HANDBOOK OF MAGMA FUNCTIONS
(PROVISIONAL)

Volume 6

Finitely-presented Groups

John Cannon Wieb Bosma
Claus Fieker Allan Steel

Editors

Version 2.17
Sydney
December 8, 2010
HANDBOOK OF MAGMA FUNCTIONS

Editors:
John Cannon Wieb Bosma Claus Fieker Allan Steel

Handbook Contributors:

Production Editors:
Wieb Bosma Claus Fieker Allan Steel Nicole Sutherland

HTML Production:
Claus Fieker Allan Steel
<table>
<thead>
<tr>
<th>IX</th>
<th>FINITELY-PRESENTED GROUPS</th>
<th>1945</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>ABELIAN GROUPS</td>
<td>1947</td>
</tr>
<tr>
<td>68</td>
<td>FINITELY PRESENTED GROUPS</td>
<td>1983</td>
</tr>
<tr>
<td>69</td>
<td>FINITELY PRESENTED GROUPS: ADVANCED</td>
<td>2097</td>
</tr>
<tr>
<td>70</td>
<td>POLYCYCLIC GROUPS</td>
<td>2143</td>
</tr>
<tr>
<td>71</td>
<td>BRAID GROUPS</td>
<td>2183</td>
</tr>
<tr>
<td>72</td>
<td>GROUPS DEFINED BY REWRITE SYSTEMS</td>
<td>2233</td>
</tr>
<tr>
<td>73</td>
<td>AUTOMATIC GROUPS</td>
<td>2251</td>
</tr>
<tr>
<td>74</td>
<td>GROUPS OF STRAIGHT-LINE PROGRAMS</td>
<td>2269</td>
</tr>
<tr>
<td>75</td>
<td>FINITELY PRESENTED SEMIGROUPS</td>
<td>2279</td>
</tr>
<tr>
<td>76</td>
<td>MONOIDS GIVEN BY REWRITE SYSTEMS</td>
<td>2291</td>
</tr>
</tbody>
</table>
IX FINITELY-PRESENTED GROUPS 1945

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.1</td>
<td>Introduction</td>
<td>1949</td>
</tr>
<tr>
<td>67.2</td>
<td>Construction of a Finitely Presented Abelian Group and its Elements</td>
<td>1949</td>
</tr>
<tr>
<td>67.2.1</td>
<td>The Free Abelian Group</td>
<td>1949</td>
</tr>
<tr>
<td>67.2.2</td>
<td>Relations</td>
<td>1950</td>
</tr>
<tr>
<td>67.2.3</td>
<td>Specification of a Presentation</td>
<td>1951</td>
</tr>
<tr>
<td>67.2.4</td>
<td>Accessing the Defining Generators and Relations</td>
<td>1952</td>
</tr>
<tr>
<td>67.3</td>
<td>Construction of a Generic Abelian Group</td>
<td>1953</td>
</tr>
<tr>
<td>67.3.1</td>
<td>Specification of a Generic Abelian Group</td>
<td>1953</td>
</tr>
<tr>
<td>67.3.2</td>
<td>Accessing Generators</td>
<td>1956</td>
</tr>
<tr>
<td>67.3.3</td>
<td>Computing Abelian Group Structure</td>
<td>1956</td>
</tr>
<tr>
<td>67.4</td>
<td>Elements</td>
<td>1958</td>
</tr>
<tr>
<td>67.4.1</td>
<td>Construction of Elements</td>
<td>1958</td>
</tr>
<tr>
<td>67.4.2</td>
<td>Representation of an Element</td>
<td>1959</td>
</tr>
<tr>
<td>67.4.3</td>
<td>Arithmetic with Elements</td>
<td>1960</td>
</tr>
<tr>
<td>67.5</td>
<td>Construction of Subgroups and Quotient Groups</td>
<td>1961</td>
</tr>
<tr>
<td>67.5.1</td>
<td>Construction of Subgroups</td>
<td>1961</td>
</tr>
<tr>
<td>67.5.2</td>
<td>Construction of Quotient Groups</td>
<td>1963</td>
</tr>
<tr>
<td>67.6</td>
<td>Standard Constructions and Conversions</td>
<td>1963</td>
</tr>
<tr>
<td>67.7</td>
<td>Operations on Elements</td>
<td>1965</td>
</tr>
<tr>
<td>67.7.1</td>
<td>Order of an Element</td>
<td>1965</td>
</tr>
<tr>
<td>67.7.2</td>
<td>Discrete Logarithm</td>
<td>1966</td>
</tr>
<tr>
<td>67.7.3</td>
<td>Equality and Comparison</td>
<td>1967</td>
</tr>
<tr>
<td>67.8</td>
<td>Invariants of an Abelian Group</td>
<td>1968</td>
</tr>
<tr>
<td>67.9</td>
<td>Canonical Decomposition</td>
<td>1968</td>
</tr>
<tr>
<td>67.10</td>
<td>Set-Theoretic Operations</td>
<td>1969</td>
</tr>
<tr>
<td>67.10.1</td>
<td>Functions Relating to Group Order</td>
<td>1969</td>
</tr>
<tr>
<td>67.10.2</td>
<td>Membership and Equality</td>
<td>1969</td>
</tr>
<tr>
<td>67.10.3</td>
<td>Set Operations</td>
<td>1970</td>
</tr>
<tr>
<td>67.11</td>
<td>Coset Spaces</td>
<td>1971</td>
</tr>
<tr>
<td>67.11.1</td>
<td>Coercions Between Groups and Subgroups</td>
<td>1971</td>
</tr>
<tr>
<td>67.12</td>
<td>Subgroup Constructions</td>
<td>1972</td>
</tr>
<tr>
<td>67.13</td>
<td>Subgroup Chains</td>
<td>1973</td>
</tr>
<tr>
<td>67.14</td>
<td>General Group Properties</td>
<td>1973</td>
</tr>
<tr>
<td>67.14.1</td>
<td>Properties of Subgroups</td>
<td>1974</td>
</tr>
<tr>
<td>67.14.2</td>
<td>Enumeration of Subgroups</td>
<td>1974</td>
</tr>
<tr>
<td>67.15</td>
<td>Representation Theory</td>
<td>1976</td>
</tr>
<tr>
<td>67.16</td>
<td>The Hom Functor</td>
<td>1976</td>
</tr>
<tr>
<td>67.17</td>
<td>Automorphism Groups</td>
<td>1978</td>
</tr>
<tr>
<td>67.18</td>
<td>Cohomology</td>
<td>1978</td>
</tr>
<tr>
<td>67.19</td>
<td>Homomorphisms</td>
<td>1978</td>
</tr>
<tr>
<td>67.20</td>
<td>Bibliography</td>
<td>1981</td>
</tr>
</tbody>
</table>
Volume 6: Contents

Finitely Presented Groups

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.1</td>
<td>Introduction</td>
<td>1983</td>
</tr>
<tr>
<td>68.1.1</td>
<td>Overview of Facilities</td>
<td>1987</td>
</tr>
<tr>
<td>68.1.2</td>
<td>The Construction of Finitely Presented Groups</td>
<td>1987</td>
</tr>
<tr>
<td>68.2</td>
<td>Free Groups and Words</td>
<td>1988</td>
</tr>
<tr>
<td>68.2.1</td>
<td>Construction of a Free Group</td>
<td>1988</td>
</tr>
<tr>
<td>68.2.2</td>
<td>Construction of Words</td>
<td>1989</td>
</tr>
<tr>
<td>68.2.3</td>
<td>Access Functions for Words</td>
<td>1989</td>
</tr>
<tr>
<td>68.2.4</td>
<td>Arithmetic Operators for Words</td>
<td>1991</td>
</tr>
<tr>
<td>68.2.5</td>
<td>Comparison of Words</td>
<td>1992</td>
</tr>
<tr>
<td>68.2.6</td>
<td>Relations</td>
<td>1993</td>
</tr>
<tr>
<td>68.3</td>
<td>Construction of an FP-Group</td>
<td>1995</td>
</tr>
<tr>
<td>68.3.1</td>
<td>The Quotient Group Constructor</td>
<td>1995</td>
</tr>
<tr>
<td>68.3.2</td>
<td>The FP-Group Constructor</td>
<td>1997</td>
</tr>
<tr>
<td>68.3.3</td>
<td>Construction from a Finite Permutation or Matrix Group</td>
<td>1998</td>
</tr>
<tr>
<td>68.3.4</td>
<td>Construction of the Standard Presentation for a Coxeter Group</td>
<td>2000</td>
</tr>
<tr>
<td>68.3.5</td>
<td>Conversion from a Special Form of FP-Group</td>
<td>2001</td>
</tr>
<tr>
<td>68.3.6</td>
<td>Construction of a Standard Group</td>
<td>2002</td>
</tr>
<tr>
<td>68.3.7</td>
<td>Construction of Extensions</td>
<td>2004</td>
</tr>
<tr>
<td>68.3.8</td>
<td>Accessing the Defining Generators and Relations</td>
<td>2006</td>
</tr>
<tr>
<td>68.4</td>
<td>Homomorphisms</td>
<td>2006</td>
</tr>
<tr>
<td>68.4.1</td>
<td>General Remarks</td>
<td>2006</td>
</tr>
<tr>
<td>68.4.2</td>
<td>Construction of Homomorphisms</td>
<td>2007</td>
</tr>
<tr>
<td>68.4.3</td>
<td>Accessing Homomorphisms</td>
<td>2007</td>
</tr>
<tr>
<td>68.4.4</td>
<td>Computing Homomorphisms to Finite Groups</td>
<td>2010</td>
</tr>
<tr>
<td>68.4.5</td>
<td>Searching for Isomorphisms</td>
<td>2018</td>
</tr>
<tr>
<td>68.5</td>
<td>Abelian, Nilpotent and Soluble Quotient</td>
<td>2020</td>
</tr>
<tr>
<td>68.5.1</td>
<td>Abelian Quotient</td>
<td>2020</td>
</tr>
<tr>
<td>68.5.2</td>
<td>p-Quotient</td>
<td>2023</td>
</tr>
<tr>
<td>68.5.3</td>
<td>The Construction of a p-Quotient</td>
<td>2024</td>
</tr>
<tr>
<td>68.5.4</td>
<td>Nilpotent Quotient</td>
<td>2026</td>
</tr>
<tr>
<td>68.5.5</td>
<td>Soluble Quotient</td>
<td>2032</td>
</tr>
<tr>
<td>68.6</td>
<td>Subgroups</td>
<td>2035</td>
</tr>
<tr>
<td>68.6.1</td>
<td>Specification of a Subgroup</td>
<td>2035</td>
</tr>
<tr>
<td>68.6.2</td>
<td>Index of a Subgroup: The Todd-Coxeter Algorithm</td>
<td>2037</td>
</tr>
<tr>
<td>68.6.3</td>
<td>Implicit Invocation of the Todd-Coxeter Algorithm</td>
<td>2042</td>
</tr>
<tr>
<td>68.6.4</td>
<td>Constructing a Presentation for a Subgroup</td>
<td>2043</td>
</tr>
<tr>
<td>68.7</td>
<td>Subgroups of Finite Index</td>
<td>2047</td>
</tr>
<tr>
<td>68.7.1</td>
<td>Low Index Subgroups</td>
<td>2047</td>
</tr>
<tr>
<td>68.7.2</td>
<td>Subgroup Constructions</td>
<td>2056</td>
</tr>
<tr>
<td>68.7.3</td>
<td>Properties of Subgroups</td>
<td>2061</td>
</tr>
<tr>
<td>68.8</td>
<td>Coset Spaces and Tables</td>
<td>2065</td>
</tr>
<tr>
<td>68.8.1</td>
<td>Coset Tables</td>
<td>2065</td>
</tr>
<tr>
<td>68.8.2</td>
<td>Coset Spaces: Construction</td>
<td>2067</td>
</tr>
<tr>
<td>68.8.3</td>
<td>Coset Spaces: Elementary Operations</td>
<td>2068</td>
</tr>
<tr>
<td>68.8.4</td>
<td>Accessing Information</td>
<td>2069</td>
</tr>
<tr>
<td>68.8.5</td>
<td>Double Coset Spaces: Construction</td>
<td>2073</td>
</tr>
<tr>
<td>68.8.6</td>
<td>Coset Spaces: Selection of Cosets</td>
<td>2074</td>
</tr>
<tr>
<td>68.8.7</td>
<td>Coset Spaces: Induced Homomorphism</td>
<td>2075</td>
</tr>
<tr>
<td>68.9</td>
<td>Simplification</td>
<td>2078</td>
</tr>
<tr>
<td>68.9.1</td>
<td>Reducing Generating Sets</td>
<td>2078</td>
</tr>
<tr>
<td>68.9.2</td>
<td>Tietze Transformations</td>
<td>2078</td>
</tr>
<tr>
<td>68.10</td>
<td>Representation Theory</td>
<td>2089</td>
</tr>
<tr>
<td>68.11</td>
<td>Small Group Identification</td>
<td>2093</td>
</tr>
<tr>
<td>68.11.1</td>
<td>Concrete Representations of Small Groups</td>
<td>2095</td>
</tr>
<tr>
<td>68.12</td>
<td>Bibliography</td>
<td>2095</td>
</tr>
</tbody>
</table>
69 FINITELY PRESENTED GROUPS: ADVANCED 2097
69.1 Introduction 2099
69.2 Low Level Operations on Presentations and Words 2099
69.2.1 Modifying Presentations 2100
69.2.2 Low Level Operations on Words 2102
69.3 Interactive Coset Enumeration 2104
69.3.1 Introduction 2104
69.3.2 Constructing and Modifying a Coset Enumeration Process 2105
69.3.3 Starting and Restarting an Enumeration 2110
69.3.4 Accessing Information 2112
69.3.5 Induced Permutation Representations 2121
69.3.6 Coset Spaces and Transversals 2122
69.4 \(p\)-Quotients (Process Version) 2125
69.4.1 The \(p\)-Quotient Process 2125
69.4.2 Using \(p\)-Quotient Interactively 2126
69.5 Soluble Quotients 2135
69.5.1 Introduction 2135
69.5.2 Construction 2135
69.5.3 Calculating the Relevant Primes 2137
69.5.4 The Functions 2137
69.6 Bibliography 2141

70 POLYCYCLIC GROUPS 2143
70.1 Introduction 2145
70.2 Polycyclic Groups and Polycyclic Presentations 2145
70.2.1 Introduction 2145
70.2.2 Specification of Elements 2146
70.2.3 Access Functions for Elements 2146
70.2.4 Arithmetic Operations on Elements 2147
70.2.5 Operators for Elements 2148
70.2.6 Comparison Operators for Elements 2148
70.2.7 Specification of a Polycyclic Presentation 2149
70.2.8 Properties of a Polycyclic Presentation 2153
70.3 Subgroups, Quotient Groups, Homomorphisms and Extensions 2153
70.3.1 Construction of Subgroups 2153
70.3.2 Coercions Between Groups and Subgroups 2154
70.3.3 Construction of Quotient Groups 2155
70.3.4 Homomorphisms 2155
70.3.5 Construction of Extensions 2156
70.3.6 Construction of Standard Groups 2156
70.4 Conversion between Categories 2159
70.5 Access Functions for Groups 2160
70.6 Set-Theoretic Operations in a Group 2161
70.6.1 Functions Relating to Group Order 2161
70.6.2 Membership and Equality 2161
70.6.3 Set Operations 2162
70.7 Coset Spaces 2163
70.8 The Subgroup Structure 2166
70.8.1 General Subgroup Constructions 2166
70.8.2 Subgroup Constructions Requiring a Nilpotent Covering Group 2166
70.9 General Group Properties 2167
70.9.1 General Properties of Subgroups 2168
70.9.2 Properties of Subgroups Requiring a Nilpotent Covering Group 2168
70.10 Normal Structure and Characteristic Subgroups 2170
70.10.1 Characteristic Subgroups and Subgroup Series 2170
VOLUME 6: CONTENTS

70.10.2 The Abelian Quotient Structure of a Group 2174
70.11 Conjugacy 2174
70.12 Representation Theory 2175
70.13 Power Groups 2181
70.14 Bibliography 2182

71 BRAID GROUPS . 2183

71.1 Introduction 2185
71.1.1 Lattice Structure and Simple Elements 2186
71.1.2 Representing Elements of a Braid Group 2187
71.1.3 Normal Form for Elements of a Braid Group 2188
71.1.4 Mixed Canonical Form and Lattice Operations 2189
71.1.5 Conjugacy Testing and Conjugacy Search 2190
71.2 Constructing and Accessing Braid Groups 2192
71.3 Creating Elements of a Braid Group 2193
71.4 Working with Elements of a Braid Group 2199
71.4.1 Accessing Information 2199
71.4.2 Computing Normal Forms of Elements 2202
71.4.3 Arithmetic Operators and Functions for Elements 2205
71.4.4 Boolean Predicates for Elements 2209
71.4.5 Lattice Operations 2213
71.4.6 Invariants of Conjugacy Classes 2217
71.5 Homomorphisms 2226
71.5.1 General Remarks 2226
71.5.2 Constructing Homomorphisms 2226
71.5.3 Accessing Homomorphisms 2227
71.5.4 Representations of Braid Groups 2230
71.6 Bibliography 2232

72 GROUPS DEFINED BY REWRITE SYSTEMS 2233

72.1 Introduction 2235
72.1.1 Terminology 2235
72.1.2 The Category of Rewrite Groups 2235
72.1.3 The Construction of a Rewrite Group 2235
72.2 Constructing Confluent Presentations 2236
72.2.1 The Knuth-Bendix Procedure 2236
72.2.2 Defining Orderings 2237
72.2.3 Setting Limits 2239
72.2.4 Accessing Group Information 2241
72.3 Properties of a Rewrite Group 2243
72.4 Arithmetic with Words 2244
72.4.1 Construction of a Word 2244
72.4.2 Element Operations 2245
72.5 Operations on the Set of Group Elements 2247
72.6 Homomorphisms 2249
72.6.1 General Remarks 2249
72.6.2 Construction of Homomorphisms 2249
72.7 Conversion to a Finitely Presented Group 2250
72.8 Bibliography 2250
75.6 Extensions 2287
75.7 Elementary Tietze Transformations 2287
75.8 String Operations on Words 2289

76 MONOIDS GIVEN BY REWRITE SYSTEMS 2291

76.1 Introduction 2293
76.1.1 Terminology 2293
76.1.2 The Category of Rewrite Monoids 2293
76.1.3 The Construction of a Rewrite Monoid 2293
76.2 Construction of a Rewrite Monoid 2294
76.3 Basic Operations 2299
76.3.1 Accessing Monoid Information 2299
76.3.2 Properties of a Rewrite Monoid 2300
76.3.3 Construction of a Word 2302
76.3.4 Arithmetic with Words 2302
76.4 Homomorphisms 2304
76.4.1 General Remarks 2304
76.4.2 Construction of Homomorphisms 2304
76.5 Set Operations 2304
76.6 Conversion to a Finitely Presented Monoid 2306
76.7 Bibliography 2307
PART IX
FINITELY-PRESENTED GROUPS

67 ABELIAN GROUPS 1947
68 FINITELY PRESENTED GROUPS 1983
69 FINITELY PRESENTED GROUPS: ADVANCED 2097
70 POLYCYCLIC GROUPS 2143
71 BRAID GROUPS 2183
72 GROUPS DEFINED BY REWRITE SYSTEMS 2233
73 AUTOMATIC GROUPS 2251
74 GROUPS OF STRAIGHT-LINE PROGRAMS 2269
75 FINITELY PRESENTED SEMIGROUPS 2279
76 MONOIDS GIVEN BY REWRITE SYSTEMS 2291
67 ABELIAN GROUPS

67.1 Introduction 1949

67.2 Construction of a FINITELY PRESENTED ABELIAN GROUP and its ELEMENTS 1949

67.2.1 The Free Abelian Group 1949
FreeAbelianGroup(n) 1949
67.2.2 Relations 1950
= 1950
r[1] 1950
LHS(r) 1950
r[2] 1950
RHS(r) 1950
Parent(r) 1950
67.2.3 Specification of a Presentation . . 1951
AbelianGroup< > 1951
AbelianGroup([n1, ..., nr]) 1952
67.2.4 Accessing the Defining Generators
and Relations 1952
Generators(A) 1952
NumberOfGenerators(A) 1952
Ngens(A) 1952
Parent(u) 1952
Relations(A) 1952
RelationMatrix(A) 1952
67.3 Construction of a GENERIC
ABELIAN GROUP 1953
67.3.1 Specification of a GENERIC
ABELIAN GROUP 1953
GenericAbelianGroup(U: -) 1953
67.3.2 Accessing Generators 1956
Universe(A) 1956
Generators(A) 1956
UserGenerators(A) 1956
NumberOfGenerators(A) 1956
Ngens(A) 1956
67.3.3 Computing Abelian Group Structure 1956
AbelianGroup(A: -) 1957
67.4 Elements 1958
67.4.1 Construction of Elements 1958
! 1958
! 1958
! 1958
! 1958
Random(A) 1958
Identity(A) 1958
Id(A) 1958
67.4.2 Representation of an Element . . . 1959
Representation(g) 1959
ElementToSequence(g) 1959
Eltsseq(g) 1959
UserRepresentation(g) 1959
Representation(S, g) 1959
67.4.3 Arithmetic with Elements 1960
+ 1960
- 1960
* 1960
67.5 Construction of Subgroups and
QUOTIENT GROUPS 1961
67.5.1 Construction of Subgroups 1961
sub< > 1961
sub< > 1962
67.5.2 Construction of Quotient Groups . 1963
quo< > 1963
/ 1963
67.6 Standard Constructions and
Conversions 1963
AbelianGroup(GrpAb, Q) 1963
AbelianGroup(Q) 1963
AbelianGroup(G) 1963
AbelianQuotient(G) 1963
DirectSum(A, B) 1964
PCGroup(A) 1964
PermutationGroup(A) 1964
FPGroup(A) 1964
CommutatorSubgroup(G) 1964
DerivedSubgroup(G) 1964
CommutatorSubgroup(H, K) 1964
CommutatorSubgroup(G, H, K) 1964
Centralizer(G, a) 1964
Centraliser(G, a) 1964
Core(G, H) 1964
Centre(G) 1964
Center(G) 1964
67.7 Operations on Elements 1965
67.7.1 Order of an Element 1965
Order(x) 1965
Order(g: -) 1965
Order(g, 1, u: -) 1966
Order(g, 1, u, n, m: -) 1966
67.7.2 Discrete Logarithm 1966
Log(g, d: -) 1966
67.7.3 Equality and Comparison 1967
eq 1967
ne 1967
IsIdentity(u) 1967
IsId(u) 1967

67.8 Invariants of an Abelian Group 1968
ElementaryAbelianQuotient(G, p) 1968
FreeAbelianQuotient(G) 1968
Invariants(A) 1968
TorsionFreeRank(A) 1968
TorsionInvariants(A) 1968
PrimaryInvariants(A) 1968
pPrimaryInvariants(A, p) 1968

67.9 Canonical Decomposition . . . 1968
TorsionFreeSubgroup(A) 1968
TorsionSubgroup(A) 1968
pPrimaryComponent(A, p) 1968

67.10 Set-Theoretic Operations . . 1969
67.10.1 Functions Relating to Group Order 1969
Order(G) 1969
1969
FactoredOrder(G) 1969
Exponent(G) 1969
IsFinite(G) 1969
IsInfinite(G) 1969

67.10.2 Membership and Equality . . 1969
in 1969
notin 1969
subset 1969
notsubset 1969
subset 1970
notsubset 1970
eq 1970
ne 1970

67.10.3 Set Operations 1970
NumberingMap(G) 1970
RandomProcess(G) 1970
Random(P) 1970
Random(G) 1971
Rep(G) 1971

67.11 Coset Spaces 1971
Transversal(G, H) 1971
RightTransversal(G, H) 1971

67.11.1 Coercions Between Groups and Subgroups 1971
!
!
!
Morphism(H, G) 1971

67.12 Subgroup Constructions . . 1972
meet 1972
meet:= 1972
+ 1972
* 1972
FrattiniSubgroup(G) 1972
SylowSubgroup(G, p : -) 1972
Sylow(G, p : -) 1972

67.13 Subgroup Chains 1973
CompositionSeries(G) 1973
Agemo(G, i) 1973
Omega(G, i) 1973

67.14 General Group Properties . 1973
IsCyclic(G) 1973
IsElementaryAbelian(G) 1973
IsFree(G) 1973
IsMixed(G) 1973
IsAbelianGroup(G) 1973

67.14.1 Properties of Subgroups 1974
IsMaximal(G, H) 1974
Index(G, H) 1974
FactoredIndex(G, H) 1974
IsPure(G, H) 1974
IsNeat(G, H) 1974

67.14.2 Enumeration of Subgroups 1974
MaximalSubgroups(G) 1974
Subgroups(G:-) 1974
NumberOfSubgroupsAbelianPGroup (A) 1975
HasComplement(G, U) 1975

67.15 Representation Theory . . . 1976
CharacterTable(G) 1976

67.16 The Hom Functor 1976
Hom(G, H) 1976
HomGenerators(G, H) 1976
Homomorphisms(G, H) 1976

67.17 Automorphism Groups . . . 1978

67.18 Cohomology 1978
Dual(G) 1978
H2_GQmodZ(G) 1978
Res_H2_GQmodZ(U, H2) 1978

67.19 Homomorphisms 1978
hom< > 1978
Homomorphism(A, B, X, Y) 1979
iso< > 1979
Isomorphism(A, B, X, Y) 1979

67.20 Bibliography 1981
Chapter 67
ABELIAN GROUPS

67.1 Introduction
This Chapter contains a description of the Magma machinery provided for computing with abstract abelian groups. Such a group may be described either in terms of defining relations (category GrpAb) or by defining the group operations on some finite set (category GrpAbGen). In the case of finitely presented groups, the abelian groups may be finite and infinite, the only restriction being that the group be finitely generated.

67.2 Construction of a Finitely Presented Abelian Group and its Elements

67.2.1 The Free Abelian Group

\texttt{FreeAbelianGroup(n)}

Construct the free abelian group F on n generators, where n is a positive integer. The i-th generator may be referenced by the expression $F.i$, $i = 1, \ldots, n$. Note that a special form of the assignment statement is provided which enables the user to assign names to the generators of F. In this form of assignment, the list of generator names is enclosed within angle brackets and appended to the variable name on the \textit{left hand side} of the assignment statement.

