31 LATTICES WITH GROUP ACTION 725

IsIsometric(L, F1, M, F2)

IsIsomorphic(L, F1, M, F2)

IsIsometric(L, M)

IsIsomorphic(L, M)

BacherDepth RngIntElt Default : 0
LeftGenerators [GrpMatElt] Default :

RightGenerators [GrpMatElt] Default :

LeftVectors Mtrx Default :

RightVectors Mtrx Default :

This function determines whether the lattices L and M are isometric with an isome-
try respecting also additional bilinear forms given by the sequences of Gram matrices
F1 and F2. The return values and parameters are as above.

IsIsometric(F1, F2)

IsIsomorphic(F1, F2)

BacherDepth RngIntElt Default : 0
LeftGenerators [GrpMatElt] Default :

RightGenerators [GrpMatElt] Default :

LeftVectors Mtrx Default :

RightVectors Mtrx Default :

For two sequences of F1 and F2 of Gram matrices, determine whether a simultane-
ous isometry exists, i.e., a matrix T such that TF1[i]T tr = F2[i] for i in [1..#F1].
The first form in both sequences must be positive definite. The return values and
parameters are as above.

Example H31E4

We construct the 16-dimensional Barnes-Wall lattice in two different ways and show that the
so-obtained lattices are isometric.

> L := Lattice("Lambda", 16);

> LL := Lattice(ReedMullerCode(1, 4), "B");

> time bool, T := IsIsometric(L, LL : Depth := 4);

Time: 2.029

> bool;

true

> T * GramMatrix(L) * Transpose(T) eq GramMatrix(LL);

true

We can also show that L is a 2-modular lattice (i.e., isometric to its rescaled dual).

> IsIsometric(L, Dual(L));

true

726 LATTICES AND QUADRATIC FORMS Part VI

[0 1 1 -1 1 -1 0 0 -1 1 -1 0 0 0 0 0]

[-2 -3 -4 1 -2 3 -1 -2 0 1 -1 -1 1 1 1 -1]

[-1 -1 -1 1 0 -1 0 -1 0 2 -1 -1 1 1 1 -1]

[0 1 1 -1 1 0 0 0 -1 0 0 0 0 0 0 0]

[0 -1 -2 0 -1 2 -1 -1 0 1 -1 0 1 0 0 0]

[1 2 2 0 2 -3 0 0 -2 4 -2 -1 1 1 -1 -1]

[-1 -1 -2 0 0 1 0 -1 0 0 0 -1 1 1 1 -1]

[1 2 3 -1 2 -3 1 1 -1 0 0 0 0 0 -1 1]

[0 1 1 0 2 -3 0 -1 -2 4 -2 -2 1 1 1 -1]

[0 -1 -2 0 -2 3 -1 0 1 -1 0 1 0 0 -1 0]

[0 0 1 1 0 -1 1 1 1 -1 0 1 0 0 -1 0]

[0 -1 -1 1 -2 2 -1 0 1 0 0 1 0 -1 -1 0]

[0 0 0 0 0 0 0 1 1 -1 0 1 0 0 -1 0]

[0 -1 -2 0 -2 3 0 0 1 -2 0 1 1 0 -2 1]

[0 1 1 -1 1 -1 0 0 -1 1 0 -1 0 0 1 0]

[0 0 -1 -1 0 1 0 -1 -1 1 -1 -1 1 1 0 0]

31.2.1 Automorphism Group and Isometry Testing over Fq[t]
Let q be some power of an odd prime. A bilinear form b over Fq[t] is said to be definte if
the corresponding quadratic form is anisotropic over the completion of Fq(t) at the infinite
place (1/t).

The functions in this section compute automorphism groups and isometries of definite
bilinear forms over Fq[t].

DominantDiagonalForm(X)

Canonical Bool Default : false

ExtensionField FldFin Default :

Let X be a symmetric n× n-matrix of rank n over a polynomial ring K[t] where K
denotes a field of characteristic different from 2. The function returns a symmetric
matrix G and some T ∈ GL(n,K[t]) such that G = TXT tr has dominant diagonal.
I.e. the degrees of the diagonal entries of G are ascending and the degree of a non-
diagonal entry is less than the degrees of the corresponding diagonal entries (see
[Ger03]).

IfK is a finite field andX represents a definite form and Canonical is set to true,
then the form G will be unique and the third return value will be the automorphism
group of G i.e. the stabilizer of G in GL(n,K[t]). The algorithm employed is [Kir12].
Note however, the uniqueness depends on some internal choices being made. Thus
the fourth return value is a finite field E which must be given as the optional
argument ExtensionField in subsequent runs over K to ensure that results are
compatible (c.f. the following example). In particular, the defining polynomial and
the primitive element of E are important for the uniqueness.

Ch. 31 LATTICES WITH GROUP ACTION 727

Example H31E5

We test whether two definite forms over Fq[t] are isometric.

> R<t> := PolynomialRing(GF(5));

> X1:= SymmetricMatrix([t^3, t+1, 2*t^2+2*t+2]);

> X2:= SymmetricMatrix([t^3, t^4+2*t+2, t^5+2*t^2+2*t+3]);

> G1, T1, Aut, E:= DominantDiagonalForm(X1 : Canonical);

> T1 * X1 * Transpose(T1) eq G1;

true

> GG:= [Matrix(g) : g in Generators(Aut)];

> forall{g : g in GG | g * G1 * Transpose(g) eq G1 };

true

So the form G1 is invariant under Aut. Now we reduce the second form X2. To be able to compare
the results, we have to provide the field E from above.

> G2, T2 := DominantDiagonalForm(X2 : Canonical, ExtensionField:= E);

> G1 eq G2;

true

Thus the two forms X1 and X2 are isometric and T−1
1 T2 is an isometry.

AutomorphismGroup(G)

ExtensionField FldFin Default :

Computes the automorphism group of the definite bilinear form given by the sym-
metric matrix G over Fq[t].

The second return value is a finite field as explained in DominantDiagonalForm
above. It may be supplied for later calls over the same ground field Fq via the
optional argument ExtensionField to safe some time if q is large. The correctness
of the algorithm does not depend on it.

IsIsometric(G1, G2)

ExtensionField FldFin Default :

Tests whether two definite bilinear forms over Fq[t] are isometric. If so, the second
return value is a matrix T ∈ GL(n, q) such that TG1T tr = G2.

The third return value is a finite field as explained in DominantDiagonalForm
above. It may be supplied for later calls over the same ground field Fq via the
optional argument ExtensionField to safe some time if q is large. The correctness
of the algorithm does not depend on it.

ShortestVectors(G)

Returns a sequence Q which contains the shortest non-zero vectors with respect to
a given definite bilinear form G over Fq[t] where q is odd. The sequence Q contains
tuples < v, r > where v is a shortest vector and r denotes its norm with respect to
G.

728 LATTICES AND QUADRATIC FORMS Part VI

ShortVectors(G, B)

Let G be a definite bilinear form of rank n over Fq[t] for some odd q. The function
returns a sequence Q which contains all vectors in Fq[t]n whose norm with respect
to G is at most B. The sequence Q contains tuples < v, r > where v is such a short
vector and r denotes its norm with respect to G.

31.3 Lattices from Matrix Groups
In Magma a G-lattice L is a lattice upon which a finite integral matrix group G acts by
right multiplication.

Each G-lattice L has references to both the original (“natural”) group G which acts on
the standard lattice in which L is embedded and also the reduced group of L which is the
reduced representation of G on the basis of L.

31.3.1 Creation of G-Lattices
The following functions create G-lattices. Note that the group G must be a finite integral
matrix group.

Lattice(G)

Given a finite integral matrix group G, return the standard G-lattice (with standard
basis and rank equal to the degree of G).

LatticeWithBasis(G, B)

Given a finite integral matrix group G and a non-singular matrix B whose row
space is invariant under G (i.e., Bg = TgB for each g ∈ G where Tg is a unimodular
integral matrix depending on g), return the G-lattice with basis matrix B. (The
number of columns of B must equal the degree of G; G acts naturally on the lattice
spanned by B.)

LatticeWithBasis(G, B, M)

Given a finite integral matrix group G, a non-singular matrix B whose row space is
invariant under G (i.e., Bg = TgB for all g ∈ G where Tg is a unimodular integral
matrix depending on g) and a positive definite matrix M invariant under G (i.e.,
gMgtr = M for all g ∈ G) return the G-lattice with basis matrix B and inner
product matrix M . (The number of columns of B must equal the degree of G and
both the number of rows and the number of columns of M must equal the degree of
G; G acts naturally on the lattice spanned by B and fixes the Gram matrix of the
lattice).

LatticeWithGram(G, F)

Given a finite integral matrix group G and a positive definite matrix F invariant
under G (i.e., gFgtr = F for all g ∈ G) return the G-lattice with standard basis and
inner product matrix F (and thus Gram matrix F). (Both the number of rows and
the number of columns of M must equal the degree of G; G fixes the Gram matrix
of the returned lattice).

Ch. 31 LATTICES WITH GROUP ACTION 729

31.3.2 Operations on G-Lattices
The following functions provide basic operations on G-lattices.

IsGLattice(L)

Given a lattice L, return whether L is a G-lattice (i.e., there is a group associated
with L).

Group(L)

Given a G-lattice L, return the matrix group of the (reduced) action of G on L.
The resulting group thus acts on the coordinate lattice of L (like the automorphism
group).

NumberOfActionGenerators(L)

Nagens(L)

Given a G-lattice L, return the number of generators of G.

ActionGenerator(L, i)

Given a G-lattice L, return the i-th generator of the (reduced) action of G on L.
This is the reduced action of the i-th generator of the original group G (which may
be the identity matrix).

NaturalGroup(L)

Given a G-lattice L, return the matrix group of the (natural) action of G on L. The
resulting group thus acts on L naturally.

NaturalActionGenerator(L, i)

Given a G-lattice L, return the i-th generator of the natural action of G on L. This
is simply the i-th generator of the original group G.

31.3.3 Invariant Forms
The functions in this section compute invariant forms for G-lattices.

InvariantForms(L)

For a G-lattice L, return a basis for the space of invariant bilinear forms for G
(represented by their Gram matrices) as a sequence of matrices. The first entry of
the sequence is a positive definite symmetric form for G.

InvariantForms(L, n)

For a G-lattice L, return a sequence consisting of n ≥ 0 invariant bilinear forms for
G.

SymmetricForms(L)

For a G-lattice L, return a basis for the space of symmetric invariant bilinear forms
for G. The first entry of the sequence is a positive definite symmetric form of G.

730 LATTICES AND QUADRATIC FORMS Part VI

SymmetricForms(L, n)

For a G-lattice L, return a sequence of n ≥ 0 independent symmetric invariant
bilinear forms for G. The first entry of the first sequence (if n > 0) is a positive
definite symmetric form for G.

AntisymmetricForms(L)

For a G-lattice L, return a basis for the space of antisymmetric invariant bilinear
forms for G.

AntisymmetricForms(L, n)

For a G-lattice L, return a sequence of n ≥ 0 independent antisymmetric invariant
bilinear forms for G.

NumberOfInvariantForms(L)

For a G-lattice L, return the dimension of the space of (symmetric and anti-
symmetric) invariant bilinear forms for G. The algorithm uses a modular method
which is always correct and is faster than the actual computation of the forms.

NumberOfSymmetricForms(L)

For a G-lattice L, return the dimension of the space of symmetric invariant bilinear
forms for G.

NumberOfAntisymmetricForms(L)

For a G-lattice L, return the dimension of the space of antisymmetric invariant
bilinear forms for G.

PositiveDefiniteForm(L)

For a G-lattice L, return a positive definite symmetric form for G. This is a positive
definite matrix F such that gFgtr = F for all g ∈ G.

31.3.4 Endomorphisms
The functions in this subsection compute endomorphisms of G-lattices. This is done by
approximating the averaging operator over the group and applying it to random elements.

EndomorphismRing(L)

For a G-lattice L, return the endomorphism ring of L as a matrix algebra over Q.

Endomorphisms(L, n)

For a G-lattice L, return a sequence containing n independent endomorphisms of
L as elements of the corresponding matrix algebra over Q. n must be in the range
[0..d], where d is the dimension of the endomorphism ring of L. This function may
be useful in situations where the full endomorphism algebra is not required, e.g., to
split a reducible lattice.

Ch. 31 LATTICES WITH GROUP ACTION 731

DimensionOfEndomorphismRing(L)

Return the dimension of the endomorphism algebra of the G-lattice L by a modular
method (which always yields a correct answer).

CentreOfEndomorphismRing(L)

For a G-lattice L, return the centre of the endomorphism ring of L as a matrix
algebra over Q.

This function can be used to split a reducible lattice into its homogeneous com-
ponents.

CentralEndomorphisms(L, n)

For a G-lattice L, return a sequence containing n independent central endomor-
phisms of L as elements of the corresponding matrix algebra over Q. n must be in
the range [0..d], where d is the dimension of the centre of the endomorphism ring of
L.

DimensionOfCentreOfEndomorphismRing(L)

Return the dimension of the centre of the endomorphism algebra of the G-lattice L
by a modular method (which always yields a correct answer).

31.3.5 G-invariant Sublattices
The functions in this section compute G-invariant sublattices of a given G-lattice L.

For a fixed prime p, the algorithm constructs the maximal G-invariant sublattices of L
as kernels of FpG-epimorphisms L/pL → S for some simple FpG-module S as described
in [Ple74].

Iterating this process yields all G-invariant sublattices of L whose index in L is a p-
power. Finally, intersecting lattices of coprime index yields all sublattices of L.

Sublattices(G, Q)

Sublattices(L, Q)

Limit RngIntElt Default : ∞
Levels RngIntElt Default : ∞
Projections [Mtrx] Default : []

Given either
(a) an integral matrix group G with natural lattice L = Zn

(b)a sequence G of integral matrices generating a Z-order in Qn×n with natural
lattice L = Zn

(c) a G-lattice L in Qn.

together with a set or sequence Q of primes, compute the G-invariant sublattices of
L (as a sequence) which are not contained in pL for any p ∈ Q and whose index in
L is a product of elements of Q.

732 LATTICES AND QUADRATIC FORMS Part VI

This set of G-invariant sublattices of L is finite if and only if Qp⊗L is irreducible
as a QpG-module for all p ∈ Q.

Setting the parameter Limit := n will terminate the computation after n sub-
lattices have been found.

Setting the parameter Levels := n will only compute sublattices M such that
L/M has at most n composition factors.

The optional parameter Projections can be a sequence of n by n matrices that
describe projections on Qn that map L to itself. In this case, Magma will only
compute those sublattices of L which have the same images under the projections
as L does.

The second return value indicates whether the returned sequence contains all
such sublattices or not.

Sublattices(G, p)

Sublattices(L, p)

Limit RngIntElt Default : ∞
Levels RngIntElt Default : ∞
Projections [Mtrx] Default : []

The same as the above where the set Q consists only of the given ptime p.

Sublattices(G)

Sublattices(L)

Limit RngIntElt Default : ∞
Levels RngIntElt Default : ∞
Projections [Mtrx] Default : []

For an integral matrix group G or a G-lattice L this intrinsic equals the one above
with Q taken to be the prime divisors of the order of G.

SublatticeClasses(G)

MaximalOrders BoolElt Default : false

For an integral matrix group G returns representatives for the isomorphism classes
of G-invariant lattices (i.e. the orbits under the unit group of the endomorphism
ring E of G).

If MaximalOrders is set to true, only sublattice classes which are invariant under
some maximal order of E are considered.

Currently the function requires E to be a field.

Ch. 31 LATTICES WITH GROUP ACTION 733

Example H31E6

We construct sublattices of the standard G-lattice where G is an absolutely irreducible degree-8
integral matrix representation of the group GL(2, 3)× S3.

We first define the group G.

> G := MatrixGroup<8, IntegerRing() |

> [-1, 0, 0, 0, 0, 0, 0, 0,

> 0, 0, -1, 0, 0, 0, 0, 0,

> 0, 0, 0, 1, 0, 0, 0, 0,

> 0, 1, 0, 0, 0, 0, 0, 0,

> -1, 0, 0, 0, 1, 0, 0, 0,

> 0, 0, -1, 0, 0, 0, 1, 0,

> 0, 0, 0, 1, 0, 0, 0, -1,

> 0, 1, 0, 0, 0, -1, 0, 0],

>

> [0, 0, 0, 0, 0, 0, 0, 1,

> 0, 0, 0, 0, 0, 0, 1, 0,

> 0, 0, 0, 0, -1, 0, 0, 0,

> 0, 0, 0, 0, 0, 1, 0, 0,

> 0, 0, 0, -1, 0, 0, 0, 1,

> 0, 0, -1, 0, 0, 0, 1, 0,

> 1, 0, 0, 0, -1, 0, 0, 0,

> 0, -1, 0, 0, 0, 1, 0, 0]>;

We next compute the unique positive definite form F fixed by G.

> time F := PositiveDefiniteForm(G);

Time: 0.050

> F;

[2 0 0 0 1 0 0 0]

[0 2 0 0 0 1 0 0]

[0 0 2 0 0 0 1 0]

[0 0 0 2 0 0 0 1]

[1 0 0 0 2 0 0 0]

[0 1 0 0 0 2 0 0]

[0 0 1 0 0 0 2 0]

[0 0 0 1 0 0 0 2]

We now compute all sublattices of the standard G-lattice.

> time Sub := Sublattices(G);

Time: 0.370

> #Sub;

18

For each sublattice we compute the invariant positive definite form for the group given by the
action of G on the sublattice.

> PrimitiveMatrix := func<X |

> P ! ((ChangeRing(P, RationalField()) ! X) / GCD(Eltseq(X)))

734 LATTICES AND QUADRATIC FORMS Part VI

> where P is Parent(X)>;

> FF := [PrimitiveMatrix(B * F * Transpose(B))

> where B is BasisMatrix(L): L in Sub];

We next create the sequence of all the lattices whose Gram matrices are given by the (LLL-
reduced) forms.

> Sub := [LatticeWithGram(LLLGram(F)) : F in FF];

> #Sub;

18

We now compute representatives for the Z-isomorphism classes of the sequence of lattices.

> Rep := [];

> for L in Sub do

> if forall{LL: LL in Rep | not IsIsometric(L, LL)} then

> Append(~Rep, L);

> end if;

> end for;

> #Rep;

4

Thus there are 4 non-isomorphic sublattices. We note the size of the automorphism group, the de-
terminant, the minimum and the kissing number of each lattice. (In fact, the automorphism groups
of these 4 lattices happen to be maximal finite subgroups of GL(8,Q) and all have GL(2, 3)× S3

as a common irreducible subgroup.)

> time A := [AutomorphismGroup(L) : L in Rep];

Time: 0.240

> [#G: G in A];

[497664, 6912, 696729600, 2654208]

> [Determinant(L): L in Rep];

[81, 1296, 1, 16]

> [Minimum(L): L in Rep];

[2, 4, 2, 2]

> [KissingNumber(L): L in Rep];

[24, 72, 240, 48]

Finally, we note that each lattice is isomorphic to a standard construction based on root lattices.

> l := IsIsometric(Rep[1],

> TensorProduct(Lattice("A", 2), StandardLattice(4))); l;

true

> l := IsIsometric(Rep[2],

> TensorProduct(Lattice("A", 2), Lattice("F", 4))); l;

true

> l := IsIsometric(Rep[3], Lattice("E", 8)); l;

true

> l := IsIsometric(Rep[4],

> TensorProduct(Lattice("F", 4), StandardLattice(2))); l;

Ch. 31 LATTICES WITH GROUP ACTION 735

Example H31E7

This example illustrates the optional argument Projections.

> G := MatrixGroup<4, IntegerRing() |

> [-1, 0, 1, 0, 0, -1, 1, -3, -1, 0, 0, 0, 0, 0, 0, 1],

> [-1, 0, 0, 0, -3, 2, 0, 3, 0, 0, -1, 0, 1, -1, 0, -1] >;

> E := EndomorphismRing(G);

> I := CentralIdempotents(ChangeRing(E, RationalField())); I;

[

[0 0 0 0]

[-1 1 0 0]

[0 0 0 0]

[0 0 0 1],

[1 0 0 0]

[1 0 0 0]

[0 0 1 0]

[0 0 0 0]

]

Since the central idempotents are all integral, they map the standard lattice Zn to itself. Even
though this group G fixes infinitely many sublattices of Zn (even up to scalar multiples), there
can only be finitely many which have the same images under the central idempotents as Zn.

> S := Sublattices(G : Projections:= I); #S;

3

So in this case there are only three such lattices. To check that the lattices do project correctly,
we can use

> I := [Matrix(Integers(), i) : i in I];

> Images := [[Image(BasisMatrix(s) * i) : i in I] : s in S];

> #Set(Images) eq 1;

true

31.3.6 Lattice of Sublattices
Magma can construct the lattice V of all G-invariant sublattices of the standard lattice
L = Zn. Various properties of the lattice V may then be examined. Magma only stores
the primitive sublattices of L, i.e. those sublattices that are not contained in kL for some
k > 1.

In general, G fixes infinitely many primitive lattices. Thus one has to limit the number
of sublattices to be constructed just as in the Sublattice intrinsic. In this case, all
operations on V like coercions, intersections, sums etc. assume that the result of the
operation is again is a scalar multiple of some element stored in V .

The lattice V has type LatLat and elements of V have type LatLatElt and are num-
bered from 1 to n where n is the number of primitive sublattices of L that have been
constructed in the beginning.

736 LATTICES AND QUADRATIC FORMS Part VI

31.3.6.1 Creating the lattice of sublattices

SublatticeLattice(G, Q)

Limit RngIntElt Default : ∞
Levels RngIntElt Default : ∞
Projections [Mtrx] Default : []

Given either an integral matrix group G of degree n or a sequence G of integral
matrices generating a Z-order in Qn×n together with a set or sequence Q of primes,
compute the G-invariant sublattices of Zn (as a sequence) which are not contained
in pZn for any p ∈ Q and whose index in Zn is a product of elements of Q.

The second return value indicates whether all G-invariant lattices have been
constructed.

The optional parameters are the same as for the Sublattices intrinsic.

SublatticeLattice(G, p)

Limit RngIntElt Default : ∞
Levels RngIntElt Default : ∞
Projections [Mtrx] Default : []

Same as above where the set Q consists only of the given prime p.

SublatticeLattice(G)

Limit RngIntElt Default : ∞
Levels RngIntElt Default : ∞
Projections [Mtrx] Default : []

Same as above where the set Q is taken to be set of prime divisors of the order of
the group G.

Example H31E8

This example shows how to create a lattice of sublattices.

> G:= sub< GL(2, Integers()) | [0,1,-1,0] >;

> V:= SublatticeLattice(G); V;

Lattice of 2 sublattices

Ch. 31 LATTICES WITH GROUP ACTION 737

31.3.6.2 Operations on the Lattice of Sublattices
In the following, V is a lattice of G-invariant lattices for some group or Z-order G and Q
denotes the set of primes that where used to create V .

#V

The number of (primitive) lattices stored in V .

V ! i

The i-th element of the lattice V with respect to the internal labeling.

V ! M

Given a (basis matrix of some) G-invariant lattice M , create the element of the
lattice V corresponding to M .

NumberOfLevels(V)

The number of different levels (layers) stored in V . Note that levels are counted
starting from 0.

Level(V, i)

The primitive lattices stored at the i-th level (layer). Note that levels are counted
starting from 0.

Levels(v)

The i-th entry of the result is a sequence of the primitive lattice elements lying on
the i− 1-th level.

Primes(V)

The primes that where used to create V .

Constituents(V)

A sequence containing the constituents (simple FpG - modules) that where used
during the construction of the G-lattices in V .

IntegerRing() ! e

The integer corresponding to lattice element e.

e + f

The sum of the lattice elements e and f .

e meet f

The intersection of the lattice elements e and f .

e eq f

Tests whether e and f are equal.

738 LATTICES AND QUADRATIC FORMS Part VI

MaximalSublattices(e)

The sequence S of maximal sublattices of e having index p for some p ∈ Q. The
second return value is a list C of integers such that S[i]/e is isomorphic to the
C[i]-th constituent of V . The ordering of the constituents is the same as in the
Constituents intrinsic.

MinimalSuperlattices(e)

The sequence S of minimal superlattices of e in which e has index p for some p ∈ Q.
The second return value is a list C of integers such that e/S[i] is isomorphic to the
C[i]-th constituent of V . The ordering of the constituents is the same as in the
Constituents intrinsic.

Lattice(e)

The G-lattice corresponding to e.

BasisMatrix(e)

Morphism(e)

The basis matrix of the G-lattice corresponding to e.

Example H31E9

Let G be the automorphism group of the root lattice A5. Since G is absolutely irreducible, it fixes
only finitely many lattices up to scalars. We explore them.

> G:= AutomorphismGroup(Lattice("A", 5));

> FactoredOrder(G);

[<2, 5>, <3, 2>, <5, 1>]

> #SublatticeLattice(G, 5);

1

Hence there are no primitive sublattices between L and 5L. Hence it suffices to check only the
lattices at 2 and 3 the two remaining prime divisors of the order of G.

> V:= SublatticeLattice(G, {2,3}); #V;

4

> M:= MaximalSublattices(V ! 1); M;

[

sublattice number 2,

sublattice number 3

]

> V ! 2 meet V ! 3;

sublattice number 4

Moreover, the second and third lattice are (up to rescaling) dual to each other with respect to
some G-invariant form.

> F:= PositiveDefiniteForm(G);

> L:= Dual(Lattice(BasisMatrix(V ! 2), F) : Rescale:= false);

> V ! L;

Ch. 31 LATTICES WITH GROUP ACTION 739

sublattice number 3 times 1/6

In particular, every G-invariant lattice can be constructed from lattice number 2 by taking scalar
multiples, duals, sums and intersections. For example the standard lattice can be written as:

> (V ! 2) + (V ! (6*L));

sublattice number 1

Example H31E10

Let G be the 8-dimensional (faithful) rational representation of SL(2, 7). Its endomorphism ring
E is isomorphic to Q(

√−7). We find all G-invariant lattices of G that are invariant under the
maximal order M of E up to multiplication with elements in E. After this is done, we quickly
obtain all finite subgroups of GL(8,Q) (up to conjugacy) that include a normal subgroup conjugate
to G.
To shorten the example, we choose G such that the standard lattice L is already invariant under
M .

> SetSeed(1);

> G:= MatrixGroup<8, IntegerRing() |

> [0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, -1, 1,

> 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 1,

> 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 1,

> 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -2, 1],

> [0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,

> -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1,

> 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,

> 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] >; #G;

336

> E:= EndomorphismRing(G);

> M:= MaximalOrder(ChangeRing(E, RationalField()));

> ok, M:= CanChangeUniverse(Basis(M), MatrixRing(Integers(), 8)); ok;

true

So L is M -invariant. The lattices at the primes 3 and 7 are multiples of L as we can see as follows:

> w7:= IntegralMatrix(E.2 - Trace(E.2)/8);

> w7 div:= GCD(Eltseq(w7)); // a square root of 7

> V:= SublatticeLattice([Matrix(G.i) : i in [1..Ngens(G)]] cat M, [3,7]); #V;

2

> V ! w7;

sublattice number 2

So it remains to check the lattices at 2. The two prime ideals in M over 2 are generated by p and
q where

> p:= 1 - (w7+1) div 2;

> q:= (w7+1) div 2;

> Gens:= [Matrix(G.i) : i in [1..Ngens(G)]];

> V:= SublatticeLattice(Gens cat M, 2: Levels:= 3);

> Levels(V);

740 LATTICES AND QUADRATIC FORMS Part VI

[

[

sublattice number 1

],

[

sublattice number 2,

sublattice number 3

],

[

sublattice number 4,

sublattice number 5,

sublattice number 6

],

[

sublattice number 7,

sublattice number 8,

sublattice number 9,

sublattice number 10

]

]

> [V | BasisMatrix(V ! i)*x : i in [1..3], x in [p,q]];

[

sublattice number 4,

sublattice number 7,

sublattice number 8,

sublattice number 6,

sublattice number 9,

sublattice number 10

]

So the lattice numbers 1, 2, 3 and 5 represent the orbits of the action of E on the set of all
MG-invariant lattices. Moreover, every matrix group N normalizing G acts on the MG-invariant
lattices and (up to conjugacy) thus fixes one of these four lattices. If it fixes L, it also fixes V !2
+ V !3 = V !5 and vice versa. Similarly, it fixes V !2 if and only if it fixes V !3.

> F:= PositiveDefiniteForm(G);

> N1:= Normalizer(AutomorphismGroup(LatticeWithGram(F)), G); #N1;

672

> A:= AutomorphismGroup(Lattice(BasisMatrix(V ! 2), F) : NaturalAction);

> N2:= Normalizer(A, ChangeRing(G, Rationals())); #N2;

336

So N1 (which is isomorphic to 2.L(2, 7) : 2) is up to conjugacy the only proper finite extension of
G in GL(8,Q).

Ch. 31 LATTICES WITH GROUP ACTION 741

31.4 Bibliography
[Ger03] Larry J. Gerstein. Definite quadratic forms over Fq[X]. J. Algebra, 268(1):252–

263, 2003.
[Kir12] M. Kirschmer. A normal form for definite quadratic forms over Fq[t]. Math.

Comp., 81:1619–1634, 2012.
[Ple74] Wilhelm Plesken. Beiträge zur Bestimmung der endlichen irreduziblen Un-

tergruppen von GL(n,Z) und ihrer ganzzahligen Darstellungen. PhD thesis, RWTH
Aachen, 1974.

[PS97] Wilhelm Plesken and Bernd Souvignier. Computing Isometries of Lattices. J.
Symbolic Comp., 24(3):327–334, 1997.

32 QUADRATIC FORMS

32.1 Introduction 745

32.2 Constructions and Conversions 745

SymmetricMatrix(f) 745
GramMatrix(L) 745
QuadraticForm(L) 745
QuadraticForm(M) 745

32.3 Local Invariants 746

pSignature(f,p) 746
pSignature(M,p) 746
pSignature(L,p) 746
Oddity(f) 746
Oddity(L) 746
Oddity(M) 746
pExcess(f, p) 746
pExcess(M, p) 746
pExcess(L, p) 746

WittInvariant(f, p) 746
WittInvariant(M, p) 746
WittInvariant(L, p) 746
HasseMinkowskiInvariant(f, p) 746
HasseMinkowskiInvariant(M, p) 746
HasseMinkowskiInvariant(L, p) 746
WittInvariants(f) 747
WittInvariants(M) 747
WittInvariants(L) 747
HasseMinkowskiInvariants(f) 747
HasseMinkowskiInvariants(M) 747
HasseMinkowskiInvariants(L) 747

32.4 Isotropic Subspaces 747

IsotropicSubspace(f) 747
IsotropicSubspace(M) 747

32.5 Bibliography 750

Chapter 32

QUADRATIC FORMS

32.1 Introduction

This chapter describes miscellaneous functionality for fairly general quadratic forms. The
main feature currently here is an implementation of Simon’s algorithm for finding isotropic
subspaces of integral forms.

In Magma, quadratic forms are generally represented either as multivariate polynomi-
als, or as symmetric matrices.

32.2 Constructions and Conversions

SymmetricMatrix(f)

Given a multivariate polynomial that is homogeneous of degree 2, this returns a
symmetric matrix representing the same quadratic form.

GramMatrix(L)

The symmetric matrix giving the quadratic form on the lattice L.

QuadraticForm(L)

The quadratic form associated to the lattice L, as a multivariate polynomial.

QuadraticForm(M)

The quadratic form for a symmetric matrix M , as a multivariate polynomial.

746 LATTICES AND QUADRATIC FORMS Part VI

32.3 Local Invariants

These commands calculate the standard invariants that characterize a quadratic form
over the rationals. Definitions of the invariants may be found in Conway-Sloane [JC98],
Chapter 15, Section 5.1.

pSignature(f,p)

pSignature(M,p)

pSignature(L,p)

The p-signature of the specified quadratic form over the rationals, where p is a prime
number or −1 (designating the real place).

For odd primes p, this is defined by diagonalizing the form, and adding p-parts of
these entries to 4 times the number of anti-squares (mod p) amongst these entries.
The term “anti-square” modulo p denotes something that has: odd valuation at p;
and the prime-to-p part, called u, has Kronecker symbol (u

p) = −1.
At p = 2 it is the sum of the odd parts of the diagonalized entries plus 4 times

the number of anti-squares. In either case, the final answer is really only defined
modulo 8 (this is so that p-signatures are invariant under rational equivalence).

At the real place, it is the difference between the number of positive and negative
eigenvalues (the terminology here can be murky).

Oddity(f)

Oddity(L)

Oddity(M)

This returns the 2-signature of the given quadratic form over the rationals.

pExcess(f, p)

pExcess(M, p)

pExcess(L, p)

The p-excess of the specified quadratic form over the rationals, where p is a prime
number or −1 (designating the real place). The p-excess is the difference between
the p-signature and dimension for odd primes (including −1), and is the negation
of this for p = 2. The sum of p-excesses over all primes should be 0 modulo 8.

WittInvariant(f, p)

WittInvariant(M, p)

WittInvariant(L, p)

HasseMinkowskiInvariant(f, p)

HasseMinkowskiInvariant(M, p)

HasseMinkowskiInvariant(L, p)

Ch. 32 QUADRATIC FORMS 747

Calculates the Witt invariant (sometimes called the Hasse-Minkowski invariant)
over Qp of the given quadratic form. Again the form must be defined over either the
rationals or the integers. The result is returned as something in the set {−1,+1}.
One definition of this invariant is to diagonalize the form and then take the product
(in our multiplicative notation) of the Hilbert symbols of the

(
n
2

)
pairs of distinct

nonzero diagonal entries, as in §5.3 of Chapter 15 of Conway-Sloane [JC98], which
is what is implemented here. Another method would be to use a comparison of
p-excesses with the standard form (also in Conway-Sloane). Starting with a p-adic
input could lead to precision problems at the diagonalization step, and so is not
allowed. Can also be called via HasseMinkowskiInvariant.

WittInvariants(f)

WittInvariants(M)

WittInvariants(L)

HasseMinkowskiInvariants(f)

HasseMinkowskiInvariants(M)

HasseMinkowskiInvariants(L)

Compute WittInvariant(f,p) for all bad primes p, and return the result of a
sequence of tuples, each entry given by 〈p,Wp(f)〉. The set of bad primes includes
the real place, the prime p = 2, and all primes that divide either the numerator or
the denominator of the determinant of symmetric matrix associated to f . Can also
be called via HasseMinkowskiInvariants.

32.4 Isotropic Subspaces

IsotropicSubspace(f)

IsotropicSubspace(M)

This returns an isotropic subspace for the given quadratic form (which must be
either integral or rational), which may be given either as a multivariate polynomial
f or as a symmetric matrix M . The subspace returned is in many cases guaranteed
to be a maximal totally isotropic subspace. More precisely (assuming that the form
is nonsingular), upon writing (r, s) for the signature of f with r ≥ s, the dimen-
sion of the space returned is at least min(r, s + 2) − 2, which is maximum possible
when s ≤ r + 2. Since version 2.18, an improvement to the original algorithm has
been appended, which typically (subject to a solvability criterion for a 4-dimensional
subspace) enlarges the dimension of space by 1 when r + s is even and s ≤ r + 2.

The algorithm used is due to Simon (see [Sim05]), and uses on the Bosma-
Stevenhagen algorithm for the 2-part of the class groups of a quadratic field
(see [BS96]). There is no corresponding intrinsic for a lattice: since the associated
form is definite, there are no isotropic vectors.

748 LATTICES AND QUADRATIC FORMS Part VI

Example H32E1

> v := [6, -2, -7, 5, -2, -10, -3, 5, -7, -3, 10, -8, 5, 5, -8, 0];

> M := Matrix(4, 4, v); M;

[6 -2 -7 5]

[-2 -10 -3 5]

[-7 -3 10 -8]

[5 5 -8 0]

> Determinant(M); Factorization(Determinant(M));

1936

[<2, 4>, <11, 2>]

> WittInvariant(M, 2);

-1

> WittInvariant(M, 11);

1

> D := Diagonalization(M); D; // signature (2,2)

[6 0 0 0]

[0 -96 0 0]

[0 0 18 0]

[0 0 0 -34848]

> pSignature(M, -1); // should be the difference of 2 and 2

0

> n := Degree(Parent(M));

> Q := Rationals();

> E := [Q ! D[i][i] : i in [1..n]];

> &*[&*[HilbertSymbol(E[i], E[j], 2) : i in [j+1..n]] : j in [1..n-1]];

-1

> &*[&*[HilbertSymbol(E[i], E[j], 11) : i in [j+1..n]] : j in [1..n-1]];

1

> IsotropicSubspace(M);

RSpace of degree 4, dimension 2 over Integer Ring

Generators:

(3 -3 0 4)

(4 -4 0 -2)

Echelonized basis:

(1 -1 0 16)

(0 0 0 22)

> pSignature(M, 2) mod 8;

0

> pSignature(M, 11) mod 8;

4

> pSignature(M, 5) mod 8; // equals Dimension at good primes

4

Ch. 32 QUADRATIC FORMS 749

Example H32E2

> SetSeed(12345);

> n := 20;

> P := PolynomialRing(Integers(),n);

> f:=&+[&+[Random([-10..10])*P.i*P.j : i in [j..n]] : j in [1..n]];

> M := ChangeRing(2*SymmetricMatrix(f), Integers()); M;

[12 -2 -8 1 -6 0 3 -5 -6 -5 10 7 -1 -3 -7 -5 -6 -3 -3 -8]

[-2 2 10 -10 3 6 -3 -9 0 -5 7 -5 -5 -4 1 -5 1 -6 7 -8]

[-8 10 14 1 6 -8 -3 4 -2 3 -4 7 0 -8 -6 -4 -5 7 -4 8]

[1 -10 1 6 -5 0 8 1 7 -1 7 -7 6 7 -1 -9 -8 1 6 6]

[-6 3 6 -5 12 7 -3 -10 -5 -4 -6 1 -5 -9 4 -8 2 5 -4 -10]

[0 6 -8 0 7 -6 -4 3 0 2 -3 0 4 10 5 -8 6 1 -7 2]

[3 -3 -3 8 -3 -4 16 -5 -10 7 -9 9 -6 -2 0 -1 1 -4 6 2]

[-5 -9 4 1 -10 3 -5 2 -4 -3 0 -3 9 -1 3 -5 2 2 -1 -10]

[-6 0 -2 7 -5 0 -10 -4 0 -1 5 1 3 5 3 0 1 -7 5 10]

[-5 -5 3 -1 -4 2 7 -3 -1 10 -9 5 2 -4 8 6 -4 9 -3 5]

[10 7 -4 7 -6 -3 -9 0 5 -9 2 2 -7 3 8 -4 7 -3 -3 6]

[7 -5 7 -7 1 0 9 -3 1 5 2 6 -10 -6 0 -2 -3 8 2 -9]

[-1 -5 0 6 -5 4 -6 9 3 2 -7 -10 -10 7 0 8 -1 -2 9 3]

[-3 -4 -8 7 -9 10 -2 -1 5 -4 3 -6 7 -6 -2 -3 3 -9 9 6]

[-7 1 -6 -1 4 5 0 3 3 8 8 0 0 -2 2 -8 5 2 3 -4]

[-5 -5 -4 -9 -8 -8 -1 -5 0 6 -4 -2 8 -3 -8 -18 5 4 6 4]

[-6 1 -5 -8 2 6 1 2 1 -4 7 -3 -1 3 5 5 6 -3 7 -7]

[-3 -6 7 1 5 1 -4 2 -7 9 -3 8 -2 -9 2 4 -3 14 5 2]

[-3 7 -4 6 -4 -7 6 -1 5 -3 -3 2 9 9 3 6 7 5 16 -3]

[-8 -8 8 6 -10 2 2 -10 10 5 6 -9 3 6 -4 4 -7 2 -3 -4]

> D := Integers() ! Determinant(M); D;

276132003816103322711292

> [<u[1], WittInvariant(f, u[1])> : u in Factorization(D)];

[<2, -1>, <3, -1>, <7, 1>, <199, 1>, <879089, -1>, <6263690372711, -1>]

> &+[pExcess(f, u[1]) : u in Factorization(D) cat [<-1, 0>]] mod 8;

0

> time S := IsotropicSubspace(f);

Time: 0.640

> Dimension(S);

8

> pSignature(f, -1); // difference of 12 and 8

4

> B := Basis(S);

> InnerProduct(B[1], B[1]*M);

0

> IP := InnerProduct;

> d := Dimension(S);

> &and [&and [IP(B[i], B[j]*M) eq 0 : i in [1..d]] : j in [1..d]];

true

750 LATTICES AND QUADRATIC FORMS Part VI

32.5 Bibliography
[BS96] W. Bosma and P. Stevenhagen. On the computation of quadratic 2-class groups.

Journal de théorie des nombres de Bordeaux, 8(2):283–313, 1996.
[JC98] N.J.A. Sloane J.H. Conway. Sphere Packings, Lattices and Groups, volume

290 of Grundlehren der Mathematischen Wissenschaften. Springer, New York–Berlin–
Heidelberg, 3rd edition, 1998.

[Sim05] Denis Simon. Quadratic equations in dimensions 4, 5 and more. Preprint,
URL:http://www.math.unicaen.fr/˜simon/, 2005.

33 BINARY QUADRATIC FORMS

33.1 Introduction 753

33.2 Creation Functions 753

33.2.1 Creation of Structures 753

BinaryQuadraticForms(D) 753
QuadraticForms(D) 753

33.2.2 Creation of Forms 754

Identity(Q) 754
! 754
! 754
elt< > 754
elt< > 754
PrimeForm(Q, p) 754

33.3 Basic Invariants 754

Discriminant(f) 754
Discriminant(Q) 754
IsDiscriminant(D) 754
FundamentalDiscriminant(D) 755
IsFundamental(D) 755
IsFundamentalDiscriminant(D) 755
Conductor(Q) 755

33.4 Operations on Forms 755

33.4.1 Arithmetic 755

Conjugate(f) 755
* 755
Composition(f, g) 755
^ 755
Power(f, n) 755
Reduction(f) 756
ReducedForm(f) 756
ReductionStep(f) 756
ReductionOrbit(f) 756
Order(f) 756

33.4.2 Attribute Access 756

f[i] 756
Eltseq(f) 756
ElementToSequence(f) 756

33.4.3 Boolean Operations 756

in 756
eq 756
IsIdentity(f) 756

IsReduced(f) 756
IsEquivalent(f, g) 757

33.4.4 Related Structures 757

Parent 757
Category 757
QuadraticOrder(Q) 757
Ideal(f) 757

33.5 Class Group 757

ReducedForms(Q) 757
ReducedOrbits(Q) 757
ClassNumber(Q: -) 757
ClassNumber(D: -) 757
ClassGroup(Q: -) 758
ClassGroupStructure(Q: -) 758
AmbiguousForms(Q) 759
TwoTorsionSubgroup(Q) 759

33.6 Class Group Coercions 760

FundamentalQuotient(Q) 760
QuotientMap(Q1, Q2) 760
! 760

33.7 Discrete Logarithms 760

Log(b, x) 760
Log(b, x, t) 760

33.8 Elliptic and Modular Invariants 761

Lattice(f) 761
GramMatrix(f) 761
ThetaSeries(f, n) 761
RepresentationNumber(f, n) 761
jInvariant(f) 761
Eisenstein(k, f) 761
WeierstrassSeries(z, f) 761

33.9 Class Invariants 762

HilbertClassPolynomial(D) 762
WeberClassPolynomial(D) 762

33.10 Matrix Action on Forms . . 763

* 763

33.11 Bibliography 763

Chapter 33

BINARY QUADRATIC FORMS

33.1 Introduction

A binary quadratic form is an integral form ax2+bxy+cy2 which is represented in Magma
by a tuple 〈a, b, c〉. Binary quadratic forms play an central role in the ideal theory of
quadratic fields, the classical theory of complex multiplication, and the theory of modular
forms. Algorithms for binary quadratic forms provide efficient means of computing in the
ideal class group of orders in a quadratic field. By using the explicit relation of definite
quadratic forms with lattices with nontrivial endomorphism ring in the complex plane,
one can apply modular and elliptic functions to forms, and exploit the analytic theory of
complex multiplication.

The structures of quadratic forms of a given discriminantD correspond to ordered bases
of ideals in an order in a quadratic number field, defined up to scaling by the rationals. A
form is primitive if the coefficients a, b, and c are coprime. For negative discriminants the
primitive reduced forms in this structure are in bijection with the class group of projective
or invertible ideals. For positive discriminants, the reduced orbits of forms are used for
this purpose. Magma holds efficient algorithms for composition, enumeration of reduced
forms, class group computations, and discrete logarithms. A significant novel feature is the
treatment of nonfundamental discriminants, corresponding to nonmaximal orders, and the
collections of homomorphisms between different class groups coming from the inclusions
of these orders.

The functionality for binary quadratic forms is rounded out with various functions for
applying modular and elliptic functions to forms, and for class polynomials associated to
class groups of definite forms.

33.2 Creation Functions

33.2.1 Creation of Structures
For any integer D congruent to 0 or 1 modulo 4, it is possible to create the parent structure
of binary quadratic forms of discriminant D.

BinaryQuadraticForms(D)

QuadraticForms(D)

Create the structure of integral binary quadratic forms of discriminant D.

754 LATTICES AND QUADRATIC FORMS Part VI

33.2.2 Creation of Forms
Binary quadratic forms may be created by coercing a triple [a, b, c] of integer coefficients
into the parent structure of forms of discriminant D = b2 − 4ac. Other constructors are
provided for constructing the group identity, prime forms, or allowing the omission of third
element c of the sequence.

Identity(Q)

Q ! 1

Create the principal form in the structure Q of binary quadratic forms of dis-
criminant D. The principal form is either X2 − D/4Y 2 if D mod 4 is 0 and
X2 + XY + (D − 1)/4Y 2 if it is 1. The principal form is a reduced form repre-
senting the identity element of the class group of Q.

Q ! [a, b, c]

elt< Q | a, b, c >

elt< Q | a, b >

Returns the binary quadratic form aX2 + bXY + cY 2 in the magma of forms Q of
discriminant D. Here c is determined by the solution of the equality D = b2 − 4ac;
if no integer c exists satisfying this, an error will occur.

PrimeForm(Q, p)

If p is a split prime or a ramified prime not dividing the conductor of the magma of
quadratic forms Q, returns a quadratic form pX2 + bXY + cY 2 in Q.

33.3 Basic Invariants

Structures of binary quadratic forms are defined in terms of a discriminant, and mem-
bership in a structure determined by this invariant. To aid in the construction of forms,
additional elementary functions are provided to test integer inputs to determine if they
define valid discriminants of quadratic forms.

Discriminant(f)

The discriminant b2 − 4ac of a quadratic form f = aX2 + bXY + cY 2.

Discriminant(Q)

The discriminant of the quadratic forms belonging to the magma of quadratic forms
Q.

IsDiscriminant(D)

Return true if the integer D is the discriminant of some quadratic form; false
otherwise.

Ch. 33 BINARY QUADRATIC FORMS 755

FundamentalDiscriminant(D)

The fundamental discriminant corresponding to the integer D.

IsFundamental(D)

IsFundamentalDiscriminant(D)

Return true if D is an integer other than 0 or 1 congruent to 0 or 1 modulo 4, which
is not of the form m2DK for m > 1 and any other such integer DK .

Conductor(Q)

The conductor of quadratic forms whose discriminant is that of the magma of
quadratic forms Q.

33.4 Operations on Forms

33.4.1 Arithmetic

Conjugate(f)

Given a form f = ax2 + bxy + cy2, returns the conjugate form ax2 − bxy + cy2.

f * g

Composition(f, g)

Al MonStgElt Default : “Gauss”
Reduction BoolElt Default : false

Returns the composition of two binary quadratic forms f and g. The operator ‘*’
returns a reduced representative of the product using a fast composition algorithm
of Shanks. In contrast, the default for Composition is Reduction := false, so that
one can work in the group of forms, rather in the set of class group representatives.
The function Composition takes a further parameter Al which specifies whether the
algorithm of Gauss or Shanks, set to "Gauss" by default. The algorithm of Shanks
performs partial intermediate reductions, so the combination Reduction := false
and Al := "Shanks" are incompatible and returns a runtime error.

f ^ n

Power(f, n)

Al MonStgElt Default : “Gauss”
Reduction BoolElt Default : false

Returns the n-th power of a form f . The operator ‘^’ returns a reduced represen-
tative, using the fast composition algorithm of Shanks. In contrast, the default for
Power is Reduction := false, so that one can work in the group of forms rather
than in the class group. The function Power takes the further parameter Al in or-
der to specify whether the algorithm of Gauss or Shanks is used, set to "Gauss"
by default. The algorithm of Shanks performs partial intermediate reductions, so

756 LATTICES AND QUADRATIC FORMS Part VI

the combination Reduction := false and Al := "Shanks" are incompatible and
returns a runtime error.

Reduction(f)

ReducedForm(f)

Returns a reduced quadratic form equivalent to f , and the transformation matrix.

ReductionStep(f)

Returns the result of applying one reduction step to the quadratic form f .

ReductionOrbit(f)

The cycle of reduced forms equivalent to f (and each other) where f has positive
discriminant.

Order(f)

For a binary quadratic form f , returns its order as an element of the class group
Cl(Q) where Q is the parent of f .

33.4.2 Attribute Access
The coefficient sequence can be accessed as a sequence of integers, providing the inverse
operation to the forms coercion constructor.

f[i]

The i-th coefficient of f , where 1 ≤ i ≤ 3.

Eltseq(f)

ElementToSequence(f)

The sequence [a, b, c] where f is the form ax2 + bxy + cy2.

33.4.3 Boolean Operations
Several boolean operators apply to quadratic forms.

f in Q

Return true if and only if f is in Q, that is f and Q have the same discriminant.

f eq g

Return true if the quadratic form f and g are equal and false otherwise.

IsIdentity(f)

Return true if and only if f is the principal form in its parent structure.

IsReduced(f)

Return true if the quadratic form f is reduced; false otherwise.

Ch. 33 BINARY QUADRATIC FORMS 757

IsEquivalent(f, g)

Return true if the quadratic forms f and g reduce to the same form and false
otherwise. If true and the discriminant is negative, then the transformation matrix
is also returned. An error is returned if the forms are not of the same discriminant.

33.4.4 Related Structures
In addition to the Parent and Category structures of binary quadratic forms of discriminant
D, the quadratic forms map to the ideals of a fixed order or discriminant D in a quadratic
number field.

Parent(f)

Category(Q)

QuadraticOrder(Q)

Given a structure of quadratic forms of discriminant D, returns the associated order
of discriminant D in a quadratic field.

Ideal(f)

Given a quadratic form f = ax2 + bxy + cy2, returns the ideal (a, (−b+
√
D)/2) in

the quadratic order Z[(t+
√
D)/2], where t equals 0 or 1.

33.5 Class Group

ReducedForms(Q)

Given the structure of quadratic forms of negative discriminant D, returns the
sequence of all primitive reduced forms of discriminant D.

ReducedOrbits(Q)

Given the structure of quadratic forms of positive discriminant D, returns the se-
quence of all reduced orbits of primitive forms of discriminant D, as an indexed
set.

ClassNumber(Q: parameters)

ClassNumber(D: parameters)

Al MonStgElt Default : “Automatic”
FactorBasisBound FldReElt Default : 0.1
ProofBound FldReElt Default : 6
ExtraRelations RngIntElt Default : 1

The class number of binary quadratic forms Q of discriminant D. The parameter
Al may be supplied to select the method used to calculate the class number. The
possible values are "ReducedForms" (enumerating all reduced forms), "Shanks"

758 LATTICES AND QUADRATIC FORMS Part VI

(using a Shanks-based algorithm in the class group), "Sieve" or "NoSieve". The
default is to use reduced form enumeration for small discriminants, the Shanks
algorithm for the middle range, a class group index-calculus for large discriminants
and the sieve method described in [Jac99] for very large discriminants.

The remaining parameters apply to the index-calculus computations only; for
details about the parameters FactorBasisBound, ProofBound and ExtraRelations
see the description of ClassGroup.

ClassGroup(Q: parameters)

FactorBasisBound FldReElt Default : 0.1
ProofBound FldReElt Default : 6
ExtraRelations RngIntElt Default : 1
Al MonStgElt Default : “Automatic”

The class group of the binary quadratic forms Q of discriminant D. The function
also returns a map from the abelian group to the structure of quadratic forms.

Depending on the size of D, either a Shanks-based method is used ([Tes98a,
BJT97]) an index calculus variant ([CDO93, HM89, Coh93]) or a sieving method.
The parameters FactorBasisBound, ProofBound and ExtraRelations apply to the
index calculus method only. This method performs in two steps: In the first step
a factor basis containing prime forms of norm < B1 is build. Next, one looks for
generators for the full lattice of relations between the forms in the factor basis.
The determinant of this lattice will be the class number and the Smith-form of the
relation matrix gives the structure of the class group. Once the matrix is of full rank,
the algorithm will look for ExtraRelations more relations to potentially decrease
the discriminant.

In the second stage, for all prime forms of norm < B2 it is verified that they are
in the class group generated by the forms of the first step. The bounds are chosen to
be B1 := FactorBasisBound· log2 |D| and B2 := ProofBound· log2 |D|, so the result
is correct under the assumption of GRH.

The final result is then checked against the Euler product over the first 30.000
primes. If the quotient becomes to large, a warning is issued. In this case one should
increase the ExtraRelations parameter.

If the parameter Al is set to "Sieve" (regardless of the size of D) or D is larger
than 1020 then the sieving method described in [Jac99] which uses the multiple
polynomial quadratic sieve (MPQS) will be used. This is currently only proven
under GRH. If the parameter Al is set to "NoSieve" then the sieving method will
not be used regardless of the size of D.

ClassGroupStructure(Q: parameters)

The structure of the class group of the binary quadratic forms Q of discriminant D
returned as a sequence of integers giving the abelian invariants.

For details about the parameters Al, FactorBasisBound, ProofBound and Extra
Relations, see ClassGroup.

Ch. 33 BINARY QUADRATIC FORMS 759

AmbiguousForms(Q)

Enumerates the ambiguous forms of negative discriminant D, where D is the dis-
criminant of the magma of binary quadratic forms Q.

TwoTorsionSubgroup(Q)

The subgroup of 2–torsion elements of in the class group of Q.

Example H33E1

We give an example of some computations in the class group of a magma of quadratic forms.
Elements in the class group are not really represented by single reduced forms but by cycles of
equivalent reduced forms.

> Q<z> := QuadraticField(7537543); // arbitrary choice

> Q := QuadraticForms(Discriminant(Q));

> C, m := ClassGroup(Q);

> C;

Abelian Group isomorphic to Z/2 + Z/76

Defined on 2 generators

Relations:

76*C.1 = 0

2*C.2 = 0

> // get the generators as quadratic forms:

> f := m(C.1);

> g := m(C.2);

> h := g^2;

> g, h;

<-1038,4894,1493> <-887,4340,3189>

> c := []; // create the cycle of forms equivalent to g^2:

> repeat

> h := ReductionStep(h);

> Append(~c, h);

> until h eq g^2;

> P := Parent(g);

> Identity(P) in c;

true // this proves that the second class has order dividing 2

> for d in Divisors(76) do

> c := [];

> h := f^d;

> repeat h := ReductionStep(h); Append(~c, h);

> until h eq f^d;

> d, Identity(P) in c, #c;

> end for;

1 false 16

2 false 14

4 false 12 // the cycle lengths vary

19 false 18

38 false 16

760 LATTICES AND QUADRATIC FORMS Part VI

76 true 14 // so the true order of this class is 76

33.6 Class Group Coercions
The class group of a nonmaximal quadratic order R of discriminant m2DK , are related
to the class group of the maximal order OK of fundamental discriminant DK by an exact
sequence.

1 → (OK/mOK)∗

O∗K (Z/mZ)∗
→ Cl(O) → Cl(OK) → 1

Similar maps exist between quadratic orders O1 and O2 in a field K, with conductors m1

and m2, respectively, such that m1 | m2. The corresponding maps on quadratic forms are
implemented on quadratic forms. The homomorphism is returned as a map object, or can
be called directly via the coercion operator.

FundamentalQuotient(Q)

The quotient homomorphism from the class group of Q to the class group of funda-
mental discriminant.

QuotientMap(Q1, Q2)

Given two structures of quadratic forms Q1 and Q2, such that the discriminant of
Q2 equals a square times the discriminant of Q1, the quotient homomorphism from
Q1 to Q2 is returned as a map object.

Q ! f

The ! operator applies the quotient homomorphism for automatic coercion of forms
f of discriminant m2D into the structure Q of forms of discriminant D.

33.7 Discrete Logarithms

Log(b, x)

The discrete logarithm of binary quadratic form x with respect to base b, or -1 if
Magma can that determine no solution exists. This function exists only for negative
discriminant forms. Computation is done via the Pohlig-Hellman algorithm along
with a collision search subroutine (a variant of Pollard’s rho method). If the user is
unsure whether a solution exists, it is safest to use Log with a time limit (see below)
to prevent an infinite loop in the collision search.

Log(b, x, t)

Searches for up to t seconds for the discrete logarithm of binary quadratic form x
with respect to base b. This function exists only for negative discriminant forms.
If Magma is able to determine no solution exists, then -1 will be returned. If no
solution is found within the given time frame, then -2 will be returned. Computation
is done via the Pohlig-Hellman algorithm along with a collision search subroutine
(a variant of Pollard’s rho method).

Ch. 33 BINARY QUADRATIC FORMS 761

33.8 Elliptic and Modular Invariants

Binary quadratic forms of negative discriminant describe positive definite lattices in the
complex plane, with integral-valued inner product. As such, it is possible to apply modular
and elliptic functions to the form, interpreting this as an element of the upper half plane.

Lattice(f)

Given a binary quadratic form f = ax2 +bxy+cy2 of negative discriminant, returns
the rank two lattice of f having Gram matrix

(
a b/2
b/2 c

)
.

Note that the lattice L is the half-integral lattice such that integral representations
f(x, y) = n are in bijection with vectors (x, y) of norm n, which will be a rational
number.

GramMatrix(f)

Returns the Gram matrix of the binary quadratic form f , which need not be of neg-
ative discriminant. The matrix will be half-integral and defined over the rationals.

ThetaSeries(f, n)

The integral theta series of the binary quadratic form f to precision n.

RepresentationNumber(f, n)

The nth representation number of the form f of negative discriminant.

jInvariant(f)

For a binary quadratic form f = ax2 + bxy+ cy2 with negative discriminant, return
the j–invariant of f , equal to the j–invariant of τ = (−b+

√
b2 − 4ac)/2a.

Eisenstein(k, f)

Given a positive even integer k = 2n and a binary quadratic form f = ax2 +
bxy + cy2, return the value of the Eisenstein series Ek(L) at the complex lattice
L = 〈a, (−b+

√
b2 − 4ac)/2〉.

WeierstrassSeries(z, f)

Given a complex power series z with positive valuation and a binary quadratic form
f = ax2 + bxy + cy2, returns the q–expansion of the Weierstrass ℘-function at the
complex lattice L = 〈a, (−b+

√
b2 − 4ac)/2〉.

762 LATTICES AND QUADRATIC FORMS Part VI

Example H33E2

> Q := QuadraticForms(-163);

> f := PrimeForm(Q,41);

> CC<i> := ComplexField();

> PC<z> := LaurentSeriesRing(CC);

> x := WeierstrassSeries(z,f);

> y := -Derivative(x)/2;

> A := -Eisenstein(4,f)/48;

> B := Eisenstein(6,f)/864;

> Evaluate(y^2 - (x^3 + A*x + B),1/2);

1.384608660824596881000000000 E-26 - 1.305091481190174818000000000 E-26*i

33.9 Class Invariants

HilbertClassPolynomial(D)

Given a negative discriminant D, returns the Hilbert class polynomial, defined as
the minimal polynomial of j(τ), where Z[τ] is an imaginary quadratic order of
discriminant D.

WeberClassPolynomial(D)

Given a negative discriminant D congruent to 1 modulo 8, returns the Weber class
polynomial, defined as the minimal polynomial of f(τ), where Z[τ] is an imaginary
quadratic order of discriminant D and f is a particular normalized Weber function
generating the same class field as j(τ). A root f(τ) of the Weber class polynomial
is an integral unit generating the ring class field related to the corresponding root
j(τ) of the Hilbert class polynomial by the expression

j(τ) =
(f(τ)24 − 16)3

f(τ)24
,

where GCD(D, 3) = 1, and

j(τ) =
(f(τ)8 − 16)3

f(τ)8
,

if 3 divides D. For further details, consult Yui and Zagier [YZ97].

Ch. 33 BINARY QUADRATIC FORMS 763

33.10 Matrix Action on Forms
A matrix in SL(2,Z) acts on the right on quadratic forms by the rule

f(x, y)
(r s
t u

)
= f(rx+ sy, tx+ uy),

which is provided in Magma by the operator *.

f * M

The action of SL(2,Z) on forms.

33.11 Bibliography
[BJT97] J. Buchmann, M. J. Jacobson, Jr., and E. Teske. On Some Computational

Problems in Finite Abelian Groups. Mathematics of Computation, 66:1663–1687, 1997.
[CDO93] H. Cohen, F. Diaz y Diaz, and M. Olivier. Calculs de nombres de classes et de

régulateurs de corps quadratiques en temps sous-exponentiel. In Séeminaire de Théorie
des Nombres, Paris, 1990–91, volume 108 of Progr. Math., pages 35–46. Birkhäuser
Boston, Boston, MA, 1993.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume
138 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–New York, 1993.

[HM89] J. Hafner and K. McCurley. A rigorous subexponential algorithm for compu-
tation of class groups. Jornal American Math. Soc., 2:837 – 850, 1989.

[Jac99] M. J. Jacobson, Jr. Applying sieving to the computation of quadratic class
groups. Math. Comp., 68(226):859–867, 1999.

[Tes98] E. Teske. A Space Efficient Algorithm for Group Structure Computation.
Mathematics of Computation, 67:1637–1663, 1998.

[YZ97] N. Yui and D. Zagier. On the singular values of Weber modular functions.
Mathematics of Computation, 66(220):1645–1662, 1997.

PART VI
GLOBAL ARITHMETIC FIELDS

34 NUMBER FIELDS 767

35 QUADRATIC FIELDS 833

36 CYCLOTOMIC FIELDS 847

37 ORDERS AND ALGEBRAIC FIELDS 855

38 GALOIS THEORY OF NUMBER FIELDS 961

39 CLASS FIELD THEORY 997

40 ALGEBRAICALLY CLOSED FIELDS 1035

41 RATIONAL FUNCTION FIELDS 1057

42 ALGEBRAIC FUNCTION FIELDS 1079

43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1189

44 ARTIN REPRESENTATIONS 1215

34 NUMBER FIELDS
34.1 Introduction 771

34.2 Creation Functions 773

34.2.1 Creation of Number Fields 773

NumberField(f) 773
RationalsAsNumberField() 774
QNF() 774
NumberField(s) 774
ext< > 775
ext< > 775
RadicalExtension(F, d, a) 777
SplittingField(F) 777
SplittingField(f) 777
SplittingField(L) 777
sub< > 778
MergeFields(F, L) 778
CompositeFields(F, L) 778
Compositum(K, L) 778
quo< > 778
OptimizedRepresentation(F) 779
OptimisedRepresentation(F) 779

34.2.2 Maximal Orders 779

MaximalOrder(F) 780
IntegerRing(F) 780
Integers(F) 780
RingOfIntegers(F) 780

34.2.3 Creation of Elements 780

! 780
elt< > 780
! 780
elt< > 780
elt< > 780
Random(F, m) 780
One Identity 781
Zero Representative 781

34.2.4 Creation of Homomorphisms . . . 781

hom< > 781
hom< > 781
hom< > 781
hom< > 781

34.3 Structure Operations 782

34.3.1 General Functions 782

Category Type 782
ExtendedType Parent 782
AssignNames(∼K, s) 782
Name(K, i) 782
. 782

34.3.2 Related Structures 783

GroundField(F) 783
BaseField(F) 783
CoefficientField(F) 783

CoefficientRing(F) 783
AbsoluteField(F) 783
SimpleExtension(F) 783
RelativeField(F, L) 783
PrimeRing PrimeField 784
Centre 784
Embed(F, L, a) 784
Embed(F, L, a) 784
EmbeddingMap(F, L) 784
MinkowskiSpace(F) 785
Completion(K, P) 786
comp< > 786
Completion(K, P) 786

34.3.3 Representing Fields as Vector Spaces 786

Algebra(K, J) 786
Algebra(K, J, S) 786
VectorSpace(K, J) 786
KSpace(K, J) 786
VectorSpace(K, J, S) 786
KSpace(K, J, S) 786

34.3.4 Invariants 788

Characteristic 788
Degree(F) 788
AbsoluteDegree(F) 788
Discriminant(F) 788
AbsoluteDiscriminant(K) 788
Regulator(K) 788
RegulatorLowerBound(K) 788
Signature(F) 789
UnitRank(K) 789
DefiningPolynomial(F) 789
Zeroes(F, n) 789

34.3.5 Basis Representation 790

Basis(F) 790
Basis(F, R) 790
IntegralBasis(F) 790
IntegralBasis(F, R) 790
AbsoluteBasis(K) 791

34.3.6 Ring Predicates 792

eq 792
IsCommutative IsUnitary IsFinite 792
IsOrdered IsField 792
IsNumberField IsAlgebraicField 792
IsEuclideanDomain(F) 792
IsSimple(F) 792
IsPID IsUFD 792
IsPrincipalIdealRing(F) 792
IsDomain 792
ne subset 792
HasComplexConjugate(K) 792
ComplexConjugate(x) 792

34.3.7 Field Predicates 793

768 GLOBAL ARITHMETIC FIELDS Part VII

IsIsomorphic(F, L) 793
IsSubfield(F, L) 793
IsNormal(F) 793
IsAbelian(F) 793
IsCyclic(F) 793
IsAbsoluteField(K) 793

34.4 Element Operations 793

34.4.1 Parent and Category 793

Parent Category Type ExtendedType 793

34.4.2 Arithmetic 794

+ - 794
+ - * / ^ 794
Sqrt(a) 794
Root(a, n) 794
IsSquare(a) 794
Denominator(a) 794
Numerator(a) 794
Qround(E, M) 794

34.4.3 Equality and Membership 794

eq ne 794
in 794

34.4.4 Predicates on Elements 795

IsIntegral(a) 795
IsPrimitive(a) 795
IsTotallyPositive(a) 795
IsZero IsOne 795
IsMinusOne 795
IsUnit 795
IsNilpotent IsIdempotent 795
IsZeroDivisor IsRegular 795
IsIrreducible IsPrime 795

34.4.5 Finding Special Elements 795

. 795
PrimitiveElement(K) 795
Generators(K) 795
GeneratorsOverBaseRing(K) 796
GeneratorsSequence(K) 796
GeneratorsSequenceOverBaseRing(K) 796
Generators(K, k) 796

34.4.6 Real and Complex Valued Functions 796

AbsoluteValues(a) 796
AbsoluteLogarithmicHeight(a) 796
Conjugates(a) 796
Conjugate(a, k) 797
Conjugate(a, l) 797
Length(a) 797
Logs(a) 797
CoefficientHeight(E) 797
CoefficientLength(E) 797

34.4.7 Norm, Trace, and Minimal Polynomial798

Norm(a) 798
Norm(a, R) 798
AbsoluteNorm(a) 798

NormAbs(a) 798
Trace(a) 798
Trace(a, R) 798
AbsoluteTrace(a) 798
TraceAbs(a) 798
CharacteristicPolynomial(a) 798
CharacteristicPolynomial(a, R) 798
AbsoluteCharacteristicPolynomial(a) 798
MinimalPolynomial(a) 798
MinimalPolynomial(a, R) 798
AbsoluteMinimalPolynomial(a) 799
RepresentationMatrix(a) 799
RepresentationMatrix(a, R) 799
AbsoluteRepresentationMatrix(a) 799

34.4.8 Other Functions 800

Eltseq(a) 800
Eltseq(E, k) 800
Flat(e) 800
a[i] 800
ProductRepresentation(a) 800
ProductRepresentation(P, E) 800
PowerProduct(P, E) 800

34.5 Class and Unit Groups 800

ClassGroup(K: -) 801
ConditionalClassGroup(K) 802
ClassNumber(K: -) 802
BachBound(K) 802
MinkowskiBound(K) 802
UnitGroup(K) 802
MultiplicativeGroup(K) 802
TorsionUnitGroup(K) 802
UnitRank(K) 802

34.6 Galois Theory 803

GaloisGroup(K) 803
Subfields(K) 803
AutomorphismGroup(K) 803

34.7 Solving Norm Equations . . . 804

NormEquation(F, m) 804
NormEquation(m, N) 805
SimNEQ(K, e, f) 805

34.8 Places and Divisors 807

34.8.1 Creation of Structures 807

Places(K) 807
DivisorGroup(K) 807

34.8.2 Operations on Structures 807

eq eq 807
NumberField(P) 807
NumberField(D) 807

34.8.3 Creation of Elements 807

Place(I) 807
Decomposition(K, p) 807
Decomposition(K, I) 807
Decomposition(K, p) 807
Decomposition(m, p) 808

Ch. 34 NUMBER FIELDS 769

Decomposition(m, p) 808
InfinitePlaces(K) 808
Divisor(pl) 808
Divisor(I) 808
Divisor(x) 808
RealPlaces(K) 808

34.8.4 Arithmetic with Places and Divisors 808

+ - - * div 808
34.8.5 Other Functions for Places and Divi-

sors 808

Valuation(a, p) 808
Valuation(I, p) 808
Support(D) 809
Ideal(D) 809
Evaluate(x, p) 809
RealEmbeddings(a) 809
RealSigns(a) 809
IsReal(p) 809
IsComplex(p) 809
IsFinite(p) 809
IsInfinite(p) 809
Extends(P, p) 809
InertiaDegree(P) 810
Degree(P) 810
Degree(D) 810
NumberField(P) 810
NumberField(D) 810
ResidueClassField(P) 810
UniformizingElement(P) 810
LocalDegree(P) 810
RamificationIndex(P) 810
DecompositionGroup(P) 810

34.9 Characters 811

34.9.1 Creation Functions 811

DirichletGroup(I) 811
DirichletGroup(I, oo) 811
HeckeCharacterGroup(I) 811
HeckeCharacterGroup(I, oo) 811
UnitTrivialSubgroup(G) 811
TotallyUnitTrivialSubgroup(G) 811

34.9.2 Functions on Groups and Group Ele-
ments 811

Modulus(G) 811
Modulus(G) 811
Modulus(chi) 811
Modulus(chi) 811
Order(chi) 812
Order(psi) 812
Random(G) 812
Random(G) 812
Domain(G) 812
Domain(G) 812
Domain(G) 812
Domain(G) 812
Decomposition(chi) 812

Conductor(chi) 812
Conductor(psi) 812
AssociatedPrimitiveCharacter(chi) 812
AssociatedPrimitiveCharacter(psi) 812
Restrict(chi, D) 813
Restrict(psi, H) 813
Restrict(chi, I) 813
Restrict(psi, I) 813
Restrict(chi, I, oo) 813
Restrict(psi, I, oo) 813
Restrict(G, D) 813
Restrict(G, H) 813
Restrict(G, I) 813
Restrict(G, I) 813
Restrict(G, I, oo) 813
Restrict(G, I, oo) 813
TargetRestriction(G, C) 813
TargetRestriction(H, C) 813
SetTargetRing(∼chi, e) 813
SetTargetRing(∼psi, e) 813
Extend(chi, D) 813
Extend(psi, H) 813
Extend(chi, I) 813
Extend(psi, I) 813
Extend(chi, I, oo) 813
Extend(psi, I, oo) 813
Extend(G, D) 814
Extend(G, H) 814
Extend(G, I) 814
Extend(G, I) 814
Extend(G, I, oo) 814
Extend(G, I, oo) 814

34.9.3 Predicates on Group Elements . . 814

IsTrivial(chi) 814
IsTrivial(psi) 814
IsTrivialOnUnits(chi) 814
IsOdd(chi) 814
IsEven(chi) 814
IsTotallyEven(chi) 814
IsPrimitive(chi) 814
IsPrimitive(psi) 814

34.9.4 Passing between Dirichlet and Hecke
Characters 815

HeckeLift(chi) 815
DirichletRestriction(psi) 815
NormInduction(K, chi) 815
DirichletCharacter(I, B) 816
DirichletCharacter(I, oo, B) 816
DirichletCharacter(G, B) 816
HeckeCharacter(I, B) 816
HeckeCharacter(I, oo, B) 816
HeckeCharacter(G, B) 816
CentralCharacter(chi) 818
CentralCharacter(psi) 818
DirichletCharacterOverNF(chi) 818
DirichletCharacterOverQ(chi) 818

34.9.5 L-functions of Hecke Characters . . 819

770 GLOBAL ARITHMETIC FIELDS Part VII

34.9.6 Hecke Grössencharacters and their L-
functions 820

Grossencharacter(psi, chi, T) 820
RawEval(I, GR) 820
Grossencharacter(psi, T) 821
Conductor(psi) 821
Modulus(psi) 821
IsPrimitive(psi) 821
AssociatedPrimitive

Grossencharacter(psi) 821
Extend(psi, I) 821
Restrict(psi, I) 821
CentralCharacter(psi) 821
GrossenTwist(Y, D) 821

34.10 Number Field Database . . 827

34.10.1 Creation 827

NumberFieldDatabase(d) 827
sub< > 827
sub< > 827
sub< > 827

34.10.2 Access 828

Degree(D) 828
DiscriminantRange(D) 828
828
NumberOfFields(D) 828
NumberOfFields(D, d) 828
NumberFields(D) 828
NumberFields(D, d) 829

34.11 Bibliography 830

Chapter 34

NUMBER FIELDS

34.1 Introduction
The number field module in Magma is based on the Kant/Kash system (Kant-V4)
[KAN97], [KAN00], developed by the group of M. Pohst in Berlin.

This chapter deals only with the basic operations possible with number fields (objects
of type FldNum) and their elements FldNumElt. Apart from material covered here, there
is a wealth of other functions implemented and documented in detail in chapters dealing
with
* Cyclotomic fields, Chapter 36
* Quadratic fields, Chapter 35
* Orders in number fields, including ideal theory, Chapter 37
* Galois Theory, Chapter 38
* Class Field Theory, Chapter 39

Furthermore, a lot of functionality of number fields is also shared by function fields of
transcendence degree 1 (Chapters 42, 41) and functionality is imported from other areas,
in particular, finite fields and polynomial rings.

Number fields in Magma are finite extensions of the field Q of rational numbers or of
another number field. Number fields of the first kind, ie. number fields that are created
as extensions of Q are referred to as absolute fields, while extensions of number fields are
called relative fields.

Number fields support extended types (Section 1.14), they can be indexed by the type
of the coefficient ring: FldNum[FldRat] refers to an absolute extension over Q, while
FldNum[FldNum] refers to a relative extension.

Formally, in Magma, an object K of type FldNum is an algebraic extension of finite
degree over a number field k or Q. It should be thought of as constructed as a quotient ring
of a univariate polynomial ring over the base field modulo some irreducible polynomial:
K = k[t]/(f(t)k[t]) Or, the field may be constructed as a multivariate quotient: K =
k[s1, . . . , sn]/(f1(s1), . . . , fn(sn)) where all the polynomials are univariate. However, a
slightly different representation is used internally.

An important consequence of this representation as a quotient of a polynomial ring
is that one cannot distinguish between e.g. Q[2(1/3)] and Q[ζ32(1/3)] – both of them are
generated using a root of t3 − 2. Therefore every non trivial extension generates a new
object – even if the same polynomial is used repeatedly, except when the user explicitly
tells Magma to check whether the polynomial has been used before. This also implies
that number fields are not automatically embedded into C the field of complex numbers,
in contrast to both quadratic and cyclotomic fields that are. Using Conjugates or the
language of places in section 34.8 all embeddings into C or R can be found and used.

772 GLOBAL ARITHMETIC FIELDS Part VII

It is important to remember that Q is not a number field. However, it is possible to
create an extension of degree 1 over Q that is a number field using, for example

Example H34E1

> K := ext<Rationals()|Polynomial([0,1]):DoLinearExtension>;

One has to distinguish between number fields with a (known) primitive element α:=
K.1 which is a zero of f and number fields where no primitive element is known. In this
case αi:= K.i will be a zero of fi.

Number fields always have a ‘power’ basis, i.e. a basis containing only powers of the
zero(s) of the defining polynomial(s) and product of those powers. This allows for example
to define homomorphisms from number fields by specifying images of the generators only.

An absolute extension is always an extension of Q. An arbitrary number field K
can always be converted into an isomorphic extension of Q using a constructive variant
of the primitive element theorem, AbsoluteField. Similarly, a number field defined by
multiple polynomials can be converted into a field defined by a single polynomial using
SimpleExtension.

Likewise, if a subfield k of K is known, an isomorphic field as an extension of k can be
computed.

The most important facts about the different representations are the following:

* Arithmetic is fastest in absolute simple extensions. Thus, if one wants to do lots of
basic arithmetic with the elements the transformation to an absolute representation is
advisable. However, typically the operations are fastest when the elements are “small”
in size.

* Invariants (like Degree, Discriminant, Norm, Trace etc.) are always relative to the
current representation.

* Conversions of fields tend to be time consuming thus should be avoided if possible.
However, once the different field representations are computed, the conversion of ele-
ments is not too time consuming.

* Some operations and invariants can (currently) only be done for absolute representa-
tions. Essentially, these are computations involving subfields and class and unit group
computations.

Number fields support only arithmetic with their elements and the computation of some
invariants (GaloisGroup, Subfields, AutomorphismGroup). Although invariants like
the class group can be computed for FldNums this is only a shortcut for the corre-
sponding computations for the maximal orders so e.g. ClassGroup(K) is expanded to
ClassGroup(MaximalOrder(K)).

Ch. 34 NUMBER FIELDS 773

34.2 Creation Functions

The following describes how number fields may be created. It also shows some ways of
creating elements of these rings and homomorphisms from these rings into an arbitrary
ring.

34.2.1 Creation of Number Fields
Algebraic Number Fields can be created in a various ways, most of which involve poly-
nomials. The fields can be created as absolute extensions, i.e. an extension of Q by one
or more irreducible polynomial(s), or as a relative extension which is an extension of an
algebraic field by one or more polynomial(s) irreducible over that field.

NumberField(f)

Check BoolElt Default : true

DoLinearExtension BoolElt Default : false

Global BoolElt Default : false

Given an irreducible polynomial f of degree n ≥ 1 over K = Q or some number
field K, create the number field L = K(α) obtained by adjoining a root α of f to
K.

The polynomial f is allowed to have either integer coefficients, coefficients in an
order of K, coefficients from the rational field or some algebraic field K. The field
K will be referred to as CoefficientField. If the polynomial is defined over a field
and the coefficients have denominators greater than 1, an equivalent polynomial
df(x) is used to define L, where d is the least common multiple of the denominators
of the coefficients of f .

If the optional parameter Check is set to false then the polynomial is not checked
for irreducibility. This is useful when building relative extensions where factoring
can be time consuming.

If DoLinearExtension is true and the degree of f is 1 a trivial extension is
returned. This is an object of type FldNum but of degree 1. Otherwise (or by
default), the coefficient field of f is returned. (This is important in situations where
the number of extensions matters.) Furthermore, a degree 1 extension of Q is a
field isomorphic to Q, but regarded by Magma as a number field (while Q itself is
not, since FldRat is not a subtype of FldNum). This then supports all of the number
field functions (including for instance fractional ideals) while the Rationals() do
not. On the other hand, arithmetic will be slower.

If Global is true, then Magma checks if this polynomial is the defining polyno-
mial of some other field created using Global := true. In this case, the old field
will be returned.

The angle bracket notation may be used to assign the root α to an identifier e.g.
L<y> := NumberField(f) where y will be a root of f .

774 GLOBAL ARITHMETIC FIELDS Part VII

RationalsAsNumberField()

QNF()

This creates a number field isomorphic to Q. It is equivalent to NumberField(x-1)
: DoLinearExtension), where x is PolynomialRing(Rationals()).1.

The result is a field isomorphic to Q, but regarded by Magma as a number
field (while Q itself is not, since FldRat is not a subtype of FldNum). It therefore
supports all of the number field functions, while the Rationals() do not. On the
other hand, arithmetic will be slower.

Coercion can be used to convert to and from the Rationals().

NumberField(s)

Check BoolElt Default : true

DoLinearExtension BoolElt Default : false

Abs BoolElt Default : false

Let K be a possibly trivial algebraic extension of Q. K will be referred to as the
CoefficientField.

Given a sequence s of nonconstant polynomials s1, . . . , sm, that are irreducible
over K, create the number field L = K(α1, . . . , αm) obtained by adjoining a root αi

of each si to K. The polynomials si are allowed to have coefficients in an order of K
(or Z) or in K or a suitable field of fractions, but if in the latter cases denominators
occur in the coefficients of si, an integral polynomial is used instead of si, as in the
case of the definition of a number field by a single polynomial.

If m > 1 and Abs is false, a tower of extension fields

L0 = K ⊂ L1 = K(αm) ⊂ L2 = K(αm−1, αm) ⊂ · · · ⊂ Lm = K(α1, . . . , αm) = L

is created, and L is a relative extension by s1 over its ground field Lm−1 =
K(α2, . . . , αm). Thus, this construction has the same effect as m applications of
the ext constructor. The angle bracket notation may be used to assign the m
generators αi to identifiers: L<a1, . . ., am> := NumberField([s1, . . ., sm]);
thus the first generator a1, which corresponds to L.1, generates L over its ground
field.

Note that it is important to ensure that in each of the above steps the polynomial
si is irreducible over Li−1; by default Magma will check that this is the case. If the
optional parameter Check is set to false then this checking will not be done.

If the optional parameter Abs is changed to true, then a non-simple extension
will be returned. This is a extension of the coefficient field of the fi but such that
the base field of L will be K. The ith generator will be a root of the ith polynomial
in this case, but all of the generators will have L as parent. In this case, a sparse
representation of number field elements will be used (based on multivariate polyno-
mial rings). As a consequence, costs for arithmetic operations will (mainly) depend
on the number of non-zero coefficients of the elements involved rather than the field

Ch. 34 NUMBER FIELDS 775

degree. This allows to define and work in fields of degree < 106. However, for general
elements this representation is slower than the dense (default) representation.

If the optional parameter DoLinearExtension is set to true, linear polynomials
will not be removed from the list.

ext< F | s1, ..., sn >

ext< F | s >

Check BoolElt Default : true

Global BoolElt Default : false

Abs BoolElt Default : false

DoLinearExtension BoolElt Default : false

Construct the number field defined by extending the number field F by the poly-
nomials si or the polynomials in the sequence s. Similar as for NumberField(S)
described above, F may be Q. A tower of fields similar to that of NumberField is
created and the same restrictions as for that function apply to the polynomials that
can be used in the constructor.

Example H34E2

To create the number field Q(α), where α is a zero of the integer polynomial x4 − 420x2 + 40000,
one may proceed as follows:

> R<x> := PolynomialRing(Integers());

> f := x^4 - 420*x^2 + 40000;

> K<y> := NumberField(f);

> Degree(K);

> K;

Number Field with defining polynomial x^4 - 420*x^2 + 40000 over the Rational

Field

> y^4 - 420*y^2;

-40000

By assigning the generating element to y, we can from here on specify elements in the field as
polynomials in y. The elements will always be printed as polynomials in Q[y]/f :

> z := y^5/11;

> z;

1/11*(420*y^3 - 40000*y)

K can be further extended by the use of either ext or NumberField.

> R<y> := PolynomialRing(K);

> f := y^2 + y + 1;

> L := ext<K | f>;

> L;

Number Field with defining polynomial y^2 + y + 1 over K

This is equivalent to

> KL := NumberField([x^2 + x + 1, x^4 - 420*x^2 + 40000]);

776 GLOBAL ARITHMETIC FIELDS Part VII

> KL;

Number Field with defining polynomial $.1^2 + $.1 + 1 over its ground field

but different to

> LK := NumberField([x^4 - 420*x^2 + 40000, x^2 + x + 1]);

> LK;

Number Field with defining polynomial $.1^4 - 420*$.1^2 + 40000 over its ground

field

To illustrate the use of Global:

> K1 := NumberField(x^3-2 : Global);

> K2 := NumberField(x^3-2 : Global);

> L1 := NumberField(x^3-2);

> L2 := NumberField(x^3-2);

> K1 eq K2;

true

> K1 eq L1;

false

> L1 eq L2;

false;

> K1!K2.1;

K1.1;

> K2!K1.1;

K1.1

>> L1!L2.1;

^

Runtime error in ’!’: Arguments are not compatible

LHS: FldNum

RHS: FldNumElt

A typical application of DoLinearExtension is as follows. To construct a Kummer extension of
degree p, one has to start with a field containing the p-th roots of unity. In most situation this
will be a field extension of degree p− 1, but what happens if ζp is already in the base field?

> AdjoinRoot := function(K, p: DoLinearExtension := false)

> f := CyclotomicPolynomial(p);

> f := Polynomial(K, f);

> f := Factorisation(f)[1][1];

> return ext<K|f : DoLinearExtension := DoLinearExtension>;

> end function;

> K := NumberField(x^2+x+1);

> E1 := AdjoinRoot(K, 3);

> E1;

Number Field with defining polynomial x^2 + x + 1 over the

Rational Field

> E2 := AdjoinRoot(K, 3 : DoLinearExtension);

> E2;

Number Field with defining polynomial ext<K|>.1 - K.1 over

K

Ch. 34 NUMBER FIELDS 777

> Norm(E1.1);

1

> Norm(E2.1);

K.1

> Norm($1);

1

RadicalExtension(F, d, a)

Check BoolElt Default : true

Let F be a number field. Let a be an integral element of F chosen such that a is not
an n-th power for any n dividing d. Returns the number field obtained by adjoining
the d-th root of a to F .

SplittingField(F)

Abs BoolElt Default : true

Opt BoolElt Default : true

Given a number field F , return the splitting field of its defining polynomial. The
roots of the defining polynomial in the splitting field are also returned.

If Abs is true, the resulting field will be an absolute extension, otherwise a tower
is returned.

If Opt is true, an attempt of using OptimizedRepresentation is done. If suc-
cessful, the resulting field will have a much nicer representation. On the other hand,
computing the intermediate maximal orders can be extremely time consuming.

SplittingField(f)

Given an irreducible polynomial f over Z, return its splitting field.

SplittingField(L)

Abs BoolElt Default : false

Opt BoolElt Default : false

Given a sequence L of polynomials over a number field or the rational numbers,
compute a common splitting field, ie. a field K such that every polynomial in L
splits into linear factors over K. The roots of the polynomials are returned as the
second return value.

If the optional parameter Abs is true, then a primitive element for the splitting
field is computed and the field returned will be generated by this primitive element
over Q. If in addition Opt is also true, then an optimized representation of K is
computed as well.

778 GLOBAL ARITHMETIC FIELDS Part VII

sub< F | e1, ..., en >

Given a number field F with coefficient field G and n elements ei ∈ F , return
the number field H = G(e1, . . . , en) generated by the ei (over G), as well as the
embedding homomorphism from H to F .

MergeFields(F, L)

CompositeFields(F, L)

Let F and L be absolute number fields. Returns a sequence of fields [M1, . . . ,Mr]
such that each field Mi contains both a root of the generating polynomial of F and
a root of the generating polynomial of L.

In detail: Suppose that F is the smaller field (wrt. the degree). As a first step we
factorise the defining polynomial of L over F . For each factor obtained, an extension
of F is constructed and then transformed into an absolute extension. The sequence
of extension fields is returned to the user.

Compositum(K, L)

For absolute number fields K and L, at least one of which must be normal, find a
smallest common over field. Note that in contrast to CompositeFields above the
result here is essentially unique since one field was normal.

quo< FldNum : R | f >

Check BoolElt Default : true

Given a ring of polynomials R in one variable over a number field K, create the
number field K(α) obtained by adjoining a root α of f to K. Here the coefficient
ring K of R is allowed to be the rational field Q. The polynomial f is allowed
to have coefficients in K, but if coefficients occur in f which require denominator
greater than 1 when expressed on the basis of K, the polynomial will be replaced
by an equivalent one requiring no such denominators: f̃(x) = df(x), where d is a
common denominator. The parameter Check determines whether the polynomial is
checked for irreducibility.

The angle bracket notation may be used to assign the root α to an identifier:
K<y> := quo< FldNum : R | f >.

If the category FldNum is not specified, quo< R | f > creates the quotient ring
R/f as a generic ring (not as a number field), in which only elementary arithmetic
is possible.

Example H34E3

To illustrate the use of CompositeFields we will use this function to compute the normal closure
of Q(α) where α is a zero of the integer polynomial x3 − 2:

> K := RadicalExtension(Rationals(), 3, 2);

> l := CompositeFields(K, K);

> l;

[

Ch. 34 NUMBER FIELDS 779

Number Field with defining polynomial $.1^3 - 2 over the Rational

Field,

Number Field with defining polynomial $.1^6 + 108 over the Rational

Field

]

The second element of l corresponds to the smallest field L2 containing two distinct roots of x3−2.
Since the degree of K is 3, L2 is the splitting field of f and therefore the normal closure of K.

OptimizedRepresentation(F)

OptimisedRepresentation(F)

Given a number field F with ground field Q, this function will attempt to find an
isomorphic field L with a better defining polynomial than the one used to define F .
If such a polynomial is found then L is returned; otherwise F will be returned. For
more details, please refer to OptimizedRepresentation.

Example H34E4

Some results of OptimizedRepresentation are shown.

> R<x> := PolynomialRing(Rationals());

> K := NumberField(x^4-420*x^2+40000);

> L := OptimizedRepresentation(K);

> L ne K;

true

> L;

Number Field with defining polynomial x^4 - 4*x^3 -

17*x^2 + 42*x + 59 over the Rational Field

> L eq OptimizedRepresentation(L);

34.2.2 Maximal Orders
The maximal order OK is the ring of integers of an algebraic field consisting of all integral
elements of the field; that is, elements which are roots of monic integer polynomials. It may
also be called the number ring of a number field. It is arguably the single most important
invariant of a number field, in fact in number theory when one talks about units, ideals,
etc. of number fields, it is typically implied that the maximal order is the underlying ring.

Maximal orders and orders in general are explained in detail in the chapter 37, here we
only give a very brief overview.

There are a number of algorithms which Magma uses whilst computing maximal orders.
The main ones are the Round–2 and the Round–4 methods ([Coh93, Bai96, Poh93, PZ89]
for absolute extensions and [Coh00, Fri97, Pau01b] for relative extensions).

780 GLOBAL ARITHMETIC FIELDS Part VII

MaximalOrder(F)

IntegerRing(F)

Integers(F)

RingOfIntegers(F)

Al MonStgElt Default : “Auto”
Verbose MaximalOrder Maximum : 5

Create the ring of integers of the algebraic number field F . An integral basis for F
can be found as the basis of the maximal order.

For information on the parameters, see Section 37.2.3.

34.2.3 Creation of Elements
Since number fields are though of as quotients of (multivariate) polynomial rings, elements
in those fields are represented as (multivariate) polynomials in the generator(s) of the field.

F ! a

elt< F | a >

Coerce a into the number field F . Here a may be an integer or a rational field
element, or an element from a subfield of F , or from an order in such or any other
field related to F through chains of subfields, optimised representation, absolute
fields, etc.

F ! [a0, a1, ..., am−1]

elt< F | [a0, a1, ..., am−1] >

elt< F | a0, a1, ..., am−1 >

Given the number field, F of degree m over its ground field G and a sequence
[a0, . . . , am−1] of elements of G, construct the element a0α0 + a1α1 + · · · am−1αm−1

of F where the αi are the basis elements of F . In case F was generated by a root of
a single polynomial, we will always have αi = F.1i. If F was defined using multiple
polynomials and the Abs parameter, the basis will consist of products of powers of
the generators.

Random(F, m)

A random element of the number field F . The maximal size of the coefficients is
determined by the integer m.

Example H34E5

> R<x> := PolynomialRing(Integers());

> K<y> := NumberField(x^4-420*x^2+40000);

> y^6;

136400*y^2 - 16800000

Ch. 34 NUMBER FIELDS 781

> K![-16800000, 0, 136400, 0];

136400*y^2 - 16800000

> K := NumberField([x^3-2, x^2-5]:Abs);

> Basis(K);

[

1,

K.1,

K.1^2,

K.2,

K.1*K.2,

K.1^2*K.2

]

> K![1,2,3,4,5,6];

6*K.1^2*K.2 + 3*K.1^2 + 5*K.1*K.2 + 2*K.1 + 4*K.2 + 1

One(K) Identity(K)

Zero(K) Representative(K)

34.2.4 Creation of Homomorphisms
To specify homomorphisms from number fields, it is necessary to specify the image of the
generating elements, and possible to specify a map on the coefficient field.

hom< F -> R | r >

hom< F -> R | h, r >

hom< F -> R | r >

hom< F -> R | h, r >

Given an algebraic number field F , defined as an extension of the coefficient field G,
as well as some ring R, build the homomorphism φ obtained by sending the defining
primitive element α of F to the element r ∈ R.

In case the field F was defined using multiple polynomials, instead of an image
for the primitive element, one has to give images for each of the generators.

It is possible (if G = Q) and sometimes necessary (if G 6= Q) to specify a
homomorphism φ on F by specifying its action on G by providing a homomorphism
h with G as its domain and R its codomain together with the image of α. If R does
not cover G then the homomorphism h from G into R is necessary to ensure that
the ground field can be mapped into R.

782 GLOBAL ARITHMETIC FIELDS Part VII

Example H34E6

We show a way to embed the field Q(
√

2) in Q(
√

2+
√

3). The application of the homomorphism
suggests how the image could have been chosen.

> R<x> := PolynomialRing(Integers());

> K<y> := NumberField(x^2-2);

> KL<w> := NumberField(x^4-10*x^2+1);

> H := hom< K -> KL | (9*w-w^3)/2 >;

> H(y);

1/2*(-w^3 + 9*w)

> H(y)^2;

2

34.3 Structure Operations
In the lists below K always denotes a number field.

34.3.1 General Functions
Number fields form the Magma category FldNum. The notional power structures exist as
parents of algebraic fields with no operations are allowed.

Category(K) Type(K) ExtendedType(K) Parent(K)

AssignNames(∼K, s)

Procedure to change the names of the generating elements in the number field K to
the contents of the sequence of strings s.

The i-th sequence element will be the name used for the generator of the (i−1)-st
subfield down from K as determined by the creation of K, the first element being
used as the name for the generator of K. In the case where K is defined by more
than one polynomial as an absolute extension, the ith sequence element will be the
name used for the root of the ith polynomial used in the creation of K.

This procedure only changes the names used in printing the elements of K. It
does not assign to any identifiers the value of a generator in K; to do this, use an
assignment statement, or use angle brackets when creating the field.

Note that since this is a procedure that modifies K, it is necessary to have a
reference ∼K to K in the call to this function.

Name(K, i)

K . i

Given a number field K, return the element which has the i-th name attached to it,
that is, the generator of the (i − 1)-st subfield down from K as determined by the
creation of K. Here i must be in the range 1 ≤ i ≤ m, where m is the number of
polynomials used in creating K. If K was created using multiple polynomials as an
absolute extension, K.i will be a root of the ith polynomial used in creating K.

Ch. 34 NUMBER FIELDS 783

34.3.2 Related Structures
Each number field has other structures related to it in various ways.

GroundField(F)

BaseField(F)

CoefficientField(F)

CoefficientRing(F)

Given a number field F , return the number field over which F was defined. For an
absolute number field F , the function returns the rational field Q.

AbsoluteField(F)

Given a number field F , this returns an isomorphic number field L defined as an
absolute extension (i.e. over Q). (For algorithm, see [Tra76])

SimpleExtension(F)

Given a number field F or an order O, this returns an isomorphic field L defined as
an absolute simple extension. (For algorithm, see [Tra76])

RelativeField(F, L)

Given number fields L and F such that Magma knows that F is a subfield of L,
return an isomorphic number field M defined as an extension over F .

Example H34E7

It is often desirable to build up a number field by adjoining several algebraic numbers to Q. The
following function returns a number field that is the composite field of two given number fields K
and L, provided that K ∩L = Q; if K and L have a common subfield larger than Q the function
returns a field with the property that it contains a subfield isomorphic to K as well as a subfield
isomorphic to L.

> R<x> := PolynomialRing(Integers());

> Composite := function(K, L)

> T<y> := PolynomialRing(K);

> f := T!DefiningPolynomial(L);

> ff := Factorization(f);

> LKM := NumberField(ff[1][1]);

> return AbsoluteField(LKM);

> end function;

To create, for example, the field Q(
√

2,
√

3,
√

5), the above function should be applied twice:

> K := NumberField(x^2-3);

> L := NumberField(x^2-2);

> M := NumberField(x^2-5);

> KL := Composite(K, L);

> S<s> := PolynomialRing(BaseField(KL));

> KLM<w> := Composite(KL, M);

784 GLOBAL ARITHMETIC FIELDS Part VII

> KLM;

Number Field with defining polynomial s^8 - 40*s^6 + 352*s^4 - 960*s^2 + 576

over the Rational Field

Note, that the same field may be constructed with just one call to NumberField followed by
AbsoluteField:

> KLM2 := AbsoluteField(NumberField([x^2-3, x^2-2, x^2-5]));

> KLM2;

Number Field with defining polynomial s^8 - 40*s^6 + 352*s^4 - 960*s^2 + 576

over the Rational Field

or by

> AbsoluteField(ext<Rationals() | [x^2-3, x^2-2, x^2-5]>);

Number Field with defining polynomial s^8 - 40*s^6 + 352*s^4 - 960*s^2 + 576

over the Rational Field

In general, however, the resulting polynomials of KLM and KLM2 will differ. To see the differ-
ence between SimpleExtension and AbsoluteField, we will create KLM2 again:

> KLM3 := NumberField([x^2-3, x^2-2, x^2-5]: Abs);

> AbsoluteField(KLM3);

Number Field with defining polynomials [x^2 - 3, x^2 - 2,

x^2 - 5] over the Rational Field

> SimpleExtension(KLM3);

Number Field with defining polynomial s^8 - 40*s^6 + 352*s^4 - 960*s^2 + 576

over the Rational Field

PrimeRing(F) PrimeField(F)

Centre(F)

Embed(F, L, a)

Install the embedding of a simple number field F in L where the image of the
primitive element of F is the element a of L. This embedding will be used in
coercing from F into L.

Embed(F, L, a)

Install the embedding of the non-simple number field F in L where the image of the
generating elements of F are in the sequence a of elements of L. This embedding
will be used in coercing from F into L.

EmbeddingMap(F, L)

Returns the embedding map of the number field F in L if an embedding is known.

Ch. 34 NUMBER FIELDS 785

Example H34E8

Magma does not recognize two independently created number fields as equal since more than one
embedding of a field in a larger field may be possible. To coerce between them, it is convenient
to be able to embed them in each other.

> k := NumberField(x^2-2);

> l := NumberField(x^2-2);

> l!k.1;

>> l!k.1;

^

Runtime error in ’!’: Arguments are not compatible

LHS: FldNum

RHS: FldNumElt

> l eq k;

false

> Embed(k, l, l.1);

> l!k.1;

l.1

> Embed(l, k, k.1);

> k!l.1;

k.1

Embed is useful in specifying the embedding of a field in a larger field.

> l<a> := NumberField(x^3-2);

> L := NumberField(x^6+108);

> Root(L!2, 3);

1/18*b^4

> Embed(l, L, $1);

> L!l.1;

1/18*b^4

Another embedding would be

> Roots(PolynomialRing(L)!DefiningPolynomial(l));

[

<1/36*(-b^4 - 18*b), 1>,

<1/36*(-b^4 + 18*b), 1>,

<1/18*b^4, 1>

]

> Embed(l, L, $1[1][1]);

> L!l.1;

1/36*(-b^4 - 18*b)

MinkowskiSpace(F)

The Minkowski vector space V of the absolute number field F as a real vector space,
with inner product given by the T2-norm (Length) on F , and by the embedding
F → V .

786 GLOBAL ARITHMETIC FIELDS Part VII

Completion(K, P)

comp< K|P >

Precision RngIntElt Default : 20

For an absolute extension K of Q, compute the completion at a prime ideal P which
must be either a prime ideal of the maximal order or unramified. The result will be
a local field or ring with relative precision Precision.

The returned map is the canonical injection into the completion. It allows point-
wise inverse operations.

Completion(K, P)

Precision RngIntElt Default : 20

For an absolute extension K over Q and a (finite) place P , compute the completion
at P . The precision and the map are as described for Completion.

34.3.3 Representing Fields as Vector Spaces
It is possible to express a number field as a vector space of any subfield using the intrin-
sics below. Such a construction also allows one to find properties of elements over these
subfields.

Algebra(K, J)

Algebra(K, J, S)

Returns the associative structure constant algebra which is isomorphic to the number
field K as an algebra over J . Also returns the isomorphism from K to the algebra
mapping wi to the i+ 1st unit vector of the algebra where w is a primitive element
of K.

If a sequence S is given it is taken to be a basis of K over J and the isomorphism
will map the ith element of S to the ith unit vector of the algebra.

VectorSpace(K, J)

KSpace(K, J)

VectorSpace(K, J, S)

KSpace(K, J, S)

The vector space isomorphic to the number field K as a vector space over J and the
isomorphism from K to the vector space. The isomorphism maps wi to the i+ 1st
unit vector of the vector space where w is a primitive element of K.

If S is given, the isomorphism will map the ith element of S to the ith unit vector
of the vector space.

Ch. 34 NUMBER FIELDS 787

Example H34E9

We use the Algebra of a relative number field to obtain the minimal polynomial of an element
over a subfield which is not in its coefficient field tower.

> K := NumberField([x^2 - 2, x^2 - 3, x^2 - 7]);

> J := AbsoluteField(NumberField([x^2 - 2, x^2 - 7]));

> A, m := Algebra(K, J);

> A;

Associative Algebra of dimension 2 with base ring J

> m;

Mapping from: RngOrd: K to AlgAss: A

> m(K.1);

(1/10*(J.1^3 - 13*J.1) 0)

> m(K.1^2);

(2 0)

> m(K.2);

(1/470*(83*J.1^3 + 125*J.1^2 - 1419*J.1 - 1735) 1/940*(-24*J.1^3 - 5*J.1^2 +

382*J.1 + 295))

> m(K.2^2);

(3 0)

> m(K.3);

(1/10*(-J.1^3 + 23*J.1) 0)

> m(K.3^2);

(7 0)

> A.1 @@ m;

1

> A.2 @@ m;

(($.1 - 1)*$.1 - $.1 - 1)*K.1 + ($.1 + 1)*$.1 + $.1 + 1

>

> r := 5*K.1 - 8*K.2 + K.3;

> m(r);

(1/235*(-238*J.1^3 - 500*J.1^2 + 4689*J.1 + 6940) 1/235*(48*J.1^3 + 10*J.1^2 -

764*J.1 - 590))

> MinimalPolynomial($1);

$.1^2 + 1/5*(-4*J.1^3 + 42*J.1)*$.1 + 5*J.1^2 - 180

> Evaluate($1, r);

0

> K:Maximal;

K

|

|

$1

|

|

$2

|

|

Q

788 GLOBAL ARITHMETIC FIELDS Part VII

K : $.1^2 - 2

$1 : $.1^2 - 3

$2 : x^2 - 7

> Parent($3);

Univariate Polynomial Ring over J

> J;

Number Field with defining polynomial $.1^4 - 18*$.1^2 + 25 over the Rational

Field

34.3.4 Invariants
Some information describing a number field can be retrieved.

Characteristic(F)

Degree(F)

Given a number field F , return the degree [F : G] of F over its ground field G.

AbsoluteDegree(F)

Given a number field F , return the absolute degree of F over Q.

Discriminant(F)

Given an extension F of Q, return the discriminant of F . This discriminant is
defined to be the discriminant of the defining polynomial, not as the discriminant
of the maximal order.

The discriminant in a relative extension F is the ideal in the base ring generated
by the discriminant of the defining polynomial.

AbsoluteDiscriminant(K)

Given a number field K, return the absolute value of the discriminant of K regarded
as an extension of Q.

Regulator(K)

Given a number field K, return the regulator of K as a real number. Note that this
will trigger the computation of the maximal order and its unit group if they are not
known yet. This only works in an absolute extension.

RegulatorLowerBound(K)

Given a number field K, return a lower bound on the regulator of O or K. This
only works in an absolute extension.

Ch. 34 NUMBER FIELDS 789

Signature(F)

Given an absolute number field F , returns two integers, one being the number of
real embeddings, the other the number of pairs of complex embeddings of F .

UnitRank(K)

The unit rank of the number field K (one less than the number of real embeddings
plus number of pairs of complex embeddings).

DefiningPolynomial(F)

Given a number field F , the polynomial defining F as an extension of its ground
field G is returned.

For non simple extensions, this will return a list of polynomials.

Zeroes(F, n)

Given an absolute number field F , and an integer n, return the zeroes of the defining
polynomial of F with a precision of exactly n decimal digits. The function returns a
sequence of length the degree of F ; all of the real zeroes appear before the complex
zeroes.

Example H34E10

The information provided by Zeros and DefiningPolynomial is illustrated below.

> L := NumberField(x^6+108);

> DefiningPolynomial(L);

x^6 + 108

> Zeros(L, 30);

[1.889881574842309747150815910899999999994 +

1.0911236359717214035600726141999999999977*i,

1.889881574842309747150815910899999999994 -

1.0911236359717214035600726141999999999977*i, 0.E-29 +

2.1822472719434428071201452283999999999955*i, 0.E-29 -

2.1822472719434428071201452283999999999955*i,

-1.889881574842309747150815910899999999994 +

1.0911236359717214035600726141999999999977*i,

-1.889881574842309747150815910899999999994 -

1.0911236359717214035600726141999999999977*i]

> l := NumberField(x^3 - 2);

> DefiningPolynomial(l);

x^3 - 2

> Zeros(l, 30);

[1.259921049894873164767210607299999999994,

-0.629960524947436582383605303639109999999 +

1.0911236359717214035600726141999999999977*i,

-0.629960524947436582383605303639109999999 -

1.0911236359717214035600726141999999999977*i]

790 GLOBAL ARITHMETIC FIELDS Part VII

34.3.5 Basis Representation
The basis of a number field can be expressed using elements from any compatible ring.

Basis(F)

Basis(F, R)

Return the current basis for the number field F over its ground ring as a sequence
of elements of F or as a sequence of elements of R.

IntegralBasis(F)

IntegralBasis(F, R)

An integral basis for the algebraic number field F is returned as a sequence of
elements of F or R if given. This is the same as the basis for the maximal order.
Note that the maximal order will be determined (and stored) if necessary.

Example H34E11

The following illustrates how a basis can look different when expressed in a different ring.

> f := x^5 + 5*x^4 - 75*x^3 + 250*x^2 + 65625;

> N := NumberField(f);

> N;

Number Field with defining polynomial x^5 + 5*x^4 - 75*x^3 + 250*x^2 + 65625

over the Rational Field

> Basis(N);

[

1,

N.1,

N.1^2,

N.1^3,

N.1^4

]

> IntegralBasis(N);

[

1,

1/5*N.1,

1/25*N.1^2,

1/125*N.1^3,

1/625*N.1^4

]

> IntegralBasis(N, MaximalOrder(N));

[

[1, 0, 0, 0, 0],

[0, 1, 0, 0, 0],

[0, 0, 1, 0, 0],

[0, 0, 0, 1, 0],

[0, 0, 0, 0, 1]

Ch. 34 NUMBER FIELDS 791

]

AbsoluteBasis(K)

Returns an absolute basis for the number field K, i.e. a basis for K as a Q vector
space. The basis will consist of the products of the basis elements of the intermediate
fields. The expansion is done depth-first.

Example H34E12

We continue our example of a field of degree 4.
The functions Basis and IntegralBasis both return a sequence of elements, that can be accessed
using the operators for enumerated sequences. Note that if, as in our example, O is the maximal
order of K, both functions produce the same output:

> R<x> := PolynomialRing(Integers());

> f := x^4 - 420*x^2 + 40000;

> K<y> := NumberField(f);

> O := MaximalOrder(K);

> I := IntegralBasis(K);

> B := Basis(O);

> I, B;

[

1,

1/2*y,

1/40*(y^2 + 10*y),

1/800*(y^3 + 180*y + 400)

]

[

O.1,

O.2,

O.3,

O.4

]

> Basis(O, K);

[

1,

1/2*y,

1/40*(y^2 + 10*y),

1/800*(y^3 + 180*y + 400)

]

792 GLOBAL ARITHMETIC FIELDS Part VII

34.3.6 Ring Predicates
Number fields can be tested for having several properties that may hold for general rings.

F eq L

Returns true if and only if the number fields F and L are indentical.
No two number fields which have been created independently of each other will

be considered equal since it is possible that they can be embedded into a larger field
in more than one way.

IsCommutative(R) IsUnitary(R) IsFinite(R)

IsOrdered(R) IsField(R)

IsNumberField(R) IsAlgebraicField(R)

IsEuclideanDomain(F)

This is not a check for euclidean number fields. This function will always return
true, as all number fields are euclidean domains.

IsSimple(F)

Checks if the number field F is defined as a simple extension over the base ring.

IsPID(F) IsUFD(F)

IsPrincipalIdealRing(F)

Always true for number fields.

IsDomain(R)

F ne L K subset L

HasComplexConjugate(K)

This function returns true if there is an automorphism in the number field K that
acts like complex conjugation.

ComplexConjugate(x)

For an element x of a number field K where HasComplexConjugate returns true
(in particular this includes totally real fields, cyclotomic and quadratic fields and
CM-extensions), the conjugate of x is returned.

Ch. 34 NUMBER FIELDS 793

34.3.7 Field Predicates
Here all the predicates that are specific to number fields are listed.

IsIsomorphic(F, L)

Given two number fields F and L, this returns true as well as an isomorphism
F → L, if F and L are isomorphic, and it returns false otherwise.

IsSubfield(F, L)

Given two number fields F and L, this returns true as well as an embedding F ↪→ L,
if F is a subfield of L, and it returns false otherwise.

IsNormal(F)

Returns true if and only if the number field F is a normal extension. At present
this may only be applied if F is an absolute extension or simple relative extension.
In the relative case the result is obtained via Galois group computation.

IsAbelian(F)

Returns true if and only if the number field F is a normal extension with abelian
Galois group. At present this may only be applied if F is an absolute extension
or simple relative extension. In the relative case the result is obtained via Galois
Group computation.

IsCyclic(F)

Returns true if and only if the number field F is a normal extension with cyclic
Galois group. At present this may only be applied if F is an absolute extension or
simple relative extension. In the relative case the result is obtained via Galois and
automorphism group.

IsAbsoluteField(K)

Returns true iff the number field K is a constructed as an absolute extension of Q.

34.4 Element Operations

34.4.1 Parent and Category

Parent(a) Category(a) Type(a) ExtendedType(a)

794 GLOBAL ARITHMETIC FIELDS Part VII

34.4.2 Arithmetic
The table below lists the generic arithmetic functions on number field elements. Note that
automatic coercion ensures that the binary operations +, -, *, and / may be applied to an
element of a number field and an element of one of its orders; the result will be a number
field element.

+ a - a

a + b a - b a * b a / b a ^ k

Sqrt(a)

Returns the square root of the number field element a if it exists in the field con-
taining a.

Root(a, n)

Returns the n-th root of the number field element a if it exists in the field containing
a.

IsSquare(a)

Return true if the number field element a is a kth power, (respectively square) and
the root if so.

Denominator(a)

Returns the denominator of the number field element a, that is the least common
multiple of the denominators of the coefficients of a.

Numerator(a)

Returns the numerator of the number field element a, that is the element multiplied
by its denominator.

Qround(E, M)

ContFrac BoolElt Default : true

Finds an approximation of the number field element E where the denominator is
bounded by the integer M . If ContFrac is true, the approximation is computed by
applying the continued fraction algorithm to the coefficients of E viewed over Q.

34.4.3 Equality and Membership
Elements may also be tested for whether they lie in an ideal of an order. See Section 37.9.5.

a eq b a ne b

a in F

Ch. 34 NUMBER FIELDS 795

34.4.4 Predicates on Elements
In addition to the generic predicates IsMinusOne, IsZero and IsOne, the predicates
IsIntegral and IsPrimitive are defined on elements of number fields.

IsIntegral(a)

Returns true if the element a of a number field F is contained in the ring of integers
of F , false otherwise. We use the minimal polynomial to determine the answer,
which means that the calculation of the maximal order is not triggered if it is not
known yet. A denominator d such that d ∗ a is integral is also returned on request.

IsPrimitive(a)

Returns true if the element a of the number field F generates F over its coefficient
field.

IsTotallyPositive(a)

Returnes true iff all real embeddings of the number field element a are positive. For
elements in absolute fields this is equivalent to all real conjugates being positive.

IsZero(a) IsOne(a)

IsMinusOne(a) IsUnit(a)

IsNilpotent(a) IsIdempotent(a)

IsZeroDivisor(a) IsRegular(a)

IsIrreducible(a) IsPrime(a)

34.4.5 Finding Special Elements
Generators of fields can be retrieved.

K . 1

Return the image α of x in G[x]/f where f is the first defining polynomial of the
number field K and G is the base field of K.

In case of simple extensions this will be a primitive element.

PrimitiveElement(K)

Returns a primitive element for the simple number field K, that is an element whose
minimal polynomial has the same degree as the field. For a simple number field K
this is K.1 , while for non-simple fields a random element with this property is
returned.

Generators(K)

The set of generators of the number field K over its coefficient field, that is a set
containing a root of each defining polynomial is returned.

796 GLOBAL ARITHMETIC FIELDS Part VII

GeneratorsOverBaseRing(K)

A set of generators of the number field K over Q.

GeneratorsSequence(K)

The sequence of generators of the number field K over its coefficient field, that is a
sequence containing a root of each defining polynomial is returned.

GeneratorsSequenceOverBaseRing(K)

A sequence of generators of the number field K over Q.

Generators(K, k)

A sequence of generators of the number fieldK over k is returned. That is a sequence
containing a root of each defining polynomial for K and its subfield down to the
level of k is returned.

34.4.6 Real and Complex Valued Functions
The functions here return (sequences of) real or complex numbers. The precision of these
numbers is governed by the appropriate or field’s internal precision. See Section 37.3 for
more information.

AbsoluteValues(a)

Return a sequence of length r1 + r2 of the real absolute values of the conjugates of
the number field element a. The first r1 values are the absolute values of the real
embeddings of the element, the next r2 are the lengths of the complex embeddings
with their weight factors. That is, if the real conjugates of a are wi, for 1 ≤ i ≤ r1,
and the complex conjugates of a are xi± iyi (for 1 ≤ i ≤ r2), then AbsoluteValues

returns [|w1|, . . . , |wr1 |,
√

x2
r1+1+y2

r1+1

2 , . . .

√
x2

r1+r2
+y2

r1+r2
2].

AbsoluteLogarithmicHeight(a)

Let P be the minimal polynomial of the number field element a over Z, with leading
coefficient a0 and roots α1, . . . , αn. Then the absolute logarithmic height is defined
to be

h(α) =
1
n

log(a0

n∏

j=1

max(1, |αj |)).

Conjugates(a)

The real and complex conjugates of the given algebraic number a, as a sequence of n
complex numbers. The r1 real conjugates appear first, and are followed by r2 pairs
of complex conjugates. The field should be an absolute extension. The ordering of
the conjugates is consistent for elements of the same field (or even for elements of
different fields that have the same defining polynomial).

Ch. 34 NUMBER FIELDS 797

Conjugate(a, k)

Equivalent to Conjugates(a)[k].

Conjugate(a, l)

Let l := [l1, . . . , ln] be a sequence of positive integers and assume that the number
field K, the parent of a is given as a tower with n steps, Q ⊆ K1 ⊆ . . . ⊆ Kn = K.
This function computes the image of a in C or R under the embedding determined
by l, that is under embedding obtained by extending the l1 embedding of K1 to K2,
then extending the l2nd of those embeddings to K3 and so on.

Length(a)

Return the T2-norm of the number field element a, which is a real number. This
equals the sum of the (complex) norms of the conjugates of a.

Logs(a)

Return the sequence of length r1 + r2 of logarithms of the absolute values of the
conjugates of a number field element a 6= 0.

CoefficientHeight(E)

Computes the coefficient height of the number field element E, that is for an element
of an absolute field it returns the maximum of the denominator and the largest
coefficient wrt. to the basis of the parent. For elements in relative extensions, it
returns the maximal coefficient height of all the coefficients wrt. the basis of the
parent.

This function indicates in some way the difficulty of operations involving this
element.

CoefficientLength(E)

Computes the coefficient length of the number field element E, that is for an element
of an absolute field it returns the sum of the denominator and the absolute values of
all coefficients wrt. to the basis of the parent. For elements in relative extensions,
it returns the sum of the coefficient length of all the coefficients wrt. the basis of
the parent.

This function gives an indication on the amount of memory occupied by this
element.

798 GLOBAL ARITHMETIC FIELDS Part VII

34.4.7 Norm, Trace, and Minimal Polynomial
The norm, trace and minimal polynomial of number field elements can be calculated both
with respect to the coefficient ring and to Z or Q.

Norm(a)

Norm(a, R)

The relative norm NL/F(a) over F of the element a of the number field L where
F is the field over which L is defined as an extension. If R is given the norm is
calculated over R. In this case, R must occur as a coefficient ring somewhere in the
tower under L.

AbsoluteNorm(a)

NormAbs(a)

The absolute norm NL/Q(a) over Q of the element a of the number field L.

Trace(a)

Trace(a, R)

The relative trace TrL/F (a) over F of the element a of the number field L where
F is the field over which L is defined as an extension. If R is given the trace is
computed over R. In this case, R must occur as a coefficient ring somewhere in the
tower under L.

AbsoluteTrace(a)

TraceAbs(a)

The absolute trace TrL/Q(a) over Q of the element a of the number field L.

CharacteristicPolynomial(a)

CharacteristicPolynomial(a, R)

Given an element a from a number field L, returns the characteristic polynomial of
the element over R if given or the subfield F otherwise where F is the field over
which L is defined as an extension.

AbsoluteCharacteristicPolynomial(a)

Given an element a from a number field, this function returns the characteristic
polynomial of a over Q.

MinimalPolynomial(a)

MinimalPolynomial(a, R)

Given an element a from a number field L, returns the minimal polynomial of the
element over R if given otherwise the subfield F where F is the field over which L
is defined as an extension.

Ch. 34 NUMBER FIELDS 799

AbsoluteMinimalPolynomial(a)

Given an element a from a number field, this function returns the minimal polyno-
mial of the element as a polynomial over Q.

RepresentationMatrix(a)

RepresentationMatrix(a, R)

Return the representation matrix of the number field element a, that is, the matrix
which represents the linear map wrt to the field basis, given by multiplication by a.
The ith row of the representation matrix gives the coefficients of awi with respect
to the basis w1, . . . , wn.

If R is given the matrix is over R and with respect to the basis of the order or
field over R.

AbsoluteRepresentationMatrix(a)

Return the representation matrix of the number field element a relative to the Q-
basis of the field constructed using products of the basis elements, where a is an
element of the relative number field L.

Let Li :=
∑
Li−1ωi,j , L := Ln and L0 := Q. Then the representation matrix is

computed with respect to the Q-basis (
∏

j ωij ,j)i∈I consisting of products of basis
elements of the different levels.

Example H34E13

We create the norm, trace, minimal polynomial and representation matrix of the element α/2 in
the quartic field Q(α).

> R<x> := PolynomialRing(Integers());

> K<y> := NumberField(x^4-420*x^2+40000);

> z := y/2;

> Norm(z), Trace(z);

2500 0

> MinimalPolynomial(z);

ext<Q|>.1^4 - 105*ext<Q|>.1^2 + 2500

> RepresentationMatrix(z);

[0 1/2 0 0]

[0 0 1/2 0]

[0 0 0 1/2]

[-20000 0 210 0]

The awkwardness of the printing of the minimal polynomial above can be overcome by providing
a parent for the polynomial, keeping in mind that it is a univariate polynomial over the rationals:

> P<t> := PolynomialRing(RationalField());

> MinimalPolynomial(z);

t^4 - 105*t^2 + 2500

800 GLOBAL ARITHMETIC FIELDS Part VII

34.4.8 Other Functions
Elements can be represented by sequences and have a product representation.

Eltseq(a)

For an element a of a number field F , a sequence of coefficients of length degree of
F with respect to the basis is returned.

Eltseq(E, k)

For an algebraic number E ∈ K and a ring k which occurs somewhere in the defining
tower for K, return the list of coefficients of E over k, that is, apply Eltseq to E
and to its coefficients until the list is over k.

Flat(e)

The coefficients of the number field element e wrt. to the canonical Q basis for
its field. This is performed by iterating Eltseq until the coefficients are rational
numbers. The coefficients obtained match the coefficients wrt. to AbsoluteBasis.

a[i]

The coefficient of the ith basis element in the number field element a.

ProductRepresentation(a)

Return sequences P and E such that the product of elements in P to the corre-
sponding exponents in E is the algebraic number a.

ProductRepresentation(P, E)

PowerProduct(P, E)

Return the number field element a of the universe of the sequence P such that a is
the product of elements of P to the corresponding exponents in the sequence E.

34.5 Class and Unit Groups

This section briefly describes the functions available to compute in and with the ideal and
unit group of the number field, that is with the corresponding group in the maximal order.
For more details and an idea of the algorithms involved, see Sections 37.6 and 37.7.

All functions mentioned in this section support the verbose flag ClassGroup up to a
maximum value of 5.

Ideals in Magma are discussed in Section 37.9.

Ch. 34 NUMBER FIELDS 801

ClassGroup(K: parameters)

Bound RngIntElt Default : MinkowskiBound
Proof MonStgElt Default : “Full”
Enum BoolElt Default : true

Al MonStgElt Default : “Automatic”
Verbose ClassGroup Maximum : 5

The group of ideal classes for the ring of integers O of the number field K is returned
as an abelian group, together with a map from this abstract group to O. The map
admits inverses and can therefore be used to compute “discrete logarithms” for the
class group.

With the default values for the optional parameters the Minkowski bound is used
and the last step of the algorithm verifies correctness, hence a fully proven result is
returned.

If Bound is set to some positive integer M , M is used instead of the Minkowski
bound. The validity of the result still depends on the "Proof" parameter.

If Proof := "GRH", everything remains as in the default case except that a
bound based on the GRH is used to replace the Minkowski bound. This bound may
be enlarged setting the “Bound” parameter accordingly. The result will hence be
correct under the GRH.

If Proof := "Bound", the computation stops if an independent set of relations
between the prime ideals below the chosen bound is found. The relations may not
be maximal.

If Proof := "Subgroup", a maximal subset of the relations is constructed. In
terms of the result, this means that the group returned will be a subgroup of the
class group (i.e. the list of prime ideals considered may be to small).

If Proof := "Full" (the default) a guaranteed result is computed. This is equiv-
alent to Bound := MinkowskiBound(K) and Proof := "Subgroup".

If only Bound is given, the Proof defaults to "Subgroup".
Finally, giving Proof := "Current" is the same as repeating the last call to

ClassGroup(), but without the need to explicitly restate the value of Proof or
Bound. If there was no prior call to ClassGroup, a fully proven computation will be
carried out.

If Enum := false, then instead of enumerating short elements to get relations,
Magma will use random linear combinations of a reduced basis instead. For “small”
fields this will typically slow down the computations, but for large fields it is some-
times not possible to find any point using enumeration so that this is necessary for
“large” fields. Unfortunately, there is no known criterion to decide beforehand if a
field is “large” or “small”.

If Al is set to "Sieve" (regardless of the size of the discriminant) or the discrimi-
nant of K is greater than 1030 then the sieving method described in [Bia] (or [Jac99]
for quadratic fields) will be used. If Al is set to "NoSieve" then the sieving method
will not be used regardless of the size of the discriminant.

802 GLOBAL ARITHMETIC FIELDS Part VII

ConditionalClassGroup(K)

The class group of the number fieldK assuming the generalized Riemann hypothesis.

ClassNumber(K: parameters)

Bound RngIntElt Default : MinkowskiBound
Proof MonStgElt Default : “Full”
Al MonStgElt Default : “Automatic”
Verbose ClassGroup Maximum : 5

Return the class number of the ring of integers O of a number field K. The options
for the parameters are the same as for ClassGroup.

BachBound(K)

An integral upper bound for norms of generators of the ideal class group for the
number field K assuming the generalized Riemann hypothesis.

MinkowskiBound(K)

An unconditional integral upper bound for norms of the generators of the ideal class
group for the number field K.

UnitGroup(K)

MultiplicativeGroup(K)

Al MonStgElt Default : “Automatic”
Verbose UnitGroup Maximum : 6

Given a number field K, this function returns an (abstract) abelian group U , as well
as a bijection m between U and the units of the maximal order. The unit group
consists of the torsion subgroup, generated by the image m(U.1) and a free part,
generated in O by the images m(U.i) for 2 ≤ i ≤ r1 + r2.

The parameter Al can be used to specify an algorithm. It should be one
of "Automatic", (default, a choice will be made for the user) "ClassGroup",
"Dirichlet", "Mixed" (the best known Dirichlet method), "Relation" or "Short"
(which is a variation of "Mixed"). In the case of real quadratic fields, a continued
fraction algorithm is available, "ContFrac".

TorsionUnitGroup(K)

The torsion subgroup of the unit group of the number field K, i.e. its maximal
order. The torsion subgroup is returned as an abelian group T , together with a
map m from the group to the order O. The torsion subgroup will be cyclic, and is
generated by m(T.1).

UnitRank(K)

Return the unit rank of the ring of integers O of a number field K.

Ch. 34 NUMBER FIELDS 803

Example H34E14

In our field defined by x4 − 420 ∗ x2 + 40000, we obtain the class and unit groups as follows.

> R<x> := PolynomialRing(Integers());

> f := x^4 - 420*x^2 + 40000;

> K<y> := NumberField(f);

> C := ClassGroup(K);

> C;

Abelian Group of order 1

> U := UnitGroup(K);

> U;

Abelian Group isomorphic to Z/2 + Z + Z + Z

Defined on 4 generators

Relations:

2*U.1 = 0

> T := TorsionUnitGroup(K);

> T;

Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*T.1 = 0

34.6 Galois Theory

GaloisGroup(K)

Subfields(K)

AutomorphismGroup(K)

See Sections 38.2, 38.3 and 38.1.

804 GLOBAL ARITHMETIC FIELDS Part VII

34.7 Solving Norm Equations
Magma can solve norm, Thue, index form and unit equations. In this section, we will
only dicuss norm equations, other types of Diophantine equations are discussed in 37.8.

Norm equations in the context of number fields occur in many applications. While Magma
contains efficient algorithms to solve norm equations it is important to understand the
difference between the various types of norm equations that occur. Given some element θ
in a number field k together with a finite extension K/k, there are two different types of
norm equations attached to this data:
- Diophantine norm equations, that is norm equations where a solution x ∈ K is restricted

to a particular order (or any additive subgroup), and
- field theoretic norm equations where any element in x ∈ K with N(x) = θ is a solution.

While in the first case the number of different (up to equivalence) solutions is finite,
no such restriction holds in the field case. On the other hand, the field case often allows
to prove the existence or non-existence of solutions quickly, while no efficient tests exist
for the Diophantine case. So it is not surprising that different methods are applied for the
different cases.

NormEquation(F, m)

Primes eseq of prime ideals Default : []
Nice BoolElt Default : true

Given a number field F and an element m of the base field of F , this function returns
a boolean indicating whether an element α ∈ F exists such that NF/L(α), the norm
of α with respect to the base field L of F equals m, and if so, a sequence of length
1 of solutions α.

The field theoretic norm equations are all solved using S-units. Before discussing
some details, we outline the method.
- Determine a set S of prime ideals. We try to obtain a solution as a S-unit for

this set S.
- Compute a basis for the S-units
- Compute the action of the norm-map
- Obtain a solution as a preimage.

In general, no effective method is known for the first step. If the field is relative
normal however, it is known that is S generates the class group of F and if m is a S-
unit, then S is large enough (suitable in ([Coh00, 7.5]) [Fie97, Sim02, Gar80]. Thus
to find S we have to compute the class group of F . If a (conditional) class group
is already known, it is used, otherwise an unconditional class group is computed.
The initial set S consists of all prime ideals occurring in the decomposition of mZF .
Note that this step includes the factorisation of m and thus can take a long time is
m is large.

Next, we determine a basis for the S-unit group and the action of the norm on
it. This give the norm map as a map on the S-unit group as an abstract abelian
group.

Ch. 34 NUMBER FIELDS 805

Finally, the right hand side m is represented as an element of the S-unit group
and a solution is then obtained as a preimage under the norm map.

If Nice is true, then Magma attempts to find a smaller solution by applying a
LLL reduction to the original solution.

If Primes is give it must contain a list of prime ideals of L. Together with
the primes dividing m it is used to form the set S bypassing the computation of
an unconditional class group in this step. If L is not normal this can be used to
guarantee that S is large enough. Note that the class group computation is still
performed when the S-units are computed. Since the correctness of the S-unit
group (we need only p-maximality for all primes dividing the (relative) degree of
L) can be verified independently of the correctness of the class group, this can be
used to derive provable results in cases where the class group cannot be computed
unconditionally.

By default, the MaximalOrder(L) is used to compute the class group. If the
attribute NeqOrder is set on L it must contain a maximal order of L. If present,
this order will be used for all the subsequent computations.

NormEquation(m, N)

Raw BoolElt Default : false

Primes eseq of prime ideals Default : []
Let N be a map on the multiplicative group of some number field. Formally N
may also be defined on the maximal order of the field. This intrinsic tries to find a
pre-image for the element m under N .

This function works by realising N as a endomorphism of S-units for a suitable
set S.

If N is a relative norm and if L is (absolutely) normal then the set S as computed
for the field theoretic norm equation is guaranteed to be large enough to find a
solution if it exists. Note: this condition is not checked.

If Primes is given it will be supplemented by the primes dividing m and then
used as the set S.

If Raw is given, the solution is returned as an unevaluated power product. See
the example for details.

The main use of this function is for Galois theoretical constructions where the
subfields are defined as fields fixed by certain automorphisms. In this situation the
norm function can be realised as the product over the fixed group. It is therefore
not necessary to compute a (very messy) relative representation of the field.

SimNEQ(K, e, f)

S [RngOrdIdl] Default : false

HasSolution BoolElt Default : false

For a number field K and subfield elements e ∈ k1 and f ∈ k2, try to find a
solution to the simultaneous norm equations NK/k1(x) = e and NK/k2(x) = f . The
algorithm proceeds by first guessing a likely set S of prime ideals that will support

806 GLOBAL ARITHMETIC FIELDS Part VII

a solution - it is exists. Initially S will contain all ramified primes in K, the support
of e and f and enough primes to generate the class group of K. In case K is normal
over Q this set is large enough to support a solution if there is a solution at all.
For arbitrary fields that is most likely not the case. However, if S is passed in as a
parameter then the set used internally will contain at least this set. If HasSolution
is true, Magma will add primes to S until a solution has been found. This is useful
in situations where for some theoretical reason it is known that there has to be a
solution.

Example H34E15

We try to solve N(x) = 3 in some relative extension: (Note that since the larger field is a quadratic
extension, the second call tells us that there is no integral element with norm 3)

> x := PolynomialRing(Integers()).1;

> K := NumberField([x^2-229, x^2-2]);

> NormEquation(K, 3);

true [

1/3*K.1 - 16/3

]

Next we solve the same equation but come from a different angle, we will define the norm map
as an element of the group ring and, instead of explicitly computing a relative extension, work
instead with the implicit fixed field.

> F := AbsoluteField(K);

> t := F!K.2;

> t^2;

2

> A, _, mA := AutomorphismGroup(F);

> S := sub<A | [x : x in A | mA(x)(t) eq t]>;

> N := map<F -> F | x:-> &* [mA(y)(x) : y in S]>;

> NormEquation(3, N);

true [

-5/1*$.1 + 2/3*$.3

]

Finally, to show the effect of Raw:

> f, s, base := NormEquation(3, N:Raw);

> s;

[

(0 1 -1 1 -1 0 2 -1 -1 -1 -1 2 0 0)

]

> z := PowerProduct(base, s[1]);

> z;

-5/1*$.1 + 2/3*$.3

> N(z);

3

Ch. 34 NUMBER FIELDS 807

34.8 Places and Divisors
A place of a number field K, an object of type PlcNumElt, is a class of absolute values (val-
uations) that induce the same topology on the field. By a famous theorem of Ostrowski,
places of number fields are either finite, in which case they are in a one-to-one correspon-
dence with the on-zero prime ideals of the maximal order, or infinite. The infinite places
are identified with the embedding of K into R or with pairs of embeddings into C.

The group of divisors is formally the free group generated by the finite places and the
R-vectorspace generated by the infinite ones. Divisors are of type DivNumElt. Places have
formal parent of type PlcNum, while divisors belong to DivNum.

34.8.1 Creation of Structures

Places(K)

DivisorGroup(K)

The set of places of the number field K and the group of divisors of K respectively.

34.8.2 Operations on Structures

d1 eq d2 p1 eq p2

NumberField(P)

NumberField(D)

The number field for which P is the set of places or D is the group of divisors.

34.8.3 Creation of Elements

Place(I)

The place corresponding to prime ideal I.

Decomposition(K, p)

Decomposition(K, I)

A sequence of tuples of places and multiplicities. When a finite prime (integer) p
is given, the places and multiplicities correspond to the decomposition of p in the
maximal order of K. When the infinite prime is given, a sequence of all infinite
places is returned.

Decomposition(K, p)

For a number field K and a place p of the coefficient field of K, compute all places
(and their multiplicity) that extend p. For finite places this is equivalent to the
decomposition of the underlying prime ideal. The sequence returned will contain
the places of K extending p and their ramification index.

For an infinite place p, this function will compute all extensions of p in K. In
this case, the integer returned in the second component of the tuples will be 1 if p
is complex or if p is real and extends to a real place and 2 otherwise.

808 GLOBAL ARITHMETIC FIELDS Part VII

Decomposition(m, p)

Decomposition(m, p)

For an extension K/k of number fields (where k can be Q as well), given by the
embedding map m : k → K, decompose the place p of k in the larger field. In case
k = Q, the place is given as either a prime number or zero to indicate the infinite
place. The sequence returned contains pairs where the first component is a place
above p via m and the second is the ramification index.

InfinitePlaces(K)

A sequence containing all the infinite places of the number field K is returned.

Divisor(pl)

The divisor 1 ∗ pl for a place pl.

Divisor(I)

The divisor which is the linear combination of the places corresponding to the fac-
torization of the ideal I and the exponents of that factorization.

Divisor(x)

The principal divisor xO where O is the maximal order of the underlying number
field of which x is an element. In particular, this computes a finite divisor.

RealPlaces(K)

For a number field K a sequence containing all real (infinite) places is computed.
For an absolute field this are precisely the embeddings into R coming from the real
roots of the defining polynomial.

34.8.4 Arithmetic with Places and Divisors
Divisors and places can be added, negated, subtracted and multiplied and divided by
integers.

d1 + d2 - d d1 - d2 d * k d div k

34.8.5 Other Functions for Places and Divisors

Valuation(a, p)

The valuation of the element a of a number field at the place p.

Valuation(I, p)

The valuation of the ideal I at the finite place p.

Ch. 34 NUMBER FIELDS 809

Support(D)

The support of the divisor D as a sequence of places and a sequence of the corre-
sponding exponents.

Ideal(D)

The ideal corresponding to the finite part of the divisor D.

Evaluate(x, p)

The evaluation of the number field element x in the residue class field of the place p,
i.e. for a finite place p this corresponds to the image under the residue class field map
for the underlying prime ideal. For infinite places, this returns the corresponding
conjugate, ie. a real or complex number.

RealEmbeddings(a)

The sequence of real embeddings of the algebraic number a is computed, i.e. a is
evaluated at all real places of the number field.

RealSigns(a)

A sequence containing ±1 depending on whether the evaluation of the number field
element a at the corresponding real place is positive or negative.

IsReal(p)

For an infinite place p, returns true if the corresponding embedding is real, i.e. if
Evaluate at p will give real results.

IsComplex(p)

For an infinite place p, return true if the corresponding embedding is complex, i.e.
if Evaluate at p will generally yield complex results.

IsFinite(p)

For a place p of a number field, return if the place is finite, i.e. if it corresponds to
a prime ideal.

IsInfinite(p)

For a place p of a number field return if the place is infinite, ie. if it corresponds to
an embedding of the number field into the real or complex numbers. If the place is
infinite, the index of the embedding it corresponds to is returned as well.

Extends(P, p)

For two places P of K and p of k where K is an extension of k, check whether
P extends p. For finite places, this is equivalent to checking if the prime ideal
corresponding to P dives, in the maximal order of K the prime ideal of p. For
infinite places true implies that for elements of k, evaluation at P and p will give
identical results.

810 GLOBAL ARITHMETIC FIELDS Part VII

InertiaDegree(P)

Degree(P)

For a place P of a number field, return the inertia degree of P . That is for a finite
place, return the degree of the residue class field over it’s prime field, for infinite
places it is always 1.

Degree(D)

For a divisor D of a number field, the degree is the weighted sum of the degrees of
the supporting places, the weights being the multiplicities.

NumberField(P)

NumberField(D)

For a place P or divisor D of a number field, return the underlying number field.

ResidueClassField(P)

For a place P of a number field, compute the residue class field of P . For a finite
place this will be a finite field, namely the residue class field of the underlying prime
ideal. For an infinite place, the residue class field will be the field of real or complex
numbers.

UniformizingElement(P)

For a finite place P of a number field, return an element of valuation 1. This will
be the uniformizing element of the underlying prime ideal as well.

LocalDegree(P)

The degree of the completion at the place P , i.e. the product of the inertia degree
times the ramification index.

RamificationIndex(P)

The ramification index of the place P . For infinite real places this is 1 and 2 for
complex places.

DecompositionGroup(P)

For a place P of a normal number field, return the decomposition group as a sub-
group of the (abstract) automorphism group.

Ch. 34 NUMBER FIELDS 811

34.9 Characters

There is an ability to use characters on number fields, similar to Dirichlet characters over
the integers. These are implemented via DirichletGroup on number field elements, and
HeckeCharacterGroup on ideals. The former is the dual of the RayResidueRing of an ideal,
and the latter is the dual of the RayClassGroup of an ideal. Arithmetic on groups can be
done multiplicatively, and the characters can be evaluated at suitable field elements and
ideals. The sub constructor, along with + and meet for subgroups on the same modulus,
should also work.

The associated types are GrpDrchNF and GrpDrchNFElt, GrpHecke and GrpHeckeElt.
The number field must be an absolute extension of the rationals.

34.9.1 Creation Functions

DirichletGroup(I)

DirichletGroup(I, oo)

Given an ideal I of the integer ring of the number fieldK and a set of real places ofK,
the intrinsic DirichletGroup will return the dual group to the RayResidueRing of
the specified information.

HeckeCharacterGroup(I)

HeckeCharacterGroup(I, oo)

Given an ideal I of the integer ring of the number fieldK and a set of real places ofK,
the intrinsic HeckeCharacterGroup will return the dual group to the RayClassGroup
of the specified information.

UnitTrivialSubgroup(G)

Given a group of Dirichlet characters, return the subgroup that is trivial on the
image of the field units in the residue ring.

TotallyUnitTrivialSubgroup(G)

Given a group of Dirichlet characters, return the subgroup that is totally trivial on
the image of the field units in the residue ring. That is, it is trivial at each place
individually.

34.9.2 Functions on Groups and Group Elements

Modulus(G)

Modulus(G)

Modulus(chi)

Modulus(chi)

Returns the modulus ideal and a (possibly empty) sequence of real places.

812 GLOBAL ARITHMETIC FIELDS Part VII

Order(chi)

Order(psi)

Returns the order of a Dirichlet or Hecke character.

Random(G)

Random(G)

Returns a random element of a Dirichlet or Hecke group.

Domain(G)

Domain(G)

Returns the number field that is the domain for the Dirichlet character.

Domain(G)

Domain(G)

Returns the set of ideals that is the domain for the Hecke character.

Decomposition(chi)

Returns a list of characters of prime power modulus (and real places) whose product
(after extension to the original DirichletGroup) is the given Dirichlet character.

Conductor(chi)

Conductor(psi)

The product of the moduli of the all nontrivial characters in the decomposition of
the given Dirichlet character, given as an ideal and a set of real places. Similarly
with Hecke characters, where, in fact, one takes the DirichletRestriction of the
Hecke character, and decomposes this.

AssociatedPrimitiveCharacter(chi)

AssociatedPrimitiveCharacter(psi)

The primitive Dirichlet character associated to the one that is given, which can be
obtained by multiplying all the nontrivial characters in the decomposition. Similarly
with Hecke characters, for which this decomposes the DirichletRestriction to
finds its underlying primitive part, and then takes the HeckeLift of this.

Ch. 34 NUMBER FIELDS 813

Restrict(chi, D)

Restrict(psi, H)

Restrict(chi, I)

Restrict(psi, I)

Restrict(chi, I, oo)

Restrict(psi, I, oo)

Restrict(G, D)

Restrict(G, H)

Restrict(G, I)

Restrict(G, I)

Restrict(G, I, oo)

Restrict(G, I, oo)

Given a Dirichlet character modulo an ideal I and a Dirichlet character group mod-
ulo J for which I ⊆ J (including behavior at real places when specified) with the
character trivial on (J/I)?, this returns the restricted character on J . Similarly
with Hecke characters, and with an ideal (with possible real places) at the second
argument. Also with a group of characters as the first argument.

TargetRestriction(G, C)

TargetRestriction(H, C)

Given a group of Dirichlet or Hecke characters and a cyclotomic field, return the
subgroup of characters whose image is contained in the cyclotomic field.

SetTargetRing(∼chi, e)

SetTargetRing(∼psi, e)

Given a Dirichlet or Hecke character and a suitable root of unity, modify the char-
acter to take values according to this root unity. The ring element must be a root
of unity, and its order must be a multiple of the order of the character. Writing
m = ord(χ), if the character previously had χ(u) = ζv

m, it will now have χ(u) = (eq)v

where q is ord(e)/m.

Extend(chi, D)

Extend(psi, H)

Extend(chi, I)

Extend(psi, I)

Extend(chi, I, oo)

Extend(psi, I, oo)

814 GLOBAL ARITHMETIC FIELDS Part VII

Extend(G, D)

Extend(G, H)

Extend(G, I)

Extend(G, I)

Extend(G, I, oo)

Extend(G, I, oo)

Given a Dirichlet character modulo I and a Dirichlet character group modulo J for
which J ⊆ I (again possibly including the real places), this function returns the
induced character on J , that is, the one that is trivial on (I/J)?. A second return
value corresponds to a kernel. Similarly with Hecke characters, and with an ideal
(with possible real places) at the second argument. Also with a group of characters
as the first argument.

34.9.3 Predicates on Group Elements

IsTrivial(chi)

IsTrivial(psi)

Returns whether the given character corresponds to the trivial element in the char-
acter group.

IsTrivialOnUnits(chi)

Returns whether a Dirichlet character is trivial on the units of the number field;
this determines whether the character can lift to a Hecke character on the ideals.

IsOdd(chi)

Returns whether a Dirichlet character χ has χ(−1) = −1.

IsEven(chi)

Returns whether a Dirichlet character χ has χ(−1) = +1.

IsTotallyEven(chi)

Returns whether a Dirichlet character χ has χp(−1) = +1 for each χp in its decom-
position.

IsPrimitive(chi)

IsPrimitive(psi)

Returns whether a Dirichlet character is primitive, that is, whether its conductor
and modulus are equal.

Ch. 34 NUMBER FIELDS 815

34.9.4 Passing between Dirichlet and Hecke Characters

HeckeLift(chi)

Given a Dirichlet character that is trivial on the units of the number field, this
functions returns a Hecke character that extends its domain to all the ideals of the
integer ring. Also returns a kernel, so as to span the set of all possible lifts.

DirichletRestriction(psi)

Given a Hecke character on the ideals of the integer ring of a number field, this
functions returns the Dirichlet restriction of it on the field elements.

NormInduction(K, chi)

Given a Dirichlet character χ over the rationals, induce it to the number field K.
That is, find ψ with ψ(a) = χ(Na) with ψ primitive.

Example H34E16

This example tries to codify the terminology via a standard example with Dirichlet characters
over the rationals. We construct various characters modulo 5.

> Q := NumberField(Polynomial([-1, 1]) : DoLinearExtension);

> O := IntegerRing(Q);

> I := 5*O;

> DirichletGroup(I);

Abelian Group isomorphic to Z/4

Group of Dirichlet characters of modulus of norm 5 mapping to

Cyclotomic Field of order 4 and degree 2

The above group is the Dirichlet characters modulo 5. However, the odd characters are not
characters on ideals, as they are nontrivial on the units. To pass to the Hecke characters, we
need to enlarge the modulus to consider embeddings at the real place. Note that this will give
four more characters, corresponding to multiplying the above by the character that has χ as +1
on positive elements and −1 on negative elements; such characters will not be periodic in the
traditional sense of Dirichlet characters, but are still completely multiplicative.

> D := DirichletGroup(I, [1]); D; // include first real place

Abelian Group isomorphic to Z/2 + Z/4

Group of Dirichlet characters D of modulus of norm 5 and infinite

places [1] mapping to Cyclotomic Field of order 4 and degree 2

> [IsTrivialOnUnits(x) : x in Elements(D)];

[true, false, false, true, true, false, false, true]

> HeckeLift(D.1); // non-trivial on units

Runtime error in ’HeckeLift’: Character is nontrivial on the units

> hl := HeckeLift(D.1 * D.2);

> hl(2);

zeta_4

> hl(2) eq (D.1 * D.2)(2);

816 GLOBAL ARITHMETIC FIELDS Part VII

true

So only half of the 8 completely multiplicative characters on field elements lift to characters on
ideals, and these correspond exactly the standard four Dirichlet characters modulo 5, though
evinced in a different guise.

DirichletCharacter(I, B)

DirichletCharacter(I, oo, B)

DirichletCharacter(G, B)

HeckeCharacter(I, B)

HeckeCharacter(I, oo, B)

HeckeCharacter(G, B)

RequireGenerators BoolElt Default : true

Given either an ideal (and also possibly a set of real infinite places) or a
DirichletGroup, and a tuple of 2-tuples each containing a field element and a
element of Integers(m) for some m, construct a Dirichlet character that sends each
field element to the cyclotomic unit corresponding to the residue element. The sec-
ond member of each 2-tuple can alternatively be an element of some cyclotomic
field.

The parameter RequireGenerators demands that the given field elements should
generate the RayResidueRing of the ideal. The second return argument is a sub-
group of the ambient DirichletGroup by which the returned character can be
translated and still retain the same values on the given elements.

Similarly for HeckeCharacter – there the first element in each 2-tuple should
be an ideal of the field, and RequireGenerators demands that these generate the
RayClassGroup of the ideal.

Example H34E17

We define a character on 5OK that sends
√−23 to ζ2

8 (note that
√−23 has order 8 in the

RayResidueRing to this modulus).

> K := QuadraticField(-23);

> I := 5*IntegerRing(K);

> chi, SG := DirichletCharacter

> (I, <<K.1, Integers(8)!2>> : RequireGenerators := false);

> chi(K.1);

zeta_4

> (SG.1 * chi)(K.1);

zeta_4

And then we define one that sends
√−23 to ζ6

8 and (3 + 2
√−23), an element of order 6 in the

RayResidueRing, to ζ8
24.

> data := <<K.1, Integers(8)!6>, <3+2*K.1,Integers(24)!8>>;

Ch. 34 NUMBER FIELDS 817

> chi, SG := DirichletCharacter(I, data);

> chi(K.1);

-zeta_4

> chi(3+2*K.1);

zeta_3

> #SG; // this subgroup SG is trivial, as the data determine chi

1

Note that we can replace the Integers(8)!6 in the first tuple by ζ6
8 .

> C<zeta8> := CyclotomicField(8);

> data2 := <<K.1, zeta8^6>, <3+2*K.1,Integers(24)!8>>;

> chi2 := DirichletCharacter(I, data2);

> chi eq chi2;

true

Now we give a example with Hecke characters over a cubic field. We also note that the evaluation
of a character (either Dirichlet or Hecke) can be obtained in ”raw” form as an element in a residue
ring via the use of the Raw vararg.

> _<x> := PolynomialRing(Integers());

> K<s> := NumberField(x^3-x^2+7*x-6); // #ClassGroup(K) is 5

> I := Factorization(11*IntegerRing(K))[2][1]; // norm 121

> HG := HeckeCharacterGroup(I,[1]); // has 20 elements

> f3 := Factorization(3*IntegerRing(K))[1][1]; // order 10

> data := < <f3, Integers(10)!7> >;

> psi := HeckeCharacter(HG, data : RequireGenerators := false);

> psi(f3);

-zeta_10^2

> psi(f3) eq CyclotomicField(10).1^7;

true

> ’@’(f3,psi : Raw); // get Raw form of evaluation

14

> Parent($1);

Residue class ring of integers modulo 20

> f113 := Factorization(113*IntegerRing(K))[1][1]; // order 4

> data2 := < <f113, Integers(4)!3> >;

> psi := HeckeCharacter(HG, <data[1], data2[1]>);

> psi(f113);

-zeta_4

818 GLOBAL ARITHMETIC FIELDS Part VII

CentralCharacter(chi)

CentralCharacter(psi)

Given a Dirichlet or Hecke character, compute its central character down to the
rationals. This is defined by computing a Dirichlet character that is defined over Q
and agrees with the given character on a set of generators of the residue ring of the
norm of the modulus of the given character. The AssociatedPrimitiveCharacter
of this is then returned. It should have the same value as the original character on
all unramified primes (at least). Note that the central character will always be a
Dirichlet character, as the class number of the rationals is 1.

Example H34E18

> K := NumberField(Polynomial([4,3,-1,1])); // x^3-x^2+3*x+4

> f7 := Factorization(7*Integers(K))[1][1];

> G:= DirichletGroup(f7^2,[1]);

> chi := G.1*G.2*G.3;

> cc := CentralCharacter(chi); Conductor(cc);

Principal Ideal, Generator: [49] // conductor 49

[1] // infinite place

> cc := CentralCharacter(chi^14); Conductor(cc);

Principal Ideal, Generator: [7] // conductor 7

[] // no infinite places

> ////////////////

> K := NumberField(Polynomial([-10,-9,-10,1]));

> #ClassGroup(K); // C7 class group

7

> f5 := Factorization(5*Integers(K))[1][1];

> H := HeckeCharacterGroup(f5,[1]);

> cc:=CentralCharacter(H.1); Conductor(cc);

Principal Prime Ideal, Generator: [5] // conductor 5

[1] // infinite place

> Order(H.1), Order(cc);

28 4

> IsTrivial(CentralCharacter(H.1^4));

true

DirichletCharacterOverNF(chi)

DirichletCharacterOverQ(chi)

These are utility functions to pass between the two types of Dirichlet character over
Q in Magma. The first takes a Dirichlet character over the Rationals() and returns
one over the rationals as a number field, and the second reverses this.

Ch. 34 NUMBER FIELDS 819

Example H34E19

> SetSeed(1);

> G := DirichletGroup(16*3^2*5^2*7*11, CyclotomicField(2^6*3*5));

> #G;

57600

> chi := Random(G);

> Order(chi);

30

> psi := DirichletCharacterOverNF(chi);

> Order(psi);

30

> #Parent(psi)‘supergroup;

57600

> &and[chi(p) eq psi(p) : p in PrimesUpTo(1000)];

true

> DirichletCharacterOverQ(psi) eq chi;

true

34.9.5 L-functions of Hecke Characters
Given a primitive Hecke character ψ, one can define the associated L-function as

L(ψ, s) =
∏

p

(
1− ψ(p)/Nps

)−1
,

and this satisfies a functional equation whose conductor is the product of the conductor
of ψ and the discriminant of (the integer ring) of the number field for ψ.

Example H34E20

> _<x> := PolynomialRing(Integers());

> K<s> := NumberField(x^5 - 2*x^4 + 2*x + 2);

> I2 := Factorization(2 * IntegerRing(K)) [1][1]; // ideal above 2

> I11 := Factorization(11 * IntegerRing(K)) [1][1]; // above 11

> I := I2*I11; Norm(I);

22

> H := HeckeCharacterGroup(I, [1]);

> #H;

2

> psi := H.1; IsPrimitive(psi);

false

> prim := AssociatedPrimitiveCharacter(psi); Norm(Conductor(prim));

11

> L := LSeries(prim);

> LSetPrecision(L, 10); LCfRequired(L); // number of terms needed

820 GLOBAL ARITHMETIC FIELDS Part VII

4042

> CheckFunctionalEquation(L); // 2 or 3 seconds

-3.492459655E-10

34.9.6 Hecke Grössencharacters and their L-functions
A limited ability to compute Grössencharacters and their L-functions exists, but it

has only really been tested for complex quadratic fields and a bit for Q(ζ5). These are
“quasi-characters” in that their image is not restricted to the unit circle (and 0). The
implementation in Magma handles the “algebraic” characters of this sort, or those of
type A0; it also requires that the field of definition be a CM-field (an imaginary quadratic
extension of a totally real field).

The natural definition of Grössencharacters would be on a coset of the dual group of
the RayResidueRing extended by the ClassGroup, without any modding out by units
(which gives the RayClassGroup). However, the Magma implementation uses a Hecke
character combined with an auxiliary Dirichlet character to simulate this. Arithmetic with
Grössencharacters in also possible, even though there is no underlying group structure.
However, equality with Grössencharacters is not implemented (one needs to check that
various class group representatives are compatible, etc.).

Grossencharacter(psi, chi, T)

RawEval(I, GR)

Given a Hecke character ψ and a Dirichlet character χ (of the same modulus) and
a compatible ∞-type T return the associated Grössencharacter.

The ∞-type is a sequence of pairs of integers which correspond to embeddings,
such that

ψ
(
(α)

)
=

#T∏

i=1

(ασi)T [i][1](ᾱσi)T [i][2]

for all α that are congruent to 1 modulo the modulus of ψ. For a Grössencharacter
to exist it follows that the ∞-type must trivialise all (totally positive) units that are
congruent to 1 modulo the modulus of ψ. Each pair in T must have the same sum.

The Dirichlet character χ must correspond to the action on the image of the
UnitGroup in the RayResidueRing of the modulus. In particular, for every unit u
we must have that

χ(u) =
#T∏

i=1

(uσi)T [i][1](ūσi)T [i][2],

and since the ∞-type is multiplicative, we need only check this on generators of the
units.

Evaluating a Grössencharacter returns a complex number, corresponding to some
choice of internal embeddings. The use of RawEval on an ideal will return an element
in an extension of the fieldK (to which the∞-type is then applied) and two elements
in cyclotomic fields, corresponding to evaluations for χ and ψ respectively.

Ch. 34 NUMBER FIELDS 821

Grossencharacter(psi, T)

Same as above, but Magma will try to compute a compatible Dirichlet character χ
for the given data. If there is more than one possibility, an arbitrary choice could
be made.

Conductor(psi)

Modulus(psi)

IsPrimitive(psi)

AssociatedPrimitiveGrossencharacter(psi)

The conductor of the Grössencharacter is the conductor of the product of the Dirich-
let part with the DirichletRestriction of the Hecke part. A Grössencharacter
is primitive if its modulus is the same as the conductor. When taking L-functions,
as before the conductor is multiplied by the discriminant of the integer ring of the
field.

Extend(psi, I)

Restrict(psi, I)

Extension and restriction of a Grössencharacter. Note that the second argument is
an ideal, unlike the Dirichlet/Hecke cases, where it is a group of characters.

CentralCharacter(psi)

Compute the central character (down to Q) of a Grössencharacter, normalizing the
result to be weight 0, and returning it as a Dirichlet character (over Q as a number
field).

GrossenTwist(Y, D)

Given a Grossencharacter Y and a list D of data of pairs (a, r), find a twist Ψ of Y
(by a Hilbert character) such that Ψ(a) = r. This intrinsic checks that the data D
uniquely specifies the character, and the r should be in Z.

Example H34E21

First, an example of [1, 0]-type Grössencharacters on the Gaussian field, with modulus p3
2 where

p2 is the (ramified) prime above 2. This induces the L-function for the congruent number curve.

> K<i> := QuadraticField(-1);

> I := (1+i)^3*IntegerRing(K);

> HG := HeckeCharacterGroup(I, []);

> DG := DirichletGroup(I, []); #DG;

4

> GR := Grossencharacter(HG.0, DG.1^3, [[1,0]]);

> L := LSeries(GR); CheckFunctionalEquation(L);

1.57772181044202361082345713057E-30

> CentralValue(L);

822 GLOBAL ARITHMETIC FIELDS Part VII

0.655514388573029952616209897475

> CentralValue(LSeries(EllipticCurve("32a")));

0.655514388573029952616209897473

Example H34E22

An example with the canonical Grössencharacter for K = Q(
√−23). The ramification here is

only at the prime above 23.

> K<s> := QuadraticField(-23);

> I := Factorization(23*IntegerRing(K))[1][1]; // ramified place

> HG := HeckeCharacterGroup(I, []);

> DG := DirichletGroup(I, []); #DG;

22

> GR := Grossencharacter(HG.0, DG.1^11, [[1,0]]); // canonical character

> CheckFunctionalEquation(LSeries(GR));

-5.17492753824983744350093938826E-28

> H := K‘extension_field; H; // defined by internal code

Number Field with defining polynomial y^3 + 1/2*(s + 3) over K

The values of the Grössencharacter are in the given field extension of K. We can also twist the
Grössencharacter by a Hecke character on I, either via the Grossencharacter intrinsic, or by
direct multiplication.

> i2 := Factorization(2*IntegerRing(K))[1][1]; // ideal of norm 2

> (GR*HG.1)(i2); // evaluation at i2

-0.140157638956246665944180880120 - 1.40725116316960648195556086783*i

> GR2 := Grossencharacter(HG.1, DG.1^11, [[1,0]]); // psi over zeta_11

> GR2(i2);

-0.140157638956246665944180880120 - 1.40725116316960648195556086783*i

> RawEval(i2,GR2); // first value is in the cubic extension of K

H.1

1

zeta_33^4

> CheckFunctionalEquation(LSeries(GR2));

-7.09974814698910624870555708755E-30

Example H34E23

An example from Fernando Rodriguez Villegas where the Grössencharacter yields an L-function
with even functional equation, but vanishing central value. This is the cube of the canonical
character on Q(

√−59), which has class number 3. The L-function can be alternatively realised
from a weight 4 modular form of level 592.

> K := QuadraticField(-59);

> I := Factorization(59*IntegerRing(K))[1][1];

> H := HeckeCharacterGroup(I);

> DG := DirichletGroup(I);

> GR := Grossencharacter(H.0, DG.1^29, [[3,0]]); // cube of canonical char

Ch. 34 NUMBER FIELDS 823

> L := LSeries(GR);

> CheckFunctionalEquation(L);

0.000000000000000000000000000000

> Sign(L);

1.00000000000000000000000000000

> CentralValue(L);

3.51858026759864075475017925650E-30

> LSetPrecision(L, 9);

> LTaylor(L, 2, 3); // first 3 terms of Taylor series about s=2

-1.09144041E-12 + 9.82515510E-11*z + 2.87637101*z^2 - 7.65817878*z^3 + ...

The same Grössencharacter can be obtained from cubing the canonical character (of type [1, 0]).

> GR3 := Grossencharacter(H.0, DG.1^29, [[1,0]])^3;

> CentralValue(LSeries(GR3));

3.51858026759864075475017925650E-30

Example H34E24

An example with Q(ζ5), comparing the central value to the periods derived from Γ-values.

> _<x> := PolynomialRing(Rationals());

> K<z5> := NumberField(x^4+x^3+x^2+x+1);

> p5 := Factorization(5*IntegerRing(K))[1][1]; // ramified prime above 5

> H := HeckeCharacterGroup(p5^2);

> DG := DirichletGroup(p5^2); // need p5^2 to get chi with this oo-type

> chi := DG.1^2*DG.2; // could alternatively have Magma compute this

> GR := Grossencharacter(H.0, chi, [[3,0],[1,2]]);

We can compute that this ∞-type sends ζ5 to (ζ1
5)3 · (ζ4

5)0 · (ζ2
5)1 · (ζ3

5)2 = ζ11
5 under the default

embedding, and thus the ideal needs to afford a character of order 5 for a Grössencharacter to
exist.

> L := LSeries(GR);

> LSeriesData(L); // Conductor is Norm(p5^2) * disc(K) = 5^2 * 5^3

<4, [0, -1, 1, 0], 3125, ... >;

> CheckFunctionalEquation(L); // functional equation works

0.000000000000000000000000000000

> CentralValue(L); // same as Evaluate(L,2)

1.25684568045898366613593980559

> Gamma(1/5)^3 * Gamma(2/5)^3 / Gamma(3/5)^2 / Gamma(4/5)^2 / 5^(7/2);

1.25684568045898366613593980558

The [[3, 0], [2, 1]] ∞-type sends ζ5 to ζ3+0+2·2+3
5 = 1, but we still need p5 in the modulus to

trivialise the units of infinite order.

> H := HeckeCharacterGroup(1 * IntegerRing(K)); // try conductor 1

> GR := Grossencharacter(H.0, [[3,0],[2,1]]);

Runtime error in ’Grossencharacter’:

oo-type should be trivial on all totally positive units that are 1 mod I

Fails for -zeta_5^2 - 1 which gives -1.000000000 - 3.293785801E-101*$.1

824 GLOBAL ARITHMETIC FIELDS Part VII

> H := HeckeCharacterGroup(p5); // conductor of norm 5

> GR := Grossencharacter(H.0, [[3,0],[2,1]]); // finds a character

> L := LSeries(GR); // CheckFunctionalEquation(L);

> PI := Pi(RealField());

> CentralValue(L); // now recognise as a product via logs and LLL

0.749859246433372123005585683300

> A := [Gamma(1/5), Gamma(2/5), Gamma(3/5), Gamma(4/5), 5, PI, $1];

> LOGS := [ComplexField() ! Log(x) : x in A];

> LinearRelation(LOGS : Al := "LLL");

[-14, 2, -2, 14, 15, -4, 4]

Example H34E25

Twisting a Grössencharacter by a Hilbert character is equivalent to changing the embedding.

> K := QuadraticField(-39);

> I := 39*IntegerRing(K);

> F := &*[f[1] : f in Factorization(I)]; // ideal of norm 39

> H := HeckeCharacterGroup(F); H;

Abelian Group isomorphic to Z/4 + Z/12 given as Z/4 + Z/12

> Norm(Conductor(H.1)); // H.1 is a Hilbert character of norm 1

1

> GR := Grossencharacter(H.0, [[3,0]]); // third power

There are four Hilbert characters here (from the class group of K), and we twist the
Grössencharacter by each.

> L0 := LSeries(AssociatedPrimitiveGrossencharacter(GR));

> L1 := LSeries(AssociatedPrimitiveGrossencharacter(GR*H.1));

> L2 := LSeries(AssociatedPrimitiveGrossencharacter(GR*H.1^2));

> L3 := LSeries(AssociatedPrimitiveGrossencharacter(GR*H.1^3));

> Ls := [L0, L1, L2, L3]; for L in Ls do LSetPrecision(L, 10); end for;

> for L in Ls do [CentralValue(L), Sign(L)]; end for;

[1.335826177, 1.000000000 + 2.706585223E-10*i]

[-1.373433032*i, -0.9999999999 - 6.351223882E-11*i]

[1.335826177, 1.000000000 - 2.706585223E-10*i]

[1.373433032*i, -0.9999999999 + 6.351223882E-11*i]

The embedding information is stored internally in K’Hip, and we modify this directly to get the
same L-values via a different method.

> K‘Hip; // extension of infinite place of K

[[1, 1] place at infinity]

> IP := InfinitePlaces(K‘extension_field); IP;

[[1, 1] place at infinity, [1, 2] place at infinity,

[1, 3] place at infinity, [1, 4] place at infinity]

> for ip in IP do K‘Hip := [ip]; // change ip, but use same GR

> L := LSeries(AssociatedPrimitiveGrossencharacter(GR));

> LSetPrecision(L, 10); [CentralValue(L), Sign(L)]; end for;

[1.335826177, 1.000000000 - 2.706585223E-10*i]

Ch. 34 NUMBER FIELDS 825

[1.373433032*i, -0.9999999999 + 6.351223882E-11*i]

[1.335826177, 1.000000000 - 2.706585223E-10*i]

[-1.373433032*i, -0.9999999999 - 6.351223882E-11*i]

Finally, we can note that all the Hilbert characters have sign +1 in their functional equations,
though two of the twists of the Grössencharacter have sign −1.

> Ls := [LSeries(AssociatedPrimitiveCharacter(H.1^k)) : k in [1..4]];

> [Sign(L) where _:=CheckFunctionalEquation(L) : L in Ls];

[0.999999999999999999999999999997, 1.00000000000000000000000000000,

0.999999999999999999999999999997, 1.00000000000000000000000000000]

Example H34E26

A final example with characters of trivial conductor, here of type [2, 0] in Q(
√−23).

> K<s> := QuadraticField(-23); // class number 3

> I := 1*IntegerRing(K);

> HG := HeckeCharacterGroup(I, []);

> GR := Grossencharacter(HG.0, [[2,0]]); // of oo-type (2,0)

> Evaluate(LSeries(GR), 2); // value at edge of critical strip

1.23819100212426040400794384795

> Evaluate(LSeries(GR*HG.1), 2); // twist by nontrivial Hecke char

0.670337208665839403747922477469

> Evaluate(LSeries(GR*HG.1^2), 2);

1.06110583266449728309907405960

The product of these three L-values should be related to values of the Γ-function at k/23 for
integral k. (One could alternatively relate these L-values to periods of an elliptic curve over the
Hilbert class field of K having ramification only above 23.)

> SetDefaultRealFieldPrecision(100);

> e1 := Evaluate(LSeries(GR : Precision:=100), 2);

> e2 := Evaluate(LSeries(GR*HG.1 : Precision:=100), 2);

> e3 := Evaluate(LSeries(GR*HG.1^2 : Precision:=100), 2);

> GAMMA := [Gamma(i/23) : i in [1..22]];

> A := GAMMA cat [3,23,Pi(RealField())] cat [e1,e2,e3];

> LOGS := [ComplexField()!Log(x) : x in A];

> LinearRelation(LOGS : Al:="LLL");

[2, 2, 2, 2, -2, 2, -2, 2, 2, -2, -2,

2, 2, -2, -2, 2, -2, 2, -2, -2, -2, -2,

-2, -7, 6, -2, -2, -2]

> &*[GAMMA[i]^(2*(DirichletGroup(23).1)(i)) : i in [1..22]];

24723927.96264290790447830542942451626433185347196157309315591128

> 3^2 * 23^7 / Pi(RealField())^6 * (e1*e2*e3)^2;

24723927.96264290790447830542942451626433185347196157309315591128

826 GLOBAL ARITHMETIC FIELDS Part VII

Example H34E27

An example from [vGvS93, §8.8]. Here the Grössencharacter is on an ideal of norm 24 in the
cyclotomic field Q(ζ8). The Euler factors will factor in various fields. In Table 7.6 of the cited
paper, one notes that the coefficients satisfy a17 = −180 and a172 = 15878.

> Q<z8> := CyclotomicField(8);

> p2 := Factorization(2*Integers(Q))[1][1];

> G := HeckeCharacterGroup(p2^4);

> psi := G.0; // trivial

> GR := Grossencharacter(psi, [[3,0],[1,2]]);

> L:=LSeries(GR);

> CheckFunctionalEquation(L);

6.31088724176809444329382852226E-30

> Factorization(EulerFactor(L,7 : Integral)); // p is 7 mod 8

[<343*x^2 + 1, 2>]

> K<s2> := QuadraticField(-2);

> _<t> := PolynomialRing(K);

> Factorization(EulerFactor(L,3 : Integral),K); // 3 mod 8

[<t^2 + 1/81*(-2*s2 - 1), 1>, <t^2 + 1/81*(2*s2 - 1), 1>]

> K<i> := QuadraticField(-1);

> _<t> := PolynomialRing(K);

> Factorization(EulerFactor(L,5 : Integral),K); // 5 mod 8

[<t^2 + 1/3125*(-24*i + 7), 1>, <t^2 + 1/3125*(24*i + 7), 1>]

> EulerFactor(L,17 : Integral); // -180 and 15878 as desired

24137569*x^4 - 884340*x^3 + 15878*x^2 - 180*x + 1

Example H34E28

This examples exhibits the use of GrossenTwist, and links a Grössencharacter to a hypergeometric
datum. The chosen t-value is such that the degree 3 L-function is imprimitive, and it splits as
L(χ12, s+1)L(Ψ, s), where Ψ is defined over Q(

√−84), and has trivial modulus and [2, 0] ∞-type;
there are still four such characters (the class number is 4), and we want the one with Ψ(p2) = 2
and Ψ(p3) = −3. We then check the degree 3 Euler factors on all good primes up to 100.

> P := PrimesInInterval(5,100);

> H := HypergeometricData([2,3],[1,6]);

> t := -27;

> ZT := Translate(LSeries(KroneckerCharacter(12)),1);

> K := QuadraticField(-84);

> DATA2 := <Factorization(2*Integers(K))[1][1],2>;

> DATA3 := <Factorization(3*Integers(K))[1][1],-3>;

> G := HeckeCharacterGroup(1*Integers(K));

> GR := Grossencharacter(G.0,[[2,0]]);

> LGR := LSeries(GrossenTwist(GR,[* DATA2, DATA3 *]));

> PROD := LGR*ZT;

> assert &and[EulerFactor(PROD,p : Integral) eq

> EulerFactor(H,t,p) : p in P];

Ch. 34 NUMBER FIELDS 827

34.10 Number Field Database

An optional database of number fields may be downloaded from the Magma website. This
section defines the interface to that database.

There are databases for number fields of degrees 2 through 9. In the case of degree
2 the enumeration is complete in the discriminant range (discriminants of absolute value
less than a million); the other databases include fields with small (absolute value of)
discriminant, as well as various other fields that may be of interest. The selection of fields
is eclectic, and it may well be that certain “obvious” ones are missing.

For each number field in the database, the following information is stored and may be
used to limit the number fields of interest via the sub constructor: The discriminant; the
signature; the Galois group; the class number; and the class group.

34.10.1 Creation

NumberFieldDatabase(d)

Returns a database object for the number fields of degree d.

sub< D | dmin, dmax : parameters >

sub< D | dabs : parameters >

sub< D | : parameters >

Signature [RngIntElt] Default :

Signatures [[RngIntElt]] Default :

GaloisGroup RngIntElt or GrpPerm Default :

ClassNumber RngIntElt Default :

ClassNumberLowerBound RngIntElt Default : 1
ClassNumberUpperBound RngIntElt Default : ∞
ClassNumberBounds [RngIntElt] Default : [1,∞]
ClassGroup [RngIntElt] Default :

ClassSubGroup [RngIntElt] Default : []
ClassSuperGroup [RngIntElt] Default :

SearchByValue BoolElt Default : false

Returns a sub-database of D, restricting (or further restricting, if D is already a
sub-database of the full database for that degree) the contents to those number fields
satisfying the specified conditions. Note that (with the exception of SearchByValue,
which does not actually limit the fields in the database) it is not possible to “undo”
restrictions with this constructor — the results are always at least as limited as D
is.

The valid non-parameter arguments are up to two integers specifying the desired
range of discriminants in the result. If two integers are provided these are taken as
the lower (dmin) and upper (dmax) bounds on the discriminant. If one integer is

828 GLOBAL ARITHMETIC FIELDS Part VII

provided it is taken as a bound (dabs) on the absolute value of the discriminant. If
no integers are provided then the discriminant range is the same as for D.

The parameters Signature or Signatures may be used to specify the desired
signature or signatures to match. A signature is specified as a sequence of two
integers [s1, s2] where s1 + 2s2 = d.

The parameter GaloisGroup may be used to specify the desired Galois group of
the number field. It may be given as either a permutation group, or as the explicit
index of this Galois group in the transitive groups database. (i.e., the first return
value of TransitiveGroupIdentification.)

It is possible to require certain divisibility conditions on the class number. In-
ternally, there are lower and upper bounds on this value, such that a number field
will only match if its class number is divisible by the lower bound and divides the
upper bound. These bounds may be set individually using ClassNumberLowerBound
or ClassNumberUpperBound; setting ClassNumber is equivalent to setting both
bounds to the same value. Both values may be specified at once by setting
ClassNumberBounds to the sequence of the lower and upper bounds.

When finer control is desired, it is possible to specify desired sub- and super-
groups of the class group. Each group is specified by the sequence of its Abelian
invariants; the desired subgroup is set using ClassSubGroup, and the desired super-
group is set using ClassSuperGroup. Both may be set at once (thus requiring the
group to match exactly) using ClassGroup.

When iterating through the database, the default is to iterate in order of the
absolute value of the discriminant. Sometimes it is desirable to iterate in order
of the actual value of the discriminant; this can be accomplished by setting the
parameter SearchByValue to true.

34.10.2 Access

Degree(D)

Returns the degree of the number fields stored in the database.

DiscriminantRange(D)

Returns the smallest and largest discriminants of the number fields stored in the
database.

#D

NumberOfFields(D)

Returns how many number fields are stored in the database.

NumberOfFields(D, d)

Returns how many number fields of discriminant d are stored in the database.

NumberFields(D)

Returns the sequence of number fields stored in the database.

Ch. 34 NUMBER FIELDS 829

NumberFields(D, d)

Returns the sequence of number fields of discriminant d stored in the database.

Example H34E29

We illustrate with some basic examples. We start with the degree 2 number fields and get some
basic information about the database.

> D := NumberFieldDatabase(2);

> DiscriminantRange(D);

-999995 999997

> #D;

607925

There are 13 fields with discriminant of absolute value less than 20:

> D20 := sub<D | 20>;

> #D20;

13

> [Discriminant(F) : F in D20];

[-3, -4, 5, -7, -8, 8, -11, 12, 13, -15, 17, -19, -20]

Note that these were listed in order of absolute value of the discriminant; we can also list them
in value order:

> [Discriminant(F) : F in sub<D20 | : SearchByValue>];

[-20, -19, -15, -11, -8, -7, -4, -3, 5, 8, 12, 13, 17]

Two of these number fields have class number 2:

> NumberFields(sub<D20 | : ClassNumber := 2>);

[

Number Field with defining polynomial x^2 + x + 4 over the Rational Field,

Number Field with defining polynomial x^2 + 5 over the Rational Field

]

Example H34E30

Now we move onto the fields of degree five, and in particular those with signature [1,2].

> D := NumberFieldDatabase(5);

> #D;

289040

> D12 := sub<D |: Signature := [1,2]>;

> #D12;

186906

We consider how many of these have class number equal to four. Note the cumulative nature of
the restrictions has come into play.

> #sub<D12 |: ClassNumber := 4>;

1222

830 GLOBAL ARITHMETIC FIELDS Part VII

> #sub<D |: ClassNumber := 4>;

1255

The number with class group specifically isomorphic to C2 × C2 is much less:

> #sub<D12 |: ClassGroup := [2,2]>;

99

34.11 Bibliography

[Bai96] Georg Baier. Zum Round 4 Algorithmus. Diplomarbeit, Technische Universität
Berlin, 1996.
URL:http://www.math.tu-berlin.de/∼kant/publications/diplom/baier.ps.gz.

[Bia] J.-F. Biasse. Number field sieve to compute Class groups.
[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume

138 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–New York, 1993.
[Coh00] Henri Cohen. Advanced Topics in Computational Number Theory. Springer,

Berlin–Heidelberg–New York, 2000.
[Fie97] Claus Fieker. Über relative Normgleichungen in algebraischen Zahlkörpern.

Dissertation, Technische Universität Berlin, 1997.
URL:http://www.math.tu-berlin.de/∼kant/publications/diss/diss CF.ps.gz.

[Fri97] Carsten Friedrichs. Berechnung relativer Ganzheitsbasen mit dem Round-2-
Algorithmus. Diplomarbeit, Technische Universität Berlin, 1997.
URL:http://www.math.tu-berlin.de/∼kant/publications/diplom/friedrichs.ps.gz.

[Gar80] Dennis A. Garbanati. An Algorithm for finding an algebraic number whose
norm is a given rational number. J. reine angew. Math., 316:1–13, 1980.

[Jac99] M. J. Jacobson, Jr. Applying sieving to the computation of quadratic class
groups. Math. Comp., 68(226):859–867, 1999.

[KAN97] KANT Group. KANT V4. J. Symbolic Comp., 24(3–4):267–383, 1997.
[KAN00] KANT Group. The Number Theory Package KANT/KASH.

URL:http://www.math.tu-berlin.de/∼kant, 2000.
[Pau01] Sebastian Pauli. Factoring polynomials over local fields. Journal of Symbolic

Computation, 32(5):533–547, 2001.
[Poh93] M. Pohst. Computational Algebraic Number Theory. DMV Seminar Band 21.

Birkhäuser Verlag, Basel - Boston - Berlin, 1993.
[PZ89] Michael E. Pohst and Hans Zassenhaus. Algorithmic Algebraic Number Theory.

Encyclopaedia of mathematics and its applications. Cambridge University Press, Cam-
bridge, 1989.

[Sim02] Denis Simon. Solving norm equations in relative number fields using S-units.
Math. Comput., 71(239):1287–1305, 2002.

Ch. 34 NUMBER FIELDS 831

[Tra76] Barry M. Trager. Algebraic factoring and rational function integration. In
R.D. Jenks, editor, Proc. SYMSAC ’76, pages 196–208. ACM press, 1976.

[vGvS93] B. van Geemen and D. van Straten. The cusp forms of weight 3 on Γ2(2, 4, 8).
Math. Comp., 61(204):849–872, 1993.

35 QUADRATIC FIELDS

35.1 Introduction 835

35.1.1 Representation 835

35.2 Creation of Structures 836

QuadraticField(m) 836
EquationOrder(F) 836
MaximalOrder(F) 836
IntegerRing(F) 836
RingOfIntegers(F) 836
NumberField(O) 836
sub< > 836
IsQuadratic(K) 836
IsQuadratic(O) 836

35.3 Operations on Structures . . . 837

AssignNames(∼F, [s]) 837
AssignNames(∼O, [s]) 837
Name(F, 1) 838
Name(O, 1) 838
FundamentalUnit(K) 838
FundamentalUnit(O) 838
Discriminant(K) 838
Conductor(K) 838
Conductor(O) 838

35.3.1 Ideal Class Group 838

ClassGroup(K) 838
ClassGroup(O) 838
ClassNumber(K) 839
ClassNumber(O) 839
PicardGroup(O) 839
PicardNumber(O) 839
QuadraticClassGroupTwoPart(K) 840
QuadraticClassGroupTwoPart(O) 840
QuadraticClassGroupTwoPart(d) 840

35.3.2 Norm Equations 841

NormEquation(F, m) 841

NormEquation(F, m: -) 841
NormEquation(O, m) 841
NormEquation(O, m: -) 841

35.4 Special Element Operations . . 842

mod 842

35.4.1 Greatest Common Divisors 842

Gcd(a, b) 842
GCD(a, b) 842
GreatestCommonDivisor(a, b) 842
Lcm(a, b) 842
LCM(a, b) 842
LeastCommonMultiple(a, b) 842

35.4.2 Modular Arithmetic 842

Modexp(a, e, n) 842

35.4.3 Factorization 843

Factorization(n) 843
Factorisation(n) 843
TrialDivision(n, B) 843

35.4.4 Conjugates 843

ComplexConjugate(a) 843
Conjugate(a) 843

35.4.5 Other Element Functions 843

BiquadraticResidueSymbol(a, b) 843
Primary(a) 843

35.5 Special Functions for Ideals . . 845

Content(I) 845
Conjugate(I) 845
Discriminant(I) 845
QuadraticForm(I) 845
Ideal(f) 845
Reduction(I) 845

35.6 Bibliography 845

Chapter 35

QUADRATIC FIELDS

35.1 Introduction

Quadratic fields in Magma can be created as a subtype of the number fields FldNum. The
advantage of the special quadratic fields is that some special (faster) algorithms have been
or will be implemented to deal with them; the functions for the special quadratic fields
(created with the QuadraticField function) are described here. Functions which work
generally for number fields and their orders are described in Chapter 34.

The categories involved are FldQuad for fields, RngQuad for their orders and FldQuadElt
and RngQuadElt for their elements.

35.1.1 Representation
For every squarefree integer d (not 0 or 1) there is a unique quadratic field Q(

√
d); for

any integer k we have the field Q(
√
k2d) ∼= Q(

√
d). Given any integer m, the function

QuadraticField will create a structure corresponding to the quadratic field Q(
√
d), where

d is the squarefree kernel of m (d will have the same sign as m and its absolute value is
the largest squarefree divisor of m). In Magma a list of quadratic fields currently present
is maintained, and if Q(

√
d) has been created before a reference on it will be returned:

two fields with the same d are the same. The discriminant D of Q(
√
d) will be D = d if

d ≡ 1 mod 4 and D = 4d if d ≡ 2, 3 mod 4.
Elements of Q(

√
d) are represented by a common positive denominator b and two integer

coefficients: α = 1
b (x+ y

√
d).

The ring of integers of F = Q(
√
d) will be OF = Z + εdZ, where

εd =
{√

d if d ≡ 2, 3 mod 4,
1+
√

d
2 if d ≡ 1 mod 4.

Elements of OF are represented by two integer coefficients α = x + yεd. The pair 1, εd
forms an integral basis for F = Q(

√
d), but note that elements of F are represented using

the basis of the equation order (1,
√
d) instead.

For any positive integer f there is a suborder of conductor f in OF , whose elements
are of the form x+ yfεd, for any integers x, y. The discriminant of the order of conductor
f is f2D, where D is the field discriminant.

The equation order of F is EF = Z +
√
dZ. Suborders of conductor f can be formed

which will contain elements of the form x+ yf
√
d for any integers x and y.

836 GLOBAL ARITHMETIC FIELDS Part VII

35.2 Creation of Structures
Squarefree integers determine quadratic fields. Associated with any quadratic field is its
ring of integers (maximal order) and an equation order, and for every positive integer f
there exists an order of conductor f inside the maximal order.

For information on creating elements see Section 34.2.3.

QuadraticField(m)

Given an integer m that is not a square, create the field Q(
√
d), where d is the

squarefree part of m. It is possible to assign a name to
√
d using angle brackets:

R<s> := QuadraticField(m).

EquationOrder(F)

Creation of the order Z[
√
d] in the quadratic field F = Q(

√
d), with d squarefree.

MaximalOrder(F)

IntegerRing(F)

RingOfIntegers(F)

Given a quadratic field F = Q(
√
d), with d squarefree, create its maximal order.

This order is Z[
√
d] if d ≡ 2, 3 mod 4 and Z[1+

√
d

2] if d ≡ 1 mod 4.

NumberField(O)

Given a quadratic order, this returns the quadratic field of which it is an order.

sub< O | f >

Create the sub-order of index f in the order O of a quadratic field. If O is maximal,
this will be the unique order of conductor f .

IsQuadratic(K)

IsQuadratic(O)

Return true if the field K or order O can be created as a quadratic field or order
and the quadratic field or order if so.

Example H35E1

We create the quadratic field Q(
√

5) and an order in it, and display some elements of the order
in their representation as order element and as field element.

> Q<z> := QuadraticField(5);

> Q eq QuadraticField(45);

true

> O<w> := sub< MaximalOrder(Q) | 7 >;

> O;

Order of conductor 7 in Q

> w;

Ch. 35 QUADRATIC FIELDS 837

w

> Q ! w;

1/2*(7*z + 7)

> Eltseq(w), Eltseq(Q ! w);

[0, 1]

[7/2, 7/2]

> ((7/2)+(7/2)*z)^2;

1/2*(49*z + 147)

> Q ! w^2;

1/2*(49*z + 147)

> w^2;

7*w + 49

Example H35E2

We define an injection φ : Q(
√

5) → Q(ζ5). First a square root of 5 is identified in Q(ζ5).

> Q<w> := QuadraticField(5);

> F<z> := CyclotomicField(5);

> C<c> := PolynomialRing(F);

> Factorization(c^2-5);

[

<c - 2*z^3 - 2*z^2 - 1, 1>,

<c + 2*z^3 + 2*z^2 + 1, 1>

]

> h := hom< Q -> F | -2*z^3 - 2*z^2 - 1 >;

> h(w)^2;

5

35.3 Operations on Structures

The majority of functions for quadratic fields and orders apply identically to number fields
and orders in general. The functions which exist only for quadratic fields and orders are
listed here along with those which deserve a special mention.

AssignNames(∼F, [s])

AssignNames(∼O, [s])

Procedure to change the name of the generator of a quadratic field F or an order
O in a quadratic field to the string s. Elements of the quadratic field Q(

√
d) with

m squarefree will be printed in the form 1/b*(x + y*s), where b, x, y are integers.
Similarly, for an order O of conductor f in a quadratic field elements will be printed
in the format x + y*s.

838 GLOBAL ARITHMETIC FIELDS Part VII

This procedure only changes the name used in printing the elements of F or
O, it does not make an assignment to an identifier s. To do this, use an as-
signment statement, or angle brackets when creating the field or order: F<s> :=
QuadraticField(-3);.

Note that since this is a procedure that modifies F or O, it is necessary to have
a reference ∼ in the call to this function.

Name(F, 1)

Name(O, 1)

Given a quadratic field F or one of its orders O, return the element which has the
name attached to it, that is, return

√
d in the field, or fεd in a suborder of the

maximal order or f
√
d in a suborder of the equation order.

FundamentalUnit(K)

FundamentalUnit(O)

A generator for the unit group of the order O or the maximal order of the quadratic
field K.

Discriminant(K)

The discriminant of the fieldK which is only defined up to squares. The discriminant
will be the discriminant of the polynomial or better.

Conductor(K)

The conductor of the field K which is the order of the smallest cyclotomic field
containing K and a sequence containing the ramified real places of K.

Conductor(O)

The conductor of the order O, which equals the index of O in the maximal order.

35.3.1 Ideal Class Group
The function ClassGroup is available for number fields and orders in general but a different
and faster algorithm is used by default for the quadratics. All of the algorithms, except for
the sieving method described in [Jac99] which uses the multiple polynomial quadratic sieve
(MPQS), are based on binary quadratic forms, see ClassGroup on page 758 in Chapter 33
for details.

ClassGroup(K)

ClassGroup(O)

FactorBasisBound FldReElt Default : 0.1
ProofBound FldReElt Default : 6
ExtraRelations RngIntElt Default : 1
Al MonStgElt Default : “Automatic”
Verbose ClassGroupSieve Maximum : 5

Ch. 35 QUADRATIC FIELDS 839

The class group of a maximal order O or the maximal order of the quadratic field
K, as an abelian group. The function also returns a map between the group and the
power structure of ideals of O or the maximal order of K. The parameter Al can
be set to "Sieve" or "NoSieve" to control whether the sieving algorithm is used
or not; by default it is used when the discriminant is greater than 1020. For more
details on the parameters see ClassGroup on page 758 in Chapter 33.

ClassNumber(K)

ClassNumber(O)

FactorBasisBound FldReElt Default : 0.1
ProofBound FldReElt Default : 6
ExtraRelations RngIntElt Default : 1
Al MonStgElt Default : “Automatic”

The class number of the maximal order O or the maximal order of the quadratic
field K.

PicardGroup(O)

PicardNumber(O)

FactorBasisBound FldReElt Default : 0.1
ProofBound FldReElt Default : 6
ExtraRelations RngIntElt Default : 1
Al MonStgElt Default : “Automatic”

The picard group (the group of the invertible ideals of O modulo the principal ones)
of the order O or the size of this group. PicardGroup also returns a map from the
group to the ideals of O.

Example H35E3

We give examples of class group calculations using sieving. We also show the use of the mapping
between the group and the set of ideals. First a field with negative discriminant.

> D:=-(10^(30) + 3);

> K := QuadraticField(D);

> time G, m := ClassGroup(K : Al := "Sieve");

Time: 10.750

> G, m;

Abelian Group isomorphic to Z/125355959329602

Defined on 1 generator

Relations:

125355959329602*G.1 = 0

Mapping from: GrpAb: G to Set of ideals of Maximal Order of K

> m(G.1);

Ideal

Two element generators:

840 GLOBAL ARITHMETIC FIELDS Part VII

385706622580333

148769598702327446467038390888*$.2 + 307255216496036

> $1 @@ m;

G.1

And now a field with positive discriminant.

> K := QuadraticField(NextPrime(10^24));

> time G, m := ClassGroup(K : Al := "Sieve");

Time: 3.330

> G, m;

Abelian Group isomorphic to Z/3

Defined on 1 generator

Relations:

3*$.1 = 0

Mapping from: GrpAb: G to Set of ideals of Maximal Equation Order of K

> m(G.1);

Ideal

Two element generators:

3847

$.2 + 616

> $1 @@ m;

G.1

> IsPrincipal($2^3);

true

QuadraticClassGroupTwoPart(K)

QuadraticClassGroupTwoPart(O)

QuadraticClassGroupTwoPart(d)

Factorization RngIntEltFact Default : []
Use the Bosma-Stevenhagen algorithm to compute the 2-part of the class group of
a quadratic order. Returned are: an array of forms that generates the 2-part and
an array that gives the orders of the respective elements. The Factorization of the
given discriminant can be given as additional information.

Example H35E4

> G, f := QuadraticClassGroupTwoPart(33923894057872); G;

Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/4 + Z/16 + Z/16

> Random(G);

11*G.1 + 2*G.2 + G.3 + G.4 + G.6

> f($1);

<-1212992,3947508,3780131>

> G, f := QuadraticClassGroupTwoPart(QuadraticField(33923894057872)); G;

Abelian Group isomorphic to Z/2 + Z/8 + Z/16

Ch. 35 QUADRATIC FIELDS 841

35.3.2 Norm Equations
For imaginary quadratic fields, (that is, for quadratic fields Q(

√
m) with m < 0), the

function NormEquation is provided specially for quadratics to find integral elements of a
given norm. For real quadratic fields conics are used, see Section 119.5.1 for details.

NormEquation(F, m)

NormEquation(F, m: parameters)

NormEquation(O, m)

NormEquation(O, m: parameters)

Factorization [<RngIntElt, RngIntElt>]

All BoolElt Default : true

Solutions RngIntElt Default : All
Exact BoolElt Default : false

Ineq BoolElt Default : false

Verbose NormEquation Maximum : 1
Given quadratic field F and a non-negative integer m, return true if there exists
an element α in the ring of integers OF of F with norm m, and false otherwise.
Instead of searching the maximal order OF it is possible to search any suborder O
of OF for such element α by supplying O as a first argument.

For imaginary quadratic fields the method used is constructive (it uses Cornac-
chia’s algorithm, see [Coh93] section 1.5.2), and if the value true is returned then
a solution [x] is also returned as a second return value.

Note that if the discriminant F = Q(
√
d) with d ≡ 1 mod 4 (and squarefree)

this function searches for a solution in integers to x2 + y2d = 4m (and the solution
α = x+y

√
d

2 is returned), whereas for d ≡ 2, 3 mod 4 a solution α = x + y
√
d with

x2 + y2d = m in integers x, y is returned, if it exists. In an order of conductor f
a search is conducted for a solution to the same equation with d replaced by f2d.
Note that a version of NormEquation with integer arguments d and m also exists
(see Section 18.12.2).

Unless m is the square of an integer, the factorization of m is used by the al-
gorithm; if it is known, it may be supplied as the value of the optional parameter
Factorization to speed up the calculation.

A verbose flag can be set to obtain some information on progress with the com-
putation (see SetVerbose on page 1-102).

For real quadratic fields the same algorithm is used as for the general number
fields. The last 4 parameters refer to this algorithm. See Section 34.7 for a descrip-
tion.

Example H35E5

> d := 302401481761723680;

842 GLOBAL ARITHMETIC FIELDS Part VII

> m := 76814814791186002463716;

> Q<z> := QuadraticField(-d);

> O<w> := sub< MaximalOrder(Q) | 6 >;

> f, s := NormEquation(O, m);

> s, Norm(s[1]);

406 + 1008*w 76814814791186002463716

35.4 Special Element Operations

There are a number of functions available only for elements of certain maximal or-
ders. Conjugate is provided to return a quadratic element (instead of a real) as well
as ComplexConjugate.

a mod b

The remainder on dividing a by b where a and b lie in the maximal order of Q(
√
d)

for d = −1,−2,−3,−7,−11, 2, 3, 5, 13. div is provided for order elements in general,
but for discriminants not in the above list div will fail if the division is not exact.

35.4.1 Greatest Common Divisors

Gcd(a, b)

GCD(a, b)

GreatestCommonDivisor(a, b)

The greatest common divisor of a and b in the maximal order of Q(
√
d), where d

must be one of the following values: −1,−2,−3,−7,−11, 2, 3, 5, 13.

Lcm(a, b)

LCM(a, b)

LeastCommonMultiple(a, b)

The least common multiple of a and b in the maximal order of Q(
√
d), where d must

be one of the following values: −1,−2,−3,−7,−11, 2, 3, 5, 13.

35.4.2 Modular Arithmetic

Modexp(a, e, n)

The computation of ae mod n in the maximal order of Q(
√
d), where d is one of the

following values: −1,−2,−3,−7,−11, 2, 3, 5, 13.

Ch. 35 QUADRATIC FIELDS 843

35.4.3 Factorization
Magma’s factorization in maximal orders of quadratic number fields is based upon factor-
ing the norm in the integers. Thus, the comments that are made about the Factorization
command in the integers also apply here. Moreover, since the factorization may be off by
a unit power, that power is also returned (the unit being -1,

√−1, or (1 +
√−3)/2).

Factorization(n)

Factorisation(n)

The factorization of n in the maximal order of the quadratic number field Q(
√
d),

where d is one of: -1, -2, -3, -7, or -11. Returns the factorization along with the
appropriate power of a unit (the unit being -1,

√−1, or (1 +
√−3)/2).

TrialDivision(n, B)

Trial division of n by primes of relative norm ≤ B in the maximal order of Q(
√
d),

where d is one of: -1, -2, -3, -7, or -11. Returns the factored part, the unfactored
part, and the power of the unit that the factorization is off by (the unit being -1,√−1, or (1 +

√−3)/2).

35.4.4 Conjugates

ComplexConjugate(a)

The complex conjugate of quadratic field element a; returns a in a real quadratic
field and ā = x− y

√
d if a = x+ y

√
d in an imaginary quadratic field Q(

√
d).

Conjugate(a)

The conjugate x− y
√
d of a = x+ y

√
d in the quadratic field Q(

√
d).

35.4.5 Other Element Functions
For the ring of integers of Q(i) the biquadratic residue symbol (generalizing the Legendre
symbol) is available.

BiquadraticResidueSymbol(a, b)

Given a Gaussian integer a and a primary, non-unit Gaussian integer b, where a
and b are coprime, return the value of the biquadratic character

(
a
b

)
4
. The value

of this character is equal to ik, for some k ∈ {0, 1, 2, 3}. If a and b have a factor in
common, the function returns 0, if b is not primary or b is a unit an error results.

Primary(a)

Return the unique associate ā of the Gaussian integer a that satisfies

ā ≡ 1 mod (1 + i)3,

or 0 in case a is divisible by 1 + i.

844 GLOBAL ARITHMETIC FIELDS Part VII

Example H35E6

The following example checks for primes p with 65 ≤ p ≤ 1000 and p ≡ 1 mod 4 a result that was
conjectured by Euler and proved by Gauss, namely that

z4 ≡ 2 mod p has a solution ⇐⇒ p = x2 + 64y2 for some x, y.

We use the function NormEquation to find the prime above p in the Gaussian integers, and we
build the set of such primes for which 2 is a biquadratic residue (which means that z4 ≡ 2 mod p
for some z).

> s := { };

> Q := QuadraticField(-1);

> M := RingOfIntegers(Q);

> for p := 65 to 1000 by 4 do

> if IsPrime(p) then

> _, x := NormEquation(Q, p);

> if BiquadraticResidueSymbol(2, Primary(M!x[1])) eq 1 then

> Include(~s, p);

> end if;

> end if;

> end for;

> s;

{ 73, 89, 113, 233, 257, 281, 337, 353, 577, 593, 601, 617, 881, 937 }

Next we create the set of all primes as above that are of the form x2 + 64y2. Note that we have
to use NormEquation on a suborder of Q now, because we want to solve x2 + 64y2 = p, while
QuadraticField(-64) returns just Q(i) in which we can only solve x2 + y2 = p.

> S := sub<MaximalOrder(Q) | 8>;

> t := { };

> for p := 65 to 1000 by 4 do

> if IsPrime(p) then

> if NormEquation(S, p) then

> Include(~t, p);

> end if;

> end if;

> end for;

> t;

{ 73, 89, 113, 233, 257, 281, 337, 353, 577, 593, 601, 617, 881, 937 }

Ch. 35 QUADRATIC FIELDS 845

35.5 Special Functions for Ideals
Ideals of orders of quadratic fields inherit from ideals of orders of number fields (see Sec-
tion 37.9 for the list of general functions and operations available). However there is also
a correspondence between quadratic ideals and binary quadratic forms (see Chapter 33).
The following functions make use of that correspondence.

Content(I)

The content of the ideal.

Conjugate(I)

The conjugate of the ideal.

Discriminant(I)

The discriminant of the quadratic form associated with I.

QuadraticForm(I)

The quadratic form associated with I.

Ideal(f)

The quadratic ideal with associated quadratic form f .

Reduction(I)

The quadratic ideal with associated quadratic form which is a reduction of the
quadratic form associated to I.

35.6 Bibliography
[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume

138 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–New York, 1993.
[Jac99] M. J. Jacobson, Jr. Applying sieving to the computation of quadratic class

groups. Math. Comp., 68(226):859–867, 1999.

36 CYCLOTOMIC FIELDS
36.1 Introduction 849

36.2 Creation Functions 849

36.2.1 Creation of Cyclotomic Fields . . . 849

CyclotomicField(m) 849
CyclotomicPolynomial(m) 850
MinimalCyclotomicField(a) 850
MinimalCyclotomicField(S) 850

36.2.2 Creation of Elements 850

RootOfUnity(n) 850
RootOfUnity(n, K) 851
Minimise(∼a) 851
Minimize(∼a) 851
Minimise(∼s) 851
Minimize(∼s) 851
Minimise(a) 851
Minimize(a) 851

Minimise(s) 851
Minimize(s) 851

36.3 Structure Operations 851

36.3.1 Invariants 852

Conductor(K) 852
CyclotomicOrder(K) 852
CyclotomicAutomorphismGroup(K) 852
CyclotomicRelativeField(k, K) 852

36.4 Element Operations 852

36.4.1 Predicates on Elements 852

IsReal(a) 852

36.4.2 Conjugates 852

ComplexConjugate(a) 852
Conjugate(a, n) 853
Conjugate(a, r) 853

Chapter 36

CYCLOTOMIC FIELDS

36.1 Introduction
Cyclotomic Fields (like the Quadratic Fields) are a subtype of the Number Fields (FldNum).
They have some extra functionality which is described below and use some more efficient
implementations. Orders of cyclotomic fields form the category RngCyc and the fields
themselves FldCyc. Functions for cyclotomic fields and orders which work generally for
number fields, their orders and elements are listed in Chapter 34.

There are two different representations of cyclotomic fields available:
* The “dense” representation: the field is conceptually represented as Q(x)/f(x) where

f is a cyclotomic polynomial, i.e., the minimal polynomial of a primitive root of unity.
* The “sparse” representation: Let n =

∏
pri

i be the factorisation of n into prime pow-
ers and ni := pri

i . Then Q(ζn) = Q(ζn1 , . . . , ζnr) and the field is represented as
Q(x1, . . . , xr)/〈fn1(x1), . . . , fnr (xr)〉.
As with the number fields, the non-simple representation, the issues are the same: the

“sparse” representation allows for much larger fields – as long as the elements used have
only few coefficients. The “dense” representation on the other hand has the asymptotically-
fastest arithmetic.

36.2 Creation Functions
Functions are provided to create fields of the special type FldCyc. Orders and elements
created from a field of this type will have the special types RngCyc and FldCycElt respec-
tively and elements created from orders RngCycElt. These functions provide an object
with the correct type which will allow the extra functions and efficient implementations to
be used.

36.2.1 Creation of Cyclotomic Fields
Cyclotomic fields can be created from an integer specifying which roots of unity it should
contain or from a collection of elements of an existing field or order. Cyclotomic polyno-
mials can also be retrieved independently of the fields and orders.

CyclotomicField(m)

Sparse Boolean Default : false

Given a positive integer m, create the field obtained by adjoining the m-th roots of
unity to Q. It is possible to assign a name to the primitive m-th root of unity ζm
using angle brackets: R<s> := CyclotomicField(m).

If Sparse := true, names for all the generating elements can be assigned.

850 GLOBAL ARITHMETIC FIELDS Part VII

CyclotomicPolynomial(m)

Given a positive integer m, create the cyclotomic polynomial of order m. This
function is equivalent to DefiningPolynomial(CyclotomicField(m)).

MinimalCyclotomicField(a)

Given an element a from a cyclotomic field F or ring R, this function returns the
smallest cyclotomic field or order thereof (possibly the rational field or the ring of
integers) E ⊂ F containing a.

MinimalCyclotomicField(S)

Given a set or sequence S of cyclotomic field or ring elements, this function re-
turns the smallest cyclotomic field or ring (possibly the rational field or integers) G
containing each of the elements of S.

Example H36E1

We will demonstrate the difference between the “dense” and the “sparse” representation on the
cyclotomic field of order 100.

> K1 := CyclotomicField(100);

> K2 := CyclotomicField(100: Sparse := true);

> K2!K1.1;

zeta(100)_4*zeta(100)_25^19

Where zeta(100) 25 indicates a 25th root of unity in a field of order 100.

> K1!K2.1;

zeta_100^25

36.2.2 Creation of Elements
For elements of cyclotomic number fields the following conventions are used. Primitive
roots of unity ζm are chosen in such a way that ζm/d

m = ζd, for every divisor d of m; one
may think of this as choosing ζm = e

2πi
m (where the roots of unity are ζk

m = e
2kπi

m) in the
complex plane for every m (a convention that is followed for the explicit embedding in the
complex domains).

Elements of cyclotomic fields and orders can also be created using coercion (!) and the
elt constructor (elt<|>) where the left hand side is the field or order the element will lie
in. For details about coercion see Section 34.2.3.

RootOfUnity(n)

Create the n-th root of unity ζn in Q(ζn).

Ch. 36 CYCLOTOMIC FIELDS 851

RootOfUnity(n, K)

Given a cyclotomic field K = Q(ζm) and an integer n > 2, create the n-th root of
unity ζn in K. An error results if ζn /∈ K, that is, if n does not divide m (or 2m in
case m is odd).

Minimise(∼a)
Minimize(∼a)

Given an element a in a cyclotomic field F or ring R, this procedure finds the
minimal cyclotomic subfield E ⊂ F or subring E ⊂ F containing a, and coerces a
into E. Note that E may be Q or Z.

Minimise(∼s)
Minimize(∼s)

Given a set s of cyclotomic field or ring elements, this procedure finds the minimal
cyclotomic field or ring E containing all of them, and coerces each element into E.
The resulting set will have universe E. Note that E may be Q or Z.

Minimise(a)

Minimize(a)

Given an element a in a cyclotomic field F or ring R, this function finds the minimal
cyclotomic subfield E ⊂ F or subring E ⊂ R containing a, and coerces a into E.
Note that E may be Q or Z.

Minimise(s)

Minimize(s)

Given a set s of cyclotomic field or ring elements, this function finds the minimal
cyclotomic field E containing all of them, and coerces each element into E. The
resulting set will have universe E. Note that E may be Q or Z.

36.3 Structure Operations

In cyclotomic fields the generic ring functions are supported (see Chapter 17). The func-
tions listed below are those functions for cyclotomic fields which are additional to those for
number fields. For the list of functions applying to general number fields see Section 34.2
and Section 34.3.

852 GLOBAL ARITHMETIC FIELDS Part VII

36.3.1 Invariants

Conductor(K)

The smallest n such that the field K is contained in Q(ζn); for a cyclotomic field that
is either the ‘cyclotomic order’ m (see below) or half that, depending on whether
m ≡ 2 mod 4. The second return value is a sequence of the ramified real places of
K.

CyclotomicOrder(K)

The value of m for the cyclotomic field Q(ζm). Note that this will be the m with
which the cyclotomic field was created.

CyclotomicAutomorphismGroup(K)

Returns the automorphism group of K as an abstract abelian group G and a map
from G into the set of all automorphisms. Note that similar functionality is also
available through AutomorphismGroup however, this function returns an abelian
group and uses the fact that the automorphism group is already determined by the
conductor.

CyclotomicRelativeField(k, K)

Given two cyclotomic fields k ⊆ K a number field L/k is computed that is isomorphic
to K.

36.4 Element Operations

For the full range of operations for elements of a number field or order see Section 34.4.

36.4.1 Predicates on Elements
Because of the nature of cyclotomic fields and orders, some properties of elements are
easier to determine than in the general case.

IsReal(a)

Whether the cyclotomic field or ring element a is a real number, i.e., if it is invariant
under the complex conjugation.

36.4.2 Conjugates
Elements of cyclotomic fields and orders can additionally have their complex conjugate
computed. Conjugates are returned as cyclotomic elements (and not reals) and which
conjugate is wanted can be indicated by providing a primitive root of unity.

ComplexConjugate(a)

The complex conjugate of cyclotomic field or ring element a.

Ch. 36 CYCLOTOMIC FIELDS 853

Conjugate(a, n)

The image under the map ζ 7→ ζn. The second argument (n) must be coprime to
the conductor.

Conjugate(a, r)

The conjugate of the element a ∈ Q(ζm) or its order, obtained by applying the field
automorphism ζm 7→ r where r is a primitive root of unity.

Example H36E2

The following lines of code generate a set W of minimal polynomials for the so-called Gaussian
periods

ηd =

(l−1)/d−1∑
i=0

ζgdi

l

where ζl is a primitive l-th root of unity (l is prime), and where g is a primitive root modulo l.
These have the property that they generate a degree d cyclic subfield of Q(ζl). We (arbitrarily)
choose l = 13 in this example.