Example H67E1

The statement
\begin{verbatim}
> F := FreeAbelianGroup(2);
\end{verbatim}
creates the free abelian group on two generators. Here the generators may be referenced using the standard names, $F.1$ and $F.2$. The statement
\begin{verbatim}
> F<x, y> := FreeAbelianGroup(2);
\end{verbatim}
defines F to be the free abelian group on two generators and assigns the names x and y to the generators.
67.2.2 Relations

Given words \(w_1\) and \(w_2\) over the generators of an abelian group \(A\), create the relation \(w_1 = w_2\). Note that this relation is not automatically added to the existing set of defining relations \(R\) for \(S\). It may be added to \(R\), for example, through use of the quo-constructor (see below).

\[
\text{r[1]}
\]

Given a relation \(r\) over the generators of \(A\), return the left hand side of the relation \(r\). The object returned is a word over the generators of \(A\).

\[
\text{r[2]}
\]

Given a relation \(r\) over the generators of \(A\), return the right hand side of the relation \(r\). The object returned is a word over the generators of \(A\).

\[
\text{Parent(r)}
\]

Group over which the relation \(r\) is taken.

Example H67E2

We may define a group and a set of relations as follows:

```plaintext
> F<x, y> := FreeAbelianGroup(2);
> rels := { 2*x = 3*y, 4*x + 4*y = Id(F) } ;
```

To replace one side of a relation, the easiest way is to reassign the relation. So for example, to replace the relation \(2x = 3y\) by \(2x = 4y\):

```plaintext
> r := 2*x = 3*y;
> r := LHS(r) = 4*y;
```
67.2.3 Specification of a Presentation

An abelian group with non-trivial relations is constructed as a quotient of an existing abelian group, possibly a free abelian group.

\[
\text{AbelianGroup}\left(X \mid R \right)
\]

Given a list \(X \) of variables \(x_1, \ldots, x_r \), and a list of relations \(R \) over these generators, let \(F \) be the free abelian group on the generators \(x_1, \ldots, x_r \). Then construct (a) an abelian group \(A \) isomorphic to the quotient of \(F \) by the subgroup of \(F \) defined by \(R \), and (b) the natural homomorphism \(\phi : F \to A \).

Each term of the list \(R \) is either a word, a relation, a relation list or a subgroup of \(F \).

- A relation consists of a pair of words, separated by ‘\(= \)’.
- A word \(w \) is interpreted as a relator, that is, it is equivalent to the relation \(w = 0 \). (See above).
- A relation list consists of a list of words, where each pair of adjacent words is separated by ‘\(= \)’: \(w_1 = w_2 = \cdots = w_r \). This is interpreted as the set of relations \(w_1 = w_r, \ldots, w_{r-1} = w_r \). Note that the relation list construct is only meaningful in the context of the quo-constructor.

A subgroup \(H \) appearing in the list \(R \) contributes its generators to the relation set for \(A \), i.e., each generator of \(H \) is interpreted as a relator for \(A \).

The group \(F \) may be referred to by the special symbol \$ in any word appearing to the right of the ‘\mid’ symbol in the quo-constructor. Also, in the context of the quo-constructor, the identity element (empty word) may be represented by the digit 0.

The function returns:

(a) The quotient group \(A \);
(b) The natural homomorphism \(\phi : F \to A \).

Example H67E3

We create the abelian group defined by the presentation \(< a, b, c \mid 7a + 4b + c, 8a + 5b + 2c, 9a + 6b + 3c > \).

\[
> \text{F}\langle a, b, c \rangle := \text{FreeAbelianGroup}(3);
> A := \text{quo}\langle F \mid 7*a + 4*b + c, 8*a + 5*b + 2*c, 9*a + 6*b + 3*c >;
> A;
\]

AbelianGroup isomorphic to \(\mathbb{Z}_3 + \mathbb{Z} \)

Defined on 2 generators

Relations:

\[3*A.1 = 0 \]

A simple way of specifying an abelian group is as a product of cyclic groups.
AbelianGroup([n_1,...,n_r])

Construct the abelian group defined by the sequence \([n_1,...,n_r]\) of non-negative integers as an abelian group. The function returns the direct product of cyclic groups \(C_{n_1} \times C_{n_2} \times \cdots \times C_{n_r}\), where \(C_0\) is interpreted as an infinite cyclic group.

Example H67E4

We create the abelian group \(Z_2 \times Z_3 \times Z_4 \times Z_5 \times Z_6 \times Z \times Z\).

> G<x> := AbelianGroup([2,3,4,5,6,0,0]);
> G;
Abelian Group isomorphic to Z/2 + Z/6 + Z/60 + Z + Z
Defined on 7 generators
Relations:
 2*G.1 = 0
 3*G.2 = 0
 4*G.3 = 0
 5*G.4 = 0
 6*G.5 = 0

67.2.4 Accessing the Defining Generators and Relations

The functions described here provide access to basic information stored for an abelian group \(A\).

\(A . i\)

The \(i\)-th defining generator for \(A\).

Generators(A)

A set containing the generators for \(A\).

NumberOfGenerators(A)

Ngens(A)

The number of generators for \(A\).

Parent(u)

The parent group \(A\) of the word \(u\).

Relations(A)

A sequence containing the defining relations for \(A\).

RelationMatrix(A)

A matrix where each row corresponds to one of the defining relations of \(A\).
67.3 Construction of a Generic Abelian Group

The term generic abelian group refers to the situation in which a group A is described by giving a set X together with functions acting on X that perform the fundamental group operations for A. Specifically, the user must provide functions which compute the product, the inverse and the identity. For efficiency, the user may also optionally specify the order and a generating set for the group. This is made explicit below.

Going from such a definition of an abelian group A to a presentation for A will often be extremely expensive and so a small number of operations are implemented so as to not require this information. The two key operations are computing the order of an element and computing the discrete logarithm of an element to a given base. For many abelian group operations, knowledge of a presentation is required and if such an operation is invoked, the structure of A (and hence a presentation) will be automatically constructed.

There are two possible ways of computing the structure of the group. If the order of the group is known (or can be computed) then it is relatively easy to construct each of the p-Sylow subgroups. If the order is not available, the structure is computed from a set of generators supplied by the user.

67.3.1 Specification of a Generic Abelian Group

Construct the generic abelian group A over the domain U. The domain U can be an aggregate (set, indexed set or sequence) of elements or it can be any structure, for example, an elliptic curve, a jacobian, a magma of quadratic forms.

If the parameters `IdIntrinsic`, `AddIntrinsic` and `InverseIntrinsic` are not set, then the identity, the composition and the inverse function of A are taken to be the identity, the composition and the inverse function of U or of `Universe(U)` if U is an aggregate. If the parameters `IdIntrinsic`, `AddIntrinsic` and `InverseIntrinsic` are set, they define the identity, the composition and the inverse function of A.

The parameter `IdIntrinsic` must be a function name whose sole argument is U or `Universe(U)` if U is an aggregate. `AddIntrinsic` must be a function name whose only two arguments are elements of U or of `Universe(U)` if U is
InverseIntrinsic must be a function name whose only two arguments are elements of U or of $\text{Universe}(U)$ if U is an aggregate. That is, it is required that InverseIntrinsic be a binary operation (see the example below where $\text{InverseIntrinsic} := "/"$ is indeed binary). Defining any of the three above parameters implies that the other two must be defined as well.

Setting the parameter UseRepresentation to true implies that all elements of A will be internally represented as linear combinations of the generators of A obtained while computing the structure of A. This can be a costly procedure, since such a representation is akin to solving the discrete logarithm problem. The advantage of such a representation is that arithmetic for elements of A as well as computing the order of elements of A are then essentially trivial operations.

The parameter Order can be set to the order of the group, if known. Knowledge of the order may save a considerable amount of time for operations such as computing a Sylow subgroup, determining the group structure or solve a discrete logarithm problem. More importantly, if A is a proper subset of U, or of $\text{Universe}(U)$ if U is an aggregate, then one of Order or UserGenerators must be set.

One can set UserGenerators to some set of elements of U, or of $\text{Universe}(U)$ if U is an aggregate, which generate the group A. This can be useful when A is a subset of U ($\text{Universe}(U)$), or more generally when the computation of the group structure of A is made from a set of generators. Finally, setting UserGenerators may be an alternative to setting RandomIntrinsic.

The parameter ProperSubset must be set when A is a proper subset of U ($\text{Universe}(U)$).

The parameter RandomIntrinsic indicates the random function to use. If it is not set, the random function (if it is required) is taken to be the random function applying to U ($\text{Universe}(U)$).

The parameter RandomIntrinsic must be the name of a function taking as its sole argument U ($\text{Universe}(U)$) and returning an element of U ($\text{Universe}(U)$) which is also an element of the group A, which is important when A is a proper subset of U ($\text{Universe}(U)$). Therefore, if A is a proper subset of U ($\text{Universe}(U)$), then RandomIntrinsic must be set, unless the parameter UserGenerators is set.

The parameter Structure indicates that the group structure should be determined at the time of creation. If this parameter is set then the user may also want to set the following parameters:

- UseUserGenerators: BOOL, default: false
- PollardRhoRParam: RNGINT, default: 20
- PollardRhoTParam: RNGINT, default: 8
- PollardRhoVParam: RNGINT, default: 3

Their meaning is detailed in Section 67.3.3.

Example H67E5.

In our first example we create the subset U of $\mathbb{Z}/34384\mathbb{Z}$ corresponding to its unit group as a
generic abelian group G. Note that U is an indexed set.

> m := 34384;
> Zm := Integers(m);
> U := {x in Zm | GCD(x, m) eq 1};
> G := GenericAbelianGroup(U :
 IdIntrinsic := "Id",
 AddIntrinsic := "+",
 InverseIntrinsic := "/";
> G;
Generic Abelian Group over
Residue class ring of integers modulo 34384

In our next example we construct unique representatives for the classes of binary quadratic forms corresponding to elements of a subgroup of the class group of the imaginary quadratic field of discriminant -4000004.

> n := 6;
> Dk := -4*(10^n + 1);
> Q := QuadraticForms(Dk);
>
> p := 2;
> S := {};
> while #S lt 10 do
 > if KroneckerSymbol(Dk,p) eq 1 then
 > I := Reduction(PrimeForm(Q,p));
 > Include(S, I);
 > end if;
 > p := NextPrime(p);
> end while;
>
> QF := GenericAbelianGroup(Q : UserGenerators := S,
 ComputeStructure := true,
 UseUserGenerators := true);
> QF;
Generic Abelian Group over
Binary quadratic forms of discriminant -4000004
Abelian Group isomorphic to $\mathbb{Z}/2 + \mathbb{Z}/516$
Defined on 2 generators
Relations:
$2*.$ = 0
$516*.$ = 0

So the structure of the subgroup is $\mathbb{Z}_2 \times \mathbb{Z}_{516}$
67.3.2 Accessing Generators

These functions give access to generating sets for a generic group \(A \). If a generating set is requested and none has been supplied by the user then this will require the determination of the group structure which could be very expensive. Note the distinction between \texttt{Generators} and \texttt{UserGenerators}. From now on, unless otherwise specified, whenever mention is made of the generators of \(A \), we refer to the generators as given by the \texttt{Generators} function.

- \texttt{Universe(A)}

 The universe over which the generic abelian group \(A \) is defined.

- \texttt{A _ i}

 The \(i \)-th generator for the generic abelian group \(A \).

- \texttt{Generators(A)}

 A sequence containing a generating set for the generic abelian group \(A \) as elements of \(A \). The set of generators returned for \(A \) is a reduced set of generators as constructed during the structure computation. Therefore, if the group structure of \(A \) has been computed from a user-supplied set of generators, it is unlikely that \texttt{Generators(A)} and \texttt{UserGenerators(A)} will be the same.

- \texttt{UserGenerators(A)}

 A sequence containing the user-supplied generators for the generic abelian group \(A \) as elements of \(A \).

- \texttt{NumberOfGenerators(A)}

 The number of generators for the generic abelian group \(A \).

- \texttt{Ngens(A)}

67.3.3 Computing Abelian Group Structure

If the order of a generic abelian group \(A \) can be obtained then the structure of \(A \) is found by constructing each \(p \)-Sylow subgroup of \(A \). The \(p \)-Sylow subgroups are built from random elements of the underlying set \(X \) of \(A \). Recall that \(U (\texttt{Universe}(U)) \) is the domain of \(A \). Random elements are obtained using either a random function attached to \(X \) or using a user-supplied function (the \texttt{RandomIntrinsic} parameter), or using ser-supplied generators (the \texttt{UserGenerators} parameter). It is therefore vital that user-supplied generators truly generate the group one wishes to construct. A drawback of this method of obtaining the structure of \(A \) is the memory needed to store all the elements of a specific \(p \)-Sylow subgroup while under construction. This algorithm is mostly based on work by Michael Stoll.

The second approach computes the group structure from a set of generators as supplied by the user, removing the need to compute the order of \(A \). This can be particularly useful when computing this order is expensive. Note that computing the structure of a group from a set of generators is akin to solving a number of the discrete logarithm problems.
This second algorithm uses a variant of the Pollard–Rho algorithm and is due to Edlyn Teske [Tes98].

If A is a subgroup of a generic abelian group, G say, then the structure of G is computed first. The rationale is that once the structure of G is known, computing the structure of A is almost always cheap.

```
AbelianGroup(A: parameters)
```

UseUserGenerators: Bool Default: false
PollardRhoRParam: RNGInt Default: 20
PollardRhoTParam: RNGInt Default: 8
PollardRhoVParam: RNGInt Default: 3

Compute the group structure of the generic abelian group A, which may be a subgroup as created by the subgroup constructor or the Sylow function. The two values returned are the abstract abelian group and the invertible map from the latter into A.

If UseUserGenerators is false, then the group structure computation is made via the construction of each p-Sylow subgroup, using the factorization of the order of A.

If UseUserGenerators is set to true, the group structure computation uses the user-supplied set of generators for A. In this case, the additional parameters PollardRhoRParam, PollardRhoTParam, and PollardRhoVParam can be supplied. Their values will be passed to the Pollard–Rho algorithm used in the group structure computation: PollardRhoRParam sets the size of the r-adding walks, PollardRhoTParam sets the size of the internal storage of elements, and PollardRhoVParam is used for an efficient finding of the periodic segment. It is conjectured that the default values as given above are ‘best’ (see [Tes98b]), therefore there should be no need to set these parameters in general.

Example H67E6

The following statement computes the structure of the unit group of \mathbb{Z}_{34384}.

```plaintext
> G := AbelianGroup(G); G;
Generic Abelian Group over
Residue class ring of integers modulo 34384
Abelian Group isomorphic to $\mathbb{Z}/2 + \mathbb{Z}/2 + \mathbb{Z}/6 + \mathbb{Z}/612$
Defined on 4 generators
Relations:
  2*G.1 = 0
  2*G.2 = 0
  6*G.3 = 0
  612*G.4 = 0
```
67.4 Elements

67.4.1 Construction of Elements

Unless otherwise stated, the operations in this section apply to fp-abelian groups and generic abelian groups.

\[A ! [a_1, \ldots, a_n] \]

Given an abelian group \(A \) with generators \(e_1, \ldots, e_r \) and a sequence \(Q = [a_1, \cdots, a_r] \) of integers, construct the element \(a_1 e_1 + \cdots + a_r e_r \) of \(A \).

\[A ! e \]

Given a generic abelian group \(A \) and an element \(e \) of the domain over which it is defined, return \(e \) as an element of \(A \). If \(A \) is a proper subset of its underlying domain, then \(e \) must be a linear combination of the generators (which may be user-supplied) of \(A \).

\[A ! g \]

Given a generic abelian group \(A \) and an element \(g \) of the underlying set \(X \) of \(A \), return \(g \) as an element of \(A \).

\[A ! n \]

Given an abelian group \(A \) with exactly one generator \(x \), construct the element \(nx \).

\[\text{Random}(A) \]

Given either a finite fp-abelian group or a generic abelian group \(A \), return a random element of \(A \).

\[\text{Identity}(A) \]

\[\text{Id}(A) \]

\[A ! 0 \]

Construct the identity element (empty word) for the abelian group \(A \).

Let \(A \) be a generic abelian group defined in the universe \(U \) of \(A \). If \(g \) is an element of \(A \), then \(U!g \) is an element of \(U \).
67.4.2 Representation of an Element

An element g of an abelian group A can be represented as a linear combination with respect to a given generating sequence. The coefficients appearing in this linear combination provide an alternative representation for g. If A is a fp-group, the generating set will be the one on which the group was defined. In the case of a generic group, the generating set can either be that obtained when constructing a presentation for A or a user-supplied generating set.

Representation(g)

ElementToSequence(g)

Eltseq(g)

Let A be an abelian group with generating set e_1, \ldots, e_n and suppose g is an element of A, where $g = a_1e_1 + \ldots + a_ne_n$. These functions return the sequence Q of n integers defined by $Q[i] = a_i$, for $i = 1, \ldots, n$. Moreover, each a_i, $i = 1, \ldots, n$, is the integer residue modulus the order of the ith generator.

UserRepresentation(g)

Let A be a generic abelian group with a user-supplied set of generators u_1, \ldots, u_n and suppose g is an element of A, where $g = a_1u_1 + \ldots + a_nu_n$. This function returns the sequence Q of n integers defined by $Q[i] = a_i$, for $i = 1, \ldots, n$. Moreover, each a_i, $i = 1, \ldots, n$, is the integer residue modulus the order of the ith generator.

Representation(S, g)

Let A be a generic abelian group and let $S = [s_1, \ldots, s_m]$ be any sequence of elements of A. Assume g is an element of A such that $bg = a_1s_1 + \ldots + a_ms_m$. This function returns as its first value the sequence Q of m integers defined by $Q[i] = a_i$, for $i = 1, \ldots, m$. The second value returned is the coefficient b of g. Note that b might not be 1.

Example H67E7

We use the quadratic forms example considered above to illustrate these functions.

```plaintext
> Generators(QF);
[ <2,2,500001>, <206,-102,4867> ]
> g := QF ! [5, 6];
> g;
<837,-766,1370>
> Representation(g);
[ 1, 6 ]
> g := Random(QF);
> Representation(g);
[ 1, 270 ]
```
> UserRepresentation(g);
[377, 0, 515, 0, 0, 0, 0, 0, 0, 0]
>
> S := [];
> for i in [1..3] do
> d := Random(QF);
> Include(~S, d);
> end for;
> seq, coeff := Representation(S, g);
> seq; coeff;
[-170, -3, 0]
1

67.4.3 Arithmetic with Elements

If the generic abelian group A has been constructed with the flag \texttt{UseRepresentation} set true, then arithmetic with elements of A is trivial.

$\mathbf{u + v}$

Given elements u and v belonging to the same abelian group A, return the sum of u and v.

$\mathbf{-u}$

The inverse of element u.

$\mathbf{u - v}$

Given elements u and v belonging to the same abelian group A, return the sum of u and the inverse of v.

$\mathbf{m \cdot u}$$\mathbf{u \cdot m}$

Given an integer m, return the element $w + w + \cdots + w$ ($|m|$ summands), where $w = u$, if m is positive and $w = -u$ if m is negative.
67.5 Construction of Subgroups and Quotient Groups

The operations in this section apply to both, free abelian groups and arbitrary abelian groups.

67.5.1 Construction of Subgroups

\texttt{sub< A | L >}

Construct the subgroup B of the abelian group A generated by the elements specified by the terms of the generator list L. A term $L[i]$ of the generator list may consist of any of the following objects:

(a) An element liftable to A;
(b) A sequence of integers representing an element of A;
(c) A subgroup of A;
(d) A set or sequence of type (a), (b), or (c).

The collection of words and groups specified by the list must all belong to the group A and the group B will be constructed as a subgroup of A.

\textbf{Example H67E8}

We create a subgroup of the group $A = \mathbb{Z}/2 + \mathbb{Z}/3 + \mathbb{Z}/4 + \mathbb{Z}/5 + \mathbb{Z}/6 + \mathbb{Z} + \mathbb{Z}$.

\begin{verbatim}
> A<x> := AbelianGroup([2,3,4,5,6,0,0]);
> A;
Abelian Group isomorphic to Z/2 + Z/6 + Z/60 + Z + Z
Defined on 7 generators
Relations:
 2*x[1] = 0
 3*x[2] = 0
 4*x[3] = 0
 5*x[4] = 0
 6*x[5] = 0
> B<y> := sub< A | x[1], x[3], x[5], x[7] >;
> B;
Abelian Group isomorphic to Z/2 + Z/2 + Z/12 + Z
Defined on 4 generators in supergroup A:
Relations:
 2*y[1] = 0
 2*y[2] = 0
 12*y[3] = 0
\end{verbatim}

In the case of subgroups of generic groups, a number of parameters are provided.
Construct the subgroup of the generic abelian group A generated by the elements specified by the terms of the generator list L. A term $L[i]$ of the generator list may consist of any of the following objects:

(a) An element liftable into A;
(b) A sequence of integers representing an element of A;
(c) A set or sequence whose elements may be of either of the above types.

An element liftable into A may be an element of A itself, or it may be an element of U (Universe(U)), U being as usual the domain over which A is defined. For consistency with the construction, the values of the following parameters may also be passed to the subgroup constructor:

- **Order**
 - Type: RNGINT
 - Default:

- **RandomIntrinsic**
 - Type: MONSTG
 - Default:

- **ComputeStructure**
 - Type: BOOL
 - Default: false

- **UseUserGenerators**
 - Type: BOOL
 - Default: false

- **PollardRhoRParam**
 - Type: RNGINT
 - Default: 20

- **PollardRhoTParam**
 - Type: RNGINT
 - Default: 8

- **PollardRhoVParam**
 - Type: RNGINT
 - Default: 3

In particular, it is possible to construct a subgroup by giving its order and a random function generating elements of the subgroup. In this case, the list L would be empty since calculation of the subgroup structure would result in the construction of the p-Sylow subgroups from random elements of the subgroup. Further, when the structure of A is already known and if the subgroup is defined in terms of a set of generators in L then the subgroup structure is computed at the time of creation.

Example H67E9

We create a subgroup of the quadratic forms group considered above.

```plaintext
> S := []; > for j in [1..2] do > P := Random(QF); > Include(~S, P); > end for; > S; > QF1 := sub< QF | S>; > QF1;
```

Generic Abelian Group over
Binary quadratic forms of discriminant -4000004
Abelian Group isomorphic to Z/2 + Z/258
Defined on 2 generators in supergroup A:
QF1.1 = QF.1
QF1.2 = 2*QF.2

Relations:
2*QF1.1 = 0
258*QF1.2 = 0

67.5.2 Construction of Quotient Groups

Given an abelian group \(F \), and a set of relations \(R \) in the generators of \(F \), construct (a) an abelian group \(A \) isomorphic to the quotient of \(F \) by the subgroup of \(F \) defined by \(R \), and (b) the natural homomorphism \(\phi : F \rightarrow A \).

The expression defining \(F \) may be either simply the name of a previously constructed group, or an expression defining an abelian group. The possibilities for the relation list \(R \) are the same as for the AbelianGroup construction.

The function returns:
(a) The quotient group \(A \);
(b) The natural homomorphism \(\phi : F \rightarrow A \).

\[A / B \]

Given a subgroup \(B \) of the abelian group \(A \), construct the quotient of \(A \) by \(B \).

67.6 Standard Constructions and Conversions

\[\text{AbelianGroup(GrpAb, Q)} \]

Let \(Q = [a_1, \ldots, a_r] \) be a sequence of non-negative integers. This function creates the abelian group \(\mathbb{Z}_{a_1} + \cdots + \mathbb{Z}_{a_r} \), where \(\mathbb{Z}_{a_i} \) is the cyclic group of order \(|a_i| \) if \(a_i \neq 0 \) or the infinite cyclic group \(\mathbb{Z} \) otherwise, \(i = 1, \ldots, r \).

\[\text{AbelianGroup(G)} \]

Given an abelian permutation, matrix or polycyclic group \(G \), represent it as an abelian group \(A \). The function also returns the isomorphism \(\phi : G \rightarrow A \) as its second value.

\[\text{AbelianQuotient(G)} \]

Given a finitely presented, permutation, matrix or polycyclic group \(G \), return the maximal abelian quotient \(A \) of \(G \). The function returns the natural homomorphism \(\phi : G \rightarrow A \) as its second value.
DirectSum(A, B)

The direct sum of abelian groups A and B.

PCGroup(A)

A pc-group representation G of A. The isomorphism $\phi : A \rightarrow G$ is also returned.

PermutationGroup(A)

A permutation group representation of A. The particular group G is generated by disjoint cycles whose lengths are the abelian invariants of A. The isomorphism $\phi : G \rightarrow A$ is also returned.

FPGroup(A)

A fp-group group representation of A. The particular group G is generated by commuting generators whose orders are the abelian invariants of A. The isomorphism $\phi : G \rightarrow A$ is also returned.

CommutatorSubgroup(G)

DerivedSubgroup(G)

The derived subgroup of G, that is the trivial group, since G is abelian.

CommutatorSubgroup(H, K)
CommutatorSubgroup(G, H, K)

The commutator subgroup of groups H and K in their common overgroup G.

Centralizer(G, a)
Centraliser(G, a)

The centraliser of a in G.

Core(G, H)

The maximal normal subgroup of G that is contained in the subgroup H of G. Since G is abelian, this is H itself.

Centre(G)
Center(G)

The center of G, ie. G itself.
67.7 Operations on Elements

67.7.1 Order of an Element

\textbf{Order(}x\textbf{)}

Order of the element \(x \) belonging to an fp-abelian group. If the element has infinite order, the value zero is returned.

\underline{Example H67E10}\underline{ }

We compute the orders of some elements in the group \(\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5 \times \mathbb{Z} \).

\begin{verbatim}
> G<x> := AbelianGroup([2,3,4,5,0]);
> Order(x[1] + 2*x[2] + 3*x[4]);
30
> Order(x[1] + x[5]);
0
\end{verbatim}

It is possible to determine the order of an element of a generic group with first calculating the structure of the group. The order function involves the use of one of several algorithms:

- an improved baby-step giant-step algorithm, due to J. Buchmann, M.J. Jacobson, E. Teske [BJT97],
- the Pollard–Rho method based algorithm, described above [Tes98].