> R<x> := PolynomialRing(RationalField());

> W := { R | };
> l := 13;

> L<z> := CyclotomicField(l);

> M := Divisors(l-1);

> g := PrimitiveRoot(l);

> for m in M do

> d := (l-1) div m;

> g_d := g^d;

> w := &+[z^g_d^i : i in [0..m-1]];

> Include(~W, MinimalPolynomial(w));

> end for;

Here is the same loop in just one line, using sequence reduction:

> W := { R | MinimalPolynomial(&+[z^(g^((l-1) div m))^i : i in [0..m-1]]) :

> m in M };

> W;

{
x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 +

x + 1,

x^6 + x^5 - 5*x^4 - 4*x^3 + 6*x^2 + 3*x - 1,

x^3 + x^2 - 4*x + 1,

x + 1

x^4 + x^3 + 2*x^2 - 4*x + 3,

x^2 + x - 3,

}

37 ORDERS AND ALGEBRAIC FIELDS
37.1 Introduction 861

37.2 Creation Functions 863

37.2.1 Creation of General Algebraic Fields 863

NumberField(f) 863
RationalsAsNumberField() 864
QNF() 864
NumberField(s) 864
ext< > 864
ext< > 864
RadicalExtension(F, d, a) 865
SplittingField(F) 865
SplittingField(f) 865
SplittingField(L) 865
sub< > 865
MergeFields(F, L) 866
CompositeFields(F, L) 866
Compositum(K, L) 866
Compositum(K, A) 866
OptimizedRepresentation(F) 866
OptimisedRepresentation(F) 866
OptimizedRepresentation(F, d) 866
OptimisedRepresentation(F, d) 866

37.2.2 Creation of Orders and Fields from Or-
ders 867

EquationOrder(f) 868
EquationOrder(K) 868
SubOrder(O) 868
EquationOrder(O) 868
Integers(O) 868
RingOfIntegers(O) 868
IntegerRing(O) 868
sub< > 869
ext< > 869
ext< > 869
FieldOfFractions(O) 869
Order(F) 869
NumberField(O) 869
NumberField(F) 869
OptimizedRepresentation(O) 871
OptimisedRepresentation(O) 871
OptimizedRepresentation(O, d) 871
OptimisedRepresentation(O, d) 871
+ 871
meet 871
AsExtensionOf(O, P) 871
Order(O, T, d) 871
Order(O, M) 872
Order([e1, ... en]) 872

37.2.3 Maximal Orders 872

MaximalOrder(O) 873
MaximalOrder(F) 873
IntegerRing(F) 873

Integers(F) 873
RingOfIntegers(F) 873
MaximalOrder(f) 873
pMaximalOrder(O, p) 875
pRadical(O, p) 875
MultiplicatorRing(I) 875

37.2.4 Creation of Elements 877

! 877
elt< > 877
! 877
elt< > 877
elt< > 877
! 877
elt< > 877
! 878
elt< > 878
elt< > 878
Random(F, m) 878
Random(O, m) 878
Random(I, m) 878
One One Identity Identity 878
Zero Zero 878
Representative Representative 878

37.2.5 Creation of Homomorphisms . . . 879

hom< > 879
hom< > 879
hom< > 879
hom< > 879
hom< > 881
hom< > 881
IsRingHomomorphism(m) 881

37.3 Special Options 881

SetVerbose(s, n) 881
SetKantPrinting(f) 883
SetKantPrecision(n) 883
SetKantPrecision(O, n) 883
SetKantPrecision(O, n, m) 883
SetKantPrecision(F, n) 883
SetKantPrecision(F, n, m) 883

37.4 Structure Operations 883

37.4.1 General Functions 884

Category Parent 884
Category Parent 884
AssignNames(∼K, s) 884
Name(K, i) 884
. 884
AssignNames(∼F, s) 884
. 884
Name(F, i) 884
. 884

37.4.2 Related Structures 885

856 GLOBAL ARITHMETIC FIELDS Part VII

GroundField(F) 885
BaseField(F) 885
CoefficientField(F) 885
CoefficientRing(F) 885
BaseRing(O) 885
CoefficientRing(O) 885
AbsoluteField(F) 885
AbsoluteOrder(O) 885
SimpleExtension(F) 885
SimpleExtension(O) 885
RelativeField(F, L) 885
Simplify(O) 886
LLL(O) 886
PrimeRing PrimeField PrimeRing 889
Centre Centre 889
Embed(F, L, a) 889
Embed(F, L, a) 889
EmbeddingMap(F, L) 889
Lattice(O) 891
MinkowskiLattice(O) 891
MinkowskiSpace(F) 891
Completion(K, P) 891
Completion(O, P) 891
comp< > 891
comp< > 891
Completion(K, P) 891
LocalRing(P, prec) 891

37.4.3 Representing Fields as Vector Spaces 891

Algebra(K, J) 891
Algebra(K, J, S) 891
VectorSpace(K, J) 892
KSpace(K, J) 892
VectorSpace(K, J, S) 892
KSpace(K, J, S) 892

37.4.4 Invariants 893

Characteristic Characteristic 893
Degree(O) 893
Degree(F) 893
AbsoluteDegree(O) 893
AbsoluteDegree(F) 893
Discriminant(O) 894
Discriminant(F) 894
AbsoluteDiscriminant(O) 894
AbsoluteDiscriminant(K) 894
ReducedDiscriminant(O) 894
ReducedDiscriminant(F) 894
Regulator(O: -) 894
Regulator(K) 894
RegulatorLowerBound(O) 895
RegulatorLowerBound(K) 895
Signature(O) 895
Signature(F) 895
UnitRank(O) 895
UnitRank(K) 895
Index(O, S) 895
DefiningPolynomial(F) 895
DefiningPolynomial(O) 895

Zeroes(O, n) 895
Zeros(O, n) 895
Zeroes(F, n) 895
Zeros(F, n) 895
Different(O) 896
Conductor(O) 896

37.4.5 Basis Representation 897

Basis(O) 897
Basis(O, R) 897
Basis(F) 897
Basis(F, R) 897
IntegralBasis(F) 897
IntegralBasis(F, R) 897
AbsoluteBasis(K) 898
BasisMatrix(O) 898
TransformationMatrix(O, P) 898
CoefficientIdeals(O) 898
MultiplicationTable(O) 900
TraceMatrix(O) 900
TraceMatrix(F) 900

37.4.6 Ring Predicates 901

eq 901
eq 901
IsCommutative IsUnitary IsFinite 901
IsOrdered IsField 901
IsNumberField IsAlgebraicField 901
IsEuclideanDomain(F) 901
IsSimple(F) 902
IsSimple(O) 902
IsPID IsUFD 902
IsPrincipalIdealRing(F) 902
IsPID IsUFD 902
IsPrincipalIdealRing(O) 902
IsDomain 902
ne ne subset subset 902
HasComplexConjugate(K) 902
ComplexConjugate(x) 902

37.4.7 Order Predicates 902

IsEquationOrder(O) 902
IsMaximal(O) 902
IsAbsoluteOrder(O) 902
IsWildlyRamified(O) 903
IsTamelyRamified(O) 903
IsUnramified(O) 903

37.4.8 Field Predicates 903

IsIsomorphic(F, L) 903
IsSubfield(F, L) 903
IsNormal(F) 903
IsAbelian(F) 903
IsCyclic(F) 903
IsAbsoluteField(K) 903
IsWildlyRamified(K) 904
IsTamelyRamified(K) 904
IsUnramified(K) 904
IsQuadratic(K) 904
IsTotallyReal(K) 904

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 857

37.4.9 Setting Properties of Orders . . . 904

SetOrderMaximal(O, b) 904
SetOrderTorsionUnit(O, e, r) 904
SetOrderUnitsAreFundamental(O) 904

37.5 Element Operations 905

37.5.1 Parent and Category 905

Parent Parent Category Category 905

37.5.2 Arithmetic 905

+ - 905
+ - * / ^ 905
div 905
Modexp(a, n, m) 905
Sqrt(a) 905
SquareRoot(a) 905
Root(a, n) 905
IsPower(a, k) 905
IsSquare(a) 905
Denominator(a) 906
Numerator(a) 906
Qround(E, M) 906

37.5.3 Equality and Membership 906

eq ne 906
in 906

37.5.4 Predicates on Elements 906

IsIntegral(a) 906
IsPrimitive(a) 906
IsTorsionUnit(w) 906
IsPower(w, n) 906
IsTotallyPositive(a) 907
IsTotallyPositive(a) 907
IsZero IsOne 907
IsMinusOne 907
IsUnit 907
IsNilpotent IsIdempotent 907
IsZeroDivisor IsRegular 907
IsIrreducible IsPrime 907

37.5.5 Finding Special Elements 907

. 907
PrimitiveElement(K) 907
PrimitiveElement(F) 907
Generators(K) 907
Generators(K, k) 907
PrimitiveElement(O) 907

37.5.6 Real and Complex Valued Functions 908

AbsoluteValues(a) 908
AbsoluteLogarithmicHeight(a) 908
Conjugates(a) 908
Conjugate(a, k) 908
Conjugate(a, l) 908
Length(a) 908
Logs(a) 909
CoefficientHeight(E) 909
CoefficientHeight(E) 909

CoefficientLength(E) 909
CoefficientLength(E) 909

37.5.7 Norm, Trace, and Minimal Polynomial910

Norm(a) 910
Norm(a, R) 910
AbsoluteNorm(a) 910
NormAbs(a) 910
Trace(a) 910
Trace(a, R) 910
AbsoluteTrace(a) 910
TraceAbs(a) 910
CharacteristicPolynomial(a) 910
CharacteristicPolynomial(a, R) 910
AbsoluteCharacteristicPolynomial(a) 910
MinimalPolynomial(a) 910
MinimalPolynomial(a, R) 910
AbsoluteMinimalPolynomial(a) 911
RepresentationMatrix(a) 911
RepresentationMatrix(a, R) 911
AbsoluteRepresentationMatrix(a) 911

37.5.8 Other Functions 912

ElementToSequence(a) 912
Eltseq(a) 912
Eltseq(E, k) 912
Flat(e) 912
a[i] 912
ProductRepresentation(a) 912
ProductRepresentation(P, E) 912
PowerProduct(P, E) 912
Valuation(w, I) 912
Decomposition(a) 913
Decomposition(a) 913
Divisors(a) 913
Index(a) 913
Different(a) 913

37.6 Ideal Class Groups 913

DegreeOnePrimeIdeals(O, B) 914
ClassGroup(O: -) 914
ClassGroup(K: -) 914
RingClassGroup(O) 915
PicardGroup(O) 915
ConditionalClassGroup(O) 915
ConditionalClassGroup(K) 915
ClassGroupPrimeRepresentatives(O, I) 915
ClassNumber(O: -) 915
ClassNumber(K: -) 915
BachBound(K) 916
BachBound(O) 916
MinkowskiBound(K) 916
MinkowskiBound(O) 916
FactorBasis(K, B) 916
FactorBasis(O, B) 916
FactorBasis(O) 916
RelationMatrix(K, B) 916
RelationMatrix(O, B) 916
RelationMatrix(O) 916

858 GLOBAL ARITHMETIC FIELDS Part VII

Relations(O) 916
ClassGroupCyclicFactorGenerators(O) 916
FactorBasisCreate(O,B) 919
EulerProduct(O, B) 919
AddRelation(E) 920
EvaluateClassGroup(O) 920
CompleteClassGroup(O) 920
FactorBasisVerify(O, L, U) 920
ClassGroupSetUseMemory(O, f) 920
ClassGroupGetUseMemory(O) 920

37.6.1 Setting the Class Group Bounds
Globally 921

SetClassGroupBounds(n) 921
SetClassGroupBounds(string) 921
SetClassGroupBoundMaps(f1, f2) 921

37.7 Unit Groups 922

UnitGroup(O) 922
MultiplicativeGroup(O) 922
UnitGroup(K) 922
MultiplicativeGroup(K) 922
UnitGroupAsSubgroup(O) 922
TorsionUnitGroup(O) 922
TorsionUnitGroup(K) 922
IndependentUnits(O) 923
IndependentUnits(K) 923
pFundamentalUnits(O, p) 923
pFundamentalUnits(K, p) 923
MergeUnits(K, a) 923
MergeUnits(O, a) 923
UnitRank(O) 923
UnitRank(K) 923
IsExceptionalUnit(u) 924
ExceptionalUnitOrbit(u) 924
ExceptionalUnits(O) 924

37.8 Solving Equations 925

37.8.1 Norm Equations 925

NormEquation(O, m) 925
NormEquation(F, m) 926
NormEquation(m, N) 927
IntegralNormEquation(a, N, O) 928
SimNEQ(K, e, f) 928

37.8.2 Thue Equations 929

Thue(f) 929
Thue(O) 930
Evaluate(t, a, b) 930
Evaluate(t, S) 930
Solutions(t, a) 930

37.8.3 Unit Equations 931

UnitEquation(a, b, c) 931

37.8.4 Index Form Equations 931

IndexFormEquation(O, k) 931

37.9 Ideals and Quotients 932

37.9.1 Creation of Ideals in Orders . . . 933

* 933
* 933
!! 933
!! 933
ideal< > 933
ideal< > 933
ideal< > 933
ideal< > 933

37.9.2 Invariants 934

Order(I) 934
Denominator(I) 934
PrimitiveElement(I) 934
UniformizingElement(P) 934
Index(O, I) 934
Norm(I) 934
MinimalInteger(I) 934
Minimum(I) 934
AbsoluteNorm(I) 935
CoefficientHeight(I) 935
CoefficientHeight(I) 935
CoefficientLength(I) 935
CoefficientLength(I) 935
RamificationIndex(I, p) 935
RamificationDegree(I, p) 935
RamificationDegree(I) 935
RamificationIndex(I) 935
ResidueClassField(O, I) 935
ResidueClassField(I) 935
Degree(I) 935
InertiaDegree(I) 935
Valuation(I, p) 936
Content(I) 936

37.9.3 Basis Representation 937

Basis(I) 937
Basis(I, R) 937
BasisMatrix(I) 937
TransformationMatrix(I) 937
CoefficientIdeals(I) 937
Module(I) 938

37.9.4 Two–Element Presentations . . . 938

Generators(I) 938
TwoElement(I) 938
TwoElementNormal(I) 938

37.9.5 Predicates on Ideals 939

eq ne in notin subset 939
IsIntegral(I) 939
IsZero(I) 939
IsOne(I) 939
IsPrime(I) 939
IsPrincipal(I) 939
IsRamified(P) 940
IsRamified(P, O) 940
IsTotallyRamified(P) 940
IsTotallyRamified(P, O) 940

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 859

IsTotallyRamified(K) 940
IsTotallyRamified(O) 940
IsWildlyRamified(P) 940
IsWildlyRamified(P, O) 940
IsTamelyRamified(P) 940
IsTamelyRamified(P, O) 940
IsUnramified(P) 940
IsUnramified(P, O) 941
IsInert(P) 941
IsInert(P, O) 941
IsSplit(P) 941
IsSplit(P, O) 941
IsTotallySplit(P) 941
IsTotallySplit(P, O) 941

37.9.6 Ideal Arithmetic 941

* 941
* 941
* 941
&* 941
/ 942
div 942
div 942
/ 942
+ 942
^ 942
eq 942
subset 942
in 942
LCM(I, J) 942
Lcm(I, J) 942
LeastCommonMultiple(I, J) 942
GCD(I, J) 942
Gcd(I, J) 942
GreatestCommonDivisor(I, J) 942
Content(M) 943
meet 943
&meet 943
meet 943
meet 943
mod 943
InverseMod(E, M) 943
Modinv(E, M) 943
ColonIdeal(I, J) 943
IdealQuotient(I, J) 943
IntegralSplit(I) 943

37.9.7 Roots of Ideals 944

Root(I, k) 944
IsPower(I, k) 944
SquareRoot(I) 944
Sqrt(I) 944
IsSquare(I) 944

37.9.8 Factorization and Primes 944

Decomposition(O, p) 944
DecompositionType(O, p) 944
Factorization(I) 944
Factorisation(I) 944

Divisors(I) 944
Support(I) 945
Support(L) 945
CoprimeBasis(L) 945
CoprimeBasisInsert(∼L, I) 946
PowerProduct(B, E) 946

37.9.9 Other Ideal Operations 946

ChineseRemainder
Theorem(I1, I2, e1, e2) 946

ChineseRemainderTheorem(X, M) 946
CRT(I1, I2, e1, e2) 946
CRT(X, M) 946
CRT(I1, L1, e1, L2) 946
ChineseRemainder

Theorem(I1, L1, e1, L2) 946
Idempotents(I, J) 946
CoprimeRepresentative(I, J) 947
MakeCoprime(I, J) 947
ClassRepresentative(I) 947
Lattice(I) 947
MinkowskiLattice(I) 947
Different(I) 947
Codifferent(I) 947
SUnitGroup(I) 947
SUnitGroup(S) 947
SUnitAction(SU, Act, S) 949
SUnitAction(SU, Act, S) 949
SUnitDiscLog(SU, x, S) 949
SUnitDiscLog(SU, L, S) 949

37.9.10 Quotient Rings 951

quo< > 951
quo< > 951
quo< > 951
UnitGroup(OQ) 951
MultiplicativeGroup(OQ) 951
Modulus(OQ) 951
! 952
mod 952
* + - / - ^ 952
eq ne 952
IsZero(a) 952
IsOne(a) 952
IsMinusOne(a) 952
IsUnit(a) 952
Eltseq(a) 952
ElementToSequence(a) 952
ReconstructionEnvironment(p, k) 953
ReconstructionEnvironment(p, k) 953
Reconstruct(x, R) 953
Reconstruct(x, R) 953
ChangePrecision(∼ R, k) 953

37.10 Places and Divisors 954

37.10.1 Creation of Structures 954

Places(K) 954
DivisorGroup(K) 954

860 GLOBAL ARITHMETIC FIELDS Part VII

37.10.2 Operations on Structures 954

eq eq 954
NumberField(P) 954
NumberField(D) 954

37.10.3 Creation of Elements 955

Place(I) 955
Decomposition(K, p) 955
Decomposition(K, I) 955
Decomposition(K, p) 955
Decomposition(m, p) 955
Decomposition(m, p) 955
InfinitePlaces(K) 955
InfinitePlaces(O) 955
Divisor(pl) 955
Divisor(I) 955
Divisor(x) 956
RealPlaces(K) 956

37.10.4 Arithmetic with Places and Divisors956

+ - - * div 956
37.10.5 Other Functions for Places and Di-

visors 956

Valuation(a, p) 956
Valuation(I, p) 956

Support(D) 956
Ideal(D) 956
Evaluate(x, p) 956
Evaluate(x, p) 956
Evaluate(x, p) 956
RealEmbeddings(a) 956
RealEmbeddings(a) 956
RealSigns(a) 957
RealSigns(a) 957
IsReal(p) 957
IsComplex(p) 957
IsFinite(p) 957
IsInfinite(p) 957
Extends(P, p) 957
InertiaDegree(P) 957
Degree(P) 957
Degree(D) 957
NumberField(P) 957
ResidueClassField(P) 958
UniformizingElement(P) 958
LocalDegree(P) 958
RamificationIndex(P) 958
DecompositionGroup(P) 958

37.11 Bibliography 958

Chapter 37

ORDERS AND ALGEBRAIC FIELDS

37.1 Introduction
The number field module in Magma is based on the Kant/Kash system (Kant-V4)
[KAN97], [KAN00], developed by the group of M. Pohst in Berlin.

The three main structures which this chapter is concerned with are FldNum (number
fields), RngOrd (orders in number fields) and FldOrd (fields of fractions of RngOrd’s).
Elements in these have types FldNumElt, RngOrdElt and FldOrdElt and ideals have types
RngOrdIdl and RngOrdFracIdl. While number fields, and their sub-types cyclotomic fields
and quadratic fields, are also detailed in separate chapters, (chapter 34 for number fields,
36 for cyclotomics and 35 for quadratics), almost all functionality described here applies
to those objects as well.

On top of all there is a combined type that will match all “number field” types:
FldAlg will match all references of type FldNum, FldOrd, FldCyc, and FldQuad (and sim-
ilarly FldAlgElt will match all element types: FldNumElt, FldOrdElt, FldCycElt and
FldQuadElt).

Number fields support extended types, they can be indexed by the type of the coefficient
ring: FldNum[FldRat] refers to an absolute extension over Q, while FldNum[FldNum] refers
to a relative extension.

In order to use them efficiently, one has to understand the relations between the parent
structures.

The basic distinction is between the number field point of view (FldNum) and the order
based view (FldOrd, RngOrd).

We will start with the number fields. Formally, in Magma, an object K of type
FldNum is an algebraic extension of finite degree over a a number field k or Q. Thus it
can be thought of as constructed as a quotient ring of a univariate polynomial ring over
the base field modulo some irreducible polynomial: K = k[t]/(f(t)k[t]) Or, the field may
be constructed as a multivariate quotient: K = k[s1, . . . , sn]/(f1(s1), . . . , fn(sn)) where
all the polynomials are univariate. However, a slightly different representation is used
internally.

It is important to remember that Q is not a number field.
One has to distinguish between number fields with primitive element α:= K.1 which is

a zero of f and number fields where no primitive element is known. In this case αi:= K.i
will be a zero of fi.

However, number fields always have a ‘power’ basis, i.e. a basis containing only powers
of the zero(s) of the defining polynomial(s) and products of those powers.

An important consequence of this representation as a quotient of a polynomial ring
is that one cannot distinguish between e.g. Q[2(1/3)] and Q[ζ32(1/3)] – both of them are
generated using a root of t3 − 2. Therefore every non trivial extension generates a new

862 GLOBAL ARITHMETIC FIELDS Part VII

object – even if the same polynomial is used repeatedly, except when the user explicitly
tells Magma to check whether the polynomial has been used before.

An absolute extension is always an extension of Q. An arbitrary number field K can
always be converted into an isomorphic extension of Q using a constructive variant of the
primitive element theorem.

Likewise, if a subfield k of K is known, an isomorphic field as an extension of k can be
computed.

The most important facts about the various representations are the following:
* Usually, arithmetic is fastest in absolute extensions. Thus, if one wants to do lots of

basic arithmetic with the elements the transformation to an absolute representation is
advisable. However, typically the operations are fastest when the elements are “small”
in size.

* Invariants (like Degree, Discriminant, Norm, Trace etc.) are always relative to the
current representation.

* Conversions of fields tend to be time consuming thus should be avoided if possible.
However, once the different field representations are computed, the conversion of ele-
ments is not too time consuming.

* Some operations and invariants can (currently) only be done for absolute representa-
tions. Essentially, these are computations involving subfields and class and unit group
computations.

Number fields support only arithmetic with their elements and the computation of some
invariants (GaloisGroup, Subfields, AutomorphismGroup). Although invariants like
the class group can be computed for FldNums this is only a shortcut for the corre-
sponding computations for the maximal orders so e.g. ClassGroup(K) is expanded to
ClassGroup(MaximalOrder(K)).

The other parent data-types are orders (RngOrd) and their fields of fractions (FldOrd).
Orders can be constructed in basically two ways:
* as finite extensions E of a (maximal) order m (or of Z) by a zero of a monic integral

polynomial f ∈ m[t]
* via a transformation from a different order.
The main restriction for the construction of orders is that the coefficient domain (BaseRing)
must always be a maximal order if any structural computations are desired. An order O
over some maximal order m is represented using a (pseudo) m-basis (of type PMat similar
to the way modules over Dedekind rings (ModDed, PMat) are represented in general. Every
other order must be free over its base ring.

An order O is equipped with a unique field of fractions, FieldOfFractions(O), which
has the same basis as the order and whose base field is the field of fractions of the base
ring. The fields of fractions support almost no structural computations, they merely serve
as a parent structure to any elements and ideals that (may) have denominators (i.e. that
are non-integral w.r.t. the current structure).

From a practical point of view, orders and their field of fractions have two different ele-
ment data types, namely elements (RngOrdElt) and ideals (RngOrdIdl) (resp. FldOrdElt

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 863

and RngOrdFracIdl). This is technically not quite correct since ideals have formally dif-
ferent parents but those parents are trivial and the important information in them is the
order the ideal is of. Ideals behave much more like elements than structures – they have no
elements and are not rings in general. Formally, the parent structures obey the following
rules:
* MaximalOrder(BaseRing(K)) eq BaseRing(MaximalOrder(K)) for all number fields

and fields of fractions K.
* BaseField(FieldOfFractions(O)) eq FieldOfFractions(BaseRing(O)) for all or-

ders O.
* BaseField(NumberField(O)) eq NumberField(BaseRing(O)) for all orders O.
* all orders within the same field share the identical number field. For example:

IsIdentical(NumberField(O), NumberField(MaximalOrder(O))), while the corre-
sponding fields of fractions will have, in general, different bases.

There are a few functions where orders behave differently to most other Magma objects,
mostly because orders are not necessarily free modules over their base ring:
* Parent(O.i) eq FieldOfFractions(O) and furthermore O.i in O is usually false.
* Eltseq of an order element returns a sequence over the field of fractions of the base

ring.
* The O.i are typically not a basis of the order – just part of a pseudo basis. However,

they always form a basis of the field of fractions.
Algebraic number fields will be referred to as number fields. If a field may be either a
number field or field of fractions it will be referred to as an algebraic field.

37.2 Creation Functions

The following describes how number fields, orders and their fields of fractions may be
created. It also shows some ways of creating elements of these rings and homomorphisms
from these rings into an arbitrary ring.

37.2.1 Creation of General Algebraic Fields
Algebraic Number Fields can be created in a various ways, all involving polynomials. The
fields can be created as absolute extensions, i.e. an extension of Q by an irreducible polyno-
mial, or as a relative extension which is an extension of an algebraic field by a polynomial
irreducible over that field. Fields of fractions can be created as FieldOfFractions(O)
where O is some order or from an existing field of fractions by using some of the construc-
tors and functions described below. See also the corresponding sections for number fields
section 34.2.1, section 36.2 for cyclotomics and section 35.2 for quadratics.

NumberField(f)

Check BoolElt Default : true

DoLinearExtension BoolElt Default : false

864 GLOBAL ARITHMETIC FIELDS Part VII

Global BoolElt Default : false

Given an irreducible polynomial f of degree n ≥ 1 over K = Q or some number
field K, create the number field L = K(α) obtained by adjoining a root α of f to
K. For details see NumberField in Section 34.2.1.

The angle bracket notation may be used to assign the root α to an identifier e.g.
L<y> := NumberField(f) where y will be a root of f .

RationalsAsNumberField()

QNF()

This creates a number field isomorphic to Q. It is equivalent to NumberField(x-1)
: DoLinearExtension), where x is PolynomialRing(Rationals()).1.

The result is a field isomorphic to Q, but regarded by Magma as a number
field (while Q itself is not, since FldRat is not a subtype of FldNum). It therefore
supports all of the number field functions, while the Rationals() do not. On the
other hand, arithmetic will be slower.

Coercion can be used to convert to and from the Rationals().

NumberField(s)

Check BoolElt Default : true

DoLinearExtension BoolElt Default : false

Abs BoolElt Default : false

Let K be a possibly trivial algebraic extension of Q. Given a sequence s of noncon-
stant polynomials s1, . . . , sm, that are irreducible over K, create the number field
L = K(α1, . . . , αm) obtained by adjoining a root αi of each si to K. For details see
NumberField in Section 34.2.1.

ext< F | s1, ..., sn >

ext< F | s >

Check BoolElt Default : true

Global BoolElt Default : false

Abs BoolElt Default : false

DoLinearExtension BoolElt Default : false

Create the algebraic field defined by extending F by the polynomials si or the
polynomials in the sequence s. Similar as for NumberField(S) described above, F
may be Q or a field of fractions. If F is a field of fractions a field of fractions will
be returned otherwise a number field will be returned. A tower of fields similar to
that of NumberField is created and the same restrictions as for that function apply
to the polynomials that can be used in the constructor.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 865

RadicalExtension(F, d, a)

Check BoolElt Default : true

Let F be an algebraic field. Let a be an integral element of F chosen such that a
is not an n-th power for any n dividing d. Returns the algebraic field obtained by
adjoining the d-th root of a to F .

SplittingField(F)

Abs BoolElt Default : true

Opt BoolElt Default : true

Given an algebraic field F , return the splitting field of its defining polynomial. The
roots of the defining polynomial in the splitting field are also returned.

If Abs is true, the resulting field will be an absolute extension, otherwise a tower
is returned.

If Opt is true, an attempt of using OptimizedRepresentation is done. If suc-
cessful, the resulting field will have a much nicer representation. On the other hand,
computing the intermediate maximal orders can be extremely time consuming.

SplittingField(f)

Given an irreducible polynomial f over Z, return its splitting field.

SplittingField(L)

Abs BoolElt Default : false

Opt BoolElt Default : false

Given a sequence L of polynomials over a number field or the rational numbers,
compute a common splitting field, i.e. a field K such that every polynomial in L
splits into linear factors over K. The roots of the polynomials are returned as the
second return value.

If the optional parameter Abs is true, then a primitive element for the splitting
field is computed and the field returned will be generated by this primitive element
over Q. If in addition Opt is also true, then an optimized representation of K is
computed as well.

sub< F | e1, ..., en >

Given an algebraic field F with ground field G and n elements ei ∈ F , return
the algebraic field H = G(e1, . . . , en) generated by the ei (over G), as well as the
embedding homomorphism from H to F .

866 GLOBAL ARITHMETIC FIELDS Part VII

MergeFields(F, L)

CompositeFields(F, L)

Let F and L be absolute algebraic fields. Returns a sequence of fields [M1, . . . ,Mr]
such that each field Mi contains both a root of the generating polynomial of F and
a root of the generating polynomial of L.

In detail: Suppose that F is the smaller field (wrt. the degree). As a first step we
factorise the defining polynomial of L over F . For each factor obtained, an extension
of F is constructed and then transformed into an absolute extension. The sequence
of extension fields is returned to the user.

Compositum(K, L)

For absolute number fields K and L, at least one of which must be normal, find a
smallest common over field. Note that in contrast to CompositeFields above the
result here is essentially unique since one field was normal.

Compositum(K, A)

For an normal number field K and abelian extension A of some subfield of K, find
a smallest common over field. Note that in contrast to CompositeFields above the
result here is essentially unique since K is normal.

OptimizedRepresentation(F)

OptimisedRepresentation(F)

OptimizedRepresentation(F, d)

OptimisedRepresentation(F, d)

Given an algebraic field F with ground field Q, this function will attempt to find
an isomorphic field L with a better defining polynomial (in the sense defined below)
than the one used to define F . If such a polynomial is found then L is returned;
otherwise F will be returned.

If the argument d is not specified, a polynomial g with integer coefficients is
defined to be better than f if it is monic, irreducible, defines a number field iso-
morphic to F and its discriminant is smaller (in absolute value) than that of f . If
a second argument d is specified, then g is defined to be better if in addition to
the previous requirements d is not an index divisor, that is, if d does not divide the
index (defined in the Invariants sub–section) [OL : EL] of the equation order EL of
L in the maximal order OL, (which are defined in the next sub–section).

Note however, that as a first step this function will determine the maximal order
of F which may take some time if the field is large.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 867

Example H37E1

Some results of OptimizedRepresentation are shown.

> R<x> := PolynomialRing(Rationals());

> K := NumberField(x^4-420*x^2+40000);

> L := OptimizedRepresentation(K);

> L ne K;

true

> L;

Number Field with defining polynomial x^4 - 4*x^3 -

17*x^2 + 42*x + 59 over the Rational Field

> L eq OptimizedRepresentation(L);

> f := DefiningPolynomial(L);

> Z := IntegerRing();

> Factorization(Z ! Discriminant(f));

[<2, 18>, <5, 8>, <41, 2>]

> g := x^4 - 4*x^3 - 17*x^2 + 42*x + 59;

> Factorization(Z ! Discriminant(g));

[<2, 4>, <3, 4>, <5, 2>, <41, 2>]

> OL := MaximalOrder(L);

> EL := EquationOrder(L);

> Index(OL, EL);

36

> OptimizedRepresentation(L, 2) eq L;

true

As we see from this computation, the prime 5 (as well as 41) divides the discriminant of g twice.
This means that, potentially, 5 would still divide the index of the equation order in the maximal
order OL of L. However, in fact EL has only index 36 in OL.

The optimized representation of L such that 2 does not divide the index of EL in OL is L so 2
does divide the index seemingly contrary to the description above. However, if a more optimal
representation cannot be found then the field is returned which is what happens here.

37.2.2 Creation of Orders and Fields from Orders
The maximal order OK of an algebraic field and the equation order of a number field can
be obtained from the field. Other orders of a field are unitary subrings of finite index in the
ring of integers; they contain a subset of the integral elements in the field. The equation
order EK = Z[α] of K = Q(α) ∼= Q[X]/f(X), where K is a number field defined by a
monic integral polynomial, has the same basis as K, a power basis. Obviously EK ⊂ OK

since the minimal polynomial of α is integral and monic. Once an order is created in
Magma further orders can be created from it.

868 GLOBAL ARITHMETIC FIELDS Part VII

EquationOrder(f)

Check BoolElt Default : true

Given an irreducible non-constant monic integral polynomial f ∈ R[X], return the
equation order E = R[X]/f(X) corresponding to f . If the optional parameter
Check is set to false then the polynomial will not be checked for irreducibility.

EquationOrder(K)

Return the equation order corresponding to the polynomial with which the number
field K was defined. K must have been defined by a monic integral polynomial.
Thus this function returns the extension of the equation order of the ground field of
K by the defining polynomial of K.

SubOrder(O)

Provided the order O is not an equation order, O is a transformation of some order
O′. This function returns O′.

EquationOrder(O)

A suborder of the order O which is defined by a polynomial. e.g. R[x]/f where
R is a polynomial ring over the coefficient ring of O and f is in R. It will also be
the final order of SubOrder(SubOrder(. . . SubOrder(O))). O must have a monic
defining polynomial for the equation order to exist.

Integers(O)

RingOfIntegers(O)

IntegerRing(O)

Returns the ring of integers in the order O, ie. O itself.

Example H37E2

Once a number field K = Q(α) has been created, one can obtain the equation order E = Z[α]
and the ring of integers OK simply as follows.

> R<x> := PolynomialRing(Integers());

> K := NumberField(x^4-420*x^2+40000);

> E := EquationOrder(K);

> O := MaximalOrder(K);

> Index(O, E);

64000

Note that entirely different things happen here: for the equation order nothing has to be computed,
but the determination of the maximal order involves the complicated Round 2 (or 4) algorithm.
In our particular example above, E is a subring of index 29 · 53 in O (see also the example for
orders and ideals in the subsection 37.2.3.1 where a maximal order is created).

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 869

sub< O | a1, ..., ar >

Create the suborder of the order O generated (as an algebra over Z) by the elements
a1, . . . , ar ∈ O, that is, create Z[a1, . . . , ar]. If the algebra does not have full rank as
a sub-module of O, an error results. Note, however, that it is currently not required
that 1 is in the sub-ring.

ext< O | a1, ..., ar >

Given an order O, and elements a1, . . . , ar lying in the maximal order of O, create
the order O[a1, . . . , ar]. Note that using this constructor O can only be extended
to be as large as the maximal order. This does not cause the maximal order to get
computed. See also Order for a different version that allows parameters to improve
efficiency.

ext< O | f >

Given an order O and a polynomial f of degree n with coefficients in O, create
the extension E of O by a root of f which forms a free module of rank n over O :
E ∼= O[α]; it is necessary for f to be irreducible over O.

FieldOfFractions(O)

Return the field containing all fractions of elements of O. The angle bracket notation
can be used to assign names to the basis elements of F and assign these elements
to variables, e.g. F<x, y> := FieldOfFractions(MaximalOrder(x^2 + 3)).

Order(F)

The order of which F was created as its field of fractions. This function is an inverse
to FieldOfFractions.

NumberField(O)

The number field of an order is recursively defined by:

1. the number field of Z is Q

2. the number field of O is the number field of the coefficient ring of O, (i.e. the
order over which O is defined), with an element α adjoined where α is a root of
the defining polynomial of O.

NumberField(F)

The number field of Order(F) for a field of fractions F .

870 GLOBAL ARITHMETIC FIELDS Part VII

Example H37E3

The following illustrates the relationship between the bases of an order, its field of fractions and
its number field.

> R<x> := PolynomialRing(Integers());

> f := x^5 + 5*x^4 - 75*x^3 + 250*x^2 + 65625;

> M := MaximalOrder(f);

> M;

Maximal Order of Equation Order with defining polynomial x^5 + 5*x^4 - 75*x^3 +

250*x^2 + 65625 over its ground order

> Basis(FieldOfFractions(M));

[

M.1,

M.2,

M.3,

M.4,

M.5

]

> Basis(NumberField(M));

[

1,

$.1,

$.1^2,

$.1^3,

$.1^4

]

> Basis(M);

[

M.1,

M.2,

M.3,

M.4,

M.5

]

> M.1 eq 1;

true

> M.2 eq NumberField(M).1;

false

> E := EquationOrder(M);

> NumberField(M) eq NumberField(E);

true

> Basis(FieldOfFractions(E), NumberField(M));

[

1,

$.1,

$.1^2,

$.1^3,

$.1^4

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 871

]

> M!Basis(FieldOfFractions(E))[1];

[1, 0, 0, 0, 0]

> M!Basis(FieldOfFractions(E))[2];

[0, 5, 0, 0, 0]

> M!NumberField(M).1;

[0, 5, 0, 0, 0]

OptimizedRepresentation(O)

OptimisedRepresentation(O)

OptimizedRepresentation(O, d)

OptimisedRepresentation(O, d)

Given an order O with ground ring Z, this function will attempt to find an isomor-
phic maximal order M with a better defining polynomial than the one used to define
O. If such a polynomial is found then M is returned; otherwise O will be returned.

If the argument d is not specified, a polynomial g with integer coefficients is
defined to be better than f if it is monic, irreducible, defines an order isomorphic
to O and its discriminant is smaller in absolute value than that of f . If a second
argument d is specified, then g is defined to be better if in addition to the previous
requirements d is not an index divisor, that is, if d does not divide the index (defined
in the Invariants sub–section) [M : EM] of the equation order EM of M in M .

O + P

Add two orders O and P having the same equation order. Computes the smallest
common over order.

O meet P

The intersection of two orders O and P having the same equation order.

AsExtensionOf(O, P)

Return the order O as an transformation of the order P where O and P have the
same coefficient ring.

Order(O, T, d)

Check BoolElt Default : true

Let O be an absolute order with basis b1, . . . , nn, T = (Ti,j) ∈ GL(n,Q)∩Mat(n,Z)
and d ∈ N. This function creates the order with basis (1/d

∑n
j=1 Ti,jbj)i≤i≤n. Check

can be set to false when the order is large to avoid checking that the result actually
is an order.

872 GLOBAL ARITHMETIC FIELDS Part VII

Order(O, M)

Let O be an order with (pseudo) basis b1, . . . , bn and M =
∑n

i=1Aiαi ⊆ kn be an
ok-module where ok is the coefficient ring of O. This function creates the order∑n

i=1Aici where ci :=
∑n

j=1 αi,jbj . If Check is set to false, then it will not be
checked that the result actually is an order (potentially expensive).

Order([e1, ... en])

Verify BoolElt Default : true

Order BoolElt Default : false

Given n elements e1, . . . , en in an algebraic extension field F over Q create the
minimal order O of F which contains all the ei. If Verify is true, it is verified that
the ei are integral algebraic numbers. This can be a lengthy process if the field is
of large degree.

Setting Order to true assumes that the given elements actually form a basis
for the new order, thus it avoids testing for multiplicative closure. Without this
parameter the order returned will have a canonical basis chosen with no direct
relation to the input. By default, products of the generators will be added until the
module is closed under multiplication.

37.2.3 Maximal Orders
The maximal order OK is the ring of integers of an algebraic field consisting of all integral
elements of the field; that is, elements which are roots of monic integer polynomials. It
may also be called the number ring of a number field.

There are a number of algorithms which Magma uses whilst computing maximal orders.
Each maximal order is a sum of p-maximal orders. The main algorithm used for p-maximal
orders is a mixture of the Round–2 and Round–4 methods ([Coh93, Bai96, Poh93, PZ89])
for absolute extensions and a variant of the Round–2 for relative extensions ([Coh00,
Fri97]).

However if the field is a radical (pure) extension, there is another algorithm available
which is used to calculate each p-maximal order. In this case we can compute a pseudo
basis for the p-maximal orders knowing only the valuation of the constant coefficient of
the defining polynomial at p [Sut12].

The Round–2 and Round–4 algorithms can be selected by setting the parameter Al to
"Round2" and "Round4" respectively. Another option for this parameter and for computa-
tion of p-maximal orders is the "Pauli" method. This method is only available for equation
orders in simple relative extensions. It uses the factorization of the defining polynomial
over the completion of the order.

Alternatively, if the discriminant of the maximal order is already known, the param-
eters Discriminant or Ramification can be used. If the input is an order O and the
Discriminant or Ramification parameters are supplied an algorithm which can compute
the maximal order given the discriminant of the maximal order will be used. Discriminant
must be an integer if O is an absolute order and must be an ideal of the coefficient ring
of O if O is a relative order. Ramification must contain integers if O is an absolute

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 873

order and must contain ideals of the coefficient ring of O if O is a relative order. The
ramification sequence is taken to contain prime factors of the discriminant. Only one of
these parameters can be specified and if one of them is then Al cannot be specified. This
algorithm is based on [Bj94], Theorems 1.2 and 7.6.

MaximalOrder(O)

Al MonStgElt Default : “Auto”
MaximalOrder(F)

IntegerRing(F)

Integers(F)

RingOfIntegers(F)

Discriminant Any Default :

Ramification SeqEnum Default :

Verbose MaximalOrder Maximum : 5
Return the maximal order or ring of integers of the number field F . When the input
is an order O or a field of fractions of an order O return the order containing O
which is the largest order in the number field of O.

An integral basis for F can be found as the basis of the maximal order.
For information on the parameters, see the introduction to this section above,

37.2.3.

MaximalOrder(f)

Check BoolElt Default : true

Al MonStgElt Default : “Auto”
Discriminant Any Default :

Ramification SeqEnum Default :

Verbose MaximalOrder Maximum : 5
This is equivalent to MaximalOrder(NumberField(f)).

The Check parameter if set to false will prevent checking of the polynomial for
irreducibility.

For information on the other parameters, see the introduction to this section
above.

Example H37E4

The following shows the advantage of the Ramification parameter to the MaximalOrder function.

> R<t> := PolynomialRing(Integers());

> f1 := t^14 - 63*t^12 - 9555*t^11 + 118671*t^10 - 708246*t^9 - 17922660*t^8 +

> 859373823*t^7 + 2085856500*t^6 - 117366985106*t^5 - 335941176396*t^4 +

> 4638317668005*t^3 + 17926524826973*t^2 + 7429846568445*t+ 91264986397629;

> d1 := [2, 3, 5, 7, 59];

874 GLOBAL ARITHMETIC FIELDS Part VII

> time MaximalOrder(f1:Ramification := d1);

Maximal Order of Equation Order with defining polynomial x^14 - 63*x^12 -

9555*x^11 + 118671*x^10 - 708246*x^9 - 17922660*x^8 + 859373823*x^7 +

2085856500*x^6 - 117366985106*x^5 - 335941176396*x^4 + 4638317668005*x^3 +

17926524826973*x^2 + 7429846568445*x + 91264986397629 over Z

Time: 0.230

> time MaximalOrder(f1);

Maximal Order of Equation Order with defining polynomial x^14 - 63*x^12 -

9555*x^11 + 118671*x^10 - 708246*x^9 - 17922660*x^8 + 859373823*x^7 +

2085856500*x^6 - 117366985106*x^5 - 335941176396*x^4 + 4638317668005*x^3 +

17926524826973*x^2 + 7429846568445*x + 91264986397629 over Z

Time: 0.590

> f2 := t^14 - 129864*t^12 - 517832*t^11 + 6567239322*t^10 + 33352434192*t^9 -

> 166594899026864*t^8 - 752915315481312*t^7 + 2275891736459084940*t^6 +

> 7743078094604088768*t^5 - 16633213695413438344032*t^4 -

> 39871919309692447523616*t^3 + 60126791399546070679893112*t^2 +

> 77844118533852728698751040*t - 83173498199506854751458701376;

> d2 := [2,3,7,4145023];

>

> time MaximalOrder(f2:Ramification := d2);

Maximal Order of Equation Order with defining polynomial x^14 - 129864*x^12 -

517832*x^11 + 6567239322*x^10 + 33352434192*x^9 - 166594899026864*x^8 -

752915315481312*x^7 + 2275891736459084940*x^6 + 7743078094604088768*x^5 -

16633213695413438344032*x^4 - 39871919309692447523616*x^3 +

60126791399546070679893112*x^2 + 77844118533852728698751040*x -

83173498199506854751458701376 over Z

Time: 0.730

> time MaximalOrder(f2);

Maximal Order of Equation Order with defining polynomial x^14 - 129864*x^12 -

517832*x^11 + 6567239322*x^10 + 33352434192*x^9 - 166594899026864*x^8 -

752915315481312*x^7 + 2275891736459084940*x^6 + 7743078094604088768*x^5 -

16633213695413438344032*x^4 - 39871919309692447523616*x^3 +

60126791399546070679893112*x^2 + 77844118533852728698751040*x -

83173498199506854751458701376 over Z

Time: 0.840

> f13 := t^15 - 114*t^14 + 282185319*t^13 + 1247857228852*t^12 -

> 35114805704965233*t^11 - 141524337796433387826*t^10 +

> 2604584980442264028744009*t^9 + 14153948932132918272984150384*t^8 -

> 178273077248353369941327628479552*t^7 - 1142953506821390914419260564494304768

> *t^6 + 15975069142211276963134599495014990639616*t^5 +

> 33516684438303088018217308253251277376159744*t^4 -

> 617589777108203716232396372453619309554471256064*t^3 -

> 397561412445066919545461762354884631501806174863360*t^2 +

> 2266657182908547570648245464215192357802047101628186624*t

> - 1302222456532760256406916223259306960561657428777814196224;

> d13 := [2, 3, 3377890562461, 7623585272461];

> time MaximalOrder(f13: Ramification := d13);

Maximal Order of Equation Order with defining polynomial x^15 - 114*x^14 +

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 875

282185319*x^13 + 1247857228852*x^12 - 35114805704965233*x^11 -

141524337796433387826*x^10 + 2604584980442264028744009*x^9 +

14153948932132918272984150384*x^8 - 178273077248353369941327628479552*x^7 -

1142953506821390914419260564494304768*x^6 +

15975069142211276963134599495014990639616*x^5 +

33516684438303088018217308253251277376159744*x^4 -

617589777108203716232396372453619309554471256064*x^3 -

397561412445066919545461762354884631501806174863360*x^2 +

2266657182908547570648245464215192357802047101628186624*x -

1302222456532760256406916223259306960561657428777814196224 over Z

Time: 0.270

> time MaximalOrder(f13);

The last line did not complete running in over 7 hours.

37.2.3.1 Orders and Ideals
Orders may be created using ideals of another order. Ideals are discussed in Section 37.9.
The following intrinsics form part of the computation of maximal orders as discussed above
in Section 37.2.3.

pMaximalOrder(O, p)

Al MonStgElt Default : “Auto”
The p-maximal overorder of O (see also the example below). This is the largest
overorder P such that the index (P : O) is a power of p, a prime in the coefficient
ring of O. The options for the Al parameter are the same as those for MaximalOrder.

If O is a kummer extension then specific code is used to calculate each p-maximal
order, rather than the Round 2 or Round 4 methods. In this case we know 1 or 2
elements which generate the p-maximal order and can easily write the order down.

pRadical(O, p)

Returns the p-radical of an order O for a prime p in the coefficient ring of O, defined
as the ideal consisting of elements of O for which some power lies in the ideal pO.

It is possible to call this function for p not prime (so long as p is greater than the
degree of O if it is an integer). In this case the p-trace-radical will be computed, i.e.

{x ∈ F | Tr(xO) ⊆ pZ}.
If p is square free and all divisors are larger than the field degree, this is the
intersection of the radicals for all l dividing p. In particular together with
MultiplicatorRing this can sometime be used to compute maximal orders without
factoring the discriminant [Bj94, Fri00] or at least “good” approximations.

MultiplicatorRing(I)

Returns the multiplicator ring M of the ideal I of the order O, that is, the subring
of elements of the field of fractions K of O multiplying I into itself: M = {x ∈ F :
xI ⊂ I}.

876 GLOBAL ARITHMETIC FIELDS Part VII

Example H37E5

To illustrate how the Round 2 algorithm for the determination of the ring of integers works, we
present an implementation of it in the Magma language. The key functions are MultiplicatorRing
and pRadical, called by the following function pMaximalOverOrder;

> pMaximalOverOrder := function(ord, p)

> ovr := MultiplicatorRing(pRadical(ord, p));

> print "index is", Index(ovr, ord);

> return (Index(ovr, ord) eq 1) select ovr else $$(ovr, p);

> end function;

which finds the largest overorder in which the given order has p-power index. This function is
now simply applied to the equation order, for each prime dividing the discriminant:

> Round2 := function(E, K)

> // E should be some order of a number field K

> d := Discriminant(E);

> fact := Factorization(Abs(d));

> print fact;

> M := E;

> for x in fact do

> M := M+pMaximalOverOrder(E, x[1]);

> end for;

> print "index of equation order in maximal order is:", Index(M, E);

> return M;

> end function;

In our running example, this produces the following output:

> R<x> := PolynomialRing(Integers());

> K := NumberField(x^4-420*x^2+40000);

> E := EquationOrder(K);

> Round2(E, K);

[<2, 18>, <5, 8>, <41, 2>]

index is 2

index is 4

index is 8

index is 4

index is 2

index is 1

index is 5

index is 25

index is 1

index is 1

index of equation order in maximal order is: 64000

Transformation of E

Transformation Matrix:

[800 0 0 0]

[0 400 0 0]

[0 200 20 0]

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 877

[400 180 0 1]

Denominator: 800

37.2.4 Creation of Elements
Elements of algebraic fields and of orders are displayed quite differently. Algebraic field
elements are always printed as a linear combination with rational coefficients of the basis
elements of the field. For number fields which have a power basis this is also a polynomial
in the primitive element of the field with rational coefficients; that is, an element of G[x]/f ,
where f was the defining polynomial of the field over the ground field G. Since in general
G will be an algebraic field itself, elements in relative extensions, i.e. G strictly bigger
than Q, will be printed as linear combinations with linear combinations as coefficients and
for number fields this will look like multivariate polynomials. In fact they are recursively
defined univariate polynomials.

Elements of orders are displayed as sequences of integer coefficients, referring to the
basis of the order. To convert this Z-basis representation to a polynomial expression in the
primitive element of an associated number field, the element should be coerced into the
number field (using !). To print the element as a linear combination of the basis elements,
coerce the element into the field of fractions.

F ! a

elt< F | a >

Coerce a into the field F . Here a may be an integer or a rational field element, or
an element from a subfield of F , or from an order in such.

F ! [a0, a1, ..., am−1]

elt< F | [a0, a1, ..., am−1] >

elt< F | a0, a1, ..., am−1 >

Given the algebraic field, F of degree m over its ground field G and a sequence
[a0, . . . , am−1] of elements of G, construct the element a0α0 + a1α1 + · · · am−1αm−1

of F where the αi are the basis elements of F .

O ! a

elt< O | a >

Coerce a into the order O. Here a is allowed to be an integer, or an integral element
of an associated algebraic field of O, or an element of a quotient order.

878 GLOBAL ARITHMETIC FIELDS Part VII

O ! [a0, a1, ..., am−1]

elt< O | [a0, a1, ..., am−1] >

elt< O | a0, a1, ..., am−1 >

Given the order O of degree m and elements a0, a1, . . . , am−1 in the ground order of
O, construct the element a0α0 + a1α1 + · · ·+ am−1αm−1 of O, where α0, . . . , αm−1

is the basis for the order.

Random(F, m)

Random(O, m)

A random element of the algebraic field F or order O. The maximal size of the
coefficients is determined by m.

Random(I, m)

A random element of the ideal I as an element of the field of fractions of the
associated order. The maximal size of the coefficients with respect to the ideal basis
is determined by m.

Example H37E6

Here are three ways of creating the same integral element in K as an element of the maximal
order and its field of fractions.

> R<x> := PolynomialRing(Integers());

> K<y> := NumberField(x^4-420*x^2+40000);

> O := MaximalOrder(K);

> e := O ! (y^2/40 + y/4);

> f := elt< O | [0, 0, 1, 0]>;

> f eq e;

true

> F<a, b, c, d> := FieldOfFractions(O);

> g := F![0, 0, 1, 0];

> g eq e;

true

> g;

c

These constructions would have failed if the element was not in O.

One(K) One(O) Identity(K) Identity(O)

Zero(K) Zero(O) Representative(K) Representative(O)

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 879

37.2.5 Creation of Homomorphisms
To specify homomorphisms from algebraic fields or orders in algebraic fields, it is necessary
to specify the image of the generating elements, and possible to specify a map on the ground
field.

hom< F -> R | r >

hom< F -> R | h, r >

Given an algebraic field F , defined as an extension of the ground field G, as well as
some ring R, build the homomorphism φ obtained by sending the defining primitive
element α of F to the element r ∈ R.

If F is a field of fractions then r will be the image of the primitive element of
the field of fractions of the equation order of Order(F).

It is possible (if G = Q) and sometimes necessary (if G 6= Q) to specify a
homomorphism φ on F by specifying its action on G by providing a homomorphism
h with G as its domain and R its codomain together with the image of α. If R does
not cover G then the homomorphism h from G into R is necessary to ensure that
the ground field can be mapped into R.

hom< O -> R | r >

hom< O -> R | h, r >

Given an order O, a ring R and an element r ∈ R, construct a homomorphism φ by
sending the primitive element of the equation order of O to r.

To be more precise: Let K be the field of fractions of O, k be the base field of
K i.e. the field of fractions of the base ring of O, and N := NumberField(O). As a
k–algebra K is generated by x := K!N.1, so x is zero of DefiningPolynomial(O).
The element r given in the map construction will be the image of x.

When O is an equation order e.g. if O was defined using a monic integral poly-
nomial x will be O.2.

As in the field case it is possible to specify a map on the coefficient ring of O
(ring over which O is defined) with codomain R. This is necessary if R does not
cover the coefficient ring of O.

Example H37E7

We show a way to embed the field Q(
√

2) in Q(
√

2+
√

3). The application of the homomorphism
suggests how the image could have been chosen.

> R<x> := PolynomialRing(Integers());

> K<y> := NumberField(x^2-2);

> KL<w> := NumberField(x^4-10*x^2+1);

> H := hom< K -> KL | (9*w-w^3)/2 >;

> H(y);

1/2*(-w^3 + 9*w)

> H(y)^2;

880 GLOBAL ARITHMETIC FIELDS Part VII

2

Homomorphisms can be created between any order or algebraic field and any ring.

> f := x^4 + 5*x^3 - 25*x^2 + 125*x + 625;

> M := MaximalOrder(f);

> F<a, b, c, d> := FieldOfFractions(M);

> FF := FiniteField(5, 3);

> F;

Field of Fractions of M

> FF;

Finite field of size 5^3

> h := hom< F -> FF | Coercion(Rationals(), FF), 3*FF.1>;

> h;

Mapping from: FldOrd: F to FldFin: FF

> h(a); h(b);

1

>> h(a); h(b);

^

Runtime error in map application: Application of map failed

> h(5*b); h(5*5*c); h(5*5*5*d);

FF.1^94

FF.1^64

FF.1^34

This unexpected behaviour occurs because when the basis of F is expressed with respect to the
power basis of the number field they have denominator divisible by 5. A more well–behaved
example is shown below.

> FF := FiniteField(11, 5);

> h := hom< F -> FF | Coercion(Rationals(), FF), 7*FF.1>;

> h(a);

1

> h(b); h(c); h(d);

FF.1^48316

FF.1^96632

FF.1^144948

> 7*FF.1;

FF.1^112736

> 5*h(b);

FF.1^112736

> PrimitiveElement(F);

5/1*b

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 881

hom< O -> R | b1, ..., bn >

hom< O -> R | m, b1, ..., bn >

Return the map from the order O of an algebraic number field to the ring R mapping
the basis elements to b1, .., bn. If given, the map m should be from the coefficient
ring of O to R and will be used to map the coefficients of the basis elements. If not
given the coefficient ring of O should by covered by R.

IsRingHomomorphism(m)

Return whether the vector space homomorphism m is a homomorphism of rings.

37.3 Special Options

It is possible to obtain output generated by the KANT package using the verbose printing
feature of Magma, furthermore, the general style of the output can be changed. It is also
possible to alter the precision used for internal real computations.

SetVerbose(s, n)

There are a number of verbose flags s applying to the functions described in this
chapter. The flags and their levels n are mentioned in the descriptions of the func-
tions which use them.

Note however, that setting the verbose levels may produce unexpected results
since the effective scope of the flags is a little bit vague. Consider the following
example:

> SetVerbose("MaximalOrder", 1);
> SetVerbose("Factor", 1);
> L := NumberField(PolynomialRing(Rationals()).1^2-10);
Factorize square-free polynomial over Z of degree 2
Deflation factor: 2
Number of deflated factors: 1
Factor inflated polynomial 0 of degree 2
Total factorization time: 0.000
Final irreducibility test factorization:
<x^2 - 10, 0>
> Regulator(L);
order_maximal_sub: called with algo_flag: 0
no algorithm selected
nothing about algebra-splitting selected
nothing about reduced-discriminant selected
nothing about dedekind-test selected
order_maximal_sub: calling order_maximal_sub_sub
order_maximal_sub_sub: called with algo_flag: 16
no algorithm selected
nothing about algebra-splitting selected

882 GLOBAL ARITHMETIC FIELDS Part VII

use reduced-discriminant selected
nothing about dedekind-test selected
red disc: f =x^2 - 10
r_disc = 20

Reduced discriminant: 20
Factorization of reduced discriminant:
2^2 * 5^1
calculation and factorisation of reduced discriminant: 0.01
Factorization of discriminant:
2^3 * 5^1
factors with (possibly) not maximal overorder:
2^3

order_max_p_sub called:
prime: 2, prime_bound: 3, algo_flag: 16

no algorithm selected
nothing about algebra-splitting selected
nothing about dedekind-test selected

order_max_p_sub_sub called:
prime: 2, prime_bound: 3, algo_flag: 89

round2 selected
no algebra-splitting selected
use dedekind-test selected
No split performed ...
(due to user advice or impossible) ...
standard algorithm.

order_max_p_rnd2_sub called:
prime: 2, prime_bound: 3, algo_flag: 89

use dedekind-test selected
Order is already 2-maximal.
1.81844645923206682348369896356070899378625394276899999999

The first few lines of output are generated, because the creation of number fields involves
a test of irreducibility for the defining polynomial(s).

The next group of lines come from the computation of the maximal order which is used
for the regulator computation.

In general the amount of output generated increases with the value supplied. Further-
more, the output corresponding to larger values gets more and more technical.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 883

SetKantPrinting(f)

Kant-style printing means that integers and rational numbers will be printed as
integers and rational numbers. Especially in relative extensions this produces easier
to read output - but it is no longer possible to paste the output back into the system
again. Turns Kant-style printing on if f is true and off if f is false.

SetKantPrecision(n)

SetKantPrecision(O, n)

SetKantPrecision(O, n, m)

SetKantPrecision(F, n)

SetKantPrecision(F, n, m)

For internal real computations, some number field functions use real arithmetic to a
fixed precision; therefore every algebraic field and every order comes equipped with
some real-rings.

Initially, the precision (in decimal digits) will be the maximum of the set precision
P , 20 and four times the degree of the algebraic field (order) in which calculations
are performed. By default P = 52.

In addition all unit computations use a second real-ring in which the default
precision is always twice the ordinary precision. This ring can be set using the third
argument of SetKantPrecision.

Furthermore, the computation of the zeroes of the defining polynomial of the
field or order uses a third, independent, precision which initially is the maximum of
32 and the (binary) logarithm of the largest coefficient of the defining polynomial.

Note however, that several functions will work automatically with a much larger
precision if necessary to guarantee P digits for the user. Generally all functions take
care of the necessary precision. Only under rare circumstances will any computation
fail because of precision loss.

Certain calculations that fail if the precision is too small may succeed after
restarting with increased precision.

If the order O or field F is given, then the precision change will apply only in
the context of that order (field).

37.4 Structure Operations

In the lists below F usually refers to an algebraic field, K to a number field and O to an
order.

884 GLOBAL ARITHMETIC FIELDS Part VII

37.4.1 General Functions
Number fields form the Magma category FldNum, orders form RngOrd and their fields of
fractions form FldOrd. The notional power structures exist as parents of algebraic fields
and their orders, no operations are allowed.

Category(F) Parent(F) Category(O) Parent(O)

AssignNames(∼K, s)

Procedure to change the names of the generating elements in the number field K to
the contents of the sequence of strings s.

The i-th sequence element will be the name used for the generator of the (i−1)-st
subfield down from K as determined by the creation of K, the first element being
used as the name for the generator of K. In the case where K is defined by more
than one polynomial as an absolute extension, the ith sequence element will be the
name used for the root of the ith polynomial used in the creation of K.

This procedure only changes the names used in printing the elements of K. It
does not assign to any identifiers the value of a generator in K; to do this, use an
assignment statement, or use angle brackets when creating the field.

Note that since this is a procedure that modifies K, it is necessary to have a
reference ∼K to K in the call to this function.

Name(K, i)

K . i

Given a number field K, return the element which has the i-th name attached to it,
that is, the generator of the (i − 1)-st subfield down from K as determined by the
creation of K. Here i must be in the range 1 ≤ i ≤ m, where m is the number of
polynomials used in creating K. If K was created using multiple polynomials as an
absolute extension, K.i will be a root of the ith polynomial used in creating K.

AssignNames(∼F, s)

Assign the strings in the sequence s to the names of the basis elements of the field
of fractions F .

F . i

Name(F, i)

Return the ith basis element of the field of fractions F .

O . i

Return the ith basis element of the order O.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 885

37.4.2 Related Structures
Each order and field has other orders and fields which are related to it in various ways.

GroundField(F)

BaseField(F)

CoefficientField(F)

CoefficientRing(F)

Given an algebraic field F , return the algebraic field over which F was defined. For
an absolute number field F , the function returns the rational field Q.

BaseRing(O)

CoefficientRing(O)

Given an order O, this returns the order over which O was defined. For an absolute
order O this will be the integers Z.

AbsoluteField(F)

Given an algebraic field F , this returns an isomorphic number field L defined as an
absolute extension (i.e. over Q).

AbsoluteOrder(O)

Given an order O, this returns an isomorphic order O′ defined as an order in an
absolute extension (over Q).

SimpleExtension(F)

SimpleExtension(O)

Given an algebraic field F or an order O, this returns an isomorphic field L defined
as an absolute simple extension or the Z-isomorphic order in it.

RelativeField(F, L)

Given algebraic fields L and F such that Magma knows that F is a subfield of L,
return an isomorphic algebraic field M defined as an extension over F .

Example H37E8

It is often desirable to build up a number field by adjoining several algebraic numbers to Q. The
following function returns a number field that is the composite field of two given number fields K
and L, provided that K ∩L = Q; if K and L have a common subfield larger than Q the function
returns a field with the property that it contains a subfield isomorphic to K as well as a subfield
isomorphic to L.

> R<x> := PolynomialRing(Integers());

> Composite := function(K, L)

> T<y> := PolynomialRing(K);

> f := T!DefiningPolynomial(L);

886 GLOBAL ARITHMETIC FIELDS Part VII

> ff := Factorization(f);

> LKM := NumberField(ff[1][1]);

> return AbsoluteField(LKM);

> end function;

To create, for example, the field Q(
√

2,
√

3,
√

5), the above function should be applied twice:

> K := NumberField(x^2-3);

> L := NumberField(x^2-2);

> M := NumberField(x^2-5);

> KL := Composite(K, L);

> S<s> := PolynomialRing(BaseField(KL));

> KLM<w> := Composite(KL, M);

> KLM;

Number Field with defining polynomial s^8 - 40*s^6 + 352*s^4 - 960*s^2 + 576

over the Rational Field

Note, that the same field may be constructed with just one call to NumberField followed by
AbsoluteField:

> KLM2 := AbsoluteField(NumberField([x^2-3, x^2-2, x^2-5]));

> KLM2;

Number Field with defining polynomial s^8 - 40*s^6 + 352*s^4 - 960*s^2 + 576

over the Rational Field

or by

> AbsoluteField(ext<Rationals() | [x^2-3, x^2-2, x^2-5]>);

Number Field with defining polynomial s^8 - 40*s^6 + 352*s^4 - 960*s^2 + 576

over the Rational Field

In general, however, the resulting polynomials of KLM and KLM2 will differ. To see the differ-
ence between SimpleExtension and AbsoluteField, we will create KLM2 again:

> KLM3 := NumberField([x^2-3, x^2-2, x^2-5]: Abs);

> AbsoluteField(KLM3);

Number Field with defining polynomials [x^2 - 3, x^2 - 2,

x^2 - 5] over the Rational Field

> SimpleExtension(KLM3);

Number Field with defining polynomial s^8 - 40*s^6 + 352*s^4 - 960*s^2 + 576

over the Rational Field

Simplify(O)

Given an order O, obtained by a chain of transformations from an equation order
E, return an order that is given directly by a single transformation over E.

LLL(O)

Given an order O, return an order O′ obtained from O by a transformation matrix
T , which is returned as a second value. O′ will have a LLL-reduced basis.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 887

Example H37E9

Using LLL to reduce the basis of an order is shown.

> M := MaximalOrder(x^4-14*x^3+14*x^2-14*x+14);

> L, T := LLL(M);

> L;

Maximal Order, Transformation of M

Transformation Matrix:

[1 0 0 0]

[-3 1 0 0]

[3 -13 1 0]

[-7 1 -13 1]

> T;

[1 0 0 0]

[-3 1 0 0]

[3 -13 1 0]

[-7 1 -13 1]

> Basis(M);

[

M.1,

M.2,

M.3,

M.4

]

> Basis(L, M);

[

[1, 0, 0, 0],

[-3, 1, 0, 0],

[3, -13, 1, 0],

[-7, 1, -13, 1]

]

> L eq M;

true

Even though L and M are considered to be equal because they contain the same elements L has
a basis which is LLL reduced but M does not.
Following on from the orders and ideals example (H37E5) we have

> R<x> := PolynomialRing(Integers());

> K := NumberField(x^4-420*x^2+40000);

> E := EquationOrder(K);

> O := Round2(E, K);

[<2, 18>, <5, 8>, <41, 2>]

index is 2

index is 4

index is 8

index is 4

index is 2

index is 1

888 GLOBAL ARITHMETIC FIELDS Part VII

index is 5

index is 25

index is 1

index is 1

index of equation order in maximal order is: 64000

> L := LLL(O);

> O;

Transformation of E

Transformation Matrix:

[800 0 0 0]

[0 400 0 0]

[0 200 20 0]

[400 180 0 1]

Denominator: 800

> O:Maximal;

F[1]

|

F[2]

/

/

Q

F [1] Given by transformation matrix

F [2] x^4 - 420*x^2 + 40000

Index: 64000/1

Signature: [4, 0]

> L;

Transformation of O

Transformation Matrix:

[-1 0 0 0]

[-1 -1 0 1]

[10 1 -2 0]

[5 1 -1 0]

> L:Maximal;

F[1]

|

F[2]

|

F[3]

/

/

Q

F [1] Given by transformation matrix

F [2] Given by transformation matrix

F [3] x^4 - 420*x^2 + 40000

Index: 1/1

Signature: [4, 0]

> Simplify(L):Maximal;

F[1]

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 889

|

F[2]

/

/

Q

F [1] Given by transformation matrix

F [2] x^4 - 420*x^2 + 40000

Index: 64000/1

Signature: [4, 0]

> Simplify(L);

Transformation of E

Transformation Matrix:

[-800 0 0 0]

[-400 -220 0 1]

[8000 0 -40 0]

[4000 200 -20 0]

Denominator: 800

PrimeRing(F) PrimeField(F) PrimeRing(O)

Centre(F) Centre(O)

Embed(F, L, a)

Install the embedding of a simple field F in L where the image of the primitive
element of F is the element a of L. This embedding will be used in coercing from
F into L.

Embed(F, L, a)

Install the embedding of the non-simple field F in L where the image of the gener-
ating elements of F are in the sequence a of elements of L. This embedding will be
used in coercing from F into L.

EmbeddingMap(F, L)

Returns the embedding map of F in L if an embedding is known.

890 GLOBAL ARITHMETIC FIELDS Part VII

Example H37E10

Magma does not recognize two independently created number fields as equal since more than one
embedding of a field in a larger field may be possible. To coerce between them then it is convenient
to be able to embed them in each other.

> k := NumberField(x^2-2);

> l := NumberField(x^2-2);

> l!k.1;

>> l!k.1;

^

Runtime error in ’!’: Arguments are not compatible

LHS: FldNum

RHS: FldNumElt

> l eq k;

false

> Embed(k, l, l.1);

> l!k.1;

l.1

> Embed(l, k, k.1);

> k!l.1;

k.1

Embed is useful in specifying the embedding of a field in a larger field.

> l<a> := NumberField(x^3-2);

> L := NumberField(x^6+108);

> Root(L!2, 3);

1/18*b^4

> Embed(l, L, $1);

> L!l.1;

1/18*b^4

Another embedding would be

> Roots(PolynomialRing(L)!DefiningPolynomial(l));

[

<1/36*(-b^4 - 18*b), 1>,

<1/36*(-b^4 + 18*b), 1>,

<1/18*b^4, 1>

]

> Embed(l, L, $1[1][1]);

> L!l.1;

1/36*(-b^4 - 18*b)

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 891

Lattice(O)

MinkowskiLattice(O)

Given an absolute order O, returns the lattice determined by the real and complex
embeddings of O.

MinkowskiSpace(F)

The Minkowski vector space V of the absolute field F as a real vector space, with
inner product given by the T2-norm (Length) on F , and by the embedding F → V .

Completion(K, P)

Completion(O, P)

comp< K|P >

comp< O|P >

Precision RngIntElt Default : 50
For an absolute extension K of Q or O of Z, compute the completion at a prime
ideal P which must be either a prime ideal of the maximal order or unramified. The
result will be a local field or ring with precision Precision or e*Precision if the
ideal is ramified with ramification degree e.

The returned map is the canonical injection into the completion. It allows point-
wise inverse operations.

Completion(K, P)

Precision RngIntElt Default : 50
For an absolute extension K over Q and a (finite) place P , compute the completion
at P . The precision and the map are as described for Completion.

LocalRing(P, prec)

The completion of Order(P) at the prime ideal P up to precision prec.

37.4.3 Representing Fields as Vector Spaces
It is possible to express a number field or a field of fractions as a vector space of any
subfield using the intrinsics below. Such a construction also allows one to find properties
of elements over these subfields.

Algebra(K, J)

Algebra(K, J, S)

Returns the associative structure constant algebra which is isomorphic to the alge-
braic field K as an algebra over J . Also returns the isomorphism from K to the
algebra mapping wi to the i+ 1st unit vector of the algebra where w is a primitive
element of K.

If a sequence S is given it is taken to be a basis of K over J and the isomorphism
will map the ith element of S to the ith unit vector of the algebra.

892 GLOBAL ARITHMETIC FIELDS Part VII

VectorSpace(K, J)

KSpace(K, J)

VectorSpace(K, J, S)

KSpace(K, J, S)

The vector space isomorphic to the algebraic field K as a vector space over J and
the isomorphism from K to the vector space. The isomorphism maps wi to the
i+ 1st unit vector of the vector space where w is a primitive element of K.

If S is given, the isomorphism will map the ith element of S to the ith unit vector
of the vector space.

Example H37E11

We use the Algebra of a relative number field to obtain the minimal polynomial of an element
over a subfield which is not in its coefficient field tower.

> K := NumberField([x^2 - 2, x^2 - 3, x^2 - 7]);

> J := AbsoluteField(NumberField([x^2 - 2, x^2 - 7]));

> A, m := Algebra(K, J);

> A;

Associative Algebra of dimension 2 with base ring J

> m;

Mapping from: RngOrd: K to AlgAss: A

> m(K.1);

(1/10*(J.1^3 - 13*J.1) 0)

> m(K.1^2);

(2 0)

> m(K.2);

(1/470*(83*J.1^3 + 125*J.1^2 - 1419*J.1 - 1735) 1/940*(-24*J.1^3 - 5*J.1^2 +

382*J.1 + 295))

> m(K.2^2);

(3 0)

> m(K.3);

(1/10*(-J.1^3 + 23*J.1) 0)

> m(K.3^2);

(7 0)

> A.1 @@ m;

1

> A.2 @@ m;

(($.1 - 1)*$.1 - $.1 - 1)*K.1 + ($.1 + 1)*$.1 + $.1 + 1

>

> r := 5*K.1 - 8*K.2 + K.3;

> m(r);

(1/235*(-238*J.1^3 - 500*J.1^2 + 4689*J.1 + 6940) 1/235*(48*J.1^3 + 10*J.1^2 -

764*J.1 - 590))

> MinimalPolynomial($1);

$.1^2 + 1/5*(-4*J.1^3 + 42*J.1)*$.1 + 5*J.1^2 - 180

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 893

> Evaluate($1, r);

0

> K:Maximal;

K

|

|

$1

|

|

$2

|

|

Q

K : $.1^2 - 2

$1 : $.1^2 - 3

$2 : x^2 - 7

> Parent($3);

Univariate Polynomial Ring over J

> J;

Number Field with defining polynomial $.1^4 - 18*$.1^2 + 25 over the Rational

Field

37.4.4 Invariants
Some information describing an order can be retrieved.

Characteristic(F) Characteristic(O)

Degree(O)

Degree(F)

Given an algebraic field F , return the degree [F : G] of F over its ground field G.
For an order O it returns the relative degree of O over its ground order.

AbsoluteDegree(O)

AbsoluteDegree(F)

Given an order O or an algebraic field F , return the absolute degree of O over Z or
F over Q.

894 GLOBAL ARITHMETIC FIELDS Part VII

Discriminant(O)

Discriminant(F)

Given an extension F of Q, return the discriminant of F . This discriminant is
defined to be the discriminant of the order of the field of fractions or the equation
order of a number field.

The discriminant of any order O defined over Z is by definition the discriminant
of its basis, where the discriminant of any sequence of elements ωi from K is defined
to be the determinant of the trace matrix of the sequence.

The discriminant of absolute fields and orders is an integer.
The discriminant in a relative extension is the ideal generated by the discrimi-

nants of all sequences of elements ωi from O, where the discriminant of a sequence
is defined to be the determinant of its trace matrix. This can only be computed in
when the coefficient ring of O is maximal or when O has a power basis.

The discriminant of relative orders is an ideal of the base ring.

AbsoluteDiscriminant(O)

Given an order O, return the absolute value of the discriminant of O regarded as
an order over Z.

AbsoluteDiscriminant(K)

Given an algebraic field K, return the absolute value of the discriminant of K
regarded as an extension of Q.

ReducedDiscriminant(O)

ReducedDiscriminant(F)

The reduced discriminant of an order O is defined as the maximal elementary divisor
(elementary ideal) of the torsion module O#/O where O# is the dual module to
O with respect to the trace form. The reduced discriminant of an algebraic field is
that of the order of a field of fractions and that of the equation order of a number
field.

For absolute extensions this is the largest entry of the Smith normal form of the
TraceMatrix. For relative extensions, in addition to the TraceMatrix one has to
consider the coefficient ideals.

For orders with a power basis, this is (a generator of) the inverse of the ideal
generated by the cofactors X and Y of Xf + Y f ′ = 1 where f is the defining
polynomial of the order and f ′ its first derivative.

Regulator(O: parameters)

Current BoolElt Default : false

Regulator(K)

Given a number field K or an order O, return the regulator of K or O, as a real
number. Note that this will trigger the computation of the maximal order and its
unit group if they are not known yet. This only works in an absolute extension.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 895

If Current is true and a maximal system of independent units is known, then
the regulator of that system is returned. In this case no effort is spent to produce a
system of fundamental units.

RegulatorLowerBound(O)

RegulatorLowerBound(K)

Given an order O or number field K, return a lower bound on the regulator of O or
K. This only works in an absolute extension.

Signature(O)

Signature(F)

Given an absolute algebraic field F , or an order O of F , returns two integers, one
being the number of real embeddings, the other the number of pairs of complex
embeddings of F .

UnitRank(O)

UnitRank(K)

The unit rank of the order O or the number field K (one less than the number of
real embeddings plus number of pairs of complex embeddings).

Index(O, S)

The module index of order S in order O, for orders S ⊂ O. O and S must have the
same equation order and S must be a suborder of O.

DefiningPolynomial(F)

DefiningPolynomial(O)

Given an algebraic field F , the polynomial defining F as an extension of its ground
field G is returned. For an order O, a integral polynomial is returned that defines
O over its coefficient ring.

For non simple extensions, this will return a list of polynomials.

Zeroes(O, n)

Zeros(O, n)

Zeroes(F, n)

Zeros(F, n)

Given an absolute algebraic field F or an order O in F , and an integer n, return the
zeroes of the defining polynomial of F with a precision of exactly n decimal digits.
The function returns a sequence of length the degree of F ; all of the real zeroes
appear before the complex zeroes.

896 GLOBAL ARITHMETIC FIELDS Part VII

Example H37E12

The information provided by Zeros and DefiningPolynomial is illustrated below.

> L := NumberField(x^6+108);

> DefiningPolynomial(L);

x^6 + 108

> Zeros(L, 30);

[1.889881574842309747150815910899999999994 +

1.0911236359717214035600726141999999999977*i,

1.889881574842309747150815910899999999994 -

1.0911236359717214035600726141999999999977*i, 0.E-29 +

2.1822472719434428071201452283999999999955*i, 0.E-29 -

2.1822472719434428071201452283999999999955*i,

-1.889881574842309747150815910899999999994 +

1.0911236359717214035600726141999999999977*i,

-1.889881574842309747150815910899999999994 -

1.0911236359717214035600726141999999999977*i]

> l := NumberField(x^3 - 2);

> DefiningPolynomial(l);

x^3 - 2

> Zeros(l, 30);

[1.259921049894873164767210607299999999994,

-0.629960524947436582383605303639109999999 +

1.0911236359717214035600726141999999999977*i,

-0.629960524947436582383605303639109999999 -

1.0911236359717214035600726141999999999977*i]

Different(O)

The different of a maximal order O ⊂ K is defined as the inverse ideal of {x ∈ K |
Tr(xO) ⊂ O}.

Conductor(O)

The conductor of an order O is the largest ideal of its maximal order that is still
contained in O: {x ∈M | xM ⊆ O}.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 897

37.4.5 Basis Representation
The basis of an order or algebraic field can be expressed using elements from any compatible
ring. Basis related matrices can be formed.

Basis(O)

Basis(O, R)

Basis(F)

Basis(F, R)

Return the current basis for the order O or algebraic field F over its ground ring as
a sequence of elements of its field of fractions or as a sequence of elements of R.

IntegralBasis(F)

IntegralBasis(F, R)

An integral basis for the algebraic field F is returned as a sequence of elements of
F or R if given. This is the same as the basis for the maximal order. Note that the
maximal order will be determined (and stored) if necessary.

Example H37E13

The following illustrates how a basis can look different when expressed in a different ring.

> f := x^5 + 5*x^4 - 75*x^3 + 250*x^2 + 65625;

> M := MaximalOrder(f);

> M;

Maximal Order of Equation Order with defining polynomial x^5 + 5*x^4 - 75*x^3 +

250*x^2 + 65625 over its ground order

> Basis(M);

[

M.1,

M.2,

M.3,

M.4,

M.5

]

> Basis(NumberField(M));

[

1,

$.1,

$.1^2,

$.1^3,

$.1^4

]

> Basis(M, NumberField(M));

[

1,

1/5*$.1,

898 GLOBAL ARITHMETIC FIELDS Part VII

1/25*$.1^2,

1/125*$.1^3,

1/625*$.1^4

]

AbsoluteBasis(K)

Returns an absolute basis for the algebraic field K, i.e. a basis for K as a Q vector
space. The basis will consist of the products of the basis elements of the intermediate
fields. The expansion is done depth-first.

BasisMatrix(O)

Given an order O in a number field K of degree n, this returns an n × n matrix
whose i-th row contains the (rational) coefficients for the i-th basis element of O
with respect to the power basis of K. Thus, if bi is the i-th basis element of O,

bi =
n∑

j=1

Mijα
j−1

where M is the matrix and α is the generator of K.
The matrix is the same as TransformationMatrix(O, E), where E is the equa-

tion order for K, except that the entries of the basis matrix are from the subfield of
K, instead of the coefficient ring of the order.

TransformationMatrix(O, P)

Returns the transformation matrix for the transformation between the orders O
and P with common equation order of degree n. The function returns an n × n
matrix T with integral entries as well as a common integer denominator. The rows
of the matrix express the n basis elements of O as a linear combination of the basis
elements of P . Hence the effect of multiplying T on the left by a row vector v
containing the basis coefficients of an element of O is the row vector v ·T expressing
the same element of the common number field on the basis for P .

CoefficientIdeals(O)

The coefficient ideals of the order O of a relative extension. These are the ideals
{Ai} of the coefficient ring of O such that for every element e of O, e =

∑
i ai ∗ bi

where {bi} is the basis returned for O and each ai ∈ Ai.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 899

Example H37E14

We continue our example of a field of degree 4.
The functions Basis and IntegralBasis both return a sequence of elements, that can be accessed
using the operators for enumerated sequences. Note that if, as in our example, O is the maximal
order of K, both functions produce the same output:

> R<x> := PolynomialRing(Integers());

> f := x^4 - 420*x^2 + 40000;

> K<y> := NumberField(f);

> O := MaximalOrder(K);

> I := IntegralBasis(K);

> B := Basis(O);

> I, B;

[

1,

1/2*y,

1/40*(y^2 + 10*y),

1/800*(y^3 + 180*y + 400)

]

[

O.1,

O.2,

O.3,

O.4

]

> Basis(O, K);

[

1,

1/2*y,

1/40*(y^2 + 10*y),

1/800*(y^3 + 180*y + 400)

]

The BasisMatrix function makes it possible to move between orders, in the following manner.
We may regard orders as free Z-modules of rank the degree of the number field. The basis
matrix then provides the transformation between the order and the equation order. The function
ElementToSequence can be used to create module elements.

> BM := BasisMatrix(O);

> Mod := RSpace(RationalField(), Degree(K));

> z := O ! y;

> e := z^2-3*z;

> em := Mod ! ElementToSequence(e);

> em;

(0 -26 40 0)

> f := em*BM;

> f;

900 GLOBAL ARITHMETIC FIELDS Part VII

(0 -3 1 0)

So, since f is represented with respect to the basis of the equation order, which is the power basis,
we indeed get the original element back. Of course it is much more useful to go in the other
direction, using the inverse transformation. We check the result in the last line:

> E := EquationOrder(K);

> f := y^3+7;

> fm := Mod ! ElementToSequence(f);

> e := fm*BM^-1;

> e;

(-393 -360 0 800)

> &+[e[i]*B[i] : i in [1 .. Degree(K)]];

-393/1*O.1 - 360/1*O.2 + 800/1*O.4

> K!$1;

y^3 + 7

MultiplicationTable(O)

Given an order O of some number field K of degree n, return the multiplication
table with respect to the basis of O as a sequence of n matrices of size n× n. The
i-th matrix will have as its j-th row the basis representation of bibj , where bi is the
i-th basis element for O.

TraceMatrix(O)

TraceMatrix(F)

Return the trace matrix of an order O or algebraic field F , which has the trace
Tr(ωiωj) as its i, j-th entry where the ωi are the basis for O or F .

Example H37E15

We continue our example of a field of degree 4.
The multiplication table of the order O consists of 4 matrices, such that the i-th 4 × 4 matrix
(1 ≤ i ≤ 4) determines the multiplication by the i-th basis element of O as a linear transformation
with respect to that basis. Thus the third row of T [2] gives the basis coefficients for the product
of B[2] and B[3], and we can use the sequence reduction operator to calculate B[2] ∗ B[3] in an
alternative way:

> R<x> := PolynomialRing(Integers());

> f := x^4 - 420*x^2 + 40000;

> K<y> := NumberField(f);

> O := MaximalOrder(K);

> B := Basis(O);

> B[2];

O.2

> T := MultiplicationTable(O);

> T[2];

[0 1 0 0]

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 901

[0 -5 10 0]

[-5 -7 5 10]

[-25 -7 15 0]

> &+[T[2][3][i]*B[i] : i in [1..4]];

-5/1*O.1 - 7/1*O.2 + 5/1*O.3 + 10/1*O.4

> B[2]*B[3];

-5/1*O.1 - 7/1*O.2 + 5/1*O.3 + 10/1*O.4

The trace matrix may be found either by using the built-in function or by the one-line definition
given below (for a field of degree 4):

> TraceMatrix(O);

[4 0 21 2]

[0 210 105 215]

[21 105 173 118]

[2 215 118 226]

> MatrixRing(RationalField(), 4) ! [Trace(B[i]*B[j]): i, j in [1..4]];

[4 0 21 2]

[0 210 105 215]

[21 105 173 118]

[2 215 118 226]

37.4.6 Ring Predicates
Orders and algebraic fields can be tested for having several properties that may hold for
general rings.

N eq O

Two orders are equal if the transformation matrix taking one to the other is integral
and has determinant 1 or −1. For the transformation matrix to exist the orders
must have the same number field.

F eq L

Returns true if and only if the fields F and L, are the same.
No two algebraic fields which have been created independently of each other will

be considered equal since it is possible that they can be embedded into a larger field
in more than one way.

IsCommutative(R) IsUnitary(R) IsFinite(R)

IsOrdered(R) IsField(R)

IsNumberField(R) IsAlgebraicField(R)

IsEuclideanDomain(F)

This is not a check for euclidean number fields. This function will always return an
error.

902 GLOBAL ARITHMETIC FIELDS Part VII

IsSimple(F)

IsSimple(O)

Checks if the field F or the order O is defined as a simple extension over the base
ring.

IsPID(F) IsUFD(F)

IsPrincipalIdealRing(F)

Always true for fields.

IsPID(O) IsUFD(O)

IsPrincipalIdealRing(O)

Always false for orders. Even if the class number is 1, orders are not considered
to be PIDs.

IsDomain(R)

F ne L O ne N O subset P K subset L

HasComplexConjugate(K)

This function returns true if there is an automorphism in the field K that acts like
complex conjugation.

ComplexConjugate(x)

For an element x of a field K where HasComplexConjugate returns true (in par-
ticular this includes totally real fields, cyclotomic and quadratic fields and CM-
extensions), the conjugate of x is returned.

37.4.7 Order Predicates
Since orders are rings with additional properties, special predicates are applicable.

IsEquationOrder(O)

This returns true if the basis of the order O is an integral power basis, false
otherwise.

IsMaximal(O)

This returns true if the order O in the field F is the maximal order of F , false
otherwise. The user is warned that this may trigger the computation of the maximal
order.

IsAbsoluteOrder(O)

Returns true iff the order O is a constructed as an absolute extension of Z.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 903

IsWildlyRamified(O)

Returns true iff the order O is wildly ramified, i.e. if there is a prime ideal P of O
such that the characteristic of its residue class field divides its ramification index.

IsTamelyRamified(O)

Returns true iff the order O is not wildly ramified, i.e. if for all prime ideals P of
O the characteristic of its residue class field does not divide the ramification index.

IsUnramified(O)

Returns true iff the order O is unramified at the finite places.

37.4.8 Field Predicates
Here all the predicates that are specific to algebraic fields are listed.

IsIsomorphic(F, L)

Given two algebraic fields F and L, this returns true as well as an isomorphism
F → L, if F and L are isomorphic, and it returns false otherwise.

IsSubfield(F, L)

Given two algebraic fields F and L, this returns true as well as an embedding
F ↪→ L, if F is a subfield of L, and it returns false otherwise.

IsNormal(F)

Returns true if and only if the algebraic field F is a normal extension. At present
this may only be applied if F is an absolute extension or simple relative extension.
In the relative case the result is obtained via Galois group computation.

IsAbelian(F)

Returns true if and only if the algebraic field F is a normal extension with abelian
Galois group. At present this may only be applied if F is an absolute extension
or simple relative extension. In the relative case the result is obtained via Galois
Group computation.

IsCyclic(F)

Returns true if and only if the algebraic field F is a normal extension with cyclic
Galois group. At present this may only be applied if F is an absolute extension or
simple relative extension. In the relative case the result is obtained via Galois and
automorphism group.

IsAbsoluteField(K)

Returns true iff the algebraic field K is a constructed as an absolute extension of
Q.

904 GLOBAL ARITHMETIC FIELDS Part VII

IsWildlyRamified(K)

Returns true iff the algebraic field K is wildly ramified, i.e. if there is a prime ideal
P of K (its maximal order) such that the characteristic of its residue class field
divides the ramification index.

IsTamelyRamified(K)

Returns true iff the algebraic field K is not wildly ramified, i.e. if for all prime
ideals P of the maximal order of K, the characteristic of its residue class field does
not divide the ramification index.

IsUnramified(K)

Returns true iff the algebraic field K is unramified at the finite places.

IsQuadratic(K)

If the number field K is quadratic, return true and an isomorphic quadratic field.

IsTotallyReal(K)

Tests if the number field F is totally real, ie. if all infinite places are real. For
absolute fields this is equivalent to the defining polynomial having only real roots.

37.4.9 Setting Properties of Orders

Several properties of orders can be set to be known and/or to have a given value.

SetOrderMaximal(O, b)

Set the order O to be maximal if b is true or known to be non maximal if b is false.

SetOrderTorsionUnit(O, e, r)

Set the torsion unit of the order O to be the element e with order r.

SetOrderUnitsAreFundamental(O)

Mark the currently known units of the order O to be fundamental.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 905

37.5 Element Operations

37.5.1 Parent and Category

Parent(a) Parent(w) Category(a) Category(w)

37.5.2 Arithmetic
The table below lists the generic arithmetic functions on algebraic field and order elements.
Note that automatic coercion ensures that the binary operations +, -, *, and / may be
applied to an element of an algebraic field and an element of one of its orders; the result
will be an algebraic field element. Since division of order elements does not generally result
in an order element, the operation / applied to two elements of an order returns an element
in the field of fractions of the order; similarly if the exponent k in a^k is negative.

For finding the value of an element mod an ideal or the inverse of an element mod an
ideal see Section 37.9.6.

+ a - a

a + b a - b a * b a / b a ^ k

w div v

The quotient of the order element w by the order element v; v must divide w exactly,
(v and w must be elements of the same order.)

Modexp(a, n, m)

Given a non-negative integer n and an integerm greater than 1, this function returns
the modular power an mod m of the order element a.

Sqrt(a)

SquareRoot(a)

Returns the square root of the element a if it exists in the order or field containing
a.

Root(a, n)

Returns the n-th root of the element a if it exists in the order or field containing a.

IsPower(a, k)

IsSquare(a)

Return true if the element a is a kth power, (respectively square) and the root in
the order or field containing a if so.

906 GLOBAL ARITHMETIC FIELDS Part VII

Denominator(a)

Returns the denominator of the element a, that is the least common multiple of the
denominators of the coefficients of a.

Numerator(a)

Returns the numerator of the element a, that is the element multiplied by its de-
nominator.

Qround(E, M)

ContFrac BoolElt Default : true

Finds an approximation of the field element E where the denominator is bounded
by the integer M . If ContFrac is true, the approximation is computed by applying
the continued fraction algorithm to the coefficients of E viewed over Q.

37.5.3 Equality and Membership
Elements may also be tested for whether they lie in an ideal of an order. See Section 37.9.5.

a eq b a ne b

a in F

37.5.4 Predicates on Elements
In addition to the generic predicates IsMinusOne, IsZero and IsOne, the predicates
IsIntegral and IsPrimitive are defined on elements of algebraic fields and orders.

IsIntegral(a)

Returns true if the element a of an algebraic field F or of an order in F is contained
in the ring of integers of F , false otherwise. This is vacuously true for order
elements. We use the minimal polynomial to determine the answer, which means
that the calculation of the maximal order is not triggered if it is not known yet.
When a is a field element a denominator d such that d∗a is integral is also returned
on request.

IsPrimitive(a)

Returns true if the element a of the algebraic field F or one of its orders O generates
F .

IsTorsionUnit(w)

Returns true if and only if the order element w is a unit of finite order.

IsPower(w, n)

Given an element w in an order O and an integer n > 1, this function returns true
if and only if there exists an element v ∈ O such that w = vn; if true, such an
element v is returned as well.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 907

IsTotallyPositive(a)

IsTotallyPositive(a)

Returnes true iff all real embeddings of the element a are positive. For elements in
absolute fields this is equivalent to all real conjugates being positive.

IsZero(a) IsOne(a)

IsMinusOne(a) IsUnit(a)

IsNilpotent(a) IsIdempotent(a)

IsZeroDivisor(a) IsRegular(a)

IsIrreducible(a) IsPrime(a)

37.5.5 Finding Special Elements
Generators of fields can be retrieved.

K . 1

Return the image α of x in G[x]/f where f is the first defining polynomial of K and
G is the base field of K.

In case of simple extensions this will be a primitive element.

PrimitiveElement(K)

PrimitiveElement(F)

Returns a primitive element for the simple algebraic field, that is an element whose
minimal polynomial has the same degree as the field. For a number field K this is
K.1 but for a field of fractions this is F !K.1 where K is the number field of F .

For non-simple fields, a random element is returned.

Generators(K)

The list of generators of K over its coefficient field, that is a sequence containing a
root of each defining polynomial is returned.

Generators(K, k)

A list of generators of K over k is returned. That is a sequence containing a root of
each defining polynomial for K and its subfield down to the level of k is returned.

PrimitiveElement(O)

Returns a primitive element for the field of fractions of the order O, that is an
element whose minimal polynomial has the same degree as the field.

908 GLOBAL ARITHMETIC FIELDS Part VII

37.5.6 Real and Complex Valued Functions
The functions here return (sequences of) real or complex numbers. The precision of these
numbers is governed by the appropriate order’s or field’s internal precision. See Section 37.3
for more information.

AbsoluteValues(a)

Return a sequence of length r1 + r2 of the real absolute values of the conjugates of
the element a. The first r1 values are the absolute values of the real embeddings
of the element, the next r2 are the lengths of the complex embeddings with their
weight factors. That is, if the real conjugates of a are wi, for 1 ≤ i ≤ r1, and the
complex conjugates of a are xi ± iyi (for 1 ≤ i ≤ r2), then AbsoluteValues returns

[|w1|, . . . , |wr1 |,
√

x2
r1+1+y2

r1+1

2 , . . .

√
x2

r1+r2
+y2

r1+r2
2].

AbsoluteLogarithmicHeight(a)

Let P be the minimal polynomial of the element a over Z, with leading coefficient
a0 and roots α1, . . . , αn. Then the absolute logarithmic height is defined to be

h(α) =
1
n

log(a0

n∏

j=1

max(1, |αj |)).

Conjugates(a)

The real and complex conjugates of the given algebraic number a, as a sequence of n
complex numbers. The r1 real conjugates appear first, and are followed by r2 pairs
of complex conjugates. The field should be an absolute extension. The ordering of
the conjugates is consistent for elements of the same field (or even for elements of
different fields that have the same defining polynomial).

Conjugate(a, k)

Equivalent to Conjugates(a)[k].

Conjugate(a, l)

Let l := [l1, . . . , ln] be a sequence of positive integers and assume that the field K,
the parent of a is given as a tower with n steps, Q ⊆ K1 ⊆ . . . ⊆ Kn = K. This
function computes the image of a in C or R under the embedding determined by l,
that is under embedding obtained by extending the l1 embedding of K1 to K2, then
extending the l2nd of those embeddings to K3, . . .

Length(a)

Return the T2-norm of the element a, which is a real number. This equals the sum
of the (complex) norms of the conjugates of a.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 909

Logs(a)

Return the sequence of length r1 + r2 of logarithms of the absolute values of the
conjugates of a number field or order element a 6= 0.

CoefficientHeight(E)

CoefficientHeight(E)

Computes the coefficient height of the element E, that is for an element of an
absolute field it returns the maximum of the denominator and the largest coefficient
wrt. to the basis of the parent. For elements in relative extensions, it returns the
maximal coefficient height of all the coefficients wrt. the basis of the parent.

This function indicates in some way the difficulty of operations involving this
element.

CoefficientLength(E)

CoefficientLength(E)

Computes the coefficient length of the element E, that is for an element of an
absolute field it returns the sum of the denominator and the absolute values of all
coefficients wrt. to the basis of the parent. For elements in relative extensions, it
returns the sum of the coefficient length of all the coefficients wrt. the basis of the
parent.

This function gives an indication on the amount of memory occupied by this
element.

Example H37E16

Using the functions Conjugates and Basis, it is easy to write an alternative discriminant function.

> disc := func< O | Determinant(MatrixAlgebra(ComplexField(20), Degree(O))

> ! [Conjugates(Basis(O)[i])[j] : i, j in [1 .. Degree(O)]])^2 >;

> R<x> := PolynomialRing(Integers());

> O := MaximalOrder(NumberField(x^4 - 420*x^2 + 40000));

> disc(O);

42025

> Discriminant(O);

42025

Thus, the new discriminant function returns a complex approximation to the built-in function
Discriminant, giving the above result for the maximal order O of the previous example.
Here is an alternative way of getting the T2 norm returned by Length, using the complex Norm

function, together with the Conjugates function.

> norm := func< a | &+[Norm(Conjugates(a)[i]) : \

> i in [1 .. Degree(Parent(a))]] >;

910 GLOBAL ARITHMETIC FIELDS Part VII

37.5.7 Norm, Trace, and Minimal Polynomial
The norm, trace and minimal polynomial of order and algebraic field elements can be
calculated both with respect to the coefficient ring and to Z or Q.

Norm(a)

Norm(a, R)

The relative norm NL/F(a) over F of the element a of L where F is the field or order
over which L is defined as an extension. If R is given the norm is calculated over
R. In this case, R must occur as a coefficient ring somewhere in the tower under L.

AbsoluteNorm(a)

NormAbs(a)

The absolute norm NL/Q(a) over Q of the element a of L (or one of its orders).

Trace(a)

Trace(a, R)

The relative trace TrL/F (a) over F of the element a of L where F is the field or
order over which L is defined as an extension. If R is given the trace is computed
over R. In this case, R must occur as a coefficient ring somewhere in the tower
under L.

AbsoluteTrace(a)

TraceAbs(a)

The absolute trace TrL/Q(a) over Q of the element a of L (or one of its orders).

CharacteristicPolynomial(a)

CharacteristicPolynomial(a, R)

Given an element a from an algebraic field or order L, returns the characteristic
polynomial of the element over R if given or the subfield or suborder F otherwise
where F is the field or order over which L is defined as an extension.

AbsoluteCharacteristicPolynomial(a)

Given an element a from an algebraic field or one of its orders, this function returns
the characteristic polynomial of the element. For field elements the polynomial will
have coefficients in the rational field, for order elements the coefficients will be in
the ring of integers.

MinimalPolynomial(a)

MinimalPolynomial(a, R)

Given an element a from an algebraic field or order L, returns the minimal polyno-
mial of the element over R if given otherwise the subfield or suborder F where F is
the field or order over which L is defined as an extension.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 911

AbsoluteMinimalPolynomial(a)

Given an element a from an algebraic field or one of its orders, this function returns
the minimal polynomial of the element. For field elements the polynomial will have
coefficients in the rational field, for order elements the coefficients will be in the ring
of integers.

RepresentationMatrix(a)

RepresentationMatrix(a, R)

Return the representation matrix of a, that is, the matrix which represents the
linear map given by multiplication by a. If a is an order element, this matrix is with
respect to the basis for the order; if a is an algebraic field element, the basis for the
field is used. The ith row of the representation matrix gives the coefficients of awi

with respect to the basis w1, . . . , wn.
If R is given the matrix is over R and with respect to the basis of the order or

field over R.

AbsoluteRepresentationMatrix(a)

Return the representation matrix of a relative to the Q-basis of the field constructed
using products of the basis elements, where a is an element of the relative number
field L.

Let Li :=
∑
Li−1ωi,j , L := Ln and L0 := Q. Then the representation matrix is

computed with respect to the Q-basis (
∏

j ωij ,j)i∈I consisting of products of basis
elements of the different levels.

Example H37E17

We create the norm, trace, minimal polynomial and representation matrix of the element α/2 in
the quartic field Q(α).

> R<x> := PolynomialRing(Integers());

> K<y> := NumberField(x^4-420*x^2+40000);

> z := y/2;

> Norm(z), Trace(z);

2500 0

> MinimalPolynomial(z);

ext<Q|>.1^4 - 105*ext<Q|>.1^2 + 2500

> RepresentationMatrix(z);

[0 1/2 0 0]

[0 0 1/2 0]

[0 0 0 1/2]

[-20000 0 210 0]

The awkwardness of the printing of the minimal polynomial above can be overcome by providing
a parent for the polynomial, keeping in mind that it is a univariate polynomial over the rationals:

> P<t> := PolynomialRing(RationalField());

> MinimalPolynomial(z);

912 GLOBAL ARITHMETIC FIELDS Part VII

t^4 - 105*t^2 + 2500

37.5.8 Other Functions
Elements can be represented by sequences and matrices. Valuation can also be calculated.

ElementToSequence(a)

Eltseq(a)

For an element a of an algebraic field F , a sequence of coefficients of length degree of
F with respect to the basis is returned. For an element of an order O, the sequence
of coefficients of the element with respect to the basis of O are returned.

Note however that the universe of the sequence if always a field since in general
in relative extensions integral coefficients cannot be achieved.

Eltseq(E, k)

For an algebraic number E ∈ K and a ring k which occurs somewhere in the defining
tower for K, return the list of coefficients of E over k, that is, apply Eltseq to E
and to its coefficients until the list is over k.

Flat(e)

The coefficients of the algebraic field element e wrt. to the canonical Q basis for
its field. This is performed by iterating Eltseq until the coefficients are rational
numbers. For number field elements the coefficients obtained match the coefficients
wrt. to AbsoluteBasis.

a[i]

The coefficient of the ith basis element in the algebraic field or order element a.

ProductRepresentation(a)

Return sequences P and E such that the product of elements in P to the corre-
sponding exponents in E is the algebraic number a.

ProductRepresentation(P, E)

PowerProduct(P, E)

Return the element a of the universe of the sequence P such that a is the product
of elements of P to the corresponding exponents in the sequence E.

Valuation(w, I)

Given a prime ideal I and an element w of an order or algebraic field, this function
returns the valuation vI(w) of w with respect to I; this valuation will be a non-
negative integer. Ideals are discussed in Section 37.9.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 913

Decomposition(a)

Decomposition(a)

The factorization of the order or algebraic field element a into prime ideals.

Divisors(a)

For an element a in a maximal order return a sequence containing (up to units) all
the elements which divide a. The elements of the sequence will be generators for all
principal ideals returned by Divisors(Parent(a)*a).

Index(a)

The index of the module Z[a] in O where a lies in O, an order over Z. If a is not a
primitive element the index is infinite.

Different(a)

The different of the element a of an order of a number field.

37.6 Ideal Class Groups

This section describes the functions related to finding class groups and class numbers for
(the maximal order O of) an absolute number field.

The method usually employed is the relation method ([Heß96, Coh93]), basically con-
sisting of the following steps. In the first step a list of prime ideals of norm below a given
bound is generated, the factor basis. In the second step a search is conducted to find in
each of the prime ideals a few elements for which the principal ideals they generate factor
completely over the factor basis. Using these relations, a generating set for the ideal class
group is derived (via matrix echelonization), and in the final step it is verified that the
correct orders for the generators have been found.

To determine the class group or class number correctly one has to make sure that all
ideals having norm smaller than the Minkowski bound or smaller than the Bach bound, if
one assumes the generalized Riemann hypothesis, are taken into consideration, and that
the final stage, which may be time consuming, is properly executed. Optional arguments
allow the user to override these, but correctness of such results can not be guaranteed.

It should be stressed that by default a guaranteed result is computed using the
Minkowski bound. Thus even for innocent looking fields it may take considerable time. In
comparison, pari (as of version 2.0) will by default use a much smaller bound giving results
that are not guaranteed even under GRH. On the other hand, it will be much faster. It is
possible to use the same bounds in Magma. In this case the running times will be similar.

When the discriminant of an order is very large (above 1030) a sieving method developed
by [Bia] is used. Using this method the relations are derived using an analogue of the
number field sieve. Lattice sieving and the special-Q are also used. The verbose flag
"ClassGroupSieve" can be set to view information about the computation.

Once a class group computation has been completed, the results are stored with the
order.

914 GLOBAL ARITHMETIC FIELDS Part VII

All functions mentioned in this section support the verbose flag ClassGroup up to a
maximum value of 5.

Ideals in Magma are discussed in Section 37.9.

DegreeOnePrimeIdeals(O, B)

Given an order O as well as a positive integer bound B, return a sequence consisting
of all prime ideals in O whose norm is a rational prime not exceeding the bound B.

ClassGroup(O: parameters)

ClassGroup(K: parameters)

Bound RngIntElt Default : MinkowskiBound
Proof MonStgElt Default : “Full”
Enum BoolElt Default : true

Al MonStgElt Default : “Automatic”
Verbose ClassGroup Maximum : 5
Verbose ClassGroupSieve Maximum : 5

The group of ideal classes for the ring of integers O of the number field K is returned
as an abelian group, together with a map from this abstract group to O. The map
admits inverses and can therefore be used to compute “discrete logarithms” for the
class group.

With the default values for the optional parameters the Minkowski bound is used
and the last step of the algorithm verifies correctness (see the explanation above),
hence a fully proven result is returned.

If Bound is set to some positive integer M , M is used instead of the Minkowski
bound. The validity of the result still depends on the "Proof" parameter.

If Proof := "GRH", everything remains as in the default case except that a bound
based on the GRH is used to replace the Minkowski bound. This bound may be
enlarged setting the Bound parameter accordingly. The result will hence be correct
under the GRH.

If Proof := "Bound", the computation stops if an independent set of relations
between the prime ideals below the chosen bound is found. The relations may not
be maximal.

If Proof := "Subgroup", a maximal subset of the relations is constructed. In
terms of the result, this means that the group returned will be a subgroup of the
class group (i.e. the list of prime ideals considered may be to small).

If Proof := "Full" (the default) a guaranteed result is computed. This is equiv-
alent to Bound := MinkowskiBound(K) and Proof := "Subgroup".

If only Bound is given, the Proof defaults to "Subgroup".
Finally, giving Proof := "Current" is the same as repeating the last call to

ClassGroup(), but without the need to explicitly restate the value of Proof or
Bound. If there was no prior call to ClassGroup, a fully proven computation will be
carried out.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 915

If Enum := false, then instead of enumerating short elements to get relations,
Magma will use random linear combinations of a reduced basis instead. For “small”
fields this will typically slow down the computations, but for large fields it is some-
times not possible to find any point using enumeration so that this is necessary for
“large” fields. Unfortunately, there is no known criterion to decide beforehand if a
field is “large” or “small”.

If Al is set to "Sieve" (regardless of the size of the discriminant) or the discrim-
inant of O is greater than 1030 then the sieving method developed by [Bia] is used.
If Al is set to "NoSieve" then this sieving method will not be used regardless of the
size of the discriminant.

RingClassGroup(O)

PicardGroup(O)

For a (possibly non-maximal) order O, compute the ring class group (Picard group)
of O, ie. the group of invertible ideals in O modulo pricipal ideals. The algorithm
and its implementation are due to Klüners and Pauli, [PK05].

ConditionalClassGroup(O)

ConditionalClassGroup(K)

The class group of the order O or the number field K assuming the generalized
Riemann hypothesis.

ClassGroupPrimeRepresentatives(O, I)

For the maximal order O of some absolute number field k and an ideal I of O,
compute a set of prime ideals in O that are coprime to I and represent all ideal
classes. The map, mapping elements of the class group to the primes representing
the ideal class is returned.

ClassNumber(O: parameters)

ClassNumber(K: parameters)

Bound RngIntElt Default : MinkowskiBound

Proof MonStgElt Default : “Full”

Al MonStgElt Default : “Automatic”

Verbose ClassGroup Maximum : 5

Verbose ClassGroupSieve Maximum : 5

Return the class number of the ring of integers O of a number field K. The options
for the parameters are the same as for ClassGroup.

916 GLOBAL ARITHMETIC FIELDS Part VII

BachBound(K)

BachBound(O)

An integral upper bound for norms of generators of the ideal class group for the
number field K or the maximal order O assuming the generalized Riemann hypoth-
esis.

MinkowskiBound(K)

MinkowskiBound(O)

An unconditional integral upper bound for norms of the generators of the ideal class
group for the number field K or the maximal order O.

FactorBasis(K, B)

FactorBasis(O, B)

Given the maximal order O, or a number fieldK with maximal order O, this function
returns a sequence of prime ideals of norm less than a given bound B.

FactorBasis(O)

Given the maximal order O where the class group has previously been computed,
this function returns a sequence of prime ideals that have been used as factor basis
for the class group computation. In addition the used upper bound for the factor
basis is returned. This bound can be different from the bound passed in using the
Bound := bound parameter.

RelationMatrix(K, B)

RelationMatrix(O, B)

Given a maximal order O, or a number field K with maximal order O, generate
relations for each prime ideal in the factor basis for O with bound B on the norms
of the ideals. The relations are given by rows in a matrix. If at some stage the
relations generate the trivial group, no more relations are generated.

RelationMatrix(O)

Given a maximal order O where the class group has been computed previously, the
resulting relation matrix is returned.

Relations(O)

Given a maximal order O where the class group has been computed previously, the
vector containing the order elements used to compute the class group is returned.

ClassGroupCyclicFactorGenerators(O)

Let ai be the generators for the cyclic factors of the class group of O. This function
returns generators for aci

i where ci is the order of ai in the class group.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 917

Example H37E18

We give an example of a class group calculation, illustrating some of the functions.

> R<x> := PolynomialRing(Integers());

> O := MaximalOrder(x^2-10);

> C, m := ClassGroup(O);

> C;

Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*C.1 = 0

> m(C.1);

Prime Ideal of O

Two element generators:

[2, 0]

[0, 1]

> p := Decomposition(O, 31)[1][1];

> p;

Prime Ideal of O

Two element generators:

[31, 0]

[45, 1]

> p @@ m;

0

> IsPrincipal(p);

true

> p := Decomposition(O, 37)[1][1];

> p @@ m;

C.1

> IsPrincipal(p);

false

> MinkowskiBound(O);

3

> F, B := FactorBasis(O);

> B;

33

Even though the MinkowskiBound is only 3, we take 33 as the bound. The reason for this behaviour
is that the factor base has to have at least some elements (about 20) if it is non-empty. Otherwise
the search for relations is hopeless.

> r := Relations(O);

> M := RelationMatrix(O);

> [Valuation(r[1][1], x) : x in F];

[0, 0, 0, 0, 0, 1, 1, 0]

> M[1];

918 GLOBAL ARITHMETIC FIELDS Part VII

(0 0 0 0 0 1 1 0)

As one can see, the RelationMatrix basically stores the valuation of the elements of Relations
at the prime ideal contained in FactorBasis.

> f,g := IsPrincipal(m(C.1)^2);

> f;

true

> g;

[2, 0]

> ClassGroupCyclicFactorGenerators(O);

[

[2, 0]

]

Now we will consider some larger fields to demonstrate the effect of the "Bound" parameter:

> K := NumberField(x^5-14*x^4+14*x^3-14*x^2+14*x-14);

> MinkowskiBound(K);

21106

> BachBound(K);

7783

> time ClassGroup(K);

Abelian Group isomorphic to Z/10

Defined on 1 generator

Relations:

10*$.1 = 0

Mapping from: Abelian Group isomorphic to Z/10

Defined on 1 generator

Relations:

10*$.1 = 0 to Set of ideals of Maximal Equation Order with defining

polynomial x^5 - 14*x^4 + 14*x^3 - 14*x^2 + 14*x - 14 over Z

Time: 14.600

Note, that is an unconditional result. As one can see, the BachBound (proven under GRH) is much
smaller than MinkowskiBound. The difference shows up in the running time:

> K := NumberField(x^5-14*x^4+14*x^3-14*x^2+14*x-14);

> time _, _ := ClassGroup(K: Bound := BachBound(K));

Time: 7.080

In comparison, pari (2.0.20) uses an even smaller bound as default, namely BachBound(K)/40 for
fields of degree > 2 and BachBound(K)/20 for quadratics.

> K := NumberField(x^5-14*x^4+14*x^3-14*x^2+14*x-14);

> time _, _ := ClassGroup(K: Bound := Floor(BachBound(K)/40));

Time: 1.300

In comparison, bnfinit in pari (version 2.0.20) takes about 1.4 seconds for this example.
Note, that in general one cannot use arbitrarily small bounds. If they are too small, the compu-
tation time will increase again as the system will not be able to find any relations.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 919

Example H37E19

We give some examples of class group computations using the sieving algorithm.

> R<x> := PolynomialRing(IntegerRing());

> f := x^3 + 3592347*x^2 - 6*x + 3989864;

> K<y> := NumberField(f);

> time G, m := ClassGroup(K : Al := "Sieve", Proof := "GRH");

Time: 3.200

> G, m;

Abelian Group isomorphic to Z/6

Defined on 1 generator

Relations:

6*G.1 = 0

Mapping from: GrpAb: G to Set of ideals of Maximal Order of Equation Order with

defining polynomial x^3 + 3592347*x^2 - 6*x + 3989864 over Z

> m(G.1);

Ideal

Two element generators:

[4373, 0, 0]

[2118, 1, 0]

> $1 @@ m;

G.1

> IsPrincipal($2^6);

true

> f:= x^5 + 3330*x^3 - 50*x + 107392;

> K<y> := NumberField(f);

> time G, m := ClassGroup(K : Al := "Sieve", Proof := "GRH");

Time: 9.930

> G, m;

Abelian Group of order 1

Mapping from: GrpAb: G to Set of ideals of Maximal Order of Equation Order with

defining polynomial x^5 + 3330*x^3 - 50*x + 107392 over Z

It is also possible to drive the class group computation “by hand”, that is one can call
the individual parts one by one to for example re-create a class group computation:

FactorBasisCreate(O,B)

Creates a class group process by computing a factor basis containing all ideals of
norm ≤ B in the order O and returning this factor basis.

EulerProduct(O, B)

Computes an approximation to the Euler product for the order O using only prime
ideals over prime numbers of norm ≤ B.

920 GLOBAL ARITHMETIC FIELDS Part VII

AddRelation(E)

Adds a relation (order element) E to the class group process of the parent of E.
This function returns true exactly when the element factors over the factor basis
and if the new relation matrix is of full rank.

EvaluateClassGroup(O)

Finalizes a class group process for the order O, that is, it computes (if possible) the
class group structure based on the current relation matrix and a basis of the unit
group generated by the nullspace of the relation matrix.

This function returns true when the class group is determined by the current
data. In order to use this function, one has to create a factor basis and then add
enough relations.

CompleteClassGroup(O)

This function completes an already started class group process for the order O
by using the internal functions to look for relations until the class group can be
determined.

FactorBasisVerify(O, L, U)

This function verifies the “completeness” of the current factor basis for the order O
with respect to the prime ideals of norm between L and U . That is, for all prime
ideals which norm is between L and U , the function tries to find a relation between
the new prime ideal and the prime ideals already in the factor basis. If successful,
this means that the new prime ideal does not contribute anything to the class group
that is not already known and can therefore safely be ignored.

This function does not return if unsuccessful.

ClassGroupSetUseMemory(O, f)

For an order O where the class group is already computed, decide if results of the
discrete logarithm computation for the class group are stored. For example if the
order O is going to be used extensively as a coefficient ring for class field compu-
tations, then every time discrete logatrithms of ray class groups are computed, a
discrete logarithm computation in the class group is triggered. In particular when
investigating the cohomology of various extensions over O, this involves testing the
same ideals over and over again. Setting the flag f to true will help to keep compu-
tation times down - at the expense of additional use of memory. This functionality
is disabled by default.

ClassGroupGetUseMemory(O)

For an order O where the class group has been computed check if discrete logarithm
values should be stored or not.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 921

37.6.1 Setting the Class Group Bounds Globally
It is possible to preset the bounds to be used in all class group computations. Two bounds
can be specified: the first controls the size of the factor base used in the first stage of the
class group computation, and the second is the bound used in the checking stage (this
controls the level of rigour of the computation).

The bounds may be specified using either of the intrinsics below; SetClassGroupBounds
is a simple special case of SetClassGroupBoundMaps, provided for the user’s convenience.

SetClassGroupBounds(n)

SetClassGroupBounds(string)

This determines the bounds that will be used in all subsequent calls to ClassGroup.
The argument can be an integer n (then the bounds are both set to this constant).
Alternatively the argument can be a string: either “GRH” (then the bounds will
guarantee correctness assuming GRH) or “PARI” (this is intended to give roughly
the same level of rigour as PARI).

SetClassGroupBoundMaps(f1, f2)

This determines the bounds that will be used in all subsequent calls to ClassGroup.
The arguments should be maps from PowerStructure(RngOrd) (which is the parent
object of all orders in number fields) to integers.

The bounds used when ClassGroup is called for a number field will be the bounds
for the maximal order of that field.

Example H37E20

We select some bounds which will then be used in all calls to ClassGroup. (The class group
computations will be rigorous, but will use a relatively small factor base for the first part of the
computation).

> map1 := map< PowerStructure(RngOrd) -> Integers() |

> order :-> BachBound(order) div 10 >;

> map2 := map< PowerStructure(RngOrd) -> Integers() |

> order :-> MinkowskiBound(order) >;

> SetClassGroupBoundMaps(map1, map2);

922 GLOBAL ARITHMETIC FIELDS Part VII

37.7 Unit Groups

The relation method, outlined in the previous section, can also be used for unit group
calculations. Therefore, unit group calculations including those triggered as a side effect
may cause the creation of factor bases and relations. Other methods such as Dirichlet’s
method are also implemented which may be faster in certain circumstances. Descriptions
of the algorithms can be found in [PZ89], (pp. 343–344), and in [Poh93]. These methods
will only work for absolute extensions.

In general, the unit group related functions support a verbose flag UnitGroup up to a
maximum of 6.

UnitGroup(O)

MultiplicativeGroup(O)

UnitGroup(K)

MultiplicativeGroup(K)

Al MonStgElt Default : “Automatic”

Verbose UnitGroup Maximum : 6

Given an order O in a number field, this function returns an (abstract) abelian
group U , as well as a bijection m between U and the units of the order. The unit
group consists of the torsion subgroup, generated by the image m(U.1) and a free
part, generated in O by the images m(U.i) for 2 ≤ i ≤ r1 + r2.

If the argument to this function is a number fieldK, the unit group of its maximal
order is returned. Note that the maximal order may have to be determined first.

The parameter Al can be used to specify an algorithm. It should be one
of "Automatic", (default, a choice will be made for the user) "ClassGroup",
"Dirichlet", "Mixed" (the best known Dirichlet method), "Relation" or "Short"
(which is a variation of "Mixed"). In the case of real quadratic fields, a continued
fraction algorithm is available, "ContFrac".

UnitGroupAsSubgroup(O)

For a (possibly non-maximal) order O in some absolute fieldK, return the unit group
of O as a subgroup of the unit group of the maximal order of O. The algorithm and
its implementatio is due to Klüners and Pauli, [PK05].

TorsionUnitGroup(O)

TorsionUnitGroup(K)

The torsion subgroup of the unit group of the order O, or, in case of a number field
K, of its maximal order O. The torsion subgroup is returned as an abelian group
T , together with a map m from the group to the order O. The torsion subgroup
will be cyclic, and is generated by m(T.1).

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 923

IndependentUnits(O)

IndependentUnits(K)

Al MonStgElt Default : “Automatic”

Verbose UnitGroup Maximum : 6

Given an order O, this function returns a sequence of independent units; they gen-
erate a subgroup of finite index in the full unit group. Given a number field K,
the function is applied to the maximal order of K. The function returns an abelian
group generated by the independent units as well as a homomorphism from the
group to the order.

The parameter Al can be used to specify an algorithm. It should be one of
"Automatic", "ClassGroup", "Dirichlet", "Mixed" (the best known Dirichlet-
like method), "Relation". or "Short" (which is a variation of "Mixed"). In the
case of real quadratic fields, a continued fraction algorithm is available, "ContFrac".

pFundamentalUnits(O, p)

pFundamentalUnits(K, p)

Al MonStgElt Default : “Automatic”

Verbose UnitGroup Maximum : 6

Given an order O in a number field, this function returns an (abstract) abelian
group U , as well as a map m from U to the order. U will be a subgroup (of finite
index) of the unit group G such that p does not divide the index (G : U) where p
is the prime number given. If a field K is given rather than an order, the above is
computed for the maximal order of K.

The parameter Al has the same options as for UnitGroup.

MergeUnits(K, a)

MergeUnits(O, a)

Verbose UnitGroup Maximum : 6

For an order O or a number field with maximal order O and a unit a ∈ O, add the
unit to the already known subgroup of UO that is stored in O. Returns true if and
only if the rank of the currently known unit group of O or K increases when a is
merged with it.

UnitRank(O)

UnitRank(K)

Return the unit rank of the ring of integers O of a number field K.

924 GLOBAL ARITHMETIC FIELDS Part VII

Example H37E21

In our field defined by x4 − 420 ∗ x2 + 40000, we obtain the class and unit groups as follows.

> R<x> := PolynomialRing(Integers());

> f := x^4 - 420*x^2 + 40000;

> K<y> := NumberField(f);

> C := ClassGroup(K);

> C;

Abelian Group of order 1

> U := UnitGroup(K);

> U;

Abelian Group isomorphic to Z/2 + Z + Z + Z

Defined on 4 generators

Relations:

2*U.1 = 0

> T := TorsionUnitGroup(K);

> T;

Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*T.1 = 0

IsExceptionalUnit(u)

An element x of an order O is an exceptional unit if both x and x− 1 are units in
O. This function returns true if and only if the order element u is an exceptional
unit.

ExceptionalUnitOrbit(u)

If u is an exceptional unit of an order O, then all of the units u1 = u, u2 = 1
u ,

u3 = 1 − u, u4 = 1
1−u , u5 = u−1

u , u6 = u
u−1 are exceptional. The set Ω(u) formed

by u1, . . . , u6 is called the orbit of u. Usually it will have 6 elements. This function
returns a sequence containing the elements of Ω(u).

ExceptionalUnits(O)

Verbose UnitEq Maximum : 5

This function returns a sequence S of units of the order O such that any exceptional
unit u of O is either in S or is in the orbit of some element of S.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 925

37.8 Solving Equations

Magma can solve norm, Thue, index form and unit equations.

37.8.1 Norm Equations
Norm equations in the context of number fields occur in many applications. While Magma
contains efficient algorithms to solve norm equations it is important to understand the
difference between the various types of norm equations that occur. Given some element θ
in a number field k together with a finite extension K/k, there are two different types of
norm equations attached to this data:
- Diophantine norm equations, that is norm equations where a solution x ∈ K is restricted

to a particular order (or any additive subgroup), and
- field theoretic norm equations where any element in x ∈ K with N(x) = θ is a solution.

While in the first case the number of different (up to equivalence) solutions is finite,
no such restriction holds in the field case. On the other hand, the field case often allows
to prove the existence or non-existence of solutions quickly, while no efficient tests exist
for the Diophantine case. So it is not surprising that different methods are applied for the
different cases. We will discuss the differences with the individual intrinsics.

NormEquation(O, m)

All BoolElt Default : true

Solutions RngIntElt Default : All
Exact BoolElt Default : false

Ineq BoolElt Default : false

Given an order O and an element m of the ground ring of O which can be a pos-
itive integer or an element of a suborder, this intrinsic solves a Diophantine norm
equation.

This function returns a boolean indicating whether an element α ∈ O exists such
that NF/L(α), the norm of α with respect to the subfield L of F (the field of fractions
of O), equals m, and if so, a sequence of length at most Solutions of solutions α.

The parameter Exact may be used to indicate whether an exact solution is
required (with Exact := true) or whether a solution up to a torsion unit suffices.

The maximal number of required solutions can be indicated with the Solutions
parameter, but setting All := true will override this and the search will find all
solutions.

If the order is absolute, then the parameter Ineq may be set to true. If so, all
solutions x with |N(x)| <= m will be found using a variation of Fincke’s ellipsoid
method ([Fin84, PZ89]).

Depending on whether the order is absolute maximal, absolute or (simple) rela-
tive, different algorithms are used.

If the order is an absolute maximal order, Magma will, in a first step, enumerate
all integral ideals having the required norm (up to sign). Next, all the ideals are
tested for principality using the class group based method. If Exact := true, then

926 GLOBAL ARITHMETIC FIELDS Part VII

a third step is added: we try to find a unit in O of norm −1. This unit is used
to sign adjust the solution(s). If there is no such unit, we drop all solutions of the
wrong sign.

If the order is absolute, but not maximal, the norm equation is first solved in the
maximal order using the above outlined method. In a second step, a complete set
of representatives for the unit group of the maximal order modulo the units of O
is computed and Magma attempts to combine solutions in the maximal order with
those representatives to get solutions in O.

If Solutions is set, the search stops after the required number of solutions is
found.

In case the order is of type RngOrd and in some imaginary quadratic field, the
norm function is a positive definite quadratic form, thus algorithms based on that
property are used. In case the right hand side m equals ±1, lattice based methods
are applied.

If Ineq is true, which is only supported for absolute fields, lattice enumeration
techniques ([Fin84, PZ89]) based on Fincke’s ellipsoid method are used.

If the order is (simply) relative different algorithms are implemented, depending
on the number of solutions sought. However, common to all of them is that they
(partially) work in the AbsoluteOrder of O.

If O is a relative maximal order and if we only want to find 1 solution (or to
prove that there is none), Magma first looks for (integral) solutions in the field using
an S-unit based approach as outlined in NormEquation. This step gives an affine
subspace of the S-unit group that contains all integral solutions of our equation. In
a second step, a simplex based technique is used to find totally positive elements in
the subspace.

In All is given or Solutions is > 1, then lattice based methods are used ([Fie97,
Jur93, FJP97]).

NormEquation(F, m)

Primes eseq of prime ideals Default : []
Nice BoolElt Default : true

Given a field F and an element m of the base field of F , this function returns a
boolean indicating whether an element α ∈ F exists such that NF/L(α), the norm
of α with respect to the base field L of F equals m, and if so, a sequence of length
1 of solutions α.

The field theoretic norm equations are all solved using S-units. Before discussing
some details, we outline the method.
- Determine a set S of prime ideals. We try to obtain a solution as a S-unit for

this set S.
- Compute a basis for the S-units
- Compute the action of the norm-map
- Obtain a solution as a preimage.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 927

In general, no effective method is known for the first step. If the field is relative
normal however, it is known that is S generates the class group of F and if m is a S-
unit, then S is large enough (suitable in ([Coh00, 7.5]) [Fie97, Sim02, Gar80]. Thus
to find S we have to compute the class group of F . If a (conditional) class group
is already known, it is used, otherwise an unconditional class group is computed.
The initial set S consists of all prime ideals occurring in the decomposition of mZF .
Note that this step includes the factorisation of m and thus can take a long time is
m is large.

Next, we determine a basis for the S-unit group and the action of the norm on
it. This give the norm map as a map on the S-unit group as an abstract abelian
group.

Finally, the right hand side m is represented as an element of the S-unit group
and a solution is then obtained as a preimage under the norm map.

If Nice is true, then Magma attempts to find a smaller solution by applying a
LLL reduction to the original solution.

If Primes is give it must contain a list of prime ideals of L. Together with
the primes dividing m it is used to form the set S bypassing the computation of
an unconditional class group in this step. If L is not normal this can be used to
guarantee that S is large enough. Note that the class group computation is still
performed when the S-units are computed. Since the correctness of the S-unit
group (we need only p-maximality for all primes dividing the (relative) degree of
L) can be verified independently of the correctness of the class group, this can be
used to derive provable results in cases where the class group cannot be computed
unconditionally.

By default, the MaximalOrder(L) is used to compute the class group. If the
attribute NeqOrder is set on L it must contain a maximal order of L. If present,
this order will be used for all the subsequent computations.

NormEquation(m, N)

Raw BoolElt Default : false

Primes eseq of prime ideals Default : []
Let N be a map on the multiplicative group of some number field. Formally N
may also be defined on the maximal order of the field. This intrinsic tries to find a
pre-image for m under N .

This function works by realising N as a endomorphism of S-units for a suitable
set S.

If N is a relative norm and if L is (absolutely) normal then the set S as computed
for the field theoretic norm equation is guaranteed to be large enough to find a
solution if it exists. Note: this condition is not checked.

If Primes is given it will be supplemented by the primes dividing m and then
used as the set S.

If Raw is given, the solution is returned as an unevaluated power product. See
the example for details.

928 GLOBAL ARITHMETIC FIELDS Part VII

The main use of this function is for Galois theoretical constructions where the
subfields are defined as fields fixed by certain automorphisms. In this situation the
norm function can be realised as the product over the fixed group. It is therefore
not necessary to compute a (very messy) relative representation of the field.

IntegralNormEquation(a, N, O)

Nice BoolElt Default : true

For a an integer or a unit in some number field, N being a multiplicative function
on some number field k which is the field of fractions of the order O, try to find a
unit in O that is the preimage of a under N . In particular, N restricted to O must
be an endomorphism of O. If Nice is true, the solution will be size-reduced. In
particular when the conductor of O in the maximal order of k is large, and therefore
the unit index (Zk)∗ : O∗ is large as well, this function is much more efficient than
the lattice based approach above.

SimNEQ(K, e, f)

S [RngOrdIdl] Default : false

HasSolution BoolElt Default : false

For a number field K and subfield elements e ∈ k1 and f ∈ k2, try to find a
solution to the simultaneous norm equations NK/k1(x) = e and NK/k2(x) = f . The
algorithm proceeds by first guessing a likely set S of prime ideals that will support
a solution - it is exists. Initially S will contain all ramified primes in K, the support
of e and f and enough primes to generate the class group of K. In case K is normal
over Q this set is large enough to support a solution if there is a solution at all.
For arbitrary fields that is most likely not the case. However, if S is passed in as a
parameter then the set used internally will contain at least this set. If HasSolution
is true, Magma will add primes to S until a solution has been found. This is useful
in situations where for some theoretical reason it is known that there has to be a
solution.

Example H37E22

We try to solve N(x) = 3 in some relative extension: (Note that since the larger field is a quadratic
extension, the second call tells us that there is no integral element with norm 3)

> x := PolynomialRing(Integers()).1;

> O := MaximalOrder(NumberField([x^2-229, x^2-2]));

> NormEquation(O, 3);

false

> NormEquation(FieldOfFractions(O), 3);

true [

5/1*$.1*O.1 + 2/3*$.1*O.2

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 929

]

Next we solve the same equation but come from a different angle, we will define the norm map
as an element of the group ring and, instead of explicitly computing a relative extension, work
instead with the implicit fix-field.

> K := AbsoluteField(FieldOfFractions(O));

> t := K!NumberField(O).2;

> t^2;

2/1*K.1

> A, _, mA := AutomorphismGroup(K);

> F := sub<A | [x : x in A | mA(x)(t) eq t]>;

> N := map<K -> K | x:-> &* [mA(y)(x) : y in F]>;

> NormEquation(3, N);

true [

5/1*K.1 + 2/3*K.3

]

Finally, to show the effect of Raw:

> f, s, base := NormEquation(3, N:Raw);

> s;

[

(0 -1 0 -2 0 1 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0)

]

> z := PowerProduct(base, s[1]);

> z;

5/1*K.1 + 2/3*K.3

> N(z);

3/1*K.1;

37.8.2 Thue Equations
Thue equations are Diophantine equations of the form f(x, y) = k, where k is some integer
constant and f is a homogeneous polynomial in two variables. Methods for computing all
solutions to such equations are known, although the search space may be larger than is
practical. To work with such equations in Magma a Thue object (category Thue) must
be created to store information related to the computations. To solve Thue equations the
reduction of Bilu and Hanrot ([BH96]) is used.

Thue(f)

Given a polynomial f of degree at least 2 over the integers, this function returns the
‘Thue object’ corresponding to f ; such objects are used by the functions for solving
Thue equations. They are printed as the homogeneous version of f .

930 GLOBAL ARITHMETIC FIELDS Part VII

Thue(O)

Given an order O with Z as its coefficient ring, this function returns the Thue object
corresponding to the defining polynomial of O.

Evaluate(t, a, b)

Evaluate(t, S)

Given a Thue object t and integers a, b, this function returns the evaluation of the
homogeneous polynomial f involved in t at (a, b), that is f(a, b). The second form
takes as argument the sequence [a, b] instead. This can be convenient if checking
the results from an inexact solution.

Solutions(t, a)

Exact BoolElt Default : true

Verbose ThueEq Maximum : 5
Given a Thue object t and an integer a, this function returns a sequence consisting
of all sequences of two integers [x, y] which solve the equation f(x, y) = a, where f
is the (homogeneous form of) the Thue equation associated with t. If the optional
parameter Exact is set to false then solutions to f(x, y) = −a will also be found.

Example H37E23

A use of thue equations is shown.

> R<x> := PolynomialRing(Integers());

> f := x^3 + x + 1;

> T := Thue(f);

> T;

Thue object with form: X^3 + X Y^2 + Y^3

> Evaluate(T, 3, 2);

47

> Solutions(T, 4);

[]

> Solutions(T, 7);

[]

> Solutions(T, 47);

[

[-1, 4],

[3, 2]

]

> S := Solutions(T, -47 : Exact := false);

> S;

[

[-3, -2],

[-1, 4],

[1, -4],

[3, 2]

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 931

]

> [Evaluate(T, s) : s in S];

[-47, 47, -47, 47]

37.8.3 Unit Equations
Unit equations are equations of the form

aε+ bη = c

where a, b and c are some algebraic numbers and ε and η are unknown units in the same
field.

UnitEquation(a, b, c)

Verbose UnitEq Maximum : 5
Return the sequence of 1 × 2 matrices (e1, e2) such that ae1 + be2 = c for number
field elements a, b and c, where e1 and e2 are units in the maximal order. The
algorithm uses Wildanger’s method ([Wil97, Wil00]).

Example H37E24

Usage of UnitEquation is shown.

> R<x> := PolynomialRing(Integers());

> K<a> := NumberField(x^7 - x^6 + 8*x^5 + 2);

> UnitEquation(a^7, 4*a^2 + a^80, a^7 + a^80 + 4*a^2);

[

[[1, 0, 0, 0, 0, 0, 0] [1, 0, 0, 0, 0, 0, 0]]

]

37.8.4 Index Form Equations
Given an absolute number field K with some order O, index form equations are equations
of the form (O : Z[α]) = k where k is some positive integer.

In particular, if k = 1 this function will find “all” integral power bases.
In this context “all” means up to equivalence, where two solutions α and β are equivalent

iff α = ±β + r for some integer r.
If the field degree is larger than 4, the field must be normal and an integral power basis

must already be known.
The implementation follows [Wil97, Wil00] for large degree equations, [GPP93, GPP96]

for quartics and [GS89] for cubic fields.

IndexFormEquation(O, k)

Verbose IndexFormEquation Maximum : 5
Given an absolute order O, this function will find “all” (up to equivalence) solutions
α ∈ OP to (O : Z[α]) = k.

932 GLOBAL ARITHMETIC FIELDS Part VII

Example H37E25

We try to compute all integral power bases of the field defined by a zero of x4 − 14x3 + 14x2 −
14x + 14:

> x := PolynomialRing(Integers()).1;

> O := MaximalOrder(x^4-14*x^3+14*x^2-14*x+14);

> IndexFormEquation(O, 1);

[

[0, 1, 0, 0]

[0, 1, -13, 1],

[0, 1, -1, 1],

]

> [MinimalPolynomial(x) :x in $1];

[

x^4 - 14*x^3 + 14*x^2 - 14*x + 14,

x^4 - 28*x^3 + 56*x^2 + 3962*x - 28014,

x^4 - 2044*x^3 + 6608*x^2 - 7126*x + 2562

]

> [Discriminant(x) : x in $1] ;

[-80240048, -80240048, -80240048]

> Discriminant(O);

-80240048

37.9 Ideals and Quotients

Ideals of orders are of two types. All ideals are fractional and inherit from type
RngOrdFracIdl. Integral ideals can have (the sub–)type RngOrdIdl. Some functions only
apply to integral ideals and only ideals with the integral type can be prime. An ideal with
fractional type but trivial denominator can be converted to have the integral type and any
integral ideal can be converted to fractional type.

Ideals can be taken of orders over Z and orders defined over a maximal order. A few
functions are not implemented for the latter.

Where an element or elements are returned from a function the elements are usually in
the field of fractions if the ideal has the fractional type and in the order if it has integral
type.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 933

37.9.1 Creation of Ideals in Orders
The general ideal constructor can be used to create ideals in orders of algebraic fields, as
described below. Since ideals in orders are allowed to be fractional ideals, algebraic field
elements are allowed as generators. Ideals can also be created how they are written on
paper: as an element multiplied by an order.

x * O

O * x

Create the ideal x ∗ O for element x and order O. If the ideal is integral it will be
returned with the integral type.

F !! I

O !! I

Make the ideal I either fractional (first case where F is a field of fractions compatible
with the order of I) or integral (second case where O is an order compatible with
the order of I).

ideal< O | a1, a2, ... , am >

ideal< O | x >

ideal< O | M, d >

ideal< O | M, I1, ..., In >

Given an order O, as well as anything that can be used to produce a sequence of
elements of the field of fractions of O return the ideal generated by those elements.
If the ideal is integral then it will be returned with the integral type.

A single integer may be given in which case the principal ideal it generates
will be returned. A matrix or a module over an order (ModDed) (or a matrix and
ideals which the module could be created from) can be supplied as the basis for the
resulting ideal. An optional second argument is a denominator given as an integer,
(except when ideals are given).

Example H37E26

We give an example of the creation of an ideal generated by an element from an order.

> R<x> := PolynomialRing(Integers());

> f := x^4-420*x^2+40000;

> K<y> := NumberField(f);

> E := EquationOrder(K);

> O := MaximalOrder(K);

> elt := O ! (y^2/40+y/4);

> elt in E;

false

> I := ideal< O | elt >;

> I;

Principal Ideal of O

934 GLOBAL ARITHMETIC FIELDS Part VII

Generator:

[0, 0, 1, 0]

> FieldOfFractions(O)!!I;

Principal Ideal of O

Generator:

O.3

> O!!$1 eq I;

true

37.9.2 Invariants
Some information describing an ideal can be retrieved.

Order(I)

The order O which the ideal I is of.

Denominator(I)

The denominator of the fractional ideal I. This is the smallest positive integer d
such that d ∗ I is an integral ideal.

PrimitiveElement(I)

UniformizingElement(P)

A primitive element of an ideal I is an element a which is in I but not in the square
of I. This function returns such an element a. UniformizingElement returns the
primitive element of a prime ideal.

Index(O, I)

The index of the integral ideal I, when viewed as a submodule of the order O. This
is the same as the cardinality of the finite quotient ring O/I.

Norm(I)

The norm of the fractional ideal I. This returns the index of the ideal if the ideal is
integral, and is defined on fractional ideals by multiplicativity so that the norm of
I−1 equals the reciprocal of the norm of I.

MinimalInteger(I)

Given an ideal I of an order in some number field, the function returns the least
positive integer contained in the ideal.

Minimum(I)

Given an ideal I, this function returns the least positive integer m if the ideal is
integral or the least positive rational r if is fractional contained in I.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 935

AbsoluteNorm(I)

The absolute norm of the fractional ideal I. This returns the index of the ideal if
the ideal is integral, and is defined on fractional ideals by multiplicativity so that
the norm of I−1 equals the reciprocal of the norm of I.

CoefficientHeight(I)

CoefficientHeight(I)

For an ideal I the coefficient height is defined to be the maximum integer occurring
in the current representation of the ideal: If the ideal is given via two elements,
this will be the maximal coefficient height of the generators, otherwise the maximal
entry of the basis matrix.

CoefficientLength(I)

CoefficientLength(I)

For an ideal I the coefficient length is defined to be the size of the current represen-
tation: If the ideal is given via two elements, this will be the sum of the coefficient
lengths of the generators, otherwise the sum of the entries of the basis matrix.

RamificationIndex(I, p)

RamificationDegree(I, p)

For a prime ideal I of an order O such that p ∈ I returns the maximal exponent e
such that Ie divides the principal ideal pO. If p is not given it is taken to be the
minimal integer of I.

RamificationDegree(I)

RamificationIndex(I)

Computes the relative ramification index of the prime ideal I over the coefficient
ring. To be more precise: Let I be an prime ideal of some order O with coeffcient
ring o. Then I ∩ o is an prime ideal p in o. The ramification index e = e(I|p) is the
maximal exponent e such that Ie divides pO.

ResidueClassField(O, I)

ResidueClassField(I)

If I is a prime ideal of O, this function returns the finite field F isomorphic to O/I
and the map O → F .

Degree(I)

InertiaDegree(I)

Given a prime ideal I this function returns the relative degree f of the residue class
field of the ideal I. To be more precise: Let I be a prime ideal in some order O with
coefficient ring o. Then p := o ∩ I is a prime ideal in o and the residue class field
O/I is a finite extension of degree f = f(I|p) of the residue class field o/p.

936 GLOBAL ARITHMETIC FIELDS Part VII

Valuation(I, p)

Given an ideal I and a prime ideal p in an order O, returns the valuation vp(I) of
I at p, that is, the number of factors p in the prime ideal decomposition of I. Note
that, since the ideal I is allowed to be a fractional ideal, the returned value may be
a negative integer.

Content(I)

The content of the ideal I, i.e. the maximal ideal of the base ring dividing I.

Example H37E27

The retrieval of some properties of an ideal is illustrated.

> R<x> := PolynomialRing(Integers());

> M := MaximalOrder(x^5 + 4*x^4 - x^3 + 7*x^2 - 1);

> R<x> := PolynomialRing(M);

> O := MaximalOrder(x^3 - 2);

> M;

Maximal Equation Order with defining polynomial x^5 + 4*x^4 - x^3 + 7*x^2 - 1

over Z

> O;

Maximal Order of Equation Order with defining polynomial x^3 - [2, 0, 0, 0, 0]

over M

> I := 19/43*M.4*O.3*O;

> I;

Fractional Principal Ideal of O

Generator:

19/43*M.4*O.3

> Order(I);

Maximal Order of Equation Order with defining polynomial x^3 - [2, 0, 0, 0, 0]

over M

> Denominator(I);

86

> Denominator(O.3);

2

> PrimitiveElement(I);

19/43*M.4*O.3

> Norm(I);

Fractional Ideal of M

Basis:

[6859 0 0 0 0]

[0 6859 0 0 0]

[0 0 6859 0 0]

[0 0 0 6859 0]

[0 0 0 0 6859]

Denominator: 159014

> Minimum(I);

19/43

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 937

> p := Factorization(3*M.2*O)[1][1];

> Valuation(I, p);

0

37.9.3 Basis Representation
The basis of an ideal can be computed as well as related matrices.

Basis(I)

Basis(I, R)

Given an ideal I of an order O of the algebraic field F , this function returns a basis
for I as a sequence of elements of F (if fractional), O (if integral) or the ring R if
given.

BasisMatrix(I)

Returns the basis matrix for the ideal I of the order O. The basis matrix consists
of the elements of a basis for the ideal written as rows of rational coefficients with
respect to the basis of O. The entries of the matrix are elements of Z for an integral
ideal of an order over Z only or the field of fractions of the coefficient ring of O.

TransformationMatrix(I)

Returns the transformation matrix for the ideal I of the order O, as well as a
denominator. The transformation matrix consists of the elements of a basis for the
ideal written as rows of coefficients with respect to the basis of the order O. The
entries of the matrix are elements of Z for an integral ideal of an order over Z or
the field of fractions of the coefficient ring of O.

CoefficientIdeals(I)

The coefficient ideals of the ideal I in a relative extension. These are the ideals
{Ai} of the coefficient ring of the order of I such that for every element e ∈ I,
e =

∑
i ai ∗ bi where {bi} is the basis returned for I and each ai ∈ Ai.

Example H37E28

Continuing from the last example, the use of the basis functions for ideals is shown.

> Basis(I);

[

19/43*M.4*O.3,

19/86*M.4*O.1,

19/43*M.4*O.2

]

> Basis(I, NumberField(O));

[

19/86*$.1^3*$.1^2,

938 GLOBAL ARITHMETIC FIELDS Part VII

19/86*$.1^3,

19/86*$.1^3*$.1

]

> BasisMatrix(I);

[0 0 19/43*M.4]

[19/86*M.4 0 0]

[0 19/43*M.4 0]

> TransformationMatrix(I);

[M.1 0 0]

[0 M.1 0]

[0 0 M.1]

1

For relative extensions, a different method is available:

Module(I)

For an ideal I in some relative extension, return a Dedekind module over the coef-
ficient ring with the “same” basis.

37.9.4 Two–Element Presentations
All ideals of maximal orders can be generated by one or two elements of the field of fractions
of the order they are an ideal of.

Generators(I)

Given a (fractional) ideal I of O, return a sequence containing two elements that
generate I as an ideal. The elements will be in the order iff the ideal is integral,
otherwise they will come from the field of fractions of O.

TwoElement(I)

Given a (fractional) ideal I of O, return two elements of (the field of fractions of)
O that generate I as an ideal.

TwoElementNormal(I)

Given an integral ideal I of O (a maximal order over Z), return two elements of O
that form a two-element normal presentation for I, as well as an integer g such that
I is g-normal.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 939

Example H37E29

The generators and two element presentation of I are compared.

> Generators(I);

[

19/43*M.4*O.3

]

> TwoElement(I);

19/43*M.4*O.3

19/43*M.4*O.3

37.9.5 Predicates on Ideals
Ideals may be tested for various properties and whether given elements lie in the ideal.

I eq J I ne J

x in I x notin I I subset J

IsIntegral(I)

Returns true if and only if the fractional ideal I is integral.

IsZero(I)

Returns true if the ideal I is the zero ideal, false otherwise.

IsOne(I)

Returns true if the ideal I is the ideal generated by 1, false otherwise.

IsPrime(I)

Returns true if and only if the ideal I is a prime ideal, and false otherwise. If
I has the integral type and is not prime, the function also returns a proper (ideal)
divisor.

Currently, this function becomes very slow as the norm of the ideal becomes
large.

IsPrincipal(I)

Verbose ClassGroup Maximum : 5
Returns true if the fractional ideal I of the order O is a principal ideal, otherwise
false. If I is principal, a generator (as an element of the field of fractions of O) is
also returned.

If it is known or easy to decide whether I is principal the function will return
quickly. If it is necessary to compute the class group of O the function will be slower.
If the generator is required this may cause the function to take longer as well.

940 GLOBAL ARITHMETIC FIELDS Part VII

IsRamified(P)

Returns true iff the ramification index of the prime ideal P is greater than 1.

IsRamified(P, O)

Returns true iff for any prime ideal Q lying above P in the order O, the ramification
index of Q is greater than 1. P must be a prime ideal of the base ring of O or a
prime number (if O is an absolute order).

IsTotallyRamified(P)

Returns true iff the ramification index of the prime ideal P equals the degree of its
order over the base field.

IsTotallyRamified(P, O)

Returns true iff for any prime ideal Q lying above P in the order O, the ramification
index of Q equals the field degree. P must be a prime ideal of the base ring of O or
a prime number (if O is an absolute order).

IsTotallyRamified(K)

Returns true if all primes dividing the discriminant the maximal order of the alge-
braic field K are totally ramified over the coefficient field of K.

IsTotallyRamified(O)

Returns true if all primes dividing the discriminant of the maximal order O are
totally ramified over the coefficient ring of O.

IsWildlyRamified(P)

Returns true iff the ramification index of the prime ideal P is a multiple of the
characteristic of the residue class field of P .

IsWildlyRamified(P, O)

Returns true iff for any prime ideal Q of the order O lying above P , the ramification
index e(Q|P) is a multiple of the characteristic of the residue class field of Q. P
must be a prime ideal of the base ring of O or a prime number (if O is an absolute
order).

IsTamelyRamified(P)

Returns true iff the prime ideal P is not wildly ramified.

IsTamelyRamified(P, O)

Returns true iff the prime ideal or integer P is not wildly ramified in the order O.

IsUnramified(P)

Returns true iff the ramification index of the prime ideal P is 1.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 941

IsUnramified(P, O)

Returns true iff for all prime ideals Q lying above P in the order O, the ramification
index of Q is 1. P must be a prime ideal of the base ring of O or a prime number
(if O is an absolute order).

IsInert(P)

Returns true iff the inertia degree of the prime ideal P is the field degree.

IsInert(P, O)

Returns true iff the prime integer or ideal P in the base ring of the order O is inert,
i.e. PO is an unramified prime ideal of O.

IsSplit(P)

Returns true iff the prime ideal P is not the only prime ideal which lies above its
intersection with the base ring of its order.

IsSplit(P, O)

Returns true iff at least two prime ideals in the order O lie above the prime integer
or ideal P of the base ring of O.

IsTotallySplit(P)

Returns true iff there are as many prime ideals lying above the intersection of the
prime ideal P with the base ring of its order as the degree of the order of P .

IsTotallySplit(P, O)

Returns true iff as many prime ideals in the order O lying above the prime integer
or ideal P of the base ring of O as the degree of O.

37.9.6 Ideal Arithmetic
Ideals can be multiplied in several ways, divided and added. Powers of ideals, the least

common multiple and the intersection of two ideals can also be calculated.

I * J

The product IJ of the (fractional) ideals I and J , generated by the products of
elements in I and elements in J .

x * I

I * x

Given an element x of (or coercible into) a field of fractions F , and a (fractional)
ideal I in the order of F , return the product of the ideal and the principal ideal
generated by x.

&*L

The product of all ideals in the sequence or set L.

942 GLOBAL ARITHMETIC FIELDS Part VII

I / J

I div J

The quotient of the (fractional) ideals I and J of an maximal order O. This is the
fractional ideal K of O with the property that JK = I.

I div J

For integral ideals I and J of some maximal order such that J divides I (or, equiv-
alently, J is contained in I), return the integral ideal I/J .

I / x

Given an ideal I and an element x construct the fractional ideal I/x.

I + J

The sum of the (fractional) ideals I and J , generated by the sums of elements in I
and elements in J .

I ^ k

The k-th power of the (fractional) ideal I (for an integer k). If I has integral type
and k is negative the result will have fractional type.

I eq J

Tests if the ideals I and J are equal.

I subset J

Tests if the two ideals I and J of the same order are contained in each other. For
invertible ideals this is equivalent to checking if J divides I,

E in I

Tests if the element E is actually in the ideal I. The element and the ideal have to
be compatible, i.e., live in the same number field.

LCM(I, J)

Lcm(I, J)

LeastCommonMultiple(I, J)

Return the least common multiple of ideals I and J . They must both be of the
same maximal order.

GCD(I, J)

Gcd(I, J)

GreatestCommonDivisor(I, J)

The greatest common divisor of the ideals I and J of some maximal order of an
algebraic number field.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 943

Content(M)

For a matrix M with entries in some number field k, compute the gcd of all elements
as principal ideals in the maximal order of k.

I meet J

The intersection of the (fractional) ideals I and J . For ideal in the maximal order
this is the same as the lcm.

&meetS

The intersection of all ideals I of the sequence or set S. For ideals in some maximal
order this is the same as the lcm.

I meet R

R meet I

The intersection of the ideal I with the compatible ring R. If R = Q an error
will occur since ideals of Q cannot be created. If such information is required use
Minimum instead. An ideal of R is returned.

a mod I

A representative of the element a of an order O in the quotient O/I.

InverseMod(E, M)

Modinv(E, M)

An element y such that y ∗E = 1 mod M where M is an integral ideal or an integer
and E is an element of an order.

ColonIdeal(I, J)

IdealQuotient(I, J)

The colon ideal [I : J] or (I/J) is defined as {x ∈ F : xJ ⊆ I} where F is the field
of fractions of the order the ideals I and J belong to.

For ideals of a maximal order (or in general for invertible ideals) this is equivalent
to I/J , otherwise only J*ColonIdeal(I, J) subset 1*Order(I) holds.

IntegralSplit(I)

Given an ideal I, return an integral ideal J and a minimal positive integer d such
that I = J/d.

944 GLOBAL ARITHMETIC FIELDS Part VII

37.9.7 Roots of Ideals
It is possible to ask for the k-th root of an ideal where k is a positive integer.

Root(I, k)

Find the kth root of the ideal I if it exists.

IsPower(I, k)

Return true if the ideal I is a kth power of an ideal and the ideal it is a power of
otherwise false.

SquareRoot(I)

Sqrt(I)

Return the square root of the ideal I if I is square.

IsSquare(I)

Return true if the ideal I is the square of an ideal and the ideal it is a square of
otherwise false.

37.9.8 Factorization and Primes
The factorization of an ideal into prime ideals and the divisors of an ideal can be deter-
mined.

Decomposition(O, p)

Verbose IdealDecompose Maximum : 5
Given an order O and a rational prime number p or a prime ideal p of the coefficient
ring of O, return a sequence of tuples consisting of prime ideals and exponents,
according to the decomposition of p in O.

DecompositionType(O, p)

Verbose IdealDecompose Maximum : 5
Given an order O and a rational prime number p or a prime ideal p of the coeffi-
cient ring of O, return the decomposition type, ie. a sequence of tuples consisting
of the degree of the prime ideals and their ramification index, according to the
decomposition of p in O.

Factorization(I)

Factorisation(I)

Verbose IdealDecompose Maximum : 5
Returns the prime ideal factorization of an ideal I in an order O, as a sequence of
2-tuples (prime ideal and integer exponent).

Divisors(I)

Return the ideals which divide the ideal I which must be of a maximal order.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 945

Support(I)

For a non-zero ideal I of some maximal order, return the set of prime ideals p
dividing I.

Support(L)

GaloisStable BoolElt Default : false

CoprimeOnly BoolElt Default : false

UseBernstein BoolElt Default : false

For a sequence L of ideals in some maximal order (or of number field elements
representing principal ideals), return the set of prime ideals dividing at least one of
the ideals. If CoprimeOnly is given, the set returned will not in general be containing
prime ideals, but will satisfy the following:

Every ideal in L can be uniquely decomposed into a power product of ideals in
the set returned

The set is minimal and closed under gcd, ie. for two elements in the set, their
gcd will be one.

If the number field is normal and if GaloisStable is given, then the set returned
will be closed under the action of the galois group. Depending on the (unknown)
factorisation pattern of the ideals, taking the Galois action into account will in
general refine the coprime factorisation.

In general, this function will first construct a coprime basis, and the factorise the
result of this step.

If UseBernstein is given, then Dan Berstein’s asymptoically fast algorithm
([Ber05], which runs in time essentially linear in #L) is used.

CoprimeBasis(L)

GaloisStable BoolElt Default : false

UseBernstein BoolElt Default : false

Given a sequence L of ideals in some maximal order, a coprime basis C for L is
constructed. That means

- every element in L has a unique representation as a power product with elements
in C

- C is closed under gcd, the ideals in C are pairwise coprime.
If the field is normal and if GaloisStable is given, the input sequence is sup-

plemented by the action of the automorphism group, thus potentially refining the
coprime basis.

If UseBernstein is given then instead of the naive algorithm with quadratic
complexity in #L, an asymptotically fast, almost linear algorithm by Dan Berstein
is used, [Ber05].

946 GLOBAL ARITHMETIC FIELDS Part VII

CoprimeBasisInsert(∼L, I)

GaloisStable BoolElt Default : false

UseBernstein BoolElt Default : false

Given a coprime basis in the sequence L, enlarge it by the ideal I, ie. enlarge L in
such a way that L stays a coprime basis but allows the decomposition of I as well.
If the ideals are in a normal field and if GaloisStable is given, then in addition
of I all its Galois conjugates are inserted as well. Furthermore, a fractional ideal
is always decomposed into the numerator and denominator ideal, ach of which is
inserted independently.

If UseBernstein is given then instead of the naive algorithm with quadratic
complexity in #L, an asymptotically fast, almost linear algorithm by Dan Berstein
is used, [Ber05].

PowerProduct(B, E)

Given sequences B of ideals of some maximal order and E of integers, compute the
ideal

∏
B[i]E[i].

37.9.9 Other Ideal Operations
Various other functions can be applied to ideals. In addition to those listed, the completion
of an order at a prime ideal can also be taken (see Completion on page 891 and Chapter 47).

ChineseRemainderTheorem(I1, I2, e1, e2)

ChineseRemainderTheorem(X, M)

CRT(I1, I2, e1, e2)

CRT(X, M)

Returns an element e of the order O such that (e1 − e) is in the ideal I1 of O and
(e2 − e) is in the ideal I2. If a sequence of elements X and a sequence of ideals M
is given then the element e will be such that (X[i]− e) is in M [i] for all i.

CRT(I1, L1, e1, L2)

ChineseRemainderTheorem(I1, L1, e1, L2)

Returns an element e of the order O such that (e1 − e) is in the ideal I1 of O and
the signs of the conjugates listed in L1 are the same as in L2.

L1, a sorted sequence of integers 0 < li <= r1, is meant to be formal product of
infinite places. The signs of the li’th conjugate of e will be the same as the sign of
L2[i].

Idempotents(I, J)

For coprime integral ideals I and J return true and elements i ∈ I and j ∈ J such
that i+ j = 1.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 947

CoprimeRepresentative(I, J)

MakeCoprime(I, J)

Given two integral ideals I and J in the same maximal order, find an element q in
the field of fractions of this order such that qI is coprime to J .

ClassRepresentative(I)

Let I be an ideal in the absolute maximal order O of the number field K. Further,
assume that the class group of O has been computed. The class group calcula-
tion will have chosen a set of ideal class representatives. This function returns the
representative ideal for the ideal class to which I belongs.

Lattice(I)

MinkowskiLattice(I)

Given an ideal I in an absolute order, returns the lattice determined by the real and
complex embeddings of I.

Different(I)

The different of the (possibly fractional) ideal I of an order of an algebraic number
field.

Codifferent(I)

The codifferent of the ideal I. This will be the inverse of the different of I if I is an
ideal of a maximal order.

SUnitGroup(I)

SUnitGroup(S)

Raw BoolElt Default : false

Verbose ClassGroup Maximum : 5

An elementmu of F , the field of fractions of the order of I, is an S-unit iff vp(mu) = 0
for all p not in S. This function returns the group of S-units of the prime ideals
given either as a sequence S of ideals or as a product ideal I. The map from the
group into the order containing the ideals is also returned.

If Raw is true then a product representation of the units is returned instead.
That means a sequence L of order elements is determined such that the S-unit
group is contained in their multiplicative span. The S-unit group is represented as
the Z-module of the exponent vectors for L that give rise to some S-unit. Formally
we obtain the S-unit group as an abstract abelian group A, a map from A into some
large RSpace and the sequence L.

948 GLOBAL ARITHMETIC FIELDS Part VII

Example H37E30

First we compute the 3-units of Q(
√

10).

> K := QuadraticField(10);

> M := MaximalOrder(K);

> U, mU := SUnitGroup(3*M);

> U;

Abelian Group isomorphic to Z/2 + Z + Z + Z

Defined on 4 generators

Relations:

2*U.1 = 0

> mU;

Mapping from: GrpAb: U to Field of Fractions of M

> u := mU(U.3); u;

7/1*M.1 - 2/1*M.2

> Decomposition(u);

[

<Prime Ideal of M

Two element generators:

3

$.2 + 1, 2>

]

So u is indeed a 3 unit, as the factorization contains only prime ideals over 3. Next we do the
same computation but using the Raw option:

> U, mU, base := SUnitGroup(3*M:Raw);

> mU;

Mapping from: GrpAb: U to Full RSpace of degree 14 over Integer Ring

> mU(U.3);

(0 2 1 0 0 0 0 0 0 0 -2)

> PowerProduct(base, $1);

7/1*M.1 - 2/1*M.2

> base[2]^2 * base[3]^1 * base[11]^-2;

7/1*M.1 - 2/1*M.2

This representation is of particular importance for large degree fields or fields with large units.
To illustrate this, consider the following field from the pari-mailing list:

> K := NumberField(Polynomial([13824, -3894, -1723, 5, 1291, 1]));

> L := LLL(MaximalOrder(K));

> C, mC := ClassGroup(L:Bound := 500);

> U, mU, base := SUnitGroup(1*L:Raw);

> logs := Matrix([Logs(x) : x in Eltseq(base)]);

> mU(U.3)*logs;

(2815256.998090806477937318458440358713392011019115562

-636746.05251910981832558348350489744160309616673457

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 949

-770882.44652629342064307574571528191509290934280166)

As the logarithm of the absolute value of the real embeddings is of the order 106, we expect that
a basis representation will have coefficients requiring roughly 106 digits. While it is feasible to
compute them (using PowerProduct), this will take a long time.

SUnitAction(SU, Act, S)

Base SeqEnum[RngOrdElt] Default : []
Given a description of the S-unit group as computed by SUnitGroup and a (multi-
plicative) map of the underlying number field, this function computes the induced
map on the abstract abelian group.

The argument S should be a sequence of ideals as in SUnitGroup. The argument
SU should either be the map returned by SUnitGroup(S) as second return value
- in which case Base is trivial (and not specified) or the second return value of
SUnitGroup(S:Raw) in which case Base should equal the third computed value.

The argument Act must be any (multiplicative) function of the underlying num-
ber field or any order, that acts on the S-unit group.

On return, a endomorphism of the domain of SU is obtained.

SUnitAction(SU, Act, S)

Base SeqEnum[RngOrdElt] Default : []
Given a description of the S-unit group as computed by SUnitGroup and a sequence
of (multiplicative) maps of the underlying number field, this function computes the
induced maps on the abstract abelian group.

The argument S should be a sequence of ideals as in SUnitGroup. The argument
SU should either be the map returned by SUnitGroup(S) as second return value
- in which case Base is trivial (and not specified) or the second return value of
SUnitGroup(S:Raw) in which case Base should equal the third computed value.

The argument Act must be a sequence of (multiplicative) functions of the un-
derlying number field or any order, that acts on the S-unit group.

On return, a sequence of endomorphisms of the domain of SU is obtained.

SUnitDiscLog(SU, x, S)

SUnitDiscLog(SU, L, S)

Base SeqEnum[RngOrdElt] Default : []
Given a description of the S-unit group as computed by SUnitGroup and a (multi-
plicative) map of the underlying number field, this function computes the induced
map on the abstract abelian group.

The argument S should be a sequence of ideals as in SUnitGroup. The argument
SU should either be the map returned by SUnitGroup(S) as second return value
- in which case Base is trivial (and not specified) or the second return value of
SUnitGroup(S:Raw) in which case Base should equal the third computed value.

950 GLOBAL ARITHMETIC FIELDS Part VII

This function solves the discrete logarithm problem for the S-unit group and the
algebraic number x. That is, an element in the abstract abelian group representing
the S-unit group is computed which corresponds to x. If a list of algebraic numbers
L is passed into this function, the discrete logarithm is computed for each of them.

Example H37E31

> M := MaximalOrder(Polynomial([25, 0, -30, 0, 1]));

> S := [x[1] : x in Factorisation(30*M)];

> U, mU := SUnitGroup(S);

> L := Automorphisms(NumberField(M));

> s2 := SUnitAction(mU, L[2], S);

> s2;

Mapping from: GrpAb: U to GrpAb: U

> L[2](mU(U.2)) eq mU(s2(U.2));

Now the same in Raw representation:

> R, mR, Base := SUnitGroup(S:Raw);

> S2 := SUnitAction(mR, L[2], S:Base := Base);

> [S2(R.i) : i in [1..Ngens(R)]];

[

R.1,

R.1 - R.2,

R.3,

R.1 + R.3 - R.4,

R.1 + R.5,

R.1 + R.3 + R.7,

R.1 - R.3 + R.6,

R.8

]

If we combine SUnitAction with SUnitDiscLog we can solve norm equations:

> N := map<M -> M | x:-> L[1](x) * L[2](x)>;

> NR := SUnitAction(mR, N, S:Base := Base);

Now NR is the norm function with respect to the field fixed by L[2].

> SUnitDiscLog(mR, FieldOfFractions(M)!5, S:Base := Base);

2*R.5

> $1 in Image(NR);

true

> $2 @@ NR;

R.2 + R.5

> PowerProduct(Base, mR($1));

-3/1*M.1 - 2/1*M.2 + M.4

> N($1);

[5, 0, 0, 0]

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 951

37.9.10 Quotient Rings
Quotients of orders defined over maximal orders and their integral ideals can be formed
resulting in an object with type RngOrdRes. Elements of such orders can be created and
elementary arithmetic and predicates may be applied to them.

37.9.10.1 Operations on Quotient Rings
The creation of quotient rings and the functions which may be applied to them are de-
scribed.

quo< O | I >

quo< O | M >

quo< O | S >

Creates the quotient ring Q = O/I of the order O. The right hand side of the
constructor may contain an ideal or anything that the ideal constructor can create
an ideal from.

UnitGroup(OQ)

MultiplicativeGroup(OQ)

Returns an abelian group and the map from the group into OQ. OQ must be a
quotient of an absolute maximal order.

Modulus(OQ)

Return the denominator of the quotient ring OQ, i.e. I where OQ = O/I.

Example H37E32

Creation of quotient rings in shown. The orders are the same as for the ideal examples, however
an integral ideal is now required.

> I := Denominator(I)*I;

> I;

Principal Ideal of O

Generator:

38/1*M.4*O.3

> Basis(I);

[

38/1*M.4*O.3,

19/1*M.4*O.1,

38/1*M.4*O.2

]

> Q := quo<Order(I) | I>;

> Q;

Quotient Ring of Principal Ideal of O

Generator:

[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 38, 0]]

> Modulus(Q);

952 GLOBAL ARITHMETIC FIELDS Part VII

Principal Ideal of O

Generator:

[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 38, 0]]

37.9.10.2 Elements of Quotients
Functions for elements of the quotient rings are predominantly arithmetic.

OQ ! a

Coerce the element a into the quotient OQ where a is anything that can be coerced
into the order OQ is a quotient of.

a mod I

A canonical representative of the element a (belonging to an order O) in the quotient
ring O/I.

a * b a + b a - b a / b - a a ^ n

a eq b a ne b

IsZero(a)

Returns true if and only if the quotient ring element a is the zero element of the
quotient ring OQ.

IsOne(a)

Returns true if and only if the quotient ring element a is the one element of the
quotient ring OQ.

IsMinusOne(a)

Returns true if and only if the quotient ring element a is the minus one element of
the quotient ring OQ.

IsUnit(a)

Returns true if and only if the quotient ring element a has an inverse in the quotient
ring OQ.

Eltseq(a)

ElementToSequence(a)

The coefficients of the quotient ring element a in the field of fractions of the coeffi-
cient ring of the order of the quotient ring containing a.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 953

37.9.10.3 Reconstruction
Given an element e in some order O, known modulo some ideal I, a common problem in
several algorithms is to recover e, ie. a unique minimal element f ∈ O such that e− f ∈ I
and f is as “small” as possible. An equally common variation would be to ask for some
field element f/d with d an integer, such that f − de ∈ I and f as well as d are small.

In the case of O being the ring of integers and I a power of a prime (ideal), this is
usually done by moving to the symmetric residue system in the first case and by rational
reconstruction in the second. Here, we use techniques based on the LLL algorithm as
described in [FF00].

Since the method is more complicated than in the case of the integer ring, one first has
to create a “reconstruction environment” of type RngOrdRecoEnv, which is subsequently
used to reconstruct any number of elements.

ReconstructionEnvironment(p, k)

ReconstructionEnvironment(p, k)

Given a (prime) ideal p and an exponent k, initialize the reconstruction process for
the ideal I = pk, that is, the object returned can be used to reconstruct elements
from “approximations” modulo pk.

Reconstruct(x, R)

Reconstruct(x, R)

UseDenominator BoolElt Default : false

Given an order element e, thought to be an approximation modulo pk where p and k
are stored in the reconstruction environment R, return the unique minimal f in the
same order such that e − g ∈ pk. Is UseDenominator is true, then a field element
is computed, otherwise a ring element will be found.

ChangePrecision(∼ R, k)

Change the ideal I = pl stored in R to pk.

Example H37E33

We illustrate the use of the reconstruction environment to find roots of some polynomial over a
number field. We will first compute the roots over some completion, up to some precision, then
“list” the elements back from the completion into the starting order and finally use reconstruction
to get the roots.

> f := Polynomial([1,1,1,1,1]);

> M := MaximalOrder(f);

> P := Decomposition(M, 11)[1][1]; P;

Prime Ideal of M

Two element generators:

[11, 0, 0, 0]

[2, 1, 0, 0]

> C, mC := Completion(M, P:Precision := 10);

954 GLOBAL ARITHMETIC FIELDS Part VII

> fC := Polynomial([c@ mC : c in Eltseq(f)]);

> rt := Roots(fC); rt;

> R := ReconstructionEnvironment(P, 10);

> [Reconstruct((x[1]) @@ mC, R) : x in rt];

[

M.4,

M.3,

-M.1 - M.2 - M.3 - M.4,

M.2

]

> [Evaluate(f, x) : x in $1];

[

0,

0,

0,

0

]

37.10 Places and Divisors
A place of a number field K is a class of absolute values (valuations) that induce the same
topology on the field. By a famous theorem of Ostrowski, places of number fields are either
finite, in which case they are in a one-to-one correspondence with the on-zero prime ideals
of the maximal order, or infinite. The infinite places are identified with the embedding of
K into R or with pairs of embeddings into C.

The group of divisors is formally the free group generated by the finite places and the
R-vectorspace generated by the infinite ones.

For more information see Section 34.8.

37.10.1 Creation of Structures

Places(K)

DivisorGroup(K)

The set of places of the number field K and the group of divisors of K respectively.

37.10.2 Operations on Structures

d1 eq d2 p1 eq p2

NumberField(P)

NumberField(D)

The number field for which P is the set of places or D is the group of divisors.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 955

37.10.3 Creation of Elements

Place(I)

The place corresponding to prime ideal I.

Decomposition(K, p)

Decomposition(K, I)

A sequence of tuples of places and multiplicities. When a finite prime (integer) p
is given, the places and multiplicities correspond to the decomposition of p in the
maximal order of K. When the infinite prime is given, a sequence of all infinite
places is returned.

Decomposition(K, p)

For a number field K and a place p of the coefficient field of K, compute all places
(and their multiplicity) that extend p. For finite places this is equivalent to the
decomposition of the underlying prime ideal. The sequence returned will contain
the places of K extending p and their ramification index.

For an infinite place p, this function will compute all extensions of p in K. In
this case, the integer returned in the second component of the tuples will be 1 if p
is complex or if p is real and extends to a real place and 2 otherwise.

Decomposition(m, p)

Decomposition(m, p)

For an extension K/k of number fields (where k can be Q as well), given by the
embedding map m : k → K, decompose the place p of k in the larger field. In case
k = Q, the place is given as either a prime number or zero to indicate the infinite
place. The sequence returned contains pairs where the first component is a place
above p via m and the second is the ramification index.

InfinitePlaces(K)

InfinitePlaces(O)

A sequence containing all the infinite places of the number field K or the order O
is returned.

Divisor(pl)

The divisor 1 ∗ pl for a place pl.

Divisor(I)

The divisor which is the linear combination of the places corresponding to the fac-
torization of the ideal I and the exponents of that factorization.

956 GLOBAL ARITHMETIC FIELDS Part VII

Divisor(x)

The principal divisor xO where O is the maximal order of the underlying number
field of which x is an element. In particular, this computes a finite divisor.

RealPlaces(K)

For a number field K all sequence containing all real (infinite) places is computed.
For an absolute field this are precisely the embeddings into R coming from the real
roots of the defining polynomial.

37.10.4 Arithmetic with Places and Divisors
Divisors and places can be added, negated, subtracted and multiplied and divided by
integers.

d1 + d2 - d d1 - d2 d * k d div k

37.10.5 Other Functions for Places and Divisors

Valuation(a, p)

The valuation of the element a of a number field or order at the place p.

Valuation(I, p)

The valuation of the ideal I at the finite place p.

Support(D)

The support of the divisor D as a sequence of places and a sequence of the corre-
sponding exponents.

Ideal(D)

The ideal corresponding to the finite part of the divisor D.

Evaluate(x, p)

Evaluate(x, p)

Evaluate(x, p)

The evaluation of the number field element x in the residue class field of the place p,
ie. for a finite place p this corresponds to the image under the residue class field map
for the underlying prime ideal. For infinite places, this returns the corresponding
conjugate, ie. a real or complex number.

RealEmbeddings(a)

RealEmbeddings(a)

The sequence of real embeddings of the algebraic number a is computed, ie. a is
evaluated at all real places of the number field.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 957

RealSigns(a)

RealSigns(a)

A sequence containing ±1 depending on whether the evaluation of the number field
element a at the corresponding real place is positive of negative.

IsReal(p)

For an infinite place p, returns true if the corresponding embedding is real, ie. if
Evaluate at p will give real results.

IsComplex(p)

For an infinite place p, return true if the corresponding embedding is complex, ie.
if Evaluate at p will generally yield complex results.

IsFinite(p)

For a place p of a number fiel, return if the place is finite, ie. if it corresponds to a
prime ideal.

IsInfinite(p)

For a place p of a number field return if the place is infinite, ie. if it corresponds to
an embedding of the number field into the real or complex numbers. If the place is
infinite, the index of the embedding it corresponds to is returned as well.

Extends(P, p)

For two places P of K and p of k where K is an extension of k, check whether
P extends p. For finite places, this is equivalent to checking if the prime ideal
corresponding to P dives, in the maximal order of K the prime ideal of p. For
infinite places true implies that for elements of k, evaluation at P and p will give
identical results.

InertiaDegree(P)

Degree(P)

For a place P of a number field, return the inertia degree of P . That is for a finite
place, return the degree of the residue class field over it’s prime field, for infinite
places it is always 1.

Degree(D)

For a divisor D of a number field, the degree is the weighted sum of the degrees of
the supporting places, the weights being the multiplicities.

NumberField(P)

For a place P or divisor D of a number field, return the underlying number field.

958 GLOBAL ARITHMETIC FIELDS Part VII

ResidueClassField(P)

For a place P of a number field, compute the residue class field of P . For a finite
place this will be a finite field, namely the residue class field of the underlying prime
ideal. For an infinite place, the residue class field will be the field of real or complex
numbers.

UniformizingElement(P)

For a finite place P of a number field, return an element of valuation 1. This will
be the uniformizing element of the underlying prime ideal as well.

LocalDegree(P)

The degree of the completion at the place P , ie. the product of the inertia degree
times the ramification index.

RamificationIndex(P)

The ramification index of the place P . For infinite real places this is 1 and 2 for
complex places.

DecompositionGroup(P)

For a place P of a normal number field, return the decomposition group as a sub-
group of the (abstract) automorphism group.

37.11 Bibliography

[Bai96] Georg Baier. Zum Round 4 Algorithmus. Diplomarbeit, Technische Universität
Berlin, 1996.
URL:http://www.math.tu-berlin.de/∼kant/publications/diplom/baier.ps.gz.

[Ber05] Daniel J. Bernstein. Factoring into coprimes in essentially linear time. J. of
Algorithms, 54(1):1–30, 2005.

[BH96] Yuri Bilu and Guillaume Hanrot. Solving Thue Equations of High Degree. J.
Number Th., 60:373–392, 1996.

[Bia] J.-F. Biasse. Number field sieve to compute Class groups.
[Bj94] Johannes A. Buchmann and Hendrik W. Lenstra jr. Approximating rings of

integers in number fields. J. Théor. Nombres Bordx., 6(2):221–260, 1994.
[Bos00] Wieb Bosma, editor. ANTS IV, volume 1838 of LNCS. Springer-Verlag, 2000.
[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, volume

138 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–New York, 1993.
[Coh00] Henri Cohen. Advanced Topics in Computational Number Theory. Springer,

Berlin–Heidelberg–New York, 2000.
[FF00] Claus Fieker and Carsten Friedrichs. On reconstruction of algebraic numbers.

In Bosma [Bos00], pages 285–296.

Ch. 37 ORDERS AND ALGEBRAIC FIELDS 959

[Fie97] Claus Fieker. Über relative Normgleichungen in algebraischen Zahlkörpern.
Dissertation, Technische Universität Berlin, 1997.
URL:http://www.math.tu-berlin.de/∼kant/publications/diss/diss CF.ps.gz.

[Fin84] Ulrich Fincke. Ein Ellipsoidverfahren zur Lösung von Normgleichungen in
algebraischen Zahlkörpern. Dissertation, Heinrich-Heine-Universität Düsseldorf, 1984.

[FJP97] C. Fieker, A. Jurk, and M. Pohst. On solving relative norm equations in
algebraic number fields. Math. Comput., 66(217):399–410, 1997.

[Fri97] Carsten Friedrichs. Berechnung relativer Ganzheitsbasen mit dem Round-2-
Algorithmus. Diplomarbeit, Technische Universität Berlin, 1997.
URL:http://www.math.tu-berlin.de/∼kant/publications/diplom/friedrichs.ps.gz.

[Fri00] Carsten Friedrichs. Berechnung von Maximalordnungen über Dedekindringen.
Dissertation, Technische Universität Berlin, 2000.
URL:http://www.math.tu-berlin.de/∼kant/publications/diss/diss fried.pdf.gz.

[Gar80] Dennis A. Garbanati. An Algorithm for finding an algebraic number whose
norm is a given rational number. J. reine angew. Math., 316:1–13, 1980.

[GPP93] Istvan Gaál, Attila Pethő, and Michael E. Pohst. On the resolution of index
form equations in quartic number fields. J. Symbolic Comp., 16:563–584, 1993.

[GPP96] Istvan Gaál, Attila Pethő, and Michael E. Pohst. Simultaneous representation
of integers by a pair of ternary quadratic forms – With an application to index form
equations in quartic number fields. J. Number Th., 57:90–104, 1996.

[GS89] Istvan Gaál and Nicole Schulte. Computing all power integral bases of cubic
fields. Math. Comp., 53:689–696, 1989.

[Heß96] Florian Heß. Zur Klassengruppenberechnung in algebraischen Zahlkörpern.
Diplomarbeit, Technische Universität Berlin, 1996.
URL:http://www.math.tu-berlin.de/∼kant/publications/diplom/hess.ps.gz.

[Jur93] Andreas Jurk. Über die Berechnung von Lösungen relativer Normgleichungen in
algebraischen Zahlkörpern. Dissertation, Heinrich-Heine-Universität Düsseldorf, 1993.

[KAN97] KANT Group. KANT V4. J. Symbolic Comp., 24(3–4):267–383, 1997.

[KAN00] KANT Group. The Number Theory Package KANT/KASH.
URL:http://www.math.tu-berlin.de/∼kant, 2000.

[PK05] Sebastian Pauli and Jüren Klüners. Computing residue class rings and Picard
groups of orders. J. of Algebra, 292:47–64, 2005.

[Poh93] M. Pohst. Computational Algebraic Number Theory. DMV Seminar Band 21.
Birkhäuser Verlag, Basel - Boston - Berlin, 1993.

[PZ89] Michael E. Pohst and Hans Zassenhaus. Algorithmic Algebraic Number Theory.
Encyclopaedia of mathematics and its applications. Cambridge University Press, Cam-
bridge, 1989.

[Sim02] Denis Simon. Solving norm equations in relative number fields using S-units.
Math. Comput., 71(239):1287–1305, 2002.

960 GLOBAL ARITHMETIC FIELDS Part VII

[Sut12] Nicole Sutherland. Efficient Computation of Maximal Orders of Radical (in-
cluding Kummer) Extensions. Journal of Symbolic Computation, 47(5):552–567, 2012.

[Wil97] Klaus Wildanger. Über das Lösen von Einheiten- und Indexformgleichungen
in algebraischen Zahlkörpern mit einer Anwendung auf die Bestimmung aller ganzen
Punkte einer Mordellschen Kurve. Dissertation, Technische Universität Berlin, 1997.
URL:http://www.math.tu-berlin.de/∼kant/publications/diss/KW diss.ps.gz.

[Wil00] Klaus Wildanger. Über das Lösen von Einheiten- und Indexformgleichungen
in algebraischen Zahlkörpern. (On the solution of units and index form equations in
algebraic number fields). J. Number Th., 2(82):188–224, 2000.

38 GALOIS THEORY OF NUMBER FIELDS
38.1 Automorphism Groups 964

Automorphisms(F) 964
AutomorphismGroup(F) 964
AutomorphismGroup(K, F) 965
DecompositionGroup(p) 965
RamificationGroup(p, i) 965
RamificationGroup(p) 965
InertiaGroup(p) 965
FixedField(K, U) 966
FixedField(K, S) 966
FixedGroup(K, L) 966
FixedGroup(K, L) 966
FixedGroup(K, a) 966
DecompositionField(p) 966
RamificationField(p, i) 966
RamificationField(p) 966
InertiaField(p) 966
FrobeniusElement(K, p) 970

38.2 Galois Groups 971

GaloisGroup(f) 971
GaloisGroup(K) 972
GaloisProof(f, S) 972
GaloisProof(K, S) 972
GaloisRoot(f, i, S) 973
GaloisRoot(i, S) 973
Stauduhar(G, H, S, B) 973
IsInt(x, B, S) 974

38.2.1 Straight-line Polynomials 975

SLPolynomialRing(R, n) 976
Name(R, i) 976
. 976
BaseRing(R) 976
CoefficientRing(R) 976
Rank(R) 976
SetEvaluationComparison(R, F, n) 976
GetEvaluationComparison(R) 976
* + - - 976
Derivative(x, i) 976

38.2.2 Invariants 977

GaloisGroupInvariant(G, H) 977
RelativeInvariant(G, H) 977
CombineInvariants(G, H1, H2, H3) 978
IsInvariant(F, p) 978
Bound(I, B) 979
Bound(I, B) 979

38.2.3 Subfields and Subfield Towers . . . 979

GaloisSubgroup(K, U) 979

GaloisSubgroup(S, U) 979
GaloisSubgroup(f, U) 979
GaloisQuotient(K, Q) 979
GaloisQuotient(f, Q) 979
GaloisQuotient(S, Q) 979
GaloisSubfieldTower(S, L) 980
GaloisSplittingField(f) 981

38.2.4 Solvability by Radicals 986

SolveByRadicals(f) 986
CyclicToRadical(K, a, z) 987

38.2.5 Linear Relations 987

LinearRelations(f) 988
LinearRelations(f, I) 988
VerifyRelation(f, F) 988

38.2.6 Other 990

ConjugatesToPowerSums(I) 990
PowerSumToElementarySymmetric(I) 990

38.3 Subfields 990

Subfields(K, n) 991
Subfields(K) 991

38.3.1 The Subfield Lattice 991

SubfieldLattice(K) 991
991
Representative Rep 991
Bottom(L) 991
Top(L) 992
Random(L) 992
! 992
L[n] 992
NumberField(e) 992
EmbeddingMap(e) 992
Degree(e) 992
eq 992
subset 992
* 992
meet 992
&meet 992
MaximalSubfields(e) 992
MinimalOverfields(e) 992

38.4 Galois Cohomology 994

Hilbert90(a, M) 994
SUnitCohomologyProcess(S, U) 994
IsGloballySplit(C, l) 994
IsSplitAsIdealAt(I, l) 995

38.5 Bibliography 995

Chapter 38

GALOIS THEORY OF NUMBER FIELDS

The Galois theory of number fields deals with the group of automorphisms of a number
field, the group of automorphisms of the normal closure of a number field and with the
subfields of a given number field. While all three problems are, at least in theory, dealt with
easily using the main theorems of Galois theory, they correspond to completely different
and independent algorithmic problems.

The first task, that of computing automorphisms of normal extensions of Q (and of
abelian extensions of number fields) can be thought of a special case of factorisation of
polynomials over number fields: the automorphisms of a number field are in one-to-one
correspondence with the roots of the defining equation in the field. However, the com-
putation follows a different approach and is based on some combinatorial properties. It
should be noted, though, that the algorithms only apply to normal fields; i.e., they cannot
be used to find non-trivial automorphisms of non-normal fields!

The second task, namely that of computing the Galois group of the normal closure of a
number field, is of course closely related to the problem of computing the Galois group of a
polynomial. The method implemented in Magma allows the computation of Galois groups
of polynomials (and number fields) of arbitrarily high degrees and is independent of the
classification of transitive permutation groups. The result of the computation of a Galois
group will be a permutation group acting on the roots of the (defining) polynomial, where
the roots (or approximations of them) are explicitly computed in some suitable p-adic field;
thus the splitting field is not (directly) part of the computation. The explicit action on the
roots allows one, for example, to compute algebraic representations of arbitrary subfields
of the splitting field, even the splitting field itself, provided the degree is not too large.

The last main task dealt with in this chapter is the computation of subfields of a num-
ber field. While of course this can be done using the main theorem of Galois theory (the
correspondence between subgroups and subfields), the computation is completely indepen-
dent; in fact, the computation of subfields is usually the first step in the computation of
the Galois group. The algorithm used here is mainly combinatorical.

Finally, this chapter also deals with applications of the Galois theory:

- the computation of subfields and subfield towers of the splitting field

- solvability by radicals: if the Galois group of a polynomial is solvable, the roots of the
polynomial can be represented by (iterated) radicals.

- basic Galois-cohomology; i.e., the action of the automorphisms on the ideal class group,
the multiplicative group of the field and derived objects.

964 GLOBAL ARITHMETIC FIELDS Part VII

38.1 Automorphism Groups

Automorphisms of an algebraic field and the group they form can be calculated. Further-
more, field invariants that relate to the automorphism group can be determined.

Automorphisms(F)

Abelian BoolElt Default : false

Verbose AutomorphismGroup Maximum : 3
Given an algebraic field F , return the automorphisms of F as a sequence of maps. If
the extension is known to be abelian, the parameter Abelian should be set to true
in which case a much more efficient algorithm [Klü97, AK99] will be employed. If
F is not a normal extension, the automorphisms are obtained by a variation of the
polynomial factorisation algorithm.

AutomorphismGroup(F)

Abelian BoolElt Default : false

Verbose AutomorphismGroup Maximum : 3
Given an algebraic field F , that is either a simple normal extension of Q or simple
abelian extension of Q, return the automorphism group G of K as a permutation
group of degree n, where n is the degree of the extension. If the extension is known
to be abelian, the parameter Abelian should be set to true in which case a much
more efficient algorithm [Klü97, AK99] will be employed. If F is not a normal
extension of Q an error will occur. In addition to returning G, the function also
returns the power structure Aut of all automorphisms of F , and the transfer map φ
from G into Aut.

Example H38E1

We consider the extension obtained by adjoining a root of the irreducible polynomial x4− 4x2 +1
to Q.

> Q := RationalField();

> R<x> := PolynomialRing(Q);

> K<w> := NumberField(x^4 - 4*x^2 + 1);

> A := Automorphisms(K);

> A;

[

Mapping from: FldNum: K to FldNum: K,

Mapping from: FldNum: K to FldNum: K,

Mapping from: FldNum: K to FldNum: K,

Mapping from: FldNum: K to FldNum: K

]

> for phi in A do phi(w); end for;

w

w^3 - 4*w

-w^3 + 4*w

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 965

-w

Taking the same field K we use instead the function AutomorphismGroup:

> G, Aut, tau := AutomorphismGroup(K);

> for x in G do tau(x)(w); end for;

w

w^3 - 4*w

-w^3 + 4*w

-w

AutomorphismGroup(K, F)

Computes the group of K automorphisms of F as a permutation group together
with a list of all automorphisms and a map between the permutation group and
explicit automorphisms of the field.

This function computes the automorphism group of F over Q first.

DecompositionGroup(p)

For an ideal p of the maximal order of some absolute normal field F with group of
automorphisms G, compute the decomposition group, i.e. the subgroup U of the
automorphism group such that:

U := {s ∈ G|s(p) = p}

If F is not a normal extension of Q an error will occur.

RamificationGroup(p, i)

For an ideal p of the maximal order M of some absolute normal field F with group
of automorphisms G, compute the i-th ramification group, i.e. the subgroup U of
the automorphism group such that:

U := {s ∈ G|s(x)− x ∈ pi+1for all x in M}

If F is not a normal extension of Q an error will occur.

RamificationGroup(p)

This is just an abbreviation for RamificationGroup(p, 1).

InertiaGroup(p)

This is just an abbreviation for RamificationGroup(p, 0).

966 GLOBAL ARITHMETIC FIELDS Part VII

FixedField(K, U)

Given a normal field K over Q and a subgroup U of the AutomorphismGroup(K),
compute the subfield L that is fixed by U .

This function is inverse to FixedGroup.
If K is not a normal extension of Q an error will occur.

FixedField(K, S)

For an algebraic field K and a list S of automorphism of K, compute the maximal
subfield of K fixed by S.

FixedGroup(K, L)

Given a normal field K over Q and a subfield L, compute the subgroup U of the
AutomorphismGroup(K) that fixes L.

This function is inverse to FixedField.
If K is not a normal extension of Q an error will occur.

FixedGroup(K, L)

Given a normal field K over Q and a sequence of number field elements L, compute
the subgroup U of the AutomorphismGroup(K) that fixes L.

If K is not a normal extension of Q an error will occur.

FixedGroup(K, a)

Given a normal field K over Q and a number field element a, compute the subgroup
U of the AutomorphismGroup(K) that fixes a.

This function is inverse to FixedField.
If K is not a normal extension of Q an error will occur.

DecompositionField(p)

This is an abbreviation for FixedField(K, DecompositionGroup(p)) where K is
the number field of the order of p.

RamificationField(p, i)

This is an abbreviation for FixedField(K, RamificationGroup(p, i)) where K
is the number field of the order of p.

RamificationField(p)

This is an abbreviation for FixedField(K, RamificationGroup(p)) where K is
the number field of the order of p.

InertiaField(p)

This is an abbreviation for FixedField(K, InertiaField(p)) whereK is the num-
ber field of the order of p.

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 967

Example H38E2

We will demonstrate the various groups and fields. In order to do so, we first construct a non-trivial
normal field.

> o := MaximalOrder(ext<Rationals()|>.1^4-3);

> os := MaximalOrder(SplittingField(NumberField(o)));

> P := Decomposition(os, 2)[1][1];

> G, M := RayClassGroup(P^3);

> G;

Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*G.1 = 0

Since G is cyclic and the module P invariant under the automorphisms of os, the class field
corresponding to G will be normal over Q. It Galois group over Q will be an extension of D4 by
C2.

> A := AbelianExtension(M);

> O := MaximalOrder(EquationOrder(A));

> Oa := AbsoluteOrder(O);

> Ka := NumberField(Oa);

> Gal, _, Map := AutomorphismGroup(Ka);

> Gal;

Permutation group Gal acting on a set of cardinality 16

Order = 16 = 2^4

(1, 2, 7, 5)(3, 8, 6, 10)(4, 12, 14, 9)(11, 16, 13, 15)

(1, 3, 7, 6)(2, 8, 5, 10)(4, 13, 14, 11)(9, 16, 12, 15)

(1, 4)(2, 9)(3, 11)(5, 12)(6, 13)(7, 14)(8, 15)(10, 16)

Now, let us pick some ideals. The only interesting primes are the primes dividing the discriminant,
which in this case will be the primes over 2 and 3.

> P2 := Decomposition(Oa, 2)[1][1];

> P3 := Decomposition(Oa, 3)[1][1];

First, the valuation of the different of Oa at P2 should be
∑∞

i=0
(#G(P2, i)− 1) where G(P2, i)

is the i-th ramification group.

> s := 0; i := 0;

> repeat

> G := RamificationGroup(P2, i);

> s +:= #G-1;

> print i, "-th ramification group is of order ", #G;

> i +:= 1;

> until #G eq 1;

0 -th ramification group is of order 8

1 -th ramification group is of order 8

2 -th ramification group is of order 2

3 -th ramification group is of order 2

968 GLOBAL ARITHMETIC FIELDS Part VII

4 -th ramification group is of order 2

5 -th ramification group is of order 2

6 -th ramification group is of order 1

> s;

18

> Valuation(Different(Oa), P2);

18

According to the theory, P2 should be totally ramified over the inertia field and unramified over
Q:

> K2 := InertiaField(P2);

> M2 := MaximalOrder(K2);

> K2r := RelativeField(K2, Ka);

> M2r := MaximalOrder(K2r);

> p2 := M2 meet (MaximalOrder(K2r)!!P2);

> IsInert(p2);

true

> IsTotallyRamified(M2r!!P2);

true

Now we try the same for P3. Since 3 is split in Ka, we may consider an additional field: the
decomposition field. It should be the maximal subfield if K such that 3 is neither inert (f = 1)
nor ramified (e = 1), therefore 3 has to split totally.

> D3 := DecompositionField(P3);

> D3M := MaximalOrder(D3);

> IsTotallySplit(3, D3M);

true

The inertia field is the maximal subfield such that 3 is unramified. It has to be an extension of
D3.

> I3 := InertiaField(P3);

> I3;

Number Field with defining polynomial $.1^4 +

80346384509631057182412*$.1^3 +

2256835583037881432653115137736209396615693022*$.\

1^2 + 2795818092855476469056989739955845736579291605177\

3809455107173769804*$.1 +

2207787685682553980385342263526644079975418801375161428\

41147104301325760481728833650060994 over the Rational

Field

> Discriminant($1);

10700005925626216180895747020647047166414333000723923591882\

57829873417638072117114945163507537844711544617147344227643\

21408503489566949866295669400825222748660907808235401444104\

29329493645714658394673579309893726532999745496689571082958\

8286937125090034449967033769822464

This (polynomial) discriminant is huge, in fact it is so large that we should avoid the factorisation.
We already know the discriminant of Ka. The discriminant of I3 has to be a divisor - so we can

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 969

use the Discriminant parameter to MaximalOrder: (We are going to need the MaximalOrder for
the following embedding.)

> I3M := MaximalOrder(EquationOrder(I3):

> Discriminant := Discriminant(Oa));

> I3M := MaximalOrder(I3);

D3 should be a subfield of I3, so lets verify it:

> IsSubfield(D3, I3);

true Mapping from: FldNum: D3 to FldNum: I3

As a side-effect, Magma is now aware of the embedding and will use it. Without the IsSubfield

call, the RelativeField function will fail.

> I3r := RelativeField(D3, I3);

> I3rM := MaximalOrder(I3r);

> K3r := RelativeField(D3, Ka);

> K3rM := MaximalOrder(K3r);

> IsInert(K3rM!!P3 meet D3M, I3rM);

true

The last step: verify that P3 is totally ramified over I3:

> K3r := RelativeField(I3, Ka);

> K3rM := MaximalOrder(K3r);

> IsTotallyRamified(K3rM!!P3 meet I3M, K3rM);

true

Using the decomposition group, we can get the splitting behaviour of any prime in any subfield
of Ka.

> L := SubgroupLattice(Gal);

> [IsNormal(Gal, L[x]) : x in [1..#L]];

[true, true, true, true, false, false, false, false, true,

true, true, true, true, true, true, false, false, false,

false, true, true, true, true, true, true, true, true]

> U := L[5];

> k := FixedField(Ka, U);

> kM := MaximalOrder(EquationOrder(k):

> Discriminant := Discriminant(Oa));

> kM := MaximalOrder(k);

> Kr := RelativeField(k, Ka);

> KrM := MaximalOrder(Kr);

> P43 := Decomposition(Oa, 43)[1][1];

> V := DecompositionGroup(P43);

The splitting behaviour is determined by the double coset decomposition of Gal with respect to
U and V :

> f, I := CosetAction(Gal, U);

> orbs := Orbits(f(V));

> reps := [];

970 GLOBAL ARITHMETIC FIELDS Part VII

> for o in orbs do

> _, x := IsConjugate(I, 1, Rep(o));

> Append(~reps, x @@ f);

> end for;

> reps;

[

Id(G),

(1, 2, 7, 5)(3, 8, 6, 10)(4, 12, 14, 9)(11, 16, 13, 15),

(1, 7)(2, 5)(3, 6)(4, 14)(8, 10)(9, 12)(11, 13)(15, 16),

(1, 8)(2, 6)(3, 5)(4, 15)(7, 10)(9, 13)(11, 12)(14, 16),

]

> #reps;

4

So there will be at least 4 prime ideals over 43 in k:

> L := [];

> for i in reps do

> Append(~L, kM meet KrM !! Map(i)(P43));

> end for;

> [IsPrime(x) : x in L];

[true, true, true, true]

> LL := Decomposition(kM, 43);#LL;

4

> [Position(L, x[1]) : x in LL];

[4, 3, 1, 2]

FrobeniusElement(K, p)

Compute a Frobenius element at p in the Galois group of the Galois closure of
K. This is a permutation on the roots of a polynomial defining K, which can be
recovered as DefiningPolynomial(A) for any Artin representation A of K; the
Frobenius element is well-defined up to conjugacy and modulo inertia.

Example H38E3

We take a polynomial whose Galois group is D5 and compute Frobenius elements at p = 2 and
p = 5. They in two different conjugacy classes of 5-cycles in the Galois group.

> load galpols;

> f:=PolynomialWithGaloisGroup(5,2);

> assert IsIsomorphic(GaloisGroup(f),DihedralGroup(5));

> K:=NumberField(f);

> FrobeniusElement(K,2);

(1, 5, 4, 3, 2)

> FrobeniusElement(K,5);

(1, 3, 5, 2, 4)

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 971

38.2 Galois Groups

Finding Galois groups (of normal closures) of algebraic fields is a hard problem, in
general. All practical currently-used algorithms fall into two groups: The absolute resolvent
method [SM85] and the method of Stauduhar [Sta73].

The Magma implementation is based on an extension of the method of Stauduhar
[GK00, Gei03] and recent work by Klüners and Fieker [FK12].

For polynomials over Z,Q, number fields and global function fields and irreducible
polynomials over function fields over Q, Magma is able to compute the Galois group
without any a-priori restrictions on the degree. Note, however, that the running time
and memory constraints can make computations in degree > 50 impossible, although
computations in degree > 200 have been successful as well. In contrast to the absolute
resolvent method, it also provides the explicit action on the roots of the polynomial f
which generates the algebraic field. On demand, the older version which is restricted to a
maximum degree of 23, is still available.

Roughly speaking, the method of Stauduhar traverses the subgroup lattice of transitive
permutation groups of degree n from the symmetric group to the actual Galois group. This
is done by using so-called relative resolvents. Resolvents are polynomials whose splitting
fields are subfields of the splitting field of the given polynomial which are computed using
approximations of the roots of the polynomial f .

If the field (or the field defined by a polynomial) has subfields (i.e. the Galois group
is imprimitive) the current implementation changes the starting point of the algorithm in
the subgroup lattice, to get as close as possible to the actual Galois group. This is done
via computation of subfields of a stem field of f , that is the field extension of Q which we
get by adjoining a root of f to Q. Using this knowledge of the subfields, the Galois group
is found as a subgroup of the intersection of suitable wreath products which may be easily
computed. This intersection is a good starting point for the algorithm.

If the field (or the field defined by a polynomial) does not have subfields (i.e. the Galois
group is primitive) we use a combination of the method of Stauduhar and the absolute
resolvent method. The Frobenius automorphism of the underlying p-adic field or the
complex conjugation, when using complex approximations of the roots of the polynomial f ,
already determines a subgroup of the Galois group, which is used to speed up computations
in the primitive case.

GaloisGroup(f)

Prime RngElt Default :

ShortOK BoolElt Default : false

Ring GaloisData Default :

NextPrime UserProgram Default :

Verbose GaloisGroup Maximum : 5
Verbose Invariant Maximum : 3

Given a polynomial f over the integers, rationals, a number field or an order thereof,
compute the Galois group of a splitting field for f , ie. determine the subgroup

972 GLOBAL ARITHMETIC FIELDS Part VII

of the permutations of the roots of f in a splitting field that correspond to field
automorphisms. The method applied here is a variant of Stauduhar’s algorithm,
but with no dependency on the explicit classification of transitive groups and thus
no a-priori degree limitation. It must be stated though that this function does not
return proven results, if such results are necessary, one needs to call GaloisProof
afterwards.

The prime to use for splitting field computations can be given via the parameter
Prime. The method of choosing of primes for splitting field computations can be
given by the parameter NextPrime.

GaloisGroup(K)

Prime RngElt Default :

ShortOK BoolElt Default : false

Ring GaloisData Default :

NextPrime UserProgram Default :

Current BoolElt Default : false

Subfields BoolElt Default : true

Old BoolElt Default : false

Type MonStgElt Default : “p-Adic”
Prec RngIntElt Default : 20
Time Rec Default :

Verbose GaloisGroup Maximum : 5
Verbose Invariant Maximum : 3

Given a number field K, compute the Galois group of a normal closure of K. The
group is returned as an abstract permutation group acting on the roots of the defin-
ing polynomial of k in a suitable splitting field. The method applied here is a variant
of Stauduhar’s algorithm, but with no dependency on the explicit classification of
transitive groups and thus no a-priori degree limitation. It must be stated though
that this function does not return proven results, if such results are necessary, one
needs to call GaloisProof afterwards.

The prime to use for splitting field computations can be given via the parameter
Prime. The method of choosing of primes for splitting field computations can be
given by the parameter NextPrime.

GaloisProof(f, S)

GaloisProof(K, S)

Given the result of a (conditional) computation by GaloisGroup for either an irre-
ducible polynomial over the integers or an absolute number field, try to find proofs
for the conditional steps of the algorithm. The method employed here is to show
that a suitable absolute resolvent polynomial has a factor of a specific degree that
can be used to differentiate between the possible groups.

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 973

GaloisRoot(f, i, S)

Prec RngIntElt Default : 20
Bound RngIntElt Default : 0

Given a polynomial f and the result S of a computation of its Galois group, return
the ith root in the ordering obtained form the Galois process to the given precision.
The precision can be specified either directly by setting Prec to the desired p-adic
precision or by giving a bound B in Bound. In the latter case the p-adic precision k
will be calculated such that pk > B.

GaloisRoot(i, S)

Given the result S of a computation of a Galois group and an integer i, compute the
ith conjugate of the primitive element used during the computation. The precision
can be specified either directly by setting Prec to the desired p-adic precision or
by giving a bound B in Bound. In the latter case the p-adic precision k will be
calculated such that pk > B.

Stauduhar(G, H, S, B)

Verbose GaloisGroup Maximum : 5
Verbose Invariant Maximum : 3
AlwaysTransform BoolElt Default : false

Coset SeqEnum Default :

PreCompInvar UserProgram Default :

This function gives access to a single step of the Stauduhar method: Let G be a
permutation group known to contain the Galois group of the object under inves-
tigation with the numbering of the “roots” determined by S. Furthermore, let B
be a bound on the absolute value of the complex roots of the object and H be a
(maximal) subgroup of G. Under these circumstances, the intrinsic will decide if
there is some g ∈ G such that the Galois group is contained in Hg. The primary
return value can be:
1 if the Galois group is proven to be a subgroup of Hg up to precision problems,

indicated by the 3rd value
-1 if there is a proof that the Galois group is contained in a proper subgroup of G

and maybe in Hg

-2 if the Galois group may be in Hg, but we could not prove that it is in a proper
subgroup of G

0 the Galois group is not contained in a conjugate of H.
In case of a non-zero result, the second return value will be the element g conju-

gating H, the third value will be true or false, depending on whether the p-adic
bound used were proven or heuristic and the fourth value is the invariant used to
separate the groups.

The optional parameter Coset can be used to pass a transversal of G/H in, while
PreCompInvar should contain a suitable invariant separating G and H if set.

974 GLOBAL ARITHMETIC FIELDS Part VII

IsInt(x, B, S)

Given an element x in the splitting field determined by S and a bound B on the
complex absolute value, determine if there exists an element y ∈ Z or an extension
of Z defined by the polynomial the Galois group is being computed for, such that
y = x up the precision of x and such that |y| < B. In case such a y exists, it is
returned as a second return value.

Example H38E4

A Galois group computation is shown below.

> Z:= Integers();

> P<x>:= PolynomialRing(Z);

> G, R, S := GaloisGroup(x^6-108);

> G;

Permutation group G acting on a set of cardinality 6

Order = 6 = 2 * 3

(1, 5, 3)(2, 6, 4)

(1, 2)(3, 6)(4, 5)

> R;

[-58648*$.1 + 53139 + O(11^5), 58648*$.1 - 19478 +

O(11^5), -43755*$.1 - 72617 + O(11^5), 58648*$.1 -

53139 + O(11^5), -58648*$.1 + 19478 + O(11^5),

43755*$.1 + 72617 + O(11^5)]

> S;

GaloisData over Z_11

> time G, _, S := GaloisGroup(x^32-x^16+2);

Time: 65.760

> #G;

2048

Some examples for the relative case

> load galpols;

> f := PolynomialWithGaloisGroup(9, 14);

> G := GaloisGroup(f);

> TransitiveGroupIdentification(G);

14 9

> M := MaximalOrder(f);

> kM := FieldOfFractions(M);

> f:= Factorisation(Polynomial(kM, f))[2][1];

> f;

$.1^8 + (-2/1*kM.1 + kM.2)*$.1^7 + (-60/1*kM.1 -

2/1*kM.2 + kM.3)*$.1^6 + (120/1*kM.1 - 60/1*kM.2 -

2/1*kM.3 + kM.4)*$.1^5 + (980/1*kM.1 + 120/1*kM.2 -

60/1*kM.3 - 2/1*kM.4 + kM.5)*$.1^4 + (-1808/1*kM.1

+ 980/1*kM.2 + 120/1*kM.3 - 60/1*kM.4 - 2/1*kM.5 +

kM.6)*$.1^3 + (-4012/1*kM.1 - 1808/1*kM.2 +

980/1*kM.3 + 120/1*kM.4 - 60/1*kM.5 - 2/1*kM.6 +

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 975

kM.7)*$.1^2 + (4936/1*kM.1 - 4013/1*kM.2 -

1809/1*kM.3 + 979/1*kM.4 + 118/1*kM.5 - 60/1*kM.6 -

4/1*kM.7 + 3/1*kM.8)*$.1 - 208769062021/1*kM.1 +

51146604497/1*kM.2 - 30878218588/1*kM.3 +

50063809507/1*kM.4 - 52067647419/1*kM.5 -

94281823910/1*kM.6 + 69906801827/1*kM.7 -

182364865509/1*kM.8 + 214706745867/1*kM.9

> g, r, p:= GaloisGroup(f);

> TransitiveGroupIdentification(g);

5 8

Since g is derived from a factor of the original f , the Galois group should be isomorphic to a
subgroup of G:

> Subgroups(G:OrderEqual := #g);

Conjugacy classes of subgroups

[1] Order 8 Length 9

Permutation group acting on a set of

cardinality 9

Order = 8 = 2^3

(2, 4, 5, 3)(6, 8, 7, 9)

(2, 7, 5, 6)(3, 9, 4, 8)

(2, 5)(3, 4)(6, 7)(8, 9)

> IsIsomorphic(g, $1[1]‘subgroup);

true Homomorphism of GrpPerm: g, Degree 8, Order 2^3

into GrpPerm: $, Degree 9, Order 2^3 induced by

(1, 2, 3, 8)(4, 5, 6, 7) |--> (2, 4, 5, 3)(6, 8, 7, 9)

(1, 7, 3, 5)(2, 6, 8, 4) |--> (2, 7, 5, 6)(3, 9, 4, 8)

38.2.1 Straight-line Polynomials
One of the most important tools in the computational Galois theory are invariants, that
is multivariate polynomials that are invariant under some permutation group. While in-
variant theory in general is a rich and classical branch of mathematics, and is supported
by a powerful magma module, Chapter 110, the more specific needs in the Galois theory
are best met with a different set of functions. Invariants, in this chapter are multivariate
polynomials in straight-line representation, the polynomials are represented as programs
without branches. The category of this polynomials is of type RngSLPol and its elements
are of type RngSLPolElt. A consequence of this representation is that certain operations
are very fast, while others are impossible - or at least very difficult. For example, repre-
senting (a− b)1000(a+ b)1000 − (a2 − b2)1000 is trivial, this is a short program with just a
few steps:
1 subtract b from a

2 raise to the 1000th power

976 GLOBAL ARITHMETIC FIELDS Part VII

3 add a and b
4 raise to the 1000th power
5 multiply the results of steps 2 and 4
6 subtract b2 from a2 and raise to the 1000th power
7 subtract the result of step 7 from 5

Now, while it is trivial to evaluate this polynomial at, for example, any pair of elements
in any finite ring, it is very difficult to see that, in fact, the polynomial is identical to zero
– when expanded as a polynomial.

SLPolynomialRing(R, n)

Global BoolElt Default : false

Creates the ring of multivariate straight-line polynomials over the ring R with n
indeterminates.

Name(R, i)

R . i

Return the ith indeterminate of the SL-polynomial ring R.

BaseRing(R)

CoefficientRing(R)

Return the coefficient ring of R.

Rank(R)

Return the rank of the SL-polynomial ring, ie the number of independent indeter-
minates over the coefficient ring.

SetEvaluationComparison(R, F, n)

For a SL-polynomial ring R, prepare “probabilistic” comparison of straight-line
polynomials, using evaluation at n tuples drawn at random from the finite field F .

In order to allow a probabilistic test for “equality” of SL-polynomials in places
where a strict, deterministic test is not necessary, this allows to compare SL-
polynomials through their values at random evaluation points.

GetEvaluationComparison(R)

Return the finite field and the number of random samples used to compare polyno-
mials. If SetEvaluationComparison has not been called, the 1st return value will
be false while the second is undefined.

x * y x + y x - y - x

Derivative(x, i)

The ith partial derivative of the SL-polynomial x.

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 977

38.2.2 Invariants
At the core of the computation of Galois groups is the single Stauduhar step where, for
a group G and a (maximal) subgroup U the programme decides if the Galois group is a
subgroup of U - provided it was contained in G. This is achieved by evaluating a G-relative
U -invariant polynomial f ∈ Z[x1, . . . , xn] (or f ∈ Fq[t][x1, . . . , xn] when the characteristic
of the coefficient ring of the input polynomial is prime). In this subsection several functions
are collected that allow a user to access Magma’s internally used invariants. In what
follows, an invariant is always a multivariate polynomial f in n indeterminates where n is
the degree of G i.e. G < Sn. Invariants are represented as straight-line polynomials that
allow the very compact representation and fast evaluation of polynomials.

GaloisGroupInvariant(G, H)

DoCost BoolElt Default : false

Worklevel RngIntElt Default : −1
Verbose GaloisGroup Maximum : 3

For subgroups H < G of the symmetric group on n elements, where H is maximal in
G and G is transitive, compute a G-relative H-invariant. This is done by carefully
comparing certain group theoretical properties of the group pair in question to find
invariant polynomials of special types that are easy to evaluate. If this fails, generic
invariants will be used.

If DoCost is true, two values are returned: the first return value in this case is an
estimate for the number of multiplications necessary to evaluate the invariant, while
the second value is a function that can be evaluated without arguments to compute
the invariant. This is done to allow to compare invariants by their computational
complexity before actually committing and computing them explicitly as this can
be very time consuming.

If Worklevel is set to an integer different from −1 only certain types of invariants
are tested for suitability for this particular pair of groups. In this case a special
return value of false indicates that Magma was unable to find an invariant at this
level. Roughly speaking, the higher the Worklevel, the more time-consuming the
invariant will be, both in terms of the time spend in finding as well as the time
necessary to evaluate the invariant.

RelativeInvariant(G, H)

IsMaximal BoolElt Default : false

Risk BoolElt Default : false

Verbose Invariant Maximum : 3
For a pair of subgroups H < G of the symmetric group where H is not necessarily
maximal in G, find a G-relative H-invariant polynomial. The computation splits
into three phases:
- First, a subgroup chain between H and G is computed such that each step in

the chain is a maximal subgroup.

978 GLOBAL ARITHMETIC FIELDS Part VII

- Second, for each pair Ui < Ui+1 of maximal subgroups one fixed invariant is
computed

- Third, in the last step, the invariants are combined to produce a G-relative H-
invariant.
If IsMaximal is set to true, Magma will not compute a subgroup chain but

instead assume that H is a maximal subgroup of G. If Risk is true, then Magma
will use GaloisGroupInvariant to compute invariants on each level. By default,
Magma will use generic invariants (ie. orbit sums of monomials) on each level.
The problem with using special invariants as produced by GaloisGroupInvariant
is that in the third step we can no longer guarantee that the invariant returned will
be a true G-relative H-invariant as the G-stabilizer might be too large. On the other
hand, the special invariants are much faster to evaluate and will give the desired
result almost always.

CombineInvariants(G, H1, H2, H3)

Given a subgroup G < Sn and three maximal subgroups H1, H2 and H3 of G
two of which have already known invariants, try to derive an invariant for H3 from
the known ones. The input for H1 and H2 consists of a tuple with two (or three)
entries, the first specifying the actual subgroupm the second the G-relative Hi-
invariant and the optional third a Tschirnhaus transformation that should be done
before the invariant is evaluated.

They typical situation in which this function is used is the case of H1 and H2

being index 2 subgroups ofG. In this case elementary theory immediately guarantees
a third subgroup H3 of index 2. For this function to work, the core of H1∩H2 must
be contained in H3. This is only useful if the index of the core is not too large.

IsInvariant(F, p)

Sign BoolElt Default : false

For a multivariate polynomial F in straight-line representation and a permutation
p this functions test if F peqF with a high probability. In particular, this function
will evaluate F at random elements in some large finite field, then permute the
evaluation points by p and evaluate again. If the values agree, the polynomial is
most likely invariant under p, if they disagree than the polynomial is definitely not
invariant. The probability of failure is related to the probability of guessing a zero
of a multivariate polynomial at random.

In order to get a proof for the invariants, one can convert F into a standard
multivariate polynomial and check directly that this is invariant. However, for
the invariants typically constructed in the Galois package, the conversion into a
multivariate polynomial will not be possible due to the large degree of the polynomial
and the resulting large number of terms.

If Sign is set to true, the function checks instead for F p = −F .

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 979

Bound(I, B)

Given a multivariate polynomial I in straight-line representation and an integer B,
compute an integer M such that

|I(x1, . . . , xn)| ≤M

for all complex numbers |xi| ≤ B, it it returns a bound for the size of an evaluation
of I.

Bound(I, B)

Given a multivariate polynomial I in straight-line representation and B, a power
series over the integers, compute a power series M such that for all choices of power
series xi such that the coefficients of xi are bounded in absolute value by those of
B we have that the power series

I(x1, . . . , xn)

has coefficients bounded by those of M .

38.2.3 Subfields and Subfield Towers
The result of a Galois group computation contains, in addition to the Galois group as an
abstract group, the explicit action of the group on the roots of the underlying polynomial
in some splitting field. This explicit action, together with the availability of invariants for
group pairs, can be used to compute arbitrary subfields of the splitting field.

GaloisSubgroup(K, U)

GaloisSubgroup(S, U)

GaloisSubgroup(f, U)

Verbose Invariant Maximum : 2
Given either a polynomial f or number field K or a successful computation of a
Galois group in S and a subgroup U < G where G is the Galois group, find a
defining polynomial for the subfield of the splitting field that is fixed by U .

GaloisQuotient(K, Q)

GaloisQuotient(f, Q)

GaloisQuotient(S, Q)

Verbose Invariant Maximum : 2
Given either a polynomial f or number field K or a successful computation of a
Galois group in S and a permutation group Q, find all subfields of the splitting field
that have a Galois group isomorphic to Q. This is done by finding all subgroups U
of the Galois group G such that the permutation action of G on the cosets G/U is
isomorphic to Q.

980 GLOBAL ARITHMETIC FIELDS Part VII

GaloisSubfieldTower(S, L)

Risk BoolElt Default : false

MinBound RngIntElt Default : 1
MaxBound RngIntElt Default : ∞
Inv [RngSLPolElt] Default : false

Verbose GaloisTower Maximum : 2
For data computed as the third return value of GaloisGroup and a subgroup chain
U1 > U2 > . . . > Us, compute the corresponding tower of fixed fields Ki that is
fixed by the operation of Ui on the roots of f as ordered in S.

Currently, this function only works for polynomials defined over Q or absolute
extensions of Q.

The first return value is the largest number field in the tower, that is the field
fixed by the smallest group in the chain as an extension of the fixed field of the
second group The second return value is a sequence of tuples each containing
the data used to generate one step:
- The first item is the invariant used in this step. This corresponds directly to the

choice of the primitive element.
- The second item is the Tschirnhaus transformation on this level
- The third item is a transversal of Ui over Ui+1, the fixed ordering of which gives

the ordering of the “relative conjugates”
The third and fourth return values can be used to algebraically identify arbitrary

elements of the splitting field that are defined by multivariate polynomials. The
third is a function that takes a vector of p-adic conjugates and returns an algebraic
representation of the element, the fourth takes an invariant and computes precision
bounds for the precision necessary so that the algebraic recognition will work.

If Risk is set to true, then for non-maximal subgroup pairs Ui > Ui+1 the
“risky” version of RelativeInvariant is used.

The parameter MinBound can be used to specify a minimal p-adic precision that
should be used internally. This can be used to avoid the calculation of an increase
in precision which can be costly. On the other hand, to work in larger precision
than necessary also incurs a time penalty.

The parameter MaxBound can be used to limit the p-adic precision used internally.
Especially when the chain get longer, the internally used precision estimates become
more and more pessimistic thus forcing higher and higher precision. In certain cases
when it is possible to verify the correctness of the result independently, a smaller
precision can speed the computation up considerably.

If the parameter Inv is given it should contain a sequence of invariants, the i-th
entry need be an Ui relative Ui+1 invariant. The invariants used correspond almost
directly to the relative primitive elements computed at each step in the tower. This
is useful in situation where either certain primitive elements are necessary or where
certain invariants are known.

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 981

GaloisSplittingField(f)

Galois Tup<GrpPerm, [RngElt], GaloisData>

Roots BoolElt Default : true

AllAuto BoolElt Default : false

Stab BoolElt Default : true

Chain [GrpPerm] Default : false

Inv [RngSLPolElt] Default : false

Name MonStgElt Default : false

For a polynomial f in Z[t], Q[t] or over an absolute number field this function com-
putes the splitting field of f as a tower of fields. The various parameter can be used
to force certain subfield towers and/ or compute additional data. By default Stab
is set to true, which means that the splitting field will be the tower corresponding
to the chain of stabilizers of {1}, {1, 2}, . . ., {1, . . . , n}. Also by default Roots is set
to true, which means that the roots of f are expressed as elements of the splitting
field. If Roots is set to false, only the field is computed and returned.

The third return value will be the Galois group, the optional fourth value the
automorphisms.

If the parameter Galois is used, it should contain a list or triplet containing the
output of GaloisGroup(f);.

If Chain is set to a sequence of subgroups, this chain is used to compute a subfield
tower. In this case the first elements must be G, the full Galois group. If Chain is
used, Inv can be used to provide the invariants as well.

If AllAuto is set to true, the full automorphism group of the splitting field is
computed as a sequence of sequences giving the all the roots of the relative polyno-
mials.

If Name is given, it should be set to a string. In this case the primitive element
of the i-subfield in the tower will be called Name.i.