When computing the order of an element whose lower and upper bounds are known, or where lower and upper bounds for the group order are known, the following two algorithms have been shown to be significantly faster than the two algorithms mentioned above.

- the standard baby-step giant-step Shanks algorithm,
- another variant of the Pollard–Rho method which is due to P. Gaudry and R. Harley [GH00].

To avoid confusion we will distinguish the algorithms due to Teske et al and name them the T baby-step giant-step algorithm and the T Pollard–Rho algorithm respectively. The Pollard–Rho algorithm has smaller space requirements than the baby-step giant-step algorithm, so it is recommended for use in very large groups.

In all cases, if the group order is known beforehand, the element order is computed using this knowledge. This is a trivial operation.
Assume that g is an element of the generic abelian group A. This function returns the order of the element g. Note that if UseRepresentation is set to true for A, then this is a trivial operation.

If the parameter ComputeGroupOrder is true, the order of A is computed first (unless it is already known). The order of g is then computed using this knowledge; this last computation is trivial.

If ComputeGroupOrder is false, the order of g is computed using the T baby-step giant-step algorithm.

BSGSLowerBound and BSGSStepWidth are parameters which can be passed to the baby-step giant-step algorithm.

BSGSLowerBound sets a lower bound on the order of the element g, and BSGSStepWidth sets the step-width in the algorithm.

Order(g, l, u: parameters)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg</td>
<td>"Shanks"</td>
</tr>
<tr>
<td>UseInversion</td>
<td>false</td>
</tr>
</tbody>
</table>

Assume that g is an element of the generic abelian group A such that the order of g or the order of A is bounded by u and l. This function returns the order of the element g.

If the parameter Alg is set to "Shanks" then the generic Shanks algorithm is used, and when Alg is set to "PollardRho", the Gaudry–Harley Pollard–Rho variant is used. Setting UseInversion halves the search space. To be effective element inversion must be fast.

Order(g, l, u, n, m: parameters)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alg</td>
<td>"Shanks"</td>
</tr>
<tr>
<td>UseInversion</td>
<td>false</td>
</tr>
</tbody>
</table>

Assume that g is an element of the generic abelian group A such that the order of g or the order of A is bounded by u and l. Assume also that $\text{Order}(g) \equiv n \pmod{m}$ or that $\#A \equiv (\mod{m})$. This function returns the order of the element g. The two parameters Alg and UseInversion have the same meaning as for the previous Order function.

67.7.2 Discrete Logarithm

Log(g, d: parameters)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComputeGroupOrder</td>
<td>true</td>
</tr>
<tr>
<td>$\text{AllInPohligHellmanLoop}$</td>
<td>"BSGS"</td>
</tr>
<tr>
<td>BSGSStepWidth</td>
<td>0</td>
</tr>
<tr>
<td>PollardRhoRParam</td>
<td>20</td>
</tr>
<tr>
<td>PollardRhoTParam</td>
<td>8</td>
</tr>
<tr>
<td>PollardRhoVParam</td>
<td>3</td>
</tr>
</tbody>
</table>
Assume that g and d are elements of the generic abelian group A. This function returns the discrete logarithm of d to the base g. If ComputeGroupOrder is true, then the group order is computed first (if not already known) and from this the order of the base g is computed. The discrete logarithm problem is then solved using a Pohlig–Hellman loop calling either the T baby-step giant-step algorithm ($\text{AllInPohligHellmanLoop} := "\text{BSGS}"$) or the T Pollard–Rho algorithm ($\text{AllInPohligHellmanLoop} := "\text{PollardRho}"$).

The parameter BSGSStepWidth has the same meaning as for the Order function. Parameters PollardRhoRParam, PollardRhoTParam, and PollardRhoVParam have the same meaning as they do for the determination of structure (function AbelianGroup). If ComputeGroupOrder is false then the discrete logarithm problem is solved using the T baby-step giant-step algorithm. Here again the parameter BSGSStepWidth applies.

Example H67E11

It is assumed that the structure of the groups QF has already been computed. We illustrate the computation of the discrete logarithm relative to a given base.

```plaintext
> n := 38716;
> Ip := Reduction(PrimeForm(Q,11));
> g := GA_qf!Ip;
> d := n * g;
>
> l1 := Log(g, d : BSGSStepWidth := Floor((-Dk)^(1/4)/2));
> l2 := Log(g, d : AlInPohligHellmanLoop := "PollardRho");
> l3 := Log(g, d : ComputeGroupOrder := false);
> l4 := Log(g, d: ComputeGroupOrder := false,
>       BSGSStepWidth := Floor((-Dk)^(1/4)/2));
> assert l1 eq l2 and l2 eq l3 and l3 eq l4;
> assert IsDivisibleBy(n - l1, Order(g));
```

67.7.3 Equality and Comparison

- u eq v
 Returns true if the elements u and v are identical (as elements of the appropriate free abelian group), false otherwise.

- u ne v
 Returns true if the elements u and v are not identical (as elements of the appropriate free abelian group), false otherwise.

- IsIdentity(u)
- IsId(u)
 Returns true if the element u, belonging to the abelian group A, is the identity element (zero), false otherwise.
67.8 Invariants of an Abelian Group

ElementaryAbelianQuotient(G, p)

The maximal p-elementary abelian quotient of the group G as GrpAb. The natural epimorphism is returned as second value.

FreeAbelianQuotient(G)

The maximal free abelian quotient of the group G as GrpAb. The natural epimorphism is returned as second value.

Invariants(A)

The invariants of the abelian group G. Each infinite cyclic factor is represented by zero.

TorsionFreeRank(A)

The torsion-free rank of the abelian group G.

TorsionInvariants(A)

The torsion invariants of the abelian group G.

PrimaryInvariants(A)

The primary invariants of the abelian group G.

pPrimaryInvariants(A, p)

The p-primary invariants of the abelian group G.

67.9 Canonical Decomposition

TorsionFreeSubgroup(A)

The torsion-free subgroup of the abelian group G.

TorsionSubgroup(A)

The torsion subgroup of the abelian group G.

pPrimaryComponent(A, p)

The p-primary component of the abelian group G.
67.10 Set-Theoretic Operations

67.10.1 Functions Relating to Group Order

\textbf{Order}(G)

\#G

The order of the group G, returned as an ordinary integer. If G is an infinite group, the value zero is returned. Note that if G is a generic group then determining the order will require the structure of G to be determined.

\textbf{FactoredOrder}(G)

The factored order of the group G, returned as a sequence of prime-exponent pairs. If G is an infinite group, the empty sequence is returned. Note that if G is a generic group then determining the order will require the structure of G to be determined.

\textbf{Exponent}(G)

The exponent of the group G. If the group is infinite, the value zero is returned. Note that if G is a generic group then determining the exponent will require the structure of G to be determined.

\textbf{IsFinite}(G)

Return \textbf{true} if the group G is finite.

\textbf{IsInfinite}(G)

Return \textbf{true} if G, \textbf{false} otherwise.

67.10.2 Membership and Equality

\textbf{g in G}

Given an element g and a group G, return \textbf{true} if g is an element of G, \textbf{false} otherwise.

\textbf{g notin G}

Given an element g and a group G, return \textbf{true} if g is not an element of G, \textbf{false} otherwise.

\textbf{S subset G}

Given an group G and a set S of elements belonging to a group H, where G and H have some covering group, return \textbf{true} if S is a subset of G, \textbf{false} otherwise.

\textbf{S notsubset G}

Given a group G and a set S of elements belonging to a group H, where G and H have some covering group, return \textbf{true} if S is not a subset of G, \textbf{false} otherwise.
1970
FINITELY-PRESENTED GROUPS
Part X

\textbf{H subset G}
Given groups \(G \) and \(H \), subgroups of some common overgroup, return \textit{true} if \(H \) is a subgroup of \(G \), and \textit{false} otherwise.

\textbf{H notsubset G}
Given groups \(G \) and \(H \), subgroups of some common overgroup, return \textit{true} if \(H \) is not a subgroup of \(G \), and \textit{false} otherwise.

\textbf{G eq H}
Given groups \(G \) and \(H \), subgroups of some common overgroup, return \textit{true} if \(G \) and \(H \) are identical, and \textit{false} otherwise.

\textbf{G ne H}
Given groups \(G \) and \(H \), subgroups of some common overgroup, return \textit{true} if \(G \) and \(H \) are distinct groups, and \textit{false} otherwise.

\textbf{67.10.3 Set Operations}

\textbf{NumberingMap(G)}
A bijective mapping from the finite group \(G \) onto the set of integers \(\{1 \ldots |G|\} \). The actual mapping depends upon choice of standard generators for \(G \).

\textbf{RandomProcess(G)}

- \textbf{Slots} \texttt{RngIntElt} \textit{Default} : 10
- \textbf{Scramble} \texttt{RngIntElt} \textit{Default} : 100

Create a process to generate randomly chosen elements from the finite group \(G \). The process is based on the product-replacement algorithm of [CLGM+95], modified by the use of an accumulator. At all times, \(N \) elements are stored where \(N \) is the maximum of the specified value for \textbf{Slots} and \textbf{Ngens(G)}+1. Initially, these are just the generators of \(G \). As well, one extra group element is stored, the accumulator. Initially, this is the identity. Random elements are now produced by successive calls to \textbf{Random(P)}, where \(P \) is the process created by this function. Each such call chooses one of the elements in the slots and adds it into the accumulator. The element in that slot is replaced by the sum of it and another randomly chosen slot. The random value returned is the new accumulator value. Setting \textbf{Scramble} := \(m \) causes \(m \) such sum-replacement operations to be performed before the process is returned. Note that this algorithm cannot produce well-distributed random elements of an infinite group.

\textbf{Random(P)}
Given a random element process \(P \) created by the function \textbf{RandomProcess(G)} for the finite abelian group \(G \), return the next random element of \(G \) defined by the process.
An element chosen at random from the finite group G.

A representative element of G.

67.11 Coset Spaces

Transversal\((G, H)\)

RightTransversal\((G, H)\)

Given a group G and a subgroup H of G, this function returns:

(a) An indexed set of elements T of G forming a right transversal for G over H; and,

(b) The corresponding transversal mapping $\phi : G \rightarrow T$. If $T = \{t_1, \ldots, t_r\}$ and g in G, ϕ is defined by $\phi(g) = t_i$, where $g \in Ht_i$.

67.11.1 Coercions Between Groups and Subgroups

G ! g

Given an element g belonging to the subgroup H of the group G, rewrite g as an element of G.

H ! g

Given an element g belonging to the group G, and given a subgroup H of G containing g, rewrite g as an element of H.

K ! g

Given an element g belonging to the group H, and a group K, such that H and K are subgroups of G, and both H and K contain g, rewrite g as an element of K.

Morphism\((H, G)\)

The integer matrix defining the inclusion monomorphism from the subgroup H of G into G.
67.12 Subgroup Constructions

Although, in the case of an abelian group, many of the standard subgroup constructors are trivial, they are all implemented for the sake of uniformity. Here we document only those which are meaningful in the context of abelian groups.

\[
\text{H meet K}
\]

Given subgroups \(H\) and \(K\) of some group \(G\), construct their intersection.

\[
\text{H meet := K}
\]

Replace \(H\) with the intersection of groups \(H\) and \(K\).

\[
\text{H + K}
\]

Given subgroups \(H\) and \(K\) of some group \(G\), construct the smallest subgroup containing both.

\[
\text{n * G}
\]

For an integer \(n\) and some abelian group \(G\), construct the subgroup \(nG\). The second return value is the map \(G \to G\) sending \(g \to ng\).

\[
\text{FrattiniSubgroup(G)}
\]

The Frattini subgroup of the finite abelian group \(G\).

\[
\text{SylowSubgroup(G, p : parameters)}
\]

\[
\text{Sylow(G, p : parameters)}
\]

Structure Bool Default : false

The Sylow \(p\)-subgroup for the group \(G\). If \(G\) is a generic group and the parameter Structure is true, or if the group structure of \(A\) is known, then the group structure of the Sylow subgroup is computed.

Example H67E12

In the following example, we construct the Sylow 2-subgroup of \(G = Z_{34384}\).

\[
\begin{align*}
> m & := 34384; \\
> Zm & := \text{Integers}(m); \\
> U & := \{0 \ x \ : \ x \ \text{in} \ Zm \ | \ \text{GCD}(x, \ m) \ \text{eq} \ 1 \ \emptyset\}; \\
> G & := \text{GenericAbelianGroup}(U : \text{IdIntrinsic} := "Id", \\
> & \ \text{AddIntrinsic} := "+", \ \text{InverseIntrinsic} := "/"); \\
> _ & := \text{AbelianGroup}(G); \\
> \text{Factorization}(\#G); \\
> \text{Sylow}(G, 2); \\
\end{align*}
\]

2-Sylow subgroup: Generic Abelian Group over
Residue class ring of integers modulo 34384
Abelian Group isomorphic to \(Z/2 + Z/2 + Z/2 + Z/4\)
Defined on 4 generators in supergroup \(G\):

\[
\begin{align*}
\text{GAp.1} & = G.1 \\
\text{GAp.2} & = G.2
\end{align*}
\]
GAp.3 = 3*G.3
GAp.4 = 153*G.4
Relations:
2*GAp.1 = 0
2*GAp.2 = 0
2*GAp.3 = 0
4*GAp.4 = 0

67.13 Subgroup Chains

\textbf{CompositionSeries(G)}

A composition series for the finite abelian group G returned as a sequence of subgroups.

\textbf{Agemo(G, i)}

Given a finite p-group G, return the characteristic subgroup of G generated by the elements x^{p^i}, $x \in G$, where i is a positive integer.

\textbf{Omega(G, i)}

Given a finite p-group G, return the characteristic subgroup of G generated by the elements of order dividing p^i, where i is a positive integer.

67.14 General Group Properties

\textbf{IsCyclic(G)}

Returns \texttt{true} if the group G is cyclic, \texttt{false} otherwise.

\textbf{IsElementaryAbelian(G)}

Returns \texttt{true} if the group G is elementary abelian, \texttt{false} otherwise.

\textbf{IsFree(G)}

Returns \texttt{true} if G is free, \texttt{false} otherwise.

\textbf{IsMixed(G)}

Returns \texttt{true} if G is a mixed group, \texttt{false} otherwise. An abelian group is mixed if it is neither a torsion group nor free.

\textbf{IspGroup(G)}

Returns \texttt{true} if the finite group G is a p-group, ie. if all elements have order a power of p.
67.14.1 Properties of Subgroups

IsMaximal(G, H)

Returns `true` if the subgroup \(H \) of the finite group \(G \) is a maximal subgroup of \(G \), `false` otherwise.

Index(G, H)

The index of the subgroup \(H \) in the group \(G \), returned as an ordinary integer. If \(H \) has infinite index in \(G \), the value zero is returned.

FactoredIndex(G, H)

The factored index of the subgroup \(H \) in the group \(G \), returned as a sequence of prime-exponent pairs. If \(H \) has infinite index in \(G \), the empty sequence is returned.

IsPure(G, H)

Returns `true` if the subgroup \(H \) of the finite group \(G \) is pure, i.e. if for all \(n \) we have \(nG \cap H = nH \).

IsNeat(G, H)

Returns `true` if the subgroup \(H \) of the finite group \(G \) is neat, i.e., if for all primes \(p \) we have \(pG \cap H = pH \).

67.14.2 Enumeration of Subgroups

MaximalSubgroups(G)

The maximal subgroups of the finite group \(G \) returned as a sequence of subgroups.

Subgroups(G:parameters)

The subgroups of the finite group \(G \) are returned as a sequence of records. The record fields are `subgroup`, storing the actual group; `order`, storing the group order; and `length`, storing the length of the conjugacy class, which is always 1 for abelian groups.

- **Sub**

 If parameter `Sub` is set, only subgroups with invariants equal to the given sequence are found. The given sequence should contain positive integers, such that each divides the following.

- **Quot**

 If parameter `Quot` is set, only subgroups such that the quotient group has invariants equal to the given sequence are found. The given sequence should contain positive integers, such that each divides the following.
Ч. 67 ABELIAN GROUPS 1975

```plaintext
NumberOfSubgroupsAbelianPGroup (A)

Return the number of subgroups of each non-trivial order in the abelian p-group G
where A = [a_1, a_2, ...] and G = C_{a_1} \times C_{a_2} \times \ldots. The m-th entry in the sequence
returned is the number of subgroups of order p^m.
```

```plaintext
HasComplement(G, U)

For a finite abelian group G and a subgroup U decide if there exist some other
subgroup V such that G = U + V and U \cap V = \{0\}. In case such a V exists, it is
returned as the second value.
```

Example H67E13

We look at subgroups of an abelian group of order 12.

```plaintext
> G := AbelianGroup([2,6]);
> s := Subgroups(G); #s;
10
> s[7];
rec<recformat<order, length, subgroup, presentation> |
  order := 3, length := 1,
  subgroup := Abelian Group isomorphic to Z/3
Defined on 1 generator in supergroup G:
  $.1 = 2*G.2
Relations:
  3*$.1 = 0>
> [x'order:x in s];
[ 12, 6, 4, 2, 6, 6, 3, 2, 2, 1 ]
```

Now we find the elementary abelian subgroup of order 4.

```plaintext
> s22 := Subgroups(G;Sub := [2,2]); #s22;
1
> s22;
Conjugacy classes of subgroups
-----------------------------
[1] Order 4  Length 1
Abelian Group isomorphic to Z/2 + Z/2
Defined on 2 generators in supergroup G:
  $.1 = G.1
  $.2 = 3*G.2
Relations:
  2*$1 = 0
  2*$2 = 0
```

There is more than one subgroup of index 2 in G.

```plaintext
> q2 := Subgroups(G;Quot := [2]); #q2;
3
> q2[3]'subgroup;
```
Abelian Group isomorphic to \(\mathbb{Z}/6 \)
Defined on 1 generator in supergroup \(G \):
\[
$.1 = G.1 + G.2
\]
Relations:
\[
6\cdot$.1 = 0
\]

67.15 Representation Theory

```
CharacterTable(G)
```

The table of irreducible characters for the group \(G \).

67.16 The Hom Functor

```
Hom(G, H)
```

Given finite abelian groups \(G \) and \(H \), return an abelian group \(A \) isomorphic to \(\text{Hom}(G, H) \), and a transfer map \(t \) such that, given an element \(a \) of \(A \), \(t(a) \) yields the corresponding (MAGMA map type) homomorphism from \(G \) to \(H \). The structure of \(\text{Hom}(G, H) \) may thus be analyzed by examining \(A \).

```
HomGenerators(G, H)
```

Given finite abelian groups \(G \) and \(H \), return a sequence of (\(\mathbb{Z} \)-module) generators of \(\text{Hom}(G, H) \). The generators are returned as actual (MAGMA map type) homomorphisms. Note that \(\text{Hom}(G, H) \) is usually not free, so it is difficult to generate all homomorphisms uniquely using the generators alone (use \text{Hom} or \text{Homomorphisms} if that is desired).

```
Homomorphisms(G, H)
```

Given finite abelian groups \(G \) and \(H \), return a sequence containing all elements of \(\text{Hom}(G, H) \). The elements are returned as actual (MAGMA map type) homomorphisms. Note that this function simply uses \text{Hom}, transferring each element of the returned group to the actual MAGMA map type homomorphism.
Example H67E14

We examine $A = \text{Hom}(G, H)$, for certain abelian groups G and H.

\begin{verbatim}
> G := AbelianGroup([2, 3]);
> H := AbelianGroup([4, 6]);
> A, t := Hom(G, H);
> #A;
12
> A;
Abelian Group isomorphic to Z/2 + Z/6
Defined on 2 generators
Relations:
 2*A.1 = 0
 6*A.2 = 0
> h := t(A.1);
> h;
Mapping from: GrpAb: G to GrpAb: H
> h(G.1);
3*H.2
> h(G.2);
0
\end{verbatim}

We now enumerate all elements of A and examine the images of each generator of G under each homomorphism. We note that each possible list of images occurs only once.

\begin{verbatim}
> I := [<h(G.1), h(G.2)> where h is t(x): x in A];
> I;
[
 <0, 0>,
 <3*H.2, 0>,
 <2*H.1, 2*H.2>,
 <2*H.1 + 3*H.2, 2*H.2>,
 <0, 4*H.2>,
 <3*H.2, 4*H.2>,
 <2*H.1, 0>,
 <2*H.1 + 3*H.2, 0>,
 <0, 2*H.2>,
 <3*H.2, 2*H.2>,
 <2*H.1, 4*H.2>,
 <2*H.1 + 3*H.2, 4*H.2>
]
> #I;
12
> #Set(I);
12
\end{verbatim}
67.17 Automorphism Groups

The full automorphism group of the abelian group G.

67.18 Cohomology

$\text{Dual}(G)$

Computes the dual group G^* of G and a map M from $G \times G^* \rightarrow \mathbb{Z}/m\mathbb{Z}$ for m the exponent of G that allows G^* to act on G. G must be finite.

$\text{H}_2(G, \mathbb{Q}/\mathbb{Z})$

Computes $H := H^2(G, \mathbb{Q}/\mathbb{Z})$ and a map $f : H \rightarrow (G \times G \rightarrow \mathbb{Z}/m\mathbb{Z})$ that will give the cocycles as maps from $G \times G \rightarrow \mathbb{Z}/m\mathbb{Z}$. $m := \#G$.

$\text{Res}_{\text{H}_2(G, \mathbb{Q}/\mathbb{Z})}(U, \text{H}_2)$

For a subgroup U of G and $H_2 = H^2(G, \mathbb{Q}/\mathbb{Z})$ computes $H^2(U, \mathbb{Q}/\mathbb{Z})$ in a compatible way together with the restriction map into H_2.

H_2 must be the result of $\text{H}_2(G, \mathbb{Q}/\mathbb{Z})$ as this function relies on the attributes stored in there.

67.19 Homomorphisms

Two functions are provided to construct homomorphisms or isomorphisms from one group into another, where either of the groups, or both, may be generic abelian groups.

$\text{hom}< A \rightarrow B | L >$

Given groups A and B, construct a homomorphism from A to B as defined by the extension L. If one or both of A and B are generic abelian groups this works as usual, with one minor difference as explained below. Suppose that the generators of A are g_1, \ldots, g_n, and that $\phi(g_i) = h_i$ for each i, where ϕ is the homomorphism one wishes to construct. The list L as required by the constructors must be one of the following:

(a) a list of the n 2-tuples $< g_i, h_i >$ (order not important);
(b) a list of the n arrow-pairs $g_i \rightarrow h_i$ (order not important);
(c) h_1, \ldots, h_n (order is important).

If A is a generic abelian group this rule is relaxed somewhat in the following sense: If L is a list of n 2-tuples or of n arrow-pairs, the elements g_i need not be the defining generators of A. The only requirement is that the set $\{g_1, \ldots, g_n\}$ does actually generate the whole of A.
Homomorphism(A, B, X, Y)

Creates a homomorphism from A into B as given by the mapping of X into Y. The arguments A and B may be any type of group, including of course, generic abelian groups.

The function Homomorphism does not require the elements of the argument X to be generators of A as given by Generators(A), so it allows more freedom when creating a homomorphism. If, however, these elements fail to generate the whole of A then the subsequent map application will fail.

iso< A -> B | L >

Given groups A and B, construct an isomorphism from A to B as defined by the extension L. If one or both of A and B are generic abelian groups this works as usual, with one minor difference as explained below. Suppose that the generators of A are g_1, \ldots, g_n, and that $\phi(g_i) = h_i$ for each i, where ϕ is the isomorphism one wishes to construct. The list L as required by the constructors must be one of the following:

(a) a list of the n 2-tuples $< g_i, h_i >$ (order not important);
(b) a list of the n arrow-pairs $g_i \rightarrow h_i$ (order not important);
(c) h_1, \ldots, h_n (order is important).

If A is a generic abelian group this rule is relaxed somewhat in the following sense: If L is a list of n 2-tuples or of n arrow-pairs, the elements g_i may not necessarily be generators of A as given by the function Generators(A). The only requirement is that the set $\{h_1, \ldots, h_n\}$ does actually generate the whole of B.

Isomorphism(A, B, X, Y)

Creates an isomorphism from A into B as given by the mapping of X into Y. The arguments A and B can be any type of group, including of course, generic abelian groups.

The function Isomorphism does not require the elements of the argument X to be generators of A as given by Generators(A), so it allows more freedom when creating an isomorphism. If, however, these elements fail to generate the whole of A then the subsequent map application will fail.