Example H38E5

We start with a small example, to illustrate some of the parameters and their influence:

> P<x> := PolynomialRing(IntegerRing());

> f := x^3-2;

> GaloisSplittingField(f);

Number Field with defining polynomial $.1^2 +

$.1*$.1 + $.1^2 over its ground field

[

$.1,

$.1,

-$.1 - $.1

]

Symmetric group acting on a set of cardinality 3

Order = 6 = 2 * 3

982 GLOBAL ARITHMETIC FIELDS Part VII

(1, 2, 3)

(1, 2)

> K, R, G := $1;

> K:Maximal;

K

|

|

$1

|

|

Q

K : $.1^2 + $.1*$.1 + $.1^2

$1 : x^3 - 2

> [x^3 : x in R];

[

2,

2,

2

]

The fact that by default all generators are called $.1 makes this hard to read, so let us assign
other names:

> GaloisSplittingField(f:Name := "K");

Number Field with defining polynomial K1^2 + K2*K1

+ K2^2 over its ground field

[

K2,

K1,

-K1 - K2

]

Symmetric group G acting on a set of cardinality 3

Order = 6 = 2 * 3

(1, 2, 3)

(1, 2)

> (K where K := $1):Maximal;

$1<K1>

|

|

$2<K2>

|

|

Q

$1 : K1^2 + K2*K1 + K2^2

$2 : x^3 - 2

So now we can easily see that the splitting field is a relative quadratic extension of the degree 3
stem field. Now we try a different subgroup chain:

> G, r, S := GaloisGroup(f);

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 983

> GaloisSplittingField(f:Galois := <G, r, S>,

> Chain := CompositionSeries(G), Name := "K", AllAuto);

Number Field with defining polynomial K1^3 - 2

over its ground field

[

K1,

1/6*K2*K1,

1/6*(-K2 - 6)*K1

]

Symmetric group G acting on a set of cardinality 3

Order = 6 = 2 * 3

(1, 2, 3)

(1, 2)

[

[

K2,

-K2 - 6

],

[

K1,

1/6*K2*K1,

1/6*(-K2 - 6)*K1

]

]

> (K where K := $1):Maximal;

$1<K1>

|

|

$2<K2>

|

|

Q

$1 : K1^3 - 2

$2 : x^2 + 6*x + 36

> f := x^10 - 20*x^8 + 149*x^6 - 519*x^4 + 851*x^2 - 529;

> G, r, S := GaloisGroup(f);G,r,S;

> TransitiveGroupIdentification(G);

8 10

> TransitiveGroupDescription(G);

[2^4]5

Thus the Galois group of f is isomorphic to 10T8 of type [2^4]5 and order 80.
We first compute the splitting field directly:

> time _ := SplittingField(f);

This takes a long time, mainly because of the type of the Galois group which will require a field
tower involving 5 steps and factorisation of a polynomial in such a tower. Now, we try the same

984 GLOBAL ARITHMETIC FIELDS Part VII

by using the Galois information:

> time K, R := GaloisSplittingField(f:Name := "K");

Time: 4.740

> K:Maximal;

K<K1>

|

|

$1<K2>

|

|

$2<K3>

|

|

$3<K4>

|

|

Q

K : K1^2 + 1/23*(-12*K4^8 + 217*K4^6 - 1374*K4^4

+ 3606*K4^2 - 3381)

$1 : K2^2 + 1/23*(18*K4^8 - 314*K4^6 + 1877*K4^4 -

4512*K4^2 + 3588)

$2 : K3^2 + 1/23*(-5*K4^8 + 77*K4^6 - 377*K4^4 +

663*K4^2 - 437)

$3 : x^10 - 20*x^8 + 149*x^6 - 519*x^4 + 851*x^2 -

529

> [Evaluate(f, x) eq 0 : x in R];

[true, true, true, true, true, true, true, true,

true, true]

From the type of the Galois group, [2^4]5 we expect G to have a normal subgroup A of type C4
2

such that the quotient G/A is a cyclic group of order 5. To find that subfield we can for example
use the Galois computations again:

> A := NormalSubgroups(G:OrderEqual := 16)[1]‘subgroup;

> GaloisSubgroup(S, A);

x^5 + 1682*x^4 + 715964*x^3 + 99797360*x^2 +

5206504944*x + 88019915488

(x5 + x10)

The second return value x5 +x10 also tells us that the primitive element of the subfield is the sum
of two roots of f , namly the 5-th and 10-th in our fixed ordering.
Suppose we want to work in the degree 16 extension over this field, that is we want to work in
the fixed field of the trivial subgroup over the field fixed by A:

> K, D, Reco, Bnd := GaloisSubfieldTower(S, [A, sub<G|>]);

> GK := GaloisGroup(K);

> #GK;

16

> AbelianInvariant(GK);

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 985

[2, 2, 2, 2]

As an abstract field, K as the splitting field can be described as a quotient of Q[x1, . . . , x10]/I
for some suitable ideal I also known as the Galois ideal. On the other hand, by tensoring with
some p-adic complection Qp we get an embedding of K into K#G

p =: Γ. The sequence D that is
returned as the 2nd value contains the information necessary to map elements in Z[x1, . . . , x10]
via Γ to K. Suppose we want to find x1, ie. a root of f in K. We first have to get the p-adic
image in Γ, with appropriate precision. Step one is to define a suitable multivariate polynomial i
that will represent x1.
The second step is to compute an integer B such that all complex conjugates if i are bounded by
B in absolute value. For this we can use information about the size of the roots of f stored in S.
The next step now is to get a bound for the p-adic precision.

> R := SLPolynomialRing(Integers(), 10);

> i := R.1;

> B := S‘max_comp;

> bound := Bnd(B);

Now, we need to get the p-adic conjugates of x1, ie. the image in Γ. The third entry in each of
the elements of D contains coset representatives that give the relative conjugates:

> rt := [GaloisRoot(i, S:Bound := bound) : i in [1..10]];

> con := CartesianProduct(Reverse([x[3]: x in D]));

> gamma := [Evaluate(i, PermuteSequence(rt, &*p)) : p in con];

> im := Reco(gamma: Bound := B);

> time Evaluate(f, im) eq 0;

Before we try to find an automorphism of the base field using this method we want to find the
primitive element of the base field of K. The primitive element is essentially given by the 1st part
of D. Note that here a Tschirnhaus-tranformation was necessary.

> i := D[1][1]; t := D[1][2];

> B := Bound(i, Evaluate(t, S‘max_comp));

> bound := Bnd(B);

> rt := [GaloisRoot(i, S:Bound := bound) : i in [1..10]];

> rt := [Evaluate(t, x) : x in rt];

> gamma := [Evaluate(i, PermuteSequence(rt, &*p)) : p in con];

> im := Reco(gamma : Bound := B);

> im;

$.1

> im eq K.2;

true;

Now for the automorphism - all we have to change is to permute the roots as we already have the
permutation group.

> rt := PermuteSequence(rt, Random(G));

> gamma := [Evaluate(i, PermuteSequence(rt, &*p)) : p in con];

> au := Reco(gamma : Bound := B);

> au;

986 GLOBAL ARITHMETIC FIELDS Part VII

1/92*(-9*$.1^4 + 386*$.1^3 - 5854*$.1^2 + 37120*$.1 - 82288)

In order to “find” arbitrary (integral) elements this way one has to

- define the element as a multivariate polynomial in the roots, i

- with the aid of Bound and the knowledge of the complex roots of f , find a bound B of the
complex embeddings of i and use Bnd as above to find a bound M on the p-adic precision

- use the information in D to compute i in Γ, ie all p-adic conjugates in the “correct” ordering

- use Reco to find the algebraic representation.

38.2.4 Solvability by Radicals
For a polynomial f ∈ Z[t] with solvable Galois group it is well known that the roots of f
can be expressed as nested radicals. On the other hand no good algorithm is known to
achieve this. Here we use the explicit action of the Galois group of f as a permutation
group on the p-adic roots to compute such an representation.

SolveByRadicals(f)

Prime RngIntElt Default : false

Name MonStgElt Default : false

Galois Tup<GrpPerm, [RngElt], GaloisData>

UseZeta p BoolElt Default : false

MaxBound RngIntElt Default : ∞
Verbose GaloisTower Maximum : 3

For a polynomial f ∈ Z[t] with solvable Galois group, a splitting field as a tower of
radical extensions is computed together with algebraic representations of the roots
of f as elements in the splitting field. The third return value contains the non-trivial
roots of unity which are used.

If the parameter Galois is used, it should contain a list or triplet containing the
output of GaloisGroup(f);.

If Prime is used, and Galois is unspecified, the value of Prime is passed onto
the Galois group computation and can therefore be used to choose the p-adic field.

If UseZeta p is set to true, then the expression for the roots of p will contain pure
radicals and roots of unity. By default, if UseZeta p is false, radical expressions
for the roots of unit necessary will also be computed.

If MaxBound is given, it will be used as an upper bound for the p-adic precision
used internally. Expecially when the radical tower contains many steps, the inter-
nally used precision estimates become more and more pessimistic, thus resulting in
larger and larger precision.

If Name is set to some string, the i-th level primitive element in the tower will be
called Name.i.

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 987

CyclicToRadical(K, a, z)

Let K/k be a number field with cyclic automorphism group of order n generated
by K.1 → a and z be a n-th root of unity in k. This function will return a field L
isomorphic to K such that L is a Kummer extension, ie. the defining polynomial
for L will be of the form tn− b for some b in the coefficient field k of K. The second
returned value contains the roots of f in L while the third return value contains the
roots of unity used.

Example H38E6

> P<x> := PolynomialRing(IntegerRing());

> f := x^6 - x^5 - 6*x^4 + 7*x^3 + 4*x^2 - 5*x + 1;

> K, R := SolveByRadicals(f:Name := "K.");

> K:Maximal;

K<K.1>

|

|

$1<K.2>

|

|

$2<K.3>

|

|

$3<K.4>

|

|

Q

K : K.1^3 + 1/2*(3*K.4 - 11)*K.2 + 1/2*(-27*K.4 + 23)

$1 : K.2^2 - 5

$2 : K.3^3 - 228*K.4 + 532

$3 : K.4^2 + 3

> [Evaluate(f, x) eq 0 : x in R];

[true, true, true, true, true, true]

Note that every step in the tower defining K is radical, ie. given by an equation of type xn − a.

38.2.5 Linear Relations
An important question for various problems is that of finding all linear (additive) relations
between the roots of some integral polynomial. While there is a obvious algorithm if the
splitting field can be constructed explicitly, there is no obvious way of doing it in general.
In this section we provide two algorithms to find those and more general relations and a
third that can verify arbitrary relations.

988 GLOBAL ARITHMETIC FIELDS Part VII

LinearRelations(f)

Proof BoolElt Default : true

Galois Tup<GrpPerm, [RngElt], GaloisData>

UseAction BoolElt Default : false

UseLLL BoolElt Default : true

Power RngIntElt Default : 1
kMax RngIntElt Default : ∞
LogLambdaMax RngIntElt Default : ∞

Given an integral monic polynomial f , this function finds a basis for the module of
additive relations between the roots of f in some algebraic closure. The ordering of
the roots is the same as chosen by the computation of the Galois group of f , in fact,
the roots used are precisely the ones returned by GaloisRoot. The output consists
of a basis for the relation module encoded in a matrix and the Galois data encoding
the ordering of the roots. The algorithm is described in [dGF07].

If Power is set to an integer larger than one, the module of relations between the
powers of the roots is computed.

LinearRelations(f, I)

Proof BoolElt Default : true

Galois Tup<GrpPerm, [RngElt], GaloisData>

UseAction BoolElt Default : false

UseLLL BoolElt Default : true

Power RngIntElt Default : 1
kMax RngIntElt Default : ∞
LogLambdaMax RngIntElt Default : ∞

Let f be an integral monic polynomial and α1, . . ., αn be the roots of f in some
splitting field in a fixed ordering. The field and the ordering used here are the ones
chosen by the computation of the Galois group of f . The splitting field K of f be
represented as a quotient Q[x1, . . . , xn]/J for some suitable ideal J , thus elements
in K can be represented as multivariate polynomials in the roots αi. The sequence
I that is passed into this function is interpreted to contain elements in K given via
the polynomials in I. This function computes a basis for the module of relations
between the elements represented by I. The algorithm is described in [dGF07].

VerifyRelation(f, F)

Galois Tup<GrpPerm, [RngElt], GaloisData>

kMax RngIntElt Default : ∞
Let f be an integral monic polynomial and α1, . . ., αn be the roots of f in some
splitting field in a fixed ordering. The field and the ordering used here are the ones
chosen by the computation of the Galois group of f . The splitting field K of f be

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 989

represented as a quotient Q[x1, . . . , xn]/J for some suitable ideal J , thus elements in
K can be represented as multivariate polynomials in the roots αi. For a polynomial
F in the roots of f , this function verifies if F evaluated at the roots of f equals
zero, ie. if F describes a relation between the roots. The algorithm is described in
[dGF07].

Example H38E7

The following example originates in a paper [BDE+] where, among other things, polynomials are
constructed whose roots have a maximal number of linear dependencies. Note, that the polynomial
constructed here is not extremal.

> G := ShephardTodd(8);

> R := InvariantRing(G);

> p := PrimaryInvariants(R);

> p;

[

x1^8 + (-4*i - 4)*x1^7*x2 + 14*i*x1^6*x2^2 + (-14*i +

14)*x1^5*x2^3 - 21*x1^4*x2^4 + (14*i + 14)*x1^3*x2^5

- 14*i*x1^2*x2^6 + (4*i - 4)*x1*x2^7 + x2^8,

x1^12 + (-6*i - 6)*x1^11*x2 + 33*i*x1^10*x2^2 + (-55*i +

55)*x1^9*x2^3 - 231/2*x1^8*x2^4 + (66*i +

66)*x1^7*x2^5 + (-66*i + 66)*x1^5*x2^7 -

231/2*x1^4*x2^8 + (55*i + 55)*x1^3*x2^9 -

33*i*x1^2*x2^10 + (6*i - 6)*x1*x2^11 + x2^12

]

> f := Resultant(p[1]-2, p[2]-3, 2);

> f := Polynomial(Rationals(), UnivariatePolynomial(f));

> IsPower(f, 4);

true 27/4*x^24 - 135*x^16 + 405*x^12 - 405*x^8 + 162*x^4 - 1

> _, f := $1;

> GG, R, S := GaloisGroup(f);

> #GG;

192

> rel := LinearRelations(f:Galois := <GG, R, S>);

> #rel;

20

> rel[3];

[0, 0, 0, -1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

> IR := SLPolynomialRing(Integers(), 24);

> r := &+ [rel[3][i]*IR.i : i in [1..24]];

> r;

(x7 + ((-1 * x4) + (-1 * x6)))

> VerifyRelation(f, r:Galois := <GG, R, S>);

true

Now we use this to construct a field of degree 192 over Q where the conjugates of a primitive
element span only a 4-dimensional vectorspace. We first define an invariant (a multivariate poly-

990 GLOBAL ARITHMETIC FIELDS Part VII

nomial) that corresponds to a primitive element. This can be verified by computing all p-adic
conjugates and checking that they are pairwise different.

> i := &+ [i*IR.i : i in [1..23]];

> I := [Apply(g, i) : g in GG];

> #{Evaluate(i, R) : i in I};

192

So, since i =
∑

iαi is a linear combination of the roots αi of f , the dimension of the vectorspace
spanned by the conjugates of i is 4 again. Note that this is a property of the polynomial not of
the field.

> i := RelativeInvariant(GG, sub<GG|>);

> I := [Apply(g, i) : g in GG];

> #{Evaluate(i, R) : i in I};

192

> #LinearRelations(f, I:Galois := <GG, R, S>, Proof := false);

38.2.6 Other

ConjugatesToPowerSums(I)

For elements in a sequence I, compute the sequence containing the power sums∑
Ij
i for j = 1, . . ., #I. If I is interpreted to contain the Galois conjugates of some

algebraic number (or the roots of some polynomial) then this computed the power
sums.

PowerSumToElementarySymmetric(I)

Given a sequence I of elements, interpreted as power sums of some algebraic number
x, use Newton’s relations to compute the elementary symmetric functions in the
conjugates of x. In general for this to succeed, the characteristic of the underlying
ring needs to be larger than the length of the sequence.

38.3 Subfields

This section contains functions for the computation of all subfields of any number field
or all subfields of a given degree of a simple absolute algebraic field or a simple relative
extension.

These computations are independent of the computation of the Galois groups, but
similiarly there is no limit on the degrees of the field.

The algorithms used are Klüner’s method as presented in [Klü95, Klü97, KP97, Klü98]
and the newer method of Klüners, van Hoeij and Novocin [vHKN11].

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 991

Subfields(K, n)

Verbose Subfields Maximum : 4
Given a simple absolute algebraic field or a simple relative extension K and an inte-
ger n greater than 1, this function returns a sequence of pairs (2-tuples) containing
the subfields of K of degree n together with the embedding homomorphisms of each
subfield into K. It is possible that the sequence contains isomorphic fields, but the
embeddings will be distinct in such a situation.

Subfields(K)

Al MonStgElt Default : “Default”
Current BoolElt Default : false

Proof RngIntElt Default : 1
Verbose Subfields Maximum : 4

Given an algebraic field K, this function returns a sequence of pairs (2-tuples) con-
taining the subfields of K (except Q) together with the embedding homomorphisms
of each subfield into K. It is possible that the sequence contains isomorphic fields.

For fields K which are extensions of an algebraic number field the more recent
algorithm developed by Klüners and van Hoeij [vHKN11] is used. For fields K which
are extensions of Q, this algorithm can be selected by setting the parameter Al to
"KluenersvanHoeij" or may be chosen by "Default" as the optimal algorithm.
By default, the "Klueners" algorithm is chosen if the defining polynomial of K
factors into large degree factors (with respect to the degree of K) over the residue
field of some prime or the coefficients of the defining polynomial are large, otherwise
"KluenersvanHoeij" is used which is optimal when the defining polynomial only
has small degree factors (with respect to the degree of K) over the residue fields of
some number of primes, that is, K has a large number of subfields.

38.3.1 The Subfield Lattice
Subfields of number fields can also be retrieved in the form of a lattice from which additional
information can be discovered.

SubfieldLattice(K)

Verbose Subfields Maximum : 4
The lattice of subfields of an absolute number field K.

#L

The number of fields in the lattice L.

Representative(L) Rep(L)

Bottom(L)

The bottom element of the subfield lattice L (this corresponds to Q).

992 GLOBAL ARITHMETIC FIELDS Part VII

Top(L)

The top element of the subfield lattice L (this corresponds to the original number
field).

Random(L)

A random element of the subfield lattice L.

L ! n

L[n]

The n-th element of the subfield lattice L.

NumberField(e)

The number field corresponding to the given subfield lattice element e.

EmbeddingMap(e)

The mapping from NumberField(e) into the top number field of the subfield lattice.

Degree(e)

The (absolute) degree of the number field corresponding to the subfield lattice ele-
ment e.

e eq f

Returns true if and only if the subfield lattice elements e and f are equal.

e subset f

Returns true f and only if e is a subfield of f .

e * f

The smallest field containing both e and f .

e meet f

The intersection of e and f . This is the largest field common to both of them.

&meetS

The intersection of the subfields in the sequence S.

MaximalSubfields(e)

The sequence of maximal subfield lattice elements contained in e.

MinimalOverfields(e)

The sequence of minimal subfield lattice elements containing e.

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 993

Example H38E8

A subfield lattice is shown.

> Zx<x> := PolynomialRing(Integers());

> K<a> := NumberField(x^8 - x^4 + 1);

> L := SubfieldLattice(K);

> L;

Subfield Lattice of K

[1] Rational Field

[2] Subfield generated by a root of x^2 - 4*x + 1

[3] Subfield generated by a root of x^2 - 26*x + 241

[4] Subfield generated by a root of x^2 - 10*x + 241

[5] Subfield generated by a root of x^2 + 1

[6] Subfield generated by a root of x^2 - 10*x + 1

[7] Subfield generated by a root of x^2 - 6*x + 1

[8] Subfield generated by a root of x^2 + x + 1

[9] Subfield generated by a root of x^4 + 4*x^2 + 1

[10] Subfield generated by a root of x^4 - x^2 + 1

[11] Subfield generated by a root of x^4 - 8*x^3 + 20*x^2 - 16*x + 1

[12] Subfield generated by a root of x^4 - 4*x^3 + 8*x^2 - 4*x + 1

[13] Subfield generated by a root of x^4 - 6*x^3 + 13*x^2 - 6*x + 1

[14] Subfield generated by a root of x^4 - 4*x^3 + 8*x^2 + 4*x + 1

[15] Subfield generated by a root of x^4 - 2*x^3 + 5*x^2 + 2*x + 1

[16] Subfield generated by a root of x^8 - x^4 + 1

Observe that subfields 2, 5 and 8 give the square roots of 2, −1 and 3, respectively. Since these
are incommensurate radicals the field generated by them has degree 8 and so must be isomorphic
to K.

> K2 := AbsoluteField(NumberField([x^2 + 1, x^2 - 2, x^2 - 3]));

> K2;

Number Field with defining polynomial x^8 - 16*x^6 + 88*x^4 + 192*x^2 + 144

over the Rational Field

> IsIsomorphic(K2, K);

true

In fact, K is just a “better” version of K2.

> OptimizedRepresentation(K2);

Number Field with defining polynomial x^8 - x^4 + 1 over the Rational Field

Mapping from: FldNum: K2 to Number Field with defining polynomial x^8 - x^4 + 1

over the Rational Field

994 GLOBAL ARITHMETIC FIELDS Part VII

38.4 Galois Cohomology

Magma has some rudimentary functions to aid computations in Galois cohomology of
number fields.

Hilbert90(a, M)

S [RngOrdIdl] Default : false

Let K be a number field and M : K → K be an automorphism of K furthermore,
denote by k the fixed field of M , thus M generates the automorphism group of the
relative cyclic extension K/k. For some element a in K, such that NK/k(a) = 1,
this function will find some element b such that a = b/M(b). If S is given it should
contain a sequence of prime ideals such that there exists some b in the S-unit group
over S.

SUnitCohomologyProcess(S, U)

ClassGroup BoolElt Default : false

Ramification BoolElt Default : false

Let k be a normal number field with (abstract) automorphism group G. For a set of
prime ideals S of k, which is closed under the action of the subgroup U ofG, a process
is created that allows working with the cohomology of the multiplicative group of k
- partially represented by a group of S-units. If ClassGroup is given, the set S is
enlarged to support the current generators of the class group. If Ramification is
present, then all ramified primes are also included in S.

During the computations with this object the set S can be increased to allow the
representation of a larger number of elements.

IsGloballySplit(C, l)

Sub GrpPerm Default : false

Verbose Cohomology Maximum : 2

For a cohomology process C as created by SUnitCohomologyProcess and a 2-cocyle
l : U × U → k given as a Magma-function, decide if l is split, ie. if there exists a
1-cochain m : U → k such that δm = l for the cohomological coboundary map δ. If
Sub is given it has to be a subgroup of the automorphism group of the number field
underlying the cohomology process, otherwise the full automorphism group is used.
This allows to restrict a cocyle easily.

As a fixed cocyle l assumes only finitely many values, we can consider it as a
cocyle with values in some suitable S-unit group. Similarly, it is exists, m also has
values in some S′-unit group for a potentially larger set S′. This function first tries
to “remove” ideals from the support of l, to make the set S as small as possible.
Then the set is enlarged to make sure that m, if exists, can be found with values in
the S′ = S-unit group. Since the final problem now involves only finitely generated
abelian groups, it can be solved by Magma’s general cohomology machinery.

Ch. 38 GALOIS THEORY OF NUMBER FIELDS 995

IsSplitAsIdealAt(I, l)

Sub GrpPerm Default : false

Let U be a subgroup of the automorphism group G of some number field k, l : U ×U → k∗

a 2-cocyle and I some ideal in k. If Sub is given, U is taken to be Sub, otherwise U := G.
Assuming that each element l(u, v) has a valuation at all ideals in the U -orbit of I, ie.
we have a unique decomposition of ideals l(u, v) = Jx(u,v)A(u, v) for integers x(u, v) and
ideals A(u, v) coprime to J for all J in IU . Then we can use l to define a cocyle with
values in IU which is a finitely generated group. This function determines if this cocycle
splits, and if so, computes a 1-cochain with values in IU for some fixed ordering of IU .
The cochain and IU are returned on success.

38.5 Bibliography
[AK99] Vincenzo Acciaro and Jürgen Klüners. Computing Automorphisms of Abelian

Number Fields. Math. Comp., 68(227):1179–1186, 1999.
[BDE+] Neil Berry, Arturas Dubickas, Noam Elkies, Bjorn Poonen, and Chris Smyth.

The conjugate dimension of algebraic numbers. Quart. J. Math., 55:237–252.
[dGF07] Willem de Graaf and Claus Fieker. Finding integral linear dependencies

of algebraic numbers and algebraic Lie algebras. LMS Journal of Computation and
Mathematics, 11, 2007.

[FK12] C. Fieker and J. Klüners. Computational Galois Theory I: Invariants and
Computations over Q. submitted, http://arxiv.org/abs/1211.3588, 2012.

[Gei03] Katharina Geißler. Berechnung von Galoisgruppen über Zahl- und Funktio-
nenkörpern. PhD Thesis, TU-Berlin, 2003. available at
URL:http://www.math.tu-berlin.de/˜kant/publications/diss/geissler.pdf.

[GK00] Katharina Geißler and Jürgen Klüners. The determination of Galois Groups.
J. Symbolic Comp., 30(6):653–674, 2000.

[Klü95] Jürgen Klüners. Über die Berechnung von Teilkörpern algebraischer
Zahlkörper. Diplomarbeit, Technische Universität Berlin, 1995.
URL:http://www.math.tu-berlin.de/∼kant/publications/diplom/klueners.ps.gz.

[Klü97] Jürgen Klüners. Über die Berechnung von Automorphismen und Teilkörpern
algebraischer Zahlkörper. Dissertation, Technische Universität Berlin, 1997.
URL:http://www.math.tu-berlin.de/∼kant/publications/diss/diss jk.ps.gz.

[Klü98] Jürgen Klüners. On computing subfields. A detailed description of the
algorithm. J. Theor. Nombres Bordx., 2(10):243–271, 1998.

[KP97] Jürgen Klüners and Michael E. Pohst. On Computing Subfields. J. Symbolic
Comp., 24(3):385–397, 1997.

[SM85] Leonhard H. Soicher and John McKay. Computing Galois Groups over the
rationals. J. Number Th., 20:273–281, 1985.

[Sta73] Richard P. Stauduhar. The determination of Galois Groups. Math. Comp.,
27:981–996, 1973.

996 GLOBAL ARITHMETIC FIELDS Part VII

[vHKN11] M. van Hoeij, J. Klüners, and A. Novocin. Generating Subfields. In Anton
Leykin, editor, Proceedings ISSAC 2011, 2011.

39 CLASS FIELD THEORY
39.1 Introduction 999

39.1.1 Overview 999

39.1.2 Magma 1000

39.2 Creation 1003

39.2.1 Ray Class Groups 1003

RayClassGroup(I) 1003
RayClassGroup(I, T) 1003
RayClassGroup(D) 1003
RayResidueRing(I) 1005
RayResidueRing(I, T) 1005
RayResidueRing(D) 1005

39.2.2 Selmer groups 1006

pSelmerGroup(p, S) 1006

39.2.3 Maps 1008

InducedMap(m1, m2, h, c) 1008
InducedAutomorphism(r, h, c) 1008

39.2.4 Abelian Extensions 1009

RayClassField(m) 1009
AbelianExtension(m) 1009
RayClassField(m, I, T) 1009
AbelianExtension(m, I, T) 1009
RayClassField(m, I) 1009
AbelianExtension(m, I) 1009
AbelianExtension(I) 1010
RayClassField(D) 1010
AbelianpExtension(m, p) 1010
AbelianExtension(I, P) 1012
HilbertClassField(K) 1012
MaximalAbelianSubfield(M) 1012
MaximalAbelianSubfield(F) 1012
MaximalAbelianSubfield(K) 1012
AbelianExtension(K) 1012
AbelianExtension(M) 1012

39.2.5 Binary Operations 1014

eq 1014
subset 1014
* 1014
meet 1014

39.3 Galois Module Structure . . . 1014

39.3.1 Predicates 1015

IsAbelian(A) 1015
IsNormal(A) 1015
IsCentral(A) 1015

39.3.2 Constructions 1015

GenusField(A) 1015
H2 G A(A) 1015
NormalSubfields(A) 1015
AbelianSubfield(A, U) 1016

FixedField(A, U) 1016
CohomologyModule(A) 1016

39.4 Conversion to Number Fields . 1016

EquationOrder(A) 1016
NumberField(A) 1016
MaximalOrder(A) 1017
Components(A) 1017
Generators(A) 1017

39.5 Invariants 1017

Discriminant(A) 1017
AbsoluteDiscriminant(A) 1018
Conductor(A) 1018
Degree(A) 1018
AbsoluteDegree(A) 1018
CoefficientRing(A) 1018
CoefficientField(A) 1018
BaseField(A) 1018
BaseRing(A) 1018
CoefficientRing(A) 1018
NormGroup(A) 1018
DecompositionField(p, A) 1018
DecompositionField(p, A) 1018
DecompositionGroup(p, A) 1018
DecompositionGroup(p, A) 1018
DecompositionGroup(p, A) 1019
DecompositionType(A, p) 1019
DecompositionType(A, p) 1019
DecompositionType(A, p) 1019
DecompositionTypeFrequency(A, l) 1019
DecompositionTypeFrequency(A, a, b) 1019

39.6 Automorphisms 1020

ArtinMap(A) 1020
FrobeniusAutomorphism(A, p) 1020
AutomorphismGroup(A) 1020
ProbableAutomorphismGroup(A) 1020
ImproveAutomorphismGroup(F, E) 1021
AbsoluteGaloisGroup(A) 1022
TwoCocycle(A) 1022

39.7 Norm Equations 1022

IsLocalNorm(A, x, p) 1023
IsLocalNorm(A, x, i) 1023
IsLocalNorm(A, x, p) 1023
IsLocalNorm(A, x) 1023
Knot(A) 1023
NormEquation(A, x) 1023
IsNorm(A, x) 1023

39.8 Attributes 1025

39.8.1 Orders 1025

o‘CyclotomicExtensions 1026

39.8.2 Abelian Extensions 1028

998 GLOBAL ARITHMETIC FIELDS Part VII

A‘Components 1028

A‘DefiningGroup 1029

A‘NormGroup 1029

A‘IsAbelian 1029

A‘IsNormal 1029

A‘IsCentral 1029

39.9 Group Theoretic Functions . . 1032

39.9.1 Generic Groups 1032

GenericGroup(X) 1032
AddGenerator(G, x) 1033
FindGenerators(G) 1033

39.10 Bibliography 1033

Chapter 39

CLASS FIELD THEORY

39.1 Introduction

This chapter presents the facilities provided in Magma for class field theory. The main
objects of interest are abelian extensions of number fields (FldAb) and maps between
abelian groups and ideal groups.

Class field theory is concerned with the classification of all abelian extensions of a given
field. In particular, this covers abelian extensions of number fields, local fields and global
function fields. While this chapter deals with the number field case only, Magma can
also perform computations in the other cases. For the case of global function fields, see
Chapter 43 and for the case of p-adic local fields, Section 47.14.

Abstractly, class field theory parametrizes abelian extensions in terms of abelian groups
defined with respect to the base field. In Magma, ray class groups and their quotients
are used to define the extensions. Ray class groups and their quotients are always repre-
sented as maps between a finite abelian group (GrpAb) and the power structure of ideals
(PowIdeal). The maps are usually obtained as products of the map returned by ray class
groups and quotient maps.

In theory, a class field is completely determined by the corresponding class group (map).
Currently there is only a small number of invariants that can be computed directly from
the map; for most other properties the class field has to be converted into a number field
by computing a set of defining equations.

39.1.1 Overview
Class field theory classifies all abelian extensions of a given number field k in terms of
quotients of ray class groups. Ray class groups should be thought of as generalized class
groups in that they can be defined similarly to class groups:

1 → U → k∗ → I → Cl → 1

where k∗ is the multiplicative group of k, U is the group of units, and I the group of
fractional ideals. (Recall, the class group is defined as the quotient of the ideals modulo
the principal ideals). To define ray class groups we need to refine all of the above terms.
Let o = Zk be the ring of integers in k and fix an integral ideal m0 in o. Furthermore, let
m∞ be a subset of the real embeddings of k into C and, formally, m := (m0,m∞). Then
for x ∈ k define

xmod∗m = 1 iff

{
vp(x− 1) ≥ vp(m0) for all prime ideals p

s(x) > 0 for s ∈ m∞

1000 GLOBAL ARITHMETIC FIELDS Part VII

Let Im denote the group of fractional ideals that are coprime to m0, Um the units u such
that umod∗m = 1 and Pm the elements x ∈ k such that xmod∗m = 1. Then

1 → Um → Pm → Im → Clm → 1

defines the ray class groups modulo m. For m = (1o, ∅), this corresponds to the usual
class group. Given two moduli m and n such that m0|n0 and m∞ ⊆ n∞ we have canonical
surjections

Cln → Clm .

Now, let H be a subgroup such that Pm < H < Im. There exists a minimal n such
that the canonical embedding Clm /H → Cln is injective. This n is called the conductor
of H.

The main theorem of class field theory asserts the following correspondence between
abelian extensions K/k of k and quotients of ray class groups: Let K/k be abelian and
G := Gal(K/k) the group of k-automorphisms of K. For each prime ideal p of k that is
unramified in K, let Frob(p,K/k) be the Frobenius automorphism, i.e. the unique s ∈ G
such that s(x) = xN mod p for all x ∈ k. Extend this map multiplicatively to all ideals
coprime to dK/k, the discriminant of K/k. This is known as the Artin-map and is denoted
by (b,K/k). Class field theory asserts the existence of some modulus m and a subgroup
H such that G ∼= Clm /H by the Artin-map.

Conversely, for each ray class group Clm and each subgroup Pm < H there is an abelian
extension K/k with the above property.

The correspondence is one-to-one if one restricts to pairs Clm and H such that m is
the conductor of H.

For m = (1o, ∅), the corresponding field K is called the Hilbert class field of k (in the
wide sense).

Perhaps best understood is the Hilbert class field. As conjectured by Hilbert and proved
by Furtwängler, all ideals of k become principal in the Hilbert class field Hk. Futhermore,
Hk is the maximal unramified abelian extension of k.

A different interpretation of H is provided by norm groups. We have

H = 〈NK/k(b)|b ∈ ImK 〉

This result may be used to convert an abelian number field into an abelian extension. In
addition, class field theory asserts that, for an arbitrary normal extension K/k, the norm
group defined above corresponds to the maximal abelian subfield.

39.1.2 Magma

In Magma maps are used to represent the ideal groups. If necessary, the map can be
augmented by supplying m i.e. an integral ideal m0 and a sequence of indices of the
real places in m∞. The map returned as a second return value from ClassGroup or
RayClassGroup carries the necessary information to recover m, even if this is hidden from
the user. As an example, we consider the Hilbert class field of k := Q(α) with α3 + α2 +
3α− 6 = 0 with class group C4.

Ch. 39 CLASS FIELD THEORY 1001

Example H39E1

> k := NumberField(Polynomial([-6, 3, 1, 1]));

Now, the easiest way to get the Hilbert class field is to call HilbertClassField directly on k:

> K := HilbertClassField(k);

> K;

Number Field with defining polynomial $.1^4 + (76*k.1^2 - 420*k.1 - 488)*$.1^2\

+ 32080*k.1^2 + 41984*k.1 + 95168 over k

Let us now verify some of the properties, starting with the discriminant. Since K/k is totally
unramified, the discriminant of the maximal order should be 1:

> O := MaximalOrder(K);

> O;

Maximal Order of Equation Order with defining polynomial x^4 + [-488, -420,

76]*x^2 + [95168, 41984, 32080] over its ground order

> Discriminant(O);

Ideal

Basis:

[1 0 0]

[0 1 0]

[0 0 1]

Now let us check that all ideals of k are principal in K. In order to do so, it is sufficient to
demonstrate that a generator of the class group becomes principal:

> g, m := ClassGroup(k);

> g;m;

Abelian Group isomorphic to Z/4

Defined on 1 generator

Relations:

4*g.1 = 0

Mapping from: GrpAb: g to Set of ideals of Maximal Equation Order with

defining polynomial x^3 + x^2 + 3*x - 6 over its ground order

> i := m(g.1);

> I := O!!i;

> IsPrincipal(I);

true

> f,g := IsPrincipal(I);

> g;

[[2193497788678474035456, -1238066307883451022336,

-2319265120953032748288], [394272965034846395136,

-222653406238254306432, -417025104282566694144],

[167087257584, 71708840496, 32825469008], [495632919,

-279332235, -523526213]] / 10917386545536

However, to use the more sophisticated functions, the construction of the class fields needs to be
done step–by–step. We first create an abelian extension as an object of type FldAb. Since we wish

1002 GLOBAL ARITHMETIC FIELDS Part VII

to see how much of the class group becomes trivial in the quadratic subfield K1 of K (capitulates
in K1), we also define this.

> aK := AbelianExtension(m);

> g, m := ClassGroup(k);

> q, mq := quo<g | 2*g.1>;

> m2 := Inverse(mq)*m;m2;

Mapping from: GrpAb: q to Set of ideals of Maximal

Equation Order with defining polynomial x^3 + x^2 + 3*x

- 6 over Z

Composition of Mapping from: GrpAb: q to GrpAb: g and

Mapping from: GrpAb: g to Set of ideals of Maximal

Equation Order with defining polynomial x^3 + x^2 + 3*x

- 6 over Z

> aK2 := AbelianExtension(m2);

This demonstrates a very important technique: the creation of a quotient group of the class group
together with the corresponding map.

A few invariants such as degree and discriminant may be calculated directly from aK without the
(costly) computation of a defining equation.

> Discriminant(aK);

Principal Ideal

Generator:

[1, 0, 0]

[4, 4]

The second return value denotes the signature of the field as an extension of Q.

Now we compute a defining equation for aK2 and see what happens to the class group of k.

> O := MaximalOrder(aK2);O;

Maximal Order of Equation Order with defining

polynomial x^2 + [-5, -2, -1] over its ground order

> O!!m(g.1);

> IsPrincipal($1);

false

> IsPrincipal($2^2);

true

So only “half” of the class group capitulates in aK2, the reminding part collapses in aK.

Ch. 39 CLASS FIELD THEORY 1003

39.2 Creation

The most powerful way to create class fields or abelian extensions in Magma is to use the
AbelianExtension function that enables the user to create the extension corresponding
to some ideal group.

So, before we can describe the creation functions for the class fields, we have to deal
with the ideal groups.

39.2.1 Ray Class Groups
The classical approach to class field theory, which is well suited for computation, is based
on ideal groups which are generalisations of the ideal class group.

In this section we describe in detail how to create full ideal groups, mainly ray class
groups. As ray class groups are closely related to the unit groups of residue class rings of
maximal order, these too are presented here.

In addition to the functions listed here, the CRT on page 946 is relevant in this context.

RayClassGroup(I)

RayClassGroup(I, T)

Given an integral ideal I belonging to the maximal order of a number field, the
ray class group modulo I is the quotient of the subgroup generated by the ideals
coprime to I by the subgroup generated by the principal ideals generated by elements
congruent to 1 modulo I and T if present.

The sequence T contains the numbers [i1, . . . , ir] of certain real infinite places.
When the sequence is supplied, the generators of the principal ideals must take
positive values at the places indicated by T . The sequence T must be strictly
ascending containing only positive integers, each not exceeding the number of real
embeddings.

This function requires the class group to be known. If it is not already stored,
it will be computed in such a way that its correctness is not guaranteed. However,
it will almost always be correct. If the user requires a guaranteed result, then the
class group must be verified by the user or computed up to the proof level required
beforehand.

The ray class group is returned as an abelian group A, together with a mapping
between A and a set of representatives for the ray classes.

The algorithm used is a mixture of Pauli’s approach following Hasse ([Pau96,
HPP97]) and Cohen’s method ([CDO96, CDO97, Coh00]).

RayClassGroup(D)

Given a divisor (or place) of an absolute number field, compute the Ray class group
defined modulo the divisor.

This function requires the class group to be known. If it is not already stored,
it will be computed in such a way that its correctness is not guaranteed. However,
it will almost always be correct. If the user requires a guaranteed result, then the

1004 GLOBAL ARITHMETIC FIELDS Part VII

class group must be verified by the user or computed up to the proof level required
beforehand.

The ray class group is returned as an abelian group A, together with a mapping
between A and a set of representatives for the ray classes.

The algorithm used is a mixture of Pauli’s approach following Hasse ([Pau96,
HPP97]) and Cohen’s method ([CDO96, CDO97, Coh00]).

Example H39E2

Some ray class groups are computed below. The example merely illustrates the fact that ray class
groups tend to grow if their defining modul grows and can be arbitrarily large. This should be
compared to class groups where it is rather difficult to give examples of fields having “large” class
groups — unless one takes imaginary quadratic fields.

> R<x> := PolynomialRing(Integers());

> o := MaximalOrder(x^2-10);

> RayClassGroup(2*o, [1,2]);

Abelian Group isomorphic to Z/2 + Z/2

Defined on 2 generators

Relations:

2*$.1 = 0

2*$.2 = 0

Mapping from: Abelian Group isomorphic to Z/2 + Z/2

Defined on 2 generators

Relations:

2*$.1 = 0

2*$.2 = 0 to Set of ideals of o

> RayClassGroup(2*o);

Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*$.1 = 0

Mapping from: Abelian Group isomorphic to Z/2

Defined on 1 generator

Relations:

2*$.1 = 0 to Set of ideals of o

As one can see, the inclusion of the infinite places only added a C2 factor to the group. In general,
a set of infinite places containing n elements can at most add n C2 factors to the group without
infinite places.
Now we enlarge the modulus by small primes. As one can see, the ray class group gets bigger.

> RayClassGroup(8*3*5*7*11*13*101*o);

Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/4 + Z/4 + Z/24 + Z/24 + Z/120 +

Z/600

Defined on 9 generators

Relations:

2*$.1 = 0

2*$.2 = 0

Ch. 39 CLASS FIELD THEORY 1005

2*$.3 = 0

8*$.4 = 0

24*$.5 = 0

4*$.6 = 0

120*$.7 = 0

12*$.8 = 0

600*$.9 = 0

Mapping from: Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/4 + Z/4 + Z/24 +

Z/24 + Z/120 + Z/600

Defined on 9 generators

Relations:

2*$.1 = 0

2*$.2 = 0

2*$.3 = 0

8*$.4 = 0

24*$.5 = 0

4*$.6 = 0

120*$.7 = 0

12*$.8 = 0

600*$.9 = 0 to Set of ideals of o

RayResidueRing(I)

RayResidueRing(I, T)

Given an integral ideal I belonging to the maximal order of a number field, the ray
residue ring modulo I is the unit group of the maximal order modulo I extended
by one C2 factor for each element of T . The sequence T should be viewed as a
condition on the signs of the numbers factored out.

Let I be an integral ideal of an absolute maximal order and let T be a set of
real places given by an increasing sequence containing integers i, 1 ≤ i ≤ r1 where
r1 is the number of real zeros of the defining polynomial of the field. This function
computes the group of units mod∗(I, T). The result is a finite abelian group and a
map from the group to the order to which the ideal belongs.

When T is not given the unit group of the residue ring mod m is returned. This
is equivalent to formally setting T := [] to be the empty sequence.

RayResidueRing(D)

Given an effective divisor D of a number field, compute the unit group of the residue
class ring defined modulo the divisor, ie. compute the group of elements that for
the finite places in the support of D approximate 1 and have positive sign at the
real infinite places of the support of D.

1006 GLOBAL ARITHMETIC FIELDS Part VII

39.2.2 Selmer groups
Let S be a finite set of prime ideals in a number field K. For an integer p, the p-Selmer
group of S is defined as

Kp(S) := {x ∈ K×/(K×)p | vQ(x) = 0 mod p ∀Q /∈ S}

Kp(S) is a finite abelian group of exponent p.

pSelmerGroup(p, S)

Integral BoolElt Default : true

Nice BoolElt Default : true

Raw BoolElt Default : false

For a prime integer p and a set of prime ideals S in a number field K, the function
returns the p-Selmer group of S as an abstract group G, together with a map m
from K to G. The map comes with an inverse.

In principle, the domain of m is the set of x in K satisfying the condition in the
definition of Kp(S) above. When m(x) is invoked for x in K, it is assumed without
checking that x satisfies the condition. If x does not, either a runtime error occurs,
or the map returns a random element of G. (Checking the condition would require
a far more expensive computation. The algorithm identifies the class of x in Kp(S)
by computing the multiplicative orders of residues of x, and of the group generators,
modulo some unrelated primes.)

The role of the optional parameters is as follows. The p-Selmer group is realized
as a subgroup of a quotient of a suitable group of S̃-units of the number field, the
images of the map returned by pSelmerGroup are S̃-units. Initially, S̃ is chosen as
S and then enlarged until the p-part of the ideal class group of K is generated by
the ideals in S. The parameter Raw is related to the same parameter in SUnitGroup,
see SUnitGroup for more information. If the parameter is set to true, the objects
returned as images of the pSelmerGroup map are exponent vectors that are applied
to a fixed sequence of elements to get actual S-units, see the following example for
a demonstration.

In addition to changing the return type, Raw also implies a reduction of the
results, elements returned under Raw are reduced by removing the projection of the
lattice generated by pth powers of S̃-units. As a side effect of this reduction, elements
are no longer guaranteed to be integral. To offset this, the parameter Integral
can be set to true, in which case the sequence of multiplicative generators will
be extended to contain uniformizing elements for all ideals in S̃ and the exponent
vectors will be supplemented accordingly to achieve integrality.

Example H39E3

We compute the 3-Selmer group of Q(
√

10) with respect to the primes above 2, 3, 11:

> k := NumberField(Polynomial([-10, 0,1]));

Ch. 39 CLASS FIELD THEORY 1007

> m := MaximalOrder(k);

> lp := Factorization(2*3*11*m);

> S := [i[1] : i in lp];

> KpS, mKpS := pSelmerGroup(3, Set(S));

> KpS;

Abelian Group isomorphic to Z/3 + Z/3 + Z/3 + Z/3 + Z/3

Defined on 5 generators

Relations:

3*KpS.1 = 0

3*KpS.2 = 0

3*KpS.3 = 0

3*KpS.4 = 0

3*KpS.5 = 0

> mKpS;

Mapping from: RngOrd: m to GrpAb: KpS given by a rule

> mKpS(m!11);

KpS.2

> mKpS(m!11*2);

KpS.2 + 2*KpS.3 + 2*KpS.5

> mKpS(m!11*2*17^3);

KpS.2 + 2*KpS.3 + 2*KpS.5

So as long as the argument to mKpS is only multiplied by cubes, the image will be stable. Next,
we do the same again, but this time using Raw:

> KpS, mKpS, mB, B := pSelmerGroup(3, Set(S):Raw);

> B;

(-m.1 -11/1*m.1 3/1*m.1 2/1*m.1 13/1*m.1 5/1*m.1 31/1*m.1

3/1*m.1 - 2/1*m.2 3/1*m.1 + 2/1*m.2 m.1 - 2/1*m.2 m.1

+ 2/1*m.2 m.2 m.1 + m.2 m.1 - m.2 -2/1*m.1 - m.2 m.2

3/1*m.1 3/1*m.1 11/1*m.1)

> #Eltseq(B);

19

> mB;

Mapping from: GrpAb: KpS to Full RSpace of degree 19 over

Integer Ring given by a rule [no inverse]

> r := KpS.1 + KpS.2 + 2*KpS.4 + KpS.5;

> r @@ mKpS;

396/1*m.1 + 99/1*m.2

> r @ mB;

(0 1 -2 0 0 0 0 0 0 0 0 0 1 0 1 0 3 0 0)

> PowerProduct(B, $1);

396/1*m.1 + 99/1*m.2

1008 GLOBAL ARITHMETIC FIELDS Part VII

39.2.3 Maps

InducedMap(m1, m2, h, c)

Given maps m1 : G1 → I1, m2 : G2 → I2 from some finite abelian groups into the
ideals of some maximal order, and a map h : I1 → I2 on the ideals, compute the
map induced by h on the abelian groups.

For this to work, m1, and m2 need to be maps that can be used to define abelian
extensions. This implies that mi has to be a composition of maps where the last
component is either the map returned by ClassGroup or by RayClassGroup. The
argument c should be a multiple of the minima of the defining moduli.

The result is the map as defined by

hom<G_1 -> G_2 | [h(r_1(G_1.x)) @@ r_2 : x in [1..Ngens(G_1)]]>

For larger modules however, this function is much faster than the straightforward
approach. This function tries to find a set of “small” generators for both groups.
Experience shows that ray class groups (and their quotients) can usually defined by a
“small” set of “small” prime ideals. Since solving the discrete logarithm in ray class
groups depends upon solving the discrete logarithm for class groups which is quite
slow for “large” ideals, it is much faster in general to use this rather roundabout
approach. “Small” ideal in this context means “small” norm.

InducedAutomorphism(r, h, c)

An abbreviation for InducedMap(r, r, h, c).

Example H39E4

Consider a “large” ray class group over k := Q[
√

10, ζ16]

> k := NumberField([Polynomial([-10, 0, 1]), CyclotomicPolynomial(16)]);

> k := OptimizedRepresentation(AbsoluteField(k));

> o := MaximalOrder(k);

> ClassGroup(o:Bound := 500);

Abelian Group of order 1

Mapping from: Abelian Group of order 1 to Set of ideals of o

> IndependentUnits(o);

> SetOrderUnitsAreFundamental(o);

> p := &* [113, 193, 241];

> r, mr := RayClassGroup(p*o);

> #r; Ngens(r);

1706131176377019905236218856143547400125963963181004962861678592\

000000000

26

The automorphisms of k act on this group. One way of obtaining the action is:

> autk := Automorphisms(k);

> time m1 := hom<r -> r | [autk[2](mr(r.i))@@ mr : i in [1..Ngens(r)]]>;

Ch. 39 CLASS FIELD THEORY 1009

Time: 26.300

In contrast, using InducedAutomorphism:

> time InducedAutomorphism(mr, autk[2], p);

Time: 19.080

Now we increase p:

> p *:= 257*337;

> r, mr := RayClassGroup(p*o);

> #r; Ngens(r);

3831748420755023278212540125628635035038808247955859769266388851\

8259419871708134228623706727453425990974892633470189282997043200\

0000000

42

> time m1 := hom<r -> r | [autk[2](mr(r.i))@@ mr : i in [1..Ngens(r)]]>;

Time: 115.120

> time InducedAutomorphism(mr, autk[2], p);

Time: 82.390

For “small” examples the direct approach is much faster, but for large ones, especially if one is
only interested in certain quotients, the other approach is faster.

39.2.4 Abelian Extensions
The ultimate goal of class field theory is the classification of all abelian extensions of
a given number field. Although the theoretical question was settled in the 1930’s, it is
still difficult to explicitly compute defining equations for class fields. For extensions of
imaginary quadratic fields, there are well known analytic methods available. This section
explains the basic operations implemented to create class fields in Magma.

RayClassField(m)

AbelianExtension(m)

RayClassField(m, I, T)

AbelianExtension(m, I, T)

RayClassField(m, I)

AbelianExtension(m, I)

Given a map m : G→ Ik where G is a finite abelian group and Ik is the set of ideals
of some absolute maximal order construct the class field defined by m.

More formally, m−1 must be a homomorphism from some ray class group R onto
an finite abelian group G. If either I or I and T are given, they must define R. This
implies that I has to be an integral ideal and that T has to be a sequence containing
the relevant infinite places. Otherwise, Magma will try to extract this information
from m. The class field defined by m has Galois group isomorphic to R/ ker(m−1)
under the Artin map.

1010 GLOBAL ARITHMETIC FIELDS Part VII

Note that Magma cannot check whether the map passed in is valid. If an invalid
map is supplied, the output will most likely be garbage.

AbelianExtension(I)

Creates the full ray class field modulo the ideal I.

RayClassField(D)

Create the full Ray class field defined modulo the divisor D, ie. an abelian ex-
tension that is unramified outside the support of D and such that the (abelian)
automorphism group is canonically isomorphic to the ray class group modulo D.

AbelianpExtension(m, p)

For a map m as in AbelianExtension and a prime number p, create the maximal
p-field, i.e. the maximal subfield having degree a p–power.

Example H39E5

The abelian extensions of Q are known to lie in some cyclotomic field.
We demonstrate this by computing the 12-th cyclotomic field using class fields:
Unfortunately, as ray class groups are not defined for Z in Magma, we must work in a degree 1
extension of Q:

> x := ext<Rationals()|>.1;

> Q := ext<Rationals()| x-1 :DoLinearExtension>;

> M := MaximalOrder(Q);

The ray class group that defines Q(ζ12) is defined mod(12,∞) where ∞ is the unique infinite place
of Q. There are at least two ways of looking at this: First, since Q(ζ12) is a totally complex field,
the infinite place of Q must ramify (by convention: C is ramified over R), so we must include the
infinite place in the definition of the ray class group.
Secondly, the ray class group mod(12) without the infinite place is too small. We know φ(12) = 4,
(Z/12Z)∗ = {1, 5, 7, 11} = {±1,±5}. As ideals we have (1) = o = (−1) = (11) and (5) = (−5) =
(7) so that Cl12 ∼= C2. By introducing T = [1], we distinguish ±1 and ±5.

> G, m := RayClassGroup(12*M, [1]);

> G;

Abelian Group isomorphic to Z/2 + Z/2

Defined on 2 generators

Relations:

2*G.1 = 0

2*G.2 = 0

> A := AbelianExtension(m);

> E := EquationOrder(A);

> Ea := SimpleExtension(E);

> Ma := MaximalOrder(Ea);

> Discriminant(Ma);

144

> Factorization(Polynomial(Ma, CyclotomicPolynomial(12)));

[

Ch. 39 CLASS FIELD THEORY 1011

<ext<Ma|>.1 + [0, 1, 0, -1], 1>,

<ext<Ma|>.1 + [0, -1, 0, 0], 1>,

<ext<Ma|>.1 + [0, 1, 0, 0], 1>,

<ext<Ma|>.1 + [0, -1, 0, 1], 1>

]

The main advantage of this method over the use of the cyclotomic polynomials is the fact that
we can directly construct certain subfields:

> x := ext<Integers()|>.1;

> M := MaximalOrder(x^2-10);

> G, m := RayClassGroup(3615*M, [1,2]);

> G; m;

Abelian Group isomorphic to Z/2 + Z/2 + Z/4 + Z/80 + Z/240

Defined on 5 generators

Relations:

4*G.1 = 0

80*G.2 = 0

240*G.3 = 0

2*G.4 = 0

2*G.5 = 0

Mapping from: GrpAb: G to Set of ideals of M

We will only compute the 5-part of this field:

> h := hom<G -> G | [5*G.i : i in [1..#Generators(G)]]>;

> Q, mq := quo<G|Image(h)>;

> mm := Inverse(mq) * m;

> mm;

Mapping from: GrpAb: Q to Set of ideals of M

> A := AbelianExtension(mm);

> E := EquationOrder(A);

> E;

Non-simple Equation Order defined by x^5 - [580810, 0]*x^3 +

[24394020, -40656700]*x^2 + [15187310285, 2799504200]*x

+ [1381891263204, 530506045900], x^5 - [580810, 0]*x^3 +

[-109192280, 34848600]*x^2 + [30584583385,

16797025200]*x + [-341203571896, 109180663800] over its

ground order

> C := Components(A);

The function Components gives a list of cyclic extensions of M that correspond to the cyclic factors
of G.

> GaloisGroup(NumberField(C[1]));

Permutation group acting on a set of cardinality 5

Order = 5

(1, 4, 2, 5, 3)

[-9 + O(41), 15 + O(41), 6 + O(41), 18 + O(41), 11 + O(41)]

GaloisData over Z_Prime Ideal

Two element generators:

1012 GLOBAL ARITHMETIC FIELDS Part VII

[41, 0]

[25, 1] - relative case

> GaloisGroup(NumberField(C[2]));

Order = 5

(1, 4, 2, 5, 3)

[38 + O(79), -28 + O(79), -31 + O(79), 27 + O(79), -6 + O(79)]

GaloisData over Z_Prime Ideal

Two element generators:

[79, 0]

[57, 1] - relative case

Thus the Galois group is indeed proven to be C5 × C5.

AbelianExtension(I, P)

Creates the full ray class field modulo the ideal I and the infinite places in P .

HilbertClassField(K)

Creates the Hilbert class field of K, i.e. the maximal unramified abelian extension
of K. This is equivalent to AbelianExtension(1*MaximalOrder(K)).

MaximalAbelianSubfield(M)

MaximalAbelianSubfield(F)

MaximalAbelianSubfield(K)

Conductor [RngOrdIdl, [RngIntElt]] Default : []
Let k be the coefficient field of the given number field K. This function creates the
maximal abelian extension A of k inside K. If Conductor is given, it must contain
a multiple of the true conductor. If no value is specified, the discriminant of K is
used.

The correctness of this function is based on some heuristics. The algorithm is
similar to [Coh00, Algorithm 4.4.3]

AbelianExtension(K)

AbelianExtension(M)

Conductor [RngOrdIdl, [RngIntElt]] Default : []
Creates an abelian extension A of k the coefficient field of the input K that is
isomorphic to K. If a value for Conductor is given, it must contain a multiple of
the true conductor, otherwise the discriminant of K is used to be more specific, in
case K is a number field, the discriminant of it’s maximal order is used as an initial
guess, while for field of fractions of orders (K of type FldOrd), the defining order
gives the initial guess.

In contrast to MaximalAbelianSubfield, provided the field is abelian, this func-
tion always computes a correct answer.

Ch. 39 CLASS FIELD THEORY 1013

Example H39E6

We will compute the Hilbert class field of the sextic field defined by a zero of the polynomial
x6 − 3x5 + 6x4 + 93x3 − 144x2 − 153x + 2601 which has a class group isomorphic to C3 × C3.

> m := LLL(MaximalOrder(Polynomial([2601, -153, -144, 93, 6, -3, 1])));

The call to LLL is not necessary, but quite frequently class group computations are faster if the
order basis is LLL-reduced first.

> a,b := ClassGroup(m:Bound := 300);a;

Abelian Group isomorphic to Z/3 + Z/3

Defined on 2 generators

Relations:

3*a.1 = 0

3*a.2 = 0

HilbertClassField on m computes a Non-simple number field defining the Hilbert class field of
m.

> H := HilbertClassField(NumberField(m)); H;

Number Field with defining polynomial [$.1^3 + 1/595*(-460*$.1^5

+ 2026*$.1^4 - 4052*$.1^3 - 52572*$.1^2 + 229338*$.1 -

529159), $.1^3 + 1/37485*(82*$.1^5 + 4344*$.1^4 + 8805*$.1^3

+ 15990*$.1^2 + 410931*$.1 + 1098693)] over its ground field

> time _ := MaximalOrder(H);

Time: 56.150

However, in order to access more of the structural information of H we have to create it as an
abelian extension, using b.

> A := AbelianExtension(b);

> HH := NumberField(A);

Now we are able to compute the maximal order of HH using A and verify the discriminant:

> time M := MaximalOrder(A:Al := "Discriminant");

Time: 3.260

> Discriminant(M);

Ideal of m

Basis:

[1 0 0 0 0 0]

[0 1 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

Note, that as a side effect, the maximal order of HH is now known:

> time MaximalOrder(HH);

Maximal Order of Equation Order with defining polynomials x^3 + [841, 841, 312,

-534, 222, 0], x^3 + [25, -2, -9, 7, -11, -8] over m

1014 GLOBAL ARITHMETIC FIELDS Part VII

Time: 0.000

We will continue this example following the next section.

39.2.5 Binary Operations
The model underlying the class field theory as implemented in Magma is based on the
(generalized) ideal class groups. Based on this group-theoretical description, certain binary
operations are easily possible:

A eq B

Gives two abelian extensions with the same base field, decide if they are the same.

A subset B

Gives two abelian extensions with the same base field, decide if they are contained
in each other.

A * B

Given two abelian extensions with the same base field, find the smallest abelian
extension containing both.

A meet B

Given two abelian extensions with the same base field, find the largest common
subfield.

39.3 Galois Module Structure

If the base field k for class field constructions is normal with respect to some subfield k0,
i.e. k/k0 is normal with Galois group G and if the defining modulus of the ideal group is
G–invariant, then G acts on the ideal group. The following functions view ideal groups
as Galois modules. Given an abelian extension A and parameters All and Over, we will
consider this setup:

Let k be the BaseField of A and k1 the coefficient field of k. If All is true, let
g := Aut(k/k1), otherwise, g := 〈Over〉. In both cases we define k0 := Fix(k, g). In
particular, if k is normal over the coefficient field k1 then k0 = k1 and g is the full Galois
group.

In general g is not required to contain k1 automorphisms, so that any subset of the Q
automorphism group is valid as input. By construction, k is normal over k0, and g acts on
the ideals of k. In general however, g does not act on the ideal groups used to define A.

Ch. 39 CLASS FIELD THEORY 1015

39.3.1 Predicates

IsAbelian(A)

All BoolElt Default : false

Over [Map] Default : []
Returns true if and only if the abelian extension A is abelian over k0.

IsNormal(A)

All BoolElt Default : false

Over [Map] Default : []
Returns true if and only if the abelian extension A is normal over k0. This tests
whether the defining ideal group is a g-module.

IsCentral(A)

All BoolElt Default : false

Over [Map] Default : []
Returns true if and only if the abelian extension A is central over k0. If k is cyclic
over k0 then this is equivalent to checking if A is abelian over k0. This tests whether
the defining ideal group is a g–module with trivial action: If N is the norm group
of A, the group extension

1 → N → G→ g → 1

is central.

39.3.2 Constructions

GenusField(A)

All BoolElt Default : false

Over [Map] Default : []
The genus field is the maximal abelian extension of k0 that is contained in the
abelian extension A. The result of this function is an abelian extension of k0.

H2 G A(A)

For A such that A is normal over Q with base field k that is normal too, compute the
2nd cohomology group of the Galois group of k acting on the ideal group defining
A.

NormalSubfields(A)

Quot SeqEnum[RngIntElt] Default : []
For an abelian extension, normal over Q and defined over a normal number field k
as base field, return a list of all normal intermediate fields. If Quot is given, restrict
to fields where the norm group has the abelian invariants as specified in Quot.

1016 GLOBAL ARITHMETIC FIELDS Part VII

AbelianSubfield(A, U)

FixedField(A, U)

IsNormal BoolElt Default : false

For an abelian extension A with norm group map G → I for some finite abelian
group G and a subgroup U < G, define the field corresponding to G/U , ie. the field
fixed by U . If IsNormal is given then any cohomology information that is present
is transferred to the new field - if possible.

CohomologyModule(A)

For an abelian extension A defined over some normal field k/Q, compute the coho-
mology module (see Chapter 68). The maps returned give the transition between
the Z-modules used in the cohomology package and the ideal groups used to define
A.

The first map returned maps between the automorphism group of k (as an per-
mutation group) and the actual automorphisms of the field. It is obtained as the
third return value of AutomorphismGroup.

The second map maps between the ideal group used to create A and a standart
representation of the same group.

The third map maps between the standart representation of the norm group and
the Z-module.

39.4 Conversion to Number Fields

Although in theory an abelian extension “uniquely” defines a number field and therefore all
its properties, not all of them are directly accessible (in Magma at least). The functions
listed here perform the conversion to a number field, the most important being of course
the function that computes defining equations.

EquationOrder(A)

Verbose ClassField Maximum : 5

Given an abelian extension A of a number field, using the algorithm of Fieker ([Fie00,
Coh00]) defining equations for A are computed. For each cyclic factor of prime
power degree, one polynomial will be constructed. Depending on the size of the
cyclic factors encountered, this may be a very lengthy process.

NumberField(A)

Converts the abelian extension A into a number field. This is equivalent to
NumberField(EquationOrder(A)).

Ch. 39 CLASS FIELD THEORY 1017

MaximalOrder(A)

Al MonStgElt Default : “Kummer”

Partial BoolElt Default : false

Computes the maximal order of the abelian extension A. The result is the same as
that given by MaximalOrder(EquationOrder(A)) but this functions uses the special
structure of A and should be much faster in general.

The first step involves computing the maximal orders of each component.
If Al eq "Kummer" the maximal order computation uses Kummer theory to com-

pute maximal orders of kummer extensions known to each component then intersects
these with the component to gain the maximal order of that component [Sut12].

If Al eq "Round2", the ordinary round 2 maximal order function is used on the
components.

If Al eq "Discriminant", the discriminant of the components is passed into the
maximal order computation.

In the second step, the components are combined into an approximation of the
full maximal order of A.

If Partial is true, the computations stop at this point, otherwise MaximalOrder
is again called and the discriminant of A is passed in.

Components(A)

Verbose ClassField Maximum : 5

A list of relative extensions is determined. One extension per cyclic factor is com-
puted.

Generators(A)

The first return value is a sequence of generating elements for NumberField(A), the
second contains the same elements but viewed as elements of the Kummer extension
used in the construction. The third list contains the images of the second list under
the action of a generator of the automorphism group corresponding to this cyclic
factor.

39.5 Invariants

Several invariants of an abelian extension can easily be obtained from the ideal groups
without first computing defining equations for the field.

Discriminant(A)

Let A be an abelian extension. Based on the conductor-discriminant relation made
explicit by [Coh00, Section 3.5.2], the discriminant of the class field A is computed.
This does not involve the computation of defining equations. The second return
value is the signature of the resulting field.

1018 GLOBAL ARITHMETIC FIELDS Part VII

AbsoluteDiscriminant(A)

The absolute discriminant of A as a number field over Q.

Conductor(A)

Computes the conductor of the abelian extension A, i.e. the smallest ideal and the
smallest set of infinite places that are necessary to define A. The algorithm used is
based on [Pau96, HPP97].

Degree(A)

The degree of the abelian extension A.

AbsoluteDegree(A)

The degree of the abelian extension A over Q.

CoefficientRing(A)

CoefficientField(A)

BaseField(A)

The base field of the abelian extension A, that is FieldOfFractions(BaseRing(A)).

BaseRing(A)

CoefficientRing(A)

The base ring of the abelian extension A, that is the maximal order used to define
the underlying ray class group.

NormGroup(A)

The norm group (see the definition of norm group on page 1000) used to define the
abelian extension A.

DecompositionField(p, A)

The decomposition field of the finite prime p in the abelian extension A as an abelian
(sub)extension.

DecompositionField(p, A)

The decomposition field of the place p in the abelian extension A as an abelian
extension.

DecompositionGroup(p, A)

DecompositionGroup(p, A)

The decomposition group of the finite prime p in the abelian extension A. The
abelian group returned is a subgroup of the norm group.

Ch. 39 CLASS FIELD THEORY 1019

DecompositionGroup(p, A)

The decomposition group of the place p in the abelian extension A. The abelian
group returned is a subgroup of the NormGroup.

DecompositionType(A, p)

The “type” of the decomposition of the finite prime ideal p in the abelian extension
A as a sequence of pairs 〈f, e〉 giving the degrees and the ramification indices.

DecompositionType(A, p)

The “type” of the decomposition of the place p in the abelian extension A as a
sequence of pairs 〈f, e〉 giving the degrees and the ramification indices.

DecompositionType(A, p)

Normal BoolElt Default : false

The “type” of the decomposition over Q of the prime number p in the abelian
extension A as a sequence of pairs 〈f, e〉 giving the degrees and the ramification
indices. If Normal is set to true then the algorithm assumes that the base field of
A is normal. This is used to speed up the computations.

DecompositionTypeFrequency(A, l)

Normal BoolElt Default : false

Computes the decomposition type of all elements in l and returns them as a multi-
set. The list l must only contain objects for which DecompositionType is defined. If
Normal eq true then the underlying DecompositionType function must be able to
deal with it too. If Normal is set to true then the algorithm assumes that the base
field of the abelian extension A is normal. This is used to speed up the computations.

DecompositionTypeFrequency(A, a, b)

Normal BoolElt Default : false

Computes the decomposition type over Q in the abelian extension A of all prime
numbers a ≤ p ≤ b and returns them as a multi set.

If Normal is set to true then the algorithm assumes that the base field of A is
normal. This is used to speed up the computations.

1020 GLOBAL ARITHMETIC FIELDS Part VII

39.6 Automorphisms
The group of relative automorphisms of the abelian extension is isomorphic via the Artin
map to the ideal group used to define the field. After defining equations are computed, the
user can explicitly map ideals that are coprime to the defining modulus to automorphisms
of the field.

ArtinMap(A)

Returns a map from the defining group (considered as a “subgroup” of the ideals
of the base ring) into the automorphisms of the abelian extension A over the base
field.

By the defining property of class fields, this map induces an isomorphism on the
defining group (as an abelian group) onto the relative automorphisms of A.

Since this function constructs the number field defined by A, this may involve a
lengthy calculation.

FrobeniusAutomorphism(A, p)

Computes the relative automorphism of the abelian extensionA that is the Frobenius
automorphism of p. Since this function constructs the number field defined by A,
this may involve a lengthy calculation.

AutomorphismGroup(A)

All BoolElt Default : false

Over [Map] Default : []
If IsNormal is true for the abelian extension A with the given parameters, then the
automorphism group of A over k0 is computed. Since this function constructs the
number field defined by A, this may involve a lengthy calculation.

ProbableAutomorphismGroup(A)

Factor RingIntElt Default : 1
In case of A and it’s base field k both begin normal over Q, the automorphism group
G of A/Q is a group extension of the abelian group coming from the definition of A
and the automorphism group of k/Q. This functions sets up the corresponding group
extension problem and uses DistinctExtensions to compute all group theoretical
possibilities for G. In case of several possible groups, a further selection based on
cycle types and their frequencies is attempted. The optional parameter Factor is
passed on to ImproveAutomorphismGroup to control the amount of time spent on
improving the guess.

While this function can be much faster than the direct computation of the auto-
morphism group, the result of this computation is in general not guaranteed. Fur-
thermore, as there are groups that cannot be distinguished by cycle types and their
frequencies alone, correctness cannot be achieved by increasing the value of Factor.
The intended use of this function is to have a (reasonable fast) method of checking
is the field under consideration has an interesting group before an unnecessary long
call to AutomorphismGroup is attempted.

Ch. 39 CLASS FIELD THEORY 1021

ImproveAutomorphismGroup(F, E)

Factor RngIntElt Default : 1
Given the output of ProbableAutomorphismGroup or ImproveAutomorphismGroup
try to improve the quality of the guess by splitting more primes to get more data
for a cycle-type frequency analysis.

Example H39E7

We will demonstrate the use of ProbableAutomorphismGroup by investigating extensions of
Q(
√

10):

> k := NumberField(Polynomial([-10, 0, 1]));

> R, mR := RayClassGroup(4*3*5*MaximalOrder(k));

> s := [x‘subgroup : x in Subgroups(R:Quot := [2,2])];

> a := [AbelianExtension(Inverse(mq)*mR) where

> _, mq := quo<R|x> : x in s];

> n := [x : x in a | IsNormal(x:All)];

> ProbableAutomorphismGroup(n[2]);

Finitely presented group on 3 generators

Relations

$.2^2 = Id($)

$.3^2 = Id($)

($.2, $.3) = Id($)

($.1, $.2^-1) = Id($)

$.1^-1 * $.3 * $.1 * $.3^-1 * $.2^-1 = Id($)

$.1^2 = Id($)

This shows that since there is only one group extension of a V4 by C2 with the action induced
from the action of the Galois group of k on R, the Automorphism group is already determined.
On the other hand, for the first subgroup there are more possibilities:

> g, c := ProbableAutomorphismGroup(n[1]);

> #c;

2

We will try to find the “correct” guess by looking at the orders of elements which correspond to
decomposition types and their frequencies:

> {* Order(x) : x in CosetImage(c[1], sub<c[1]|>) *};

{* 1, 2^^7 *}

> {* Order(x) : x in CosetImage(c[2], sub<c[2]|>) *};

{* 1, 2^^3, 4^^4 *}

So, if we find a prime of degree 4 we know it’s the second group. Looking at the frequencies, we
can be pretty confident that we should be able to find a suitable prime - if it exists. Since among
the first 100 primes there is not a single prime with a factor of degree 4 we are pretty confident
that the first group is the correct one. By setting the verbose level, we can see how the decision
is made:

> SetVerbose("ClassField", 2);

1022 GLOBAL ARITHMETIC FIELDS Part VII

> _ := ImproveAutomorphismGroup(n[1], c:Factor := 2);

Orders and multiplicities are [

{* 1, 2^^7 *},

{* 1, 2^^3, 4^^4 *}

]

Probable orders and multiplicities are {* 1^^3, 2^^34 *}

Error terms are [0.00699329636679632541587354133907,

0.993006703633203674584126458661]

This indicates that out of 37 primes considered, non had a degree 4 factor, thus we are confident
that the first group is the correct one.

AbsoluteGaloisGroup(A)

Given an abelian extension, compute it’s Galois group over Q, ie. the abstract
automorphism group of a Q-normal closure of A. This function requires the defining
equations for A as a number field to be known, but is considerably faster than calling
GaloisGroup for the number field directly. The group is returned as an permutation
group. All roots of the defining polynomial of the coefficient field of A as well as of
the defining polynomials of A itself are returned in some local field. The zeros as
well as data required for further computations are contained in the 3rd return value.

TwoCocycle(A)

For an abelian extension that is normal over Q and defined over a normal base field
k/Q, the automorphism group of A/Q is a group extension of the Galois group of k
by A. As a group extension it corresponds to an element in the second cohomology
group and can be represented by an explicit 2-cocyle with values in the norm group.
This function computes such a cocycle. It can be used as an element of the second
cohomology group of the cohomology module of A, see CohomologyModule.

39.7 Norm Equations

For cyclic fields Hasse’s famous norm theorem states that when considering the solvability
of norm equations, local solvability everywhere is equivalent to global solvability. Un-
fortunately, this local-global principle fails in general even for fields with Galois group
isomorphic to Klein’s group V4. The extent of this failure is measured by the number knot
which is the quotient of the numbers that are everywhere local norms by the global norms.
As it turns out, the structure and size of this quotient can be easily computed, so that it
is possible to test if Hasse’s theorem is sufficient.

As a second consequence, solvability can be decided by looking at the maximal p-
subfields for all primes that divide the degree of the field. Even better, a global solution
can be obtained by combining solutions from the maximal p-subfields.

It is important to note that local solvability can be decided by analyzing the ideal
groups only. Thus, all the “local” functions will avoid computing defining equations and
are therefore reasonably fast.

Ch. 39 CLASS FIELD THEORY 1023

IsLocalNorm(A, x, p)

Returns true if and only if x is a local norm in the abelian extension A at the finite
prime p, i.e. if x is a norm in the extension of the local field obtained by taking the
completion at p.

IsLocalNorm(A, x, i)

Returns true if and only if x is a local norm in the abelian extension A at the
infinite prime i.

IsLocalNorm(A, x, p)

Returns true if and only if x is a local norm in the abelian extension A at the place
p, i.e. if x is a norm in the extension of the local fields obtained by taking the
completion at p.

IsLocalNorm(A, x)

Returns true if and only if x is a local norm everywhere in the abelian extension A.

Knot(A)

The (number) knot is defined as the quotient group of the group consisting of those
elements of the base field of the abelian extension A that are local norms everywhere
modulo the elements that are norms. Therefore, if the knot is trivial, an element is
a local norm if and only if it is a norm.

Hasse’s norm theorem states that for cyclic fields A the knot is always trivial.
In general, this is not true for non-cyclic fields.

NormEquation(A, x)

Checks if x is a norm, and if so returns an element of the pre-image. As a first step
this function verifies if x is a local norm. If x passes this test, the number field of A
is computed and by combining solutions of the norm equation in certain subfields a
solution in A is constructed. If the knot is non-trivial, the last step may fail.

This function can be extremely time consuming as not only defining equations
for A are computed but class groups in some of them. For large A this is much more
efficient than just solving the norm equation in the number field.

IsNorm(A, x)

As a first step, this function verifies if x is a local norm. If x passes this test, Magma
verifies whether the knot is trivial. If it is, true is returned. However, if the knot is
non-trivial, then the function NormEquation is invoked.

1024 GLOBAL ARITHMETIC FIELDS Part VII

Example H39E8

We illustrate the power of the class field theoretic approach with the following example from group
theory. We want to solve for elements of norm 2 or 5 in the field Q(ζ5)(η) where η20−ζ5η

10+ζ2
5 = 0

over the cyclotomic field. This field has degree 80 over Q and is therefore far too large for a direct
method.

> k := CyclotomicField(5);

> kt := ext<k|>;

> K := NumberField(kt.1^20 - k.1*kt.1^10 +k.1^2);

Now we convert K into an abelian extension of k:

> A := AbelianExtension(K);

> A;

FldAb, defined by (<[5904900000000000000000000, 0, 0, 0]>, [])

of structure: Z/2 + Z/10

> Conductor(A);

Ideal

Two element generators:

[37500, 0, 0, 0]

[12060, 15120, 7440, 1680]

[]

We now recreate A using the smaller conductor. This will significantly speed up the following
computations.

> m_0, m_inf := $1;

> A := AbelianExtension(K : Conductor := [* m_0, m_inf *]);

We first check the local solvability:

> IsLocalNorm(A, BaseRing(A)!2);

false

> IsLocalNorm(A, BaseRing(A)!5);

true

> Knot(A);

Abelian Group isomorphic to Z/2

Defined on 1 generator in supergroup:

$.1 = $.1

Relations:

2*$.1 = 0

Since the knot is isomorphic to a C2, the local solvability is not sufficient, but we can attempt to
solve the equation:

> NormEquation(A, BaseRing(A)!5);

true [

1/10*(-3*zeta_5^3 - 6*zeta_5^2 + zeta_5 -

7)*$.1*$.2*$.3^4 + 1/10*(9*zeta_5^3 + 3*zeta_5^2 +

2*zeta_5 + 6)*$.1*$.2*$.3^3 + 1/10*(-6*zeta_5^3 +

3*zeta_5^2 - 3*zeta_5 + 1)*$.1*$.2*$.3^2 +

Ch. 39 CLASS FIELD THEORY 1025

1/10*(-3*zeta_5^3 - 6*zeta_5^2 + zeta_5 -

7)*$.1*$.2*$.3 + 1/2*(2*zeta_5^3 + zeta_5^2 + zeta_5

+ 2)*$.1*$.2 + 1/10*(-12*zeta_5^3 - 4*zeta_5^2 -

6*zeta_5 - 13)*$.1*$.3^4 + 1/10*(11*zeta_5^3 +

2*zeta_5^2 + 13*zeta_5 + 4)*$.1*$.3^3 +

1/10*(zeta_5^3 + 2*zeta_5^2 - 7*zeta_5 +

9)*$.1*$.3^2 + 1/10*(-12*zeta_5^3 - 4*zeta_5^2 -

6*zeta_5 - 13)*$.1*$.3 + 1/2*(2*zeta_5^3 - zeta_5^2

+ 2*zeta_5 + 1)*$.1 + 1/10*(-zeta_5^3 + 3*zeta_5^2 -

3*zeta_5 + 1)*$.2*$.3^4 + 1/10*(-2*zeta_5^3 +

zeta_5^2 + 4*zeta_5 - 3)*$.2*$.3^3 +

1/10*(3*zeta_5^3 - 4*zeta_5^2 - zeta_5 +

2)*$.2*$.3^2 + 1/10*(-zeta_5^3 + 3*zeta_5^2 -

3*zeta_5 + 1)*$.2*$.3 + 1/2*(-zeta_5^3 - zeta_5^2 -

1)*$.2 + 1/10*(-14*zeta_5^3 - 13*zeta_5^2 - 2*zeta_5

- 21)*$.3^4 + 1/10*(22*zeta_5^3 + 4*zeta_5^2 +

11*zeta_5 + 13)*$.3^3 + 1/10*(-8*zeta_5^3 +

9*zeta_5^2 - 9*zeta_5 + 8)*$.3^2 +

1/10*(-14*zeta_5^3 - 13*zeta_5^2 - 2*zeta_5 -

21)*$.3 + 1/2*(5*zeta_5^3 + zeta_5^2 + 3*zeta_5 + 4)

]

> _, s := $1;

> Norm(s[1]);

5

Thus, the largest field we had to work in was of degree 16.

39.8 Attributes

In this rather technical section, we describe the programming interface to the abelian
extension module. Most of the internal representation is available as attributes and may
be used to extend the package.

39.8.1 Orders
The only attribute of orders RngOrd that is of interest here concerns cyclotomic extensions.
The first and usually most time consuming step while computing defining extensions is to
adjoin certain roots of unity and to compute class groups of these rather large fields.

The cyclotomic extensions are stored and are available via an attribute. This attribute
is a read-only attribute.

1026 GLOBAL ARITHMETIC FIELDS Part VII

o‘CyclotomicExtensions

If defined, CyclotomicExtensions is a list of records, each containing data for one
cyclotomic extension, i.e. for an order o this is an extension of the form O := o[ζl]
for a prime power l = pn. The components are
Abs : a maximal order Oa of O given as an absolute extension
Rel : O as an extension of o
p2n : the “l”, i.e. the cyclotomic order
Zeta : a primitive lth root of unity as an element of the absolute extension Abs

Aut : a list of records describing generators for the automorphism group of O
over o. If p is an odd prime then the list will always be of length 1. This list
consists of the following components:

Aut‘Abs : the automorphism as an automorphism of Oa
Aut‘Rel : the automorphism as an automorphism of O. Note that in general

this is not an o-automorphism, as o itself may contain roots of unity.
Aut‘Order : the order of the automorphism
Aut‘r : the image of ζl, this automorphism sends ζl to ζr

l .
Due to possible common subfields of o and Q(ζk), the degree of O over o may

be smaller than expected. Furthermore, Oa will be in optimized representation.

Example H39E9

We will demonstrate this with the Hilbert class field of Q(
√−1001):

> Zx<x> := PolynomialRing(Integers());

> k := NumberField(x^2+1001);

> g, m :=ClassGroup(k); g;

Abelian Group isomorphic to Z/2 + Z/2 + Z/10

Defined on 3 generators

Relations:

2*$.1 = 0

2*$.2 = 0

10*$.3 = 0

> K := HilbertClassField(k);

Number Field with defining polynomial [$.1^2 - 2*k.1 + 136,

$.1^2 - 4*k.1 - 47, $.1^2 + 2*k.1 - 136, $.1^5 + 37210*$.1^3

+ (-2104500*k.1 + 61148840)*$.1^2 + (-292068000*k.1 +

14636593760)*$.1 + 305212632000*k.1 - 1779009360128] over k

> o := MaximalOrder(k);

> c := o‘CyclotomicExtensions;

> #c;

2

Since there are two non-isomorphic direct cyclic factors of prime power order in the class group
of k, we have two cyclotomic extensions stored in o. One has order 2 and the other has order 5:

> c[1]‘p2n;

Ch. 39 CLASS FIELD THEORY 1027

2

> c[2]‘p2n;

5

Since the order 2 extension is essentially trivial, we will discuss the other extension in detail.

> c[2]‘Abs;

Maximal Order of Equation Order with defining polynomial x^8 +

4*x^7 + 4016*x^6 + 12034*x^5 + 6032056*x^4 + 12044060*x^3 +

4016040045*x^2 + 4010020020*x + 1000000005005 over Z

> c[2]‘Rel;

Maximal Equation Order with defining polynomial x^4 + x^3 + x^2 +

x + [1, 0] over o

The relative extension is generated by a root of the 5th-cyclotomic polynomial of degree 4, so
there are no common subfields. The corresponding absolute extension has degree 8. As one can
see, the class group (at least a conditional class group) is known:

> c[2]‘Abs:Maximal;

F[1]

|

F[2]

/

/

Q

F [1] Given by transformation matrix

F [2] x^8 + 4*x^7 + 4016*x^6 + 12034*x^5 + 6032056*x^4 +

12044060*x^3 + 4016040045*x^2 + 4010020020*x + 1000000005005

Discriminant: 4016024016004000000

Index: 4100090871676479535981/1

Class Number 12800

Class Group Structure C2 * C4 * C20 * C80

Signature: [0, 4]

We will illustrate the Aut entries by showing their effect on ζ5. Since the maps operate between
the number fields rather than the orders, we will coerce the results back into the orders for clarity.
The only difference between Rel and Abs is that Rel implements the automorphism in the relative
extension.

> Oa := c[2]‘Abs;

> z := c[2]‘Zeta; z;

[0, 1, 0, 0, 0, 0, 0, 0]

> Oa!c[2]‘Aut[1]‘Abs(z);

[0, 0, 1, 0, 0, 0, 0, 0]

> z^c[2]‘Aut[1]‘r;

[0, 0, 1, 0, 0, 0, 0, 0]

The Order entry gives the order of the automorphism:

> c[2]‘Aut[1]‘Order;

4

1028 GLOBAL ARITHMETIC FIELDS Part VII

> Oa!c[2]‘Aut[1]‘Abs(z);

[0, 0, 1, 0, 0, 0, 0, 0]

> Oa!(c[2]‘Aut[1]‘Abs($1));

[-1, -1, -1, -1, 0, 0, 0, 0]

> Oa!(c[2]‘Aut[1]‘Abs($1));

[0, 0, 0, 1, 0, 0, 0, 0]

> Oa!(c[2]‘Aut[1]‘Abs($1));

[0, 1, 0, 0, 0, 0, 0, 0]

As a by–product one can see the optimized representation: the first four basis elements are clearly
1, ζ5, ζ2

5 , ζ3
5 which are the T2 shortest integral elements in m.

39.8.2 Abelian Extensions
Abelian extensions have several attributes. Most of them are only useful in programming.

A‘Components

This read-only atribute contains a record for each cyclic factor of prime power degree
that occurs in the abelian extension. In order to describe the contents we have to
fix some definitions. Let o be the base ring of the abelian extension A. Then O will
be the maximal order of the cyclotomic extension o[ζl] as an extensions of Z. The
algorithm for the computation of defining extensions will firstly compute a generator
a ∈ O such that O(a1/l) equals A(ζl). This element will be a certain S-unit of O.

The components are
Basis : a matrix B containing order elements. This represents a “multiplica-

tive basis” for the generator a and all the S-units that are used.
GenRaw : the exponent vector G defining a, i.e.

a =
∏

i

B1,i
Gi,1 .

UnitsRaw : a matrix U defining a basis for the group of S-units, i.e.

uj =
∏

i

B1,i
Uj,i .

S : a list containing the prime ideals of S
Gen : a as an element of Oa
GenAut : the image of a generator for the class field (an image of Class

Field.2) in the field of fractions of O under a generator for the cyclic
group corresponding to this component.

GenInv : 1/a as an element of the field of fractions of Oa
O : the big Kummer extension Oa(a1/l)

Ch. 39 CLASS FIELD THEORY 1029

ClassField : an equation order for the cyclic extension corresponding to this com-
ponent. This will be an extension of o.

Artin : the Artin map on the big Kummer extension o[ζl](U
1/l
S) where the

automorphisms are represented as elements in some abelian group of
type C#S

l .

A‘DefiningGroup

A‘NormGroup

These two attributes give access to the ideal group used to define A, and they have
the same structure. DefiningGroup is the group used to create A in the first place
whereas NormGroup contains the group defined modulo the conductor. The user
needs to call the function Conductor in order to define this component. These
attributes are read-only.

The records contain the following components:

Map : the map as passed into the AbelianExtension constructor, respec-
tively, an equivalent map.

m0 : the “finite” part of the modulus underlying Map

m inf : the “infinite” part of the modulus underlying Map

RcgMap : if present, contains the map returned from the call to RayClassGroup
with m0 and m inf.

GrpMap : if present, the “rest” of Map, i.e. Map = RcgMap ◦ GrpMap.

A‘IsAbelian

Stores the result of a call to IsAbelian with parameter All := true.

A‘IsNormal

Stores the result of a call to IsNormal with parameter All := true.

A‘IsCentral

Stores the result of a call to IsCentral with parameter All := true.

Example H39E10

To illustrate the preceeding examples we will investigate the 3-part of the ray class field modulo
36 over Z[

√
10]:

> Zx<x> := PolynomialRing(Integers());

> o := MaximalOrder(x^2+10);

> r, mr := RayClassGroup(36*o);

> q, mq := quo<r| [r.i*3 : i in [1..Ngens(r)]]>;

> A := AbelianExtension(Inverse(mq)*mr); A;

FldAb, defined by (<[36, 0]>, [])

1030 GLOBAL ARITHMETIC FIELDS Part VII

of structure: Z/3 + Z/3

At this stage, the only attribute that is assigned is DefiningGroup.

> la := GetAttributes(FldAb);

> [<assigned A‘‘i, i> : i in la];

[<false, Components>, <true, DefiningGroup>, <false, IsAbelian>,

<false, IsCentral>, <false, IsNormal>, <false, NormGroup>]

So let us have a closer look at DefiningGroup:

> d := A‘DefiningGroup;

> d;

rec<recformat<Map, m0, m_inf, RcgMap, GrpMap> | Map := Mapping

from: GrpAb: q to Set of ideals of o

Composition of Mapping from: GrpAb: q to GrpAb: r and

Mapping from: GrpAb: r to Set of ideals of o, m0 := Principal

Ideal of o

Generator:

[36, 0], m_inf := [], RcgMap := Mapping from: GrpAb: r to Set

of ideals of o, GrpMap := Mapping from: GrpAb: q to GrpAb: r>

As one can see, Map is the original map used to define A. Note that this is the composition of
RcgMap and GrpMap, the first being equivalent to mr, the second to mq. Furthermore, the defining
modulus is now available in m0 and m inf.
After having set up A, we now need to transform it into a number field in order for the Components
to be assigned:

> K := NumberField(A);

> K;

Number Field with defining polynomial [$.1^3 - 3*$.1 - 6*$.1 -

11, $.1^3 - 3*$.1 - 6*$.1 + 11] over its ground field

> c := A‘Components;

> #c;

2

We will focus on the first component only.

> B := c[1]‘Basis;

> a := &* [B[1][i] ^ c[1]‘GenRaw[i][1] : i in [1..Ncols(B)]];

-11/1*$.2 + 4/1*$.3 + 2/1*$.4

> c[1]‘Gen;

[0, -11, 4, 2]

> $1 eq $2;

true

> c[2]‘GenInv * a eq 1;

true

In S we need all primes dividing the degree 9 of our extension, all primes dividing the modulus
36 and enough primes to generate the 3-part of the class group. Since the class group can be
generated by the prime ideal over 2, this leaves us with only two prime ideals in S. Since k is
imaginary quadratic, the base field k[ζ3] is totally complex of degree 4 which implies unit rank 1.

Ch. 39 CLASS FIELD THEORY 1031

So the free rank of our S-unit group will be 3, and since we have to take care of the torsion unit,
GenRaw will have 4 columns.

> #c[1]‘S;

2

> UnitRank(o);

1

> Ncols(c[1]‘UnitsRaw);

4

> U := c[1]‘UnitsRaw;

> u := [&* [B[1][i] ^ U[i][j] : i in [1..Ncols(B)]] : j in [1..4]];

Now u1 should be a fundamental unit for Oa, u2 and u3 are S-units and u4 is the torsion unit,
since we adjoin the 3rd-roots of unity, this will be a 6th root of unity.

> Oa := Parent(B[1][1]);

> Oa!u[1];

[0, -11, 4, 2]

> IsUnit($1);

true

> Decomposition(u[2]);

[

<Prime Ideal of Oa

Two element generators:

[3, 0, 0, 0]

[-9, 0, 1, 2], 1>

]

> u[4]^6 eq 1;

Now O should be an extension of Oa:

> c[1]‘O:Maximal;

F[1]

/

/

E2[1]

/

/

E1[1]

/

/

Q

F [1] x^3 + [[0, -4], [11, -2]]

E 2[1] x^2 + x + [1, 0]

E 1[1] x^2 + 10

Index : <[[1, 0], [0, 0]]>

The class field K we are seeking is a subfield of O:

> c[1]‘ClassField;

Equation Order with defining polynomial x^3 + [-3, 0]*x + [-11,

1032 GLOBAL ARITHMETIC FIELDS Part VII

-6] over o

> g := c[1]‘ClassField.2;

> c[1]‘O!g;

[[[0, 0], [0, 0]], [[1, 0], [0, 0]], [[11, 2], [11, -2]]]

Note that the absolute term of the defining polynomial is a. Since GenAut is an image of g, its
minimal polynomial should be the same as that of g:

> MinimalPolynomial(g);

$.1^3 - 3/1*o.1*$.1 - 11/1*o.1 - 6/1*o.2

> Evaluate($1, c[1]‘GenAut);

0

39.9 Group Theoretic Functions

39.9.1 Generic Groups
Quite frequently in computational algebra one constructs a set of objects that generate a
group under some operation. Generic groups are finite groups that are defined by gener-
ators that have implicit relations. In order to use them, one has to provide a function for
the multiplication of two elements and one to check equality. If known, the identity object
can also be passed in.

Generic groups are used in the class field package for the automorphism groups. A
frequent situation is that one knows certain automorphisms (as maps) and would like to
get the group generated by them. If the group is reasonably small, this can be done using
the functions in this section.

All functions here rely on the group being small enough to allow complete enumeration
of all elements.

The main application are situations where multiplication of the actual objects is time
consuming so one would like to transfer as much as possible to some abstract finite group.

GenericGroup(X)

Mult Intrinsic Default : ′∗′
Eq Intrinsic Default : ′eq′

Id Any Default :

Verbose GrpGen Maximum : 3

Creates the group G generated by the elements of X. The function assumes that the
group is finite. The second return value is a map from G onto a list of elements of
G which are of the same type as the elements of X.

Since this function will enumerate all group elements, the group cannot be too
large.

Ch. 39 CLASS FIELD THEORY 1033

AddGenerator(G, x)

Verbose GrpGen Maximum : 3
Adds a new generator x to G. If x was already in G, the value false is returned
and the other return values are unassigned. Otherwise, the new group and the
corresponding map is returned.

G has to be a generic group as returned by GenericGroup.
The function applies a version of Dimino’s algorithm [But91a] to find all elements

of G with as few operations as possible.

FindGenerators(G)

Given a generic group G as returned by GenericGroup, find a small set of generators.

39.10 Bibliography
[But91a] Gregory Butler. Dimino’s Algorithm, pages 13 – 23. Volume 559 of LNCS

[But91b], 1991.
[But91b] Gregory Butler. Fundamental Algorithms for Permutation Groups, volume 559

of LNCS. Springer-Verlag, 1991.
[CDO96] Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier. Computing Ray Class

Groups, Conductors and Discriminants. In Cohen [Coh96], pages 52–59.
[CDO97] Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier. Computing Ray Class

Groups, Conductors and Discriminants. Submitted to Math. Comp., 1997.
[Coh96] Henri Cohen, editor. ANTS II, volume 1122 of LNCS. Springer-Verlag, 1996.
[Coh00] Henri Cohen. Advanced Topics in Computational Number Theory. Springer,

Berlin–Heidelberg–New York, 2000.
[Fie00] Claus Fieker. Computing Class Fields via the Artin Map. Math. Comput.,

70(235):1293–1303, 2000.
[HPP97] Florian Heß, Sebastian Pauli, and Michael E. Pohst. On the computation of

the multiplicative group of residue class rings. Math. Comp., 1997.
[Pau96] Sebastian Pauli. Zur Berechnung von Strahlklassengruppen. Diplomarbeit,

Technische Universität Berlin, 1996.
URL:http://www.math.tu-berlin.de/˜kant/publications/diplom/pauli.ps.gz.

[Sut12] Nicole Sutherland. Efficient Computation of Maximal Orders of Radical (in-
cluding Kummer) Extensions. Journal of Symbolic Computation, 47(5):552–567, 2012.

40 ALGEBRAICALLY CLOSED FIELDS
40.1 Introduction 1037

40.2 Representation 1037

40.3 Creation of Structures 1038

AlgebraicClosure(K) 1038
AlgebraicClosure() 1038
AssignNamePrefix(A, S) 1038

40.4 Creation of Elements 1039

40.4.1 Coercion 1039

! 1039
One Identity 1039
Zero Representative 1039

40.4.2 Roots 1039

Roots(f) 1039
Roots(f, A) 1039
RootOfUnity(n, A) 1039
SquareRoot(a) 1040
Sqrt(a) 1040
IsSquare(a) 1040
Root(a, n) 1040
IsPower(a, n) 1040

40.4.3 Variables 1040

. 1040

40.5 Related Structures 1045

Category Parent Centre 1045
PrimeRing PrimeField 1045
FieldOfFractions 1045

40.6 Properties 1045

BaseField(A) 1045
Rank(A) 1045
Degree(A, v) 1045
Degree(A) 1045
AffineAlgebra(A) 1046
QuotientRing(A) 1046
Ideal(A) 1046

40.7 Ring Predicates and Properties 1046

IsCommutative IsUnitary 1046
IsFinite IsOrdered 1046
IsField IsEuclideanDomain 1046

IsPID IsUFD 1046
IsDivisionRing IsEuclideanRing 1046
IsPrincipalIdealRing IsDomain 1046
eq ne 1046
Characteristic 1046

40.8 Element Operations 1046

40.8.1 Arithmetic Operators 1047

+ - 1047
+ - * / ^ 1047
+:= -:= *:= 1047

40.8.2 Equality and Membership 1047

40.8.3 Parent and Category 1047

Parent Category 1047

40.8.4 Predicates on Ring Elements . . . 1047

IsZero(a) 1047
IsOne(a) 1047
IsMinusOne(a) 1047
eq 1048
ne 1048
in notin 1048
IsNilpotent IsIdempotent 1048
IsUnit IsZeroDivisor IsRegular 1048
IsIrreducible IsPrime 1048
40.8.5 Minimal Polynomial, Norm and

Trace 1048

MinimalPolynomial(a) 1048
Norm(a) 1048
Trace(a) 1048
Conjugates(a) 1049

40.9 Simplification 1050

Simplify(A) 1050
Prune(A) 1050

40.10 Absolute Field 1051

AbsoluteAffineAlgebra(A) 1051
AbsoluteQuotientRing(A) 1051
AbsolutePolynomial(A) 1051
Absolutize(A) 1051

40.11 Bibliography 1055

Chapter 40

ALGEBRAICALLY CLOSED FIELDS

40.1 Introduction

Magma contains a system [Ste02, Ste10] for computing with algebraically closed fields,
which have the property that they always contain all the roots of any polynomial defined
over them. It is of course not possible to construct explicitly the closure of a field, but the
system works by automatically constructing larger and larger algebraic extensions of an
original base field as needed during a computation, thus giving the illusion of computing
in the algebraic closure of the base field.

Such a system was already proposed before (the D5 system [DDD85]), but this has
difficulty with the parallelism which occurs when one must compute with several conju-
gates of a root of a reducible polynomial, leading to situations where a certain expression
evaluated at a root is invertible but evaluated at a conjugate of that root is not invertible.

Magma’s system has no such problem and one can compute with the field just like
any other field in Magma; all standard algorithms which work over generic fields or which
use factorization work automatically without having to be adapted to handle the many
conjugates of a root.

Especially significant is also the fact that all the Gröbner basis algorithms work well over
such fields. One can compute the variety of any zero-dimensional multivariate polynomial
ideal over the algebraic closure of its base field. Puiseux expansions of polynomials are
also successfully computed using an algebraically closed field.

40.2 Representation

An algebraically closed field is based on an affine algebra (or quotient ring of a multivariate
polynomial ring by an ideal of “relation” polynomials). The defining polynomials of this
affine algebra are not necessarily irreducible – the system avoids factorization over an
algebraic number field when possible, and automatically splits the defining polynomials of
the affine algebra when factors are found during computations with the field. These factors
often arise automatically because of the structure of the algorithm which is computing over
the field.

Many technical optimizations have been designed to make the system practical. For
example, the most expensive arithmetic operation by far in the whole system is, quite
surprisingly, the testing of whether an element of the field is zero or not (which is utterly
trivial for most other rings, of course)! To allow for the parallelism amongst conjugates to
work, Magma performs a recursive GCD computation with the element, considered as a
polynomial in its highest variable, and the appropriate defining polynomial, to determine
the result. If the GCD is non-trivial, then this forces a splitting of the defining polynomial,

1038 GLOBAL ARITHMETIC FIELDS Part VII

all elements of the field are reduced, and the original element may now be zero. More details
concerning the internal design of the system can be found in [Ste10].

Care must be taken with the interpretation of the roots of a polynomial in this sys-
tem. The roots of polynomials are only defined algebraically, and the user may wish to
identify them with some particular elements of the complex field, for example, but one
cannot assume that the system will follow the embedding one wishes. An example will
demonstrate. Suppose that α is a root of x2 − 2, β is a root of x2 − 3, and γ is a root of
x2− 6. Does γ = α ·β or does γ = −α ·β? The system will have to make a choice between
the two possibilities if the situation arises, but the choice which it will make cannot be
predicted beforehand. That is, even if we might like to interpret things as α =

√
2, β =

√
3

and γ =
√

6 (referring to the positive real roots in each case), it cannot be assumed that
this will hold in the particular algebraically closed field, since the roots are only defined
algebraically.

In the following descriptions, the adjective invariable, applied to a value, means that
the mathematical value of a function will not change, despite simplifications, etc. which
may occur after the function is called. That is, the value returned by the function may be
considered constant with respect to the eq operator. A value may print differently later
(because of simplifications of the field), but the mathematical value will never change.

In contrast, the adjective variable means that the mathematical value of a function
may change (as a result of simplifications). This is usually only a property of access-like
functions like Degree(A, v) (see below). But the fact that most functions below have
invariable return values enables the illusion of a true field to be sustained.

Separate algebraic fields should be created for separate problems which involve root
taking (if the roots of the different problems are unrelated). Otherwise it may be unnec-
essarily expensive to compute in the field with roots of unrelated polynomials.

Currently, the base field of an algebraic closure may be a finite field, the rational field
Q, or a rational function field over a finite field or Q.

40.3 Creation of Structures

AlgebraicClosure(K)

Create the algebraic closure A of the field K. Currently K may be Q, a finite field
or a rational function field over a finite field or the rational field.

AlgebraicClosure()

Create the algebraic closure A of the rational field Q.

AssignNamePrefix(A, S)

(Procedure.) Given an algebraically closed field A and a string S, reassign the
string prefix of the names of A to be S. By default, this prefix is "r". When new
variables are introduced by root taking, they are named by this prefix with the
number appended (see A.i below).

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1039

40.4 Creation of Elements

The usual way of creating elements within an algebraically closed field A is by coercion
from the base field into A, or by construction of roots of polynomials over A (and this may
be done indirectly via other functions).

40.4.1 Coercion

A ! a

Given a finite field A create the element specified by a; here a is allowed to be an
element coercible into A, which means that a may be

(i) an element of A;

(ii)an integer or rational.

One(A) Identity(A)

Zero(A) Representative(A)

These generic functions create A!1, A!1, A!0 and A!0, respectively.

40.4.2 Roots

Roots(f)

Roots(f, A)

Max RngIntElt Default :

Given a polynomial f over an algebraically closed field A, or given a polynomial f
over some subring of A together with A itself, this function computes all roots of f
in A, and returns a sorted sequence of tuples (pairs), each consisting of a root of f
in A and its multiplicity. Since A is algebraically closed, f always splits completely.

If the parameter Max is set to a non-negative number m, at most m roots are
returned. This feature can be quite useful when one wishes, say, only one root of
a polynomial and not all the conjugates of the root, as they will cause the field to
have more variables than necessary and this can make the full simplification of the
field much more difficult later (if that is requested).

Note that the function Factorization(f) is also supported, and simply returns
the linear factors and multiplicities corresponding to the roots returned by Roots(f).

RootOfUnity(n, A)

Return a primitive n-th root of unity in A, i.e., an element ω ∈ A such that
ωn = 1 and ωi 6= 1 for 1 ≤ i < n. This always exists since the field is alge-
braically closed, and the return value is invariable. This function is equivalent to
Roots(CyclotomicPolynomial(n), A: Max := 1)[1, 1].

1040 GLOBAL ARITHMETIC FIELDS Part VII

SquareRoot(a)

Sqrt(a)

A square root of the element a from the field A, i.e., an element y of A such that
y2 = a. A square root always exists since the field is algebraically closed, and the
return value is invariable.

IsSquare(a)

Return true and a square root of the element a from the field A, i.e., true and
an element y of A such that y2 = a. A square root always exists since the field is
algebraically closed, and the return value is invariable.

Root(a, n)

Return an n-th root of the element a from the field A, i.e., an element y of A such
that yn = a. A root always exists since the field is algebraically closed, and the
return value is invariable.

IsPower(a, n)

Return true and an n-th root of the element a from the field A, i.e., true and an
element y of A such that yn = a. A root always exists since the field is algebraically
closed, and the return value is invariable.

40.4.3 Variables

A . i

Return the i-th variable of A. i must be between 1 and the rank of A (the current
number of variables in A). Initially A has no variables, and new variables are only
created by calling Roots above (or similar functions such as Sqrt). As long as Prune
or Absolutize are not called (which shift the variable numbers – see below), the
return value of this function is invariable, so A.i for fixed i will always return the
same mathematical object despite any simplifications or constructions of new roots.
New roots are always assigned higher generator numbers.

Example H40E1

We first show the most common way of creating roots: by the Roots function.

> A := AlgebraicClosure();

> P<x> := PolynomialRing(IntegerRing());

> r := Roots(x^3 + x + 1, A);

> r;

[

<r1, 1>,

<r2, 1>,

<r3, 1>

]

> A;

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1041

Algebraically closed field with 3 variables

Defining relations:

[

r3^3 + r3 + 1,

r2^3 + r2 + 1,

r1^3 + r1 + 1

]

> a := r[1,1];

> a^3 + a;

-1

> A.1;

r1

> A.2;

r2

> A.3;

r3

> A.1 eq a;

true

It is often useful to use the Max parameter with the Roots function. Note that in this case A does
not have the extra variables found in the previous example.

> A := AlgebraicClosure();

> r := Roots(x^3 + x + 1, A: Max := 1);

> A;

Algebraically closed field with 1 variable

Defining relations:

[

r1^3 + r1 + 1

]

One can also create elements by Sqrt, etc.

> A := AlgebraicClosure();

> sqrt2 := Sqrt(A ! 2);

> cube3 := Root(A!3, 3);

> A;

Algebraically closed field with 2 variables

Defining relations:

[

r2^3 - 3,

r1^2 - 2

]

> sqrt2^2;

2

> cube3^3;

3

1042 GLOBAL ARITHMETIC FIELDS Part VII

Example H40E2

The n-th Swinnerton-Dyer polynomial is defined to be

∏
(x±

√
2±

√
3±

√
5± · · · ± √pn),

where pi is the i-th prime and the product runs over all 2n possible combinations of + and −
signs. Such polynomials lie in Z[x] and are irreducible over Z. It is very easy to compute them
using algebraically closed fields. We simply construct the square roots we need and multiply out
the expression, coercing the resulting polynomial to Z[x].