Example H67E15

Recall that we defined the subgroups $GH1_{Zm}$ and $GH2_{Zm}$ of G as:

> GH1_Zm;
Generic Abelian Group over Residue class ring of integers modulo 34384 Abelian Group isomorphic to $\mathbb{Z}/6 + \mathbb{Z}/612$
Defined on 2 generators in supergroup G:

- $GH1_{Zm}.1 = G.2 + G.3$
- $GH1_{Zm}.2 = G.4$
Relations:

\[6 \cdot \text{GH1}_Zm.1 = 0 \]
\[612 \cdot \text{GH1}_Zm.2 = 0 \]

\[\text{GH2}_Zm; \]

Generic Abelian Group over
Residue class ring of integers modulo 34384
Abelian Group isomorphic to \(\mathbb{Z}/2 + \mathbb{Z}/2 + \mathbb{Z}/6 + \mathbb{Z}/612 \)
Defined on 4 generators in supergroup \(G \):

\[\text{GH2}_Zm.1 = G.1 \]
\[\text{GH2}_Zm.2 = G.2 \]
\[\text{GH2}_Zm.3 = G.3 \]
\[\text{GH2}_Zm.4 = G \]

Relations:

\[2 \cdot \text{GH2}_Zm.1 = 0 \]
\[2 \cdot \text{GH2}_Zm.2 = 0 \]
\[6 \cdot \text{GH2}_Zm.3 = 0 \]
\[612 \cdot \text{GH2}_Zm.4 = 0 \]

We construct the homomorphism

\[h := \text{hom}(\text{GH1}_Zm \rightarrow \text{GH2}_Zm \mid \text{GH2}_Zm.1, \text{GH2}_Zm.2); \]

Generic Abelian Group over
Residue class ring of integers modulo 34384
Abelian Group isomorphic to \(\mathbb{Z}/2 + \mathbb{Z}/2 \)
Defined on 2 generators in supergroup \(\text{GH2}_Zm \):

\[$.1 = \text{GH2}_Zm.2 \]
\[$.2 = \text{GH2}_Zm.1 \]

Relations:

\[2 \cdot $.1 = 0 \]
\[2 \cdot $.2 = 0 \]

but we cannot construct the isomorphism

\[i := \text{iso}(\text{GH1}_Zm \rightarrow \text{GH2}_Zm \mid \text{GH2}_Zm.1, \text{GH2}_Zm.2); \]

Runtime error in map\(<\ldots>: Images do not generate the (whole) codomain

An alternative way of creating the homomorphism \(h \) would be

\[h := \text{Homomorphism}(\text{GH1}_Zm, \text{GH2}_Zm, \text{Generators}(\text{GH1}_Zm), [\text{GH2}_Zm.1, \text{GH2}_Zm.2]); \]
67.20 Bibliography

68 FINITELY PRESENTED GROUPS

68.1 Introduction 1987
 68.1.1 Overview of Facilities 1987
 68.1.2 The Construction of Finitely Presented Groups 1987

68.2 Free Groups and Words . . . 1988
 68.2.1 Construction of a Free Group . . . 1988
 FreeGroup(n) 1988
 Identity(G) 1989
 Id(G) 1989
 Random(G, m, n) 1989
 68.2.2 Construction of Words 1989
 # 1989
 ElementToSequence(w) 1989
 Eltseq(w) 1989
 ExponentSum(w, x) 1989
 Weight(w, x) 1989
 GeneratorNumber(w) 1990
 LeadingGenerator(w) 1990
 Parent(w) 1990
 68.2.3 Access Functions for Words 1989
 * 1991
 ~ 1991
 (u, v) 1991
 (u_1, ..., u_n) 1991
 68.2.4 Arithmetic Operators for Words . . . 1991
 68.2.5 Comparison of Words 1992
 eq 1992
 ne 1992
 lt 1992
 le 1992
 ge 1992
 gt 1992
 68.2.6 Relations 1993
 = 1993
 r[1] 1993
 LHS(r) 1993
 RHS(r) 1994
 r[1] := w 1994
 f(r) 1994
 Parent(r) 1994

68.3 Construction of an FP-Group . 1995
 68.3.1 The Quotient Group Constructor . . . 1995
 68.3.2 The FP-Group Constructor 1996
 Group< > 1997
 68.3.3 Construction from a Finite Permutation or Matrix Group 1998
 FPGroup(G) 1998
 FPGroupStrong(G) 1999
 FPGroupStrong(G, N) 1999
 68.3.4 Construction of the Standard Presentation for a Coxeter Group . . . 2000
 CoxeterGroup(GrpFP, W) 2000
 68.3.5 Conversion from a Special Form of FP-Group 2001
 FPGroup(G) 2001
 68.3.6 Construction of a Standard Group . 2002
 AbelianGroup(GrpFP, [n_1, ..., n_r]) 2002
 AlternatingGroup(GrpFP, n) 2002
 Alt(GrpFP, n) 2002
 BraidGroup(GrpFP, n) 2002
 CoxeterGroup(GrpFP, t) 2002
 CyclicGroup(GrpFP, n) 2003
 DihedralGroup(GrpFP, n) 2003
 ExtraSpecialGroup(GrpFP, p, n : -) 2003
 SymmetricGroup(GrpFP, n) 2003
 Sym(GrpFP, n) 2003
 68.3.7 Construction of Extensions 2004
 Darstellungsguppe(G) 2004
 DirectProduct(G, H) 2004
 DirectProduct(Q) 2004
 FreeProduct(G, H) 2004
 FreeProduct(Q) 2004
 68.3.8 Accessing the Defining Generators and Relations 2006
 Generators(G) 2006
 NumberOfGenerators(G) 2006
 Ngens(G) 2006
 PresentationLength(G) 2006
 Relations(G) 2006

68.4 Homomorphisms 2006
 68.4.1 General Remarks 2006
 68.4.2 Construction of Homomorphisms 2007
 hom< > 2007
 IsSatisfied(U, E) 2007
 68.4.3 Accessing Homomorphisms 2007
 w @ f 2007
 f(w) 2007
 H @ f 2007
 f(H) 2007
68.4.4 Computing Homomorphisms to Finite Groups

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homomorphisms(F, G, A : -)</td>
<td>2010</td>
</tr>
<tr>
<td>Homomorphisms(F, G : -)</td>
<td>2010</td>
</tr>
<tr>
<td>Homomorphisms(F, G, A : -)</td>
<td>2011</td>
</tr>
<tr>
<td>Homomorphisms(F, G : -)</td>
<td>2011</td>
</tr>
<tr>
<td>HomomorphismsProcess(F, G, A : -)</td>
<td>2012</td>
</tr>
<tr>
<td>HomomorphismsProcess(F, G : -)</td>
<td>2012</td>
</tr>
<tr>
<td>NextElement(∼P)</td>
<td>2012</td>
</tr>
<tr>
<td>Complete(∼P)</td>
<td>2013</td>
</tr>
<tr>
<td>IsEmpty(P)</td>
<td>2013</td>
</tr>
<tr>
<td>IsValid(P)</td>
<td>2013</td>
</tr>
<tr>
<td>DefinesHomomorphism(P)</td>
<td>2013</td>
</tr>
<tr>
<td>Homomorphism(P)</td>
<td>2013</td>
</tr>
<tr>
<td># Homomorphisms(P)</td>
<td>2013</td>
</tr>
<tr>
<td>SimpleQuotients(F, deg1, deg2, ord1, ord2: -)</td>
<td>2015</td>
</tr>
<tr>
<td>SimpleQuotients(F, ord1, ord2: -)</td>
<td>2015</td>
</tr>
<tr>
<td>SimpleQuotients(F, ord2: -)</td>
<td>2015</td>
</tr>
<tr>
<td>SimpleQuotientProcess(F, deg1, deg2, ord1, ord2: -)</td>
<td>2016</td>
</tr>
<tr>
<td>NextSimpleQuotient(∼P)</td>
<td>2016</td>
</tr>
<tr>
<td>IsEmptySimpleQuotientProcess(P)</td>
<td>2016</td>
</tr>
<tr>
<td>SimpleEpimorphisms(P)</td>
<td>2016</td>
</tr>
</tbody>
</table>

68.5 Abelian, Nilpotent and Soluble Quotient

68.5.1 Abelian Quotient

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>AbelianQuotient(G)</td>
<td>2020</td>
</tr>
<tr>
<td>ElementaryAbelianQuotient(G, p)</td>
<td>2020</td>
</tr>
<tr>
<td>AbelianQuotientInvariants(G)</td>
<td>2020</td>
</tr>
<tr>
<td>AQInvariants(G)</td>
<td>2020</td>
</tr>
<tr>
<td>AbelianQuotientInvariants(H)</td>
<td>2021</td>
</tr>
<tr>
<td>AQInvariants(H)</td>
<td>2021</td>
</tr>
<tr>
<td>AbelianQuotientInvariants(G, T)</td>
<td>2021</td>
</tr>
<tr>
<td>AQInvariants(G, T)</td>
<td>2021</td>
</tr>
<tr>
<td>AbelianQuotientInvariants(G, n)</td>
<td>2021</td>
</tr>
<tr>
<td>AQInvariants(G, n)</td>
<td>2021</td>
</tr>
<tr>
<td>AbelianQuotientInvariants(H, n)</td>
<td>2021</td>
</tr>
<tr>
<td>AQInvariants(H, n)</td>
<td>2021</td>
</tr>
<tr>
<td>AbelianQuotientInvariants(G, T, n)</td>
<td>2021</td>
</tr>
<tr>
<td>AQInvariants(G, T, n)</td>
<td>2021</td>
</tr>
<tr>
<td>HasComputableAbelianQuotient(G)</td>
<td>2021</td>
</tr>
<tr>
<td>HasInfiniteComputableAbelianQuotient(G)</td>
<td>2022</td>
</tr>
<tr>
<td>IsPerfect(G)</td>
<td>2022</td>
</tr>
<tr>
<td>TorsionFreeRank(G)</td>
<td>2022</td>
</tr>
</tbody>
</table>

68.5.2 p-Quotient

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>pQuotient(F, p, c: -)</td>
<td>2023</td>
</tr>
</tbody>
</table>

68.5.3 The Construction of a p-Quotient

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>pQuotient(F, A : -)</td>
<td>2024</td>
</tr>
</tbody>
</table>

68.5.4 Nilpotent Quotient

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NilpotentQuotient(G, c: -)</td>
<td>2024</td>
</tr>
<tr>
<td>SetVerbose("NilpotentQuotient", n)</td>
<td>2031</td>
</tr>
</tbody>
</table>

68.5.5 Soluble Quotient

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolvableQuotient(G : -)</td>
<td>2032</td>
</tr>
<tr>
<td>SolvableQuotient(G : -)</td>
<td>2032</td>
</tr>
<tr>
<td>SolvableQuotient(F, n: -)</td>
<td>2033</td>
</tr>
<tr>
<td>SolvableQuotient(F, n: -)</td>
<td>2033</td>
</tr>
<tr>
<td>SolvableQuotient(F, P: -)</td>
<td>2033</td>
</tr>
<tr>
<td>SolvableQuotient(F, P: -)</td>
<td>2033</td>
</tr>
</tbody>
</table>

68.6 Subgroups

68.6.1 Specification of a Subgroup

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>subc ></td>
<td>2035</td>
</tr>
<tr>
<td>subc ></td>
<td>2035</td>
</tr>
<tr>
<td>nc<1 ></td>
<td>2035</td>
</tr>
<tr>
<td>nc<1 ></td>
<td>2036</td>
</tr>
<tr>
<td>CommutatorSubgroup(G)</td>
<td>2036</td>
</tr>
<tr>
<td>DerivedSubgroup(G)</td>
<td>2036</td>
</tr>
<tr>
<td>DerivedGroup(G)</td>
<td>2036</td>
</tr>
</tbody>
</table>

68.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToddCoxeter(G, H : -)</td>
<td>2038</td>
</tr>
<tr>
<td>Index(G, H : -)</td>
<td>2038</td>
</tr>
<tr>
<td>FactoredIndex(G, H : -)</td>
<td>2038</td>
</tr>
<tr>
<td>Order(G: -)</td>
<td>2039</td>
</tr>
<tr>
<td>FactoredOrder(G: -)</td>
<td>2039</td>
</tr>
</tbody>
</table>

68.6.3 Implicit Invocation of the Todd-Coxeter Algorithm

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>SetGlobalTCParameters(: -)</td>
<td>2042</td>
</tr>
<tr>
<td>UnsetGlobalTCParameters()</td>
<td>2042</td>
</tr>
</tbody>
</table>

68.6.4 Constructing a Presentation for a Subgroup

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rewrite(G, H : -)</td>
<td>2043</td>
</tr>
<tr>
<td>Rewrite(G, H : -)</td>
<td>2045</td>
</tr>
</tbody>
</table>

68.7 Subgroups of Finite Index

68.7.1 Low Index Subgroups

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LowIndexSubgroups(G, R : -)</td>
<td>2047</td>
</tr>
<tr>
<td>LowIndexProcess(G, R : -)</td>
<td>2051</td>
</tr>
<tr>
<td>NextSubgroup(∼P)</td>
<td>2052</td>
</tr>
<tr>
<td>NextSubgroup(∼P, ∼G)</td>
<td>2052</td>
</tr>
<tr>
<td>ExtractGroup(P)</td>
<td>2052</td>
</tr>
<tr>
<td>ExtractGenerators(P)</td>
<td>2052</td>
</tr>
<tr>
<td>IsEmpty(P)</td>
<td>2052</td>
</tr>
<tr>
<td>IsValid(P)</td>
<td>2052</td>
</tr>
<tr>
<td>LowIndexNormalSubgroups(G, n: -)</td>
<td>2055</td>
</tr>
</tbody>
</table>

68.7.2 Subgroup Constructions

<table>
<thead>
<tr>
<th>Function</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ Conjugate(H, u)</td>
<td>2056</td>
</tr>
</tbody>
</table>
Ch. 68: FINITELY PRESENTED GROUPS

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>meet</td>
<td>2056</td>
</tr>
<tr>
<td>Core(G, H)</td>
<td>2056</td>
</tr>
<tr>
<td>GeneratingWords(G, H)</td>
<td>2056</td>
</tr>
<tr>
<td>MaximalOvergroup(G, H)</td>
<td>2057</td>
</tr>
<tr>
<td>MinimalOvergroup(G, H)</td>
<td>2057</td>
</tr>
<tr>
<td>NormalClosure(G, H)</td>
<td>2057</td>
</tr>
<tr>
<td>Normaliser(G, H)</td>
<td>2057</td>
</tr>
<tr>
<td>Normalizer(G, H)</td>
<td>2057</td>
</tr>
<tr>
<td>SchreierGenerators(G, H)</td>
<td>2057</td>
</tr>
<tr>
<td>SchreierSystem(G, H)</td>
<td>2057</td>
</tr>
<tr>
<td>Transversal(G, H)</td>
<td>2057</td>
</tr>
<tr>
<td>Transversal(G, H, K)</td>
<td>2058</td>
</tr>
<tr>
<td>Properties of Subgroups</td>
<td>2061</td>
</tr>
<tr>
<td>Properties of Subgroups</td>
<td>2062</td>
</tr>
<tr>
<td>IsConjugate(G, H, K)</td>
<td>2062</td>
</tr>
<tr>
<td>IsMaximal(G, H)</td>
<td>2062</td>
</tr>
<tr>
<td>IsSelfNormalizing(G, H)</td>
<td>2062</td>
</tr>
<tr>
<td>Coset Spaces and Tables</td>
<td>2065</td>
</tr>
<tr>
<td>Coset Tables</td>
<td>2065</td>
</tr>
<tr>
<td>CosetTableToRepresentation(G, T)</td>
<td>2066</td>
</tr>
<tr>
<td>CosetTableToPermutationGroup(G, T)</td>
<td>2066</td>
</tr>
<tr>
<td>Coset Spaces: Construction</td>
<td>2067</td>
</tr>
<tr>
<td>CosetSpace(G, H)</td>
<td>2068</td>
</tr>
<tr>
<td>RightCosetSpace(G, H: -)</td>
<td>2068</td>
</tr>
<tr>
<td>LeftCosetSpace(G, H: -)</td>
<td>2068</td>
</tr>
<tr>
<td>Coset Spaces: Elementary Operations</td>
<td>2068</td>
</tr>
<tr>
<td>*</td>
<td>2068</td>
</tr>
<tr>
<td>*</td>
<td>2068</td>
</tr>
<tr>
<td>*</td>
<td>2068</td>
</tr>
<tr>
<td>in</td>
<td>2068</td>
</tr>
<tr>
<td>notin</td>
<td>2068</td>
</tr>
<tr>
<td>eq</td>
<td>2069</td>
</tr>
<tr>
<td>ne</td>
<td>2069</td>
</tr>
<tr>
<td>subset</td>
<td>2069</td>
</tr>
<tr>
<td>notsubset</td>
<td>2069</td>
</tr>
<tr>
<td>IsConjugate(G, H, K)</td>
<td>2069</td>
</tr>
<tr>
<td>IsMaximal(G, H)</td>
<td>2069</td>
</tr>
<tr>
<td>IsSelfNormalizing(G, H)</td>
<td>2069</td>
</tr>
<tr>
<td>Simplification</td>
<td>2078</td>
</tr>
<tr>
<td>Tietze Transformations</td>
<td>2078</td>
</tr>
<tr>
<td>Search(∼P: -)</td>
<td>2082</td>
</tr>
<tr>
<td>SearchEqual(∼P: -)</td>
<td>2082</td>
</tr>
<tr>
<td>Group(P)</td>
<td>2082</td>
</tr>
<tr>
<td>NumberOfGenerators(P)</td>
<td>2082</td>
</tr>
<tr>
<td>Ngens(P)</td>
<td>2082</td>
</tr>
<tr>
<td>NumberOfRelations(P)</td>
<td>2082</td>
</tr>
<tr>
<td>Nrels(P)</td>
<td>2082</td>
</tr>
<tr>
<td>PresentationLength(P)</td>
<td>2082</td>
</tr>
<tr>
<td>Small Group Identification</td>
<td>2093</td>
</tr>
<tr>
<td>IdentifyGroup(G)</td>
<td>2093</td>
</tr>
<tr>
<td>Concrete Representations of Small Groups</td>
<td>2095</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>PermutationGroup(G)</td>
<td>2095</td>
</tr>
<tr>
<td>PCGroup(G)</td>
<td>2095</td>
</tr>
</tbody>
</table>

68.12 Bibliography 2095
Chapter 68
FINITELY PRESENTED GROUPS

68.1 Introduction
This Chapter presents the functions designed for computing with finitely-presented groups (fp-groups for short). The name of the corresponding MAGMA category is GrpFP. The functions considered here are designed for doing what is sometimes referred to as combinatorial group theory.

68.1.1 Overview of Facilities
The facilities provided for fp-groups fall into a number of natural groupings:
- The construction of fp-groups in terms of generators and relations;
- The construction of particular types of quotient groups: abelian quotient, p-quotient, nilpotent quotient and soluble quotient;
- Index determination and subgroup building based on the Todd-Coxeter procedure;
- Calculations with subgroups having finite index in a group, where the subgroups are represented by coset tables;
- The construction of all subgroups having index less than some (small) specified bound;
- The construction of representations of an fp-group corresponding to actions on coset spaces and elementary abelian sections;
- The use of a rewriting process for constructing presentations of subgroups;
- The simplification of words with respect to a given set of relations.

For a description of fundamental algorithms for finitely presented groups, we refer the reader to [Sim94].

68.1.2 The Construction of Finitely Presented Groups
The construction of fp-groups utilises the fact that every group is a quotient of some free group. Thus, two general fp-group constructors are provided: FreeGroup(n) which constructs a free group of rank n, and quo< F | R > which constructs the quotient of group F by the normal subgroup defined by the relations R.

The naming of generators presents special difficulties since they are not always used in a consistent manner in the mathematical literature. A generator name is used in two distinct ways. Firstly, it plays the role of a variable having as its value a designated generator of G. Secondly, it appears as the symbol designating the specified generator whenever elements of the group are output. These two uses are separated in the MAGMA semantics.

In MAGMA, a standard indexing notation is provided for referencing the generators of any fp-group G. Thus, $G.i$ denotes the i-th generator of G. However, users may give
individual names to the generators by means of the generator-assignment. Suppose that the group G is defined on r generators. Then if the right hand side of the following statement creates a group, the special assignment

$G< v_1, \ldots, v_r> := construction$;

is equivalent to the statements

$G := construction$;
$v_1 := G.1$;
\ldots
$v_r := G.r$;

It should be noted that when the fp-group G is created as the quotient of the group F, any names that the user may have associated with the generators of F will not be associated with the corresponding generators of G. If this were allowed, then it would violate the fundamental principle that every object is viewed as belonging to a unique structure.

68.2 Free Groups and Words

68.2.1 Construction of a Free Group

FreeGroup(n)

Construct the free group F of rank n, where n is a positive integer.

The i-th generator of F may be referenced by the expression $F.i$, $i = 1, \ldots, n$. Note that a special form of the assignment statement is provided which enables the user to assign names to the generators of F. In this form of assignment, the list of generator names is enclosed within angle brackets and appended to the variable name on the left hand side of the assignment statement: $F< v_1, \ldots, v_n > := FreeGroup(n)$;

Example H68E1

The statement

$F := FreeGroup(2)$;

creates the free group of rank 2. Here the generators may be referenced using the standard names, $F.1$ and $F.2$.

The statement

$F< x, y > := FreeGroup(2)$;

defines F to be the free group of rank 2 and assigns the names x and y to the two generators.
68.2.2 Construction of Words

The operations in this section apply to both, free groups and arbitrary fp-groups.

\[G \mapsto [i_1, \ldots, i_s] \]

Given a group \(G \) defined on \(r \) generators and a sequence \([i_1, \ldots, i_s]\) of integers lying in the range \([-r, r]\), excluding 0, construct the word

\[G.\epsilon_1 \ast G.\epsilon_2 \ast \cdots \ast G.\epsilon_s \]

where \(\epsilon_j \) is +1 if \(i_j \) is positive, and −1 if \(i_j \) is negative.

Identity(G)

Id(G)

G ! 1

Construct the identity element, represented as the empty word, for the fp-group \(G \).

For a sample application of this function, see Example H68E3.

Random(G, m, n)

A random word of length \(l \) in the generators of the group \(G \), where \(m \leq l \leq n \). For a sample application of this function, see Example H68E3.

68.2.3 Access Functions for Words

This section describes some basic access functions for words. These operations apply to both, free groups and arbitrary fp-groups.

\[\#w \]

The length of the word \(w \).

ElementToSequence(w)

Eltseq(w)

The sequence \(Q \) obtained by decomposing the word \(w \) into its constituent generators and generator inverses. Suppose \(w \) is a word in the group \(G \). Then, if \(w = G.i_{1}^{e_1} \cdots G.i_{m}^{e_m} \), with each \(e_i = \pm1 \), then \(Q[j] = i_j \) if \(e_j = +1 \) and \(Q[j] = -i_j \) if \(e_j = -1 \), for \(j = 1, \ldots, m \).

ExponentSum(w, x)

Weight(w, x)

Given a word \(w \), and the name of a generator \(x \) of a group \(G \), compute the sum of the exponents of the generator \(x \) in the word \(w \). For a sample application of this function, see Example H68E3.
GeneratorNumber(w)

Suppose w is a word belonging to a group G. Assume x is the name of the i-th generator of G. Then

1. if $w = \text{Identity}(G)$, $\text{GeneratorNumber}(w)$ is 0;
2. if $w = x \ast w'$, w' a word in G, $\text{GeneratorNumber}(w)$ is i;
3. if $w = x^{-1} \ast w'$, w' a word in G, $\text{GeneratorNumber}(w)$ is $-i$.

LeadingGenerator(w)

Suppose w is a word belonging to a group G. If $w = x^\epsilon \ast w'$, w' a word in G, x a generator of G and $\epsilon \in \{-1,+1\}$, the functions returns x^ϵ. If $w = \text{Identity}(G)$, it returns $\text{Identity}(G)$. For a sample application of this function, see Example H68E3.

Parent(w)

The parent group G of the word w.

Example H68E2

Consider the free group F on 6 generators

```plaintext
> F<u,v,w,x,y,z> := FreeGroup(6);
```

and the sequence of words

```plaintext
> rels := [ (u*v)^42, (v,x), (x*z^2)^4,
>          v^2*y^3, (v*z)^3, y^4, (x*z)^3 ];
```

The abelianised relation matrix of the quotient

$$\langle u, v, w, x, y, z \mid (uv)^{42}, (v, x), (xz^2)^4, v^2y^3, (vz)^3, y^4, (xz)^3 \rangle$$

can be obtained using the following construction

```plaintext
> R := Matrix(Integers(),
>             [ [ Weight(r, F.j) : j in [1..6] ] : r in rels ]);
> R;
> [42 42 0 0 0 0]
> [ 0 0 0 0 0 0]
> [ 0 0 0 4 0 8]
> [ 0 2 0 0 3 0]
> [ 0 3 0 0 0 3]
> [ 0 0 0 4 0]
> [ 0 0 0 3 0]
```

(The function `Matrix` constructs a matrix from a sequence of row vectors.)
68.2.4 Arithmetic Operators for Words

Suppose G is an fp-group for which generators have already been defined. This subsection defines the elementary arithmetic operations on words that are derived from the multiplication and inversion operators. The availability of the operators defined here enables the user to construct an element (word) of G in terms of the generators as follows:

1. A generator is a word;
2. The expression (u) is a word, where u is a word;
3. The product $u \ast v$ of the words u and v is a word;
4. The conjugate u^v of the word u by the word v, is a word (u^v expands into the word $v^{-1} \ast u \ast v$);
5. The power of a word, u^n, where u is a word and n is an integer, is a word;
6. The commutator (u, v) of the words u and v is a word ($u^{-1} \ast v^{-1} \ast u \ast v$). Note that (u, v, w) is equivalent to $((u, v), w)$, i.e. commutators are left-normed.

The word operations defined here may be applied either to the words of a free group or the words of a group with non-trivial relations. If such an operator is applied to a group possessing non-trivial relations, only free reduction will be applied to the resulting words.

- $u \ast v$

 Given words u and v belonging to the same fp-group G, return the product of u and v.

- $u \uparrow n$

 The n-th power of the word u, where n is an integer. When invoked with $n = -1$, the function computes the inverse of u. When invoked with $n = 0$, the function returns the identity element.

- $u \uparrow v$

 Given words u and v belonging to the same fp-group G, return the conjugate $v^{-1} \ast u \ast v$ of the word u by the word v.

- (u, v)

 Given words u and v belonging to the same fp-group G, return the commutator $u^{-1}v^{-1}uv$ of the words u and v.

- (u_1, \ldots, u_n)

 Given the n words u_1, \ldots, u_n belonging to the same fp-group G, return their commutator. Commutators are left-normed, so that they are evaluated from left to right.
68.2.5 Comparison of Words

Words in an fp-group may be compared both for equality and for their relationship with respect to a natural lexicographic ordering. It should be noted that even when a pair of words belong to a group defined by non-trivial relations, only the free reductions of the words are compared. Thus, a pair of words belonging to a group G may be declared to be distinct even though they may represent the same element of G.

The words of an fp-group G are ordered first by length and then lexicographically. The lexicographic ordering is determined by the following ordering on the generators and their inverses:

$$G.1 < G.1^{-1} < G.2 < G.2^{-1} < \cdots$$

Here, u and v are words belonging to some common fp-group.