> Z := IntegerRing();

> function SwinnertonDyer(n)

> P := [2];

> for i := 2 to n do

> Append(~P, NextPrime(P[#P]));

> end for;

> A := AlgebraicClosure();

> S := [Sqrt(A ! p): p in P];

> P<z> := PolynomialRing(A);

> f := &*[z + &+[t[i]*S[i]: i in [1..n]]: t in CartesianPower({-1, 1}, n)];

> return PolynomialRing(Z) ! f;

> end function;

> P<x> := PolynomialRing(Z);

> [SwinnertonDyer(i): i in [1..5]];

[

x^2 - 2,

x^4 - 10*x^2 + 1,

x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576,

x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 -

7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225,

x^32 - 448*x^30 + 84864*x^28 - 9028096*x^26 + 602397952*x^24 -

26625650688*x^22 + 801918722048*x^20 - 16665641517056*x^18 +

239210760462336*x^16 - 2349014746136576*x^14 +

15459151516270592*x^12 - 65892492886671360*x^10 +

172580952324702208*x^8 - 255690851718529024*x^6 +

183876928237731840*x^4 - 44660812492570624*x^2 +

2000989041197056

]

The Swinnerton-Dyer polynomials yield worse-case inputs for the Berlekamp-Zassenhaus factor-
ization algorithm for polynomials over Z, but they are no longer difficult to factor using van
Hoeij’s new algorithm (see Example H23E6).
We can even define a simple extension of the Swinnerton-Dyer polynomials. Let Q = {q1, . . . , qn}
be a set of n distinct primes or negatives of primes. Define:

GSDQ :=
∏

(x±√q1 ±√q2 ± · · · ± √qn),

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1043

where the product runs over all 2n possible combinations of + and − signs. Then GSDQ ∈ Z[x],
is irreducible over Z, has degree 2n, and has at least 2n−1 factors mod any prime. A function to
compute these polynomials is only a slight variation on the previous function.

> function GSD(Q)

> n := #Q;

> A := AlgebraicClosure();

> S := [Sqrt(A ! x): x in Q];

> z := PolynomialRing(A).1;

> f := &*[z + &+[t[i]*S[i]: i in [1..n]]: t in CartesianPower({-1, 1}, n)];

> return PolynomialRing(Z) ! f;

> end function;

One can multiply GSDQ for various Q to construct more reducible polynomials with many modular
factors. We first note the effects of changing the sign of the input primes.

> GSD([2, 3, 5]);

x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576

> GSD([-2, -3, -5]);

x^8 + 40*x^6 + 352*x^4 + 960*x^2 + 576

> GSD([-2, 3, 5]);

x^8 - 24*x^6 + 224*x^4 + 960*x^2 + 1600

> GSD([2, -3, 5]);

x^8 - 16*x^6 + 184*x^4 + 960*x^2 + 3600

> GSD([2, 3, -5]);

x^8 + 152*x^4 + 1920*x^2 + 5776

We now form a polynomial f which is the product of two degree-64 irreducible polynomials. f
has at least 64 factors modulo any prime, but is not difficult to factor using van Hoeij’s algorithm.

> f := GSD([2, 3, 5, 7, 11, 13])*GSD([-2, -3, -5, -7, -11, -13]);

> Degree(f);

128

> Max([Abs(x): x in Coefficients(f)]);

74356932844713201802276382813294219572861455394629943303351262856515487990904 17

> time L:=Factorization(f);

Time: 9.850

> [Degree(t[1]): t in L];

[64, 64]

> Max([Abs(x): x in Coefficients(L[1,1])]);

1771080720430629161685158978892152599456 11

Example H40E3

This example shows how one can compute Puiseux expansions over an algebraic closure. The
PuiseuxExpansion function calls the Roots function internally as it needs to.

> A := AlgebraicClosure();

> S<y> := PuiseuxSeriesRing(A);

> P<x> := PolynomialRing(S);

1044 GLOBAL ARITHMETIC FIELDS Part VII

> f := (x^2 - y^2 - 1)^5 + x*y + 1;

> time S := PuiseuxExpansion(f, 3);

Time: 0.210

> S;

[

r1*y + (102/2525*r1 - 2/505)*y^3 + O(y^4),

r2*y + (102/2525*r2 - 2/505)*y^3 + O(y^4),

r3 + (1/10*r3^2 - 1/10)*y + (-101/1000*r3^7 + 101/200*r3^5 -

209/200*r3^3 + 26/25*r3)*y^2 + O(y^3),

r4 + (1/10*r4^2 - 1/10)*y + (-101/1000*r4^7 + 101/200*r4^5 -

209/200*r4^3 + 26/25*r4)*y^2 + O(y^3),

r5 + (1/10*r5^2 - 1/10)*y + (-101/1000*r5^7 + 101/200*r5^5 -

209/200*r5^3 + 26/25*r5)*y^2 + O(y^3),

r6 + (1/10*r6^2 - 1/10)*y + (-101/1000*r6^7 + 101/200*r6^5 -

209/200*r6^3 + 26/25*r6)*y^2 + O(y^3),

r7 + (1/10*r7^2 - 1/10)*y + (-101/1000*r7^7 + 101/200*r7^5 -

209/200*r7^3 + 26/25*r7)*y^2 + O(y^3),

r8 + (1/10*r8^2 - 1/10)*y + (-101/1000*r8^7 + 101/200*r8^5 -

209/200*r8^3 + 26/25*r8)*y^2 + O(y^3),

r9 + (1/10*r9^2 - 1/10)*y + (-101/1000*r9^7 + 101/200*r9^5 -

209/200*r9^3 + 26/25*r9)*y^2 + O(y^3),

r10 + (1/10*r10^2 - 1/10)*y + (-101/1000*r10^7 + 101/200*r10^5 -

209/200*r10^3 + 26/25*r10)*y^2 + O(y^3)

]

> A;

Algebraically closed field with 10 variables

Defining relations:

[

r10^8 - 5*r10^6 + 10*r10^4 - 10*r10^2 + 5,

r9^8 - 5*r9^6 + 10*r9^4 - 10*r9^2 + 5,

r8^8 - 5*r8^6 + 10*r8^4 - 10*r8^2 + 5,

r7^8 - 5*r7^6 + 10*r7^4 - 10*r7^2 + 5,

r6^8 - 5*r6^6 + 10*r6^4 - 10*r6^2 + 5,

r5^8 - 5*r5^6 + 10*r5^4 - 10*r5^2 + 5,

r4^8 - 5*r4^6 + 10*r4^4 - 10*r4^2 + 5,

r3^8 - 5*r3^6 + 10*r3^4 - 10*r3^2 + 5,

r2^2 + 1/5*r2 - 1,

r1^2 + 1/5*r1 - 1

]

We check that f evaluated at each expansion in S is zero up to the precision.

> [Evaluate(f, p): p in S];

[

O(y^5),

O(y^5),

O(y^3),

O(y^3),

O(y^3),

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1045

O(y^3),

O(y^3),

O(y^3),

O(y^3),

O(y^3)

]

40.5 Related Structures

Category(A) Parent(A) Centre(A)

PrimeRing(A) PrimeField(A)

FieldOfFractions(A)

40.6 Properties

BaseField(A)

Return the base field over which A is defined.

Rank(A)

Return the current rank of A, that is, the number of variables which currently define
A. This can increase by the construction of new roots, or decrease by pruning (see
Roots and Prune respectively below), so the return value of this function is variable.

Degree(A, v)

Given an algebraically closed field A of rank r and an integer v in the range 1 ≤ v ≤
r, return the current degree of the defining polynomial for variable v. The return
value of this function is variable, as Amay be simplified between invocations, making
the defining polynomial for v have smaller degree.

Degree(A)

Return the current absolute degree of A, that is, the degree over its base field.
This necessitates the simplification of A (see Simplify below), so may be very time
consuming. The return value varies only when new roots of polynomials over the
field are computed, but until then, the return value is invariable (as the field will
remain simplified, even if Prune or Absolutize is called – see below).

1046 GLOBAL ARITHMETIC FIELDS Part VII

AffineAlgebra(A)

QuotientRing(A)

Return the affine algebra (or multivariate quotient ring) R which currently repre-
sents A. The quotient relations of R consist of the defining polynomials A, and one
may coerce between A and R, but note that the variable numbers are inverted. The
reason for this is that for the system to work, the first root A.1 must be the smallest
variable with respect to the lexicographical order in the corresponding affine algebra
R, so that reductions modulo the Gröbner basis of relations are in the correct form.

Note also that if A changes in any way (whether from simplification or by prun-
ing), then the affine algebra R of course stays the same and will not be comparable
with the new form of A if A has a different number of variables than before.

Ideal(A)

Return the ideal of defining polynomials currently defining A. This is simply equiva-
lent to DivisorIdeal(AffineAlgebra(A)). See the relevant comments for the func-
tion AffineAlgebra.

40.7 Ring Predicates and Properties

IsCommutative(A) IsUnitary(A)

IsFinite(A) IsOrdered(A)

IsField(A) IsEuclideanDomain(A)

IsPID(A) IsUFD(A)

IsDivisionRing(A) IsEuclideanRing(A)

IsPrincipalIdealRing(A) IsDomain(A)

A eq B A ne B

Characteristic(A)

40.8 Element Operations

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1047

40.8.1 Arithmetic Operators
This section lists the basic arithmetic operations available for elements of an algebraically
closed field. Elements are always kept in normal form with respect to the defining relations
of the field. Computing the inverse of an element may cause a simplification of the field
to be performed.

+ a - a

a + b a - b a * b a / b

a ^ k

a +:= b a -:= b a *:= b

40.8.2 Equality and Membership

40.8.3 Parent and Category

Parent(a) Category(a)

40.8.4 Predicates on Ring Elements

IsZero(a)

Return whether a is the zero element of its field. This is the most difficult of
all arithmetic functions for algebraically closed fields! To determine whether a is
zero, Magma computes the recursive GCD of a, considered as a polynomial in its
highest variable, and the appropriate defining polynomial, to determine the result.
If the GCD is non-trivial, then this forces a splitting of the defining polynomial, all
elements of the field are reduced, and the original element may now be deemed to be
zero (it may not be zero because the cofactor of the GCD may be used to perform
the simplification). Despite the fact that simplifications may occur, the return value
of this function is invariable, and this fact is the most important feature of the whole
system, enabling the illusion of a true field to be achieved!

IsOne(a)

Return whether a is one in its field, which is determined by testing whether (a− 1)
is zero. Consequently, a simplification of the field may occur, but the return value
is invariable.

IsMinusOne(a)

Return whether a is minus one in its field, which is determined by testing whether
(a+ 1) is zero. Consequently, a simplification of the field may occur, but the return
value is invariable.

1048 GLOBAL ARITHMETIC FIELDS Part VII

a eq b

Return whether a = b, which is determined by testing whether (a− b) is zero. Con-
sequently, a simplification of the field may occur, but the return value is invariable.

a ne b

a in A a notin A

IsNilpotent(a) IsIdempotent(a)

IsUnit(a) IsZeroDivisor(a) IsRegular(a)

IsIrreducible(a) IsPrime(a)

40.8.5 Minimal Polynomial, Norm and Trace

MinimalPolynomial(a)

Return the minimal polynomial of the element a of the field A, relative to the base
field of A. This is the unique minimal-degree irreducible monic polynomial with
coefficients in the base field, having a as a root.

This function works as follows. First the minimal polynomial M of a in the
affine algebra corresponding to A is computed. M may be reducible in general,
so M is factored, and for each irreducible factor F of M , F (a) is evaluated and
it is tested whether this evaluation is zero (using the IsZero algorithm). If M is
not irreducible, some of these evaluations will cause simplifications of the field, but
exactly one of the evaluations will be zero and the corresponding irreducible F is the
minimal polynomial of a. Consequently, after F is returned, F (a) will be identically
zero so the return value of this function is invariable.

Thus the illusion of a true field is sustained by forcing the minimal polynomial of
a to be irreducible, by first performing whatever simplifications of A are necessary
for this. (In fact, computing minimal polynomials in this way is one method of
achieving simplifications.)

Norm(a)

Given an element a from an algebraically closed field A, return the absolute norm of a
to the base field of A. This is simply computed as (−1)Degree(M) times the constant
coefficient of M , where M is the irreducible minimal polynomial of a returned by
MinimalPolynomial(a). Consequently, a simplification of the field may occur, but
the return value is invariable.

Trace(a)

Given an element a from an algebraically closed field A, return the absolute trace of
a to the base field of A. This is simply computed as the negation of the coefficient
of xn−2 in M , where M is the irreducible minimal polynomial of a returned by
MinimalPolynomial(a). Consequently, a simplification of the field may occur, but
the return value is invariable.

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1049

Conjugates(a)

Given an element a from an algebraically closed field A, return the conjugates of a
as a sequence of elements. The conjugates of a are defined to be the roots in A of
the minimal polynomial of a, and a is always included. This function is thus simply
equivalent to:

[t[1] : t in Roots(MinimalPolynomial(a), A)].

(No multiplicities are returned as in the Roots function since the minimal polyno-
mial is always squarefree, of course.) As this function first computes the minimal
polynomials of a, a simplification of the field may occur, but the return value is
invariable.

Example H40E4

We create two elements of an algebraically closed field and note that they are conjugate.

> A := AlgebraicClosure();

> x := Sqrt(A!2) + Sqrt(A!-3);

> y := Sqrt(A ! (-1 + 2*Sqrt(A!-6)));

> A;

Algebraically closed field with 4 variables

Defining relations:

[

r4^2 - 2*r3 + 1,

r3^2 + 6,

r2^2 + 3,

r1^2 - 2

]

> x;

r2 + r1

> y;

r4

> x eq y;

false

> Conjugates(x);

[

r4,

-r4,

r5,

r6

]

> y in Conjugates(x);

true

Of course, x and y are conjugate if and only if they have the same minimal polynomial, which is
the case here:

> P<z> := PolynomialRing(RationalField());

1050 GLOBAL ARITHMETIC FIELDS Part VII

> MinimalPolynomial(x);

z^4 + 2*z^2 + 25

> MinimalPolynomial(y);

z^4 + 2*z^2 + 25

40.9 Simplification

The following procedures allow one to simplify an algebraically closed field so that it is a
true field.

Simplify(A)

Partial BoolElt Default : false

(Procedure.) Simplify the algebraically closed field A so that the affine algebra
which represents it is a true field, modifying A in place. Equivalently, simplify A so
that the multivariate polynomial ideal corresponding to the defining polynomials A
is maximal.

The procedure first partially simplifies A by calling MinimalPolynomial on all
variables and sums of two variables of A. This will usually cause many simplifi-
cations, since this forces the corresponding minimal polynomials to be irreducible
(see MinimalPolynomial). The procedure then performs all other necessary sim-
plifications by successively computing absolute representations and factorizing the
absolute polynomials which arise. This may be very expensive (in particular, if the
final absolute degree is greater than 20), so is only practical for fairly small degrees.

If the parameter Partial is set to true, then only the partial simplification is
performed, which is usually rather fast, and may be sufficient.

Prune(A)

Prune the algebraically closed field A by removing useless variables, modifying A in
place. That is, for each variable v of A such that its defining polynomial is a linear
polynomial, remove v and the corresponding defining polynomial from A, and shift
variables higher than v appropriately.

Note that elements of A are kept reduced to normal form with respect to the
defining polynomials of A (at least according the user’s perception), so for each such
v having a linear relation, v cannot occur in any element of A, so the removal of v
from A is possible.

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1051

40.10 Absolute Field
One may construct an absolute field isomorphic to the current subfield represented by an
algebraically closed field. The construction of the absolute field may be very expensive,
as it involves factoring polynomials over successive subfields. In fact, it is often the case
that the degree of the absolute field is an extremely large integer, so that an absolute field
is not practically representable, yet the system may allow one to compute effectively with
the original non-absolute presentation.

AbsoluteAffineAlgebra(A)

AbsoluteQuotientRing(A)

Simplify the algebraically closed field A fully (see Simplify(A) above) and then
return an absolute field as a univariate affine algebra R which is isomorphic to the
current (true) algebraic field represented by A, and also return the isomorphism
f : A→ R.

AbsolutePolynomial(A)

Simplify the algebraically closed field A fully (see Simplify(A) above) and then
compute an absolute field isomorphic to the current (true) algebraic field represented
by A and return the defining polynomial of the absolute field. That is, return a
polynomial f such that K[x]/ < f > is isomorphic to A in its current state.

Absolutize(A)

Modify the algebraically closed field A in place so that has an absolute presentation.
That is, compute an isomorphic absolute field and absolute polynomial f as in
AbsolutePolynomial and modify A and its elements in place so that A now only
has one variable v and corresponding defining polynomial f(v) and the elements of
A correspond via the isomorphism to their old representation.

Example H40E5

We show how one can easily compute the number field over which the complete variety of the
Cyclic-6 ideal can be defined.
We first create the ideal I over Q and compute its variety over A, the algebraic closure of Q.

> P<a,b,c,d,e,f> := PolynomialRing(RationalField(), 6);

> B := [

> a + b + c + d + e + f,

> a*b + b*c + c*d + d*e + e*f + f*a,

> a*b*c + b*c*d + c*d*e + d*e*f + e*f*a + f*a*b,

> a*b*c*d + b*c*d*e + c*d*e*f + d*e*f*a + e*f*a*b + f*a*b*c,

> a*b*c*d*e + b*c*d*e*f + c*d*e*f*a + d*e*f*a*b +

> e*f*a*b*c + f*a*b*c*d,

> a*b*c*d*e*f - 1];

> I := ideal<P | B>;

> time Groebner(I);

Time: 1.459

1052 GLOBAL ARITHMETIC FIELDS Part VII

> A := AlgebraicClosure();

> time V := Variety(I, A);

Time: 4.219

> #V;

156

We now notice that there are 28 variables in A and we check that all elements of V satisfy the
original polynomials.

> Rank(A);

28

> V[1];

<-1, -1, -1, -1, r1 + 4, -r1>

> V[156];

<r28^3 + 2*r28^2*r9 - 2*r9, -r28^3 - 2*r28^2*r9 + 2*r9, r9, -r28, r28, -r9>

> {Evaluate(f, v): v in V, f in B};

{

0

}

We now simplify A to ensure that it represents a true field, and prune away useless variables now
having linear defining polynomials.

> time Simplify(A);

Time: 3.330

> Prune(A);

> A;

Algebraically closed field with 3 variables

Defining relations:

[

r3^2 - 1/3*r3*r2*r1 - 5/3*r3*r2 + 2/3*r3*r1 - 2/3*r3 + r2*r1 + 4*r2 + 1,

r2^2 - r2*r1 - 4*r1 - 1,

r1^2 + 4*r1 + 1

]

> V[1];

<-1, -1, -1, -1, r1 + 4, -r1>

> V[156];

<2/3*r3*r2*r1 + 7/3*r3*r2 - 1/3*r3*r1 - 2/3*r3 + 5/3*r2*r1 +

19/3*r2 + 2/3*r1 + 4/3, -2/3*r3*r2*r1 - 7/3*r3*r2 + 1/3*r3*r1

+ 2/3*r3 - 5/3*r2*r1 - 19/3*r2 - 2/3*r1 - 4/3, -4/3*r2*r1 -

14/3*r2 - 1/3*r1 - 2/3, 2/3*r3*r2*r1 + 7/3*r3*r2 - 1/3*r3*r1

- 2/3*r3 - 5/3*r2*r1 - 19/3*r2 + 1/3*r1 - 1/3, -2/3*r3*r2*r1

- 7/3*r3*r2 + 1/3*r3*r1 + 2/3*r3 + 5/3*r2*r1 + 19/3*r2 -

1/3*r1 + 1/3, 4/3*r2*r1 + 14/3*r2 + 1/3*r1 + 2/3>

Finally we compute an absolute polynomial for A, and then modify A in place using Absolutize

to make A be defined by one polynomial of degree 8.

> time AbsolutePolynomial(A);

x^8 + 4*x^6 - 6*x^4 + 4*x^2 + 1

Time: 0.080

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1053

> time Absolutize(A);

Time: 0.259

> A;

Algebraically closed field with 1 variables

Defining relations:

[

r1^8 + 4*r1^6 - 6*r1^4 + 4*r1^2 + 1

]

> V[1];

<-1, -1, -1, -1, 1/2*r1^6 + 2*r1^4 - 7/2*r1^2 + 3, -1/2*r1^6 -

2*r1^4 + 7/2*r1^2 + 1>

> V[156];

<r1^7 + 4*r1^5 - 6*r1^3 + 4*r1, -r1^7 - 4*r1^5 + 6*r1^3 - 4*r1,

-1/4*r1^7 - 3/4*r1^5 + 11/4*r1^3 - 7/4*r1, -r1, r1, 1/4*r1^7

+ 3/4*r1^5 - 11/4*r1^3 + 7/4*r1>

> {Evaluate(f, v): v in V, f in B};

{

0

}

Example H40E6

In this example we compute the splitting field of a certain polynomial of degree 8.
We first set f to a degree-8 polynomial using the database of polynomials with given Galois group.
The Galois group has order 16, so we know that the splitting field will have absolute degree 16.

> P<x> := PolynomialRing(IntegerRing());

> load galpols;

Loading "/home/magma/libs/galpols/galpols"

> PolynomialWithGaloisGroup(8, 6);

x^8 - 2*x^7 - 9*x^6 + 10*x^5 + 22*x^4 - 14*x^3 - 15*x^2 + 2*x + 1

> f := $1;

> #GaloisGroup(f);

16

We next create an algebraic closure A and compute the roots of f over A.

> A := AlgebraicClosure();

> r := Roots(f, A);

> #r;

8

> A;

Algebraically closed field with 8 variables

Defining relations:

[

r8^8 - 2*r8^7 - 9*r8^6 + 10*r8^5 + 22*r8^4 - 14*r8^3 - 15*r8^2 + 2*r8 + 1,

r7^8 - 2*r7^7 - 9*r7^6 + 10*r7^5 + 22*r7^4 - 14*r7^3 - 15*r7^2 + 2*r7 + 1,

r6^8 - 2*r6^7 - 9*r6^6 + 10*r6^5 + 22*r6^4 - 14*r6^3 - 15*r6^2 + 2*r6 + 1,

r5^8 - 2*r5^7 - 9*r5^6 + 10*r5^5 + 22*r5^4 - 14*r5^3 - 15*r5^2 + 2*r5 + 1,

1054 GLOBAL ARITHMETIC FIELDS Part VII

r4^8 - 2*r4^7 - 9*r4^6 + 10*r4^5 + 22*r4^4 - 14*r4^3 - 15*r4^2 + 2*r4 + 1,

r3^8 - 2*r3^7 - 9*r3^6 + 10*r3^5 + 22*r3^4 - 14*r3^3 - 15*r3^2 + 2*r3 + 1,

r2^8 - 2*r2^7 - 9*r2^6 + 10*r2^5 + 22*r2^4 - 14*r2^3 - 15*r2^2 + 2*r2 + 1,

r1^8 - 2*r1^7 - 9*r1^6 + 10*r1^5 + 22*r1^4 - 14*r1^3 - 15*r1^2 + 2*r1 + 1

]

Finally we simplify A. There are defining polynomials of degrees 2 and 8 in the simplified field.
The absolute polynomial of degree 16 defines the splitting field of f .

> time Simplify(A);

Time: 2.870

> A;

Algebraically closed field with 8 variables

Defining relations:

[

r8 + 1/2*r3*r1^6 - 2*r3*r1^5 - r3*r1^4 + 8*r3*r1^3 - 2*r3*r1^2 -

5*r3*r1 - 1/2*r3 + r1^7 - 3/2*r1^6 - 9*r1^5 + 4*r1^4 + 19*r1^3

- r1^2 - 9*r1 - 5/2,

r7 - 1/2*r3*r1^6 + 2*r3*r1^5 + r3*r1^4 - 8*r3*r1^3 + 2*r3*r1^2 +

5*r3*r1 + 1/2*r3,

r6 + r3 - 3/2*r1^7 + 2*r1^6 + 14*r1^5 - 5*r1^4 - 28*r1^3 + 3*r1^2

+ 19/2*r1,

r5 - 1/2*r3*r1^6 + 2*r3*r1^5 + r3*r1^4 - 8*r3*r1^3 + 2*r3*r1^2 +

4*r3*r1 + 1/2*r3 + r1^6 - r1^5 - 9*r1^4 - r1^3 + 14*r1^2 +

6*r1,

r4 + 1/2*r3*r1^6 - 2*r3*r1^5 - r3*r1^4 + 8*r3*r1^3 - 2*r3*r1^2 -

4*r3*r1 - 1/2*r3 - 1,

r3^2 - 3/2*r3*r1^7 + 2*r3*r1^6 + 14*r3*r1^5 - 5*r3*r1^4 -

28*r3*r1^3 + 3*r3*r1^2 + 19/2*r3*r1 + 3/2*r1^6 - r1^5 -

15*r1^4 - 4*r1^3 + 27*r1^2 + 11*r1 - 9/2,

r2 + 1/2*r1^7 - 3/2*r1^6 - 4*r1^5 + 10*r1^4 + 10*r1^3 - 16*r1^2 -

11/2*r1 + 3/2,

r1^8 - 2*r1^7 - 9*r1^6 + 10*r1^5 + 22*r1^4 - 14*r1^3 - 15*r1^2 +

2*r1 + 1

]

> AbsolutePolynomial(A);

x^16 - 36*x^14 + 488*x^12 - 3186*x^10 + 10920*x^8 - 19804*x^6 + 17801*x^4 -

6264*x^2 + 64

Ch. 40 ALGEBRAICALLY CLOSED FIELDS 1055

40.11 Bibliography
[DDD85] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for comput-

ing in algebraic number fields. In B.F. Caviness, editor, Proc. EUROCAL ’85, volume
204 of LNCS, pages 289–290, Linz, 1985. Springer.

[FK02] Claus Fieker and David R. Kohel, editors. ANTS V, volume 2369 of LNCS.
Springer-Verlag, 2002.

[Ste02] Allan Steel. A new scheme for computing with algebraically closed fields. In
Fieker and Kohel [FK02], pages 491–505.

[Ste10] Allan K. Steel. Computing with algebraically closed fields. J. Symb. Comput.,
45(3):342–372, March 2010.

41 RATIONAL FUNCTION FIELDS
41.1 Introduction 1059

41.2 Creation Functions 1059

41.2.1 Creation of Structures 1059

FunctionField(R) 1059
RationalFunctionField(R) 1059
FunctionField(R, r) 1060
RationalFunctionField(R, r) 1060
FieldOfFractions(P) 1060

41.2.2 Names 1060

AssignNames(∼F, s) 1060
Name(F, i) 1060

41.2.3 Creation of Elements 1061

! 1061
elt< > 1061
! 1061
. 1061
One Identity 1061
Zero Representative 1061

41.3 Structure Operations 1061

41.3.1 Related Structures 1061

IntegerRing(F) 1061
RingOfIntegers(F) 1061
BaseRing(F) 1061
CoefficientRing(F) 1061
Rank(F) 1062
ValuationRing(F) 1062
ValuationRing(F, f) 1062
Category Parent PrimeRing 1062

41.3.2 Invariants 1062

Characteristic 1062

41.3.3 Ring Predicates and Booleans . . . 1062

IsCommutative IsUnitary 1062
IsFinite IsOrdered 1062
IsField IsEuclideanDomain 1062
IsPID IsUFD 1062
IsDivisionRing IsEuclideanRing 1062
IsPrincipalIdealRing IsDomain 1062
eq ne 1062

41.3.4 Homomorphisms 1062

hom< > 1063
hom< > 1063

41.4 Element Operations 1063

41.4.1 Arithmetic 1063

+ - 1063
+ - * / ^ 1063

41.4.2 Equality and Membership 1063

eq ne 1063
in notin 1063

41.4.3 Numerator, Denominator and Degree1064

Numerator(f) 1064
Denominator(f) 1064
Degree(f) 1064
TotalDegree(f) 1064
WeightedDegree(f) 1064

41.4.4 Predicates on Ring Elements . . . 1064

IsZero IsOne IsMinusOne 1064
IsNilpotent IsIdempotent 1064
IsUnit IsZeroDivisor IsRegular 1064

41.4.5 Evaluation 1064

Evaluate(f, r) 1064
Evaluate(f, v, r) 1064

41.4.6 Derivative 1065

Derivative(f) 1065
Derivative(f, k) 1065
Derivative(f, v) 1065
Derivative(f, v, k) 1065

41.4.7 Partial Fraction Decomposition . . 1065

PartialFractionDecomposition(f) 1065
SquarefreePartial

FractionDecomposition(f) 1065

41.5 Padé-Hermite Approximants . 1068

41.5.1 Introduction 1068

41.5.2 Ordering of Sequences 1068

MaximumDegree(f) 1068
TypeOfSequence(f) 1069
MinimalVectorSequence(f,n) 1070

41.5.3 Approximants 1072

PadeHermiteApproximant(f,d) 1072
PadeHermiteApproximant(f,m) 1075

41.6 Bibliography 1077

Chapter 41

RATIONAL FUNCTION FIELDS

41.1 Introduction
Given a ring R such that there is a greatest-common-divisor algorithm for polynomials
over R, Magma allows the construction of a rational function field K in any number of
indeterminates over R. Such function fields are objects of type FldFunRat with elements of
type FldFunRatElt. The elements of K are fractions whose numerators and denominators
lie in the corresponding polynomial ring over R. As for polynomial rings, the different
univariate and multivariate cases are distinguished, since the fractions just use the different
representations given by the different cases of polynomial rings.

A fraction f lying in a function field K is always reduced; this means that the numerator
and denominator of f are coprime and the denominator of f is normalized (monic over
fields and positive over Z). Note that R itself need not be a field. Thus it is possible,
for example, to create the rational function field K = Z(t) which is mathematically equal
to Q(t) of course, but will be represented slightly differently. A fraction in Q(t) will
have a monic denominator (and the coefficients of both the numerator and denominator
may be non-integral), while a fraction in Z(t) will have a positive denominator (and the
coefficients of both the numerator and denominator will be integral). Thus the fractions
(3t+2)/(4t−2) ∈ Z(t) and ((3/4)t+1/2)/(t−1/2) ∈ Q(t) are equal and are both reduced
in their respective fields. It is generally much better to use the domain of integers instead
of the field of fractions for the coefficient ring R (so it is better to use Z(t) instead of Q(t))
since arithmetic is much faster, but the use of a field of fractions for the coefficient ring
may be more desirable for output purposes.

41.2 Creation Functions

41.2.1 Creation of Structures

FunctionField(R)

RationalFunctionField(R)

Global BoolElt Default : true

Create the field F of rational functions in 1 indeterminate (consisting of quotients
of univariate polynomials) over the integral domain R. The angle bracket notation
may be used to assign names to the indeterminates, just as in the case of polynomial
rings, e.g.: K<t> := FunctionField(IntegerRing());.

By default, the unique global univariate function field over R will be returned;
if the parameter Global is set to false, then a non-global univariate function field
over R will be returned (to which a separate name for the indeterminate can be
assigned).

1060 GLOBAL ARITHMETIC FIELDS Part VII

FunctionField(R, r)

RationalFunctionField(R, r)

Global BoolElt Default : false

Create the field F of rational functions in r indeterminates over the integral domain
R. may be used to assign names to the indeterminates, just as in the case of
polynomial rings, e.g.: K<a,b,c> := FunctionField(IntegerRing(), 3);.

By default, a non-global function field will be returned; if the parameter Global
is set to true, then the unique global function field over R with n variables will be
returned. This may be useful in some contexts, but a non-global result is returned by
default since one often wishes to have several function fields with the same numbers
of variables but with different variable names (and create mappings between them,
for example). Explicit coercion is always allowed between function fields having the
same number of variables (and suitable base rings), whether they are global or not,
and the coercion maps the i-variable of one function field to the i-th variable of the
other function field.

FieldOfFractions(P)

Given a polynomial ring P , return its field of fractions F , consisting of quo-
tients f/g, with f, g ∈ P . The angle bracket notation may be used to assign
names to the indeterminates, just as in the case of polynomial rings: K<t> :=
FieldOfFractions(P);. If this function is called more than once for a fixed P ,
then the identical function field will be returned each time.

41.2.2 Names

AssignNames(∼F, s)

Procedure to change the name of the indeterminates of a function field F . The
i-th indeterminate will be given the name of the i-th element of the sequence of
strings s (for 1 ≤ i ≤ #s); the sequence may have length less than the number
of indeterminates of F , in which case the remaining indeterminate names remain
unchanged.

This procedure only changes the name used in printing the elements of F . It
does not assign to identifiers corresponding to the strings the indeterminates in F ;
to do this, use an assignment statement, or use angle brackets when creating the
field.

Note that since this is a procedure that modifies F , it is necessary to have a
reference ∼F to F in the call to this function.

Name(F, i)

Given a function field F , return the i-th indeterminate of F (as an element of F).

Ch. 41 RATIONAL FUNCTION FIELDS 1061

41.2.3 Creation of Elements

F ! [a, b]

elt< F | a, b >

Given the rational function field F (which is the field of fractions of the polynomial
ring R), and polynomials a, b in R (with b 6= 0), construct the rational function a/b.

F ! a

Given the rational function field F as a field of fractions of R, and a polynomial
a ∈ R, create the rational function a = a/1 in F .

K . i

The i-th generator for the field of fractions K of R over the coefficient ring of R.

One(F) Identity(F)

Zero(F) Representative(F)

Example H41E1

We create the field of rational functions over the integers in a single variable w.

> R<x> := PolynomialRing(Integers());

> F<w> := FieldOfFractions(R);

> F ! x+3;

w + 3

> F ! [x, x-1];

w/(w - 1)

41.3 Structure Operations

41.3.1 Related Structures

IntegerRing(F)

RingOfIntegers(F)

Given the rational function field F this returns the polynomial ring from which F
was constructed as its field of fractions.

BaseRing(F)

CoefficientRing(F)

The coefficient ring of the (ring of integers of) the rational function field F .

1062 GLOBAL ARITHMETIC FIELDS Part VII

Rank(F)

The rank (number of indeterminates) of the rational function field F .

ValuationRing(F)

Given the rational function field F for which the coefficients come from a field, this
returns the valuation ring of F with respect to the valuation given by the degree.
This valuation ring consists of those rational functions g/h for which the degree of
h is greater than or equal to that of g.

ValuationRing(F, f)

Given the rational function field F for which the coefficients come from a field, and
an irreducible polynomial f in the ring of integers of F , this returns the valuation
ring of F with respect to the valuation associated with f . This valuation ring
consists of those rational functions g/h for which f divides g but not h.

Category(R) Parent(R) PrimeRing(R)

41.3.2 Invariants

Characteristic(F)

41.3.3 Ring Predicates and Booleans

IsCommutative(F) IsUnitary(F)

IsFinite(F) IsOrdered(F)

IsField(F) IsEuclideanDomain(F)

IsPID(F) IsUFD(F)

IsDivisionRing(F) IsEuclideanRing(F)

IsPrincipalIdealRing(F) IsDomain(F)

F eq G F ne G

41.3.4 Homomorphisms
In its general form a ring homomorphism taking a function field R(x1, . . . , xn) as domain
requires n+ 1 pieces of information, namely, a map (homomorphism) telling how to map
the coefficient ring R together with the images of the n indeterminates.

Ch. 41 RATIONAL FUNCTION FIELDS 1063

hom< P -> S | f, y1, ..., yn >

hom< P -> S | y1, ..., yn >

Given a function field F = R(x1, . . . , xn), a ring S, a map f : F → S and n
elements y1, . . . , yn ∈ S, create the homomorphism g : F → S by applying the rules
of g(rxa1

1 · · ·xan
n) = f(r)ya1

1 · · · yan
n for monomials, linearity for polynomials, i.e.,

g(M +N) = g(M) + g(N), and division for fractions, i.e., g(n/d) = g(n)/g(d).
The coefficient ring map may be omitted, in which case the coefficients are

mapped into S by the unitary homomorphism sending 1R to 1S . Also, the images
yi are allowed to be from a structure that allows automatic coercion into S.

Example H41E2

In this example we map Q(x, y) into the number field Q(3
√

2,
√

5) by sending x to 3
√

2 and y to√
5 and the identity map on the coefficients (which we omit).

> Q := RationalField();

> F<x, y> := FunctionField(Q, 2);

> A<a> := PolynomialRing(IntegerRing());

> N<z, w> := NumberField([a^3-2, a^2+5]);

> h := hom< F -> N | z, w >;

> h(x^11*y^3-x+4/5*y-13/4);

-40*w*z^2 - z + 4/5*w - 13/4

> h(x/3);

1/3*z

> h(1/x);

1/2*z^2

> 1/z;

1/2*z^2

41.4 Element Operations

41.4.1 Arithmetic

+ a - a

a + b a - b a * b a / b a ^ k

41.4.2 Equality and Membership

a eq b a ne b

a in F a notin F

1064 GLOBAL ARITHMETIC FIELDS Part VII

41.4.3 Numerator, Denominator and Degree

Numerator(f)

Given a rational function f ∈ K, the field of fractions of R, return the numerator
P of f = P/Q as an element of the polynomial ring R.

Denominator(f)

Given a rational function f ∈ K, the field of fractions of R, return the denominator
Q of f = P/Q as an element of the polynomial ring R.

Degree(f)

Given a rational function f in a univariate function field, return the degree of f as
an integer (the maximum of the degree of the numerator of f and the degree of the
denominator of f).

TotalDegree(f)

Given a rational function f in a multivariate function field, return the total degree
of f as an integer (the total degree of the numerator of f minus the total degree of
the denominator of f).

WeightedDegree(f)

Given a rational function f in a multivariate function field, return the weighted
degree of f as an integer (the weighted degree of the numerator of f minus the
weighted degree of the denominator of f).

41.4.4 Predicates on Ring Elements

IsZero(a) IsOne(a) IsMinusOne(a)

IsNilpotent(a) IsIdempotent(a)

IsUnit(a) IsZeroDivisor(a) IsRegular(a)

41.4.5 Evaluation

Evaluate(f, r)

Given a univariate rational function f in F , return the rational function in F ob-
tained by evaluating the indeterminate in r, which must be from (or coercible into)
the coefficient ring of the integers of F .

Evaluate(f, v, r)

Given a multivariate rational function f in F , return the rational function in F
obtained by evaluating the v-th variable in r, which must be from (or coercible
into) the coefficient ring of the integers of F .

Ch. 41 RATIONAL FUNCTION FIELDS 1065

41.4.6 Derivative

Derivative(f)

Given a univariate rational function f , return the first derivative of f with respect
to its variable.

Derivative(f, k)

Given a univariate rational function f , return the k-th derivative of f with respect
to its variable. k must be non-negative.

Derivative(f, v)

Given a multivariate rational function f , return the first derivative of f with respect
to variable number v.

Derivative(f, v, k)

Given a multivariate rational function f , return the k-th derivative of f with respect
to variable number v. k must be non-negative.

41.4.7 Partial Fraction Decomposition

PartialFractionDecomposition(f)

Given a univariate rational function f in F = K(x), return the (unique) complete
partial fraction decomposition of f . The decomposition is returned as a (sorted)
sequence Q consisting of triples, each of which is of the form < d, k, n > where d is
the denominator, k is the multiplicity of the denominator, and n is the corresponding
numerator, and also d is irreducible and the degree of n is strictly less than the degree
of d. Thus f equals the sum of the nt/dt

kt , where t ranges over the triples contained
in Q. If f is improper (the degree of its numerator is greater than or equal to the
degree of its denominator), then the first triple of Q will be of the form < 1, 1, q >
where q is the quotient of the numerator of f by the denominator of f .

SquarefreePartialFractionDecomposition(f)

Given a univariate rational function f in F = K(x), return the (unique) complete
squarefree partial fraction decomposition of f . The decomposition is returned as a
(sorted) sequence Q consisting of triples, each of which is of the form < d, k, n >
where d is the denominator, k is the multiplicity of the denominator, and n is the
corresponding numerator, and also d is squarefree and the degree of n is strictly less
than the degree of d. Thus f equals the sum of the nt/dt

kt , where t ranges over the
triples contained in Q. If f is improper (the degree of its numerator is greater than
or equal to the degree of its denominator), then the first triple of Q will be of the
form < 1, 1, q > where q is the quotient of the numerator of f by the denominator
of f .

1066 GLOBAL ARITHMETIC FIELDS Part VII

Example H41E3

We compute the squarefree and complete (irreducible) partial fraction decompositions of a fraction
in Q(t).

> F<t> := FunctionField(RationalField());

> P<x> := IntegerRing(F);

> f := ((t + 1)^8 - 1) / ((t^3 - 1)*(t + 1)^2*(t^2 - 4)^2);

> SD := SquarefreePartialFractionDecomposition(f);

> SD;

[

<x^4 + 2*x^3 - x - 2, 1, 467/196*x^3 + 1371/196*x^2 +

1391/196*x + 234/49>,

<x^2 - x - 2, 1, -271/196*x + 505/98>,

<x^2 - x - 2, 2, 271/14*x + 139/7>

]

> // Check appropriate sum equals f:

> &+[F!t[3] / F!t[1]^t[2]: t in SD] eq f;

> D := PartialFractionDecomposition(f);

> D;

[

<x - 2, 1, -3683/2646>,

<x - 2, 2, 410/63>,

<x - 1, 1, 85/36>,

<x + 1, 1, 1/108>,

<x + 1, 2, 1/18>,

<x + 2, 1, 1/18>,

<x^2 + x + 1, 1, -5/147*x - 8/147>

]

> // Check appropriate sum equals f:

> &+[F!t[3] / F!t[1]^t[2]: t in D] eq f;

true

Note that doing the same operation in the function field Z(t) must modify the numerators and
denominators to be integral but the result is otherwise the same.

> F<t> := FunctionField(IntegerRing());

> P<x> := IntegerRing(F);

> f := ((t + 1)^8 - 1) / ((t^3 - 1)*(t + 1)^2*(t^2 - 4)^2);

> D := PartialFractionDecomposition(f);

> D;

[

<2646*x - 5292, 1, -3683>,

<63*x - 126, 2, 25830>,

<36*x - 36, 1, 85>,

<108*x + 108, 1, 1>,

<18*x + 18, 2, 18>,

<18*x + 36, 1, 1>,

<147*x^2 + 147*x + 147, 1, -5*x - 8>

]

Ch. 41 RATIONAL FUNCTION FIELDS 1067

> // Check appropriate sum equals f:

> &+[F!t[3] / F!t[1]^t[2]: t in D] eq f;

true

Finally, we compute the partial fraction decomposition of a fraction in a function field whose
coefficient ring is a multivariate function field.

> R<a, b> := FunctionField(IntegerRing(), 2);

> F<t> := FunctionField(R);

> P<x> := IntegerRing(F);

> f := 1 / ((t^2 - a)^2*(t + b)^2*t^3);

> SD := SquarefreePartialFractionDecomposition(f);

> SD;

[

<x^3 + b*x^2 - a*x - a*b, 1, (-3*a - 2*b^2)/(a^3*b^4)*x^2 +

(-a - 2*b^2)/(a^3*b^3)*x + (3*a + 3*b^2)/(a^2*b^4)>,

<x^3 + b*x^2 - a*x - a*b, 2, (a + b^2)/(a^2*b^3)*x^2 +

1/a^2*x + (-a - b^2)/(a*b^3)>,

<x, 1, (3*a + 2*b^2)/(a^3*b^4)>,

<x, 2, -2/(a^2*b^3)>,

<x, 3, 1/(a^2*b^2)>

]

> // Check appropriate sum equals f:

> &+[F!t[3] / F!t[1]^t[2]: t in SD] eq f;

true

> D := PartialFractionDecomposition(f);

> D;

[

<x, 1, (3*a + 2*b^2)/(a^3*b^4)>,

<x, 2, -2/(a^2*b^3)>,

<x, 3, 1/(a^2*b^2)>,

<x + b, 1, (-3*a + 7*b^2)/(a^3*b^4 - 3*a^2*b^6 + 3*a*b^8 -

b^10)>,

<x + b, 2, -1/(a^2*b^3 - 2*a*b^5 + b^7)>,

<x^2 - a, 1, (-3*a^2 - 3*a*b^2 + 2*b^4)/(a^6 - 3*a^5*b^2 +

3*a^4*b^4 - a^3*b^6)*x + (6*a*b - 2*b^3)/(a^5 - 3*a^4*b^2

+ 3*a^3*b^4 - a^2*b^6)>,

<x^2 - a, 2, (a + b^2)/(a^4 - 2*a^3*b^2 + a^2*b^4)*x -

2*b/(a^3 - 2*a^2*b^2 + a*b^4)>

]

> // Check appropriate sum equals f:

> &+[F!t[3] / F!t[1]^t[2]: t in D] eq f;

true

1068 GLOBAL ARITHMETIC FIELDS Part VII

41.5 Padé-Hermite Approximants

41.5.1 Introduction
A given rational function F (z) ∈ k(z) over a field k can be written as a power series

f(z) in the completion k((z)) of k(z) at the place (z). It thus is a good approximation of
f(z) in the sense that F (z) is equal to f(z) up to infinite order.

Padé-Hermite approximants deal with the converse. Given a (formal) power series
f(z) ∈ k[[z]] and some non- negative integers nP and nQ, find polynomials P (z), Q(z) ∈
k[z] of degrees at most nP and nQ, respectively, such that P (z)∗f(z)−Q(z) = O(znP +nQ+1)
holds. In other words, P/Q(z) is an approximation for f(z) for polynomials P and Q
of limited degree in z. In this notation the pair [P,Q] is known as the Padé-Hermite
approximant for the power series tuple (f,−1).

The idea of approximating one power series by two polynomials can be extended to
approximating several power series at the same time as follows. Consider the vector fT :=
(f1, f2, . . . , fm)T in the m-dimensional vector space k((z))m over a power series ring. Let
n = (n1, n2, . . . , nm) be an m-tuple of non-negative integers. A Padé-Hermite approximant
of fT (z) of type n is a non-zero vector of polynomials P = (P1, P2, . . . , Pm) in k[z]m such
that P · fT = O(zN) , N = n1 + n2 + · · · + nm + m − 1, is satisfied. A non-trivial
Padé-Hermite approximant always exists. The approximant is contained in the sub-space
Vf,N = {Q ∈ k[z]m : Q · fT = O(zN)}.

The implementation of Padé-Hermite approximants is based on [Der94] and [BL94].
They are implemented in Magma as sequences rather than vectors.

41.5.2 Ordering of Sequences
A Padé-Hermite approximant to some sequence of power series does not have to be unique.
They can be ordered according to their maximum degree and their type of sequence.
A sequence P = [P1, P2, ..., Pm] is of degree i if the maximum of the weak degrees of
P1, P2, . . . , Pm is i. An extension of the definition maximum degree is when a distortion
of non-negative integers d = [d1, d2, . . . , dm] on the degrees is allowed. In this case the
maximum degree is defined as the maximum of degPi − di. The type of P identifies the
last Pi in P whose weak degree equals the maximum degree of P . Again a distortion on
the degrees is allowed.

MaximumDegree(f)

Distortion SeqEnum Default : []
MaximumDegree returns the degree of a sequence of polynomials or power series,
defined as the maximum of the degrees of f [i]− d[i], where d is the distortion. The
value -infinity is returned in the case that f is weakly equal to the zero-sequence.

Example H41E4

> S<u> := PowerSeriesRing(Rationals());

> f := [u+u^2, 2+u^2+u^3,0];

Ch. 41 RATIONAL FUNCTION FIELDS 1069

> MaximumDegree(f);

3

> MaximumDegree(f:Distortion:=[]);

3

> MaximumDegree(f:Distortion:=[0,2,1]);

2

> MaximumDegree([S|0,0]);

-Infinity

> MaximumDegree([O(u)]);

-Infinity

TypeOfSequence(f)

Distortion SeqEnum Default : []
Returns the highest index i for those f [i] whose (distorted) degree is weakly equal
to the maximum of the degrees of all entries. The second integer returned is the
maximum degree of the sequence.

Example H41E5

> S<u> := PowerSeriesRing(Rationals());

> f := [u+u^2, 2+u^2+u^3,0];

> TypeOfSequence(f);

2 3

> TypeOfSequence(f:Distortion:=[]);

2 3

> TypeOfSequence(f:Distortion:=[0,2,1]);

1 2

> TypeOfSequence([S|0,0]);

2 -Infinity

The Padé-Hermite approximant of f can be seen as an element of the free module k[z]m

of rank m, or as an element of the sub-space Vf,N .
A free sub-model V ⊂ k[z]m is generated by m polynomial vectors Q

i
, 1 = 1, 2, . . . ,m,

such that Q
1
(z), Q

2
(z), . . . , Q

m
(z) form a minimal vector sequence of V . Such a sequence

is defined as a sequence S of m vectors in V , such that S[i] is a non-trivial polynomial
vector in V of minimal degree of type i, for i = 1, 2, . . . ,m. A minimal vector sequence is
not unique.

Two variations on a minimal vector sequence are implemented. The first allows a
distortion as an attribute. The sequence is the based on the distorted maximal degree.
The second attribute sets the positive power p of z in each of the Q

i
as follows. Instead of

considering Q
i
(z) for each i, one considers Q

i
(zp).

1070 GLOBAL ARITHMETIC FIELDS Part VII

MinimalVectorSequence(f,n)

Distortion SeqEnum Default : []

Power RngIntElt Default : 1

A minimal sequence of vectors Q
1
, Q

2
, . . . , Q

m
with respect to the sequence f of

length m whose entries are polynomials or power series. The order of Q
i
· f is at

least m.

Example H41E6

> S<u> := PowerSeriesRing(Rationals());

> f := [u+u^2, 2+u^2+u^3];

> seq := MinimalVectorSequence(f, 2);

> seq;

[

(u 0),

(-1 1/2*u)

]

> sums := [&+([Q[i]*f[i]: i in [1..#f]]) : Q in seq];

> sums;

[

u^2 + u^3,

-u^2 + 1/2*u^3 + 1/2*u^4

]

> seq := MinimalVectorSequence(f,3);

> #seq eq 2, seq[1], seq[2];

true (u^2 0)

(-1 + u 1/2*u)

Example H41E7

> L<x> := PolynomialRing(Rationals());

> f := [1+x, 3-x^2, 5+x+x^3-x^5];

> seq := MinimalVectorSequence(f, 10);

> seq[1];

(-2*x^2 + 6 -2*x - 2 0)

> sums := [&+([Q[i]*f[i]: i in [1..#f]]) : Q in seq];

> sums;

[

0,

0,

x^10

]

Ch. 41 RATIONAL FUNCTION FIELDS 1071

Example H41E8

> S<u> := PowerSeriesRing(Rationals());

> f := [2*u^4,2+u^3+u^6];

> seq := MinimalVectorSequence(f, 10);

> seq;

[

(1/2*u^6 0),

(-1/2 - 1/4*u^3 1/2*u^4)

]

> sums := [&+([Q[i]*f[i]: i in [1..#f]]) : Q in seq];

> sums;

[

u^10,

1/2*u^10

]

Example H41E9

> S<u> := PowerSeriesRing(Rationals());

> f := [1+u-7*u^2, 6-3*u+1/2*u^2-u^3, 5-u+u^2];

> seq := MinimalVectorSequence(f, 5);

> [&+([Q[i]*f[i]: i in [1..#f]]) : Q in seq];

[

0,

u^5,

0

]

> seq := MinimalVectorSequence(f, 5:Distortion:=[2,0,1]);

> [&+([Q[i]*f[i]: i in [1..#f]]) : Q in seq];

[

-7/2*u^5,

u^5,

0

]

> p:=2;

> seq := MinimalVectorSequence(f, 5:Distortion:=[2,0,1], Power:=p);

> sums := [&+([Q[i]*f[i]: i in [1..#f]]) : Q in seq];

> sums;

> mp:= map<S->S| x :-> (IsWeaklyZero(x) select 0

> else &+([Coefficient(x,i)*(S.1)^(p*i) : i in Exponents(x)]))

> + (ISA(Type(v),RngIntElt) select O((S.1)^(p*v))

> else S!0 where v := AbsolutePrecision(x))>;

> sums := [&+([mp(Q[i])*f[i]: i in [1..#f]]) : Q in seq];

> sums;

[

u^6 + u^7 - 7*u^8,

1072 GLOBAL ARITHMETIC FIELDS Part VII

u^5 - 23/3*u^6,

-5/3*u^5 + 35/3*u^6

]

41.5.3 Approximants
The Padé-Hermite approximant of type d = [d1, d2, . . . , dm] with respect to the tuple
fT ∈ k((z))m is an element of the space Vf,N = {Q ∈ k[z]m : Q · fT = O(zN)} for N
equal to d1 + d2 + · · ·+ dm +m− 1. This space is generated by the vectors in the minimal
vector sequence with respect to f with distortion d. The routine PadeHermiteApproximant
returns one that is smallest with respect to the degree on sequences. The input sequence
f must be a sequence of polynomial ring elements, or be a power series sequence. While
the Padé Hermite approximants theoretically are polynomials, Magma returns them as
elements of the same ring the entries of f are contained in.

PadeHermiteApproximant(f,d)

Power RngIntElt Default : 1
Returns a Padé-Hermite form P of f with distortion d, smallest with respect to the
degree on sequences, and the corresponding minimal vector sequence. The third
argument returned is the order in the order term of P · f .

Example H41E10

This example can be found on page 813 in [BL94].

> S<u> := PowerSeriesRing(Rationals());

> f := [1,u,u/(1-u^4)+u^10+O(u^16),u/(1+u^4)+u^12+O(u^16)];

> pade, padebasis, ord := PadeHermiteApproximant(f,[2,2,2,2]);

> pade, ord;

(u -1 0 0)

11

> BaseRing(Parent(pade)) eq S;

true

> MinimalVectorSequence(f,10);

[

(u -1 0 0),

(0 u^4 -1/2 1/2),

(0 1 - u^4 -1/2 + u^4 -1/2),

(0 -u 1/2*u 1/2*u)

]

>

> p := 2;

> seq := MinimalVectorSequence(f,10: Distortion :=[2,2,2,2],Power := p);

> seq;

[

(u^5 0 0 0),

Ch. 41 RATIONAL FUNCTION FIELDS 1073

(0 u^2 -1/2 1/2),

(0 1 - u^2 -1/2 + u^2 -1/2),

(0 -u 1/2*u 1/2*u)

]

> mp:= map<S->S| x :-> (IsWeaklyZero(x) select 0

> else &+([Coefficient(x,i)*(S.1)^(p*i) : i in Exponents(x)]))

> + (ISA(Type(v),RngIntElt) select O((S.1)^(p*v))

> else S!0 where v := AbsolutePrecision(x))>;

> sums := [&+([mp(Q[i])*f[i]: i in [1..#f]]) : Q in seq];

> [Valuation(v) : v in sums];

[10, 10, 10, 11]

> sums;

[

u^10,

-1/2*u^10 + 1/2*u^12 - u^13 + O(u^16),

-1/2*u^10 - 1/2*u^12 + u^13 + u^14 + O(u^16),

u^11 + 1/2*u^12 + 1/2*u^14 + O(u^18)

]

Example H41E11

This example covers the example on page 815 in [BL94].

> S<u> := PowerSeriesRing(Rationals());

> f := [1,u, -1-u^4-2*u^8+u^10+u^11-u^12+O(u^16),-u-u^5-u^9-u^14-u^15+O(u^16)];

> dist:=[2,2,3,3];

> seq := MinimalVectorSequence(f,13:Distortion:=dist);

> pade, padebasis, ord := PadeHermiteApproximant(f,dist);

> pade, ord;

(-u 1 0 0)

13

> padebasis;

[

(-u 1 0 0),

(1/2*u -1/2*u^4 1/2*u + 1/2*u^3 + 1/2*u^4 -1/2*u^2 - 1/2*u^3 - u^4),

(-1/2 1/2*u^3 -1/2 - 1/2*u^2 - 1/2*u^3 - u^4 1/2*u + 1/2*u^2 + 2*u^3),

(-u 0 0 -1 + u^4)

]

> padebasis eq seq;

true

> [[Valuation(w[i]): i in [1..Degree(w)]] : w in seq];

[

[1, 0, Infinity, Infinity],

[1, 4, 1, 2],

[0, 3, 0, 1],

[1, Infinity, Infinity, 0]

]

> [[MaximumDegree([w[i]])-dist[i]: i in [1..Degree(w)]] : w in seq];

1074 GLOBAL ARITHMETIC FIELDS Part VII

[

[-1, -2, -Infinity, -Infinity],

[-1, 2, 1, 1],

[-2, 1, 1, 0],

[-1, -Infinity, -Infinity, 1]

]

> p:=2;

> seq := MinimalVectorSequence(f,12:Distortion:=dist,Power:=p);

> seq;

[

(u - u^3 0 u - 2*u^3 0),

(-1 - u + u^2 -u^3 -1 - u + 2*u^2 + u^3 -u^3),

(u + u^2 - u^3 0 u + u^2 - 2*u^3 - u^4 0),

(0 1 0 1 - u^2)

]

> seq[1]-seq[3];

(-u^2 0 -u^2 + u^4 0)

> mp:= map<S->S| x :-> (IsWeaklyZero(x) select 0

> else &+([Coefficient(x,i)*(S.1)^(p*i) : i in Exponents(x)]))

> + (ISA(Type(v),RngIntElt) select O((S.1)^(p*v))

> else S!0 where v := AbsolutePrecision(x))>;

> [Valuation(&+([mp(Q[i])*f[i]: i in [1..#f]])) : Q in seq];

[12, 12, 13, 13]

Example H41E12

This example considers the example on page 816 in [BL94].

> S<u> := PowerSeriesRing(Rationals());

> f := [1,u,-1-u^4-2*u^8+u^10+O(u^12),-u-u^5-u^9+u^10+O(u^12)];

> dist := [2,2,3,3];

> seq := MinimalVectorSequence(f,12: Distortion := dist);

> [[MaximumDegree([w[i]])-dist[i]: i in [1..Degree(w)]] : w in seq];

[

[-1, -2, -Infinity, -Infinity],

[-2, 1, 0, 0],

[-Infinity, -Infinity, 1, 0],

[-1, -Infinity, 0, 1]

]

> [Valuation(&+([(Q[i])*f[i]: i in [1..#f]])) : Q in seq];

[Infinity, 12, 12, 12]

> [MaximumDegree([&+([(Q[i])*f[i]: i in [1..#f]])]) : Q in seq];

[-Infinity, -Infinity, 14, -Infinity]

> PadeHermiteApproximant(f,[2,2,3,3]);

> p := 2;

> seq := MinimalVectorSequence(f,12:Distortion:=[2,2,3,3],Power:=p);

> seq;

[

Ch. 41 RATIONAL FUNCTION FIELDS 1075

(1 - u^2 -1 1 - 2*u^2 -1 + u^2),

(0 -u^4 0 -u^4),

(-u -1 -u + u^3 -1 + u^2),

(0 u 0 u - u^3)

]

> [[MaximumDegree([w[i]])-dist[i]: i in [1..Degree(w)]] : w in seq];

[

[0, -2, -1, -1],

[-Infinity, 2, -Infinity, 1],

[-1, -2, 0, -1],

[-Infinity, -1, -Infinity, 0]

]

> mp:= map<S->S| x :-> (IsWeaklyZero(x) select 0

> else &+([Coefficient(x,i)*(S.1)^(p*i) : i in Exponents(x)]))

> + (ISA(Type(v),RngIntElt) select O((S.1)^(p*v))

> else S!0 where v := AbsolutePrecision(x))>;

>

> [Valuation(&+([mp(Q[i])*f[i]: i in [1..#f]])) : Q in seq];

[12, 13, 12, 12]

A variant of the Padé-Hermite approximant is when the exponent in the order term is set
rather that the type of the sequence. It is also possible to let f be a sequence such that
its entries themselves are vectors of polynomials or power series.

PadeHermiteApproximant(f,m)

Power RngIntElt Default : 1
Returns a Padé-Hermite form of minimal degree in the corresponding minimal vector
sequence, such that its inproduct with f has order at least m. The second argument
returned is the corresponding minimal vector sequence.

Example H41E13

This example can be found on page 813 in [BL94].

> S<u> := PowerSeriesRing(Rationals());

> f := [Vector([1]), Vector([u])];

> pade, seq := PadeHermiteApproximant(f,3);

Calculating the Pade’-Hermite approximant for the sequence [

1,

u

]

with order term 3 and power 1 .

> pade;

(u -1)

> seq;

[

1076 GLOBAL ARITHMETIC FIELDS Part VII

(u -1),

(0 u^2)

]

> mat := Matrix([Eltseq(v): v in f]);

> pade*mat;

(0)

> PadeHermiteApproximant([1,u],5);

(u -1)

[

(u -1),

(0 u^4)

]

> PadeHermiteApproximant(f,3:Power:=2);

> g:= [Vector([1,0,0]), Vector([0,1,0]), Vector([1+u,2+u^2,u^3])];

> pade := PadeHermiteApproximant(g,5);

Calculating the Pade’-Hermite approximant for the sequence [

1,

u,

1 + 2*u + u^3 + u^7 + u^11

]

with order term 15 and power 3 .

> pade;

(-u^3 - u^4 -2*u^3 u^3)

> pade*Matrix([Eltseq(v): v in g]);

(0 u^5 u^6)

Example H41E14

This example considers Padé-Hermite approximants for some series that have non-trivial power
series expansions.

> S<u> := PowerSeriesRing(Rationals());

> f := [Sin(u), Cos(u), Exp(u)];

> [Valuation(f[i]) : i in [1..#f]], [Degree(f[i]) : i in [1..#f]];

[1, 0, 0]

[19, 20, 20]

> [AbsolutePrecision(f[i]) : i in [1..#f]];

[21, 22, 21]

> dist := [3,2,5];

> pade, seq, ord := PadeHermiteApproximant(f,dist);

> 1/420*pade;

(-1275 - 255*u + 45*u^2 + 5*u^3 120 + 495*u + 75*u^2 -120 + 900*u - 600*u^2 +

160*u^3 - 20*u^4 + u^5)

> ord eq &+(dist)+#f-1, ord;

true 12

> [Degree(pade[i]) : i in [1..Degree(pade)]];

[3, 2, 5]

> g:= [Cos(2*u)*(u+1)+3,Cos(u)^2+u*Cos(u)+1,Cos(2*u)+1,Cos(u)];

Ch. 41 RATIONAL FUNCTION FIELDS 1077

> pade, basis := PadeHermiteApproximant(g,20);

> 131/75880*pade;

(2 -4 + 2*u -3*u 4*u - 2*u^2)

> h := [1+u^2-u^7+u^12, Sin(u), Exp(u)];

> dist:=[3,1,2];

> seq := MinimalVectorSequence(h,8:Distortion := dist);

> sums := [&+([Q[i]*h[i]: i in [1..#f]]) : Q in seq];

> [Valuation(s) : s in sums];

[8, 8, 8]

> [[MaximumDegree([w[i]]): i in [1..Degree(w)]] : w in seq];

[

[4, 1, 2],

[4, 2, 2],

[3, 1, 2]

]

> [[MaximumDegree([w[i]])-dist[i]: i in [1..Degree(w)]] : w in seq];

[

[1, 0, 0],

[1, 1, 0],

[0, 0, 0]

]

41.6 Bibliography
[BL94] Bernhard Beckermann and George Labahn. A uniform approach for the fast

computation of matrix-type Padé approximants. SIAM J. Matrix Anal. Appl., 15(3):
804–823, 1994.

[Der94] Harm Derksen. An algorithm to compute generalized Padé-Hermite Forms.
Technical Report 9403, Department of Mathemtaics, Catholic University Nijmegen,
jan 1994.

42 ALGEBRAIC FUNCTION FIELDS
42.1 Introduction 1087

42.1.1 Representations of Fields 1087

42.2 Creation of Algebraic Function
Fields and their Orders . . . 1088

42.2.1 Creation of Algebraic Function Fields1088

ext< > 1088
FunctionField(f :-) 1088
FunctionField(f :-) 1088
FunctionField(S) 1089
FunctionField(S) 1089
HermitianFunctionField(p, d) 1089
HermitianFunctionField(q) 1089
sub< > 1089
sub< > 1089
AssignNames(∼F, s) 1089
AssignNames(∼a, s) 1089
FunctionField(R) 1089

42.2.2 Creation of Orders of Algebraic Func-
tion Fields 1091

EquationOrderFinite(F) 1091
MaximalOrderFinite(F) 1091
EquationOrderInfinite(F) 1092
MaximalOrderInfinite(F) 1092
IntegralClosure(R, F) 1092
EquationOrder(O) 1092
MaximalOrder(O) 1092
SetOrderMaximal(O, b) 1093
ext< > 1093
Order(O, T, d) 1094
Order(O, M) 1094
Order(O, S) 1094
Simplify(O) 1094
+ 1095
meet 1095
AsExtensionOf(O1, O2) 1095

42.2.3 Orders and Ideals 1096

MultiplicatorRing(I) 1096
pMaximalOrder(O, p) 1096
pRadical(O, p) 1096

42.3 Related Structures 1097

42.3.1 Parent and Category 1097

Category Category 1097
Parent Parent 1097

42.3.2 Other Related Structures 1097

PrimeRing(F) 1097
PrimeField(F) 1097
PrimeRing(O) 1097
ConstantField(F) 1097
DefiningConstantField(F) 1097
ExactConstantField(F) 1097

BaseRing(F) 1097
BaseField(F) 1097
CoefficientRing(F) 1097
CoefficientField(F) 1097
ISABaseField(F,G) 1097
BaseRing(O) 1098
CoefficientRing(O) 1098
BaseRing(FF) 1098
BaseField(FF) 1098
CoefficientRing(FF) 1098
CoefficientField(FF) 1098
SubOrder(O) 1098
FunctionField(O) 1098
FieldOfFractions(O) 1098
FieldOfFractions(FF) 1098
FieldOfFractions(F) 1098
Order(FF) 1098
RationalExtensionRepresentation(F) 1098
AbsoluteOrder(O) 1098
AbsoluteFunctionField(F) 1098
UnderlyingRing(F) 1099
UnderlyingField(F) 1099
UnderlyingRing(F, R) 1099
UnderlyingField(F, R) 1099
Embed(F, L, a) 1099
Embed(F, L, s) 1099
Places(F) 1099
DivisorGroup(F) 1099
DifferentialSpace(F) 1099
WeilRestriction(E, n) 1100
ConstantFieldExtension(F, E) 1101
Reduce(O) 1101

42.4 General Structure Invariants . 1101

Characteristic(F) 1101
Characteristic(O) 1101
IsPerfect(F) 1101
Degree(F) 1101
Degree(F, G) 1101
Degree(O) 1101
AbsoluteDegree(F) 1102
AbsoluteDegree(O) 1102
DefiningPolynomial(F) 1102
DefiningPolynomial(O) 1102
DefiningPolynomials(F) 1102
DefiningPolynomials(O) 1102
Basis(F) 1102
Basis(O) 1102
Basis(O, R) 1102
TransformationMatrix(O1, O2) 1102
CoefficientIdeals(O) 1102
BasisMatrix(O) 1102
PrimitiveElement(O) 1103
Discriminant(O) 1103
AbsoluteDiscriminant(O) 1103

1080 GLOBAL ARITHMETIC FIELDS Part VII

DimensionOfExactConstantField(F) 1103
DegreeOfExactConstantField(F) 1103
Genus(F) 1103
GapNumbers(F) 1105
GapNumbers(F, P) 1105
SeparatingElement(F) 1105
RamificationDivisor(F) 1105
WeierstrassPlaces(F) 1105
WronskianOrders(F) 1105
Different(O) 1106
Index(O, S) 1106

42.5 Galois Groups 1106

GaloisGroup(f) 1107
GaloisGroup(F) 1107

42.6 Subfields 1110

Subfields(F) 1110

42.7 Automorphism Group 1111

42.7.1 Automorphisms over the Base Field 1112

Automorphisms(K, k) 1112
AutomorphismGroup(K, k) 1112
IsSubfield(K, L) 1113
IsIsomorphicOverQt(K, L) 1113

42.7.2 General Automorphisms 1114

Isomorphisms(K, E) 1114
IsIsomorphic(K, E) 1115
Automorphisms(K) 1115
Isomorphisms(K,E,p1,p2) 1115
Automorphisms(K,p1,p2) 1115
AutomorphismGroup(K) 1115
AutomorphismGroup(K,f) 1116

42.7.3 Field Morphisms 1116

IsMorphism(f) 1116
FieldMorphism(f) 1116
IdentityFieldMorphism(F) 1116
IsIdentity(f) 1116
Equality(f, g) 1116
HasInverse(f) 1117
Composition(f, g) 1117

42.8 Global Function Fields 1119
42.8.1 Functions relative to the Exact Con-

stant Field 1119

NumberOfPlacesOfDegree
OverExactConstantField(F, m) 1119

NumberOfPlacesDegECF(F, m) 1119
NumberOfPlacesOfDegreeOne

OverExactConstantField(F) 1119
NumberOfPlacesOfDegreeOneECF(F) 1119
NumberOfPlacesOfDegreeOne

OverExactConstantField(F, m) 1119
NumberOfPlacesOfDegreeOneECF(F, m) 1119
SerreBound(F) 1119
SerreBound(F, m) 1119
SerreBound(q, g) 1119

IharaBound(F) 1120
IharaBound(F, m) 1120
IharaBound(q, g) 1120
NumberOfPlacesOfDegreeOne

ECFBound(F) 1120
NumberOfPlacesOfDegreeOne

OverExactConstantFieldBound(F) 1120
NumberOfPlacesOfDegreeOne

ECFBound(F, m) 1120
NumberOfPlacesOfDegreeOne

OverExactConstantFieldBound(F, m) 1120
NumberOfPlacesOfDegreeOne

ECFBound(q, g) 1120
NumberOfPlacesOfDegreeOne

OverExactConstantFieldBound(q, g) 1120
LPolynomial(F) 1120
LPolynomial(F, m) 1120
ZetaFunction(F) 1120
ZetaFunction(F, m) 1120

42.8.2 Functions Relative to the Constant
Field 1121

Places(F, m) 1121
HasPlace(F, m) 1121
HasRandomPlace(F, m) 1121
RandomPlace(F, m) 1121

42.8.3 Functions related to Class Group . 1122

UnitRank(O) 1122
UnitGroup(O) 1122
Regulator(O) 1122
PrincipalIdealMap(O) 1122
ClassGroup(F :-) 1123
ClassGroup(O) 1123
ClassGroupExactSequence(O) 1123
ClassGroupAbelianInvariants(F :-) 1123
ClassGroupAbelianInvariants(O) 1123
ClassNumber(F) 1124
ClassNumber(O) 1124
GlobalUnitGroup(F) 1124
ClassGroupPRank(F) 1125
HasseWittInvariant(F) 1125
IndependentUnits(O) 1125
FundamentalUnits(O) 1125

42.9 Structure Predicates 1126

IsField IsEuclideanDomain 1126
IsPID IsUFD 1126
IsDivisionRing IsEuclideanRing 1126
IsPrincipalIdealRing IsDomain 1126
eq ne eq ne 1126
subset 1126
IsGlobal(F) 1126
IsRationalFunctionField(F) 1126
IsFiniteOrder(O) 1126
IsEquationOrder(O) 1126
IsAbsoluteOrder(O) 1126
IsMaximal(O) 1126
IsTamelyRamified(O) 1126

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1081

IsTotallyRamified(O) 1126
IsUnramified(O) 1127
IsWildlyRamified(O) 1127
IsInKummerRepresentation(K) 1127
IsInArtinSchreierRepresentation(K) 1127

42.10 Homomorphisms 1127

hom< > 1127
hom< > 1127
hom< > 1127
hom< > 1127
IsRingHomomorphism(m) 1127
hom< > 1128
hom< > 1128

42.11 Elements 1128

42.11.1 Creation of Elements 1129

. 1129

. 1129
Name(F, i) 1129
. 1129
. 1129
! 1129
elt< > 1129
! 1129
elt< > 1129
! 1130
elt< > 1130
elt< > 1130
elt< > 1130
elt< > 1130
One One 1130
Identity Identity 1130
Zero Zero 1130
Representative Representative 1130
Random(F, m) 1130
Random(O, m) 1130

42.11.2 Parent and Category 1130

Parent Category 1130

42.11.3 Sequence Conversions 1131

ElementToSequence(a) 1131
Eltseq(a) 1131
Eltseq(a, R) 1131
Flat(a) 1131
! 1131
! 1131

42.11.4 Arithmetic Operators 1132

+ - 1132
+ - * div / ^ 1132
Modexp(a, k, m) 1132
mod 1132
Modinv(a, m) 1132

42.11.5 Equality and Membership . . . 1132

eq ne 1132
in in in 1132

notin notin notin 1132

42.11.6 Predicates on Elements 1132

IsDivisibleBy(a, b) 1132
IsZero IsOne IsMinusOne 1132
IsNilpotent IsIdempotent 1132
IsUnit IsZeroDivisor IsRegular 1133
IsIrreducible IsPrime 1133
IsSeparating(a) 1133
IsConstant(a) 1133
IsGlobalUnit(a) 1133
IsGlobalUnitWithPreimage(a) 1133
IsUnitWithPreimage(a) 1133

42.11.7 Functions related to Norm and Trace
1133

Trace Norm 1133
MinimalPolynomial 1133
CharacteristicPolynomial 1133
RepresentationMatrix(a) 1133
Trace(a, R) 1133
Norm(a, R) 1134
CharacteristicPolynomial(a, R) 1134
MinimalPolynomial(a, R) 1134
AbsoluteMinimalPolynomial(a) 1134
RepresentationMatrix(a, R) 1134

42.11.8 Functions related to Orders and In-
tegrality 1135

IntegralSplit(a, O) 1135
Numerator(a, O) 1135
Numerator(a) 1135
Numerator(a, O) 1135
Denominator(a, O) 1135
Denominator(a) 1135
Denominator(a, O) 1135
Min(a, O) 1135
Minimum(a, O) 1135

42.11.9 Functions related to Places and Di-
visors 1136

Evaluate(a, P) 1136
Lift(a, P) 1136
Valuation(a, P) 1136
Expand(a, P) 1136
Divisor(a) 1136
PrincipalDivisor(a) 1136
Zeros(a) 1136
Zeroes(a) 1136
Zeros(F, a) 1136
Zeroes(F, a) 1136
Poles(a) 1136
Poles(F, a) 1136
Degree(a) 1136
CommonZeros(L) 1137
CommonZeros(F, L) 1137
Module(L, R) 1138
Relations(L, R) 1138
Relations(L, R, m) 1138
Roots(f, D) 1138

1082 GLOBAL ARITHMETIC FIELDS Part VII

42.11.10 Other Operations on Elements . 1139

ProductRepresentation(a) 1139
ProductRepresentation(Q, S) 1139
PowerProduct(Q, S) 1139
RationalFunction(a) 1139
RationalFunction(a, R) 1139
Differentiation(x, a) 1139
Differentiation(x, n, a) 1139
DifferentiationSequence(x, n, a) 1139
PrimePowerRepresentation(x, k, a) 1140
Different(a) 1140
RationalReconstruction(e, f) 1140
CoefficientHeight(a) 1140
CoefficientHeight(a) 1140
CoefficientLength(a) 1140
CoefficientLength(a) 1140

42.12 Ideals 1142

42.12.1 Creation of Ideals 1142

ideal< > 1142
ideal< > 1142
ideal< > 1142
ideal< > 1142
* 1142
* 1142
Ideal(P) 1142
Ideals(D) 1142
!! 1142

42.12.2 Parent and Category 1142

Parent Category 1142

42.12.3 Arithmetic Operators 1143

+ * 1143
/ ^ 1143
* * / 1143
/ 1143
IdealQuotient(I, J) 1143
ColonIdeal(I, J) 1143
ChineseRemainder

Theorem(I1, I2, e1, e2) 1143
CRT(I1, I2, e1, e2) 1143

42.12.4 Roots of Ideals 1143

IsPower(I, n) 1143
Root(I, n) 1143
IsSquare(I) 1143
SquareRoot(I) 1143
Sqrt(I) 1143

42.12.5 Equality and Membership . . . 1145

eq ne in notin 1145

42.12.6 Predicates on Ideals 1145

IsZero(I) 1145
IsOne(I) 1145
IsIntegral(I) 1145
IsPrime(I) 1145
IsPrincipal(I) 1145

IsInert(P) 1145
IsInert(P, O) 1145
IsRamified(P) 1145
IsRamified(P, O) 1145
IsSplit(P) 1145
IsSplit(P, O) 1145
IsTamelyRamified(P) 1146
IsTamelyRamified(P, O) 1146
IsTotallyRamified(P) 1146
IsTotallyRamified(P, O) 1146
IsTotallySplit(P) 1146
IsTotallySplit(P, O) 1146
IsUnramified(P) 1146
IsUnramified(P, O) 1146
IsWildlyRamified(P) 1146
IsWildlyRamified(P, O) 1146

42.12.7 Further Ideal Operations 1147

meet 1147
Gcd(I, J) 1147
Lcm(I, J) 1147
Factorization(I) 1147
Factorisation(I) 1147
Decomposition(O, p) 1147
Decomposition(O) 1147
DecompositionType(O, p) 1147
DecompositionType(O) 1147
MultiplicatorRing(I) 1147
pMaximalOrder(O, p) 1147
pRadical(O, p) 1148
Valuation(a, P) 1148
Valuation(I, P) 1148
Order(I) 1148
Denominator(I) 1148
Minimum(I) 1148
meet 1148
IntegralSplit(I) 1148
Norm(I) 1148
TwoElement(I) 1148
Generators(I) 1149
Basis(I) 1149
Basis(I, R) 1149
BasisMatrix(I) 1149
TransformationMatrix(I) 1149
CoefficientIdeals(I) 1149
Different(I) 1149
Codifferent(I) 1149
Divisor(I) 1149
Divisor(I, J) 1149
RamificationIndex(I) 1152
RamificationDegree(I) 1152
Degree(I) 1152
InertiaDegree(I) 1152
ResidueClassDegree(I) 1152
ResidueClassField(I) 1152
Place(I) 1152
SafeUniformizer(P) 1152

42.13 Places 1153

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1083

42.13.1 Creation of Structures 1153

Places(F) 1153

42.13.2 Creation of Elements 1153

Decomposition(F, P) 1153
DecompositionType(F, P) 1153
Zeros(a) 1153
Poles(a) 1154
! 1154
Place(I) 1154
Support(D) 1154
AssignNames(∼P, s) 1154
InfinitePlaces(F) 1154
HasPlace(F, m) 1154
HasRandomPlace(F, m) 1154
RandomPlace(F, m) 1154
Places(F, m) 1154

42.13.3 Related Structures 1155

FunctionField(S) 1155
DivisorGroup(F) 1155

42.13.4 Structure Invariants 1155

WeierstrassPlaces(F) 1155
NumberOfPlacesOfDegreeOne

OverExactConstantField(F, m) 1156
NumberOfPlacesOfDegreeOneECF(F, m) 1156
NumberOfPlacesOfDegreeOne

OverExactConstantFieldBound(F, m) 1156
NumberOfPlacesOfDegreeOne

ECFBound(F, m) 1156
NumberOfPlacesOfDegree

OverExactConstantField(F, m) 1156
NumberOfPlacesDegECF(F, m) 1156

42.13.5 Structure Predicates 1156

eq ne 1156

42.13.6 Element Operations 1156

Parent Category 1156
- 1156
+ - * div mod 1156
Quotrem(P, k) 1156
eq ne in notin 1157
IsFinite(P) 1157
IsWeierstrassPlace(P) 1157
FunctionField(P) 1157
Degree(P) 1157
RamificationIndex(P) 1157
RamificationDegree(P) 1157
InertiaDegree(P) 1157
ResidueClassDegree(P) 1157
Minimum(P) 1157
ResidueClassField(P) 1157
Evaluate(a, P) 1157
Lift(a, P) 1158
TwoGenerators(P) 1158
LocalUniformizer(P) 1158
UniformizingElement(P) 1158
SafeUniformizer(P) 1158

Ideal(P) 1158
Norm(P) 1158

42.13.7 Completion at Places 1159

Completion(F, p) 1159
Completion(O, p) 1159

42.14 Divisors 1159

42.14.1 Creation of Structures 1159

DivisorGroup(F) 1159

42.14.2 Creation of Elements 1159

Divisor(P) 1159
! 1159
* 1159
! 1159
Divisor(a) 1159
! 1159
Divisor(I) 1159
Divisor(I, J) 1159
Identity(G) 1159
Id(G) 1159
CanonicalDivisor(F) 1160
DifferentDivisor(F) 1160
AssignNames(∼D, s) 1160

42.14.3 Related Structures 1160

FunctionField(G) 1160
Places(F) 1160

42.14.4 Structure Invariants 1160

NumberOfSmoothDivisors(n, m, P) 1160
DivisorOfDegreeOne(F) 1160

42.14.5 Structure Predicates 1160

eq ne 1160

42.14.6 Element Operations 1160

- 1161
+ - * div mod 1161
+ + - - 1161
Quotrem(D, k) 1161
GCD(D1, D2) 1161
Gcd(D1, D2) 1161
GreatestCommonDivisor(D1, D2) 1161
LCM(D1, D2) 1161
Lcm(D1, D2) 1161
LeastCommonMultiple(D1, D2) 1161
eq ne 1161
le lt ge gt 1161
in notin 1161
IsZero 1161
IsEffective IsPositive 1161
IsSpecial IsPrincipal 1161
IsCanonical(D) 1161
FunctionField(D) 1164
Degree(D) 1164
Support(D) 1164
Numerator(D) 1164
ZeroDivisor(D) 1164
Denominator(D) 1165
PoleDivisor(D) 1165

1084 GLOBAL ARITHMETIC FIELDS Part VII

Ideals(D) 1165
Norm(D) 1165
FiniteSplit(D) 1165
FiniteDivisor(D) 1165
InfiniteDivisor(D) 1165
Dimension(D) 1165
IndexOfSpeciality(D) 1165
ShortBasis(D :-) 1165
Basis(D :-) 1166
RiemannRochSpace(D) 1166
Valuation(D, P) 1166
Reduction(D) 1166
Reduction(D, A) 1166
GapNumbers(D, P) 1167
GapNumbers(D) 1167
RamificationDivisor(D) 1169
WeierstrassPlaces(D) 1170
IsWeierstrassPlace(D, P) 1170
WronskianOrders(D) 1170
ComplementaryDivisor(D) 1170
DifferentialBasis(D) 1170
DifferentialSpace(D) 1171
Parametrization(F, D) 1171

42.14.7 Functions related to Divisor Class
Groups of Global Function Fields 1171

ClassGroupGenerationBound(q, g) 1171
ClassGroupGenerationBound(F) 1171
ClassNumberApproximation(F, e) 1171
ClassNumber

ApproximationBound(q, g, e) 1172
ClassGroup(F :-) 1172
ClassGroupAbelianInvariants(F :-) 1172
ClassNumber(F) 1173
GlobalUnitGroup(F) 1174
IsGlobalUnit(a) 1174
IsGlobalUnitWithPreimage(a) 1174
PrincipalDivisorMap(F) 1174
ClassGroupExactSequence(F) 1174
SUnitGroup(S) 1174
IsSUnit(a, S) 1174
IsSUnitWithPreimage(a, S) 1174
SRegulator(S) 1174
SPrincipalDivisorMap(S) 1174
IsSPrincipal(D, S) 1175
SClassGroup(S) 1175
SClassGroupExactSequence(S) 1175
SClassGroupAbelianInvariants(S) 1175
SClassNumber(S) 1175
ClassGroupPRank(F) 1175
HasseWittInvariant(F) 1175
TateLichtenbaumPairing(D1, D2, m) 1175

42.15 Differentials 1176

42.15.1 Creation of Structures 1176

DifferentialSpace(F) 1176

42.15.2 Creation of Elements 1176

Differential(a) 1176

Identity(D) 1176
IsCanonical(D) 1176

42.15.3 Related Structures 1177

FunctionField(D) 1177
FunctionField(d) 1177

42.15.4 Subspaces 1177

SpaceOfDifferentialsFirstKind(F) 1177
SpaceOfHolomorphicDifferentials(F) 1177
BasisOfDifferentialsFirstKind(F) 1177
BasisOfHolomorphicDifferentials(F) 1177
DifferentialBasis(D) 1177
DifferentialSpace(D) 1177

42.15.5 Structure Predicates 1178

eq 1178

42.15.6 Operations on Elements 1178

* 1178
* 1178
+ 1178
- 1178
- 1178
/ 1178
/ 1178
eq 1179
in 1179
IsExact(d) 1179
IsZero(d) 1179
Valuation(d, P) 1179
Divisor(d) 1179
Residue(d, P) 1179
Module(L, R) 1180
Relations(L, R) 1180
Relations(L, R, m) 1180
Cartier(b) 1181
Cartier(b, r) 1181
CartierRepresentation(F) 1181
CartierRepresentation(F, r) 1181

42.16 Weil Descent 1182

WeilDescent(E,k) 1182
ArtinSchreierExtension(c,a,b) 1183
WeilDescentDegree(E,k) 1183
WeilDescentGenus(E,k) 1183
MultiplyFrobenius(b,f,F) 1183

42.17 Function Field Database . . 1184

42.17.1 Creation 1185

FunctionFieldDatabase(q, d) 1185
sub< > 1185

42.17.2 Access 1185

BaseField(D) 1185
CoefficientField(D) 1185
Degree(D) 1185
1185
NumberOfFields(D) 1185
FunctionFields(D) 1185

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1085

42.18 Bibliography 1186

Chapter 42

ALGEBRAIC FUNCTION FIELDS

42.1 Introduction

This version of Magma is based on the KANT Version 4 system for algebraic function
field computations. Special functions for rational function fields are described in Chapter
FldFunRat.

An algebraic function field F/k (in one variable) over a field k is a field extension F of k
such that F is a finite field extension of k(x) for an element x ∈ F which is transcendental
over k. As a Magma object it is of type FldFun with elements of type FldFunElt. For
perfect k it is always possible to choose x ∈ F so that F/k(x) is also separable. For such x
there exists a primitive element α ∈ F with F = k(x, α) where α is a root of an irreducible,
separable polynomial in k(x)[y].

42.1.1 Representations of Fields
All function fields in Magma can be represented as described above, i.e. as k(x, α)

where x is transcendental and α is algebraic. This is the representation which has the
most functionality.

Alternatively, one may wish to consider a function field as a combined transcendental
and algebraic extension of its constant field, more like a curve. Such a field would be a
quotient of k[x, y]. Fields in this representation do not have orders.

Algebraic function fields may be extended to create relative finite extensions of k(x) like
F = k(x, α1, . . . , αn). The functionality described in this chapter which is not available
for these relative extensions is that involving series rings, galois groups and subfields.

It is also possible to make non–simple extensions where more than one root of a poly-
nomial is added at each step by extending by several polynomials. These extensions have
the same functionality as the relative finite extensions, except that primitive elements and
some functions involving differentials are not available.

Function fields represented as finite extensions may have orders. Some orders will have
a basis different to that of their function fields. Orders may have a field of fractions. A
field of fractions of an order is isomorphic to the function field of the order, however its
elements are represented with respect to the basis of the order. So there are 3 different
types of rings covered in this chapter, function fields (FldFun), orders of function fields
(RngFunOrd) and fields of fractions of orders of function fields (FldFunOrd). Each ring
type has its own corresponding element type.

1088 GLOBAL ARITHMETIC FIELDS Part VII

42.2 Creation of Algebraic Function Fields and their Orders

42.2.1 Creation of Algebraic Function Fields

ext< K | f >

FunctionField(f :parameters)

Check BoolElt Default : true

Global BoolElt Default : true

Let k be a field and K = k(x) or K = k(x, α1, . . . , αr) some finite extension of k(x).
Given an irreducible and separable polynomial f ∈ K[y] of degree greater than
zero with coefficients within K, create the algebraic function field F = K[y]/〈f〉 =
k(x, α1, . . . , αr, α) obtained by adjoining a root α of f to K. F will be viewed as a
(finite) extension of K. The polynomial f is also allowed to be ∈ k[x][y].

The optional parameter Check may be used to prevent some conditions from
being tested. The default is Check := true, so that f is verified to be irreducible
and separable. The optional parameter Global may be used to allow another copy
of the field to be returned if it is set to false, otherwise if a field has already been
constructed using f over K and has not been deleted then the existing field will be
returned.

The angle bracket notation may be used to assign the root α to an identifier:
F<a> := FunctionField(f).

FunctionField(f :parameters)

Check BoolElt Default : true

Global BoolElt Default : true

Let k be a field. Given an irreducible polynomial f ∈ k[x, y] of degree greater than
zero, create the algebraic function field F which is the field of fractions of k[x, y]/〈f〉.
The polynomial f must be separable in at least one variable. F will be viewed as
(infinite) extension of k.

The optional parameter Check may be used to prevent some conditions from
being tested. The default is Check := true, so that f is verified to be irreducible
and separable in at least one variable. The optional parameter Global may be used
to allow another copy of the field to be returned if it is set to false, otherwise if
a field has already been constructed using f over K and has not been deleted then
the existing field will be returned.

The angle bracket notation may be used to assign the images of x, y in F to
identifiers: F<a, b> := FunctionField(f).

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1089

FunctionField(S)

Check BoolElt Default : true

Return the function field F whose defining polynomials are the polynomials in the
sequence S. If Check is set to false then it will not be checked the polynomials
actually define a field.

FunctionField(S)

Return the function field F whose defining polynomials are the polynomials in the
sequence S. This field F will be represented as an infinite degree extension of the
coefficient field of the polynomials in S.

HermitianFunctionField(p, d)

HermitianFunctionField(q)

Create the Hermitian function field F = Fq2(x, α) defined by αq +α = xq+1, where
q is the d-th power of the prime number p.

sub< F | S >

sub< F | s1, . . . , sr >

The subfield of the function field F containing the elements in the sequence S or
the elements si.

AssignNames(∼F, s)

AssignNames(∼a, s)

Procedure to change the name of the generating element(s) in the function field F
(a in F) to the contents of the sequence of strings s, which must have length 1 or 2
in this case.

This procedure only changes the name(s) used in printing the elements of F . It
does not assign to any identifier(s) the value(s) of the generator(s) in F ; to do this,
use an assignment statement, or use angle brackets when creating the field.

Note that since this is a procedure that modifies F , it is necessary to have a
reference ∼F to F (or a) in the call to this function.

FunctionField(R)

Global BoolElt Default : true

Type Cat Default : FldFunRat

Return the rational function field over R in one variable. If Global is false then
create a new copy of the field, otherwise reuse any globally created field which
already exists. If Type is FldFun create the field as an algebraic function field,
otherwise create as a rational function field.

1090 GLOBAL ARITHMETIC FIELDS Part VII

Example H42E1

Let F5 be the finite field of five elements. To create the function field extension F5(x, α)/F5(x),
where α satisfies

α2 = 1/x,

one may proceed in the following, equivalent ways:

> R<x> := FunctionField(GF(5));

> P<y> := PolynomialRing(R);

> F<alpha> := FunctionField(y^2 - 1/x);

> F;

Algebraic function field defined over Univariate rational function field over

GF(5)

Variables: x by

y^2 + 4/x

or

> R<x> := PolynomialRing(GF(5));

> P<y> := PolynomialRing(R);

> F<alpha> := FunctionField(x*y^2 - 1);

> F;

Algebraic function field defined over Univariate rational function field over

GF(5)

Variables: x by

x*y^2 + 4

or

> R<x> := FunctionField(GF(5));

> P<y> := PolynomialRing(R);

> F<alpha> := ext< R | y^2 - 1/x >;

> F;

Algebraic function field defined over Univariate rational function field over

GF(5)

Variables: x by

y^2 + 4/x

Example H42E2

An extension of F may be created as follows.

> R<y> := PolynomialRing(F);

> FF<beta> := FunctionField(y^3 - x/alpha : Check := false);

> FF;

Algebraic function field defined over F by

y^3 + 4*x^2*alpha

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1091

Example H42E3

To create a non–simple extension:

> R<x> := FunctionField(GF(5));

> P<y> := PolynomialRing(R);

> FF<alpha, beta> := FunctionField([y^2 - 1/x, y^3 + x]);

> FF;

Algebraic function field defined over Univariate rational function field over

GF(5) by

y^2 + 4/x

y^3 + x

or

> P<y> := PolynomialRing(F);

> FF<beta, gamma> := FunctionField([y^2 - x/alpha, y^3 + x]);

> FF;

Algebraic function field defined over F by

y^2 + 4*x^2*alpha

y^3 + x

Example H42E4

The creation of an Hermitian function field:

> F := HermitianFunctionField(9);

> F;

Algebraic function field defined over GF(3^4) by

y^9 + y + 2*x^10

42.2.2 Creation of Orders of Algebraic Function Fields
Equation orders, maximal orders and other orders of algebraic function fields can be cre-
ated.

EquationOrderFinite(F)

Create the ‘finite’ equation order of the function field F/k(x, α1, . . . , αr), i.e.
k[x, d1α1, . . . , drαr, dα] where dj , d ∈ k[x] is chosen such that djαj , dα are integral
over k[x].

MaximalOrderFinite(F)

Create the ‘finite’ maximal order of the function field F/k(x, α1, . . . , αr). This is
the integral closure of k[x, d1α1, . . . , drαr] in F .

1092 GLOBAL ARITHMETIC FIELDS Part VII

EquationOrderInfinite(F)

Create the ‘infinite’ equation order of the function field F/k(x, α1, . . . , αr), i.e.
o∞[α1, . . . , αr, β] where o∞ denotes the valuation ring of the degree valuation in
k(x) and β is a primitive element of F/k(x, α1, . . . , αr) which is integral over o∞.

MaximalOrderInfinite(F)

Create the ‘infinite’ maximal order of the function field F/k(x, α1, . . . , αr). This is
the integral closure of o∞ in F .

IntegralClosure(R, F)

The integral closure of the subring R of the function field F in itself.

EquationOrder(O)

The equation order of the order O. An order whose basis is a transformation of that
of O and is a power basis.

MaximalOrder(O)

Discriminant Any Default :

Ramification SeqEnum Default :

Al MonStgElt Default : “Auto”

Verbose MaximalOrder Maximum : 5

The maximal order of the order O of an algebraic function field.
If O is a radical (pure) extension then specific code is used to calculate each

p-maximal order, rather than the Round 2 method. In this case we can compute a
pseudo basis for the p-maximal orders knowing only the valuation of the constant
coefficient of the defining polynomial at p [Sut12].

If O is an Artin–Schreier extension then the maximal order can be computed
directly without computing the p-maximal orders. The proof of Proposition III.7.8
of [Sti93] gives us a start on some elements which are a basis for the maximal
order [Sut13].

If the Discriminant or Ramification parameters are supplied an algorithm
([Bj94], Theorems 1.2 and 7.6) which can compute the maximal order given the
discriminant of the maximal order will be used. Discriminant must be an element
of the coefficient ring of O if O is a non relative order and must be an ideal of O if
O is a relative order. Ramification must contain elements of the coefficient ring if
O is a non relative order and must contain ideals of O if O is a relative order. The
ramification sequence is taken to contain prime factors of the discriminant. Only
one of these parameters can be specified and if one of them is then Al cannot be
specified. Otherwise Al may be set to "Round2" to avoid using the algorithms for
the special cases above.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1093

SetOrderMaximal(O, b)

Set the order O of a function field to be maximal if b is true and to be non–maximal
if b is false.

ext< O | f >

Check Bool Default : true

The order O with a root of f adjoined.

Example H42E5

Creation of orders is shown below.

> PR<x> := PolynomialRing(Rationals());

> P<y> := PolynomialRing(PR);

> FR1<a> := FunctionField(y^3 - x*y^2 + y + x^4);

> P<y> := PolynomialRing(FR1);

> FR2<c> := FunctionField(y^2 + y - a/x^5);

> EFR1F := EquationOrderFinite(FR1);

> MFR1F := MaximalOrderFinite(FR1);

> EFR1I := EquationOrderInfinite(FR1);

> MFR1I := MaximalOrderInfinite(FR1);

> EFR2F := EquationOrderFinite(FR2);

> MFR2F := MaximalOrderFinite(FR2);

> EFR2I := EquationOrderInfinite(FR2);

> MFR2I := MaximalOrderInfinite(FR2);

> MaximalOrder(EFR2I);

>> MaximalOrder(EFR2I);

^

Runtime error in ’MaximalOrder’: Order must be defined over a maximal order

> MFR2I;

Maximal Order of FR2 over MFR1I

> P<y> := PolynomialRing(FR1);

> MaximalOrder(ext<MFR1F | y^2 + y - a*x^5>); MFR2F;

Maximal Equation Order of Algebraic function field defined over FR1 by

y^2 + y - x^5*a over EFR1F

Maximal Order of FR2 over EFR1F

> MaximalOrder(ext<MFR1I | y^2 - 1/a>);

Maximal Order of Algebraic function field defined over FR1 by

y^2 + 1/x^4*a^2 - 1/x^3*a + 1/x^4 over MFR1I

Example H42E6

> R<x> := FunctionField(GF(5));

> P<y> := PolynomialRing(R);

> f := y^3 + (4*x^3 + 4*x^2 + 2*x + 2)*y^2 + (3*x + 3)*y + 2;

> F<alpha> := FunctionField(f);

> IntegralClosure(R, F);

1094 GLOBAL ARITHMETIC FIELDS Part VII

Algebraic function field defined over GF(5) by

y^3 + (4*x^3 + 4*x^2 + 2*x + 2)*y^2 + (3*x + 3)*y + 2

> IntegralClosure(PolynomialRing(GF(5)), F);

Maximal Order of F over Univariate Polynomial Ring in x over GF(5)

> IntegralClosure(ValuationRing(R), F);

Maximal Order of F over Valuation ring of Rational function field of

rank 1 over GF(5)

Variables: x with generator 1/x

Order(O, T, d)

Check BoolElt Default : true

Create the order whose basis is that of the order O multiplied by the matrix T over
the coefficient ring of O divided by the scalar d. If the parameter Check is set to
false then it will not be checked that the result is actually an order (potentially
expensive).

Order(O, M)

Check BoolElt Default : true

Create the order whose basis is that of the order O multiplied by the dedekind
module M . If the parameter Check is set to false then it will not be checked that
the result is actually an order (potentially expensive).

Order(O, S)

Verify BoolElt Default : true

Order BoolElt Default : false

Given a sequence S of elements in an algebraic function field F create the minimal
order R of F which contains all elements of S.

The order O may be an order of F which will be used as the suborder of R, in
which case its coefficient ring should be maximal, or O may be a maximal order of
the coefficient field of F .

If Verify is true, it is verified that the elements of S are integral algebraic
numbers. This can be a lengthy process if the field is of large degree.

Setting Order to true, when the order is large will avoid verifying that the
module generated by the elements of S is closed under multiplication. By default,
products of the generators will be added until the module is closed under multipli-
cation.

Simplify(O)

Return the order O as a direct transformation of its equation order, instead of a
composition of transformations.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1095

O1 + O2

The smallest common over order of O1 and O2 where O1 and O2 have the same
equation order.

O1 meet O2

The intersection of orders O1 and O2 which must have the same equation order.

AsExtensionOf(O1, O2)

Return the order O1 as an transformation of the order O2 where O1 and O2 have
the same coefficient ring.

Example H42E7

Some of the above order creations are shown below.

> P<x> := PolynomialRing(GF(5));

> P<y> := PolynomialRing(P);

> F<a> := FunctionField(y^3 - x^4);

> O := Order(EquationOrderFinite(F), MatrixAlgebra(Parent(x), 3)!1, Parent(x)!3);

> O;

Order of F over Univariate Polynomial Ring in x over GF(5)

> Basis(O);

[

2,

2*a,

2*a^2

]

> P<y> := PolynomialRing(O);

> EO := ext<MaximalOrder(O) | y^2 + O!(2*a)>;

> V := KModule(F, 2);

> M := Module([V | [1, 0], [4, 3], [9, 2]]);

> M;

Module over Maximal Order of F over Univariate Polynomial Ring in x over GF(5)

Ideal of Maximal Order of F over Univariate Polynomial Ring in x over GF(5)

Generator:

1 car Ideal of Maximal Order of F over Univariate Polynomial Ring in x over

GF(5)

Generator:

2

> O2 := Order(EO, M);

> O2;

Order of Algebraic function field defined over F by

$.1^2 + 2*a over Maximal Order of F over Univariate Polynomial Ring in x over

GF(5)

Transformation of EO

Transformation Matrix:

[[1, 0, 0] [0, 0, 0]]

[[0, 0, 0] [1, 0, 0]]

1096 GLOBAL ARITHMETIC FIELDS Part VII

> Basis(O2);

[1, $.1]

42.2.3 Orders and Ideals
Orders may be created using ideals of other orders. Ideals are discussed in Section 42.12.

MultiplicatorRing(I)

Returns the multiplicator ring of the ideal I of the order O, that is, the subring of
elements of the field of fractions of O that multiply I into itself.

pMaximalOrder(O, p)

The p-maximal over order of O where p is a prime polynomial or ideal of the coef-
ficient ring of O or an element of valuation 1 of the valuation ring.

If O is a Kummer extension then specific code is used to calculate each p-maximal
order, rather than the Round 2 method. In this case we know 1 or 2 elements which
generate the p-maximal order and can write the order down.

If O is an Artin–Schreier extension then we can also write down a basis for the p-
maximal order and avoid the Round 2 algorithm. We use [Sti93] Proposition III.7.8
to get a start on computing these elements.

pRadical(O, p)

Returns the p-radical of an order O for a prime p (polynomial or ideal of the co-
efficient ring or element of valuation 1 of the valuation ring), defined as the ideal
consisting of elements of O for which some power lies in the ideal pO.

It is possible to call this function even if p is not prime. In this case the p-trace-
radical will be computed, i.e.

{x ∈ F | Tr(xO) ⊆ C}

for F the field of fractions of O and C the order of p (if p is an ideal) or the parent
of p otherwise. If p is square free and all divisors are larger than the field degree,
this is the intersection of the radicals for all l dividing p.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1097

42.3 Related Structures

42.3.1 Parent and Category
Function fields form the Magma category FldFun and function field orders form the
Magma category RngFunOrd. The notional power structures exist as parents of function
fields and their orders but allow no operations.

Category(F) Category(O)

Parent(F) Parent(O)

42.3.2 Other Related Structures
More interesting related structures (than above) are listed below.

PrimeRing(F)

PrimeField(F)

PrimeRing(O)

The prime field of the function field F or the order O (prime ring of the constant
field).

ConstantField(F)

DefiningConstantField(F)

The constant field k, where F = k(x, α).

ExactConstantField(F)

The exact constant field of the algebraic function field F/k, i.e. the algebraic closure
in F of the constant field k of F , together with the inclusion map.

BaseRing(F)

BaseField(F)

CoefficientRing(F)

CoefficientField(F)

The rational function field k(x) if the function field F is an extension of k(x) and
k if F is an extension of k. If F is an extension of another algebraic function field
then this field will be returned.

ISABaseField(F,G)

Applies to more general fields within Magma than function fields. Returns whether
G is amongst the recursively defined base fields of F .

1098 GLOBAL ARITHMETIC FIELDS Part VII

BaseRing(O)

CoefficientRing(O)

The polynomial algebra k[x] if the order O is finite or the degree valuation ring if
O is infinite. If O is an extension of another order of an algebraic function field this
order will be returned.

BaseRing(FF)

BaseField(FF)

CoefficientRing(FF)

CoefficientField(FF)

Given a field of fractions FF of an order O return the field of fractions of the
coefficient ring of O.

SubOrder(O)

For a non equation order O returns the order which O was created as a transforma-
tion of. This order is one transformation closer to the equation order.

FunctionField(O)

The function field which O is an order of.

FieldOfFractions(O)

FieldOfFractions(FF)

FieldOfFractions(F)

Given an order O, this function returns the field of fractions, a field with the same
basis as O. On a function field or a field of fractions this function is trivial.

Order(FF)

Given a field of fractions FF return the order O which is the ring of integers of FF .

RationalExtensionRepresentation(F)

The function field F represented as an extension of a rational function field. This
function gives the representation of function fields F/k as finite extensions.

AbsoluteOrder(O)

The order O as an extension of its bottom coefficient ring, (i.e. the order of the
RationalExtensionRepresentation of the field of fractions of O corresponding to
O).

AbsoluteFunctionField(F)

The function field F expressed as an extension of its constant field.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1099

UnderlyingRing(F)

UnderlyingField(F)

UnderlyingRing(F, R)

UnderlyingField(F, R)

Return the underlying ring of the function field F over R. This is F expressed as
an extension of R. If R is not given then it is taken to be the coefficient field of
the coefficient field of F . The field R must appear in the tower of coefficient fields
under F .

Embed(F, L, a)

Embed(F, L, s)

Install the embedding of F into L with the image(s) of the primitive element(s) of
F being the element a in L or the images in s in L.

Places(F)

The set of places of the algebraic function field F/k.

DivisorGroup(F)

The group of divisors of the algebraic function field F/k.

DifferentialSpace(F)

The space of differentials of the algebraic function field F/k.

Example H42E8

> R<x> := FunctionField(GF(5));

> P<y> := PolynomialRing(R);

> f := y^3 + (4*x^3 + 4*x^2 + 2*x + 2)*y^2 + (3*x + 3)*y + 2;

> F<alpha> := FunctionField(f);

> ConstantField(F);

Finite field of size 5

> CoefficientField(F);

Univariate rational function field over GF(5)

Variables: x

> CoefficientRing(MaximalOrderFinite(F));

Univariate Polynomial Ring in x over GF(5)

> FieldOfFractions(IntegralClosure(ValuationRing(R), F));

Algebraic function field defined over Univariate rational function field over

GF(5)

Variables: x by

y^3 + (4*x^3 + 4*x^2 + 2*x + 2)*y^2 + (3*x + 3)*y + 2

> Order(IntegralClosure(ValuationRing(R), F),

> MatrixAlgebra(CoefficientRing(MaximalOrderInfinite(F)), 3)!4,

> CoefficientRing(MaximalOrderInfinite(F))!1);

1100 GLOBAL ARITHMETIC FIELDS Part VII

Maximal Order of F over Valuation ring of Univariate rational function field

over GF(5) with generator 1/x

> SubOrder($1);

Maximal Order of F over Valuation ring of Univariate rational function field

over GF(5) with generator 1/x

> $1 eq $2;

false

> Places(F);

Set of places of F

> DivisorGroup(F);

Divisor group of F

Example H42E9

Output from UnderlyingRing is shown.

> PF<x> := PolynomialRing(GF(31, 3));

> P<y> := PolynomialRing(PF);

> FF1 := ext<FieldOfFractions(PF) | y^2 - x^3 + 1>;

> P<y> := PolynomialRing(FF1);

> FF2<d> := ext<FF1 | y^3 - b*x*y - 1>;

> RationalExtensionRepresentation(FF2);

Algebraic function field defined over Univariate rational function field over

GF(31^3) by

y^6 + 29*y^3 + (30*x^5 + x^2)*y^2 + 1

> UnderlyingRing(FF2);

Algebraic function field defined over Univariate rational function field over

GF(31^3) by

y^6 + 29*y^3 + (30*x^5 + x^2)*y^2 + 1

> UnderlyingRing(FF2, FieldOfFractions(PF));

Algebraic function field defined over GF(31^3) by

$.1^6 + 29*$.1^3 + 30*$.1^2*$.2^5 + $.1^2*$.2^2 + 1

WeilRestriction(E, n)

Reduction BoolElt Default : true

Verbose WeilRes Maximum : 1

A hyperelliptic function field in the Weil restriction over Fq of the elliptic function
field E: y2 +xy+x3 +ax2 +b defined over Fqn where q is a power of 2. Also returns
a function which can be used to map a place (not a pole or zero of x) of F into a
divisor of the result. See [Gau00]. Reduction indicates whether a (possibly quite
expensive) reduction step is performed at the end of the computation. It defaults
to true.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1101

ConstantFieldExtension(F, E)

Return the function field with constant field E which contains the function field
F . The ring E must cover the constant field of F . If E is contained in the exact
constant field of F then F and the new field will be isomorphic.

Example H42E10

Changing the constant field to the exact constant field is shown below.

> P<x> := PolynomialRing(Rationals());

> P<y> := PolynomialRing(P);

> F<c> := FunctionField(y^6 + y + 2);

> E<a> := ExactConstantField(F);

> C, r := ConstantFieldExtension(F, E);

> r(c);

1/16*(a^5 + 4*a^4 + 6*a^3 + 4*a^2 + a)

> $1 @@ r;

c

> e := Random(C, 2);

> e @@ r;

1/2*x*c^5 - 3*x*c^4 + (-12*x + 8)*c^3 + (-16*x + 24)*c^2 + (-8*x + 16)*c - 1

> r($1);

1/2*(-a^5 - a^2 + a)*$.1 + a^5 + a^4 - a^3 - a^2 - 1

Reduce(O)

Given an order O belonging to a function field F , this function returns the order
obtained by applying size-reduction to the basis of O.

42.4 General Structure Invariants

Characteristic(F)

Characteristic(O)

The characteristic of the function field F/k or one of its orders O.

IsPerfect(F)

Applies to any field in Magma. Returns whether F is perfect.

Degree(F)

Degree(F, G)

Degree(O)

The degree [F : G] of the field extension F/G where G is the base field of F unless
specified. For an order O, this function returns the rank of O as a module over its
coefficient ring. Note that this rank is equal to the degree [F : G] where F and G
are the field of fractions of O and the coefficient ring of O respectively.

1102 GLOBAL ARITHMETIC FIELDS Part VII

AbsoluteDegree(F)

AbsoluteDegree(O)

The degree of the function field F or the order O as a finite extension of k(x) or
k[x] or as an infinite extension of k.

DefiningPolynomial(F)

DefiningPolynomial(O)

The defining polynomial of the function field F over its coefficient ring. For an order
O belonging to a function field F , this function returns the defining polynomial of
O, which may be different from that of F/k(x, α1, . . . , αr).

DefiningPolynomials(F)

DefiningPolynomials(O)

Return the defining polynomials of the function field F or the order O as a sequence
of polynomials over the coefficient ring.

Basis(F)

Basis(O)

Basis(O, R)

The basis 1, α, . . . , αn−1 of the function field F [α] over the coefficient field.
Given an order O belonging to a function field F , this function returns the basis

of O in the form of function field elements.
Given an additional ring R, return the basis of O as elements of R.

TransformationMatrix(O1, O2)

Return the matrix M and a denominator d which transforms elements of the order
O1 into elements of the order O2.

CoefficientIdeals(O)

The coefficient ideals of the order O of a relative extension. These are the ideals
{Ai} of the coefficient ring of O such that for every element e of O, e =

∑
i ai ∗ bi

where {bi} is the basis returned for O and each ai ∈ Ai.

BasisMatrix(O)

Given an order O in a function field F of degree n, this returns an n × n matrix
whose i-th row contains the coefficients for the i-th basis element of O with respect
to the power basis of F . Thus, if bi is the i-th basis element of O,

bi =
n∑

j=1

Mijα
j−1

where M is the matrix and α is the generator of F .

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1103

PrimitiveElement(O)

A root of the defining polynomial of the order O.

Discriminant(O)

The discriminant of the order O, up to a unit in its coefficient ring.

AbsoluteDiscriminant(O)

The discriminant of the order O of an algebraic function field F over the bottom
coefficient ring of O, (the subring of the rational function field F extends).

DimensionOfExactConstantField(F)

DegreeOfExactConstantField(F)

The dimension of the exact constant field of the function field F/k over k. The
exact constant field is the algebraic closure of k in F .

Genus(F)

The genus of the function field F/k.

Example H42E11

> PF<x> := PolynomialRing(GF(31, 3));

> P<y> := PolynomialRing(PF);

> FF1 := ext<FieldOfFractions(PF) | y^2 - x^3 + 1>;

> P<y> := PolynomialRing(FF1);

> FF2<d> := ext<FF1 | y^3 - b*x*y - 1>;

> Characteristic(FF2);

31

> EFF2I := EquationOrderInfinite(FF2);

> MFF2I := MaximalOrderInfinite(FF2);

> Degree(MFF2I) eq 3;

true

> AbsoluteDegree(EFF2I);

6

> Genus(FF2);

9

> DefiningPolynomial(EFF2I);

$.1^3 + [0, 30/x^3]*$.1 + [30/x^9, 0]

> Basis(MFF2I);

[1, 1/x*d, 1/x^2*d^2]

> Discriminant(EFF2I);

Ideal of Maximal Equation Order of FF1 over Valuation ring of Univariate

rational function field over GF(31^3)

Variables: x with generator 1/x

Generator:

(4*x^3 + 27)/x^15*b + 4/x^18

> AbsoluteOrder(EFF2I);

1104 GLOBAL ARITHMETIC FIELDS Part VII

Order of Algebraic function field defined over Univariate rational function

field over GF(31^3) by

y^6 + 29*y^3 + (30*x^5 + x^2)*y^2 + 1 over Valuation ring of Univariate rational

function field over GF(31^3) with generator 1/x

> AbsoluteDiscriminant(EFF2I);

(2*x^9 + 25*x^6 + 6*x^3 + 29)/x^33

> Discriminant($2);

(30*x^24 + 6*x^21 + 16*x^18 + 20*x^15 + 16*x^12 + 7*x^9 + 27*x^6 + 3*x^3 +

30)/x^48

Example H42E12

Invariants are slightly different for non–simple fields.

> P<x> := PolynomialRing(Rationals());

> P<y> := PolynomialRing(P);

> F<a, b> := FunctionField([3*y^3 - x^2, x*y^2 + 1]);

> DefiningPolynomials(F);

[

3*y^3 - x^2,

x*y^2 + 1

]

> DefiningPolynomials(EquationOrderFinite(F));

[

y^3 - 1/3*x^2,

y^2 + x

]

> DefiningPolynomials(EquationOrderInfinite(F));

[

$.1^3 - 1/3/$.1^4,

$.1^2 + 1/$.1

]

> Basis(F);

[

1,

a,

a^2,

$.1*b,

$.1*a*b,

$.1*a^2*b

]

> TransformationMatrix(EquationOrderFinite(F), MaximalOrderFinite(F));

[1 0 0 0 0 0]

[0 1 0 0 0 0]

[0 0 x 0 0 0]

[0 0 0 1 0 0]

[0 0 0 0 x 0]

[0 0 0 0 0 x]

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1105

1

> TransformationMatrix(MaximalOrderFinite(F), EquationOrderFinite(F));

[x 0 0 0 0 0]

[0 x 0 0 0 0]

[0 0 1 0 0 0]

[0 0 0 x 0 0]

[0 0 0 0 1 0]

[0 0 0 0 0 1]

x

GapNumbers(F)

SeparatingElement FldFunGElt Default :

The sequence of global gap numbers of the function field F/k (in characteristic zero
this is always [1, . . . , g]). A separating element used internally for the computa-
tion can be specified, it defaults to SeparatingElement(F). See the description of
GapNumbers on page 1167.

GapNumbers(F, P)

The sequence of gap numbers of the function field F/k at P where P must be a
place of degree one. See the description of GapNumbers on page 1167.

SeparatingElement(F)

Returns a separating element of the function field F/k.

RamificationDivisor(F)

SeparatingElement FldFunGElt Default :

The ramification divisor of the function field F/k. The semantics of calling
RamificationDivisor() with F or the zero divisor of F are identical. For fur-
ther details see the description of RamificationDivisor on page 1169.

WeierstrassPlaces(F)

SeparatingElement FldFunGElt Default :

The Weierstrass places of the function field F/k. The semantics of calling
WeierstrassPlaces with F or the zero divisor of F are identical. See the de-
scription of WeierstrassPlaces on page 1170.

WronskianOrders(F)

SeparatingElement FldFunGElt Default :

The Wronskian orders of the function field F/k. The semantics of calling
WronskianOrders with F or the zero divisor of F are identical. See the description
of WronskianOrders on page 1170.

1106 GLOBAL ARITHMETIC FIELDS Part VII

Different(O)

The different of the maximal order O.

Index(O, S)

The index of S in O where S is a suborder of O and O and S have the same equation
order.

42.5 Galois Groups

Finding Galois groups (of normal closures) of polynomials over rational function fields
over k ∈ {Q,Fq}, where Fq denotes the finite field of characteristic p with q = pr, r ∈ Z>0

is a hard problem, in general. All practical algorithms used the classification of transitive
groups, which is known up to degree 31 [CHM98]. These algorithms fall into two groups:
The absolute resolvent method [SM85] and the method of Stauduhar [Sta73].

The Magma implementation is based on an extension of the method of Stauduhar by
Klüners, Geißler [Gei03, GK00] and, more recently, Fieker [FK12] and Sutherland [Sut].
There is no longer any limit on the degree of the polynomials or fields as this algorithm does
not use the classification of transitive groups. In contrast to the absolute resolvent method,
it also provides the explicit action on the roots of the polynomial f which generates the
function field. The algorithm strongly depends on the fact that the corresponding problem
is implemented for the residue class field.

Roughly speaking, the method of Stauduhar traverses the subgroup lattice of transitive
permutation groups of degree n from the symmetric group to the actual Galois group. This
is done by using so-called relative resolvents. Resolvents are polynomials whose splitting
fields are subfields of the splitting field of the given polynomial which are computed using
approximations of the roots of the polynomial f .

If the field (or the field defined by a polynomial) has subfields (i.e. the Galois group
is imprimitive) the current implementation changes the starting point of the algorithm in
the subgroup lattice, to get as close as possible to the actual Galois group. This is done
via computation of subfields of a stem field of f , that is the field extension of k(t) which
we get by adjoining a root of f to k(t). The Galois group is found as a subgroup of the
intersection of suitable wreath products (using the knowledge of the subfields) which may
be easily computed.

If the field (or the field defined by a polynomial) does not have subfields (i.e. the Galois
group is primitive) we use a combination of the method of Stauduhar and the absolute
resolvent method. The Frobenius automorphism of the underlying field already determines
a subgroup of the Galois group, which is used to speed up computations in the primitive
case.

The algorithms used here are similar to those use for number fields. See also Chapter 38.
In addition to the intrinsics described here, some of the intrinsics described in Section 38.2
apply to polynomials over function fields also.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1107

GaloisGroup(f)

Prime RngElt Default :

NextPrime UserProgram Default :

ProofEffort RngIntElt Default : 10
Ring GaloisData Default :

ShortOK BoolElt Default : false

Old BoolElt Default : false

Verbose GaloisGroup Maximum : 5
Given a separable, (irreducible if k is Q) polynomial f(t, x) of degree n over the
rational function field k(t), k ∈ {Q,Fq}, or an extension K thereof (if k = Fq)
this function returns a permutation group that forms the Galois group of a splitting
field for f in some algebraic closure of K. The permutation group acts on the points
1, 2, . . . , n. The roots of f are calculated in the process, expressed as power series
and returned as the second argument: For a prime polynomial p(t) ∈ k(t) denote
by N̄ the splitting field of the polynomial f(t, x) mod p(t). It is well known that
the roots of the polynomial f(t, x) can be expressed as power series in N̄ [[t]]. We
embed N̄ in an unramified p-adic extension. The third return value is a structure
containing information about the computation that can be used to compute the
roots of f to arbitrary precision. This can be used for example in GaloisSubgroup
on page 979 to compute arbitrary subfields of the splitting field.

The required precision increases linearly with the index of the subgroups, which
are passed traversing the subgroup lattice. Therefore computations may slow down
considerably for higher degrees and large indices.

The default version employs series computations over either unramified p-adic
fields (k = Q) or finite fields (k = Fq). The prime polynomial is determined during
a Galois group computation in such a way that f is squarefree modulo p.

The prime to use for splitting field computations can be given via the parame-
ter Prime. The method of choosing primes for splitting field computations can be
given by the parameter NextPrime. An indication of how much effort the compu-
tation should make to prove the results can be provided by altering the parameter
ProofEffort, it should be increased if more effort should be made.

If Old is set to true, then the old version is called if available. Since the return
values of the new version differ substantially from the old one, this may be used in
old applications.

GaloisGroup(F)

Prime RngElt Default :

NextPrime UserProgram Default :

ProofEffort RngIntElt Default : 10
Ring GaloisData Default :

ShortOK BoolElt Default : false

1108 GLOBAL ARITHMETIC FIELDS Part VII

Given a function field F defined as an extension of either a rational function field
or a global algebraic function field by one polynomial compute the Galois group of
a normal closure of F .

The prime to use for splitting field computations can be given via the parame-
ter Prime. The method of choosing primes for splitting field computations can be
given by the parameter NextPrime. An indication of how much effort the compu-
tation should make to prove the results can be provided by altering the parameter
ProofEffort, it should be increased if more effort should be made.

Example H42E13

A Galois group computation is shown below.

> k<t>:= FunctionField(Rationals());

> R<x>:= PolynomialRing(k);

> f:= x^15 + (-1875*t^2 - 125)*x^3 + (4500*t^2 + 300)*x^2 +

> (-3600*t^2 - 240)*x + 960*t^2+ 64;

> G, r, S:= GaloisGroup(f);

> TransitiveGroupDescription(G);

1/2[S(5)^3]S(3)

> A := Universe(r);

> AssignNames(~A, ["t"]);

> A;

Power series ring in t over Unramified extension

defined by the polynomial (1 + O(191^20))*x^4 +

O(191^20)*x^3 + (7 + O(191^20))*x^2 + (100 +

O(191^20))*x + 19 + O(191^20)

over Unramified extension defined by the

polynomial (1 + O(191^20))*x + 190 + O(191^20)

over pAdicField(191)

> r[1];

> r[1];

-54*$.1^3 + 68*$.1^2 + 31*$.1 - 12 + O(191) +

(-15*$.1^3 - 66*$.1^2 - 2*$.1 - 39 + O(191))*t

+ O(t^2)

> S;

GaloisData of type p-Adic (FldFun over Q)

> TransitiveGroupIdentification(G);

99 15

Example H42E14

Some examples for polynomials over rational function fields over finite fields

> k<x>:= FunctionField(GF(1009));

> R<y>:= PolynomialRing(k);

> f:= y^10 + (989*x^4 + 20*x^3 + 989*x^2 + 20*x + 989)*y^8 + (70*x^8 +

> 869*x^7 + 310*x^6 + 529*x^5 + 600*x^4 + 479*x^3 + 460*x^2 + 719*x +

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1109

> 120)*y^6 + (909*x^12 + 300*x^11 + 409*x^10 + 1000*x^9 + 393*x^8 +

> 657*x^7 + 895*x^6 + 764*x^5 + 420*x^4 + 973*x^3 + 177*x^2 + 166*x +

> 784)*y^4 + (65*x^16 + 749*x^15 + 350*x^14 + 909*x^13 + 484*x^12 +

> 452*x^11 + 115*x^10 + 923*x^9 + 541*x^8 + 272*x^7 + 637*x^6 + 314*x^5 +

> 724*x^4 + 490*x^3 + 948*x^2 + 99*x + 90)*y^2 + 993*x^20 + 80*x^19 +

> 969*x^18 + 569*x^17 + 895*x^16 + 101*x^15 + 742*x^14 + 587*x^13 +

> 55*x^12+ 437*x^11 + 97*x^10 + 976*x^9 + 62*x^8 + 171*x^7 + 930*x^6 +

> 604*x^5 + 698*x^4 + 60*x^3 + 60*x^2 + 1004*x + 1008;

> G, r, p:= GaloisGroup(f);

> t1, t2:= TransitiveGroupIdentification(G);

> t1;

1

> t2;

10

And a second one.

> k<t>:= FunctionField(GF(7));

> R<x>:= PolynomialRing(k);

> f:= x^12 + x^10 + x^8 + (6*t^2 + 3)*x^6 + (4*t^4 + 6*t^2 + 1)*x^4 +

> (5*t^4 + t^2)*x^2 + 2*t^4;

> G, r, p:= GaloisGroup(f);

> G;

Permutation group G acting on a set of cardinality 12

(2, 8)(3, 9)(4, 10)(5, 11)

(1, 5, 9)(2, 6, 10)(3, 7, 11)(4, 8, 12)

(1, 12)(2, 3)(4, 5)(6, 7)(8, 9)(10, 11)

> A := Universe(r);

> AssignNames(~A, ["t"]);

> r;

[

w^950*t^13 + w^1350*t^12 + w^1900*t^11 + w^500*t^10 + w^2050*t^9 + 2*t^8 +

w^1350*t^7 + w^300*t^6 + w^350*t^5 + w^1450*t^4 + w^950*t^3 + w^1000*t^2

+ w^1100*t + w^550,

w^1175*t^13 + w^1825*t^12 + w^1675*t^11 + w^725*t^10 + w^1025*t^9 +

w^1825*t^8 + w^1325*t^7 + w^775*t^6 + w^1775*t^5 + w^1325*t^4 +

w^1575*t^3 + w^1175*t^2 + w^2225*t + w^2275,

w^25*t^13 + w^1075*t^12 + w^425*t^11 + w^925*t^10 + w^225*t^9 + w^2375*t^8 +

w^2125*t^7 + w^625*t^6 + w^1175*t^5 + w^425*t^4 + w^575*t^3 + w^825*t^2

+ w^1175*t + w^2375,

w^175*t^13 + w^1525*t^12 + w^575*t^11 + w^475*t^10 + w^1575*t^9 + w^1025*t^8

+ w^475*t^7 + w^775*t^6 + w^1025*t^5 + w^1775*t^4 + w^1625*t^3 +

w^2175*t^2 + w^1025*t + w^1025,

w^1025*t^13 + w^1975*t^12 + w^2125*t^11 + w^1475*t^10 + w^2375*t^9 +

w^1975*t^8 + w^2075*t^7 + w^1825*t^6 + w^425*t^5 + w^875*t^4 +

w^1425*t^3 + w^2225*t^2 + w^1175*t + w^325,

w^650*t^13 + w^2250*t^12 + w^100*t^11 + w^1100*t^10 + w^1150*t^9 + 2*t^8 +

w^1050*t^7 + w^2100*t^6 + w^1250*t^5 + w^550*t^4 + w^650*t^3 +

w^2200*t^2 + w^1700*t + w^1450,

1110 GLOBAL ARITHMETIC FIELDS Part VII

w^2150*t^13 + w^150*t^12 + w^700*t^11 + w^1700*t^10 + w^850*t^9 + 5*t^8 +

w^150*t^7 + w^1500*t^6 + w^1550*t^5 + w^250*t^4 + w^2150*t^3 +

w^2200*t^2 + w^2300*t + w^1750,

w^2375*t^13 + w^625*t^12 + w^475*t^11 + w^1925*t^10 + w^2225*t^9 + w^625*t^8

+ w^125*t^7 + w^1975*t^6 + w^575*t^5 + w^125*t^4 + w^375*t^3 +

w^2375*t^2 + w^1025*t + w^1075,

w^1225*t^13 + w^2275*t^12 + w^1625*t^11 + w^2125*t^10 + w^1425*t^9 +

w^1175*t^8 + w^925*t^7 + w^1825*t^6 + w^2375*t^5 + w^1625*t^4 +

w^1775*t^3 + w^2025*t^2 + w^2375*t + w^1175,

w^1375*t^13 + w^325*t^12 + w^1775*t^11 + w^1675*t^10 + w^375*t^9 +

w^2225*t^8 + w^1675*t^7 + w^1975*t^6 + w^2225*t^5 + w^575*t^4 +

w^425*t^3 + w^975*t^2 + w^2225*t + w^2225,

w^2225*t^13 + w^775*t^12 + w^925*t^11 + w^275*t^10 + w^1175*t^9 + w^775*t^8

+ w^875*t^7 + w^625*t^6 + w^1625*t^5 + w^2075*t^4 + w^225*t^3 +

w^1025*t^2 + w^2375*t + w^1525,

w^1850*t^13 + w^1050*t^12 + w^1300*t^11 + w^2300*t^10 + w^2350*t^9 + 5*t^8 +

w^2250*t^7 + w^900*t^6 + w^50*t^5 + w^1750*t^4 + w^1850*t^3 + w^1000*t^2

+ w^500*t + w^250

]

> p;

t^2 + 4

42.6 Subfields

For finite extensions L of Q(t), Fq(t) or extensions K of Fq(t) Magma can compute all
fields between L and Q(t), Fq(t) orK. It should be noted that the computation of subfields
does not depend on the Galois groups. The implementation over Q(t) uses the algorithm of
Klüners [Klü02]. The implementation over Fq(t) and extensions thereof follows the newer
ideas of Klüners and van Hoeij [vHKN11].

Subfields(F)

All algebraic function fields G with k(x) ⊂ G ⊆ F or K ⊂ G ⊆ F where K is an
extension of Fq(x) and the coefficient field of F .

Example H42E15

A subfield computation is shown below.

> k<x>:= FunctionField(Rationals());

> R<y>:= PolynomialRing(k);

> f:= y^14 - 3234*y^12 + (8*x + 123480)*y^11 + (-696*x - 1152480)*y^10 +

> (27672*x - 43563744)*y^9 + (-663544*x + 1795525424)*y^8 + (10660416*x -

> 33905500608)*y^7 + (-120467088*x + 409661347536)*y^6 + (976911040*x -

> 3428257977088)*y^5 + (-5684130144*x + 20264929189344)*y^4 + (23251514496*x -

> 83582683562112)*y^3 + (-63672983360*x + 229899367865216)*y^2 +

> (105037027200*x - 380160309247488)*y - 79060128000*x + 286518963720192;

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1111

> F:= FunctionField(f);

> Subfields(F);

[

<Algebraic function field defined over Univariate rational function field

over Rational Field

Variables: x by

y^14 - 3234*y^12 + (8*x + 123480)*y^11 + (-696*x - 1152480)*y^10 + (27672*x

- 43563744)*y^9 + (-663544*x + 1795525424)*y^8 + (10660416*x -

33905500608)*y^7 + (-120467088*x + 409661347536)*y^6 + (976911040*x -

3428257977088)*y^5 + (-5684130144*x + 20264929189344)*y^4 +

(23251514496*x - 83582683562112)*y^3 + (-63672983360*x +

229899367865216)*y^2 + (105037027200*x - 380160309247488)*y -

79060128000*x + 286518963720192, Mapping from: FldFun: F to FldFun: F>,

<Algebraic function field defined over Univariate rational function field

over Rational Field

Variables: x by

y^7 + 294*y^6 - 107016*y^5 + (2744*x + 576240)*y^4 + (-806736*x +

2469418896)*y^3 + (88740960*x - 312072913824)*y^2 + (-4329483200*x +

15606890921216)*y + 79060128000*x - 286518963720192, Mapping from:

Algebraic function field defined over Univariate rational function field

over Rational Field

Variables: x by

y^7 + 294*y^6 - 107016*y^5 + (2744*x + 576240)*y^4 + (-806736*x +

2469418896)*y^3 + (88740960*x - 312072913824)*y^2 + (-4329483200*x +

15606890921216)*y + 79060128000*x - 286518963720192 to FldFun: F>

]

42.7 Automorphism Group

Let K be a finite extension of the rational function field over a finite field, the rationals or
a number field. In contrast to the number field situation, there are two different natural
notions of automorphisms here: we distinguish between automorphisms that fix the base
field and arbitrary automorphisms that can also induce non-trivial maps of the constant
field.

The first case, automorphisms fixing the base field of K, is analogous to the number
field case and was implemented by Jürgen Klüners.

The second case of more general automorphisms has been implemented by Florian Heß
along the lines of his paper [Heß04]. Here the constant field of K can, in fact, be any exact
perfect field in Magma with a few provisos.

1112 GLOBAL ARITHMETIC FIELDS Part VII

42.7.1 Automorphisms over the Base Field

Automorphisms(K, k)

Computes all Q(t) automorphisms of the absolute finite extension K that fix k. The
field k has to be Q(t) for this function.

AutomorphismGroup(K, k)

Return the group of k-automorphisms of the algebraic function field K together
with the map from the group to the sequence of automorphisms of K. The field k
has to be Q(t).

Example H42E16

We define an extension of degree 7 over Q(t) and compute the automorphisms.

> Q:=Rationals();

> Qt<t>:=PolynomialRing(Q);

> Qtx<x>:=PolynomialRing(Qt);

> f := x^7 + (t^3 + 2*t^2 - t + 13)*x^6 + (3*t^5 - 3*t^4

> + 9*t^3 + 24*t^2 - 21*t + 54)*x^5 + (3*t^7 -

> 9*t^6 + 27*t^5 - 22*t^4 + 6*t^3 + 84*t^2 -

> 121*t + 75)*x^4 + (t^9 - 6*t^8 + 22*t^7 -

> 57*t^6 + 82*t^5 - 70*t^4 - 87*t^3 + 140*t^2 -

> 225*t - 2)*x^3 + (-t^10 + 5*t^9 - 25*t^8 +

> 61*t^7 - 126*t^6 + 117*t^5 - 58*t^4 - 155*t^3

> + 168*t^2 - 80*t - 44)*x^2 + (-t^10 + 8*t^9 -

> 30*t^8 + 75*t^7 - 102*t^6 + 89*t^5 + 34*t^4 -

> 56*t^3 + 113*t^2 + 42*t - 17)*x + t^9 - 7*t^8

> + 23*t^7 - 42*t^6 + 28*t^5 + 19*t^4 - 60*t^3 -

> 2*t^2 + 16*t - 1;

> K:=FunctionField(f);

> A:=Automorphisms(K, BaseField(K));

> #A;

7

Now we transform this list into a group to see that it is really cyclic. We pass in special functions
for equality testing and multiplication to speed the algorithm up.

> G := GenericGroup(A: Eq := func<a,b | a‘Images eq b‘Images>,

> Mult := func<a,b | hom<K -> K | a‘Images @ b>>);

> G;

Finitely presented group G on 2 generators

Relations

G.1 = Id(G)

G.1 * G.2 = G.2 * G.1

G.1 * G.2^2 = G.2^2 * G.1

G.1 * G.2^3 = G.2^3 * G.1

G.1 * G.2^4 = G.2^4 * G.1

G.1 * G.2^5 = G.2^5 * G.1

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1113

G.1 * G.2^6 = G.2^6 * G.1

G.1 = G.2^7

Finally, we verify that this gives the same result as AutomorphismGroup.

> AutomorphismGroup(K, BaseField(K));

Finitely presented group on 2 generators

Relations

$.1 = Id($)

$.1 * $.2 = $.2 * $.1

$.1 * $.2^2 = $.2^2 * $.1

$.1 * $.2^3 = $.2^3 * $.1

$.1 * $.2^4 = $.2^4 * $.1

$.1 * $.2^5 = $.2^5 * $.1

$.1 * $.2^6 = $.2^6 * $.1

$.1 = $.2^7

Mapping from: GrpFP to [

Mapping from: FldFun: K to FldFun: K,

Mapping from: FldFun: K to FldFun: K,

Mapping from: FldFun: K to FldFun: K,

Mapping from: FldFun: K to FldFun: K,

Mapping from: FldFun: K to FldFun: K,

Mapping from: FldFun: K to FldFun: K,

Mapping from: FldFun: K to FldFun: K

] given by a rule

IsSubfield(K, L)

Given two absolute finite extensions K and L of Q(t), decide if L is an extension of
K. If this is the case, return an embedding map from K into L.

IsIsomorphicOverQt(K, L)

Given two absolute finite extensions K and L of Q(t), decide if L is Q(t)-isomorphic
to K. If this is the case, return a map from K onto L.

Example H42E17

Subfields and IsIsomorphic are illustrated below.

> Q:=Rationals();

> Qt<t>:=PolynomialRing(Q);

> Qtx<x>:=PolynomialRing(Qt);

> K:=FunctionField(x^4-t^3);

> L:=Subfields(K);

> #L;

2

> L:=L[2][1]; L;

Algebraic function field defined over Univariate

1114 GLOBAL ARITHMETIC FIELDS Part VII

rational function field over Rational Field

Variables: t by

x^2 - t^3

Now we will check if L is indeed a subfield of K:

> IsSubfield(L,K);

true Mapping from: FldFun: L to FldFun: K

Obviously, L can be defined using a simpler polynomial:

> LL:=FunctionField(x^2-t);

> IsIsomorphicOverQt(LL,L);

true Mapping from: FldFun: LL to FldFun: L

42.7.2 General Automorphisms

Isomorphisms(K, E)

BaseMorphism Map Default : false

Bound RngIntElt Default : ∞
Strategy MonStgElt Default : “None”

Given two function fields K and E, this function computes a list of at most Bound
field isomorphisms from K to E.

If BaseMorphism is given it should be an isomorphism f between the constant
fields of K and E. In this case only isomorphisms extending f are considered.

The default behaviour is for all isomorphisms from K to E which extend SOME
isomorphism of the constant field of K to that of E considered. In this case (no base
morphism is specified), the constant fields must be finite, the rationals or a number
field. If the base morphism f is specified then the constant fields can be any exact
perfect fields (finite or characteristic 0).

If the base morphism f is specified, it can be defined in the natural way for
most constant field types. For example, for finite fields and number fields, the usual
hom<k->l|x>, where x gives the image of k.1, can be used. A common situation is
where the constant fields of K and E are equal to k and f is the identity. This can
be defined very simply for any k by IdentityFieldMorphism(k) . Several more
intrinsics related to field morphisms are described in the following subsection.

The possible choices of Strategy are "None", "Weierstrass" or "DegOne". If
Strategy is different to "None", this determines the places that are used as the
basis of the construction of the maps. In all cases, a finite set of places of E and
K which must correspond under any isomorphism are used. All isomorphisms are
found between the canonical affine models (as defined by Heß) obtained by omitting
one of these places from each of E and K.

DegOne can only be used with finite constant fields. In this case, isomorphisms
are determined which map a fixed degree one place of K to any one of the finite

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1115

number of degree one places of E. This function can fail in rare situations if the
constant field of K is too small and no degree one place exists. In this case an
appropriate error message is displayed.

Weierstrass uses the Weierstrass places of the fields. Isomorphisms are deter-
mined which map a fixed Weierstrass place of K to any of those of E with the same
degree and Riemann-Roch data. This strategy can be very fast if the residue field
and Riemann-Roch data of a particular place of K match those of only a few (or
no!) Weierstrass places of E.

In case of fields of genus < 2, the constant field must be finite.

IsIsomorphic(K, E)

BaseMorphism Map Default : false

Strategy MonStgElt Default : “None”
As above, except the function only computes a single isomorphism if one exists.

Automorphisms(K)

BaseMorphism Map Default : false

Bound RngIntElt Default : ∞
Strategy MonStgElt Default : “None”

This function computes a list of at most Bound automorphisms of the function field
K. This is an abbreviation for Isomorphisms(K, K) and the parameters are as
described above.

An important difference is that the BaseMorphism, if specified, must be of field
morphism type. IdentityFieldMorphism may be used, but basic constrictors for
non-trivial constant field maps f will usually cause an error if used directly. The
way around this is to use the conversion f := FieldMorphism(f) (see the following
subsection).

Isomorphisms(K,E,p1,p2)

Automorphisms(K,p1,p2)

Bound RngIntElt Default : ∞
As above except that the constant field morphism is taken as the identity and only
iso/automorphisms which take function field place p1 to p2 are computed.

AutomorphismGroup(K)

BaseMorphism Map Default : false

Strategy MonStgElt Default : “None”
Given a function field K, this function computes that group of automorphisms
satisfying the conditions specified by the parameters and returns it as a finitely-
presented group. The map also returned is invertible and takes a group element to
the function field isomorphism that it represents.

1116 GLOBAL ARITHMETIC FIELDS Part VII

AutomorphismGroup(K,f)

Strategy MonStgElt Default : “None”
In this variation, the automorphism group of the function field K is computed in its
permutation representation on a set of places or divisors or in its linear representa-
tion on a space of differentials or subspace of K.

The return values consist of the representing group G, a map (with inverse) from
G to the maps of K giving the actual isomorphisms, and a sequence of isomorphisms
of K which consist of the kernel of the representation.

Only automorphisms fixing the constant field are considered here. If the
set/space on which the representation is to be defined is not invariant by the auto-
morphism group, a run-time error will result.

The argumentf should be a map defining the representation.
Its domain must be an enumerated sequence for a permutation representation or

a vector space for a linear representation.
Its codomain should be K or a space or enumerated sequence of elements of

K, places of K, divisors of K or differentials of K. The examples below show
some common ways of producing f by using functions like DifferentialSpace and
RiemannRochSpace.

42.7.3 Field Morphisms
The isomorphisms returned by the functions in the last subsection are of general Map type
but contain some extra internal structure. The same is true of the maps used to specify
BaseMorphism. These objects come in two flavours: field morphisms, that represent maps
between general fields, and the more specialised function field morphisms, representing
maps between algebraic function fields. This subsection contains several related functions
that are very useful when working with (function) field morphisms.

IsMorphism(f)

Returns true, if the map is a field or function field morphism; false otherwise.

FieldMorphism(f)

Converts a homomorphism between fields into a field morphism.

IdentityFieldMorphism(F)

Returns the identity automorphism of field F as a field morphism.

IsIdentity(f)

Returns true if f is the identity morphism; false otherwise.

Equality(f, g)

Returns true, if the two maps are both field morphisms or function field morphisms
and are equal; false otherwise.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1117

HasInverse(f)

Either returns "true" and the inverse morphism for (function) field morphism f ,
or "false" if inverse does not exist, or "unknown" if it cannot be computed.

Composition(f, g)

The composition of the field morphisms f and g.

Example H42E18

We illustrate the use of the general isomorphism functions with some examples. In the first, we
have a rational function field of characteristic 5:

> k<w> := GF(5);

> kxf<x> := RationalFunctionField(k);

> kxfy<y> := PolynomialRing(kxf);

> F<a> := FunctionField(x^2+y^2-1);

> L := Isomorphisms(kxf, F);

> #L eq #PGL(2, k);

In the next example we consider the function field of a hyperelliptic curve defined over Q(i)
[i2 = −1] and a Galois twist of it. The fields are not isomorphic over Q(i) but they are over Q:

> k<i> := QuadraticField(-1);

> kxf<x> := RationalFunctionField(k);

> kxfy<y> := PolynomialRing(kxf);

> F1<a> := FunctionField(y^2-x^5-x^2-i);

> F2 := FunctionField(i*y^2-x^5-i*x^2+1);

> c := IdentityFieldMorphism(k);

> IsIsomorphic(F1,F2 : BaseMorphism := c);

false

> IsIsomorphic(F1,F2);

true Mapping from: FldFun: F1 to FldFun: F2 given by a rule

> L := Isomorphisms(F1, F2);

> [<f(a), f(x), f(i)> : f in L];

[

<-i*b, i*x, -i>,

<i*b, i*x, -i>

]

In the next example we consider the function field of the genus 3 plane curve x3∗y+y3∗z+z3∗x = 0,
which has full automorphism group PGL2(F7). We compute automorphisms over different finite
fields and also compute the automorphisms group as an FP group.

> k := GF(11);

> kxf<x> := RationalFunctionField(k);

> kxfy<y> := PolynomialRing(kxf);

> K<y> := FunctionField(x^3*y+y^3+x);

> L := Automorphisms(K);

> #L;

3

1118 GLOBAL ARITHMETIC FIELDS Part VII

> // Extend base field to get all autos

> k := GF(11^3);

> kxf<x> := RationalFunctionField(k);

> kxfy<y> := PolynomialRing(kxf);

> K<y> := FunctionField(x^3*y+y^3+x);

> L := Automorphisms(K);

> #L;

504

> // restrict to just "geometric" autos, which fix the base

> c := IdentityFieldMorphism(k);

> L := Automorphisms(K : BaseMorphism := c);

> #L;

168

> // get the automorphism group instead as an FP group

> G,mp := AutomorphismGroup(K : BaseMorphism := c);

> G;

Finitely presented group G on 2 generators

Relations

G.2^3 = Id(G)

(G.1^-1 * G.2)^3 = Id(G)

G.1^7 = Id(G)

(G.2^-1 * G.1^-3)^2 = Id(G)

(G.2^-1 * G.1^-1)^4 = Id(G)

> #G;

168

> IdentifyGroup(G); // find in small group database

<168, 42>

Finally, we give an example of a genus 1 function field over F5 where the group of automorphisms
is computed acting on various spaces of functions and differentials.

> k<w> := GF(5);

> kxf<x> := RationalFunctionField(k);

> kxfy<y> := PolynomialRing(kxf);

> f := x^3 + y^3 + 1;

> F<a> := FunctionField(f);

> f := Numeration(Set(Places(F, 1)));

> G, h, K := AutomorphismGroup(F, f);

> #G; Type(G);

12

GrpPerm

> V, f := SpaceOfDifferentialsFirstKind(F);

> G, h, K := AutomorphismGroup(F, f);

> #G; Type(G);

2

GrpMat

> D := &+ Places(F, 1);

> V, f := DifferentialSpace(-D);

> G, h := AutomorphismGroup(F, f);

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1119

> #G;

12

> V, f := RiemannRochSpace(D);

> G, h, ker := AutomorphismGroup(F, f);

> #G; #ker;

12

1

42.8 Global Function Fields

F/k denotes a global function field in this section.

42.8.1 Functions relative to the Exact Constant Field

NumberOfPlacesOfDegreeOverExactConstantField(F, m)

NumberOfPlacesDegECF(F, m)

The number of places of degree m of the global function field F/k. Contrary to the
Degree function the degree is here taken over the respective exact constant fields.

NumberOfPlacesOfDegreeOneOverExactConstantField(F)

NumberOfPlacesOfDegreeOneECF(F)

The number of places of degree one in the global function field F/k. Contrary to
the Degree() function the degree is here taken over the exact constant field.

NumberOfPlacesOfDegreeOneOverExactConstantField(F, m)

NumberOfPlacesOfDegreeOneECF(F, m)

The number of places of degree one in the constant field extension of degree m of
the global function field F/k. Contrary to the Degree() function the degree is here
taken over the respective exact constant fields.

SerreBound(F)

SerreBound(F, m)

SerreBound(q, g)

The Serre bound on the number of places of degree one in a global function field of
genus g over the exact constant field of q elements (of the global function field F , of
the constant field extension of degree m of F). Contrary to the Degree() function
the degree is here taken over the respective exact constant fields.

1120 GLOBAL ARITHMETIC FIELDS Part VII

IharaBound(F)

IharaBound(F, m)

IharaBound(q, g)

The Ihara bound on the number of places of degree one in a global function field
F/k of genus g over the exact constant field of q elements (of the global function
field F , of the constant field extension of degree m of F). Contrary to the Degree
function the degree is here taken over the respective exact constant fields.

NumberOfPlacesOfDegreeOneECFBound(F)

NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F)

NumberOfPlacesOfDegreeOneECFBound(F, m)

NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m)

NumberOfPlacesOfDegreeOneECFBound(q, g)

NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(q, g)

The minimum of the Serre and Ihara bound. Contrary to the Degree function the
degree is here taken over the respective exact constant fields.

LPolynomial(F)

The L-polynomial of the global function field F/k (with respect to the exact constant
field).

LPolynomial(F, m)

The L-polynomial of the constant field extension of degree m of the global function
field F/k (with respect to the exact constant field).

ZetaFunction(F)

The Zeta function of the global function field F/k (with respect to the exact constant
field).

ZetaFunction(F, m)

The Zeta function of the constant field extension of degree m of the global function
field F/k (with respect to the exact constant field).

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1121

42.8.2 Functions Relative to the Constant Field

Places(F, m)

A sequence containing the places of degree m of the global function field F/k.

HasPlace(F, m)

Returns true and a place of degree m if and only if there exists such a place in the
global function field; false otherwise.

HasRandomPlace(F, m)

Returns true and a random place of degree m in the global function field (false if
there are none).

RandomPlace(F, m)

Returns a random place of degree m in the global function field or throws an error
if there is none.

Example H42E19

> Y<t> := PolynomialRing(Integers());

> R<x> := FunctionField(GF(9));

> P<y> := PolynomialRing(R);

> f := y^3 + y + x^5 + x + 1;

> F<alpha> := FunctionField(f);

> Genus(F);

4

> NumberOfPlacesDegECF(F, 1);

22

> NumberOfPlacesOfDegreeOneECFBound(F);

32

> HasRandomPlace(F, 2);

true (x^2 + $.1*x + 2, alpha + $.1^2*x + $.1^5)

> LPolynomial(F);

6561*t^8 + 8748*t^7 + 7290*t^6 + 3888*t^5 + 1539*t^4 + 432*t^3 + 90*t^2

+ 12*t + 1

Example H42E20

Some of the above functions are demonstrated for a global relative field.

> PF<x> := PolynomialRing(GF(13, 2));

> P<y> := PolynomialRing(PF);

> FF1 := ext<FieldOfFractions(PF) | y^2 - x>;

> P<y> := PolynomialRing(FF1);

> FF2<d> := ext<FF1 | y^3 - b>;

> RER_FF2 := RationalExtensionRepresentation(FF2);

> NumberOfPlacesOfDegreeOneECF(FF2) eq NumberOfPlacesOfDegreeOneECF(RER_FF2);

1122 GLOBAL ARITHMETIC FIELDS Part VII

true

> SerreBound(FF2);

170

> NumberOfPlacesDegECF(FF2, 1);

170

> _, P := HasPlace(FF2, 1);

> P;

(x, (($.1^44*x + $.1^100)*b + ($.1^82*x + $.1^10))*d^2 + (($.1^85*x + $.1^67)*b

+ ($.1^107*x + $.1^130))*d + ($.1^26*x + $.1^69)*b + $.1^149*x)

> Degree(P) eq 1;

true

> LPolynomial(FF2, 2) eq LPolynomial(RER_FF2, 2);

true

42.8.3 Functions related to Class Group

UnitRank(O)

Given a maximal ‘finite’ order O in a global function field, return the unit rank of
O.

UnitGroup(O)

The unit group of a ‘finite’ maximal order O as an Abelian group and the map from
the unit group into O. Also see IsUnitWithPreimage on page 1133.

Regulator(O)

The regulator of the unit group of the ‘finite’ maximal order O.

PrincipalIdealMap(O)

The map from the multiplicative group of the field of fractions of O to the group of
fractional ideals of O where O is a ‘finite’ maximal order.

Example H42E21

Following on from the last example,

> EFF2F := EquationOrderFinite(FF2);

> G, m := UnitGroup(EFF2F);

> G;

Abelian Group isomorphic to Z/168

Defined on 1 generator

Relations:

168*G.1 = 0

> m(Random(G));

[[$.1^120, 0], [0, 0], [0, 0]]

> IsUnit($1);

true

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1123

> Regulator(EFF2F);

1

ClassGroup(F :parameters)

DegreeBound RngIntElt Default :

SizeBound RngIntElt Default :

ReductionDivisor DivFunElt Default :

Proof BoolElt Default :

The divisor class group of F/k as an Abelian group, a map of representatives from
the class group to the divisor group and the homomorphism from the divisor group
onto the divisor class group. For a detailed description see ClassGroup on page
1172.

ClassGroup(O)

The ideal class group of the ‘finite’ maximal order O as an Abelian group, a map of
representatives from the ideal class group to the group of fractional ideals and the
homomorphism from the group of fractional ideals onto the ideal class group.

ClassGroupExactSequence(O)

Returns the maps in the center of the exact sequence

0 → U → F× → Id→ Cl→ 0

where U is the unit group of O, F× is the multiplicative group of the field of fractions
of O, Id is the group of fractional ideals of O and Cl is the class group of O for a
‘finite’ maximal order O.

ClassGroupAbelianInvariants(F :parameters)

DegreeBound RngIntElt Default :

SizeBound RngIntElt Default :

ReductionDivisor DivFunElt Default :

Proof BoolElt Default :

Computes a sequence of integers containing the Abelian invariants of the divisor
class group of F/k. For a detailed description see ClassGroupAbelianInvariants
on page 1172.

ClassGroupAbelianInvariants(O)

Computes a sequence of integers containing the Abelian invariants of the ideal class
group of the ‘finite’ maximal order O.

1124 GLOBAL ARITHMETIC FIELDS Part VII

ClassNumber(F)

The order of the group of divisor classes of degree zero of F/k.

ClassNumber(O)

The order of the ideal class group of the ‘finite’ maximal order O.

Example H42E22

An example of class groups of relative fields is shown.

> PF<x> := PolynomialRing(GF(13, 2));

> P<y> := PolynomialRing(PF);

> FF1 := ext<FieldOfFractions(PF) | y^2 - x>;

> P<y> := PolynomialRing(FF1);

> FF2<d> := ext<FF1 | y^3 - b : Check := false>;

> MFF2I := MaximalOrderInfinite(FF2);

> G, m, mi := ClassGroup(FF2);

> m(Random(G));

Divisor in reduced representation:

Divisor in ideal representation:

Fractional ideal of Maximal Equation Order of FF2 over Maximal Equation Order of

FF1 over Univariate Polynomial Ring in x over GF(13^2)

Generators:

1

($.1^60/x*b + $.1^57/x)*d^2 + ($.1^141/x*b + $.1^4/x)*d + $.1^80/x*b, Ideal of

MFF2I

Generators:

1

1,

-2,

6*(1/x, (($.1^132*x^2 + $.1^164*x + 12)/x^3*b + ($.1^85*x^2 + $.1^155*x +

12)/x^3)*d^2 + (($.1^75*x^2 + $.1^81*x + 12)/x^3*b + ($.1^29*x^2 + $.1^155*x

+ 12)/x^3)*d + ($.1^163*x^2 + $.1^29*x + 12)/x^3*b + ($.1^141*x + 12)/x^2),

(x)^2 * (1/x)^2

> mi(&+[Divisor(Random(FF2, 3)) : i in [1 .. 3]]);

0

> ClassNumber(FF2);

1

GlobalUnitGroup(F)

The group of global units of F/k, i. e. the multiplicative group of the exact constant
field, as an Abelian group, together with the map into F . Also see IsGlobalUnit
on page 1133 and IsGlobalUnitWithPreimage on page 1133.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1125

ClassGroupPRank(F)

Compute the p-rank of the class group of F/k where p is the characteristic of F/k.
For a detailed description see ClassGroupPRank on page 1175.

HasseWittInvariant(F)

Return the Hasse–Witt invariant of F/k. See HasseWittInvariant on page 1175
for a detailed description.

IndependentUnits(O)

A sequence of independent units of the ‘finite’ maximal order O.

FundamentalUnits(O)

A sequence of fundamental units of the ‘finite’ maximal order O.

Example H42E23

> R<x> := FunctionField(GF(3));

> P<y> := PolynomialRing(R);

> f := y^4 + x*y + x^4 + x + 1;

> F<a> := FunctionField(f);

> O := MaximalOrderFinite(F);

> Basis(O);

[1, a, a^2, a^3]

> Discriminant(O);

x^12 + x^3 + 1

> UnitRank(O);

1

> U := FundamentalUnits(O);

> U;

[[x^33 + x^31 + 2*x^30 + 2*x^28 + 2*x^27 + x^25 + 2*x^24 + x^22 + 2*x^19 +

2*x^15 + x^10 + 2*x^9 + 2*x^7 + x^6 + 2*x + 2, x^32 + 2*x^30 + x^29 + 2*x^28

+ 2*x^27 + 2*x^26 + x^22 + x^21 + 2*x^19 + x^18 + x^17 + x^16 + x^13 + x^11

+ 2*x^10 + 2*x^9 + 2*x^3 + 1, x^29 + x^27 + 2*x^25 + 2*x^23 + x^22 + 2*x^21

+ x^20 + x^18 + 2*x^17 + x^16 + x^15 + 2*x^14 + x^11 + 2*x^10 + 2*x^4 + x,

x^30 + 2*x^27 + x^24 + x^21 + 2*x^18 + x^9 + 2*x^6 + 2]]

> Norm(U[1]);

1

> Regulator(O);

33

1126 GLOBAL ARITHMETIC FIELDS Part VII

42.9 Structure Predicates

IsField(R) IsEuclideanDomain(R)

IsPID(R) IsUFD(R)

IsDivisionRing(R) IsEuclideanRing(R)

IsPrincipalIdealRing(R) IsDomain(R)

F eq G F ne G O1 eq O2 O1 ne O2

O1 subset O2

Return whether O1 is a subset of O2.

IsGlobal(F)

Returns true if and only if the algebraic function field F/k is global, i.e. the constant
field is a finite field; false otherwise.

IsRationalFunctionField(F)

Return true if the function field F is isomorphic to a rational function field, (i.e. F
is only trivially algebraic).

IsFiniteOrder(O)

Given an order O of a function field, return true if and only if the bottom coefficient
ring of O is a polynomial ring.

IsEquationOrder(O)

Given an order O of a function field, return true if and only if the order O is an
equation order (i.e. it has been defined by a polynomial and so has a power basis).

IsAbsoluteOrder(O)

Return false if the order O is an extension of another order, otherwise true.

IsMaximal(O)

Given an order O of a function field, return true if and only if the order O is
maximal in its field of fractions.

IsTamelyRamified(O)

Return whether the order O is tamely ramified, i.e. no prime ideal of O has residue
field with characteristic dividing its ramification index.

IsTotallyRamified(O)

Return whether there is an ideal of the order O which is totally ramified, i.e. its
ramification index is equal to the degree of O over its coefficient ring.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1127

IsUnramified(O)

Return whether a finite order O is unramified at the finite places and whether an
infinite order O is unramified at the infinite places.

IsWildlyRamified(O)

Return whether there is a prime ideal of the order O which is wildly ramified, i.e.
its ramification index is divisible by the characteristic of its residue class field.

IsInKummerRepresentation(K)

Tests if the global function field K is, in its current representation, a Kummer
extension. More specific, this function tests if the defining polynomial is of the form
xr − a for some r coprime to the characteristic and if r divides the order of the
multipicative group of the constant field, ie. if the coefficient ring of K contains a
primitive r-th root of unity. In case K is in Kummer representation, the element a
is returned as a second return value.

IsInArtinSchreierRepresentation(K)

Tests if a global function field K is, in its current representation, a Artin-Schreier
extension, ie. if the defining polynomial of K is of the form xp − x − a where p is
the characteristic of K. In this case, the element a is returned as a second return
value.

42.10 Homomorphisms

hom< F -> R | g >

hom< F -> R | cf, g >

The homomorphism from the function field F to any ring R where g is the image
of the generator of F in R and cf is a map from the coefficient field of F into R.

hom< O -> R | g >

hom< O -> R | cf, g >

Create the map from the order O of an algebraic function field to R using g as the
image of the primitive element of O. If the map cf is given it should be from the co-
efficient ring of O into R, otherwise the coefficient ring of O should be automatically
coercible into R.

IsRingHomomorphism(m)

Return whether the vector space homomorphism m is a homomorphism of rings.

1128 GLOBAL ARITHMETIC FIELDS Part VII

Example H42E24

A simple use of homomorphisms is shown.

> PR<x> := PolynomialRing(Rationals());

> P<y> := PolynomialRing(PR);

> FR1<a> := FunctionField(y^3 - x*y + 1);

> P<y> := PolynomialRing(FR1);

> FR2<c> := FunctionField(y^2 - a^5*x^3*y + 1);

> EFR2F := EquationOrderFinite(FR2);

> cf := hom<FR1 -> EFR2F | a + 1>;

> h := hom<FR2 -> EFR2F | cf, c + 1>;

> h(c) eq c + 1;

true

> h(a*c) eq a*c + a + c + 1;

true

hom< O -> R | b1, ..., bn >

hom< O -> R | m, b1, ..., bn >

Return the map from the order O of an algebraic function field into the ring R which
maps the basis elements of O to b1, ..., bn. The map m, if given, should be from the
coefficient ring of O into R and will be used to map the coefficients of the basis
elements. If not given, the coefficient ring of O should automatically coerce into R.

42.11 Elements

The function field F = k(x, α1, . . . , αr, α) may be viewed as n-dimensional vector space
over k(x, α1, . . . , αr), where n is the degree of the field extension F/k(x, α1, . . . , αr). Note
that F is spanned by the powers 1, α, . . . , αn−1. Within Magma, function field elements
are printed as linear combinations of these powers of α over the coefficient field.

An order can be viewed as a free R-module of rank n where R is its coefficient ring (a
polynomial ring or the degree valuation ring of k(x) or an order which is a lesser degree
extension of k[x]) and n equals the degree F/k(x, α1, . . . , αr). It has a basis consisting of
n elements. Within Magma, function field order elements are printed as a sequence of
coefficients of the R-linear combination of such a basis.

Elements can also be represented as a product of other function field or order elements.
This is referred to as the product representation. Product representations can be useful
for large elements, however, it is expensive to put such elements in a set or to test them
for equality as this involves finding coefficients for the element.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1129

42.11.1 Creation of Elements

F . 1

F . 2

(i) Return the generator for the function field F over k(x, α1, . . . , αr), that is,
α ∈ F such that F = k(x, α1, . . . , αr, α).

(ii) Return the first and second generators for the function field F over k, that
is, α ∈ F and x ∈ F such that F = k(x, α).

Name(F, i)

Given a function field F , return the i-th generator, i.e. return the element F.1 or
F.2 of F .

O . i

FF . i

Return the ith basis element of the order O or its field of fractions FF .

F ! a

elt< F | a >

Create the element of the function field F specified by a; here a is allowed to be an
element coercible into F , which means that a may be:
(i) an element of F ,
(ii) an element of the coefficient field of F ,
(iii) an element of another representation of F .

For F an extension of k(x) we additionally have
(iv) an element of an order of F ,
(v) an element being coercible into k(x),
(vi) a sequence of elements being coercible into the coefficient field of F of length

equal to the degree of F over its coefficient field. In this case the element
a0 + a1α + . . . + an−1α

n−1 is created, where a = [a0, . . . , an−1] and α is the
generator F.1 of F over its coefficient field.

O ! a

elt< O | a >

Create the element of the order O specified by a; here a is allowed to be an element
coercible into O, which means that mathematically a ∈ O and that a may be any
of:
(i) an element of the function field F ,
(ii) an element of an order of the function field F ,
(iii) an element that can be coerced into k(x),
(iv) an element that can be coerced into its coefficient field,

1130 GLOBAL ARITHMETIC FIELDS Part VII

(v) a sequence of elements being coercible into the coefficient field of O of length
equal to the rank of O over its coefficient field. In this case the element
a1ω1 +a2ω2 + . . .+anωn is created, where a = [a1, . . . , an] and ω1, ω2, . . . , ωn

is the basis of O as returned by Basis(O).

FF ! a

elt< FF | a >

Create the element of the field of fractions FF of an order O specified by a, where
a may be any of the above such that d ∗ a is mathematically in O for some d ∈ O.

elt< F | a0, a1, ..., an−1 >

Create the element a0 + a1α+ . . .+ an−1α
n−1 where a0, . . . , an−1 are coercible into

the coefficient field of the function field F , n equals the degree of F over its coefficient
field and α is the generator F.1 of F over k(x).

elt< O | a1, a2, ..., an >

elt< FF | a1, a2, ..., an >

Create the element a1ω1 + a2ω2 + . . .+ anωn where a1, . . . , an are coercible into the
coefficient ring of the order O, n equals the rank of O over its coefficient ring and
ω1, ω2, . . . , ωn is the basis of O as returned by Basis(O), (where O is the ring of
integers of the field of fractions FF).

One(F) One(O)

Identity(F) Identity(O)

Zero(F) Zero(O)

Representative(F) Representative(O)

These generic functions (cf. Chapter 17) create 1, 1, 0, and 0 respectively in the
function field F or order O.

Random(F, m)

Random(O, m)

A “random” element of the global function field F or one of its orders O. The size
of the coefficients of the element are determined by m.

42.11.2 Parent and Category

Parent(a) Category(a)

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1131

42.11.3 Sequence Conversions
The sequence conversions refer to the function field F as a vector space of dimension n over
the coefficient field of F where F is a finite degree extension (degree n) of its coefficient
field.

ElementToSequence(a)

Eltseq(a)

The sequence [a1, . . . , an] of elements of the coefficient field of the parent of the
function field or order element a such that a = a1ω1 + a2ω2 + . . . + anωn where
ω1, ω2, . . . , ωn is a basis of the parent of a.

Eltseq(a, R)

A sequence of coefficients of the function field element a in the coefficient field R.

Flat(a)

A sequence of coefficients of the function field element a in the bottom coefficient
field of the parent of a.

F ! [a0, a1, ..., an−1]

The element a = a0 + a1α + . . . + an−1α
n−1 where the function field F =

k(x, α1, . . . , αr, α) and the ai may be coerced into k(x, α1, . . . , αr).

O ! [a1, a2, ..., an]

The element a = a1ω1 + a2ω2 + . . . + anωn where ω1, ω2, . . . , ωn is a basis of the
order O and the ai are coercible into the coefficient ring of O.

Example H42E25

> R<x> := FunctionField(GF(5));

> P<y> := PolynomialRing(R);

> f := y^3 + (4*x^3 + 4*x^2 + 2*x + 2)*y^2 + (3*x + 3)*y + 2;

> F<alpha> := FunctionField(f);

> Evaluate(f, alpha);

0

> F.1;

alpha

> b := x + alpha + 1/x*alpha^2;

> b;

1/x*alpha^2 + alpha + x

> b eq F ! [x, 1, 1/x];

true

1132 GLOBAL ARITHMETIC FIELDS Part VII

42.11.4 Arithmetic Operators
The following binary arithmetic operations can also be performed in the case where one
operand is an element of the function field F or an order O and the other operand is a
ring element which can naturally be mapped into F or O.

+ a - a

a + b a - b a * b a div b a / b a ^ k

Modexp(a, k, m)

Return ak mod m where m is an element of k[x] or o∞ according to whether the
parent of a is a finite or infinite order.

a mod I

Return the element a belonging to the order O as an element of O/I.

Modinv(a, m)

Return the inverse of the element a of an order of a function field modulo m where
m is an element of k[x] or o∞ according to whether the order of a is a finite or
infinite order or an ideal of the order of a.

42.11.5 Equality and Membership
The following binary arithmetic operations can also be performed in the case where one
operand is an element of the function field F or an order O and the other operand is a
ring element which can naturally be mapped into F or O.

a eq b a ne b

a in F a in O a in FF

a notin F a notin O a notin FF

42.11.6 Predicates on Elements
The functions in this section list the general ring element predicates that apply to function
fields and orders of a function field.

IsDivisibleBy(a, b)

Given elements a and b belonging to a function field F or an order O, returns true
if there exists c ∈ F or c ∈ O such that a = bc and returns c as well, provided that
b 6= 0.

IsZero(a) IsOne(a) IsMinusOne(a)

IsNilpotent(a) IsIdempotent(a)

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1133

IsUnit(a) IsZeroDivisor(a) IsRegular(a)

IsIrreducible(a) IsPrime(a)

IsSeparating(a)

Returns true if the function field element a is a separating element (has a non zero
differential).

IsConstant(a)

Whether the algebraic function a is constant; if so it is returned as an element of
the exact constant field.

IsGlobalUnit(a)

Whether the function field element a is a global unit, i.e. a constant (equivalent to
IsConstant)

IsGlobalUnitWithPreimage(a)

Returns true and the preimage of the function field element a in the global unit
group, false otherwise. The function field must be global.

IsUnitWithPreimage(a)

Returns true and the preimage of the order element a in the unit group of O if a is
a unit, false otherwise. The function field has to be global.

42.11.7 Functions related to Norm and Trace
Multiplication by a ∈ F or a ∈ O defines a linear map of the vector space F over its
coefficient field where F is a finite extension of its coefficient field. The following functions
work with respect to this mapping.

Trace(a) Norm(a)

MinimalPolynomial(a)

CharacteristicPolynomial(a)

RepresentationMatrix(a)

Returns the matrix M ∈ Rn×n such that a (ω1, ω2, . . . , ωn) = (ω1, ω2, . . . , ωn)M ,
where ω1, ω2, . . . , ωn is a R-basis of the parent of the function field or order element
a and R is the coefficient ring of the parent of a.

Trace(a, R)

The trace of the function field or order element a over R, a coefficient ring or field
of the parent of a.

1134 GLOBAL ARITHMETIC FIELDS Part VII

Norm(a, R)

The norm of the order or algebraic function field element a over R, a coefficient ring
or field of the parent of a.

CharacteristicPolynomial(a, R)

The characteristic polynomial of the order or algebraic function field element a over
R, a coefficient ring or field of the parent of a.

MinimalPolynomial(a, R)

The minimal polynomial of the order or algebraic function field element a over R,
a coefficient ring or field of the parent of a.

AbsoluteMinimalPolynomial(a)

The minimal polynomial of the function field element a over the rational function
field.

RepresentationMatrix(a, R)

Returns the matrix M ∈ Rn×n such that a (ω1, ω2, . . . , ωn) = (ω1, ω2, . . . , ωn)M ,
where ω1, ω2, . . . , ωn is a R-basis of the parent of the function field or order element
a and R is a coefficient ring of the parent of a.

Example H42E26

> P<x> := PolynomialRing(Integers());

> N<n> := NumberField(x^6 - 6);

> P<x> := PolynomialRing(N);

> P<y> := PolynomialRing(P);

> F<c> := FunctionField(y^8 - x^3*N.1^5);

> P<y> := PolynomialRing(F);

> F2<d> := FunctionField(y^3 + N.1*F!x - c);

> d^10;

(c^3 - 3*n*x*c^2 + 3*n^2*x^2*c - n^3*x^3)*d

> Norm(d^10);

-120*n^3*x^3*c^7 + 210*n^4*x^4*c^6 - 252*n^5*x^5*c^5 + 1260*x^6*c^4 -

720*n*x^7*c^3 + (270*n^2*x^8 + n^5*x^3)*c^2 + (-60*n^3*x^9 - 60*x^4)*c +

6*n^4*x^10 + 270*n*x^5

> Norm(d^10, CoefficientField(F));

13060694016*n^2*x^80 - 21767823360*n^5*x^75 + 97955205120*n^2*x^70 -

43535646720*n^5*x^65 + 76187381760*n^2*x^60 - 15237476352*n^5*x^55 +

12697896960*n^2*x^50 - 1209323520*n^5*x^45 + 453496320*n^2*x^40 -

16796160*n^5*x^35 + 1679616*n^2*x^30

> Trace(d^10, CoefficientField(F));

0

> Trace(d^10);

0

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1135

42.11.8 Functions related to Orders and Integrality

IntegralSplit(a, O)

Split the element function field or order element a into a numerator and denominator
with respect to the order O.

Numerator(a, O)

The numerator of the function field element a with respect to the order O.

Numerator(a)

Given an element a in a field of fractions of an order O return the numerator of a
with respect to O.

Numerator(a, O)

Given an element a in a field of fractions of an order and an order O of a function
field return the numerator of a with respect to O.

Denominator(a, O)

The denominator of the function field element a with respect to the order O.

Denominator(a)

Given an element a in a field of fractions of an order O return the denominator of
a with respect to O.

Denominator(a, O)

Given an element a in a field of fractions of an order and an order O of a function
field return the denominator of a with respect to O.

Min(a, O)

Minimum(a, O)

A generator of the ideal R ∩ (d× a×O) where R is the coefficient ring of the order
O and d is the denominator of the function field or order element a wrt O (d is the
second return value).

1136 GLOBAL ARITHMETIC FIELDS Part VII

42.11.9 Functions related to Places and Divisors

Evaluate(a, P)

Evaluate the algebraic function a at the place P . If it is not defined at P , infinity
is returned.

Lift(a, P)

Lift the element a of the residue class field of the place P (including infinity) to an
algebraic function.

Valuation(a, P)

The valuation of the function field or order element a at the place P .

Expand(a, P)

RelPrec RngIntElt Default : 10
AbsPrec RngIntElt Default :

Expand the algebraic function a to a series of given precision at the place P and
return the local parameter.

Divisor(a)

PrincipalDivisor(a)

The (principal) divisor (a) of the function field or order element a.

Zeros(a)

Zeroes(a)

A sequence containing the zeros of the algebraic function a.

Zeros(F, a)

Zeroes(F, a)

The zeros of the function field element a in the function field F .

Poles(a)

A sequence containing the poles of the algebraic function a.

Poles(F, a)

A sequence containing the poles of the function field element a in the function field
F .

Degree(a)

The degree of the algebraic function a, being defined as the degree of the pole (or
zero) divisor of a.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1137

CommonZeros(L)

Return the common zeros of the function field elements in the sequence L.

CommonZeros(F, L)

Return the common zeros in the function field F of the function field elements in
the sequence L.

Example H42E27

> R<x> := FunctionField(GF(9));

> P<y> := PolynomialRing(R);

> f := y^3 + y + x^5 + x + 1;

> F<a> := FunctionField(f);

> MinimalPolynomial(a);

y^3 + y + x^5 + x + 1

> RepresentationMatrix(a);

[0 1 0]

[0 0 1]

[2*x^5 + 2*x + 2 2 0]

> O := IntegralClosure(ValuationRing(R), F);

> Denominator(a, O);

1/x^2

> O := IntegralClosure(PolynomialRing(GF(9)), F);

> Denominator(a, O);

1

> Zeros(a);

[(x + 2, a), (x^3 + 2*x^2 + 1, a + x^3 + 2*x^2 + 1)]

> Degree(a);

5

> P := RandomPlace(F, 2);

> P;

(x^2 + $.1^2*x + $.1^6, a + x^2 + $.1^5*x + 1)

> b := Evaluate(a, P);

> b;

$.1^3*$.1 + $.1^3

> c := Lift(b, P);

> c;

$.1^3*x + $.1^3

> Valuation(a, P);

0

> Valuation(a-c, P);

1

1138 GLOBAL ARITHMETIC FIELDS Part VII

Module(L, R)

IsBasis BoolElt Default : false

PreImages BoolElt Default : false

The R-module generated by the function field elements in the sequence L as an ab-
stract module, together with the map into the algebraic function field. The resulting
modules can be used for intersection and inner sum computations.

If the optional parameter IsBasis is set true the function assumes that the
given elements form a basis of the module to be computed.

If the optional parameter PreImages is set true then the preimages of the given
elements under the map are returned as the third return value.

Both optional parameters are mainly used to save computation time.

Relations(L, R)

Relations(L, R, m)

The module of R-linear relations between the function field elements of the sequence
L. The argument m is used for the following: Let the elements of L be a1, . . . , an,
V be the relation module ⊆ Rn and define M := {∑m

i=1 viai | v = (vi)i ∈ V }. The
function tries to compute a generating system of V such that the corresponding
generating system of M consists of “small” elements.

Roots(f, D)

Compute the roots of the polynomial f which lie in the Riemann-Roch space of the
divisor D.

Example H42E28

This example shows the capability of Module and Relations with relative function fields.

> PR<x> := PolynomialRing(Rationals());

> P<y> := PolynomialRing(PR);

> FR1<a> := FunctionField(y^3 - x);

> P<y> := PolynomialRing(FR1);

> FR2<c> := FunctionField(y^2 - a);

> MFR1F := MaximalOrderFinite(FR1);

> m, f := Module([c, c + a], MFR1F);

> f(m.1);

1

> f(m.2);

c

> m, f := Module([c, c + a], FR1);

> f(m.1);

c

> f(m.2);

1

> m;

KModule m of dimension 2 over FR1

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1139

> Relations([c, c + a], FR1, 1);

Vector space of degree 2, dimension 0 over FR1

User basis:

Matrix with 0 rows and 2 columns

42.11.10 Other Operations on Elements

ProductRepresentation(a)

Return a product representation for the function field or order element a.

ProductRepresentation(Q, S)

PowerProduct(Q, S)

Return the element given by the product representation of function field elements
in the sequence Q and exponents in the sequence S. It is expensive to put large
elements in product representation into sets or to test for them for equality.

RationalFunction(a)

RationalFunction(a, R)

Return the algebraic function a as a rational function in free variables with respect
to the defining polynomial over the coefficient field.

If the ring R is provided it must appear in the tower of coefficient fields of the
parent of a and the result is a polynomial over R with respect to all the defining
polynomials of the extensions in between.

Differentiation(x, a)

The first differentiation resp. derivative of the function field element a with respect
to the separating element x.

Differentiation(x, n, a)

The nth differentiation of the function field element a with respect to the separating
element x. In characteristic zero the nth differentiation equals the nth derivative
times 1/n!.

DifferentiationSequence(x, n, a)

The 0-th up to the n-th differentiation of the function field element a with respect
to the separating element x.

1140 GLOBAL ARITHMETIC FIELDS Part VII

PrimePowerRepresentation(x, k, a)

Return the coefficients of the representation of the function field element a as a
linear combination of k-th prime powers and powers of the function field element
x. More precisely, let p > 0 be the characteristic of F . Then F pk

is a subfield
of F of index pk and F can be viewed as a F pk

-vector space. A basis is given by
1, x, . . . , xpk−1 for x a separating element. The function returns λ1, . . . , λpk−1 ∈ F pk

such that a =
∑

i λix
i.

Different(a)

The different of the element a of an order of an algebraic function field.

RationalReconstruction(e, f)

For an element e of some some function field K with integral coefficients e =
∑
eiα

i,
ei ∈ k[x] and some polynomial f ∈ k[x] find the (essentially) unique E =

∑
Eiαi

with Ei ∈ k(x) and Ei = ei mod f , where the numerator and denominator of the Ei

have degree bounded by half the degree of f . If such Ei exists they are unique, the
corresponding element

∑
Eiα

i for the function field will be returned as a second
return value, the first being true to indicate success. If no such element exists,
false will be returned.

CoefficientHeight(a)

CoefficientHeight(a)

The (naive) height of the element as defined as the largest degree of any coefficient
or denominator polynomial occurring in the coefficients of a.

CoefficientLength(a)

CoefficientLength(a)

The (naive) length or size of the element, defined as the sum of the degrees of all
polynomials occurring as coefficients or denominators in the coefficient representa-
tion of a.

Example H42E29

> F<z> := GF(13, 3);

> PF<x> := PolynomialRing(F);

> P<y> := PolynomialRing(PF);

> FF1 := ext<FieldOfFractions(PF) | y^2 - x>;

> P<y> := PolynomialRing(FF1);

> FF2<d> := ext<FF1 | y^3 - ConstantField(FF1).1>;

> ProductRepresentation([Random(FF2, 2) : i in [1 .. 3]], [2, 3, 2]);

(((z^476*x + z^319)*b + (z^1861*x + z^439))*d^2 + ((z^348*x + z^931)*b +

(z^328*x + z^2076))*d + (z^152*x + z^1723)*b + z^1044*x + z^1119)^2 *

(((z^1024*x + z^2085)*b + (z^798*x + z^335))*d^2 + ((z^310*x + z^932)*b +

(z^281*x + z^1393))*d + (z^1844*x + z^66)*b + z^2127*x + z^1788)^3 *

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1141

(((z^1478*x + z^1782)*b + (z^687*x + z^1898))*d^2 + ((z^560*x + z^425)*b +

(z^2081*x + z^164))*d + (z^60*x + z^890)*b + z^258*x + z^1739)^2

> ProductRepresentation($1);

[

((z^476*x + z^319)*b + (z^1861*x + z^439))*d^2 + ((z^348*x + z^931)*b +

(z^328*x + z^2076))*d + (z^152*x + z^1723)*b + z^1044*x + z^1119,

((z^1024*x + z^2085)*b + (z^798*x + z^335))*d^2 + ((z^310*x + z^932)*b +

(z^281*x + z^1393))*d + (z^1844*x + z^66)*b + z^2127*x + z^1788,

((z^1478*x + z^1782)*b + (z^687*x + z^1898))*d^2 + ((z^560*x + z^425)*b +

(z^2081*x + z^164))*d + (z^60*x + z^890)*b + z^258*x + z^1739

]

[2, 3, 2]

> r := Random(FF2, 3);

> RationalFunction(r);

((z^1568*x^2 + z^1591*x + z^1260)*b + (z^746*x^2 + z^1405*x + z^1721))*y^2 +

((z^990*x^2 + z^689*x + z^470)*b + (z^1324*x^2 + z^195*x + z^1082))*y +

(z^331*x^2 + z^1995*x + z^1521)*b + z^1323*x^2 + z^852*x + z^2162

> RationalFunction(r, CoefficientField(FF2));

((z^1568*x^2 + z^1591*x + z^1260)*b + (z^746*x^2 + z^1405*x + z^1721))*$.1^2 +

((z^990*x^2 + z^689*x + z^470)*b + (z^1324*x^2 + z^195*x + z^1082))*$.1 +

(z^331*x^2 + z^1995*x + z^1521)*b + z^1323*x^2 + z^852*x + z^2162

> RationalFunction(r, PF);

(z^1568*x^2 + z^1591*x + z^1260)*$.1^2*$.2 + (z^746*x^2 + z^1405*x +

z^1721)*$.1^2 + (z^990*x^2 + z^689*x + z^470)*$.1*$.2 + (z^1324*x^2 +

z^195*x + z^1082)*$.1 + (z^331*x^2 + z^1995*x + z^1521)*$.2 + z^1323*x^2 +

z^852*x + z^2162

> Differentiation(FF2!x, r);

((z^836*x^2 + z^2140*x + z^1077)/x*b + (z^929*x + z^1405))*d^2 + ((z^258*x^2 +

z^1238*x + z^287)/x*b + (z^1507*x + z^195))*d + (z^1795*x^2 + z^348*x +

z^1338)/x*b + z^1506*x + z^852

> Differentiation(FF2!b, r);

((z^1112*x + z^1588)*b + (z^1019*x^2 + z^127*x + z^1260))*d^2 + ((z^1690*x +

z^378)*b + (z^441*x^2 + z^1421*x + z^470))*d + (z^1689*x + z^1035)*b +

z^1978*x^2 + z^531*x + z^1521

> Differentiation(FF2!d, r);

>> Differentiation(FF2!d, r);

^

Runtime error in ’Differentiation’: First element must be a separating element

> MFR2I := MaximalOrderInfinite(FF2);

> Different(Numerator(r, MFR2I));

[[(z^1095*x^5 + z^849*x^4 + z^111*x^3 + z^853*x^2 + z^224*x + z^1340)/x^6,

(z^666*x^4 + z^1902*x^3 + z^2086*x^2 + z^1119*x + z^1973)/x^5], [

(z^1673*x^5 + z^699*x^4 + z^1465*x^3 + z^1060*x^2 + z^761*x + z^1979)/x^6,

(z^1034*x^4 + z^1185*x^3 + z^833*x^2 + z^2044*x + z^1701)/x^5], [

(z^516*x^5 + z^1545*x^4 + z^509*x^3 + z^832*x^2 + z^606*x + z^700)/x^6,

(z^1033*x^4 + z^983*x^3 + z^1375*x^2 + z^89*x + z^271)/x^5]]

1142 GLOBAL ARITHMETIC FIELDS Part VII

42.12 Ideals

Ideals for function field orders O are O-modules I ⊆ F for which there is a d ∈ F such
that dI ⊆ O is a non-zero ideal of O, that is they are fractional ideals of O. Over the
coefficient ring of O they are also free modules of rank n, where n equals the degree
[F : k(x, α1, . . . , αr)].

42.12.1 Creation of Ideals

ideal< O | a1, a2, ... , am >

Given an order O, as well as elements a1, a2, . . . , am coercible into the field of frac-
tions F of O, create the fractional ideal of O generated by these elements.

Note that, contrary to the general case for the constructors, the right hand side
elements are not necessarily contained in the left hand side.

ideal< O | T, d >

The ideal of the order O of an algebraic function field whose basis is the matrix or
dedekind module T over the coefficient ring of O divided by the element d of the
denominator ring of O.

ideal< O | T, S >

ideal< O | T, I1, ..., In >

The ideal of the order O of an algebraic function field whose basis is the matrix T
over the coefficient ring of O along with the coefficient ideals I1, ..., In or those in S.

x * O

O * x

Create the ideal x ∗O where x is coercible into the function field of the order O.

Ideal(P)

Create a prime ideal corresponding to the place P .

Ideals(D)

Create two ideals of the ‘finite’ and ‘infinite’ maximal order respectively correspond-
ing to the divisor D.

O !! I

Return the ideal I as an ideal of the order O.

42.12.2 Parent and Category

Parent(I) Category(I)

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1143

42.12.3 Arithmetic Operators

I + J I * J

I / J I ^ k

The ideal J is required to be invertible. The ideal I is required to be invertible for
negative k.

c * I I * c I / c

c / I

The principal ideal generated by the ring element c divided by the ideal I.

IdealQuotient(I, J)

ColonIdeal(I, J)

The colon ideal [I : J] of elements which multiply all elements of the ideal J into
the ideal I.

ChineseRemainderTheorem(I1, I2, e1, e2)

CRT(I1, I2, e1, e2)

Returns an element e of the order O such that (e1 − e) is in the ideal I1 of O and
(e2 − e) is in the ideal I2.

42.12.4 Roots of Ideals

IsPower(I, n)

Return whether the ideal I has an nth root and if so return an nth root.

Root(I, n)

Return the nth root of the ideal I.

IsSquare(I)

Return whether the ideal I is a square and if so return a square root.

SquareRoot(I)

Sqrt(I)

Return a square root of the ideal I.

1144 GLOBAL ARITHMETIC FIELDS Part VII

Example H42E30

A simple creation of an ideal and the use of IsSquare is shown below.

> P<x> := PolynomialRing(GF(79));

> P<y> := PolynomialRing(P);

> Fa<a> := FunctionField(y^2 - x);

> P<y> := PolynomialRing(Fa);

> Fb := FunctionField(y^2 - a);

> P<y> := PolynomialRing(Fb);

> Fc<c> := FunctionField(y^2 + a*b);

> I := a*b*c*MaximalOrderInfinite(Fc);

> IsSquare(I^2);

true Fractional ideal of Maximal Order of Fc over Maximal Order of Fb over

Maximal Equation Order of Fa over Valuation ring of Univariate rational function

field over GF(79) with generator 1/x

Basis:

Pseudo-matrix over Maximal Order of Fb over Maximal Equation Order of Fa over

Valuation ring of Univariate rational function field over GF(79) with generator

1/x

Fractional ideal of Maximal Order of Fb over Maximal Equation Order of Fa over

Valuation ring of Univariate rational function field over GF(79) with generator

1/x

Generators:

1

((78*x^2 + 71*x + 78)/x^2*a + (23*x^2 + 15*x + 78)/x^2)*b + (67*x^2 + 60*x +

78)/x^2*a + (3*x^2 + 47*x + 78)/x * (1 0)

Fractional ideal of Maximal Order of Fb over Maximal Equation Order of Fa over

Valuation ring of Univariate rational function field over GF(79) with generator

1/x

Generators:

1

((59*x^2 + 44*x + 78)/x^2*a + (4*x^2 + 48*x + 78)/x^2)*b + (29*x^2 + 46*x +

78)/x^2*a + (71*x + 78)/x * (0 1)

> _, II := $1;

> II eq I;

true

> MaximalOrderFinite(Fc)!!I;

Ideal of Maximal Order of Fc over Maximal Equation Order of Fb over Maximal

Equation Order of Fa over Univariate Polynomial Ring in x over GF(79)

Generators:

a*b*c

a*b*c

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1145

42.12.5 Equality and Membership

I eq J I ne J I in S I notin S

42.12.6 Predicates on Ideals

IsZero(I)

Returns true if and only if the ideal I is the zero ideal of the order O.

IsOne(I)

Returns true if and only if the ideal I is the identity ideal of the order O, i.e. I = O.

IsIntegral(I)

Returns true if and only if the ideal I is integral (a true ideal of its order).

IsPrime(I)

Returns true if and only if the ideal I is prime.

IsPrincipal(I)

Returns true and a generator if the fractional ideal I is principal, false otherwise.
The function field has to be global.

42.12.6.1 Predicates on Prime Ideals

IsInert(P)

Return true if the inertia degree of the prime ideal P is the degree of its order.

IsInert(P, O)

Return true if there is an inert ideal in the order O above the prime ideal P .

IsRamified(P)

Return true if the ramification index of the prime ideal P is not 1.

IsRamified(P, O)

Return true if there is a ramified ideal in the order O above the prime ideal P .

IsSplit(P)

Return true if the prime ideal P is not the only ideal lying above the prime ideal
it lies above.

IsSplit(P, O)

Return true if there are at least 2 distinct ideals which lie in the order O above the
prime ideal P .

1146 GLOBAL ARITHMETIC FIELDS Part VII

IsTamelyRamified(P)

Return whether the prime ideal P is not wildly ramified.

IsTamelyRamified(P, O)

Return whether the prime ideal P is not wildly ramified in the order O.

IsTotallyRamified(P)

Return whether the ramification index of the prime ideal P is the same as the degree
of its order over its coefficient order.

IsTotallyRamified(P, O)

Return whether there are any totally ramified ideals in the order O lying above the
prime ideal P .

IsTotallySplit(P)

Return whether there are as many ideals as the degree of the order of the prime
ideal P lying over the prime P lies over.

IsTotallySplit(P, O)

Return whether there are as many ideals of the order O which lie above the prime
ideal P as the degree of O.

IsUnramified(P)

Return whether the ramification index of the prime ideal P is 1.

IsUnramified(P, O)

Return whether all the ideals of the order O which lie above the prime ideal P are
unramified.

IsWildlyRamified(P)

Return whether the ramfication index of the prime ideal P is a multiple of the
characteristic of the residue field of P .

IsWildlyRamified(P, O)

Return whether any of the ideals of the order O which lie above the prime ideal P
are wildly ramified.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1147

42.12.7 Further Ideal Operations

I meet J

The intersection of the ideals I and J .

Gcd(I, J)

Given invertible ideals of an order O, returns the greatest common divisor of the
ideals I and J .

Lcm(I, J)

Given invertible ideals of an order O, returns the least common multiple of the ideals
I and J .

Factorization(I)

Factorisation(I)

Factorization of the ideal I (as sequence of prime ideal, exponent pairs). The order
must be maximal.

Decomposition(O, p)

A sequence containing all prime ideals of the order O lying above the prime element
or ideal p of the coefficient ring of O.

Decomposition(O)

A sequence containing all prime ideals of the ‘infinite’ maximal order O.

DecompositionType(O, p)

Sequence of tuples of residue degrees and ramification indices of the prime ideals of
the order O lying over p, a prime polynomial or ideal or element of valuation ring
of valuation 1.

DecompositionType(O)

Sequence of tuples of residue degrees and ramification indices of the prime ideals of
the ‘infinite’ maximal order O.

MultiplicatorRing(I)

Returns the multiplicator ring of the ideal I of the order O, that is, the subring of
elements of the field of fractions of O that multiply I into itself.

pMaximalOrder(O, p)

The p-maximal over order of the order O where p is a prime ideal of the coefficient
ring of O. See also the description in Section 42.2.3.

1148 GLOBAL ARITHMETIC FIELDS Part VII

pRadical(O, p)

Returns the p-radical of an order O for a prime ideal p of the coefficient ring of O,
defined as the ideal consisting of elements of O for which some power lies in the
ideal pO.

It is possible to call this function even if p is not prime. In this case the p-trace-
radical will be computed, i.e.

{x ∈ F | Tr(xO) ⊆ C}

for F the field of fractions of O and C the order of p (if p is an ideal) or the parent
of p otherwise. If p is square free and all divisors are larger than the field degree,
this is the intersection of the radicals for all l dividing p.

Valuation(a, P)

Valuation(I, P)

The valuation of a or the ideal I at the prime ideal P . The element a must be
coercible into the field of fractions of P ’s order.

Order(I)

The order of the ideal I.

Denominator(I)

The “smallest” element d of the coefficient ring of the order O of the ideal I such
that dI ⊆ O.

Minimum(I)

A generator m of the ideal R∩ dI where R is the coefficient ring of the ideal’s order
and d is the denominator of the ideal I (d is the second return value).

I meet R

The intersection of the ideal I with a coefficient ring R of its order.

IntegralSplit(I)

The integral ideal dI and d, where d is the denominator of the ideal I.

Norm(I)

The norm of the ideal I, as element of the coefficient field of the algebraic function
field to which I belongs.

TwoElement(I)

Given an ideal I with function field F as the function field of its order O, returns
two elements a, b ∈ F such that I = aO + bO.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1149

Generators(I)

Given a (fractional) ideal I of the order O, return a sequence of elements of the
function field F that generate I as an ideal.

Basis(I)

Basis(I, R)

A basis of the ideal I as a free module over the coefficient ring of its order, coerced
into the ring R if given.

BasisMatrix(I)

Let (b1, . . . , bn) be the basis of the ideal I and let (ω1, . . . , ωn) be the basis of the
order O. A matrix B with coefficients in the rational function field is returned such
that (b1, . . . , bn) = (ω1, . . . , ωn)Bt.

TransformationMatrix(I)

Let (b1, . . . , bn) be the basis of the ideal I and let (ω1, . . . , ωn) be the basis of the
order O. A matrix T with coefficients in the coefficient ring of O and a denominator
d are returned such that (b1, . . . , bn) = (ω1, . . . , ωn)T t/d.

CoefficientIdeals(I)

The coefficient ideals of the ideal I in a relative extension. These are the ideals
{Ai} of the coefficient ring of the order of I such that for every element e ∈ I,
e =

∑
i ai ∗ bi where {bi} is the basis returned for I and each ai ∈ Ai.

Different(I)

The different of the (possibly fractional) ideal I of an order of an algebraic function
field.

Codifferent(I)

The codifferent of the ideal I. This will be the inverse of the different of I if I is an
ideal of a maximal order.

Divisor(I)

The divisor corresponding to the ideal factorization of the ideal I.

Divisor(I, J)

The divisor corresponding to the ideal factorization of the ideals I and J belonging
to the ‘finite’ and ‘infinite’ maximal order.

1150 GLOBAL ARITHMETIC FIELDS Part VII

Example H42E31

> PR<x> := FunctionField(Rationals());

> P<y> := PolynomialRing(PR);

> FR1<a> := FunctionField(y^3 - x + 1/x^3);

> P<y> := PolynomialRing(FR1);

> FR2<c> := FunctionField(y^2 - a/x^3*y + 1);

> I := ideal<MaximalOrderFinite(FR2) |

> [x^9 + 1639*x^8 + 863249*x^7 + 148609981*x^6 + 404988066*x^5 + 567876948*x^4 +

> 468363837*x^3 + 242625823*x^2 + 68744019*x + 8052237, x^9 + 1639*x^8 +

> 863249*x^7 + 148609981*x^6 + 404988066*x^5 + 567876948*x^4 + 468363837*x^3 +

> 242625823*x^2 + 68744019*x + 8052237, (x^15 + 1639*x^14 + 863249*x^13 +

> 148609981*x^12 + 404988066*x^11 + 567876948*x^10 + 468363837*x^9 +

> 242625823*x^8 + 68744019*x^7 + 8052237*x^6)*c, (x^15 + 1639*x^14 +

> 863249*x^13 + 148609981*x^12 + 404988066*x^11 + 567876948*x^10 +

> 468363837*x^9 + 242625823*x^8 + 68744019*x^7 + 8052237*x^6)*c]>;

> I;

Ideal of Maximal Order of FR2 over Maximal Order of FR1 over Univariate

Polynomial Ring in x over Rational Field

Basis:

Pseudo-matrix over Maximal Order of FR1 over Univariate Polynomial Ring in x

over Rational Field

Ideal of Maximal Order of FR1 over Univariate Polynomial Ring in x over Rational

Field

Generator:

x^9 + 1639*x^8 + 863249*x^7 + 148609981*x^6 + 404988066*x^5 + 567876948*x^4 +

468363837*x^3 + 242625823*x^2 + 68744019*x + 8052237 * (1 0)

Fractional ideal of Maximal Order of FR1 over Univariate Polynomial Ring in x

over Rational Field

Generator:

(x^9 + 1639*x^8 + 863249*x^7 + 148609981*x^6 + 404988066*x^5 + 567876948*x^4 +

468363837*x^3 + 242625823*x^2 + 68744019*x + 8052237)/x^2 * (0 1)

> J := ideal<MaximalOrderFinite(FR2) |

> [x^3 + 278*x^2 + 164*x + 742, x^3 + 278*x^2 + 164*x + 742, (x^9 + 278*x^8 +

> 164*x^7 + 742*x^6)*c, (x^9 + 278*x^8 + 164*x^7 + 742*x^6)*c]>;

> J;

Ideal of Maximal Order of FR2 over Maximal Order of FR1 over Univariate

Polynomial Ring in x over Rational Field

Basis:

Pseudo-matrix over Maximal Order of FR1 over Univariate Polynomial Ring in x

over Rational Field

Ideal of Maximal Order of FR1 over Univariate Polynomial Ring in x over Rational

Field

Generator:

x^3 + 278*x^2 + 164*x + 742 * (1 0)

Fractional ideal of Maximal Order of FR1 over Univariate Polynomial Ring in x

over Rational Field

Generator:

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1151

(x^3 + 278*x^2 + 164*x + 742)/x^2 * (0 1)

> Generators(J);

[

x^3 + 278*x^2 + 164*x + 742,

x^3 + 278*x^2 + 164*x + 742,

(x^7 + 278*x^6 + 164*x^5 + 742*x^4)*c,

(x^7 + 278*x^6 + 164*x^5 + 742*x^4)*c

]

> TwoElement(J);

x^3 + 278*x^2 + 164*x + 742

((3/2*x^10 + 419*x^9 + 802*x^8 + 1441*x^7 + 1484*x^6)*a^2 + (3/2*x^8 + 417*x^7 +

246*x^6 + 1113*x^5)*a + (3/2*x^8 + 837/2*x^7 + 663*x^6 + 1359*x^5 +

1113*x^4))*c + (x^6 + 277*x^5 - 114*x^4 + 578*x^3 - 742*x^2)*a^2 + (3*x^5 +

834*x^4 + 492*x^3 + 2226*x^2)*a - x^3 - 278*x^2 - 164*x - 742

> Minimum(I);

Ideal of Maximal Order of FR1 over Univariate Polynomial Ring in x over Rational

Field

Generator:

x^9 + 1639*x^8 + 863249*x^7 + 148609981*x^6 + 404988066*x^5 + 567876948*x^4 +

468363837*x^3 + 242625823*x^2 + 68744019*x + 8052237 1

> Basis(J);

[1, x^6*c]

> Basis(I);

[1, x^6*c]

> I eq J;

false

> II, d := IntegralSplit(I);

> II;

Ideal of Maximal Order of FR2 over Maximal Order of FR1 over Univariate

Polynomial Ring in x over Rational Field

Basis:

Pseudo-matrix over Maximal Order of FR1 over Univariate Polynomial Ring in x

over Rational Field

Ideal of Maximal Order of FR1 over Univariate Polynomial Ring in x over Rational

Field

Generator:

x^9 + 1639*x^8 + 863249*x^7 + 148609981*x^6 + 404988066*x^5 + 567876948*x^4 +

468363837*x^3 + 242625823*x^2 + 68744019*x + 8052237 * (1 0)

Fractional ideal of Maximal Order of FR1 over Univariate Polynomial Ring in x

over Rational Field

Generator:

(x^9 + 1639*x^8 + 863249*x^7 + 148609981*x^6 + 404988066*x^5 + 567876948*x^4 +

468363837*x^3 + 242625823*x^2 + 68744019*x + 8052237)/x^2 * (0 1)

> d;

1

> IsIntegral(I);

true

> GCD(I, J)*LCM(I, J) eq I*J;

1152 GLOBAL ARITHMETIC FIELDS Part VII

true

42.12.7.1 Functions on Prime Ideals

RamificationIndex(I)

RamificationDegree(I)

The ramification index of the prime ideal I over the corresponding prime of its
coefficient ring.

Degree(I)

InertiaDegree(I)

ResidueClassDegree(I)

The residue class degree (inertia degree) of the prime ideal I over the corresponding
prime of its coefficient ring.

ResidueClassField(I)

The residue class field of the prime ideal I and the residue class mapping.

Place(I)

The place corresponding to the prime ideal I, where I is defined over the ‘finite’ or
‘infinite’ maximal order.

SafeUniformizer(P)

For an ideal I of a maximal order in a function field, this returns an element
which has valuation 1 at the given prime and which has valuation 0 at all other
primes lying over the same prime of the underlying rational function field. See also
LocalUniformizer (for places) below.

Example H42E32

> R<x> := FunctionField(GF(3));

> P<y> := PolynomialRing(R);

> f := y^4 + x*y + x^4 + x + 1;

> F<a> := FunctionField(f);

> O := MaximalOrderFinite(F);

> x*O;

Ideal of O

Generator:

x

> L := Factorization(x*O);

> L;

[<Ideal of O

Generators:

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1153

x

a^2 + a + 2, 1>, <Ideal of O

Generators:

x

a^2 + 2*a + 2, 1>]

> P1 := L[1][1];

> P2 := L[2][1];

> BasisMatrix(P1);

[x 0 0 0]

[0 x 0 0]

[2 1 1 0]

[1 1 0 1]

> P1 meet P2 eq x*O;

true

> IsPrime(P1);

true

> Place(P1);

(x, a^2 + a + 2)

42.13 Places

42.13.1 Creation of Structures

Places(F)

The set of places of the algebraic function field F/k.

42.13.2 Creation of Elements

42.13.2.1 General Function Field Places

Decomposition(F, P)

A sequence containing all places of F/k lying above the place P of the coefficient
field k(x) of F . The function field F must be a finite extension of k(x).

DecompositionType(F, P)

Sequence of tuples of residue degrees and ramification indices of the places of F/k
lying over the place P of the coefficient field k(x) of F . The function field F must
be a finite extension of k(x).

Zeros(a)

A sequence containing all zeros of the algebraic function a.

1154 GLOBAL ARITHMETIC FIELDS Part VII

Poles(a)

A sequence containing all poles of the algebraic function a.

S ! I

Place(I)

The place corresponding to the prime ideal I, where I is defined over the ‘finite’ or
‘infinite’ maximal order and S is the set of places of a function field.

Support(D)

Sequences containing the places and exponents occurring in the divisor D.

AssignNames(∼P, s)

Change the print name employed when displaying P to be the first element in the
sequence of strings s which must have length 1.

InfinitePlaces(F)

The infinite places of the function field F .

42.13.2.2 Global Function Field Places
F/k denotes a global function field in this section.

HasPlace(F, m)

Returns true and a place of degree m if and only if there exists such in the function
field F/k; false otherwise.

HasRandomPlace(F, m)

Returns true and a random place of degree m in the function field F/k or (false
if there are none).

RandomPlace(F, m)

Returns a random place of degree m in the function field F/k or throws an error if
there is none.

Places(F, m)

A sequence containing the places of degree m of the function field F/k.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1155

Example H42E33

Some creation of places is illustrated below.

> P<t> := PolynomialRing(Integers());

> N := NumberField(t^2 + 2);

> P<x> := PolynomialRing(N);

> P<y> := PolynomialRing(P);

> F<c> := FunctionField(y^4 + x^5 - N.1^7);

> F;

Algebraic function field defined over Univariate rational function field over N

by

y^4 + x^5 + 8*N.1

> Zeros(c);

[(x^5 + 8*N.1, c + x^5 + 8*N.1)]

> P<y> := PolynomialRing(F);

> F2<d> := FunctionField(y^2 + F!N.1);

> Decomposition(F2, $1[1]);

[(x^5 + 8*N.1, c + 2*x^5 + 16*N.1)]

> DecompositionType(F2, $2[1]);

[<2, 1>]

> Places(F2)!$3[1];

(x^5 + 8*N.1, c + 2*x^5 + 16*N.1)

42.13.3 Related Structures

42.13.3.1 Parent and Category
The sets of function field places form the Magma category PlcFun. The notional power
structure exists as parent but allows no operations.

FunctionField(S)

The corresponding function field of the set of places S.

DivisorGroup(F)

The group of divisors of the algebraic function field F/k, which is the free abelian
group generated by the elements of the set of places of F/k.

42.13.4 Structure Invariants

42.13.4.1 General function fields

WeierstrassPlaces(F)

SeparatingElement FldFunGElt Default :

The Weierstrass places of the function field F/k. The semantics of calling
WeierstrassPlaces() with F/k or the zero divisor of F/k are identical. See the
description of WeierstrassPlaces on page 1170.

1156 GLOBAL ARITHMETIC FIELDS Part VII

42.13.4.2 Global Function Fields
F/k denotes a global function field in this section.

NumberOfPlacesOfDegreeOneOverExactConstantField(F, m)

NumberOfPlacesOfDegreeOneECF(F, m)

The number of places of degree one in the constant field extension of degree m of
the function field F/k. Contrary to the Degree() function the degree is here taken
over the respective exact constant fields.

NumberOfPlacesOfDegreeOneOverExactConstantFieldBound(F, m)

NumberOfPlacesOfDegreeOneECFBound(F, m)

The minimum of the Serre and Ihara bound on the number of places of degree one
in the constant field extension of degree m of the function field F/k. Contrary to
the Degree() function the degree is here taken over the respective exact constant
fields.

NumberOfPlacesOfDegreeOverExactConstantField(F, m)

NumberOfPlacesDegECF(F, m)

The number of places of degree m of the function field F/k. Contrary to the
Degree() function the degree is here taken over the respective exact constant fields.

42.13.5 Structure Predicates

S1 eq S2 S1 ne S2

42.13.6 Element Operations

42.13.6.1 Parent and Category

Parent(P) Category(P)

42.13.6.2 Arithmetic Operators

- P

P1 + P2 P1 - P2 k * P P div k P mod k

Quotrem(P, k)

Returns divisors D1, D2 such that the place P = kD1 + D2 and the exponents in
D2 are of absolute value less than |k|. The operations div and mod yield D1 resp.
D2.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1157

42.13.6.3 Equality and Membership

P1 eq P2 P1 ne P2 P in S P notin S

42.13.6.4 Predicates on Elements

IsFinite(P)

Returns true if the place P is a ‘finite’ place.

IsWeierstrassPlace(P)

Whether the degree one place P is a Weierstraß place of its function field F . See
the description of WeierstrassPlaces on page 1170.

42.13.6.5 Other Element Operations

FunctionField(P)

The function field that corresponds to the place P .

Degree(P)

The degree of the place P over the constant field of definition k.

RamificationIndex(P)

RamificationDegree(P)

The ramification index of the place P over its subplace of the rational function field
k(x) (the function field of P must be a finite extension of k(x)).

InertiaDegree(P)

ResidueClassDegree(P)

The degree of inertia (or residue class degree) of a place P over the corresponding
subplace of the rational function field (the function field of P must be a finite
extension of k(x))

Minimum(P)

A monic prime polynomial in k[x] or 1/x or an ideal, corresponding to the place
of the coefficient field of the function field of the place P which P lies above (the
function field of P must be a finite extension of k(x)).

ResidueClassField(P)

The residue class field of the place P and the map from the order of the place into
the field.

Evaluate(a, P)

Evaluate the algebraic function a at the place P . If it is not defined at P , infinity
is returned.

1158 GLOBAL ARITHMETIC FIELDS Part VII

Lift(a, P)

Lift the element a of the residue class field of the place P (including infinity) to an
algebraic function.

TwoGenerators(P)

Two algebraic functions having the place P as their unique common zero.

LocalUniformizer(P)

UniformizingElement(P)

A local uniformizing parameter at the place P .

SafeUniformizer(P)

The valuation of the element a at the place P .

Ideal(P)

Create a prime ideal corresponding to the place P .

Norm(P)

The divisor of the norm of the ideal of the place P .

Example H42E34

> R<x> := FunctionField(GF(9));

> P<y> := PolynomialRing(R);

> f := y^4 + (2*x^5 + x^4 + 2*x^3 + x^2)*y^2 + x^8

> + 2*x^6 + x^5 +x^4 + x^3 + x^2;

> F<a> := FunctionField(f);

> Genus(F);

7

> NumberOfPlacesDegECF(F, 2);

28

> P := RandomPlace(F, 2);

> P;

(x^2 + $.1^2*x + $.1^7, a + $.1^5*x + $.1^5)

> LocalUniformizer(P);

x^2 + $.1^2*x + $.1^7

> TwoGenerators(P);

x^2 + $.1^2*x + $.1^7 a + $.1^5*x + $.1^5

> ResidueClassField(P);

Finite field of size 3^4

> Evaluate(1/LocalUniformizer(P), P);

Infinity

> Valuation(1/LocalUniformizer(P), P);

-1

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1159

42.13.7 Completion at Places

Completion(F, p)

Completion(O, p)

Precision RngIntElt Default : 20
The completion of the algebraic function field F or an order O of such at the place p
of F or the function field of O. The map from F or O into the series ring is returned
also.

The series ring returned is an infinite precision ring whose default precision for
elements is given by the Precision parameter.

42.14 Divisors

42.14.1 Creation of Structures

DivisorGroup(F)

Create the group of divisors of the algebraic function field F/k.

42.14.2 Creation of Elements

Divisor(P)

Div ! P

1 * P

Given a place P in a function field, return the prime divisor 1 ∗ P .

Div ! a

Divisor(a)

Given an algebraic function a, return the principal divisor (a).

Div ! I

Divisor(I)

The divisor corresponding to the factorization of the ideal I.

Divisor(I, J)

The divisor corresponding to the ideal factorization of the ideals I and J belonging
to the ‘finite’ and ‘infinite’ maximal order.

Identity(G)

Id(G)

Given the group G of divisors of a function field, return the zero divisor.

1160 GLOBAL ARITHMETIC FIELDS Part VII

CanonicalDivisor(F)

A canonical divisor of the function field F/k.

DifferentDivisor(F)

The different divisor of the underlying extension of the function field F/k(x).

AssignNames(∼D, s)

Change the print name employed when displaying D to be the contents of s which
must have length 1 in this case.

42.14.3 Related Structures

42.14.3.1 Parent and Category
The group of divisors form the Magma category DivFun. The notional power structure
exists as parent but allows no operations.

FunctionField(G)

Given the group G of divisors of a function field F/k, return F .

Places(F)

The set of places of the algebraic function field F/k.

42.14.4 Structure Invariants

NumberOfSmoothDivisors(n, m, P)

The number of effective divisors of degree less equal n who consist of places of degree
less equal m only. The sequence element P [i] contains the (generic) number of places
of degree 1 ≤ i ≤ min{n,m}. The formula used is described in [Heß99].

DivisorOfDegreeOne(F)

A divisor of degree one over the exact constant field of the global function field F/k.

42.14.5 Structure Predicates

Div1 eq Div2 Div1 ne Div2

42.14.6 Element Operations

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1161

42.14.6.1 Arithmetic Operators

- D

D1 + D2 D1 - D2 k * D D div k D mod k

P + D D + P D - P P - D

Quotrem(D, k)

Returns divisors D1, D2 such that the divisor D = kD1 +D2 and the exponents in
D2 are of absolute value less than |k|. The operations div and mod yield D1 resp.
D2.

GCD(D1, D2)

Gcd(D1, D2)

GreatestCommonDivisor(D1, D2)

The greatest common divisor of the divisors D1 and D2.

LCM(D1, D2)

Lcm(D1, D2)

LeastCommonMultiple(D1, D2)

The least common multiple of the divisors D1 and D2.

42.14.6.2 Equality, Comparison and Membership

D1 eq D2 D1 ne D2

D1 le D2 D1 lt D2 D1 ge D2 D1 gt D2

D in Div D notin Div

42.14.6.3 Predicates on Elements

IsZero(D)

IsEffective(D) IsPositive(D)

IsSpecial(D) IsPrincipal(D)

IsCanonical(D)

Returns true iff the divisor D is canonical and a differential having D as its divisor.

1162 GLOBAL ARITHMETIC FIELDS Part VII

Example H42E35

We show some simple creations and operations on divisors.

> PF<x> := PolynomialRing(GF(13, 2));

> P<y> := PolynomialRing(PF);

> FF1 := ext<FieldOfFractions(PF) | y^2 - x>;

> P<y> := PolynomialRing(FF1);

> FF2<d> := ext<FF1 | y^3 - b>;

> CanonicalDivisor(FF2);

Complementary divisor of Divisor in ideal representation:

Ideal of Maximal Equation Order of FF2 over Maximal Equation Order of FF1 over

Univariate Polynomial Ring in x over GF(13^2)

Generator:

1, Fractional ideal of Maximal Order of FF2 over Maximal Equation Order of FF1

over Valuation ring of Univariate rational function field over GF(13^2) with

generator 1/x

Generator:

x^2

> IsCanonical($1);

true

> D := Divisor(b) + Divisor(d);

> E := Divisor(Random(FF2, 2)*MaximalOrderFinite(FF2),

> Random(FF2, 2)*MaximalOrderInfinite(FF2));

> d := D + E;

> d;

Divisor in reduced representation:

Dtilde :

Divisor in ideal representation:

Fractional ideal of Maximal Equation Order of FF2 over Maximal Equation Order of

FF1 over Univariate Polynomial Ring in x over GF(13^2)

Basis:

Pseudo-matrix over Maximal Equation Order of FF1 over Univariate Polynomial Ring

in x over GF(13^2)

Ideal of Maximal Equation Order of FF1 over Univariate Polynomial Ring in x over

GF(13^2)

Generator:

1 * (1 0 0)

Ideal of Maximal Equation Order of FF1 over Univariate Polynomial Ring in x over

GF(13^2)

Generator:

1 * (0 1 0)

Fractional ideal of Maximal Equation Order of FF1 over Univariate Polynomial

Ring in x over GF(13^2)

Generators:

1

($.1^137*x^12 + $.1^80*x^11 + $.1^22*x^10 + $.1^79*x^9 + $.1^88*x^8 +

$.1^138*x^7 + $.1^130*x^6 + $.1^127*x^5 + $.1^163*x^4 + $.1^78*x^3 + 6*x^2 +

$.1^41*x + $.1^146)/(x^12 + $.1^166*x^11 + $.1^50*x^10 + $.1^136*x^9 +

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1163

$.1^32*x^8 + $.1^46*x^7 + $.1^134*x^6 + $.1^64*x^5 + 8*x^4 + $.1^93*x^3 +

$.1^153*x^2 + $.1^162*x)*b + ($.1^24*x + $.1^153)/(x^11 + $.1^166*x^10 +

$.1^50*x^9 + $.1^136*x^8 + $.1^32*x^7 + $.1^46*x^6 + $.1^134*x^5 +

$.1^64*x^4 + 8*x^3 + $.1^93*x^2 + $.1^153*x + $.1^162) * ($.1^161*x^11 +

$.1^74*x^10 + $.1^145*x^9 + $.1^72*x^8 + $.1^122*x^7 + $.1^123*x^6 + 3*x^5 +

$.1^133*x^4 + 2*x^3 + $.1^105*x^2 + $.1^102*x $.1^48*x^11 + $.1^82*x^10 +

4*x^9 + $.1^102*x^8 + $.1^145*x^7 + $.1^118*x^6 + $.1^129*x^5 + $.1^102*x^4

+ $.1^138*x^3 + $.1^146*x^2 + $.1^134*x 1) , Ideal of Maximal Order of FF2

over Maximal Equation Order of FF1 over Valuation ring of Univariate rational

function field over GF(13^2) with generator 1/x

Basis:

Pseudo-matrix over Maximal Equation Order of FF1 over Valuation ring of

Univariate rational function field over GF(13^2) with generator 1/x

Ideal of Maximal Equation Order of FF1 over Valuation ring of Univariate

rational function field over GF(13^2) with generator 1/x

Generator:

1/x^2 * (1 0 0)

Ideal of Maximal Equation Order of FF1 over Valuation ring of Univariate

rational function field over GF(13^2) with generator 1/x

Generators:

1/x^3

($.1^21*x^3 + $.1^86*x^2 + $.1^151*x + $.1^48)/x^6*b + $.1^79/x^3 * (0 1 0)

Ideal of Maximal Equation Order of FF1 over Valuation ring of Univariate

rational function field over GF(13^2) with generator 1/x

Generator:

1/x^3*b * (0 0 1) ,

r : 0,

A :

Divisor in ideal representation:

Ideal of Maximal Equation Order of FF2 over Maximal Equation Order of FF1 over

Univariate Polynomial Ring in x over GF(13^2)

Generator:

1, Fractional ideal of Maximal Order of FF2 over Maximal Equation Order of FF1

over Valuation ring of Univariate rational function field over GF(13^2) with

generator 1/x

Generators:

x

x,

a :

(x)^-1 * (b)

A nicer (but potentially more expensive) way to print, would be to ensure the divisor had a
representation as a linear combination of places and exponents.