- $\texttt{u eq v}$: Return \texttt{true} if the free reductions of the words u and v are identical.
- $\texttt{u ne v}$: Return \texttt{true} if the free reductions of the words u and v are not identical.
- $\texttt{u lt v}$: Return \texttt{true} if the word u precedes the word v, with respect to the ordering defined above for elements of an fp-group. The words u and v are freely reduced before the comparison is made.
- $\texttt{u le v}$: Return \texttt{true} if the word u either precedes, or is equal to, the word v, with respect to the ordering defined above for elements of an fp-group. The words u and v are freely reduced before the comparison is made.
- $\texttt{u ge v}$: Return \texttt{true} if the word u either follows, or is equal to, the word v, with respect to the ordering defined above for elements of an fp-group. The words u and v are freely reduced before the comparison is made.
- $\texttt{u gt v}$: Return \texttt{true} if the word u follows the word v, with respect to the ordering defined above for elements of an fp-group. The words u and v are freely reduced before the comparison is made.
Example H68E3

We construct the free group on three generators and generate a random word \(w \) of length between 4 and 6.

\[
\begin{align*}
\text{\texttt{F<a,b,c> := FreeGroup(3);}} \\
\text{\texttt{w := Random(F, 4, 6);}} \\
\text{\texttt{w;}} \\
\text{b}^{-1} \ast \text{a}^{-1} \ast \text{b}^2 \ast \text{a}^{-1}
\end{align*}
\]

We print the length of \(w \) and the weight (the exponent sum) of generator \(a \) in \(w \).

\[
\begin{align*}
\text{\texttt{#w;}} \\
5 \\
\text{\texttt{Weight(w, a);}} \\
-2
\end{align*}
\]

We now strip the generators from \(w \) one by one, using arithmetic and comparison operators for words and the access function \texttt{LeadingGenerator}.

\[
\begin{align*}
\text{\texttt{while w ne Identity(F) do}} \\
\text{\texttt{g := LeadingGenerator(w);}} \\
\text{\texttt{print g;}} \\
\text{\texttt{w := g}^{-1} \ast w;}
\end{align*}
\]

68.2.6 Relations

A relation is an equality between two words in a fp-group. To facilitate working with relations, a relation type is provided.

\[
\begin{array}{c}
w_1 = w_2
\end{array}
\]

Given words \(w_1 \) and \(w_2 \) over the generators of an fp-group \(G \), create the relation \(w_1 = w_2 \). Note that this relation is not automatically added to the existing set of defining relations \(R \) for \(G \). It may be added to \(R \), for example, through use of the \texttt{quo}-constructor (see below).

\[
\begin{array}{c}
r[1] \\
\text{LHS(r)}
\end{array}
\]

Given a relation \(r \) over the generators of \(G \), return the left hand side of the relation \(r \). The object returned is a word over the generators of \(G \).
Given a relation r over the generators of G, return the right hand side of the relation r. The object returned is a word over the generators of G.

Redefine the left hand side of the relation r to be the word w.

Redefine the right hand side of the relation r to be the word w.

Given a homomorphism of the group G for which r is a relation, return the image of r under f.

Group over which the relation r is taken.

Example H68E4

We may define a group and a set of relations as follows:

```maple
> F<x, y> := FreeGroup(2);
> rels := { x^2 = y^3, (x*y)^4 = Id(F) } ;
```

To replace one side of a relation, the easiest way is to reassign the relation. So for example, to replace the relation $x^2 = y^3$ by $x^2 = y^4$, we go:

```maple
> r := x^2 = y^3;
> r := LHS(r) = y^4;
```
68.3 Construction of an FP-Group

An fp-group is normally constructed either by giving a presentation in terms of generators and relations or it is defined to be a subgroup or quotient group of an existing fp-group. However, fp-groups may be also created from finite permutation and matrix groups. Finally, Magma has separate types for a number of families of fp-groups that satisfy a condition such as being polycyclic. Again functions are provided to convert a member of one of these families into a general fp-group.

68.3.1 The Quotient Group Constructor

A group with non-trivial relations is constructed as a quotient of an existing group, usually a free group. For convenience, the necessary free group may be constructed in-line.

\[
\text{quo} < F \mid R >
\]

Given an fp-group \(F \), and a set of relations \(R \) in the generators of \(F \), construct the quotient \(G \) of \(F \) by the normal subgroup of \(F \) defined by \(R \). The group \(G \) is defined by means of a presentation which consists of the relations for \(F \) (if any), together with the additional relations defined by the list \(R \).

The expression defining \(F \) may be either simply the name of a previously constructed group, or an expression defining an fp-group.

If \(R \) is a list then each term of the list is either a word, a relation, a relation list or a subgroup of \(F \).

A word is interpreted as a relator.

A relation consists of a pair of words, separated by ‘\(= \)’. (See above.)

A relation list consists of a list of words, where each pair of adjacent words is separated by ‘\(= \)’: \(w_1 = w_2 = \cdots = w_r \). This is interpreted as the set of relations \(w_1 = w_r, \ldots, w_{r-1} = w_r \). Note that the relation list construct is only meaningful in the context of the quo-constructor.

A subgroup \(H \) appearing in the list \(R \) contributes its generators to the relation set for \(G \), i.e. each generator of \(H \) is interpreted as a relator for \(G \).

The group \(F \) may be referred to by the special symbol \($ \) in any word appearing to the right of the ‘\(| \)’ symbol in the quo-constructor. Also, in the context of the quo-constructor, the identity element (empty word) may be represented by the digit 1.

The function returns:
(a) The quotient group \(G \);
(b) The natural homomorphism \(\phi : F \to G \).

This function may require the computation of a coset table. Experienced users can control the behaviour of a possibly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function `SetGlobalTCPParameters`. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.
Given a subgroup H of the group G, construct the quotient of G by the normal closure N of H. The quotient is formed by taking the presentation for G and including the generating words of H as additional relators.

Example H68E5

The symmetric group of degree 4 may be represented as a two generator group with presentation $\langle a, b \mid a^2, b^3, (ab)^4 \rangle$. Giving the relations as a list of relators, the presentation would be specified as:

```plaintext
> F<a, b> := FreeGroup(2);
> G<x, y>, phi := quo< F | a^2, b^3, (a*b)^4 >;
```

Alternatively, giving the relations as a relations list, the presentation would be specified as:

```plaintext
> F<a, b> := FreeGroup(2);
> G<x, y>, phi := quo< F | a^2 = b^3 = (a*b)^4 = 1 >;
```

Finally, giving the relations in the form of a set of relations, this presentation would be specified as:

```plaintext
> F<a, b> := FreeGroup(2);
> rels := { a^2, b^3, (a*b)^4 };
> G<x, y>, phi := quo< F | rels >;
```

Example H68E6

A group may be defined using the `quo`-constructor without first assigning a free group. The $\$ symbol is used to reference the group whose quotient is being formed.

```plaintext
> S4<x, y> := quo< FreeGroup(2) | $.1^2, $.2^3, ($.1*$.2)^4 >;
> S4;
Finitely presented group S4 on 2 generators
Relations
  $x^2 = \text{Id}(S4)$
  $y^3 = \text{Id}(S4)$
  $(x * y)^4 = \text{Id}(S4)$
```

Example H68E7

We illustrate the use of the `quo`-constructor in defining the quotient of a group other than a free group.

```plaintext
> F<x, y> := Group< x, y | x^2 = y^3 = (x*y)^7 = 1 >;
> F;
Finitely presented group F on 2 generators
Relations
  $x^2 = \text{Id}(F)$
  $y^3 = \text{Id}(F)$
```
(x * y)⁷ = Id(F)
> G<a, b> := quo< F | (x, y)⁸ >;
> G;
Finitely presented group G on 2 generators
Relations
a² = Id(G)
b³ = Id(G)
(a * b)⁷ = Id(G)
(a, b)⁸ = Id(G)
> Order(G);
10752

68.3.2 The FP-Group Constructor
For convenience, a constructor is provided which allows the user to define an fp-group in a single step.

\textbf{Group< X | R >}

Given a list \(X \) of variables \(x_1, \ldots, x_r \), and a list of relations \(R \) over these generators, first construct the free group \(F \) on the generators \(x_1, \ldots, x_r \) and then construct the quotient of \(F \) corresponding to the normal subgroup of \(F \) defined by the relations \(R \).

The syntax for the relations \(R \) is the same as for the quo-constructor. The function returns:
(a) The quotient group \(G \);
(b) The natural homomorphism \(\phi : F \to G \).

Example H68E8
We illustrate the Group-constructor by defining the binary tetrahedral group in terms of the presentation \(< r, s | r³ = s³ = (rs)² >:\n
> G<r, s> := Group<r, s | r³ = s³ = (r*s)² >;

Example H68E9
Again, using the Group-constructor, the group \(< r, s, t | r², s², t², rst = str = trs > \) would be specified as:

> G<r, s, t> := Group<r, s, t | r², s², t², r*s*t = s*t*r = t*r*s>;
Example H68E10

In our final example we illustrate the use of functions to represent parametrised families of groups. In the notation of Coxeter, the symbol \((l, m|n, k)\) denotes the family of groups having presentation

\[
\langle a, b \mid a^l, b^m, (a * b)^n, (a * b^{-1})^k \rangle .
\]

```plaintext
> Glmnk := func< l, m, n, k | Group< a, b | a\^l, b\^m, (a*b\^n, (a*b^-1)^k > >;
> G<a, b> := Glmnk(3, 3, 4, 4);
> G;
Finitely presented group G on 2 generators
Relations
  a\^3 = Id(G)
  b\^3 = Id(G)
  (a * b)^4 = Id(G)
  (a * b^-1)^4 = Id(G)
> Order(G);
168
> G<a, b> := Glmnk(2, 3, 4, 5);
> G;
Finitely presented group G on 2 generators
Relations
  a\^2 = Id(G)
  b\^3 = Id(G)
  (a * b)^4 = Id(G)
  (a * b^-1)^5 = Id(G)
> Order(G);
1
```

Thus \((2, 3 \mid 4, 5)\) is the trivial group.

68.3.3 Construction from a Finite Permutation or Matrix Group

\texttt{FPGroup(G)}

Given a finite group \(G\) in category \texttt{GrpPerm} or \texttt{GrpMat}, this function returns a finitely presented group \(F\), isomorphic to \(G\), together with the isomorphism \(\phi : F \to G\). The generators of \(F\) correspond to the generators of \(G\), so this function can be used to obtain a set of defining relations for the given generating set of \(G\).

It should be noted that this function is only practical for groups of order at most a few million. In the case of much larger permutation groups, an isomorphic fp-group can be constructed using the function \texttt{FPGroupStrong}.
Given a finite group G in category GrpPerm or GrpMat, this function returns a finitely presented group F, isomorphic to G, together with the isomorphism $\phi : F \rightarrow G$. The generators of F correspond to a set of strong generators of G. If no strong generating set is known for G, one will be constructed.

For a detailed description of this function, in particular for a list of available parameters, we refer to Chapter 56 and Chapter 57, respectively.

Given a permutation group G and a normal subgroup N of G, this function returns a finitely presented group F, isomorphic to G/N, together with a homomorphism $\phi : G \rightarrow F$.

For a detailed description of this function, we refer to Chapter 56.

Example H68E11

We start with defining the alternating group $G \simeq A_5$ as a permutation group.

```plaintext
> G := AlternatingGroup(5);
> G;
Permutation group G acting on a set of cardinality 5
Order = 60 = 2^2 * 3 * 5
(3, 4, 5)
(1, 2, 3)
```

Now we create an fp-group F isomorphic to G, using the function `FPGroup`. The presentation is constructed by computing a set of defining relations for the generators of G, i.e. the generators of the returned fp-group correspond to the generators of G. This defines a homomorphism from F to G, which the function `FPGroup` returns as second return value.

```plaintext
> F<x,y>, f := FPGroup(G);
> F;
Finitely presented group F on 2 generators
Relations
  x^3 = Id(F)
  y^3 = Id(F)
  (x^-1 * y * x * y)^2 = Id(F)
  (x * y^-1 * x * y)^2 = Id(F)
> f;
Mapping from: GrpFP: F to GrpPerm: G
> f(x);
(3, 4, 5)
> f(y);
(1, 2, 3)
```

Using the function `FPGroupStrong`, we now create another fp-group F_s, isomorphic to G, whose generators correspond to a set of strong generators of G.

```plaintext
> Fs<[z]>, fs := FPGroupStrong(G);
```
> Fs;
Finitely presented group Fs on 3 generators
Relations
z[1]^-3 = Id(Fs)
(z[1]^-1 * z[3]^-1)^2 = Id(Fs)
z[3]^-3 = Id(Fs)
z[2]^-3 = Id(Fs)
(z[3]^-1 * z[2]^-1)^2 = Id(Fs)

> fs;
Mapping from: GrpFP: Fs to GrpPerm: G
Applying the isomorphism fs, we have a look at the strong generating set constructed for G.

> [fs(z[i]) : i in [1..#z]];
[(3, 4, 5),
 (1, 2, 3),
 (2, 3, 4)]

68.3.4 Construction of the Standard Presentation for a Coxeter Group

There is a special MAGMA category GrpPermCox, a subcategory of GrpPerm, for finite Coxeter groups. Here, we describe a function to create from a Coxeter group W a finitely presented group F, isomorphic to W, which is given by the standard Coxeter group presentation. We refer to Chapter 94.

CoxeterGroup(GrpFP, W)
Given a finite Coxeter group W in the category GrpFP Cox or GrpPermCox, construct a finitely presented group F isomorphic to W, given by a standard Coxeter presentation. The isomorphism from W to F is returned as second return value. The first argument to this function must be the category GrpFP.

Local BoolElt Default : false
If the parameter Local is set to true, F is the appropriate subgroup of the FP version of the overgroup of W.

Example H68E12
We construct a Coxeter group W of Cartan type C5 and create an isomorphic fp-group F. We can use the isomorphism from W to F to map words in the generators of F to permutation group elements and vice versa.

> W := CoxeterGroup("C5");
> F< [s] >, h := CoxeterGroup(GrpFP, W);
> F;
Finitely presented group F on 5 generators

Relations

\[
\begin{align*}
& s[3]^2 = \text{Id}(F) \\
& s[1]^2 = \text{Id}(F) \\
& s[4]^2 = \text{Id}(F) \\
& s[2]^2 = \text{Id}(F) \\
& s[5]^2 = \text{Id}(F) \\
& (s[4] \cdot s[5])^2 = (s[5] \cdot s[4])^2 \\
\end{align*}
\]

> h;

Mapping from: GrpCox: W to GrpFP: F given by a rule

> $h(W.1*W.2);$ \\
> $s[1] \cdot s[2]$ \\
> $(s[1]\cdot s[2]\cdot s[3]\cdot s[4]) \circ h$;

68.3.5 Conversion from a Special Form of FP-Group

Groups that satisfy certain properties, such as being abelian or polycyclic, are known to possess presentations with respect to which the word problem is soluble. Specialised categories have been constructed in Magma for several of these, e.g. the categories \texttt{GrpGPC}, \texttt{GrpPC} and \texttt{GrpAb}. The functions described in this section allow a group created in one of the special presentation categories to be recast as an fp-group.

\textbf{FPGroup(G)}

Given a group G, defined either by a polycyclic group presentation (types \texttt{GrpPC} and \texttt{GrpGPC}) or an abelian group presentation (type \texttt{GrpAb}), return a group H isomorphic to G, together with the isomorphism $\phi : G \rightarrow H$. The generators for H will correspond to the generators of G. The effect of this function is to convert a presentation in a special form into a general fp-group presentation.
Example H68E13

We illustrate the cast from special forms of fp-groups to the category \texttt{GrpFP} by converting a polycyclic group.

\begin{verbatim}
> G := DihedralGroup(GrpGPC, 0);
> G;
GrpGPC : G of infinite order on 2 PC-generators
PC-Relations:
 G.1^2 = Id(G),
 G.2^G.1 = G.-2
> F := FPGroup(G);
> F;
Finitely presented group F on 2 generators
Relations
 F.1^2 = Id(F)
 F.2^F.1 = F.2^-1
 F.1^-1 * F.2^-1 * F.1 = F.2
\end{verbatim}

68.3.6 Construction of a Standard Group

A number of functions are provided which construct presentations for various standard groups.

\begin{verbatim}
AbelianGroup(GrpFP, \[n_1, \ldots, n_r\])

Construct the abelian group defined by the sequence \([n_1, \ldots, n_r]\) of non-negative integers as an fp-group. The function returns the direct product of cyclic groups \(C_{n_1} \times C_{n_2} \times \cdots \times C_{n_r}\), where \(C_0\) is interpreted as an infinite cyclic group.

AlternatingGroup(GrpFP, n)

Alt(GrpFP, n)

Construct the alternating group of degree \(n\) as an fp-group, where the generators correspond to the permutations \((3, 4, \ldots, n)\) and \((1, 2, 3)\), for \(n\) odd, or \((1, 2)(3, 4, \ldots, n)\) and \((1, 2, 3)\), for \(n\) even.

BraidGroup(GrpFP, n)

Construct the braid group on \(n\) strings \((n - 1\) Artin generators) as an fp-group.

CoxeterGroup(GrpFP, t)

Construct the Coxeter group of Cartan type \(t\) as a finitely presented group, given by the standard Coxeter presentation. The Cartan type \(t\) is passed to this function as a string; we refer to Chapter 93 for details.
\end{verbatim}
Construct the cyclic group of order \(n \) as an fp-group.

For \(n > 2 \), return the dihedral group of order \(2n \) as an fp-group. For \(n = 0 \), return the infinite dihedral group as an fp-group.

Given a small prime \(p \) and a small positive integer \(n \), construct an extra-special group \(G \) of order \(p^{2n+1} \) in the category \(\text{GrpFP} \). The isomorphism type of \(G \) can be selected using the parameter \(\text{Type} \).

\[\text{Type} \quad \text{MONSTOR} \quad \text{Default} : \quad "+" \]

Possible values for this parameter are "+" (default) and "-".

If \(\text{Type} \) is set to "+", the function returns for \(p = 2 \) the central product of \(n \) copies of the dihedral group of order 8, and for \(p > 2 \) it returns the unique extra-special group of order \(p^{2n+1} \) and exponent \(p \).

If \(\text{Type} \) is set to "-", the function returns for \(p = 2 \) the central product of a quaternion group of order 8 and \(n - 1 \) copies of the dihedral group of order 8, and for \(p > 2 \) it returns the unique extra-special group of order \(p^{2n+1} \) and exponent \(p^2 \).

Construct the symmetric group of degree \(n \) as an fp-group, where the generators correspond to the permutations \((1, 2, \ldots, n) \) and \((1, 2) \).

We create the symmetric group \(\text{Sym}(8) \) as an fp-group:

\[> \text{S8} := \text{SymmetricGroup}(\text{GrpFP}, 8); \]
\[> \text{S8}; \]

Finitely presented group S8 on 2 generators

Relations

\[\text{S8.1}^8 = \text{Id(S8)} \]
\[\text{S8.2}^2 = \text{Id(S8)} \]
\[(\text{S8.1} * \text{S8.2})^{-7} = \text{Id(S8)} \]
\[(\text{S8.1}^{-1} * \text{S8.2} * \text{S8.1} * \text{S8.2})^{-3} = \text{Id(S8)} \]
\[(\text{S8.2} * \text{S8.1}^{-2} * \text{S8.2} * \text{S8.1}^2)^{-2} = \text{Id(S8)} \]
\[(\text{S8.2} * \text{S8.1}^{-3} * \text{S8.2} * \text{S8.1}^3)^{-2} = \text{Id(S8)} \]
\[(\text{S8.2} * \text{S8.1}^{-4} * \text{S8.2} * \text{S8.1}^4)^{-2} = \text{Id(S8)} \]

We create the Coxeter group of Cartan type \(F4 \) as an fp-group:

\[> \text{F} := \text{CoxeterGroup}(\text{GrpFP}, "F4"); \]
\[> \text{F}; \]
Finitely presented group F on 4 generators

Relations

\[
\begin{align*}
(F.2 \ast F.3)^2 &= (F.3 \ast F.2)^2 \\
F.1^2 &= \text{Id}(F) \\
F.2 \ast F.4 &= F.4 \ast F.2 \\
F.1 \ast F.2 \ast F.1 &= F.2 \ast F.1 \ast F.2 \\
F.2^2 &= \text{Id}(F) \\
F.3^2 &= \text{Id}(F) \\
F.3 \ast F.4 \ast F.3 &= F.4 \ast F.3 \ast F.4 \\
F.4^2 &= \text{Id}(F) \\
F.1 \ast F.4 &= F.4 \ast F.1
\end{align*}
\]

68.3.7 Construction of Extensions

Darstellungsgruppe(G)

Given an fp-group G, construct a maximal central extension \tilde{G} of G. The group \tilde{G} is created as an fp-group.

DirectProduct(G, H)

Given two fp-groups G and H, construct the direct product of G and H.

DirectProduct(Q)

Given a sequence Q of r fp-groups, construct the direct product $Q[1] \times \ldots \times Q[r]$.

FreeProduct(G, H)

Given two fp-groups G and H, construct the free product of G and H.

FreeProduct(Q)

Given a sequence Q of r fp-groups, construct the free product of the groups $Q[1], \ldots, Q[r]$.
Example H68E15

We construct a maximal central extension of the following group of order 36.

\[G < x_1, x_2 > := \text{Group} < x_1, x_2 \mid x_1^4, (x_1 \cdot x_2^{-1})^2, x_2^4, (x_1 \cdot x_2)^3 >; \]

Finitely presented group G on 2 generators

Relations
\[
\begin{align*}
 x_1^4 &= \text{Id}(G) \\
 (x_1 \cdot x_2^{-1})^2 &= \text{Id}(G) \\
 x_2^4 &= \text{Id}(G) \\
 (x_1 \cdot x_2)^3 &= \text{Id}(G)
\end{align*}
\]

\[D := \text{Darstellungsgruppe}(G); \]

Finitely presented group D on 4 generators

Relations
\[
\begin{align*}
 D.1^4 \cdot D.3^{-1} \cdot D.4^2 &= \text{Id}(D) \\
 D.1 \cdot D.2^{-1} \cdot D.1 \cdot D.2^{-1} \cdot D.4 &= \text{Id}(D) \\
 D.2^4 &= \text{Id}(D) \\
 D.1 \cdot D.2 \cdot D.1 \cdot D.2 \cdot D.1 \cdot D.2 \cdot D.4 &= \text{Id}(D) \\
 (D.1, D.3) &= \text{Id}(D) \\
 (D.2, D.3) &= \text{Id}(D) \\
 (D.1, D.4) &= \text{Id}(D) \\
 (D.2, D.4) &= \text{Id}(D) \\
 (D.3, D.4) &= \text{Id}(D)
\end{align*}
\]

\[\text{Index}(D, \text{sub}(D | \text{Id})); \]

108

Thus, a maximal central extension of \(G \) has order 108

Example H68E16

We create the direct product of the alternating group of degree 5 and the cyclic group of order 2.

\[A_5 := \text{Group} < a, b \mid a^2, b^3, (a \cdot b)^5 >; \]

\[Z_2 := \text{quo} < \text{FreeGroup}(1) \mid $.1^2 >; \]

\[G := \text{DirectProduct}(A_5, Z_2); \]

Finitely presented group G on 3 generators

Relations
\[
\begin{align*}
 G.1^2 &= \text{Id}(G) \\
 G.2^3 &= \text{Id}(G) \\
 (G.1 \cdot G.2)^5 &= \text{Id}(G) \\
 G.3^2 &= \text{Id}(G) \\
 G.1 \cdot G.3 &= G.3 \cdot G.1 \\
 G.2 \cdot G.3 &= G.3 \cdot G.2
\end{align*}
\]
68.3.8 Accessing the Defining Generators and Relations
The functions in this group provide access to basic information stored for a finitely-presented group G.

$G.i$

The i-th defining generator for G. A negative subscript indicates that the inverse of the generator is to be created. $G.0$ is $\text{Identity}(G)$, the empty word in G.

$\text{Generators}(G)$

A set containing the generators for the group G.

$\text{NumberOfGenerators}(G)$

The number of generators for the group G.

$\text{PresentationLength}(G)$

The total length of the relators for G.

$\text{Relations}(G)$

A sequence containing the defining relations for G.

68.4 Homomorphisms
For a general description of homomorphisms, we refer to Chapter 16. This section describes some special aspects of homomorphisms the domain of which is a finitely presented group.

68.4.1 General Remarks
The kernel of a homomorphism with a domain of type GrpFP can be computed using the function Kernel, if the codomain is of one of the types GrpGPC, GrpPC (cf. Chapter 61), GrpAb (cf. Chapter 67), GrpPerm (cf. Chapter 56), GrpMat (cf. Chapter 57), ModAlg or ModGrp (cf. Chapter 86), if the image is finite and its order sufficiently small. In this case, a regular permutation representation of the image is constructed and the kernel is created as a subgroup of the domain, defined by a coset table.

The kernel may also be computable, if the codomain is of the type GrpFP, the image is sufficiently small and a presentation for the image is known.

If the kernel of a map can be computed successfully, forming preimages of substructures is possible. An attempt to compute the kernel of a map will be made automatically, if the preimage of a substructure of the codomain is to be computed.

Note, that trying to compute the kernel may be very time and memory consuming; use this feature with care.
68.4.2 Construction of Homomorphisms

\textbf{hom< } P \rightarrow G | S >

Returns the homomorphism from the fp-group \(P \) to the group \(G \) defined by the assignment \(S \). \(S \) can be the one of the following:

(i) A list, sequence or indexed set containing the images of the \(n \) generators \(P.1, \ldots, P.n \) of \(P \). Here, the \(i \)-th element of \(S \) is interpreted as the image of \(P.i \), i.e. the order of the elements in \(S \) is important.

(ii) A list, sequence, enumerated set or indexed set, containing \(n \) tuples \(< x_i, y_i > \) or arrow pairs \(x_i \rightarrow y_i \), where \(x_i \) is a generator of \(P \) and \(y_i \in G \ (i = 1, \ldots, n) \) and the set \(\{x_1, \ldots, x_n\} \) is the full set of generators of \(P \). In this case, \(y_i \) is assigned as the image of \(x_i \), hence the order of the elements in \(S \) is not important.

Note, that it is currently not possible to define a homomorphism by assigning images to the elements of an arbitrary generating set of \(P \). It is the user’s responsibility to ensure that the arguments passed to the \textbf{hom}-constructor actually yield a well-defined homomorphism. For certain codomain categories, this may be checked using the function \textbf{IsSatisfied} described below.

\textbf{IsSatisfied(U, E)}

\(U \) is a set or sequence of either words belonging to an \(n \)-generator fp-group \(H \) or relations over \(H \). \(E \) is a sequence of \(n \) elements \([e_1, \ldots, e_n] \) belonging to a group \(G \) for which both, multiplication and comparison of elements are possible. Using the mapping \(H.i \rightarrow e_i \ (i = 1, \ldots, n) \), we evaluate the relations given by \(U \). If \(U \) is a set or sequence of relations, the left and right hand sides of each relation are evaluated and compared for equality. Otherwise, each word in \(U \) is evaluated and compared to the identity. If all relations are satisfied, \textbf{IsSatisfied} returns the Boolean value \textbf{true}. On the other hand, if any relation is not satisfied, \textbf{IsSatisfied} returns the value \textbf{false}.

This function may be used to verify the correctness of the definition of a homomorphism from an fp-group to a group in a category for which both, multiplication and comparison of elements are possible.

68.4.3 Accessing Homomorphisms

\textbf{w @ f}

Given a homomorphism whose domain is an fp-group \(G \) and an element \(w \) of \(G \), return the image of \(w \) under \(f \) as an element of the codomain of \(f \).

\textbf{H @ f}

Given a homomorphism whose domain is an fp-group \(G \) and a subgroup \(H \) of \(G \), return the image of \(H \) under \(f \) as a subgroup of the codomain of \(f \).

Some maps do not support images of subgroups.
Given a homomorphism whose domain is an fp-group G and an element g of the image of f, return the preimage of g under f as an element of G.

Some maps do not support inverse images.

Given a homomorphism whose domain is an fp-group G and a subgroup H of the image of f, return the preimage of H under f as a subgroup of G.

Some maps do not support inverse images. The inverse image of a subgroup of the codomain can only be computed if the kernel of the homomorphism can be computed, i.e. if the kernel has moderate index in the domain.

The domain of the homomorphism f.

The codomain of the homomorphism f.

The image or range of the homomorphism f as a subgroup of the codomain of f.

Some maps do not support this function.

The kernel of the homomorphism f as a (normal) subgroup of the domain of f, represented by a coset table.

Some maps do not support this function. The kernel of a homomorphism can only be computed, if it has moderate index in the domain.

Example H68E17

For arbitrary $n > 0$, the symmetric group of degree $n + 1$ is an epimorphic image of the braid group on n generators. In this example, we exhibit this relationship for $n = 4$.

We start with creating the braid group B on 5 strings, i.e. 4 Artin generators.

```plaintext
> B := BraidGroup(GrpFP, 5);
> B;
Finitely presented group B on 4 generators
Relations
  B.1 * B.2 * B.1 = B.2 * B.1 * B.2
  B.1 * B.3 = B.3 * B.1
  B.1 * B.4 = B.4 * B.1
  B.2 * B.3 * B.2 = B.3 * B.2 * B.3
  B.2 * B.4 = B.4 * B.2
```
In the symmetric group of degree 5, we define 4 transpositions which will be the images of the generators of B.

```plaintext
> S := SymmetricGroup(5);
> imgs := [ S!(1,2), S!(2,3), S!(3,4), S!(4,5) ];
```

In order to verify that this assignment actually gives rise to a well defined homomorphism, we check whether the potential images satisfy the defining relations of B.

```plaintext
> rels := Relations(B);
> rels;
[ B.1 * B.2 * B.1 = B.2 * B.1 * B.2, B.1 * B.3 = B.3 * B.1,
  B.1 * B.4 = B.4 * B.1, B.2 * B.3 * B.2 = B.3 * B.2 * B.3,
  B.2 * B.4 = B.4 * B.2, B.3 * B.4 * B.3 = B.4 * B.3 * B.4 ]
> IsSatisfied(rels, imgs);
true
```

They do. So we can define the homomorphism from B to S.

```plaintext
> f := hom< B->S | imgs >;
```

We see that f is surjective, i.e. S is an epimorphic image of B as claimed above.

```plaintext
> f(B) eq S;
true
```

We now check the kernel of f.

```plaintext
> Kernel(f);
Finitely presented group
Index in group B is 120 = 2^3 * 3 * 5
Subgroup of group B defined by coset table

Using the function GeneratingWords described later, we can obtain a set of generators of ker($f$) as a subgroup of $B$.

```plaintext
> GeneratingWords(B, Kernel(f));
{ B.2^-2, (B.1 * B.2 * B.3^-1 * B.2^-1 * B.1^-1)^2, B.1^-2,
 (B.3 * B.4^-1 * B.3^-1)^2, (B.2 * B.3^-1 * B.2^-1)^2,
 (B.2 * B.3 * B.4^-1 * B.3^-1 * B.2^-1)^2, B.4^-2,
 (B.1 * B.2^-1 * B.1^-1)^2, B.3^-2,
 (B.1 * B.2 * B.3 * B.4^-1 * B.3^-1 * B.2^-1 * B.1^-1)^2 }
```

It is easy to see that all generators of ker($f$) are conjugates of words of the form $g^{\pm 2}$, where $g$ is a generator of $B$. We check this, using the normal closure constructor ncl described later.

```plaintext
> Kernel(f) eq ncl< B | B.1^2, B.2^2, B.3^2, B.4^2 >;
true
```

Thus, the braid relations together with the relations $B.1^2, B.2^2, B.3^2, B.4^2$ are a set of defining relations for $S$. 
68.4.4 Computing Homomorphisms to Finite Groups

This section describes functions for computing representatives of the classes of homomorphisms from a finitely presented group $F$ to a finite group $G$ modulo a group $A$ of automorphisms of $G$.

Given a finitely presented group $F$ and two permutation groups $G$ and $A$ with $G\triangleleft A$, return a sequence containing representatives of the classes of homomorphisms from $F$ to $G$ modulo automorphisms of $G$ induced by elements of $A$. (That is, two homomorphisms $f_1, f_2 : F \to G$ are considered equivalent if there exists an element $a \in A$ such that $f_1(x) = f_2(x)^a$ for all $x \in F$.) The call \texttt{Homomorphisms}(F, G) is equivalent to \texttt{Homomorphisms}(F, G, G).

The function uses a backtrack algorithm testing certain conjugates of representatives of the $A$-classes in $G$ as possible images of the generators of $F$.

The following parameters are available for this function.

\begin{itemize}
  \item \textbf{Surjective} \quad \texttt{BoolElt} \quad \textbf{Default} : \texttt{true}
  
  If this parameter is set to \texttt{true} (default), only epimorphisms are considered.

  \item \textbf{Limit} \quad \texttt{RngIntElt} \quad \textbf{Default} : 0 (no limit)
  
  If this parameter is set to $n$, the function terminates after $n$ classes of homomorphisms satisfying the specified conditions have been found. A value of 0 (default) means no limit.

  \item \textbf{TimeLimit} \quad \texttt{RngIntElt} \quad \textbf{Default} : 0 (no limit)
  
  A limit in seconds for the amount of time spent in the backtrack search for homomorphisms. The time spent in initial coset enumerations is not counted towards this limit. A value of 0 (default) means no limit.

  \item \textbf{CosetEnumeration} \quad \texttt{BoolElt} \quad \textbf{Default} : \texttt{true}
  
  If this parameter is set to \texttt{true} (default), a number of short coset enumerations are performed for each generator of $F$ in order to check whether some $A$-classes in $G$ can be ruled out as possible images for this generator. If a class can be ruled out, the complexity of the backtrack search may be reduced significantly.

  In situations where it seems unlikely that classes can be ruled out as possible generator images, experienced users may wish to turn this feature off in order to save the time spent on the coset enumerations.

  \item \textbf{CacheCosetAction} \quad \texttt{BoolElt} \quad \textbf{Default} : \texttt{true}
  
  The value of this parameter indicates whether the actions of $A$ on the cosets of the centralisers of representatives of the $A$-classes in $G$ are cached during the backtrack search.

  Setting this parameter to \texttt{true} (default) results in faster computations and is recommended for normal applications. When computing homomorphisms to large
groups with many conjugate classes, this parameter can be set to false in order to reduce memory requirements at the expense of increased computing time.

Example H68E18

Consider the finitely presented group

\[ F := \langle a, b, c \mid ac^{-1}bc^{-1}aba^{-1}b, abab^{-1}c^{2}b^{2}, a^{2}b^{-1}(ca)^{4}cb^{-1} \rangle. \]

\[
\begin{align*}
&> F := \text{Group}\langle a, b, c \mid a*c^{-1}*b*c^{-1}*a*b*a^{-1}*b, \\
&\quad a*b*a*b^{-1}*c^{2}*b^{-1}, \\
&\quad a^{2}*b^{-1}*c*a*c*a*c*a*c*b^{-1} \rangle; \\
&> G := \text{Alt}(5); \\
&> \text{homs} := \text{Homomorphisms}(F, G : \text{Limit} := 1); \\
&> \#\text{homs} \gt 0; \\
&\text{true}
\end{align*}
\]

Given a finitely presented group \( F \) and two finite polycyclic groups \( G \) and \( A \) with \( G \triangleleft A \), return a sequence containing representatives of the classes of homomorphisms from \( F \) to \( G \) modulo automorphisms of \( G \) induced by elements of \( A \). (That is, two homomorphisms \( f_1, f_2 : F \to G \) are considered equivalent if there exists an element \( a \in A \) such that \( f_1(x) = f_2(x)^a \) for all \( x \in F \).) The call \( \text{Homomorphisms}(F, G) \) is equivalent to \( \text{Homomorphisms}(F, G, G) \).

The following parameters are available for this function.

- **Surjective**: BoolElt
  - Default: true
  - If this parameter is set to true (default), only epimorphisms are considered.

- **Limit**: RngIntElt
  - Default: 0 (no limit)
  - If this parameter is set to \( n \), the function terminates after \( n \) classes of homomorphisms satisfying the specified conditions have been found. A value of 0 (default) means no limit.
68.4.4.1 Computing Homomorphisms to Permutation Groups Interactively

A process version of the algorithm used by Homomorphisms is available for computing homomorphisms one at a time. The functions relevant for this interactive version are described in this section.

\begin{fbox}{HomomorphismsProcess(F, G, A : parameters)}
\end{fbox}

\begin{fbox}{HomomorphismsProcess(F, G : parameters)}
\end{fbox}

Given a finitely presented group \( F \) and two permutation groups \( G \) and \( A \) with \( G \triangleleft A \), return a process \( P \) for computing representatives of the classes of homomorphisms from \( F \) to \( G \) modulo automorphisms of \( G \) induced by elements of \( A \). (That is, two homomorphisms \( f_1, f_2 : F \to G \) are considered equivalent if there exists an element \( a \in A \) such that \( f_1(x) = f_2(x)^a \) for all \( x \in F \).) \( \text{HomomorphismsProcess}(F, G) \) is equivalent to \( \text{HomomorphismsProcess}(F, G, G) \).

After constructing the process, the search for homomorphisms is started and runs until the first homomorphism is found, the time limit is reached (in which case \( P \) is marked as invalid) or the search is completed without finding a homomorphism (in which case \( P \) is marked as empty).

The parameters have the same meaning as for the function Homomorphisms.

\begin{align*}
\text{Surjective} & : \text{BOOL} \quad \text{Default} : \text{true} \\
\text{Limit} & : \text{RNGINT} \quad \text{Default} : 0 \ (\text{no limit}) \\
\text{TimeLimit} & : \text{RNGINT} \quad \text{Default} : 0 \ (\text{no limit}) \\
\text{CosetEnumeration} & : \text{BOOL} \quad \text{Default} : \text{true} \\
\text{CacheCosetAction} & : \text{BOOL} \quad \text{Default} : \text{true}
\end{align*}

Setting a time limit for a process \( P \) limits the total amount of time spent in the backtrack search for homomorphisms during the construction of \( P \) and in subsequent calls to NextElement and Complete. The time spent in initial coset enumerations is not counted towards this limit.

If the time limit or the limit on the number of homomorphisms set for a process \( P \) is reached, \( P \) becomes invalid. Calling NextElement or Complete for an invalid process or for a process which is empty, that is, which has found all possible classes of homomorphisms, will cause a runtime error. The functions IsValid and IsEmpty can be used to check whether a process is valid or empty, respectively. The use of these functions is recommended to avoid runtime errors in loops or user written functions.

\begin{fbox}{NextElement(~P)}
\end{fbox}

Given a valid and non-empty process \( P \), continue the backtrack search until a new class of homomorphisms is found. If the search completes without a new representative being found, \( P \) is marked as empty. If a limit set for \( P \) is reached, \( P \) is marked as invalid.
Complete(\sim P)
Given a valid and non-empty process \( P \), continue the search for homomorphisms until all classes of homomorphisms have been found or a limit set for \( P \) is reached. If the search for homomorphisms completes, \( P \) is marked as empty. If a limit set for \( P \) is reached, \( P \) is marked as invalid.

IsEmpty(P)
Returns whether \( P \) is empty, that is, whether all possible classes of homomorphisms have been found.

IsValid(P)
Returns false if a limit set for \( P \) has been reached and true otherwise. Note that the return value of IsValid is not related to whether or not \( P \) currently defines a homomorphism.

DefinesHomomorphism(P)
Returns whether \( P \) currently defines a homomorphism which can be extracted using the function Homomorphism.

Homomorphism(P)
Given a process \( P \) which defines a homomorphism, return this homomorphism, that is, the homomorphism most recently found by \( P \). If \( P \) does not define a homomorphism, a runtime error will result. The function DefinesHomomorphism can be used to test whether a call to Homomorphism is legal for a process.

#P
Return the number of homomorphisms that have been found by the process \( P \).

Homomorphisms(P)
Return a sequence containing all homomorphisms that have been found by the process \( P \). Note that the sequence will only contain a complete set of representatives of the classes of homomorphisms if \( P \) is empty, that is, if the backtrack search for \( P \) has been completed.

Example H68E19
Consider the braid group \( B \) on 4 strings. We show how the interactive computation of homomorphisms can be used to determine a homomorphism \( f : B \to PSL(2,16) \) whose image is a maximal subgroup of \( PSL(2,16) \).

Note how the functions IsValid, isEmpty and DefinesHomomorphism are used to avoid runtime errors in the while loop.

```plaintext
> B := BraidGroup(GrpFP, 4);
> G := PSL(2,16);
> P := HomomorphismsProcess(B, G : Surjective := false,)
```
> TimeLimit := 10);
> while not IsEmpty(P) do
>   if DefinesHomomorphism(P) then
>     f := Homomorphism(P);
>     img := Image(f);
>     if IsMaximal(G,img) then
>       print "found image which is maximal subgroup";
>       break;
>     end if;
>   end if;
>   if IsValid(P) then
>     NextElement(~P);
>   else
>     print "Limit has been reached";
>     break;
>   end if;
> end while;

found image which is maximal subgroup

f;

Homomorphism of GrpFP: B into GrpPerm: G, induced by
  B.1 |--> (1, 4, 3, 6, 12)(2, 11, 9, 16, 7)(5, 17, 8, 15, 13)
  B.2 |--> (1, 4, 2, 10, 16)(3, 11, 9, 12, 14)(5, 15, 8, 13, 17)
  B.3 |--> (1, 4, 3, 6, 12)(2, 11, 9, 16, 7)(5, 17, 8, 15, 13)

Example H68E20

This example sketches how the interactive version of the homomorphism algorithm could be used as part of a function trying to prove that a group is infinite.

Note again how the functions IsValid, IsEmpty and DefinesHomomorphism are used to avoid runtime errors.

> function MyIsInfinite(F)
>   // ...
>   // quotient approach: check whether an obviously infinite
>   // normal subgroup can be found in reasonable time.
>   S := [ Alt(5), PSL(2,7), PSL(2,9), PSL(2,11) ];
>   for G in S do
>     P := HomomorphismsProcess(F, G : Surjective := false,
>       TimeLimit := 5);
>     while IsValid(P) and not IsEmpty(P) do
>       if DefinesHomomorphism(P) then
>         f := Homomorphism(P);
>         if 0 in AQInvariants(Kernel(f)) then
>           print "found infinite normal subgroup";
>         end if;
>       end if;
>     end while;
   end for;
We try the code fragment on the group

\[
< a, b \mid ab^{-1}a^{-1}ba^{-1}b^{-1}abb, ab^{-1}a^{-1}baaba^{-1}b^{-1}ab^{-1}a^{-1}baba^{-1}b^{-1} > .
\]

We try the code fragment on the group

\[
F := \text{Group} < a,b \mid a*b^{-1}*a^{-1}*b*a^{-1}*b^{-1}*a*b*b, a*b^{-1}*a^{-1}*b*a*b*a^{-1}*b^{-1}*a*b^{-1}*a^{-1}*b*a*b*a^{-1}*b^{-1} >;
\]

Hence group is infinite
true

### 68.4.4.2 Finding Homomorphisms onto Simple Groups

We describe utilities for finding homomorphisms onto simple groups. As in the previous example, this may be useful when the presentation defines a perfect group. The methods used are similar to the example, with a list of simple groups to try, and using the function `Homomorphisms`.

The list of simple groups supplied in V2.10 contains all non-abelian simple groups with order \( \leq 10^9 \). Such a list is dominated by \( PSL(2,q) \)'s with \( q \) odd. In this implementation these \( PSL(2,q) \)'s are treated as an infinite family rather than stored individually, and so continue above the above limit.

<table>
<thead>
<tr>
<th>SimpleQuotients(F, deg1, deg2, ord1, ord2: parameters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SimpleQuotients(F, ord1, ord2: parameters)</td>
</tr>
<tr>
<td>SimpleQuotients(F, ord2: parameters)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>ANY</td>
</tr>
<tr>
<td>Limit</td>
<td>RNGINTELT</td>
</tr>
<tr>
<td>HomLimit</td>
<td>RNGINTELT</td>
</tr>
</tbody>
</table>
Uses Homomorphisms to find epimorphisms from \( F \) onto simple groups in a fixed list. The arguments \( \deg1 \) and \( \deg2 \) are respectively lower and upper bounds for the degree of the image group. If the degree arguments are not present then bounds of 5 and \( 10^7 \) are used. The arguments \( \ord1 \) and \( \ord2 \) are respectively lower and upper bounds for the orders of the image group. (Setting \( \ord2 \) low enough is particularly important if a quick search is wanted.) If \( \ord1 \) is not given then it defaults to 1.

The return value is a list of sequences of epimorphisms found. Each sequence contains epimorphisms onto one simple group. The parameter Limit limits the number of successful searches to be carried out by Homomorphisms. The default value is 1, so by default the search terminates with the first simple group found to be a homomorphic image of \( F \).

The parameter HomLimit limits the number of homomorphisms that will be searched for by any particular call to Homomorphisms. It defaults to zero, so that all homomorphisms for any group found will be returned.

The parameter Family selects sublists of the main list to search. Possible values of this parameter are "All", "PSL", "PSL2", "Mathieu", "Alt", "PSp", "PSU", "Other", and "notPSL2"; sets of these strings are also allowed, which searches on the union of the appropriate sublists.

### SimpleQuotientProcess(F, \( \deg1 \), \( \deg2 \), \( \ord1 \), \( \ord2 \): parameters)

Family \hspace{1cm} \text{Any} \hspace{1cm} \text{Default: "All"}

Produce a record that defines a process for searching for simple quotients of \( F \) as SimpleQuotients does. Calling this function sets up the record and conducts the initial search until a quotient is found. Continuing the search for another quotient is done by calling NextSimpleQuotient. Extracting the epimorphisms found is achieved using SimpleEpimorphisms, and testing if the process has expired is the task of IsEmptySimpleQuotientProcess.

### NextSimpleQuotient(~P)

When \( P \) is a record returned by SimpleQuotientProcess, advance the search to the next simple group which is a homomorphic image of the finitely presented group. Does nothing if the process has expired.

### IsEmptySimpleQuotientProcess(P)

When \( P \) is a record returned by SimpleQuotientProcess, test whether or not \( P \) has expired.

### SimpleEpimorphisms(P)

When \( P \) is a record returned by SimpleQuotientProcess, extract the most recently found epimorphisms onto a simple group, plus a tuple describing the image group. This is a valid operation when IsEmptySimpleQuotientProcess returns false.
Example H68E21

We take a perfect finitely presented group and search for simple quotients.

```plaintext
> F := Group<a,b,c|a^13,b^3,c^2,a = b*c>;
> IsPerfect(F);
true
> L := SimpleQuotients(F,1,100,2,10^5:Limit := 2);
> #L;
2
> for x in L do CompositionFactors(Image(x[1])); end for;
G
| A(1, 13) = L(2, 13)
1
G
| A(2, 3) = L(3, 3)
1

> L[2,1];
Homomorphism of GrpFP: F into GrpPerm: $, Degree 13, Order
2^4 * 3^3 * 13 induced by
F.1 |---> (1, 10, 4, 5, 11, 8, 3, 6, 7, 12, 9, 13, 2)
F.2 |---> (2, 10, 4)(3, 6, 7)(5, 11, 13)(8, 12, 9)
F.3 |---> (1, 10)(2, 5)(3, 12)(8, 13)
> #L[2];
2

We've found L(2,13) and L(3,3) as images, with 2 inequivalent homomorphisms onto the second. We'll try a process looking through a smaller family.

> P := SimpleQuotientProcess(F,1,100,2,10^6:Family:="PSU");
> IsEmptySimpleQuotientProcess(P);
false
> eps, info := SimpleEpimorphisms(P);
> info;
<65, 62400, PSU(3, 4)>

We've found PSU(3,4) of order 62400 and degree 65 as an image. We continue with this process.

> NextSimpleQuotient(~P);
> IsEmptySimpleQuotientProcess(P);
true

No, there are no more within the limits given.
```
68.4.5 Searching for Isomorphisms

This section describes a function for searching for isomorphisms between two finitely presented groups.

**SearchForIsomorphism(F, G, m : parameters)**

Attempt to find an isomorphism from the finitely presented group $F$ to the finitely presented group $G$. The search will be restricted to those homomorphisms for which the sum of the word-lengths of the images of the generators of $F$ in $G$ is at most $m$.

If an isomorphism $\phi$ is found, then the values `true, $\phi, \phi^{-1}$` are returned. Otherwise, the values `false, _, _` are returned; of course, that does not necessarily mean that the groups are not isomorphic.

An error will result if any of the generators of $F$ turn out to be trivial.

By setting the verbose flag "IsoSearch" to 1, information about the progress of the search will be printed.

The parameters available for the function `SearchForIsomorphism` are:

- **All** `BOOL_ELT` *Default: false*
  
  If `All` is `false` (default), then the function halts and returns as soon as a single isomorphism is found. If `All` is `true`, then the search continues through all possible images that satisfy the image length condition, and a list of pairs $\langle \phi, \phi^{-1} \rangle$ for all isomorphisms $\phi : F \rightarrow G$ found is returned as the second return value.

- **IsomsOnly** `BOOL_ELT` *Default: true*
  
  If `IsomsOnly` is set to `false`, then all homomorphisms $F \rightarrow G$ will be returned if `All` is `true`, and the first nontrivial homomorphism found will be returned if `All` is `false`.

- **MaxRels** `RNG_INTEGER` *Default: 250m*
  
  The value of the `MaxRelations` parameter used in runs of `RWSGroup`. It is hard to find a sensible default, because if the value is unnecessarily large then time can be wasted unnecessarily. This may need to be increased if the function is used with finite groups, for example (although it is usually much more efficient to use permutation or matrix representations when testing isomorphism of finite groups).

- **CycConjTest** `BOOL_ELT` *Default: true*
  
  When `CycConjTest` is `true` and `All` is `false`, then images of the first generator which have a cyclic conjugate that comes earlier in the lexicographical order are rejected, because there would be a conjugate isomorphism in which the image was the cyclic conjugate. This nearly always results in faster run-times, but occasionally it can happen that the conjugate isomorphism has a larger sum of lengths of generator images, which is clearly bad. So the user has the option of not rejecting such images.

---

**Example H68E22**

John Hillman asked whether the following two groups are isomorphic.