> p, e := Support(d);

> d;

4*(x, (($.1^24*x + 9)*b + ($.1^133*x + $.1^117))*d^2 + (($.1^83*x + $.1^36)*b +

($.1^97*x + $.1^2))*d + ($.1^101*x + $.1^165)*b + $.1^108*x) + (x + $.1^102,

(($.1^141*x + $.1^113)*b + ($.1^157*x + $.1^48))*d^2 + (($.1^94*x + $.1^92)*b

1164 GLOBAL ARITHMETIC FIELDS Part VII

+ ($.1^167*x + $.1^79))*d + ($.1^36*x + $.1^85)*b + $.1^18*x + 6) + (x^2 +

$.1^47*x + 8, (($.1^19*x^3 + $.1^155*x^2 + $.1^75*x + $.1^106)*b + (8*x^3 +

$.1^131*x^2 + $.1^125*x + $.1^46))*d^2 + (($.1^86*x^3 + $.1^11*x^2 +

$.1^141)*b + ($.1^94*x^3 + $.1^127*x^2 + 6*x + $.1^57))*d + ($.1^68*x^3 +

$.1^82*x^2 + $.1^52*x + $.1^69)*b + $.1^95*x^3 + $.1^55*x^2 + $.1^30*x +

$.1) + (x^8 + $.1^138*x^7 + $.1^91*x^6 + $.1^59*x^5 + $.1^25*x^4 +

$.1^74*x^3 + 6*x^2 + $.1^153*x + 5, (($.1^86*x^10 + 12*x^9 + $.1^5*x^8 +

$.1^7*x^7 + $.1^123*x^6 + $.1^8*x^5 + $.1^77*x^4 + $.1^43*x^3 + $.1^110*x^2

+ $.1^124*x + $.1^51)*b + ($.1^78*x^9 + $.1^105*x^8 + $.1^153*x^7 + 6*x^6 +

$.1^142*x^5 + $.1^152*x^4 + $.1^54*x^3 + $.1^9*x^2 + $.1^43*x + $.1^37))*d^2

+ (($.1^63*x^10 + $.1^125*x^9 + $.1^156*x^8 + $.1^44*x^7 + $.1^27*x^6 +

$.1^127*x^5 + $.1^160*x^4 + $.1^46*x^3 + 9*x^2 + 8*x + $.1^37)*b +

($.1^99*x^10 + $.1^119*x^9 + $.1^103*x^8 + $.1^25*x^7 + $.1*x^6 +

$.1^114*x^5 + $.1^133*x^4 + $.1^34*x^3 + $.1^4*x^2 + $.1^40*x + $.1^71))*d +

($.1^86*x^10 + $.1^7*x^9 + $.1^142*x^8 + 4*x^7 + $.1^161*x^6 + 2*x^5 +

$.1^17*x^4 + $.1^50*x^3 + $.1^100*x^2 + $.1^144*x + $.1^12)*b + $.1^31*x^10

+ $.1^40*x^9 + 8*x^8 + 9*x^7 + $.1^39*x^6 + $.1^120*x^5 + $.1^114*x^4 +

$.1^116*x^3 + $.1^43*x^2 + $.1^103*x + $.1^93) - 15*(1/x, (($.1^114*x^2 +

$.1^96*x + 12)/x^3*b + ($.1^153*x^2 + 4*x + 12)/x^3)*d^2 + (($.1^17*x^2 +

$.1^124*x + 12)/x^3*b + ($.1^159*x^2 + $.1^124*x + 12)/x^3)*d + ($.1^159*x^2

+ 6*x + 12)/x^3*b + ($.1^21*x + 12)/x^2)

> g := GCD(D, E);

> l := LCM(D, E);

> g + l eq d;

true

> g le D;

true

> l ge E;

true

42.14.6.4 Other Element Operations

FunctionField(D)

Given a divisor D, return the function field.

Degree(D)

The degree of the divisor D over k, the constant field of definition.

Support(D)

A sequence containing the places occurring in the divisor D.

Numerator(D)

ZeroDivisor(D)

The numerator of the divisor D.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1165

Denominator(D)

PoleDivisor(D)

The denominator of the divisor D.

Ideals(D)

Create two ideals of the ‘finite’ and ‘infinite’ maximal order respectively correspond-
ing to the divisor D.

Norm(D)

The divisor of the norms of the ideals of the divisor D.

FiniteSplit(D)

FiniteDivisor(D)

InfiniteDivisor(D)

Split the divisor D into its finite and infinite part, returning either 2 divisors which
are the sum of the finite places in D and the sum of the infinite places in D or the
appropriate one of these.

Dimension(D)

The dimension of the Riemann-Roch space L(D) of the divisorD over k, the constant
field of definition.

IndexOfSpeciality(D)

The index of speciality of the divisor D, which equals the dimension of L(W −D)
where W is a canonical divisor.

ShortBasis(D :parameters)

Reduction BoolElt Default : true

Simplification MonStgElt Default : “Full”
Compute a basis for the Riemann-Roch space of D in short form:

Let F = k(x, y) be an algebraic function field defined by f(x, y) = 0 over k.
Given a divisor D of F/k this function returns a basis of the k-vector space

L(D) = {a ∈ F× | (a) ≥ −D} ∪ {0}

in the short form
B = [b1 . . . , bn], [d1, . . . , dn]

with bi ∈ F× and di ∈ Z for all 1 ≤ i ≤ n, where n denotes the degree in y of the
defining equation f of F , such that

L(D) =

{
n∑

i=1

λibi | λi ∈ k[x] with deg λi ≤ di for 1 ≤ i ≤ n

}
.

1166 GLOBAL ARITHMETIC FIELDS Part VII

The optional argument Reduction controls whether to use divisor reduction
internally or not; it defaults to true. For small divisors this is sometimes faster.

The optional argument Simplification controls whether the resulting basis is
simplified or not; it defaults to "Full". Simplification sometimes is not insignifi-
cantly expensive and can be avoided by setting the parameter to "None".

The algorithm is described in [Heß99].

Basis(D :parameters)

Reduction BoolElt Default : true

Simplification MonStgElt Default : “Full”

A sequence containing a basis of the Riemann-Roch space L(D), for the divisor D.
The optional argument Reduction controls whether to use divisor reduction

internally or not; it defaults to true. For small divisors this is sometimes faster.
The optional argument Simplification controls whether the resulting basis is

simplified or not; it defaults to "Full". Simplification sometimes is not insignifi-
cantly expensive and can be avoided by setting the parameter to "None".

RiemannRochSpace(D)

Given a function field F/k and a divisor D belonging to F/k, return a vector space V
and a k-linear mapping h : V −→ F such that V is isomorphic to the Riemann-Roch
space L(D) ⊂ F under h.

Valuation(D, P)

The exponent of the place P in the divisor D.

Reduction(D)

Reduction(D, A)

Let D be a divisor. Denote the result of both functions by D̃, r, A and a (for the
second function the input A always equals the output A). The divisor A has (must
have) positive degree and the following holds:

(i) D = D̃ + rA− (a),

(ii) D̃ ≥ 0 and deg(D̃) < g + deg(A) (over the exact constant field),

(iii) D̃ has minimal degree among all such divisors satisfying (i), (ii).

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1167

GapNumbers(D, P)

The sequence of gap numbers of the divisor D at P where P must be a place of
degree one:

Let F/k be an algebraic function field, D a divisor and P a place of degree one.
An integer m ≥ 1 is a gap number of D at P if dim

(
D+(m−1)P

)
= dim(D+mP)

holds. The gap numbersm ofD satisfy 1 ≤ m ≤ 2g−1−deg(D) and their cardinality
equals the index of speciality i(D). GapNumbers(D, P) returns such a particular
sequence. The sequences of gap numbers of D at various P are independent of
constant field extensions for perfect k and are the same for all but a finite number
of places P of degree one (consider e.g. k algebraically closed). If P is omitted in
the function call, this uniform sequence is returned by GapNumbers(D). The places
P where D has different sequences of gap numbers are called Weierstraß places of
D and are returned by WeierstrassPlaces(D). In the above mentioned functions
it is equivalent to replace D by either F or the zero divisor.

GapNumbers(D)

SeparatingElement FldFunGElt Default :

The sequence of global gap numbers of the divisor D. A separating element used in-
ternally for the computation can be specified, it defaults to SeparatingElement(F).
See the description of GapNumbers on page 1167.

Example H42E36

Consider the function field F defined by the curve of genus 7 defined by

y4 + (2 ∗ x5 + x4 + 2 ∗ x3 + x2) ∗ y2 + x8 + 2 ∗ x6 + x5 + x4 + x3 + x2

We construct the function field F/F9 and compute the Riemann-Roch space corresponding to a
certain divisor.

> k<w> := GF(9);

> R<x> := FunctionField(k);

> P<y> := PolynomialRing(R);

> f := y^4 + (2*x^5 + x^4 + 2*x^3 + x^2)*y^2 + x^8

> + 2*x^6 + x^5 +x^4 + x^3 + x^2;

> F<a> := FunctionField(f);

> Genus(F);

7

> P1 := RandomPlace(F, 1);

> P2 := RandomPlace(F, 1);

> D := P1 - P2;

> D;

(1/x, w^7/x^7*a^3 + w^5/x^5*a^2 + w^3/x^2*a + w) - (x, 2/(x^4 + x^2 + 2*x)*a^3 +

w^3/x*a^2 + (w^5*x^3 + w^3*x + w^7)/(x^3 + x + 2)*a + w^5)

> IsPrincipal(336*D);

true

> infty := Poles(F!x)[1];

1168 GLOBAL ARITHMETIC FIELDS Part VII

> V, h := RiemannRochSpace(11*infty);

> V;

KModule V of dimension 5 over GF(3^2)

> h;

Mapping from: ModFld: V to FldFun: F

> B := h(Basis(V));

> B;

[

x/(x^3 + x + 2)*a^3 + (2*x^4 + 2*x^3 + x)/(x^3 + x + 2)*a,

1/(x^3 + x + 2)*a^3 + (2*x^3 + 2*x^2 + 1)/(x^3 + x + 2)*a,

a^2 + 2*x^3 + 2*x^2,

1/x*a^2 + 2*x^2 + 2*x,

1

]

> (B[2] + 2*B[3])@@h;

(0 1 2 0 0)

Example H42E37

As a trivial but illustrative example we consider the algebraic function field generated by sin(x)
and cos(x) over Q and construct a single function a(x) such that sin(x) and cos(x) can be expressed
in terms of a(x):

> Qc<c> := PolynomialRing(RationalField());

> Qcs<s> := PolynomialRing(Qc);

> F<s> := FunctionField(s^2 + c^2 - 1);

> c := F!c;

> Genus(F);

0

> Zeros(s);

[(c - 1, s), (c + 1, s)]

> Zeros(c-1);

[(c - 1, s)]

> P := Zeros(c-1)[1];

> Degree(P);

1

> Dimension(1*P);

2

> Basis(1*P);

[1/(c - 1)*s, 1]

> a := Basis(1*P)[1];

> Degree(a);

1

> MinimalPolynomial(a);

$.1^2 + (c + 1)/(c - 1)

> (a^2 - 1)/(a^2 + 1);

c

> a * ((a^2 - 1)/(a^2 + 1) - 1);

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1169

s

Example H42E38

Over Q(i) the familiar identities

cos(x) = (exp(ix) + exp(−ix))/2

sin(x) = (exp(ix)− exp(−ix))/(2i).

hold. In Magma one can proceed as follows:

> Qx<x> := PolynomialRing(RationalField());

> k<i> := NumberField(x^2 + 1);

> kc<c> := PolynomialRing(k);

> kcs<s> := PolynomialRing(kc);

> F<s> := FunctionField(s^2 + c^2 - 1);

> c := F!c;

> Genus(F);

0

> e := c + i*s;

> ebar := c - i*s;

> Degree(e);

1

> c eq (e + ebar) / 2;

true

> s eq (e - ebar) / (2*i);

true

RamificationDivisor(D)

SeparatingElement FldFunGElt Default :

The ramification divisor of the divisor D (using SeparatingElement for the com-
putation which defaults to SeparatingElement(F) for F/k the function field of
D):

Let F/k be an algebraic function field, x a separating variable and D a divisor.
The ramification divisor of D is defined to be

i(D) (W −D) +
(
Wx(D)

)
+ ν (dx),

where W is a canonical divisor of F/k, Wx(D) is the determinant of the Wronksian
matrix of D with respect to x and ν is the sum of the Wronskian orders of D with
respect to x. It is effective and consists of the Weierstraß places of D. The constant
field k is required to be exact.

1170 GLOBAL ARITHMETIC FIELDS Part VII

WeierstrassPlaces(D)

SeparatingElement FldFunGElt Default :

The Weierstrass places of the divisor D (using SeparatingElement for the com-
putation which defaults to SeparatingElement(F) for F/k the function field of
D):

Let F/k be an algebraic function field, D a divisor and P a place of degree one.
An integer m ≥ 1 is a gap number of D at P if dim

(
D+(m−1)P

)
= dim(D+mP)

holds. The gap numbers m of D at P satisfy 1 ≤ m ≤ 2g − 1 − deg(D) and their
cardinality equals the index of speciality i(D). The sequences of gap numbers of D
are independent of constant field extensions for perfect k and are the same for all
but a finite number of places P of degree one (consider e.g. k algebraically closed).
The places P of degree one at which D has different sequences of gap numbers are
called Weierstraß places of D.

This function returns a list of all places of F/k (having not necessarily degree
one) which are lying below Weierstraß places of D viewed in F k̄/k̄ (k perfect). The
constant field k is required to be exact. Note that if the characteristic of F is positive
this function is currently quite slow for large genus because of Differentiation().

IsWeierstrassPlace(D, P)

Given a divisor D and a degree 1 place P of a function field, return whether P is a
weierstrass place of D.

WronskianOrders(D)

SeparatingElement FldFunGElt Default :

Let D be a divisor of an algebraic function field F/k with separating element x
and let v1, . . . vl be a basis of L(D). For the differentiation Dx with respect to
x consider the successively smallest ν1 ≤ . . . ≤ νl ∈ Z≥0 such that the rows
D

(νi)
x (v1), . . . , D

(νi)
x (vl), 1 ≤ i ≤ l are F -linearly independent. The numbers

ν1, . . . , νl are the Wronskian orders of D with respect to x and are returned. If
D has dimension zero, the empty list is returned. The constant field k is required
to be exact.

The separating element can be given by setting the SeparatingElement param-
eter appropriately.

ComplementaryDivisor(D)

Return the complementary divisor D# of the divisor D. The function field F/k of
D must be a finite extension of a rational function field k(x). The divisor D# equals
Diff(F/k(x))−D for F the function field of D and Diff(F/k(x)) the different divisor
of F/k(x).

DifferentialBasis(D)

A basis of the space of differentials of the divisor D. See DifferentialBasis on
page 1177 for details.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1171

DifferentialSpace(D)

A vector space and the isomorphism from this space to the differential space of the
divisor D.

Parametrization(F, D)

An element x in F which is a non constant element of the basis of the divisor D
having degree one and a sequence of elements L in the rational function field are
returned such that x generates the function field F over the constant field and L
contains the images of the generators of F over its constant field in the rational
function field.

42.14.7 Functions related to Divisor Class Groups of Global Function
Fields
Let F/k be a global function field. The group of divisor classes is isomorphic to the product
of a copy of Z and the group of divisors classes of degree zero which is a finite abelian
group. Magma features an algorithm to compute the divisor class group by computing
an abelian group G in the form Z/c1Z × . . . × Z/c2gZ × Z with integers c1| . . . |c2g and
a surjective homomorphism f : Div(F) → G from the divisor group to G whose kernel
consists precisely of the principal divisors.

The algorithm employed is a randomized index calculus style method of expected subex-
ponential running time for “small” constant field size and “large” genus. A description of
this and other algorithms of this section can be found in [Heß99].

Elements in product representation may result from applying the maps returned by
some of the computations below. It can be expensive to put these elements into sets and
to test them for equality.

ClassGroupGenerationBound(q, g)

A bound B such that the places of degree (over the exact constant field) less than
or equal to B, taken together with the places of a divisor of degree one, generate
the whole divisor class group of any global function field of genus g over the exact
constant field of q elements.

ClassGroupGenerationBound(F)

A bound B such that all places of degree (over the exact constant field) less than
or equal to B, taken together with the places of a divisor of degree one, generate
the whole divisor class group of the function field F . Particular properties of the
function field are taken into account.

ClassNumberApproximation(F, e)

An approximation of the class number of the global function field F/k with multi-
plicative error less than 1 + e for e > 0. The formula

∣∣∣∣ log
(
h / qg

)−
b∑

r=1

q−r/r
(
Nr − (qr + 1)

)∣∣∣∣ ≤ 2gq−b/2/
(
(q1/2 − 1)(b+ 1)

)

1172 GLOBAL ARITHMETIC FIELDS Part VII

is used where Nr denotes the number of places of degree one in the constant field
extension of degree r of F/k.

ClassNumberApproximationBound(q, g, e)

Returns an integer B such that all places of degree less than or equal to B of a
global function field of genus g over the exact constant field of q elements have to be
considered in order to approximate the class number with multiplicative error less
than 1 + e for e > 0.

ClassGroup(F :parameters)

DegreeBound RngIntElt Default :

SizeBound RngIntElt Default :

ReductionDivisor DivFunElt Default :

Proof BoolElt Default :

The divisor class group of the function field F/k as an abelian group, a map of
representatives from the class group to the divisor group and the homomorphism
from the divisor group onto the divisor class group.

The optional parameter DegreeBound allows to control the size of the factor
basis which consists of all places of degree less equal DegreeBound (plus a small
additional amount; the degree is taken over the exact constant field). If not provided
the algorithm tries to choose an appropriate value.

The optional parameter SizeBound bounds the size of the factor basis to not
exceed SizeBound places. Every time the factor basis has to be enlarged during
the computation it will be by no more than SizeBound additional places. If not
provided there is no bound on the size of the factor basis. Every enlargement of the
factor basis will append all places of the next degree.

The optional parameter ReductionDivisor contains the reduction divisor used
in the relation search stage. Reasonable choices are divisors of small positive degree.
If not provided the algorithm tries to choose an appropriate reduction divisor.

The optional parameter Proof indicates whether the computed result should be
proven in a proof step. If a small degree bound for the factor basis is used and
the divisor class group happens to be a product of a large number of cyclic groups
the proof step can be very time consuming and Proof := false might be helpful.
Once a value is given for Proof it remains the default value until set differently. The
initial value of Proof for every function field is true.

ClassGroupAbelianInvariants(F :parameters)

DegreeBound RngIntElt Default :

SizeBound RngIntElt Default :

ReductionDivisor DivFunElt Default :

Proof BoolElt Default :

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1173

Computes a sequence of integers containing the Abelian invariants of the divisor
class group of the function field F/k.

The optional parameters are the same as for ClassGroup.

ClassNumber(F)

The order of the group of divisor classes of degree zero of the function field F/k.

Example H42E39

Some class group calculations :

> Y<t> := PolynomialRing(Integers());

> R<x> := FunctionField(GF(9));

> P<y> := PolynomialRing(R);

> f := y^3 + y + x^5 + x + 1;

> F<alpha> := FunctionField(f);

> ClassNumberApproximation(F, 1.3);

24890.25505701632912193514

> ClassGroup(F);

Abelian Group isomorphic to Z/13 + Z/13 + Z/13 + Z/13 + Z

Defined on 5 generators

Relations:

13*$.1 = 0

13*$.2 = 0

13*$.3 = 0

13*$.4 = 0

Mapping from: Abelian Group isomorphic to Z/13 + Z/13 + Z/13 + Z/13 + Z

Defined on 5 generators

Relations:

13*$.1 = 0

13*$.2 = 0

13*$.3 = 0

13*$.4 = 0 to Divisor group of F

Mapping from: Divisor group of F to Abelian Group isomorphic to Z/13 + Z/13 +

Z/13 + Z/13 + Z

Defined on 5 generators

Relations:

13*$.1 = 0

13*$.2 = 0

13*$.3 = 0

13*$.4 = 0 given by a rule

> ClassNumber(F);

28561

> Evaluate(LPolynomial(F), 1);

28561

1174 GLOBAL ARITHMETIC FIELDS Part VII

GlobalUnitGroup(F)

The group of global units of the function field F/k, i. e. the multiplicative group of
the exact constant field, as an Abelian group, together with the map into F .

IsGlobalUnit(a)

Whether the function field element a is a global unit, i.e. a constant (equivalent to
IsConstant).

IsGlobalUnitWithPreimage(a)

Returns true and the preimage of the function field element a in the global unit
group, false otherwise.

PrincipalDivisorMap(F)

The map from the multiplicative group of the function field to the group of divisors.

ClassGroupExactSequence(F)

Returns the three maps in the center of the exact sequence

0 → k× → F× → Div → Cl→ 0

where k× is the global unit group of the function field, F× is the multiplicative group
of the function field, Div is the divisor group and Cl is the divisor class group.

SUnitGroup(S)

The group of S-units as an Abelian group and the map into the function field, where
S is a sequence of places of a function field.

IsSUnit(a, S)

Returns true if the function field element a is an S-unit for the sequence of places
S, false otherwise.

IsSUnitWithPreimage(a, S)

Returns true and the preimage of the function field element a in the S-unit group
if a is an S-unit for the sequence of places S, false otherwise.

SRegulator(S)

The S-Regulator for the sequence of places S.

SPrincipalDivisorMap(S)

The map from the multiplicative group of the function field to the group of divisors
(mod places in the sequence S).

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1175

IsSPrincipal(D, S)

Returns true and a generator if the divisor D is principal modulo places in the
sequence S, false otherwise

SClassGroup(S)

The S-class group for the sequence of places S as an Abelian group, a map of
representatives from the S-class group to the group of divisors (mod places in S)
and the homomorphism from the group of divisors (mod places in S) onto the S-class
group.

SClassGroupExactSequence(S)

Returns the three maps in the center of the exact sequence

0 → U(S) → F× → Div(S) → Cl(S) → 0

where U(S) is the S-unit group, F× is the multiplicative group of the function field,
Div(S) is the group of divisors (mod places in the sequence S) and Cl(S) is the
S-class group.

SClassGroupAbelianInvariants(S)

Computes a sequence of integers containing the Abelian invariants of the S-class
group for the sequence of places S.

SClassNumber(S)

The order of the torsion part of the S-class group for the sequence of places S.

ClassGroupPRank(F)

Compute the p-rank of the class group of F/k where p is the characteristic of F/k.
More precisely: Let F/k be a function field of characteristic p. Consider the sub-
group Cl0(F/k)[p] of p-torsion elements of the group of divisor classes of degree
zero. This function returns its dimension as an Fp-vector space. Possible values
range from 0 to g, where g is the genus of F/k. The field k is currently required to
be a finite field.

HasseWittInvariant(F)

Return the Hasse–Witt invariant of F/k. More precisely: Let F/k be a function field
of characteristic p. Let F k̄/k̄ be the constant field extension by the algebraic closure
k̄ of k within an algebraic closure F̄ of F/k. Consider the subgroup Cl0(F k̄/k̄)[p]
of p-torsion elements of the group of divisor classes of degree zero. This function
returns its dimension as an Fp-vector space. Possible values range from 0 to g,
where g is the genus of F/k. k is required to be perfect.

TateLichtenbaumPairing(D1, D2, m)

The Tate–Lichtenbaum pairing Cl0[m] × Cl0/mCl0 → k for coprime divisors D1
and D2.

1176 GLOBAL ARITHMETIC FIELDS Part VII

Example H42E40

> k<w> := GF(9);

> R<x> := FunctionField(k);

> P<y> := PolynomialRing(R);

> f := y^4 + (2*x^5 + x^4 + 2*x^3 + x^2)*y^2 +

> x^8 + 2*x^6 + x^5 + x^4 + x^3 + x^2;

> F<a> := FunctionField(f);

> D1 := Zeros(a)[1] - Poles(F!x)[1];

> D2 := Zeros(a)[4] - Poles(F!x)[2];

> G,mapfromG,maptoG:=ClassGroup(F : Proof:=false);

> Order(maptoG(D1));

48

> Order(maptoG(D2));

336

> TateLichtenbaumPairing(D1,D2,48);

w^7

> TateLichtenbaumPairing(D2,D1,336);

w^3

42.15 Differentials

Spaces of differentials of function fields can be created and the differentials belonging to
them manipulated. Divisors can be created from differentials and modules generated by a
collection of differentials can be formed.

42.15.1 Creation of Structures

DifferentialSpace(F)

The space of differentials of the algebraic function field F/k.

42.15.2 Creation of Elements
The simplest ways of creating a differential are given below.

Differential(a)

Create the differential d(a) of the function field or order element a.

Identity(D)

The identity differential of the space of differentials D.

IsCanonical(D)

Returns true iff the divisor D is canonical and a differential having D as its divisor.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1177

42.15.3 Related Structures

FunctionField(D)

The function field of the differentials in the space D.

FunctionField(d)

The function field of the differential d.

42.15.4 Subspaces

SpaceOfDifferentialsFirstKind(F)

SpaceOfHolomorphicDifferentials(F)

A vector space and the isomorphism from this space to the space of differentials of
the first kind (holomorphic differentials) of the function field F/k.

BasisOfDifferentialsFirstKind(F)

BasisOfHolomorphicDifferentials(F)

A basis of the space of differentials of the first kind (holomorphic differentials) of
the function field F/k.

DifferentialBasis(D)

Computes a basis for the space of differentials

Ω(D) := { ω ∈ Ω(F/k) | (ω) ≥ D }

for a divisor D of an algebraic function field F/k.

DifferentialSpace(D)

A vector space and the isomorphism from this space to the differential space of the
divisor D.

Example H42E41

This example illustrates the differential space of a divisor and some of the operations that can be
done with it.

> Q := Rationals();

> Qx<x> := PolynomialRing(Q);

> Qxy<y> := PolynomialRing(Qx);

> f1 := y^2 - (x-1)*(x-2)*(x-3)*(x-5)*(x-6);

> F := FunctionField(f1);

> d := Divisor(F.1) + Divisor(F!BaseRing(F).1);

> V1 := DifferentialSpace(d);

> d := 2*Divisor(F.1) - Divisor(F!BaseRing(F).1);

> V2 := DifferentialSpace(d);

> V1;

1178 GLOBAL ARITHMETIC FIELDS Part VII

KModule V1 of dimension 2 over Rational Field

> V2;

KModule V2 of dimension 2 over Rational Field

> V1 meet V2;

KModule of dimension 0 over Rational Field

> D := DifferentialSpace(F);

> v := V1 ! [2/9, 4/9]; v;

V1: (2/9 4/9)

> D!v;

(2/9*x^2 + 4/9*x) d(x)

> V1!$1;

V1: (2/9 4/9)

> BasisOfDifferentialsFirstKind(F);

[(x/(x^5 - 17*x^4 + 107*x^3 - 307*x^2 + 396*x - 180)*F.1) d(x), (1/(x^5 -

17*x^4 + 107*x^3 - 307*x^2 + 396*x - 180)*F.1) d(x)]

42.15.5 Structure Predicates

D1 eq D2

Return true if the spaces of differentials D1 and D2 are the same.

42.15.6 Operations on Elements
A number of general operations for elements are also provided for differentials as well as a
number of specific functions for differentials.

42.15.6.1 Arithmetic Operators

r * x

x * r

x + y

-x

x - y

x / y

x / r

The operations on differentials are inherited from the vector space structure of the
space of differentials. Additionally, this space is one–dimensional as a vector space
over the function field itself. The quotient x/y of two differentials x and y then gives
the unique r ∈ F such that x = ry.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1179

42.15.6.2 Equality and Membership

x eq y

Returns true if x and y are the same differential.

x in D

Returns true if x is in the space of differentials D.

42.15.6.3 Predicates on Elements

IsExact(d)

Return whether d is known to be an exact differential. If true additionally return
a generator. If d is not already known to be exact then no attempts to determine
whether d is exact or not are currently undertaken.

IsZero(d)

Return true if d is the zero differential.

42.15.6.4 Functions on Elements

Valuation(d, P)

The valuation of the differential d at the place P .

Divisor(d)

The divisor (d) of the differential d.

Residue(d, P)

The residue of the differential d at the place P , where P must (currently) have
degree one.

Example H42E42

> PF<x> := PolynomialRing(GF(31, 3));

> P<y> := PolynomialRing(PF);

> FF1 := ext<FieldOfFractions(PF) | y^2 - x>;

> P<y> := PolynomialRing(FF1);

> FF2<d> := ext<FF1 | y^3 - b : Check := false>;

> Differential(d);

(26/x*d) d(x)

> I := Random(FF2, 2)*MaximalOrderInfinite(FF2);

> P := Place(Factorization(I)[1][1]);

> Valuation(Differential(d), P);

-2

> IsExact(Differential(Random(FF2, 2)));

true

1180 GLOBAL ARITHMETIC FIELDS Part VII

Module(L, R)

IsBasis BoolElt Default : false

PreImages BoolElt Default : false

The R-module generated by the differentials in the sequence L as an abstract mod-
ule, together with the map into the space of differentials. The resulting modules
can be used for intersection and inner sum computations.

If the optional parameter IsBasis is set true the function assumes that the
given elements form a basis of the module to be computed.

If the optional parameter PreImages is set true then the preimages of the given
elements under the map are returned as the third return value.

Both optional parameters are mainly used to save computation time.

Relations(L, R)

Relations(L, R, m)

The module of R-linear relations between the differentials of the sequence L. The
argument m is used for the following: Let the elements of L be a1, . . . , an, V be the
relation module ⊆ Rn and define M := {∑m

i=1 viai | v = (vi)i ∈ V }. The function
tries to compute a generating system of V such that the corresponding generating
system of M consists of “small” elements.

Example H42E43

This example shows some of the conversions and operations possible with the results of Module.

> Q := Rationals();

> Qx<x> := PolynomialRing(Q);

> Qxy<y> := PolynomialRing(Qx);

> f1 := y^2 - (x-1)*(x-2)*(x-3)*(x-5)*(x-6);

> F := FunctionField(f1);

> D := DifferentialSpace(F);

> M7 := Module([Differential(3*F.1)], FieldOfFractions(Qx));

> M8 := Module([Differential(F.1), Differential(F!BaseRing(F).1)],

> FieldOfFractions(Qx));

> M12 := M7 meet M8;

> M16 := M7 + M8;

> assert M12 subset M7;

> assert M12 subset M8;

> assert M12 subset M16;

> r := M7![&+[Random([-100, 100])/Random([1, 100])*x^i : i in [1 .. 5]]/

> &+[Random([-100, 100])/Random([1,

> 100])*x^i : i in [1 .. 5]] : j in [1 .. Dimension(M7)]];

> assert M7!D!r eq r;

> r;

M7: ((1/100*x^4 + x^3 - x^2 + 1/100*x - 1/100)/(x^4 - 1/100*x^3 - 1/100*x^2 +

1/100*x - 1/100))

> D!r;

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1181

((3/40*x^8 + 162/25*x^7 - 20937/200*x^6 + 114873/200*x^5 - 279531/200*x^4 +

304167/200*x^3 - 24321/40*x^2 + 303/20*x - 297/50)/(x^9 - 1701/100*x^8 +

2679/25*x^7 - 30789/100*x^6 + 19891/50*x^5 - 3593/20*x^4 - 63/10*x^3 +

883/100*x^2 - 144/25*x + 9/5)*F.1) d(x)

Cartier(b)

Cartier(b, r)

The result of applying the Cartier operator r times to b. More precisely, let F/k
be a function field over the perfect field k, x ∈ F be a separating variable and
b = g dx ∈ Ω(F/k) with g ∈ F be a differential. The Cartier operator is defined by

C(b) =
(−dp−1g/dxp−1

)1/p
dx.

This function computes the r-th iterated application of C to b.

42.15.6.5 Other

CartierRepresentation(F)

CartierRepresentation(F, r)

Compute a row representation matrix of the Cartier operator on a basis of the space
of holomorphic differentials of F/k (applied r times). More precisely, let F/k be
a function field over the perfect field k, ω1, . . . , ωg ∈ Ω(F/k) be a basis for the
holomorphic differentials and r ∈ Z≥1. Let M = (λi,j)i,j ∈ kg×g be the matrix such
that

Cr(ωi) =
g∑

m=1

λi,mωm

for all 1 ≤ i ≤ g. This function returns M and (ω1, . . . , ωg).

Example H42E44

An example of a trivial cartier action.

> PF<x> := PolynomialRing(GF(31, 3));

> P<y> := PolynomialRing(PF);

> FF1 := ext<FieldOfFractions(PF) | y^2 - x>;

> P<y> := PolynomialRing(FF1);

> FF2<d> := ext<FF1 | y^3 - b : Check := false>;

> Cartier(Differential(d), 4);

(0) d(x)

> CartierRepresentation(FF2, 3);

Matrix with 0 rows and 0 columns

[]

1182 GLOBAL ARITHMETIC FIELDS Part VII

42.16 Weil Descent

Weil Descent is a technique that can be applied to cryptosystem attacks amongst other
things. The general idea is as follows. If C is a curve defined over field L and K is a
subfield of L, the group of points of the Jacobian of C, Jac(C), over L is isomorphic to
the group of points of a higher-dimensional abelian variety, the Weil restriction of Jac(C),
over K. If a curve D over K can be found along with an algebraic homomorphism defined
over K from Jac(D) to this Weil restriction, it is usually possible to transfer problems
about Jac(C)(L) (like discrete log problems) to Jac(D)(K). D will have larger genus
than C, but we have descended to a smaller field. The advantage is that techniques like
Index calculus, where the time complexity depends more strongly on the field size than
the genus, can now be applied.

An important special case is where C is an ordinary elliptic curve over a finite field
of characteristic 2. In this case, Artin-Schreier theory gives a very concrete algorithm for
computing a suitable D. This is the GHS attack (see [Gau00] or the chapter by F. Heß
in [Bla05]). There is a corresponding function WeilDescent in the Elliptic Curve chapter
that works with curves rather than function fields.

The functions below implement the GHS Weil Descent in a more general characteristic
p setting.

WeilDescent(E,k)

The main function. E must be an “Artin-Schreier” function field over finite field
K, an extension of k, of the following form. If p is the characteristic of K, then the
base field of E is a rational function field K(x) and E.1, the generator of E over
K(x) has minimal polynomial of the form yp − y = c/x + a + b ∗ x for a, b, c ∈ K.
These parameters must satisfy b, c 6= 0 and at least one of the following conditions
i) TraceK/k(b) 6= 0
ii) TraceK/k(c) 6= 0
iii) TraceK/Fp

(a) = 0
Then, if E1 is the Galois closure of the separable field extension E/k and [K : k] =

n, there is an extension of the Frobenius generator of G(K/k) to an automorphism
of E1 which fixes x and is also of order n. If F is the fixed field of this extension,
then it has exact constant field k and so it is the function field of a (geometrically
irreducible) curve over k. This is the WeilDescent curve. It’s algebraic function field
F is the first return value.

Note that when p = 2, E is the function field of an ordinary elliptic curve
in characteristic 2 (multiply the defining equation by x2 and take xy as the new y
variable) and conversely, any such elliptic curve can be put into this form in multiple
ways.

The second return value is a map from the divisors of E to the divisors of
F which represents the homomorphism Jac(Curve(E))(K) → Jac(Curve(F))(k).
This map, however does not attempt any divisor reduction. For the characteristic
2 WeilDescent function on elliptic curves mentioned in the introduction, if F is
hyperelliptic, the divisor map returned is the actual homomorphism from the elliptic

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1183

curve (with function field E) to the Jacobian of the hyperelliptic curve with function
field F . This may be more convenient for the user.

There are functions below that may be called to return the genus and other
attributes of F before actually going through with its construction.

One important special case, worth noting here, is that when p = 2 and b or c is
in k, then the degree of F is also 2 and so the descent curve is a hyperelliptic curve.

ArtinSchreierExtension(c,a,b)

A convenience function to generate the function field which is an extension of K(x)
by the (irreducible) polynomial yp− y− c/x− a− bx where K is a finite field which
is the parent of a, b, c and p is the characteristic of K.

WeilDescentDegree(E,k)

With E and k as in the main WeilDescent function, returns the degree of the
descended function field F over its rational base field k(x). The computation only
involves the Frobenius action on a, b, c and the descent isn’t actually performed.

WeilDescentGenus(E,k)

With E and k as in the main WeilDescent function, returns the genus of the
descended function field F over its rational base field k(x). The computation only
involves the Frobenius action on a, b, c and the descent isn’t actually performed.

MultiplyFrobenius(b,f,F)

This is a simple convenience function, useful for generating elements of K on which
the Frobenius has a given minimal polynomial when considered as an Fp-linear map
(see the example below).

The argument b should be an element of a ring R, f a polynomial over ring R0,
which is naturally a subring of R and F a map from R to itself.

If f = a0 + a1x + . . . then the function returns f(F)(b) which is a0 + a1F (b) +
a2F (F (b)) +

Example H42E45

We demonstrate with an example of descent over a degree 31 extension in characteristic 2, which
results in a genus 31 hyperelliptic function field, and a small characteristic 3 example.

> SetSeed(1);

> k<u> := GF(2^5);

> K<w> := GF(2^155);

> Embed(k, K);

> k2<t> := PolynomialRing(GF(2));

> h := (t^31-1) div (t^5 + t^2 + 1);

> frob := map< K -> K | x :-> x^#k >;

> b := MultiplyFrobenius(K.1,h,frob);

> E := ArtinSchreierExtension(K!1, K!0, b);

> WeilDescentGenus(E, k);

1184 GLOBAL ARITHMETIC FIELDS Part VII

31

> WeilDescentDegree(E,k);

2

> C,div_map := WeilDescent(E, k);

> C;

Algebraic function field defined over Univariate rational function field over

GF(2^5) by

y^2 + u*y + u^18/($.1^32 + u^29*$.1^16 + u^14*$.1^8 + u^2*$.1^4 + $.1^2 +

u^9*$.1 + u^5)

> // get the image of the place representing a K-rational point

> pl := Zeroes(E!(BaseField(E).1)-w)[1];

> D := div_map(pl);

> Degree(D); //31*32

992

> k := GF(3);

> K<w> := GF(3,4);

> a := w+1;

> c := w;

> b := c^3+c;

> E := ArtinSchreierExtension(c, a, b);

> WeilDescentDegree(E,k);

27

> WeilDescentGenus(E,k);

78

> C := WeilDescent(E, k);

> C;

Algebraic function field defined over Univariate rational function field over

GF(3) by

y^27 + 2*y^9 + y^3 + 2*y + (2*$.1^18 + 2*$.1^12 + 2*$.1^9 + 2)/($.1^9 + $.1^3 +

1)

42.17 Function Field Database

An optional database of function fields may be downloaded from the Magma website.
This section defines the interface to that database. Each database is associated to a given
finite field and extension degree. The supported combinations are:

F2: degrees 2, 3
F3: degree 2
F4: degrees 2, 3, 5
F5: degrees 2, 3, 4, 8
F7: degree 9
F11: degree 3
F13: degree 3

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1185

For each function field in the database, the following information is stored and may be
used to limit the function fields of interest via the sub constructor: The genus; the number
of degree one places; the class number; and the class group.

42.17.1 Creation

FunctionFieldDatabase(q, d)

Returns a database object for the function fields of degree d over Fq.

sub< D | : parameters >

Genus RngIntElt Default :

NumberOfDegreeOnePlaces

RngIntElt Default :

Returns a sub-database of D, restricting (or further restricting, if D is already a
sub-database of the full database) the contents to those function fields satisfying
the specified conditions. Note that it is not possible to “undo” restrictions with this
constructor — the results are always at least as limited as D is.

The parameter Genus may be used to restrict the search to fields with the spec-
ified genus.

The parameter NumberOfDegreeOnePlaces may be used to restrict the search to
only those fields with the specified number of places of degree one.

42.17.2 Access

BaseField(D)

CoefficientField(D)

Returns the finite field underlying each function field in the database.

Degree(D)

Returns the degree of each function field in the database.

#D

NumberOfFields(D)

Returns the number of function fields stored in the database.

FunctionFields(D)

Returns the sequence of function fields stored in the database.

1186 GLOBAL ARITHMETIC FIELDS Part VII

Example H42E46

The genus of a degree four function field is at most 6. We can see the distribution in a database
by counting the size of appropriate sub-databases:

> D := FunctionFieldDatabase(5, 4);

> #D;

196380

> [#sub<D |: Genus := g> : g in [0..6]];

[60, 480, 960, 12960, 35040, 63120, 83760]

42.18 Bibliography

[Bj94] Johannes A. Buchmann and Hendrik W. Lenstra jr. Approximating rings of
integers in number fields. J. Théor. Nombres Bordx., 6(2):221–260, 1994.

[Bla05] I. Blake, G. Serrousi and N. Smart, editor. Advances in Elliptic Curve
Cryptography, volume 317 of LMS LNS. Cambridge University Press, Cambridge, 2005.

[Bue04] D. Buell, editor. ANTS VI, volume 3076 of LNCS. Springer-Verlag, 2004.
[CHM98] John H. Conway, Alexander Hulpke, and John McKay. On transitive permu-

tation groups. LMS Journal of Computation and Mathematics, 1:1–8, 1998.
[FK12] C. Fieker and J. Klüners. Computational Galois Theory I: Invariants and

Computations over Q. submitted, http://arxiv.org/abs/1211.3588, 2012.
[Gau00] P. Gaudry, F. Heß and N. P. Smart. Constructive and destructive facets of

Weil descent on elliptic curves. J. Cryptology, 15(1):19–46, 2000.
[Gei03] Katharina Geißler. Berechnung von Galoisgruppen über Zahl- und Funktio-

nenkörpern. PhD Thesis, TU-Berlin, 2003. available at
URL:http://www.math.tu-berlin.de/˜kant/publications/diss/geissler.pdf.

[GK00] Katharina Geißler and Jürgen Klüners. The determination of Galois Groups.
J. Symbolic Comp., 30(6):653–674, 2000.

[Heß99] Florian Heß. Zur Divisorenklassengruppenberechnung in globalen Funktio-
nenkörpern. Dissertation, Technische Universität Berlin, 1999.
URL:http://www.math.tu-berlin.de/∼kant/publications/diss/diss FH.ps.gz.

[Heß04] Florian Heß. An algorithm for computing isomorphisms of algebraic function
fields. In Buell [Bue04], pages 263–271.

[Klü02] Jürgen Klüners. Algorithms for Function Fields. Exp. Math., (101):171–181,
2002.

[SM85] Leonhard H. Soicher and John McKay. Computing Galois Groups over the
rationals. J. Number Th., 20:273–281, 1985.

[Sta73] Richard P. Stauduhar. The determination of Galois Groups. Math. Comp.,
27:981–996, 1973.

Ch. 42 ALGEBRAIC FUNCTION FIELDS 1187

[Sti93] Henning Stichtenoth. Algebraic function fields and codes. Springer-Verlag,
Berlin, 1993.

[Sut] Nicole Sutherland. Computing Galois Groups of Polynomials (especially over
Function Fields of Prime Characteristic). in preparation.

[Sut12] Nicole Sutherland. Efficient Computation of Maximal Orders of Radical
(including Kummer) Extensions. Journal of Symbolic Computation, 47(5):552–567,
2012.

[Sut13] Nicole Sutherland. Efficient Computation of Maximal Orders of Artin–
Schreier Extensions. Journal of Symbolic Computation, 53(1):26–39, 2013.

[vHKN11] M. van Hoeij, J. Klüners, and A. Novocin. Generating Subfields. In Anton
Leykin, editor, Proceedings ISSAC 2011, 2011.

43 CLASS FIELD THEORY FOR
GLOBAL FUNCTION FIELDS

43.1 Ray Class Groups 1191

RayResidueRing(D) 1191
RayClassGroup(D) 1191
RayClassGroupDiscLog(y, D) 1192
RayClassGroupDiscLog(y, D) 1192

43.2 Creation of Class Fields . . . 1194

AbelianExtension(D, U) 1194
MaximalAbelianSubfield(K) 1194
HilbertClassField(K, p) 1194
FunctionField(A) 1195
MaximalOrderFinite(A) 1195
MaximalOrderInfinite(A) 1195

43.3 Properties of Class Fields . . 1196

Conductor(m) 1196
Conductor(m, U) 1197
Conductor(A) 1197
DiscriminantDivisor(m, U) 1197
DiscriminantDivisor(A) 1197
DegreeOfExactConstantField(m) 1197
DegreeOfExactConstantField(m, U) 1197
DegreeOfExactConstantField(A) 1197
Genus(m, U) 1197
Genus(A) 1197
DecompositionType(m, U, p) 1198
DecompositionType(A, p) 1198
NumberOfPlacesOfDegreeOne(m, U) 1198
NumberOfPlacesOfDegreeOne(A) 1198
Degree(A) 1198
BaseField(A) 1198
eq 1198
subset 1198
meet 1198
* 1198

43.4 The Ring of Witt Vectors of Fi-
nite Length 1199

WittRing(F, n) 1199
! 1199
BaseRing(W) 1199
BaseField(W) 1199
Length(W) 1199
Eltseq(a) 1199
Unity(W) 1199
Zero(W) 1199
. 1199
in eq - - + * ^ 1199
FrobeniusMap(W) 1200
FrobeniusImage(e) 1200
VerschiebungMap(W) 1200
VerschiebungImage(e) 1200

Random(W) 1200
Random(W, n) 1200
TeichmuellerSystem(R) 1200
LocalRing(W) 1200
ArtinSchreierMap(W) 1200
ArtinSchreierImage(e) 1200
FunctionField(e) 1201

43.5 The Ring of Twisted Polynomials1201

43.5.1 Creation of Twisted Polynomial
Rings 1201

TwistedPolynomials(R) 1201

43.5.2 Operations with the Ring of Twisted
Polynomials 1202

Unity(R) 1202
Zero(R) 1202
eq 1202
BaseRing(R) 1202
. 1202

43.5.3 Creation of Twisted Polynomials . 1202

AdditivePolynomialFromRoots(x, P) 1202
Random(F, n) 1203

43.5.4 Operations with Twisted Polynomi-
als 1204

+ - - * ^ 1204
eq IsZero 1204
LeadingCoefficient(F) 1204
ConstantCoefficient(F) 1204
Degree(F) 1204
Quotrem(F, G) 1204
GCD(F, G) 1204
BaseRing(F) 1204
Polynomial(G) 1204
SpecialEvaluate(F, x) 1205
SpecialEvaluate(F, x) 1205
Eltseq(F) 1205

43.6 Analytic Theory 1205

CarlitzModule(R, x) 1205
AnalyticDrinfeldModule(F, p) 1207
Extend(D, x, p) 1207
Exp(x,p) 1209
AnalyticModule(x, p) 1210
CanNormalize(F) 1210
CanSignNormalize(F) 1211
AlgebraicToAnalytic(F, p) 1211

43.7 Related Functions 1211

StrongApproximation(m, S) 1211
NonSpecialDivisor(m) 1212

1190 GLOBAL ARITHMETIC FIELDS Part VII

NormGroup(F) 1212
Sign(a, p) 1213
ChangeModel(F, p) 1213

43.8 Enumeration of Places 1213

PlaceEnumInit(K) 1213
PlaceEnumInit(P) 1213

PlaceEnumInit(K, Pos) 1213
PlaceEnumCopy(R) 1213
PlaceEnumPosition(R) 1214
PlaceEnumNext(R) 1214
PlaceEnumCurrent(R) 1214

43.9 Bibliography 1214

Chapter 43

CLASS FIELD THEORY FOR
GLOBAL FUNCTION FIELDS

Global function fields admit a class field theory in the same way as number fields do
(Chapter 39). From a computational point of view the main difference is the use of divisors
rather than ideals and the availability in general of analytical methods; see Section 43.6.

Class field theory deals with the abelian extensions of a given field. In the number field
case, all abelian extensions can be parameterized using more general class groups, in the
case of global function fields, the same will be achieved using the divisor class group and
extensions of it.

43.1 Ray Class Groups

The ray divisor class group Clm modulo a divisor m of a global function field K is defined
via the following exact sequence:

1 → k× → O×m → Clm → Cl → 1

where O∗m is the group of units in the “residue ring” mod m, k is the exact constant field
of K and Cl is the divisor class group of K. This follows the methods outlined in [HPP97].

RayResidueRing(D)

Let D =
∑
niPi be an effective divisor for some places Pi (so ni > 0). The ray

residue ring R is the product of the unit groups of the local rings:

R = O×m :=
∏

(OPi/P
ni

i)×

where OPi is the valuation ring of Pi.
The map returned as the second return value is from the ray residue ring R into

the function field and admits a pointwise inverse for the computation of discrete
logarithms.

RayClassGroup(D)

Let D be an effective (positive) divisor. The ray class group modulo D is a quotient
of the group of divisors that are coprime to D modulo certain principal divisors. It
may be computed using the exact sequence:

1 → k× → O×m → Clm → Cl → 1

1192 GLOBAL ARITHMETIC FIELDS Part VII

Note that in contrast to the number field case, the ray class group of a function
field is infinite.

The map returned as the second return value is the map from the ray class
group into the group of divisors and admits a pointwise inverse for the computation
of discrete logarithms.

Since this function uses the class group of the function field in an essential
way, it may be necessary for large examples to precompute the class group. Using
ClassGroup directly gives access to options that may be necessary for complicated
fields.

RayClassGroupDiscLog(y, D)

RayClassGroupDiscLog(y, D)

Return the discrete log of the place or divisor y in the ray class group modulo
the divisor D. This is a version of the pointwise inverse of the map returned by
RayClassGroup. The main difference is that using the intrinsics the values are
cached, ie. if the same place (or divisor) is decomposed twice, the second time will
be instantaneous.

A disadvantage is that in situations where a great number of discrete logarithms
is computed for pairwise different divisors, a great amount of memory is wasted.

Example H43E1

We will demonstrate the creation of some ray class and ray residue groups. First we have to create
a function field:

> k<w> := GF(4);

> kt<t> := PolynomialRing(k);

> ktx<x> := PolynomialRing(kt);

> K := FunctionField(x^3-w*t*x^2+x+t);

Now, to create some divisors:

> lp := Places(K, 2);

> D1 := 4*lp[2]+2*lp[6];

> D2 := &+Support(D1);

And now the groups:

> G1, mG1 := RayResidueRing(D1); G1;

Abelian Group isomorphic to Z/2 + Z/2 + Z/2 + Z/2 + Z/2 + Z/2 +

Z/2 + Z/4 + Z/60 + Z/60

Defined on 10 generators

Relations:

2*G1.1 = 0

2*G1.2 = 0

2*G1.3 = 0

2*G1.4 = 0

2*G1.5 = 0

2*G1.6 = 0

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1193

2*G1.7 = 0

4*G1.8 = 0

60*G1.9 = 0

60*G1.10 = 0

> G2, mG2 := RayResidueRing(D2); G2;

Abelian Group isomorphic to Z/15 + Z/15

Defined on 2 generators

Relations:

15*G2.1 = 0

15*G2.2 = 0

G1 = O×D1
should surject onto D2 = O×D2

since D2|D1:

> h := hom<G1 -> G2 | [G1.i@mG1@@mG2 : i in [1..Ngens(G1)]]>;

> Image(h) eq G2;

true

> [h(G1.i) : i in [1..Ngens(G1)]];

[

0,

0,

0,

0,

0,

0,

0,

0,

G2.2,

G2.1

]

Ray class groups are similar and can be mapped in the same way:

> R1, mR1 := RayClassGroup(D1);

> R2, mR2 := RayClassGroup(D2); R2;

Abelian Group isomorphic to Z/5 + Z/15 + Z

Defined on 3 generators

Relations:

5*R2.1 = 0

15*R2.2 = 0

> hR := hom<R1 -> R2 | [R1.i@mR1@@mR2 : i in [1..Ngens(R1)]]>;

> Image(hR);

Abelian Group isomorphic to Z/5 + Z/15 + Z

Defined on 3 generators in supergroup R2:

$.1 = R2.1

$.2 = R2.2

$.3 = R2.3

Relations:

5*$.1 = 0

15*$.2 = 0

> $1 eq R2;

1194 GLOBAL ARITHMETIC FIELDS Part VII

true

Note that the missing C3 part in comparing G2 and R2 corresponds to factoring by k×. The free
factor comes from the class group.
Now, let us investigate the defining exact sequence for R2:

> C, mC := ClassGroup(K);

> h1 := map<K -> G2 | x :-> (K!x)@@mG2>;

> h2 := hom<G2 -> R2 | [G2.i@mG2@@mR2 : i in [1..Ngens(G2)]]>;

> h3 := hom<R2 -> C | [R2.i@mR2@@mC : i in [1..Ngens(R2)]]>;

> sub<G2 | [h1(x) : x in k | x ne 0]> eq Kernel(h2);

> Image(h2) eq Kernel(h3);

> Image(h3) eq C;

So indeed, the exact sequence property holds.

43.2 Creation of Class Fields

Since the beginning of class field theory one of the core problems has been to find defining
equations for the fields. Although most of the original proofs are essentially constructive,
they rely on complicated and involved computations and thus were not suited for hand
computations.

The method used here to compute defining equations is essentially the same as the one
used for number fields. The main differences are due to the problem of p-extensions in
characteristic p where Artin-Schreier-Witt theory is used, and the fact that the divisor
class group is infinite.

AbelianExtension(D, U)

Given an effective divisor D and a subgroup U of the ray class group, (see
RayClassGroup), ClD of D such that the quotient ClD /U is finite, create the ex-
tension defined by this data. Note that, at this point, no defining equations are
computed.

MaximalAbelianSubfield(K)

For a relative extension K/k of global function fields, compute the maximal abelian
subfield K/A/k of K/k as an abelian extension of k. In particular, this function
compute the norm group of K/k as a subgroup of a suitable ray class group.

HilbertClassField(K, p)

For a global function field K and a place p of K, compute the (a) Hilbert class field
of K as an abelian extension of K. This field is characterised by being the maximal
abelian unramified extension of K where p is totally split.

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1195

FunctionField(A)

WithAut BoolElt Default : false

Verbose ClassField Maximum : 3
Given an abelian extension of function fields as created by AbelianExtension, com-
pute defining equations for the corresponding (ray) class field.

More precisely: Let Cl /U =
∏

Cl /Ui be a decomposition of the norm group of A
such that the Cl /Ui are cyclic of prime power order. Then for each Ui the function
will compute a defining equation, thus A is represented by the compositum.

If WithAut is true, the second sequence returned contains a generating automor-
phism for each of the fields returned as the first return value. If WithAut is false,
the first (and only) return value is a function field in non-simple representation.

MaximalOrderFinite(A)

MaximalOrderInfinite(A)

Compute a finite or an infinite maximal order of the function field of the abelian
extension A.

Example H43E2

First we have to create a function field, a divisor and a ray class group:

> k<w> := GF(4);

> kt<t> := PolynomialRing(k);

> ktx<x> := PolynomialRing(kt);

> K := FunctionField(x^3-w*t*x^2+x+t);

> lp := Places(K, 2);

> D := 4*lp[2]+2*lp[6];

> R, mR := RayClassGroup(D);

Let us compute the maximal extension of exponent 5 such that the infinite place is totally split.
This means that we

- have to create a subgroup of R containing the image of the infinite place

- compute the fifth power of R

- combine the two groups
and use this as input to the class field computation:

> inf := InfinitePlaces(K);

> U1 := sub<R | [x@@ mR : x in inf]>;

> U2 := sub<R | [5*R.i : i in [1..Ngens(R)]]>;

> U3 := sub<R | U1, U2>;

> A := AbelianExtension(D, U3);

> A;

Abelian extension of type [5]

Defined modulo 4*(t^2 + t + w, $.1 + w^2*t + 1) +

2*(t^2 + w^2*t + w^2, $.1 + w*t + w)

over Algebraic function field defined over

1196 GLOBAL ARITHMETIC FIELDS Part VII

Univariate rational function field over GF(2^2) by

x^3 + w*t*x^2 + x + t

> FunctionField(A);

Algebraic function field defined over K by

$.1^5 + (w*K.1^2 + (w*t + w^2)*K.1 + (w^2*t^2 + t

+ w^2))*$.1^3 + ((t^2 + 1)*K.1^2 + w*t*K.1 +

(w*t^4 + w))*$.1 + (t^3 + w*t^2 + w^2*t)*K.1^2

+ (w*t^4 + w^2*t^2 + w^2)*K.1 + t^4 + w^2*t^3

+ w^2*t + w

> E := $1;

> #InfinitePlaces(E);

10

Which shows that all the places in inf split completely.
Now, suppose we still want the infinite places to split, but now we are looking for degree 4
extensions such that the quotient of genus by number of rational places is maximal:

> q, mq := quo<R | U1>;

> l4 := [x‘subgroup : x in Subgroups(q : Quot := [4])];

> #l4;

768

> A := [AbelianExtension(D, x@@mq) : x in l4];

> s4 := [<Genus(a), NumberOfPlacesOfDegreeOne(a), a>

> : a in A];

> Maximum([x[2]/x[1] : x in s4]);

16/5 15

> E := FunctionField(s4[15][3]);

> l22 := [x‘subgroup : x in Subgroups(q : Quot := [2,2])];

> #l22;

43435

Since this is quite a lot, we won’t investigate them here further.

43.3 Properties of Class Fields

Let D be an effective divisor and U be a subgroup of the ray class group ClD. The
main existence theorem of class field theory asserts that there is exactly one function field
corresponding to the quotient ClD /U whose Galois group is isomorphic to ClD /U in a
canonical way.

Since the field is uniquely defined this way so are its invariants. Some of the invariants
can easily be read off the groups involved. Therfore none of the functions listed here will
compute a set of defining equations. They can therefore be used on very large fields.

Conductor(m)

Let m be an effective divisor. This function computes the conductor of Clm which
is the smallest divisor f such that the projection Clm → Clf is surjective.

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1197

Conductor(m, U)

Let m be an effective divisor and U be a subgroup of the ray class group of m. This
function computes the conductor of Clm /U which is the smallest divisor f such that
the projection π : Clm /U → Clf /π(U) is an isomorphism.

Conductor(A)

For an abelian extension A of global function fields, compute its conductor, ie. the
conductor of the norm group of A.

DiscriminantDivisor(m, U)

Let m be an effective divisor and U a subgroup of ray class group such that Clm /U
is finite. The discriminant divisor is defined as the norm of the different divisor.

DiscriminantDivisor(A)

For an abelian extension A of a global function field, compute its discriminant
divisor, ie. the norm of the different divisor. Note that the discriminant divisor can
be computed from the norm group, thus no defining equation is derived.

DegreeOfExactConstantField(m)

Let m be an effective divisor. Since the ray class field modulo m is always an infinite
field extension containing the algebraic closure of the constant field, this returns ∞.

DegreeOfExactConstantField(m, U)

Let m be an effective divisor and U be a subgroup of the ray class group, (see
RayClassGroup), modulo m. This function computes the degree of the algebraic
closure of the constant field in the class field corresponding to Clm /U . This can be
infinite.

DegreeOfExactConstantField(A)

The degree of the exact constant field of the abelian extension A of a global function
field. This is the degree of the algebraic closure of the constant field of the base field
of A in A. The degree of this field can be computed from the norm group, thus no
defining equation is derived.

Genus(m, U)

Let m be an effective divisor and U be a subgroup of the ray class group, (see
RayClassGroup), modulo m. This function computes the genus of the class field
corresponding to Clm /U .

Genus(A)

The genus of the abelian extension A of a global function field.

1198 GLOBAL ARITHMETIC FIELDS Part VII

DecompositionType(m, U, p)

Let m be an effective divisor and U be a subgroup of the ray class group, (see
RayClassGroup), modulo m such that the quotient Clm /U is finite. For a place p
this function will determine the decomposition type of the place in the extension
defined by Clm /U , i.e. it will return a sequence of pairs 〈f, e〉 containing the inertia
degree and ramification index for all places above p.

DecompositionType(A, p)

For an abelian extension A of a global function field k and a place p of k, compute
the degree and ramification index of all places P lying above p.

NumberOfPlacesOfDegreeOne(m, U)

Let m be an effective divisor and U be a subgroup of the ray class group, (see
RayClassGroup), modulo m such that the quotient Clm /U is finite. This function
will compute the number of places of degree 1 that the class field corresponding to
Clm /U has.

NumberOfPlacesOfDegreeOne(A)

For an abelian extension A of global function fields, compute the number of places
of A that are of degree one over the constant field of the base field of A.

Degree(A)

For an abelian extension A of global function fields, return the degree of A over its
base ring.

BaseField(A)

For an abelian extension A of global function fields, return the base field, ie, the
global field k over which A was created as an extension.

A eq B

For two abelian extensions of the same base field, decide if they describe the same
field, ie if the norm groups pulled back into a common over group, agree.

A subset B

For two abelian extensions of the same base field, test if the first is contained in the
second. This is done by comparing the norm groups in a common over group, thus
defining equations are not computed.

A meet B

Compute the intersection of two abelian extensions of the same base field as an
abelian extension.

A * B

Compute the compositum of two abelian extensions of the same base field as an
abelian extension. Since both fields are normal, the compositum is well defined and
can be computed from the norm groups alone.

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1199

43.4 The Ring of Witt Vectors of Finite Length

The ring of Witt vectors of length n (type RngWitt) over a global function field K
parametrizes the cyclic extensions of K of degree pn where p is the characteristic of K.
Witt vectors (type RngWittElt) can be defined over any ring with positive characteristic p.
The ring of Witt vectors of length n will always be of characteristic pn. In the case of Witt
vectors over finite fields, they can be seen as isomorphic to finite quotients of unramified
p-adic rings.

The functionality offered here is mainly motivated by the class field theory which deals
with vectors of short length only.

The Witt rings are based on code developed by David Kohel.

WittRing(F, n)

Creates the ring of Witt vectors of length n where F must be a field of positive
characteristic.

W ! a

Witt vectors of the Witt ring W can be constructed from a where a is
- an element of the same ring
- an integer
- an element of the base ring
- a sequence of length Length(W) whose universe can be changed to the base ring

of W .

BaseRing(W)

BaseField(W)

The field of coefficients of the Witt ring W .

Length(W)

The length (dimension) of the elements of the Witt ring W .

Eltseq(a)

The list of coefficients of the Witt vector a.

Unity(W)

Zero(W)

The one resp. zero in the Witt ring W .

W . 1

The first non-trivial basis element of the Witt ring.

x in W a eq b a - b - a a + b a * b a ^ n

1200 GLOBAL ARITHMETIC FIELDS Part VII

FrobeniusMap(W)

The Frobenius map on the Witt ring W which is defined to be the map sending
vectors to vectors where every coefficient is raised to the pth power.

FrobeniusImage(e)

Computes the image of the Witt vector e under the Frobenius map.

VerschiebungMap(W)

The verschiebungs map of the Witt ring W , i.e. shift all coefficients one position to
the right and pad with a zero in front.

VerschiebungImage(e)

Computes the image of the Witt vector e under the verschiebung map.

Random(W)

For finite Witt rings, i.e. Witt rings defined over finite fields, return a random
element.

Random(W, n)

For Witt rings where the base field admits a random function with size restriction
n.

TeichmuellerSystem(R)

A Techmüller system for the local ring R, ie. a system of representatives for the
residue class field of R that is closed under multiplication.

LocalRing(W)

Any ring W of Witt vectors of finite length over a finite field is isomorphic to some
unramified local ring. This intrinsic will create the corresponding local ring and the
embedding into it.

ArtinSchreierMap(W)

Returns the map x 7→ F (x)− x where F is the Frobenius map of the Witt ring W .

ArtinSchreierImage(e)

This function computes the image of the Witt vector e under the Artin-Schreier
map.

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1201

FunctionField(e)

WithAut BoolElt Default : true

Check BoolElt Default : false

Abs BoolElt Default : false

A Witt vector e = (e1, . . . , en) of length n over k where e1 is not in the image of the
Artin-Schreier map e1 6∈ {xp − x : x ∈ k} defines a cyclic extension K/k of degree
pn. This function will compute K.

If WithAut is true in addition to K it will compute a generating automorphism
and return it as second return value.

If Abs is true, the function will compute a K as a single step extension of k,
otherwise, K will be constructed as a series of n Artin-Schreier extensions.

If Check is true, it will be verified that the extension is of degree pn. In particular
the restrictions on e1 are tested.

43.5 The Ring of Twisted Polynomials
The ring of twisted polynomials plays a core role in the analytic side of class field theory of
global function fields. Twisted polynomials can be viewed as additive polynomials where
the multiplication is the composition of two polynomials. Alternatively, they are the ring
of polynomials in the Frobenius automorphism of the base field as indeterminate and
multiplication defined in terms of application of the corresponding endomorphism. Thus
Twisted polynomials have two natural polynomial representations:
- as (arbitrary) polynomials in F , the Frobenius automorphism

- as additive polynomials, ie. as polynomials where the only terms are T qi

.
In Magma the first representation is used (as the degrees are lower), but the second

can always be obtained by converting to a polynomial.
Since every endomorphism in positive characteristic can be represented by an additive

polynomial (or an additive power series), this section can also be viewed as making the
endomorphism ring accessible.

In Magma the ring of twisted polynomials is of type RngUPolTwst and individual
elements are of type RngUPolTwstElt. Twisted polynomial rings can be created over any
ring of characteristic p > 0. They are left euclidean and therefore left PIR.

43.5.1 Creation of Twisted Polynomial Rings

TwistedPolynomials(R)

q RngIntElt Default : false

Given a ring R of characteristic p > 0, create the ring of twisted polynomials over
R. If q is given it has to be a power of the characteristic p, it defaults to q := p. The
multiplication in this ring R < F > is defined by rF = Frq for all r ∈ R. Elements
if R < F > are represented as polynomials in F .

1202 GLOBAL ARITHMETIC FIELDS Part VII

43.5.2 Operations with the Ring of Twisted Polynomials

Unity(R)

For a ring R of twisted polynomials return the polynomial representing 1.

Zero(R)

For a ring R of twisted polynomials return the polynomial representing 0.

R eq S

For two rings of twisted polynomials R and S test if they are equal, that is if the
underlying polynomial ring is considered equal by Magma. Generically that means
to test if the base rings of R and S coincide.

BaseRing(R)

The coefficient ring of the ring R of twisted polynomials.

R . i

For a ring of twisted polynomials R and an integer i which should be 1, return the
transcendental element of R.

43.5.3 Creation of Twisted Polynomials
Apart from creation from polynomials directly, twisted polynomial can also be created by
specifying some finite Fq-vector space where the corresponding additive polynomial will
have its roots.

AdditivePolynomialFromRoots(x, P)

InfBound RngIntElt Default : 5
Map Map Default : id
Class DivFunElt Default : 0
Limit RngIntElt Default : ∞
Scale RngElt Default : false

An additive polynomial is characterized by the fact that its set of zeros forms an Fq

vector space. Conversely, given an Fp-vector space M in R there is essentially one
additive polynomial that has M as its set of roots. Given a place P and a ring ele-
ment x, this function computes the additive polynomial with roots L(InfBoundP),
evaluated at x, ie. the module M is a Riemann-Roch space. By choosing x to
be for example a transcendental element in a polynomial ring, the actual additive
polynomial can be computed. If the parameter Map is given, the elements of the
Riemann-Roch space are first mapped by this map before the polynomial is com-
puted, thus allowing the creation of polynomials over the completion of a function
field. If the parameter Limit is given, the polynomial is reduced modulo xLimit.
If Class is set to a non-zero divisor, instead of L(nP), the Riemann-Roch space
L(nP+Class) is used. If “tt Scale is set to a ring element that is either compatible
with elements of the Riemann-Roch space or with elements in the codomain of the
map, the module is scaled as well, thus allowing for normalization.

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1203

Random(F, n)

For F the ring of twisted polynomials over a finite ring (ie. a ring that supports
the generation of random elements, this function will return a polynomial of degree
n− 1 with randomly chosen coefficients.

Example H43E3

> Fq<w> := GF(4);

> k<t> := RationalFunctionField(Fq);

> R := TwistedPolynomials(k:q := 4);

> R![1,1];

T_4 + 1

> R![w*t, 1];

T_4 + w*t

> $2 * $1;

T_4^2 + (w*t^4 + 1)*T_4 + w*t

> $2 * $3;

T_4^2 + (w*t + 1)*T_4 + w*t

> p := Places(k, 1)[2];

> a := AdditivePolynomialFromRoots(PolynomialRing(k).1, p

> :InfBound := 2);

> a;

T_4^3 + ($.1^96 + $.1^84 + $.1^81 + $.1^72 + $.1^69 + $.1^66 + $.1^60

+ $.1^57 + $.1^54 + $.1^51 + $.1^48 + $.1^45 + $.1^42 + $.1^39 +

$.1^36 + $.1^30 + $.1^27 + $.1^24 + $.1^15 + $.1^12 + 1)/$.1^96*T_4^2

+ ($.1^96 + $.1^93 + $.1^90 + $.1^87 + $.1^72 + $.1^69 + $.1^66 +

$.1^63 + $.1^33 + $.1^30 + $.1^27 + $.1^24 + $.1^9 + $.1^6 + $.1^3 +

1)/$.1^108*T_4 + ($.1^90 + $.1^87 + $.1^84 + $.1^81 + $.1^78 + $.1^60

+ $.1^57 + $.1^54 + $.1^51 + $.1^48 + $.1^42 + $.1^39 + $.1^36 +

$.1^33 + $.1^30 + $.1^12 + $.1^9 + $.1^6 + $.1^3 + 1)/$.1^108

> R, mR := RiemannRochSpace(2*p);

> b := Polynomial(a);

> [Evaluate(b, mR(x)) eq 0 : x in R];

[true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true, true, true, true, true, true, true, true,

true, true, true, true, true, true, true, true, true]

> AdditivePolynomialFromRoots(PolynomialRing(k).1, p:InfBound := 2,

> Map := func<x|Expand(x, p:RelPrec := 100)>);

T_4^3 + ($.1^-96 + $.1^-84 + $.1^-81 + $.1^-72 + $.1^-69 + $.1^-66 +

$.1^-60 + $.1^-57 + $.1^-54 + $.1^-51 + $.1^-48 + $.1^-45 + $.1^-42 +

$.1^-39 + $.1^-36 + $.1^-30 + $.1^-27 + $.1^-24 + $.1^-15 + $.1^-12 +

1 + O($.1^4))*T_4^2 + ($.1^-108 + $.1^-105 + $.1^-102 + $.1^-99 +

$.1^-84 + $.1^-81 + $.1^-78 + $.1^-75 + $.1^-45 + $.1^-42 + $.1^-39 +

$.1^-36 + $.1^-21 + $.1^-18 + $.1^-15 + $.1^-12 + O($.1^-8))*T_4 +

1204 GLOBAL ARITHMETIC FIELDS Part VII

$.1^-108 + $.1^-105 + $.1^-102 + $.1^-99 + $.1^-96 + $.1^-78 + $.1^-75

+ $.1^-72 + $.1^-69 + $.1^-66 + $.1^-60 + $.1^-57 + $.1^-54 + $.1^-51

+ $.1^-48 + $.1^-30 + $.1^-27 + $.1^-24 + $.1^-21 + $.1^-18 +

O($.1^-8)

43.5.4 Operations with Twisted Polynomials

A + B A - B - A A * B A ^ n

A eq B IsZero(A)

LeadingCoefficient(F)

For a twisted polynomial F , return the leading coefficient as an element of the
coefficient ring.

ConstantCoefficient(F)

For a twisted polynomial F , return the constant coefficient as an element of the
coefficient ring.

Degree(F)

For a twisted polynomial F , return its degree. The degree of the underlying additive
polynomial is q times the degree of the twisted polynomial.

Quotrem(F, G)

For twisted polynomials F and G in the same ring, perform a right division with
remainder: This function computes Q and R such that F = Q ∗ G + R and the
degree of R is less than the degree of G. In general, unless the coefficient ring
is algebraically closed or perfect, there is no left quotient, so the ring of twisted
polynomials is a left-PID, but no right-PID.

GCD(F, G)

For twisted polynomials F and G in the same ring, compute the creates common
right divisor of F and G, ie a twisted polynomialH such that F = f1H and G = f2H
for some twisted polynomials f1 and f2 and such that H is monic of maximal degree.

BaseRing(F)

For a twisted polynomial F , return the coefficient ring of F , ie. the ring where all
the coefficients of F are from.

Polynomial(G)

For a twisted polynomial G, return the corresponding additive polynomial by re-
placing the transcendental element F by T q and in general F i by T qi

for i = 0, . . .,
degree of G.

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1205

SpecialEvaluate(F, x)

For a twisted polynomial F , return the result of the evaluation of the corresponding
additive polynomial at the point x.

SpecialEvaluate(F, x)

For a univariate polynomial F , return the evaluation of F at x. This function in
particular is optimized for sparse polynomials (for example additive polynomials)
and imprecise coefficients. In the general case, a call to Evaluate will be faster.

Eltseq(F)

For a twisted polynomial F , return a sequence containing its coefficients.

43.6 Analytic Theory
Probably the most significant difference between the class field theories for number fields
and function fields is the fact that function fields allow an analytic description of abelian
extensions in general where number fields (currently) only admit the analytical view for
extensions of the rationals (cyclotomic fields) and imaginary quadratic fields (CM-theory).

The analytic description is based on Drinfeld-modules of rank 1 (or in the case of the ra-
tional function field the Carlitz-module). Informally, a Drinfeld module is a representation
of some (infinite) maximal order of a function field into the ring of additive polynomials
over some appropriate ring containing the original field. Similar to CM-theory, abelian
extensions are then generated by adjoining torsion points under this action.

CarlitzModule(R, x)

For a rational function field k = Fq(t) and a polynomial f in k[t], compute the image
of f under the Carlitz module as an element in the ring of twisted polynomials R.
Specifically, the Carlitz module is the representation induced by sending t to F + t
where F is the transcendental element of R, the Frobenius of k. As Fq[t] is freely
generated by t, this defines a homomorphism (a representation) of Fq[t] into the
twisted polynomials over k.

Example H43E4

We demonstrate how the Carlitz-module can be used to define abelian extensions of the rational
function field.

> Fq<w> := GF(4);

> k<t> := RationalFunctionField(Fq);

> R<T> := TwistedPolynomials(k:q := 4);

Suppose we want to create the Ray-class field modulo p := t2 +t+w, ie we want to find an abelian
extension unramified outside p and the infinite place.

> p := t^2+t+w;

> P := CarlitzModule(R, p);

> F := Polynomial(P);

1206 GLOBAL ARITHMETIC FIELDS Part VII

> Factorisation(F);

[

<T, 1>,

<T^15 + (t^4 + t + 1)*T^3 + t^2 + t + w, 1>

]

> K := FunctionField($1[2][1]);

> a := Support(DifferentDivisor(K));

> a[1];

(t^2 + t + w, K.1)

> [IsFinite(x) : x in a];

[true, false, false, false, false, false]

> RamificationIndex(a[1]);

15

So, this shows that the field has the ramification bahaviour we wanted. However, the Carlitz-
module will give us more information: We will demonstrate that the automorphism group of K
is isomorphic to the unit group of Fq[t]/p under this module.

> q, mq := quo<Integers(k)|p>;

> au := func<X|Evaluate(Polynomial(CarlitzModule(R, X)), K.1)>;

> [<IsUnit(x), Evaluate(DefiningPolynomial(K), au(x@@mq)) eq 0>

> : x in q];

[<true, true>, <true, true>, <true, true>, <true, true>, <true,

true>, <true, true>, <true, true>, <true, true>, <true, true>, <true,

true>, <true, true>, <true, true>, <true, true>, <true, true>, <true,

true>, <false, false>]

Now we try to create the same field using the algebraic class field machinery:

> D, U := NormGroup(K);

> Conductor(D, U);

($.1^2 + $.1 + w) + (1/$.1)

So this also shows that K is ramified exactly at p and the infinite places and, since the multiplicity
is one, tamely ramified at both places.

> A := AbelianExtension(D, U);

> F := FunctionField(A);

> F;

Algebraic function field defined over Algebraic function field defined

over GF(2^2) by

$.2 + 1 by

$.1^3 + ($.1^2 + $.1 + w)^2

$.1^5 + w^2*$.1^3 + w*$.1 + (w^2*$.1^4 + w^2*$.1^2 + 1)/($.1^6 + $.1^5

+ w^2*$.1^4 + $.1^3 + $.1^2 + w^2*$.1 + 1)

> HasRoot(Polynomial(K, DefiningPolynomials(F)[1]));

true K.1^10 + (t^2 + t + w)*K.1^4 + (t^2 + t + w)*K.1

> HasRoot(Polynomial(K, DefiningPolynomials(F)[2]));

true w/(t^2 + t + w)*K.1^12 + (w*t^2 + w*t + 1)/(t^2 + t + w)*K.1^6 +

w*K.1^3

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1207

AnalyticDrinfeldModule(F, p)

For F a global function field and p a place, compute an algebraic description of “the”
Drinfeld modudule of rank 1 defined for the ring of functions integral outside p. More
precisely, let R be the ring of functions integral outside p, ie. functions havinf their
only poles at R. In Magma this is represented by changing the representation of
the function field so that p is the only infinite place. Then R becomes simply the
finite maximal order. Futhermore, let C be the completion of F at p and C̃ be
the closure of the algebraic closure of C, thus D will play the role of the complex
numbers in this theory, while C is closely related to the reals. By means of mapping
R to its image in D ⊂ C, we obtain a lattice Λ of rank 1. Related to this lattice are
certain exponential functions (analytic functions where the set of zeros is Λ). The
transformation behaviour of such functions can be used to define a map fromR to the
endomorphisms of C, represented as additive (twisted) polynomials. In particular,
under suitable normalisation, the lattice Λ as defined above, the transformation
behaviour can be realised over the Hilbert-class field of F . Since a Drinfeld module
is uniquely defined by specifying a single image of a non-constant element of R, this
function returns a non-constant (as first return value) and the image as a twisted
polynomial over the Hilbert-class field as a second. In case the place is of degree
one, the Drinfeld module will also be sign-normalized.

Extend(D, x, p)

Given D, the image of a non-constant element under a Drinfeld module for the ring
R of functions integral outside p, an element x in R, compute the image of x.

Example H43E5

Although the code is not restricted to genus 1 (or 2) and even though hyperelliptic function fields
can be handled in a more direct fashion, we will demonstrate the computation of a Drinfeld module
on an elliptic curve.
We begin by defining a curve.

> k<w> := GF(4);

> kt<t> := PolynomialRing(k);

> kty<y> := PolynomialRing(kt);

> F := FunctionField(y^3+w*t^5+w*t);

> Genus(F);

1

> ClassNumber(F);

3

Now, to define a Drinfeld module, we need to single out an “infinite” place:

> p := InfinitePlaces(F)[1];

> Degree(p);

1

Since the place p is of degree 1, our Drinfeld module will be sign-normalised.

> A, D := AnalyticDrinfeldModule(F, p);

1208 GLOBAL ARITHMETIC FIELDS Part VII

> H<h> := CoefficientRing(D);

> A;

w^2/(x + 1)*F.1

> D;

T_4^2 + ((w*x^5 + 1)/(x^5 + x)*$.1^2*h^2 + (w^2*x^5 + w^2*x^4 + w^2*x

+ 1)/(x^4 + x^3 + x^2 + x)*F.1^2*h + (x^4 + x^2 + w)/(x^2 +

1)*$.1^2)*T_4 + w^2/(x + 1)*F.1

So, the Drinfeld module is uniquely determined by the image of a single non-constant (A) which
is chosen to have maximal valuation at p and sign 1.

The values of the Drinfeld module are defined over H which is the Hilbert-class field of F , ie. the
maximal abelian unramified extension where p is completely split.

> Sign(A, p);

1

> Valuation(A, p);

-2

To compute the value of “the” Drinfeld module of a different element we use Extend:

> b := F!t;

> Extend(D, b, p);

w*T_4^3 + ((w*x^20 + w*x^19 + w*x^18 + w*x^17 + w*x^16 + w*x^15 +

w*x^14 + w*x^13 + w*x^12 + w*x^11 + w*x^10 + w*x^9 + w*x^8 + w*x^7 +

w*x^6 + w*x^5 + w*x^4 + w*x^3 + w*x^2 + w*x + w)/(x^4 + x^3 + x^2 +

x)*$.1^2*h^2 + (w^2*x^20 + w^2*x^19 + w^2*x^16 + w^2*x^15 + w^2*x^4 +

w^2*x^3 + w^2)/(x^3 + x^2 + x + 1)*$.1^2*h + (x^20 + x^18 + x^12 +

x^10 + w*x^4 + w*x^2 + w^2)/(x^2 + 1)*$.1^2)*T_4^2 + ((w*x^5 + w^2*x^3

+ w^2*x^2 + x + w)/(x^2 + 1)*$.1*h^2 + (w^2*x^5 + w^2*x^4 + x^3 +

w)/(x + 1)*$.1*h + (x^5 + w^2*x^3 + w*x^2 + w^2*x)*$.1)*T_4 + x

To compute a “Ray-class field” from here we can use the following:

> P := Places(F, 2)[1];

> a,b := TwoGenerators(P);

> GCD(Extend(D, a, p), Extend(D, b, p));

T_4^2 + ((w*x^5 + 1)/(x^5 + x)*$.1^2*h^2 + (w^2*x^5 + w^2*x^4 + w^2*x

+ 1)/(x^4 + x^3 + x^2 + x)*$.1^2*h + (x^4 + x^2 + w)/(x^2 +

1)*$.1^2)*T_4 + w^2/(x + 1)*$.1 + w^2

> Polynomial($1);

T_4^16 + ((w*x^5 + 1)/(x^5 + x)*F.1^2*h^2 + (w^2*x^5 + w^2*x^4 + w^2*x

+ 1)/(x^4 + x^3 + x^2 + x)*F.1^2*h + (x^4 + x^2 + w)/(x^2 +

1)*F.1^2)*T_4^4 + (w^2/(x + 1)*F.1 + w^2)*T_4

> R := FunctionField($1 div Parent($1).1);

> R;

Algebraic function field defined over H by

T_4^15 + ((w*x^5 + 1)/(x^5 + x)*F.1^2*h^2 + (w^2*x^5 + w^2*x^4 + w^2*x

+ 1)/(x^4 + x^3 + x^2 + x)*F.1^2*h + (x^4 + x^2 + w)/(x^2 +

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1209

1)*F.1^2)*T_4^3 + w^2/(x + 1)*F.1 + w^2

This should be an abelian extension over F , ramified only at p and P . So let’s try to verify that:

> f := MinimalPolynomial(R.1, F);

> Degree(f);

45

> Ra := FunctionField(f:Check := false);

> NormGroup(Ra:Cond := 1*p+P);

(1/x, 1/x^2*F.1) + (x^2 + x + w^2, F.1 + x + 1)

Abelian Group isomorphic to Z

Defined on 1 generator in supergroup:

$.1 = 2*$.1 + 3*$.2 + $.3 (free)

> D, sub_group := $1;

> W := AbelianExtension(D, sub_group);

> W;

Abelian extension of type [3, 15]

Defined modulo (1/x, 1/x^2*$.1) + (x^2 + x + w^2, $.1 + x + 1)

over Algebraic function field defined over Univariate rational

function field over GF(2^2) by

y^3 + w*t^5 + w*t

> FunctionField(W);

Algebraic function field defined over F by

$.1^3 + (x + 1)^-2 * (x^2 + x + w^2)^-1 * (F.1 + w*x + w) * (F.1 +

w^2*x + w^2)

$.1^3 + (x) * (x + 1)^-4 * (F.1 + x + 1)^2 * (x^2 + x + w^2)^-1 * (F.1

+ w*x + w) * (F.1 + w^2*x + w^2)

$.1^5 + (1/(x^2 + 1)*F.1^2 + w^2/(x + 1)*F.1 + (x^2 + x + 1))*$.1^3 +

(w/(x^2 + 1)*F.1^2 + w*x*F.1 + (x^4 + x^2 + 1))*$.1 + (x^2 + x +

1)/(x^2 + 1)*F.1^2 + w^2*x*F.1 + x^4 + w^2*x^2 + w*x + w^2

> WW := $1;

> [HasRoot(Polynomial(Ra, x)) : x in DefiningPolynomials(WW)];

[true, true, true]

Exp(x,p)

InfBound RngIntElt Default : 5
Map Map Default : id
Class DivFunElt Default : 0
Limit RngIntElt Default : ∞
Scale RngElt Default : false

In Drinfeld’s theory of elliptic modules, one associates an exponential function to a
lattice. The transformation of this function under scaling of the lattice gives then
rise to the “Drinfeld-module”. This function computes an approximation to the
exponential of the “standard-lattice”. More precisely: let R be the ring of functions
integral outside the place p and let C be the completion of the function field at p.

1210 GLOBAL ARITHMETIC FIELDS Part VII

Considered as a subset of C, R is a 1-dimensional lattice Λ in Drinfelds sense. The
exponential associated to this lattice is the function

exp : z → z

′∏
(1− z/l)

where the product is taken over all non-zero lattice points l. This function can be
seen to be an additive analytic function.

For n > 0, let now L(np) be the Riemann-Roch spaces and

fn : z → z

′∏
(1− z/l)

(the product is over the non-zero elements of L(np)). It can be seen that fn → exp
as n→∞. This intrinsic computes fn for n equal the value of InfBound. If Limit
is given then the twised polynomial representing fn is truncated at that term. If
Class is given and contains the divisor d, then instead of L(np) we use L(np + d)
which will approximate a (in general) non-isomorphic exponential coming from the
lattice from the ideal representing the finite part of d.

If Map is given, then the map is applied to each element in L(np) first, thus
allowing to compute analytic approximations instead of alegebraic ones. Addition-
ally, if Scale is given, the elements of L(np) are multiplied by this value before the
functions are formed, corresponding to a scaling of the lattice.

The exponential is evaluated at x, the first argument. Typically, x will be the
transcendental element of a polynomial ring, a twisted polynomial ring or a power
series ring.

AnalyticModule(x, p)

InfBound RngIntElt Default : 5
Map Map Default : id
Class DivFunElt Default : 0
Limit RngIntElt Default : ∞
Scale RngElt Default : false

Let Λ be the lattice as described for Exp above. By Drinfeld’s theory, the exponential
functions of Λ and xΛ are related through some polynomial. This function computed
the polynomial for x, which is “the” image of x under the Drinfeld module defined
by Λ. The use of the parameters is as for Exp above.

CanNormalize(F)

Let F be a twisted polynomial, typically over a completion. This function tries to
conjugate F so that the coefficients are integral with small valuations. On success,
true, the new polynomial and the element used to normalise F is returned.

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1211

CanSignNormalize(F)

Let F be a twisted polynomial, typically over a completion. This function tries to
conjugate F so that the highest coefficient is an element in the residue class field. On
success, true, the new polynomial and the element used to normalise F is returned.

AlgebraicToAnalytic(F, p)

Given a non-trivial image F under a Drinfeld module with the “infinite place” p,
compute a basis for a submodule of the lattice underlying F . The parameter RelPrec
is used to limit the number of coefficients of the exponential that are reconstructed,
thus it also limits the dimenstion of the submodule.

43.7 Related Functions

This section list some related functions that are either useful in the context of class fields
for function fields or are necessary for their computation. They will most certainly change
their appearance.

StrongApproximation(m, S)

Strict BoolElt Default : false

Exception DivFunElt Default : false

Raw BoolElt Default : false

Given an effective divisorm and a sequence S of pairs (Qi, ei) of places and elements,
find an element a and a place Q0 such that

vQi(a− ei) ≥ vQi(m),

and a is integral everywhere outside Qi (0 ≤ i ≤ n).
If Exception is not false, it has to be a place that will be used for Q0.
If Strict is true, the element a will be chosen such

vQi(a− ei) = vQi(m)

If Raw is true, different rather technical return values are computed that are
used internally.

Example H43E6

We first have to define a function field and some places:

> k<w> := GF(4);

> kt<t> := PolynomialRing(k);

> ktx<x> := PolynomialRing(kt);

> K := FunctionField(x^3-w*t*x^2+x+t);

1212 GLOBAL ARITHMETIC FIELDS Part VII

> lp := Places(K, 2);

We will now try to find an element x in K such that vpi(x− ei) ≥ mi for pi =lp[i], mi = i and
random elements ei:

> e := [Random(K, 3) : i in lp];

> m := [i : i in [1..#lp]];

> D := &+ [m[i]*lp[i] : i in [1..#lp]];

> x := StrongApproximation(D, [<lp[i], e[i]> : i in [1..#lp]]);

> [Valuation(x-e[i], lp[i]) : i in [1..#lp]];

[1, 2, 3, 4, 5, 6]

Note, that we only required ≥ for the valuations, to enforce = we would need to pass the Strict

option. This will double the running time.

NonSpecialDivisor(m)

Exception DivFunElt Default :

Given an effective divisor m, find a place P coprime to m and an integer r ≥ 0 such
that rP −m is a non special divisor and return r and P .

If Exception is specified, it must be an effective divisor n coprime to m. In this
case the function finds r > 0 such that rn−m is non special and returns r and n.

NormGroup(F)

Cond DivFunElt Default :

AS RngWittElt Default :

Extra RngIntElt Default : 5
Given a global function field, try to compute its norm group. The norm group is
defined to be the group generated by norms of unramified divisors. This group can
be related to a subgroup of some ray class group.

Provided F is abelian, this function will compute a divisor m and a sub group
U of the ray class group modulo m such that F is isomorphic to the ray class field
thus defined.

This function uses a heuristic algorithm. It will terminate after the size of the
quotient by the norm group is less or equal than the degree for Extra many places.

If Cond is given, it must be an effective divisor that will be used as the potential
conductor of F . Note: if Cond is too small, ie. a proper divisor of the true conductor,
the result of this function will be wrong. However, if the conductor is not passed
in, the discriminant divisor is used as a starting point. As this is in general far too
large, the function will be much quicker if a better (smaller) starting point is passed
in.

If AS is given, it must be a Witt vector e of appropriate length and F should
be the corresponding function field. This allows a much better initial guess for the
conductor than using the discriminant.

Ch. 43 CLASS FIELD THEORY FOR GLOBAL FUNCTION FIELDS 1213

Sign(a, p)

Given a function a in some global function field and a place p such that a is integral
at p (has non-negative valuation) return the sign of a, ie. the first non-zero coefficient
if the expansion of a at p. The sign function is not unique. Magma choses a sign
function when creating the residue class field map.

ChangeModel(F, p)

Given a global function field F and a place p, return a new function field G that is
Fq-isomorphic to F and has p as the only infinite place.

43.8 Enumeration of Places

In several situations one needs to loop over the places of a function field until either the one
finds a place with special properties or until they generate a certain group. The functions
listed here support this.

PlaceEnumInit(K)

Coprime Any Default :

All BoolElt Default : false

Initialises an enumeration process for places of the function field K. The enumera-
tion process will loop over all irreducible polynomials of the underlying finite field
and for each polynomial over all primes lying above it.

If Coprime is given, it should be either a set of places that should be ignored in
the process or a divisor. In case a divisor is passed in only places coprime to the
divisor will be returned.

If All is false, the infinite places won’t be considered.

PlaceEnumInit(P)

Coprime Any Default :

Constructs an enumeration process for places starting at the place P .
If Coprime is given, it should be either a set of places that should be ignored in

the process or a divisor. In case a divisor is passed in only places coprime to the
divisor will be returned.

PlaceEnumInit(K, Pos)

Coprime Any Default :

Constructs an enumeration environment that starts at the place of the function field
K indexed by Pos as returned from PlaceEnumPosition.

PlaceEnumCopy(R)

Copies the environment and the current state of the enumeration process for places
R.

1214 GLOBAL ARITHMETIC FIELDS Part VII

PlaceEnumPosition(R)

Returns a list of integers that acts as an index to the places as enumerated by the
environment R.

PlaceEnumNext(R)

Returns the “next” place of the process R.

PlaceEnumCurrent(R)

Returns the current place pointed to by the environment R, i.e. the last place
returned by PlaceEnumNext.

43.9 Bibliography
[HPP97] Florian Heß, Sebastian Pauli, and Michael E. Pohst. On the computation of

the multiplicative group of residue class rings. Math. Comp., 1997.

44 ARTIN REPRESENTATIONS
44.1 Overview 1217

44.2 Constructing Artin Representa-
tions 1217

ArtinRepresentations(K) 1217
!! 1218
PermutationCharacter(K) 1218
Determinant(A) 1218
ChangeField(A,K) 1218
!! 1218

44.3 Basic Invariants 1219

Field(A) 1219
Degree(A) 1219
Group(A) 1219
Character(A) 1219
Conductor(A) 1219
Decomposition(A) 1220
DefiningPolynomial(A) 1220

Minimize(A) 1220
Kernel(A) 1220
IsIrreducible(A) 1220
IsRamified(A, p) 1220
IsWildlyRamified(A, p) 1221
EulerFactor(A, p) 1221
DirichletCharacter(A) 1221
ArtinRepresentation(ch) 1221

44.4 Arithmetic 1222

+ 1222
- 1222
* 1222
eq 1222
ne 1222

44.5 Implementation Notes 1224

44.6 Bibliography 1224

Chapter 44

ARTIN REPRESENTATIONS

44.1 Overview
An Artin representation is a complex representation of Gal(Q̄/Q) that factors through

some finite quotient Gal(F/Q). In Magma, Artin representations are represented as
characters of Gal(F/Q), not the actual modules. They are allowed to be virtual, except
in the L-function machinery (see Chapter 127).

44.2 Constructing Artin Representations

ArtinRepresentations(K)

f RngUPolElt Default :

Ramification BoolElt Default : false

FactorDiscriminant BoolElt Default : false

p0 RngIntElt Default :

Compute all irreducible Artin representations that factor through the normal closure
F of the number field K.

The Galois group G = Gal(F/K) whose representations are constructed is repre-
sented as a permutation group on the roots of f, which must be a monic irreducible
polynomial with integer coefficients that defines K. By default this is the defin-
ing polynomial of K represented as an extension of Q. (It is possible to specify
any monic integral polynomial whose splitting field is F , even a reducible one, but
PermutationCharacter(K) and the Dedekind ζ-function of K will not work cor-
rectly.)

The Ramification parameter specifies whether to pre-compute the inertia
groups at all ramified primes and the conductors of all representations.

The parameter FactorDiscriminant determines whether to factorize the dis-
criminant of f completely, even if it appears to contain large prime factors. The
factorization is used to determine which primes ramify in F/K, which is necessary
to compute the conductors. If the factorization is incomplete, Magma assumes
that the primes in the unfactored part of the discriminant are unramified. One may
specify FactorDiscriminant:=

<TrialLimit,PollardRhoLimit,ECMLimit,MPQSLimit,Proof> and these 5 pa-
rameters are passed to the Factorization function; the default behaviour (false)
is the same as <10000,65535,10,0,false>. When the factorization is incomplete,
Magma will print “(?)” following the conductor values, when asked to print an
Artin representation.

1218 GLOBAL ARITHMETIC FIELDS Part VII

Finally, p0 specifies which p-adic field to use for the roots of f, in particular in
Galois group computations. It must be chosen so that GaloisGroup(f:Prime:=p0)
is successful. By default it is chosen by the Galois group computation.

K !! ch

Writing F for the normal closure of K/Q, this function converts an abstract group
character of Gal(F/Q) or the sequence of its trace values into an Artin representa-
tion.

PermutationCharacter(K)

Construct the permutation representation A of the absolute Galois group of Q on the
embeddings of K into C. This is an Artin representation of Gal(F/Q) of dimension
[K : Q], where F is the normal closure of K, and it is the same as the permutation
representation of Gal(F/Q) on the cosets of Gal(F/K).

Determinant(A)

Construct the determinant of a given Artin representation. The result is given as a
1-dimensional Artin representation attached to the same field.

ChangeField(A,K)

K !! A

MinPrimes RngIntElt Default : 20
Given an Artin representation (attached to some number field) that is known to
factor through the Galois closure of K, attempts to recognize it as such. Returns
“the resulting Artin representation attached to K”, true if successful, and 0, false
if it proves that there is no such representation. The parameter MinPrimes specifies
the number of additional primes for which to compare traces of Frobenius elements.

Example H44E1

A quadratic field K has two irreducible Artin representations the factor through Gal(K/Q), the
trivial one and the quadratic character of K:

> K<i> := QuadraticField(-1);

> triv, sign := Explode(ArtinRepresentations(K));

> sign;

Artin representation of Quadratic Field with defining polynomial x^2 + 1

over the Rational Field with character (1, -1)

An alternative way to define them is directly by their character:

> triv,sign:Magma;

QuadraticField(-1) !! [1,1]

QuadraticField(-1) !! [1,-1]

The regular representation of Gal(K/Q) is their sum:

> PermutationCharacter(K);

Ch. 44 ARTIN REPRESENTATIONS 1219

Artin representation of Quadratic Field with defining polynomial z^2 + 1

over the Rational Field with character (2, 0)

> $1 eq triv+sign;

true

Next, let L = K(
√−2− i). Then L has normal closure F with Gal(F/Q) = D4, the dihedral

group of order 8:

> L := ext<K|Polynomial([2+i,0,1])>;

> G := GaloisGroup(AbsoluteField(L));

> IsIsomorphic(G,DihedralGroup(4));

true

> [Dimension(A): A in ArtinRepresentations(L)];

[1, 1, 1, 1, 2]

We use ChangeField to lift Artin representations from Gal(K/Q) to Gal(F/Q), and check that
it is still the same as an Artin representation.

> A := ChangeField(sign,L);

> A;

Artin representation of Number Field with defining polynomial $.1^2 + i + 2

over its ground field with character (1, 1, -1, 1, -1)

> A eq sign;

true;

44.3 Basic Invariants

Field(A)

Number field K such that A factors through the Galois group of the normal closure
of K.

Degree(A)

Degree (=dimension) of an Artin representation A.

Group(A)

The Galois group of the field through which A factors.

Character(A)

Character of an Artin representation A, represented as a complex-valued character
of Group(A).

Conductor(A)

Conductor of an Artin representation A (which must be a true representation, i.e. its
character is not allowed to be a generalized character). Computes all the necessary
local information if Artin representations were defined with Ramification:=false,
so the first call to this function might take some time.

1220 GLOBAL ARITHMETIC FIELDS Part VII

Decomposition(A)

Decompose an Artin representation A into irreducible constituents. Returns a se-
quence of tuples [...<Ai,ni>...] with Ai irreducible and ni its exponent in A
(nonzero but possibly negative).

DefiningPolynomial(A)

Returns the polynomial whose roots Group(A) permutes.

Minimize(A)

Optimize BoolElt Default : true

Returns A attached to the smallest number field K such that A factors through its
Galois closure. If Optimize := true, attempts to minimize the defining polynomial
of K using OptimizedRepresentation.

Kernel(A)

Smallest Galois extension K of the rationals through which A factors. Note that
this field may be enormous and incomputable.

Example H44E2

We take an S4-extension of Q and compute its Artin representations.

> R<x> := PolynomialRing(Rationals());

> K := NumberField(x^4+9*x-2);

> A := ArtinRepresentations(K);

> [Dimension(a): a in A];

[1, 1, 2, 3, 3]

Then we minimize the 2-dimensional one, which factors through an S3-quotient.

> B := Minimize(A[3]); B;

Artin Representation of Number Field with defining polynomial x^3 + 8*x - 81

over the Rational Field with character (2, 0, -1)

> Kernel(B);

Number Field with defining polynomial x^6 + 48*x^4 + 576*x^2 + 179195 over the

Rational Field

IsIrreducible(A)

Return true iff a given Artin representation is irreducible as a complex representa-
tion.

IsRamified(A, p)

Return true iff a given Artin representation is ramified at p.

Ch. 44 ARTIN REPRESENTATIONS 1221

IsWildlyRamified(A, p)

Return true iff a given Artin representation is wildly ramified at p.

EulerFactor(A, p)

R Fld Default : ComplexField()

The local polynomial (Euler factor) of an Artin representation A at the prime p. It
is a polynomial with coefficients in the field R, which is complex numbers by default,
and it is the inverse characteristic polynomial of (arithmetic) Frobenius at p on the
inertia invariant subspace of A.

Example H44E3

Here are the invariants of Artin representations that factor through the splitting field of x4 − 3,
a D4-extension of Q.

> R<x> := PolynomialRing(Rationals());

> K := NumberField(x^4-3);

> A := ArtinRepresentations(K);

> Degree(Field(A[1]),Rationals());

8

> [Dimension(a): a in A];

[1, 1, 1, 1, 2]

> Character(A[5]);

(2, -2, 0, 0, 0)

> [Conductor(a): a in A];

[1, 3, 4, 12, 576]

> [IsRamified(a,3): a in A];

[false, true, false, true, true]

> [IsWildlyRamified(a,3): a in A];

[false, false, false, false, false]

> EulerFactor(A[5],5);

$.1^2 + 1.000000000000000000000000000000

DirichletCharacter(A)

Convert a one-dimensional Artin representation to a Dirichlet character.

ArtinRepresentation(ch)

field FldNum Default :

Convert a Dirichlet character ch to a one-dimensional Artin representation A. To
avoid recomputation, the minimal field through which A factors may be supplied
by the field parameter. This now uses class field theory (thanks to C. Fieker).

1222 GLOBAL ARITHMETIC FIELDS Part VII

Example H44E4

An example that goes back and forth between the Dirichlet character and the Artin representation.

> load galpols;

> f := PolynomialWithGaloisGroup(8,46); // order 576

> K := NumberField(f); // octic field

> A := ArtinRepresentations(K);

> [Degree(a) : a in A];

[1, 1, 1, 1, 4, 4, 6, 6, 9, 9, 9, 9, 12]

> [Order(Character(Determinant(a))) : a in A];

[1, 2, 4, 4, 2, 2, 1, 2, 2, 1, 4, 4, 2]

> chi := DirichletCharacter(A[3]); // order 4

> Conductor(chi), Conductor(chi^2);

215 5

> Minimize(ArtinRepresentation(chi)); // disc = N(chi)^2*N(chi^2)

Artin representation of Number Field with defining polynomial

x^4 - x^3 - 54*x^2 + 54*x + 551 with character (1, -1, I, -I)

> Factorization(Discriminant(Integers(Field($1))));

[<5, 3>, <43, 2>]

44.4 Arithmetic

A1 + A2

Direct sum of two Artin representations

A1 - A2

Direct difference of two Artin representations

A1 * A2

Tensor product of two Artin representations

A1 eq A2

Returns true iff the two Artin representations are equal

A1 ne A2

Returns true iff the two Artin representations are not equal

Ch. 44 ARTIN REPRESENTATIONS 1223

Example H44E5

For Artin representations constructed from the same number field, their arithmetic is just arith-
metic of characters:

> P<x> := PolynomialRing(Rationals());

> K := NumberField(x^3-2);

> A := ArtinRepresentations(K: Ramification:=true);

> triv, sign, rho := Explode(A);

> triv;

Artin representation of Number Field with defining polynomial

x^3 - 2 over the Rational Field with character (1, 1, 1)

and conductor 1

> rho;

Artin representation of Number Field with defining polynomial

x^3 - 2 over the Rational Field with character (2, 0, -1)

and conductor 108

> triv+rho;

Artin representation of Number Field with defining polynomial

x^3 - 2 over the Rational Field with character (3, 1, 0)

and conductor 108

> sign*rho eq rho;

true

Example H44E6

When Artin representations factor through different fields, their arithmetic involves the composi-
tum of the fields:

> K1 := QuadraticField(2);

> triv1, sign1 := Explode(ArtinRepresentations(K1));

> K2 := QuadraticField(3);

> triv2, sign2 := Explode(ArtinRepresentations(K2));

> twist := sign1*sign2;

> Field(twist);

Number Field with defining polynomial $.1^4 - 10*$.1^2 + 1

over the Rational Field

> sign3 := Minimize(twist);

> sign3;

Artin representation of Number Field with defining polynomial

$.1^2 - 6 over the Rational Field with character (1, -1)

> sign1*sign2*sign3 eq triv1;

true

1224 GLOBAL ARITHMETIC FIELDS Part VII

44.5 Implementation Notes
The algorithms for recognizing Frobenius elements in Galois groups are described in

[DD10]. They rely on the cycle type identification, Serre’s trick for alternating groups and
the general machinery from [DD10]. Magma is usually able to handle Galois groups of
size < 10000 acting on a small number of points easily, and much larger special groups
such as An and Sn.

44.6 Bibliography
[DD10] T. Dokchitser and V. Dokchitser. Identifying conjugacy classes in Galois groups.

2010.