```plaintext
> G1<s,t,u> := Group <s,t,u | s*u*s^-1=u^-1, t^2=u^2, t*s^2*t^-1=s^-2,
```
> u*(s*t)^2=(s*t)^2*u >;
> G2<x,y,z> := Group<x,y,z | x*y^2*x^-1=y^-2, y*x^2*y^-1=x^-2, x^2=z^2*(x*y)^2,
> y^2=(z^-1*x)^2, z*(x*y)^2=(x*y)^2*z >;
> isiso, f1, f2 := SearchForIsomorphism(G1,G2,7);
> isiso;
true
> f1;
Homomorphism of GrpFP: G1 into GrpFP: G2 induced by
  s |--> x * z^-1
  t |--> y * z
  u |--> x * y^-1 * z
> f2;
Homomorphism of GrpFP: G2 into GrpFP: G1 induced by
  x |--> s^2 * u * t^-1
  y |--> s^-1 * u^-1
  z |--> s * u * t^-1

The search for an isomorphism succeeded and returns the isomorphisms explicitly.

Example H68E23

Walter Neumann asked whether the next two groups are isomorphic.

> G1<x,y,z> := Group< x,y,z | x^2*y^5, x^14*z^23, (x^2,y), (x^2,z), x*y*z>;
> G2<a,b> := Group<a,b | a*b^16*a*b^-7, a^4*b^7*a^-1*b^7>;

It is a good idea to minimize the number of generators of G1 - since there is clearly a redundant generator here.

> G1s := Simplify(G1);
> Ngens(G1s);
2
> G1!G1s.1, G1!G1s.2;
x z

Now a direct call SearchForIsomorphism(G1s,G2b,4) will succeed, but will take many hours, and also use a lot of memory.

In contrast to G1, it can sometimes help to introduce a new generator in G2 if there are common substrings in relators.

> G2b<a,b,c> := Group< a,b,c | a*b^16*a*b^-7, a^-4*b^7*a^-1*b^7, c=b^7>;
> isiso, f1, f2 := SearchForIsomorphism(G1s,G2b,4);
> isiso;
true
> f1;
Homomorphism of GrpFP: G1s into GrpFP: G2b induced by
  G1s.1 |--> a * c^-1
  G1s.2 |--> c
> f2;
Homomorphism of GrpFP: G2b into GrpFP: G1s induced by
68.5 Abelian, Nilpotent and Soluble Quotient

68.5.1 Abelian Quotient

The functions in this section compute information about the abelian quotient of an fp-group $G$. Some functions may require the computation of a coset table. Experienced users can control the behaviour of an implicit coset enumeration with a set of global parameters. These global parameters can be changed using the function \texttt{SetGlobalTCPParameters}. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

The functions returning the abelian quotient or the abelian quotient invariants report an error if the abelian quotient cannot be computed, for example, because the relation matrix is too large. To avoid problems in user written programs or loops, the functions \texttt{HasComputableAbelianQuotient} and \texttt{HasInfiniteComputableAbelianQuotient} can be used.

\begin{verbatim}
AbelianQuotient(G)

The maximal abelian quotient $G/G'$ of the group $G$ as GrpAb (cf. Chapter 67). The natural epimorphism $\pi : G \to G/G'$ is returned as second value.

ElementaryAbelianQuotient(G, p)

The maximal $p$-elementary abelian quotient $Q$ of the group $G$ as GrpAb (cf. Chapter 67). The natural epimorphism $\pi : G \to Q$ is returned as second value.

AbelianQuotientInvariants(G)

\end{verbatim}

\begin{verbatim}
AQInvariants(G)

Given a finitely presented group $G$, this function computes the elementary divisors of the derived quotient group $G/G'$, by constructing the relation matrix for $G$ and transforming it into Smith normal form. The algorithm used is an algorithm of Havas which does the reduction entirely over the ring of integers $\mathbb{Z}$ using clever heuristics to minimize the growth of coefficients.

The divisors are returned as a sequence of integers.

\end{verbatim}
AbelianQuotientInvariants(H)
AQInvariants(H)
AbelianQuotientInvariants(G, T)
AQInvariants(G, T)

Given a subgroup $H$ of the finitely presented group $G$, this function computes the elementary divisors of the derived quotient group of $H$. (The coset table $T$ may be used to define $H$.) This is done by abelianising the Reidemeister-Schreier presentation for $H$ and then proceeding as above. The divisors are returned as a sequence of integers.

AbelianQuotientInvariants(G, n)
AQInvariants(G, n)

Given a finitely presented group $G$, this function computes the elementary divisors of the quotient group $G/N$, where $N$ is the normal subgroup of $G$ generated by the derived group $G'$ together with all $n$-th powers of elements of $G$. The algorithm constructs the relation matrix corresponding to the presentation of $G$ and computes its Smith normal form over the ring $\mathbb{Z}/n\mathbb{Z}$. The calculation is particularly efficient when $n$ is a small prime. The divisors are returned as a sequence of integers.

AbelianQuotientInvariants(H, n)
AQInvariants(H, n)
AbelianQuotientInvariants(G, T, n)
AQInvariants(G, T, n)

Given a subgroup $H$ of the finitely presented group $G$, this function computes the elementary divisors of the quotient group $H/N$, where $N$ is the normal subgroup of $H$ generated by $H'$ together with all $n$-th powers of elements of $H$. (The coset table $T$ may be used to define $H$.) This is done by abelianising the Reidemeister-Schreier presentation for $H$ and then proceeding as above. The divisors are returned as a sequence of integers.

HasComputableAbelianQuotient(G)

Given an fp-group $G$, this function tests whether the abelian quotient of $G$ can be computed. If so, it returns the value `true`, the abelian quotient $A$ of $G$ and the natural epimorphism $\pi : G \to A$. If the abelian quotient of $G$ cannot be computed, the value `false` is returned.

This function is especially useful to avoid runtime errors in user written loops or functions.
HasInfiniteComputableAbelianQuotient(G)

Given an fp-group \( G \), this function tests whether the abelian quotient of \( G \) can be computed and is infinite. If so, it returns the value \texttt{true}, the abelian quotient \( A \) of \( G \) and the natural epimorphism \( \pi : G \to A \). If the abelian quotient of \( G \) cannot be computed or if it is finite, the value \texttt{false} is returned.

The function first checks the modular abelian invariants for a set of small primes. If for one of these primes, the modular abelian quotient is trivial, \( A \) must be finite and the function returns without actually computing the abelian quotient. If one is interested only in infinite quotients, this heuristics may save time.

IsPerfect(G)

Given an fp-group \( G \), this function tries to decide whether \( G \) is perfect by checking whether the abelian quotient of \( G \) is trivial.

TorsionFreeRank(G)

Given the finitely presented group \( G \), return the torsion-free rank of the derived quotient group of \( G \).

Example H68E24

The Fibonacci group \( F(7) \) has the following 2-generator presentation:

\[
\langle a, b \mid a^2b^{-2}a^{-1}b^{-2}(a^{-1}b^{-1})^2, abab^2abab^{-1}(ab^2)^2 \rangle.
\]

We proceed to investigate the structure of this group.

\[
\begin{align*}
\text{\texttt{F7}} & \text{:= FreeGroup(2); } \\
\text{\texttt{F7}} & \text{:= quo< F | a^{-2}b^{-2}a^{-1}b^{-2}(a^{-1}b^{-1})^{-2}, } \\
& \quad \text{a*b*a*b^2*a*b*a*b^{-1}*(a*b)^2 >; } \\
\text{\texttt{F7}} & \text{; }
\end{align*}
\]

Finitely presented group \( F7 \) on 2 generators

Relations
\[
\begin{align*}
a^{-2} & \ast b^{-2} \ast a^{-1} \ast b^{-2} \ast a^{-1} \ast b^{-1} \ast a^{-1} \ast b^{-1} = \text{Id}(F7) \\
a \ast b \ast a \ast b^2 \ast a \ast b \ast a \ast b^{-1} \ast a \ast b^{-2} \ast a \ast b^{-2} = \text{Id}()7
\end{align*}
\]

We begin by determining the structure of the maximal abelian quotient of \( F(7) \).

\[
\begin{align*}
\text{\texttt{AbelianQuotientInvariants(F7);}} \\
\end{align*}
\]

The maximal abelian quotient of \( F(7) \) is cyclic of order 29. At this point there is no obvious way to proceed, so we attempt to determine the index of some subgroups.

\[
\begin{align*}
\text{\texttt{Index( F7, sub< F7 | a > );}} \\
1
\end{align*}
\]

We are in luck: \( F(7) \) is generated by \( a \) and so must be cyclic. This fact coupled with the knowledge that its abelian quotient has order 29 tells us that the group is cyclic of order 29.
Example H68E25

The group $G = (8, 7 \mid 2, 3)$ is defined by the presentation

$$< a, b \mid a^8, b^7, (ab)^2, (a^{-1}b)^3 >.$$  

We consider the subgroup $H$ of $G$, generated by the words $a^2$ and $a^{-1}b$:

$$G<a, b> := \text{Group}\langle a, b\mid a^8, b^7, (a \ast b)^2, (a^{-1} \ast b)^3\rangle;$$  
$$H<x, y> := \text{sub}\langle G \mid a^2, a^{-1} \ast b \rangle;$$

The fastest way to determine the order of the maximal 2-elementary abelian quotient of $H$ is to use the function \texttt{AbelianQuotientInvariants}:

$$> \text{#AbelianQuotientInvariants}(H, 2);$$  
$$1$$

We see that the maximal 2-elementary abelian quotient of $H$ has order $2^1$.

68.5.2 $p$-Quotient

Let $F$ be a finitely presented group, $p$ a prime and $c$ a positive integer. A $p$-quotient algorithm constructs a consistent power-conjugate presentation for the largest $p$-quotient of $F$ having lower exponent-$p$ class at most $c$. The $p$-quotient algorithm used by MAGMA is part of the ANU $p$-Quotient program. For details of the algorithm, see [NO96]. In MAGMA the result is returned as a group of type \texttt{GrpPC} (cf. Chapter 61).

Assume that the $p$-quotient has order $p^n$, Frattini rank $d$, and that its generators are $a_1, \ldots, a_n$. Then the power-conjugate presentation constructed has the following additional structure. The set \{a_1, \ldots, a_d\} is a generating set for $G$. For each $a_k$ in \{a_{d+1}, \ldots, a_n\}, there is at least one relation whose right hand side is $a_k$. One of these relations is taken as the definition of $a_k$. (The list of definitions is also returned by \texttt{pQuotient}.) The power-conjugate generators also have a weight associated with them: a generator is assigned a weight corresponding to the stage at which it is added and this weight is extended to all normal words in a natural way.

The $p$-quotient function and its associated commands allows the user to construct a power-conjugate presentation (pcp) for a $p$-group. Note that there is also a process version of the $p$-quotient algorithm, which gives the user complete control over its execution. For a description, we refer to Chapter 69.
68.5.3 The Construction of a $p$-Quotient

**pQuotient**($F$, $p$, $c$; parameters)

Given an fp-group $F$, a prime $p$ and a positive integer $c$, construct a pcp for the largest $p$-quotient $G$ of $F$ having lower exponent-$p$ class at most $c$. If $c$ is given as 0, then the limit 127 is placed on the class. The function also returns the natural homomorphism $\pi$ from $F$ to $G$, a sequence $S$ describing the definitions of the pc-generators of $G$ and a flag indicating whether $G$ is the maximal $p$-quotient of $F$.

The $k$-th element of $S$ is a sequence of two integers, describing the definition of the $k$-th pc-generator $G.k$ of $G$ as follows.

- If $S[k] = [0, r]$, then $G.k$ is defined via the image of $F.r$ under $\pi$.
- If $S[k] = [r, 0]$, then $G.k$ is defined via the power relation for $G.r$.
- If $S[k] = [r, s]$, then $G.k$ is defined via the conjugate relation involving $G.r^{G.s}$.

There exist a number of parameters for controlling the behaviour of this function, which are described below.

**Example H68E26**

We construct the largest 2-quotient of class 6 for a two-generator, two-relator group.

```plaintext
> F<a,b> := FreeGroup(2);
> G := quo< F | (b, a, a) = 1, (a * b * a)^4 = 1 >;
> Q, fQ := pQuotient(G, 2, 6);
> Order(Q);
524288
> fQ;
Mapping from: GrpFP: G to GrpPC: Q
```

The parameters available for the function **pQuotient** are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent</td>
<td>RngIntElt</td>
<td>0</td>
</tr>
<tr>
<td>Metabelian</td>
<td>BoolElt</td>
<td>false</td>
</tr>
</tbody>
</table>

- If `Exponent := m`, enforce the exponent law, $x^m = 1$, on the group.
- If `Metabelian := true`, then a consistent pcp is constructed for the largest metabelian $p$-quotient of $F$ having lower exponent-$p$ class at most $c$.

The `Print` parameter controls the volume of printing. By default its value is that returned by **GetVerbose**("pQuotient"), which is 0 unless it has been changed through use of **SetVerbose**. The effect is the following:

- `Print := 0`: No output.
- `Print := 1`: Report order of $p$-quotient at each class.
Print := 2: Report statistics and redundancy information about tails, consistency, collection of relations and exponent enforcement components of calculation.

Print := 3: Report in detail on the construction of each class.

Note that the presentation displayed is a power-commutator presentation (since this is the version stored by the p-quotient).

Workspace RNGINTELT Default : 5000000

The amount of space requested for the p-quotient computation.

Example H68E27

We construct the largest 3-quotient of class 6 for a two-generator group of exponent 9.

> F<a, b> := FreeGroup(2);
> G := quo< F | a^3 = b^3 = 1 >;
> q := pQuotient(G, 3, 6: Print := 1, Exponent := 9);

Lower exponent-3 central series for G

Group: G to lower exponent-3 central class 1 has order 3^2
Group: G to lower exponent-3 central class 2 has order 3^3
Group: G to lower exponent-3 central class 3 has order 3^5
Group: G to lower exponent-3 central class 4 has order 3^7
Group: G to lower exponent-3 central class 5 has order 3^9
Group: G to lower exponent-3 central class 6 has order 3^11

Example H68E28

We use the metabelian parameter to construct a metabelian 5-quotient of the group

< a, b | a^625 = b^625 = 1, (b, a, b) = 1, (b, a, a, a, a) = (b, a)^5 > .

> F<a, b> := FreeGroup(2);
> G := quo< F | a^625 = b^625 = 1, (b, a, b) = 1,
> (b, a, a, a, a) = (b, a)^5 >;
> q := pQuotient(G, 5, 20: Print := 1, Metabelian := true);

Lower exponent-5 central series for G

Group: G to lower exponent-5 central class 1 has order 5^2
Group: G to lower exponent-5 central class 2 has order 5^5
Group: G to lower exponent-5 central class 3 has order 5^8
Group: G to lower exponent-5 central class 4 has order 5^11
Group: G to lower exponent-5 central class 5 has order 5^12
Group: G to lower exponent-5 central class 6 has order 5^13
Group: G to lower exponent-5 central class 7 has order 5^14
Group: G to lower exponent-5 central class 8 has order 5^15
Group: G to lower exponent-5 central class 9 has order 5^16
Group: G to lower exponent-5 central class 10 has order 5^17
Group: G to lower exponent-5 central class 11 has order 5^18
Group: G to lower exponent-5 central class 12 has order 5^19
Group: G to lower exponent-5 central class 13 has order 5^20
Group completed. Lower exponent-5 central class = 13, order = 5^20
In the final example, we construct the largest finite 2-generator group having exponent 5.

```plaintext
> F := FreeGroup(2);
> q := pQuotient (F, 5, 14: Print := 1, Exponent := 5);
Lower exponent-5 central series for F
Group: F to lower exponent-5 central class 1 has order 5^2
Group: F to lower exponent-5 central class 2 has order 5^3
Group: F to lower exponent-5 central class 3 has order 5^5
Group: F to lower exponent-5 central class 4 has order 5^8
Group: F to lower exponent-5 central class 5 has order 5^10
Group: F to lower exponent-5 central class 6 has order 5^14
Group: F to lower exponent-5 central class 7 has order 5^18
Group: F to lower exponent-5 central class 8 has order 5^22
Group: F to lower exponent-5 central class 9 has order 5^28
Group: F to lower exponent-5 central class 10 has order 5^31
Group: F to lower exponent-5 central class 11 has order 5^33
Group: F to lower exponent-5 central class 12 has order 5^34
Group completed. Lower exponent-5 central class = 12, order = 5^34
```

### 68.5.4 Nilpotent Quotient

A nilpotent quotient algorithm constructs, from a finite presentation of a group, a polycyclic presentation of a nilpotent quotient of the finitely presented group. The nilpotent quotient algorithm used by MAGMA is the Australian National University Nilpotent Quotient program, as described in [Nic96]. The version included in MAGMA is Version 2.2 of January 2007.

The lower central series $G_0, G_1, \ldots$ of a group $G$ can be defined inductively as $G_0 = G$, $G_i = [G(i-1), G]$. $G$ is said to have nilpotency class $c$ if $c$ is the smallest non-zero integer such that $G_c = 1$. If $N$ is a normal subgroup of $G$ and $G/N$ is nilpotent, then $N$ contains $G_i$ for some non-negative integer $i$. $G$ has infinite nilpotent quotients if and only if $G/G_1$ (the maximal abelian quotient of $G$) is infinite and a prime $p$ divides a finite factor of a nilpotent quotient if and only if $p$ divides a cyclic factor of $G/G_1$. The $i$-th ($i > 1$) factor $G_{i-1}/G_i$ of the lower central series is generated by the elements $[g, h]G_i$, where $g$ runs through a set of representatives of $G/G_1$ and $h$ runs through a set of representatives of $G_{i-2}/G_{i-1}$.

Any finitely generated nilpotent group is polycyclic and, therefore, has a subnormal series with cyclic factors. Such a subnormal series can be used to represent the group in terms of a polycyclic presentation. The ANU NQ computes successively the factor groups modulo the terms of the lower central series. Each factor group is represented by a special form of polycyclic presentation, a nilpotent presentation, that makes use of the nilpotent structure of the factor group.

The algorithm has highly efficient code for enforcing the $n$-Engel identity in nilpotent groups. When appropriate parameters are set, the algorithm computes the largest $n$-Engel quotient of $G/G_c$. 

More generally, the algorithm has code for enforcing arbitrary identical relations. You can even enforce relations which combine generators of $G$ with “free variables”. (Werner Nickel calls these “identical generators”.) For instance, the relation $(a,x) = 1$, where $a$ is a group generator and $x$ is a free variable, will force the construction of quotients where the image of $a$ is central.

Mike Vaughan-Lee offers advice on when to use the nilpotent quotient algorithm. If you know nothing about the finitely presented group, it is probably a good idea to look at the abelian quotient first. If the abelian quotient is trivial then all nilpotent quotients will be trivial. Similarly, if the abelian quotient is cyclic, then all nilpotent quotients will be cyclic. Less trivially, if the abelian quotient is infinite then all nilpotent quotients will be finite and so will be the direct product of finite $p$-groups. Moreover, the relevant primes $p$ will all occur in the abelian quotient. Usually it will be more effective to use the $p$-quotient algorithm to study the direct factors. However, if you want to study 3-Engel quotients (say), then you are better using the nilpotent quotient even when the abelian quotient is finite.

```
NilpotentQuotient(G, c: parameters)
```

This function returns the class $c$ nilpotent quotient of $G$ as a group in category `GrpGPC`, together with the epimorphism $\pi$ from $G$ onto this quotient. When $c$ is set to zero, the function attempts to compute the maximal nilpotent quotient of $G$. Using the parameters described below, the user can enforce certain conditions on the quotient found.

**Example H68E30**

Here is a finitely presented group. The abelian quotient is infinite, so we look at the class 2-nilpotent quotient.

```
> G := Group<x,y,z|(x*y*z^-1)^2, (x^-1*y^2*z)^2, (x*y^-2*x^-1)^2 >;
> AbelianQuotient(G);
Abelian Group isomorphic to Z/2 + Z/2 + Z
Defined on 3 generators
Relations:
2*$.1 = 0
2*$.2 = 0
> N := NilpotentQuotient(G,2); N;
GrpGPC : N of infinite order on 6 PC-generators
PC-Relations:
N.1^2 = N.3^2 * N.5,
N.2^2 = N.4^2 * N.6,
N.4^2 = Id(N),
N.5^2 = Id(N),
N.6^2 = Id(N),
N.2^N.1 = N.2 * N.4,
N.3^N.1 = N.3 * N.5,
N.3^N.2 = N.3 * N.6
```
Example H68E31

The free nilpotent group of rank \( r \) and class \( e \) is defined as \( F/\gamma_{e+1}(F) \), where \( F \) is a free group of rank \( r \) and \( \gamma_{e+1}(F) \) denotes the \((e + 1)\) st term of the lower central series of \( F \).

We construct the free nilpotent group \( N \) of rank 2 and class 3 as quotient of the free group \( F \) of rank 2 and the natural epimorphism from \( F \) onto \( N \).

```plaintext
> F<a,b> := FreeGroup(2);
> N<x>, pi := NilpotentQuotient(F, 3);
> N;
GrpGPC : N of infinite order on 5 PC-generators
PC-Relations:
```

Using the function \( \text{NilpotencyClass} \) described in Chapter 70, we check the nilpotency class of the quotient.

```plaintext
> NilpotencyClass(N);
3
```

Example H68E32

The Baumslag-Solitar groups \( BS(p, q) = \langle a, b \mid ab^{-1}a^{-1}b^p = b^q \rangle \) form a fascinating class of 1-relator groups. We compute the nilpotent of class 4 quotient of two of them, and print out the resulting presentations, and the structure of the generators.

```plaintext
> G<a,b> := Group<a,b|a*b*a^-1=b^4>;
> N,f := NilpotentQuotient(G,4);
> N;
GrpGPC : N of infinite order on 5 PC-generators
PC-Relations:
 N.2^3 = N.3^2 * N.4^2 * N.5,
 N.3^3 = N.4^2 * N.5^2,
 N.4^3 = N.5^2,
 N.5^3 = Id(N),
 N.2^N.1 = N.2 * N.3,
 N.2^(N.1^-1) = N.2 * N.3^2 * N.4^2 * N.5,
 N.3^N.1 = N.3 * N.4,
 N.3^(N.1^-1) = N.3 * N.4^2 * N.5^2,
 N.4^N.1 = N.4 * N.5,
 N.4^(N.1^-1) = N.4 * N.5^2
```

Using the function \( \text{NilpotencyClass} \) described in Chapter 70, we check the nilpotency class of the quotient.

```plaintext
> NilpotencyClass(N);
3
for i := 1 to Ngens(N) do
```
Ch. 68  

FINITELY PRESENTED GROUPS  

> N.i @@ f;
> end for;
  a
  b
(b, a)
(b, a, a)
(b, a, a, a)
> G<a,b> := Group<a,b|a*b^2*a^-1=b^4>;
> N,f := NilpotentQuotient(G,4);
> N;
GrpGPC : N of infinite order on 8 PC-generators
PC-Relations:
  N.2^2 = Id(N),
  N.3^2 = N.5 * N.8,
  N.4^2 = N.7,
  N.5^2 = N.8,
  N.6^2 = Id(N),
  N.7^2 = Id(N),
  N.8^2 = Id(N),
  N.2*N.1 = N.2 * N.3,
  N.2*(N.1^-1) = N.2 * N.3 * N.4 * N.5 * N.6,
  N.3*N.1 = N.3 * N.4,
  N.3*(N.1^-1) = N.3 * N.4 * N.6 * N.7,
  N.3*N.2 = N.3 * N.5,
  N.4*N.1 = N.4 * N.6,
  N.4*(N.1^-1) = N.4 * N.6,
  N.4*N.2 = N.4 * N.7,
  N.5*N.1 = N.5 * N.7,
  N.5*(N.1^-1) = N.5 * N.7,
  N.5*N.2 = N.5 * N.8
> for i := 1 to Ngens(N) do
  N.i @@ f;
> end for;
  a
  b
(b, a)
(b, a, a)
(b, a, b)
(b, a, a, a)
(b, a, b, a)
(b, a, b, b)

The parameters available for the function NilpotentQuotient are:

NumberOfEngelGenerators
RngIntElt  Default : 1
Setting this parameter to $k$ forces the first $k$ generators to be left or right Engel elements, provided one (or both) of the parameters $\text{LeftEngel}$ or $\text{RightEngel}$ is positive. Otherwise it is ignored.

\begin{verbatim}
LeftEngel RNGIntElt Default : 0
\end{verbatim}

Setting this parameter to $n$ forces the first $k$ generators $g_1, \ldots, g_k$ of the quotient $Q$ to be left $n$-Engel elements. That is, they satisfy $[x, \ldots, x, g_i] = 1$ ($x$ appearing $n$ times) for all $x$ in $Q$. The value of $k$ is determined by the parameter $\text{NumberOfEngelGenerators}$.

\begin{verbatim}
RightEngel RNGIntElt Default : 0
\end{verbatim}

This is the same as for $\text{LeftEngel}$, but here the generators are right $n$-Engel elements, so $[g_i, x, \ldots, x] = 1$.

\begin{verbatim}
Engel RNGIntElt Default : 0
\end{verbatim}

Setting this parameter to $n$ enforces the $n$th Engel law on the quotient $Q$. That is, $[x, y, \ldots, y] = 1$ ($y$ appearing $n$ times) for all $x, y$ in $Q$.

\begin{verbatim}
SemigroupOnly BoolElt Default : true
\end{verbatim}

This option causes the program to check only semigroup words in the generating set of the nilpotent quotient when an Engel condition is enforced. If none of the Engel parameters are set, then it is ignored.

\begin{verbatim}
SemigroupFirst BoolElt Default : false
\end{verbatim}

This option causes the program to check semigroup words in the generating set of the quotient first and then all other words, when an Engel condition is enforced. If $\text{SemigroupOnly}$ is set, or no Engel condition is enforced, then it is ignored.

\begin{verbatim}
ReverseOrder BoolElt Default : false
\end{verbatim}

In checking Engel identities, instances are processed in order of increasing weight. This flag reverses the order.

\begin{verbatim}
ReverseEngel BoolElt Default : false
\end{verbatim}

This flag changes the Engel conditions from the first $k$ generators, to the last $k$ generators.

\begin{verbatim}
CheckFewInstances BoolElt Default : false
\end{verbatim}

This option stops checking the Engel law at each class if all the checks of a certain weight did not yield any non-trivial instances of the law.

\begin{verbatim}
Nickel BoolElt Default : false
\end{verbatim}

Enforce the identities $x^8$ and $[[x_1, x_2, x_3], [x_4, x_5, x_6]]$ on the nilpotent quotient.

\begin{verbatim}
NumberOfFreeVariables RNGIntElt Default : 0
\end{verbatim}

If this parameter is set to $n > 0$ then the last $n$ variables of the group are treated as variables rather than generators of the group. In any relation they are treated as standing for all group elements, enabling the user to enforce identical relations on the quotient being computed. The value of $n$ must be less than the number of generators
of the input group. When this facility is used, the domain of the epimorphism returned is the subgroup of $G$ generated by the (first) non-free generators.

\textbf{PrintResult} \hspace{1cm} \textbf{BoolElt} \hspace{1cm} \textbf{Default : false}

If set to true, this parameter switches on the printing of results given by the stand alone version of NQ.

\textbf{SetVerbose("NilpotentQuotient", n)}

Turn on and off the printing of information as the nilpotent quotient algorithm proceeds. $n$ may be set to any of 0, 1, 2 or 3. Setting $n$ to be 0 turns printing off, while successively higher values for $n$ print more and more information as the algorithm progresses. The default value of $n$ is 0.

\textbf{Example H68E33}

We compute the maximal nilpotent quotient $N_1$ of the group $G$ given by the following presentation

\[
\langle a, b, c, d, e \mid (b, a), (c, a), (d, a) = (c, b), (e, a) = (d, b), (e, b) = (d, c), (e, c), (e, d) \rangle.
\]

\begin{verbatim}
> F<a,b,c,d,e> := FreeGroup(5);
> G<a,b,c,d,e> :=
| (b,a), (c,a),
| (d,a)=(c,b), (e,a)=(d,b), (e,b)=(d,c),
| (e,c), (e,d)>;
> N1<[x]>, pi1 := NilpotentQuotient(G, 0);

Using the function \texttt{NilpotencyClass} described in Chapter 70, we check the nilpotency class of the quotient. It turns out to have nilpotency class 6.

> NilpotencyClass(N1);
6

Next we compute a metabelian quotient $N_2$ of $G$, construct the natural epimorphism from $N_1$ onto $N_2$ and check its kernel. (The functions applied to the nilpotent quotients are described in Chapter 70.) To get a metabelian quotient we adjoin 4 variables and a relation to the presentation of $G$ and use the "free variables" facility.

> M := Group<w,x,y,z|((w,x),(y,z))>; // metabelian identity
> D := FreeProduct(G,M); // adjoin to G
> N2, pi2 := NilpotentQuotient(D, 0: NumberOfFreeVariables := 4);
> NilpotencyClass(N2);
4
> DerivedLength(N2);
2
> f := hom< N1->N2 | [ pi1(G.i)->pi2(D.i) : i in [1..Ngens(G)] ] >;
> PCGenerators(Kernel(f), N1);
{ x[14], x[15] * x[17], x[16], x[17]^2, x[18], x[19], x[20], x[21], x[22], x[23], x[24], x[25], x[26], x[27], x[28], x[29],

\end{verbatim}
We compute a quotient $N_3$ of $G$ satisfying the 4th Engel law, construct the natural epimorphism from $N_1$ onto $N_3$ and again check the kernel. (The functions applied to the nilpotent quotients are described in Chapter 70.)

> N3, pi3 := NilpotentQuotient(G, 0 : Engel := 4);  
> NilpotencyClass(N3);  
4  
> DerivedLength(N3);  
3  
> h := hom< N1 -> N3 | [ pi1(g) -> pi3(g) : g in Generators(G) ] >;  
> PCGenerators(Kernel(h), N1);  
{ x[19], x[20], x[21], x[22], x[23], x[24], x[25], x[26], x[27],  
x[28], x[29], x[30], x[31] }  

68.5.5 Soluble Quotient

A soluble quotient algorithm computes a consistent power-conjugate presentation of the largest finite soluble quotient of a finitely presented group, subject to certain algorithmic and user supplied restrictions. In this section we describe only the simplest use of such an algorithm within Magma. For more information the user is referred to Chapter 69.

| SolvableQuotient(G : parameters) |
| SolubleQuotient(G : parameters) |

Let $G$ be a finitely presented group. The function constructs the largest finite soluble quotient of $G$.

Example H68E34

We compute the soluble quotient of the group

\[ \langle a, b \mid a^2, b^4, ab^{-1}ab(abab^{-1})^5ab^2ab^{-2} \rangle. \]

> G<a,b> := Group< a, b | a^2, b^4,  
a*b^-1*a*b*(a*b*a*b^-1)^5*a*b^2*a*b^-2 >;  
> Q := SolubleQuotient(G);  
> Q;  
GrpPC : Q of order 1920 = 2^7 * 3 * 5  
PC-Relations:  
Q.1^2 = Q.4,  
Q.2^2 = Id(Q),  
Q.3^2 = Q.6,  
Q.4^2 = Id(Q),  
Q.5^2 = Q.7,  
Q.6^2 = Id(Q),
Find a soluble quotient $G$ and the epimorphism $\pi : F \to G$ with a specified order. $n$ must be a nonnegative integer. $P$ must be a set of primes.

The three forms reflect possible information about the order of an expected soluble quotient. In the first form the order of $G$ is given by $n$, if $n$ is greater than zero. If $n$ equals zero, nothing about the order is known and the relevant primes will be calculated completely.

The second form, with no $n$ argument, is equivalent to the first with $n = 0$. This is a standard argument, and usually it is the most efficient way to calculate soluble quotients.

Note that, if $n > 0$ is not the order of the maximal finite soluble quotient, it may happen that no group of order $n$ can be found, since an epimorphic image of size $n$ may not be exhibited by the chosen series.

In the third form a set $P$ of relevant primes is given. The algorithm calculates the biggest quotient such that the order has prime divisors only in $P$. $P$ may have a zero as element, this is just for consistency reasons. It is equivalent to the first form with $n$ equal zero.

For a description of the algorithm used and of the set of parameters available for this function, see Chapter 69. Other more specialised functions for computing soluble quotients and some examples can be found there as well.
Example H68E35

Consider the group $G$ defined by the presentation

$$\langle x, y \mid x^3, y^8, [x, y^4], x^{-1}yx^{-1}y^{-1}xyxy^{-1}, (xy^{-2})^2(x^{-1}y^{-2})^2(xy^2)^2(x^{-1}y^2)^2, (x^{-1}y^{-2})^6(x^{-1}y^2)^6 \rangle.$$

We apply the soluble quotient algorithm to $G$ and compute the order of the soluble quotient $Q$.

> G<x, y> := Group< x, y | x^3, y^8, (x,y^4), x^-1*y*x^-1*y^-1*x*y*x*y^-1, (x*y^-2)^2*(x^-1*y^-2)^2*(x*y^2)^2*(x^-1*y^2)^2, (x^-1*y^-2)^6*(x^-1*y^2)^6 >;

We now assume that $G$ is finite and try to compute its order by means of the Todd-Coxeter algorithm.

> Order(G);
165888

Hence the group is finite and soluble and $G$ is isomorphic to $Q$. We may use the tools for finite soluble groups to investigate the structure of $G$. For example we can easily find the number of involutions in $G$.

> cls := ConjugacyClasses(Q);
511
68.6 Subgroups

68.6.1 Specification of a Subgroup

\texttt{sub< G | L >}

Construct the subgroup $H$ of the fp-group $G$ generated by the words specified by the terms of the \textit{generator list} $L = L_1, \ldots, L_r$.

A term $L_i$ of the generator list may consist of any of the following objects:

(a) A word;
(b) A set or sequence of words;
(c) A sequence of integers representing a word;
(d) A set or sequence of sequences of integers representing words;
(e) A subgroup of an fp-group;
(f) A set or sequence of subgroups.

The collection of words and groups specified by the list must all belong to the group $G$ and $H$ will be constructed as a subgroup of $G$.

The generators of $H$ consist of the words specified directly by terms $L_i$ together with the stored generating words for any groups specified by terms of $L_i$. Repetitions of an element and occurrences of the identity element are removed (unless $H$ is trivial).

If the \texttt{sub}-constructor is invoked with an empty list $L$, the trivial subgroup will be constructed.

\texttt{sub< G | f >}

Given a homomorphism $f$ from $G$ onto a transitive subgroup of Sym($n$), construct the subgroup of $G$ which affords this permutation representation.

\texttt{ncl< G | L >}

Construct the subgroup $N$ of the fp-group $G$ as the normal closure of the subgroup $H$ generated by the words specified by the terms of the \textit{generator list} $L$.

The possible forms of a term of the generator list are the same as for the \texttt{sub}-constructor.

This constructor may be applied even when $H$ has infinite index in $G$, provided that its normal closure $N$ has finite index. The subgroup $N$ is obtained by computing the coset table of the trivial subgroup in the group defined by the relations of $G$ together with relators corresponding to the words generating $H$. For a sample application of this function, see Example H68E17.

This function may require the computation of a coset table. Experienced users can control the behaviour of a possibly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function \texttt{SetGlobalTCParameters}. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.
Given a homomorphism \( f \) from \( G \) onto a transitive subgroup of \( \text{Sym}(n) \), construct the subgroup of \( G \) that is the normal closure of the subgroup \( K \) of \( G \) which affords this permutation representation.

Given an fp-group \( G \), try to construct the derived subgroup \( G' \) of \( G \) as finite index subgroup of \( G \). The construction fails if no presentation for \( G \) is known or can be constructed, or if the index of \( G' \) in \( G \) is too large or infinite.

This function may require the computation of a coset table. Experienced users can control the behaviour of a possibly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function \texttt{SetGlobalTCP]{\text{"parameters}}\text{". For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

### Example H68E36

The group \((8, 7 | 2, 3)\) is defined by the presentation

\[
\langle a, b \mid a^8, b^7, (ab)^2, (a^{-1}b)^3 \rangle,
\]

and has a subgroup of index 448 generated by the words \( a^2 \) and \( a^{-1}b \):

```plaintext
> G<a, b> := Group<a, b| a^8, b^7, (a * b)^2, (a^-1 * b)^3>;
> G;
Finitely presented group G on 2 generators
Relations
a^8 = Id(G)
b^7 = Id(G)
(a * b)^2 = Id(G)
> H<x, y> := sub< G | a^2, a^-1 * b >;
> H;
Finitely presented group H on 2 generators
Generators as words in group G
x = a^2
y = a^-1 * b
```

### Example H68E37

Given the group \( G \) defined by the presentation

\[
\langle a, b \mid a^8, b^7, (ab)^2, (a, b)^9 \rangle,
\]
there is a homomorphism into $\text{Sym}(9)$ defined by
\[
\begin{align*}
a & \rightarrow (2, 4)(3, 5)(6, 7)(8, 9) \\
b & \rightarrow (1, 2, 3)(4, 6, 7)(5, 8, 9)
\end{align*}
\]
We construct the subgroup $H$ of $G$ that is the preimage of the stabiliser of the point 1 in $G$.\[
\begin{align*}
G\langle a, b \rangle & := \text{Group}\langle a, b \mid a^2, b^3, (a*b)^7, (a, b)^9 \rangle; \\
T & := \text{PermutationGroup}\langle 9 \mid (2, 4)(3, 5)(6, 7)(8, 9), \\
(1, 2, 3)(4, 6, 7)(5, 8, 9) \rangle; \\
f & := \text{hom} \langle G \rightarrow T \mid a \rightarrow T.1, b \rightarrow T.2 \rangle; \\
H & := \text{sub}\langle G \mid f \rangle;
\end{align*}
\]
Using the function GeneratingWords, we obtain a set of generators for $H$.\[
\begin{align*}
\text{print GeneratingWords}(G, H); \\
\{ & a, b^-1 * a * b^-3 * a * b, b * a * b * a * b * a * b^-1, \\
& b^-3, b^-1 * a * b * a * b * a * b, b * a * b^-3 * a * b^-1 \}
\end{align*}
\]

### 68.6.2 Index of a Subgroup: The Todd-Coxeter Algorithm

This section describes the simplest use of coset enumeration techniques in MAGMA. MAGMA also provides interactive facilities for coset enumeration. For information on these more advanced uses, the user is referred to Chapter 69.

The Todd-Coxeter implementation installed in MAGMA is based on the stand alone coset enumeration programme \texttt{ACE3} developed by George Havas and Colin Ramsay at the University of Queensland. The reader should consult [CDHW73] and [Hav91] for an explanation of the terminology and a general description of the algorithm. A manual for \texttt{ACE3} as well as the sources of \texttt{ACE3} can be found online [Ram].

Experienced users can control the Todd-Coxeter procedures invoked by the functions described in this section with a wide range of parameters. For a complete description of these parameters and their meanings we refer to the manual entry for the function \texttt{CosetEnumerationProcess} in Chapter 69. We just mention briefly the most important ones:\[
\begin{align*}
\text{CosetLimit} & \quad \text{RNGIntElt} \\
\text{Default} : 0
\end{align*}
\]
If \texttt{CosetLimit} is set to $n$, where $n$ is a positive integer, then the coset table may have at most $n$ rows. In other words, a maximum of $n$ cosets can be defined at any instant during the enumeration. It is ensured in this case, that enough memory is allocated to store the requested number of cosets, regardless of the value of the parameter \texttt{Workspace}.\[
\]
If \texttt{CosetLimit} is set to 0 (default), the maximal number of active cosets is determined by the size of the coset table (cf. parameter \texttt{Workspace}) and the number of columns of the coset table (i.e. the number of group generators).

\textbf{Workspace} \hspace{1cm} \textbf{RngIntElt} \hspace{1cm} \textit{Default :} 4000000

The number of words allocated for the coset table. Note that if \texttt{CosetLimit} is set, at least as much memory is allocated as is necessary to store the requested number of cosets.

\textbf{Strategy} \hspace{1cm} \textbf{MonStgElt} \hspace{1cm} \textit{Default :}

Using this parameter one of several predefined strategies can be selected. (See the manual entry for the function \texttt{CosetEnumerationProcess} in Chapter 69 for a complete list.) The most important values of this parameter are:

- “Easy”: This selects a combination of parameters, which in situations where an overflow is not expected is likely to produce a result more quickly and using less memory than the default strategy. This strategy will fail for more complicated enumerations.
- “Hard”: This selects a combination of parameters, which is more likely to produce a finite result for difficult coset enumerations than the default strategy. This strategy will use more memory and enumerations usually will take longer.

\texttt{ToddCoxeter(G, H: parameters)}

Given a subgroup \( H \) of the fp-group \( G \), this function attempts to build up a coset table of \( H \) in \( G \) using the Todd-Coxeter procedure.

The first return value is the index of \( H \) in \( G \) (or 0, if the enumeration fails to complete). The other values returned are the coset table map, the maximum number of simultaneously active cosets, and the total number of cosets defined during the enumeration.

Experienced users can control the Todd-Coxeter procedure invoked by this function with a wide range of parameters. This function accepts the same parameters as the function \texttt{CosetEnumerationProcess} described in Chapter 69.

\texttt{Index(G, H: parameters)}

\texttt{FactoredIndex(G, H: parameters)}

Given a subgroup \( H \) of the fp-group \( G \), these functions attempt to determine the index of \( H \) in \( G \) by enumerating the cosets of \( H \) using the Todd-Coxeter procedure. The index is returned as a positive integer (\texttt{Index}) or as a sequence of factors (\texttt{FactoredIndex}), respectively. If the coset enumeration fails to complete with a closed coset table, \texttt{Index} returns a value of 0, whereas \texttt{FactoredIndex} reports an error. No conclusion can be drawn in this case.

Experienced users can control the Todd-Coxeter procedure invoked by these functions with a wide range of parameters. Both functions accept the same parameters as the function \texttt{CosetEnumerationProcess} described in Chapter 69.
Example H68E38

The classical test example for Todd-Coxeter programmes is the enumeration of the 448 cosets of the subgroup $H = \langle a^2, a^{-1}b \rangle$ in the group $G = \langle a, b \mid a^8, b^7, (ab)^2, (a^{-1}b)^3 \rangle$.

> \texttt{F<x, y> := FreeGroup(2);}  
> \texttt{G<a, b> := quo<F | x^8, y^7, (x*y)^2, (x^-1*y)^3>;}  
> \texttt{H := sub<G | a^2,a^-1*b>;}  
> \texttt{Index(G, H);}  
> 448

---

Order($G$: parameters)

FactoredOrder($G$: parameters)

Given an fp-group $G$, this function attempts to determine the order of $G$ or to prove that $G$ is infinite. If a finite order can be computed, the function \texttt{Order} returns the order as a positive integer, whereas the function \texttt{FactoredOrder} returns a sequence of prime power factors. The function \texttt{FactoredOrder} reports an error in all other cases, whereas the function \texttt{Order} returns the object \texttt{Infinity}, if $G$ can be shown to be infinite and returns a value of 0 if neither a finite value for the group order nor a proof for the infinity of $G$ can be obtained. No conclusions can be drawn from a return value 0 of \texttt{Order}.

In addition to the parameters controlling possibly invoked coset enumerations, there exist some other parameters controlling the strategy used by the functions \texttt{Order} and \texttt{FactoredOrder}. These parameters are described below.

Example H68E39

We use the function \texttt{Order} without any parameters to compute the order of the group

$$G = \langle a, b \mid a^8, b^7, (ab)^2, (a^{-1}b)^3 \rangle.$$ 

> \texttt{G<x, y> := Group<x,y | x^8, y^7, (x*y)^2, (x^-1*y)^3>;}  
> \texttt{G;}  
Finitely presented group G on 2 generators

Relations
\begin{align*}
  x^8 & = \text{Id}(G) \\
  y^7 & = \text{Id}(G) \\
  (x \cdot y)^2 & = \text{Id}(G) \\
  (x^{-1} \cdot y)^3 & = \text{Id}(G)
\end{align*}

> \texttt{Order(G);}  
> 10752
The strategy employed by the functions \texttt{Order} and \texttt{FactoredOrder} may involve trying to obtain information on certain subgroups of $G$. Whether or not an attempt is made to construct a presentation for a subgroup arising in the course of the computation by means of Reidemeister-Schreier rewriting, is controlled by three parameters:

\begin{align*}
\text{UseRewrite} & \quad \text{BoolElt} \quad \text{Default: true} \\
\text{MinIndex} & \quad \text{RngIntElt} \quad \text{Default: 10} \\
\text{MaxIndex} & \quad \text{RngIntElt} \quad \text{Default: 1000}
\end{align*}

If \texttt{UseRewrite} is set to \texttt{false}, attempts to construct presentations for subgroups are not made. Otherwise, \texttt{MinIndex} and \texttt{MaxIndex} specify for subgroups of which index range Reidemeister-Schreier rewriting is done.

The following strategy is used for trying to determine the order of $G$.

1. Check whether $G$ is free. If so, $G$ is either trivial or infinite.
2. Check whether the presentation for $G$ is deficient (i.e. whether the number of relations is smaller than the number of generators). If it is, $G$ is infinite.
3. Check the subgroups of $G$ with known order. If such a subgroup is known to be infinite or if we can compute its index in $G$, we’re done.
4. Try to compute the index of $G$ in a supergroup of known order. (An infinite supergroup in which $G$ has finite index proves $G$ to be infinite.)
5. Try to enumerate the cosets of the trivial subgroup in $G$.
6. Check the subgroups of known or easily computable index in $G$. If we can compute the order of such a subgroup or prove that it is infinite, we’re done.
7. Try to enumerate the cosets of some subgroups occurring "naturally" in the presentation of $G$.
8. Check the supergroups in which $G$ has known or easily computable index. If we can compute the order of a supergroup or prove that it is infinite, we’re done.
9. Try to rewrite $G$ w.r.t. some supergroup and to enumerate the cosets of the trivial subgroup using the resulting presentation.

Steps requiring coset enumeration in $G$ or a supergroup of $G$ are skipped, if no relations are known for this group. Steps involving Reidemeister-Schreier rewriting may be skipped according to the values of the parameters mentioned above.

Experienced users can control the behaviour of coset enumerations which may be invoked by the functions \texttt{Order} and \texttt{FactoredOrder} with a wide range of parameters. Both functions – in addition to the parameters mentioned above – accept the same parameters as the function \texttt{CosetEnumerationProcess} described in Chapter 69.
Example H68E40

The Harada-Norton simple group has the presentation

\[ < x, a, b, c, d, e, f, g \mid x^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2, (x, a), (x, g), \]
\[ (bc)^3, (bd)^2, (be)^2, (bf)^2, (bg)^2, (cd)^3, (ce)^2, (cf)^2, (cg)^2, \]
\[ (de)^3, (df)^2, (dg)^2, (ef)^3, (eg)^2, (pf)^3, (b, xbx), (a, edcb), \]
\[ (a, f)dcbdcd, (ag)^3, (cdef, xbx), (b, xcdefx), (cdef, xcdefx) > \]

The subgroup generated by \( x, b, c, d, e, f, g \) has index 1,140,000. We use the parameter \texttt{CosetLimit} to request a sufficiently large coset table. For the enumeration we choose the predefined strategy \texttt{Hard} with the modification of a complete C-style lookahead (\texttt{Lookahead := 2}).

\[
\text{HN} < x, a, b, c, d, e, f, g > := \\
\text{Group}< x, a, b, c, d, e, f, g > |
\]
\[
\text{x}^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2, (x, a), (x, g), \\
(b*c)^3, (b*d)^2, (b*e)^2, (b*f)^2, (b*g)^2, \\
(c*d)^3, (c*e)^2, (c*f)^2, (c*g)^2, \\
(d*e)^3, (d*f)^2, (d*g)^2, \\
(e*f)^3, (e*g)^2, \\
(f*g)^2, \\
(b, x*b*x), \\
(a, e*d*c*b), (a, f)*d*c*b*d*c*d, (a*g)^5, \\
(c*d*e*f, x*b*x), (b, x*c*d*e*f*x), \\
(c*d*e*f, x*c*d*e*f*x) > \\
\text{H := sub<HN | x,b,c,d,e,f,g >}; \\
\text{idx := Index(HN, H: Print := true, CosetLimit := 1200000,} \\
\text{Strategy := "Hard", Lookahead := 2);} \\
\text{INDEX = 1140000} \\
(a=1140000 r=1471 h=1168483 n=1168483;} \\
\text{l=2945 c=201.17;} \\
\text{m=1142416 t=1470356)} \\
\text{idx;} \\
1140000

Example H68E41

We use a function representing a parametrised presentation to determine the order of a collection of groups obtained by systematically varying one relation. We select the predefined coset enumeration strategy \texttt{Easy} for the order computations.

\[
\text{Grp := func< p, q, r, s |} \\
\text{Group<} \\
\text{x, y, z, h, k, a |} \\
\text{>}
\]
> x^2, y^2, z^2, (x,y), (y,z), (x,z), h^3, k^3, (h,k),
> (x,k), (y,k), (z,k), x^h*y, y^h*z, z^h*x, a^2, a*x*a*y,
> a*y*a*x, (a,z), (a,k), x^p*y^q*z^r*k^s*(a*h)^2 >
> );
> ] < <i,j,k,l>, Order(Grp(i,j,k,l) : Strategy := "Easy") >
> : i, j, k in [0..1], l in [0..2] ;
[ <0, 0, 0, 0>, 144>, <0, 0, 1, 0>, 18>, <0, 1, 0, 0>, 72>,
 <0, 1, 1, 0>, 36>, <1, 0, 0, 0>, 18>, <1, 0, 1, 0>, 144>,
 <1, 1, 0, 0>, 36>, <1, 1, 1, 0>, 72>, <0, 0, 0, 1>, 144>,
 <0, 0, 1, 1>, 18>, <0, 1, 0, 1>, 72>, <0, 1, 1, 1>, 36>,
 <1, 0, 0, 1>, 18>, <1, 0, 1, 1>, 144>, <1, 1, 0, 1>, 36>,
 <1, 1, 1, 0>, 72>, <0, 0, 0, 2>, 144>, <0, 0, 1, 2>, 18>,
 <0, 1, 0, 2>, 72>, <0, 1, 1, 2>, 36>, <1, 0, 0, 2>, 18>,
 <1, 0, 1, 2>, 144>, <1, 1, 0, 2>, 36>, <1, 1, 1, 2>, 72> ]

68.6.3 Implicit Invocation of the Todd-Coxeter Algorithm

Several functions working with finitely presented groups at some point require a coset table
of a subgroup and may invoke a coset enumeration indirectly, e.g. the function meet or the
function Normaliser. The default behaviour for such implicitly called coset enumerations
is the same as the one for coset enumerations invoked explicitly, e.g. using the function
ToddCoxeter.

If such an implicitly called coset enumeration fails to produce a closed coset table, the
calling function may terminate with a runtime error.

Experienced users can control the behaviour of indirectly invoked coset enumerations
with a set of global parameters. These global parameters are valid for all implicitly called
coset enumerations. For a detailed description of the available parameters and their mean-
ings, we refer to Chapter 69. Note that coset enumerations which are explicitly invoked,
e.g. by a call to the function Index, are not affected by this global set of parameters.
Parameters for these functions have to be specified in the function call.

SetGlobalTCParameters(: parameters)

This function sets the parameter values used for indirect invocations of the Todd-
Coxeter coset enumeration procedure. The parameters accepted and their default
values are the same as for the function CosetEnumerationProcess described in
Chapter 69.

UnsetGlobalTCParameters()

This function restores the default values for the parameters used for indirect invo-
cations of the Todd-Coxeter coset enumeration procedure. For a description of the
meanings of the parameters and their default values, see CosetEnumerationProcess
in Chapter 69.
Example H68E42

We consider again the Harada-Norton simple group with the presentation
\[
\langle x, a, b, c, d, e, f, g \mid x^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2, (x, a), (x, g),
(bc)^3, (bd)^2, (be)^2, (bf)^2, (bg)^2, (cd)^2, (ce)^2, (cf)^2, (cg)^2,
(de)^3, (df)^2, (eg)^2, (fg)^3, (a, edcb),
(a, f)debdcd, (a, f)^5, (cdef, xbx), (b, xcdex), (cdef, xcdex) \rangle
\]
and the subgroup \( H \) generated by \( x, b, c, d, e, f, g \).

\[
\begin{align*}
&> \text{HN}<x, a, b, c, d, e, f, g> := \\
&> \text{Group}< x, a, b, c, d, e, f, g | \\
&> x^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2, \\
&> (x, a), (x, g), \\
&> (b*c)^3, (b*d)^2, (b*e)^2, (b*f)^2, (b*g)^2, \\
&> (c*d)^3, (c*e)^2, (c*f)^2, (c*g)^2, \\
&> (d*e)^3, (d*f)^2, (d*g)^2, \\
&> (e*f)^3, (e*g)^2, \\
&> (f*g)^3, \\
&> (b, x*b*x), \\
&> (a, e*d*c*b), (a, f)*d*c*b*d*c*d, (a*g)^5, \\
&> (c*d*e*f, x*b*x), (b, x*c*d*e*f*x), \\
&> (c*d*e*f, x*c*d*e*f*x) >; \\
&> H := \text{sub<HN | x,b,c,d,e,f,g>};
\end{align*}
\]

\( H \) has index 1,140,000 in \( HN \). Using the default settings, the normaliser of \( H \) in \( HN \) cannot be computed.

\[
> N := \text{Normaliser(HN, H)};
\]

Runtime error in 'Normaliser': Coset table is not closed

We change the global parameters for implicitly called coset enumerations and try again.

\[
> \text{SetGlobalTCPParameters( : Strategy := "Hard"}); \\
> N := \text{Normaliser(HN, H)};
\]

With these parameters, the computation works. We see that \( H \) is self-normalising in \( HN \).

\[
> \text{Index(HN, N)}; \\
1140000 \\
> \text{IsSelfNormalising(HN, H)}; \\
\text{true}
\]

68.6.4 Constructing a Presentation for a Subgroup
68.6.4.1 Introduction

Let $H$ be a subgroup of finite index in the finitely presented group $G$. It frequently happens that it is desirable to construct a set of defining relations for $H$ from those of $G$. Such a presentation can be obtained either on a set of Schreier generators for $H$ or on the given generators of $H$ using the Reidemeister-Schreier rewriting technique [MKS76], if necessary together with extended coset enumeration [AR84, HKRR84].

We emphasise that if the user wishes only to determine the structure of the maximal abelian quotient of $H$, then the function $\text{AbelianQuotientInvariants}$ should be used. In this case there is no need to first construct a presentation for $H$ using the $\text{Rewrite}$ function described below, since $\text{AbelianQuotientInvariants}$ employs a special form of the Reidemeister-Schreier rewriting process which abelianises each relator as soon as it is constructed. Thus, compared to the function $\text{Rewrite}$, the function $\text{AbelianQuotientInvariants}$ can be applied to subgroups of much larger index.

68.6.4.2 Rewriting

\begin{verbatim}
Rewrite(G, H : parameters)
\end{verbatim}

Given a finitely presented group $G$ and a subgroup $H$ having finite index in $G$, return a group $R$ isomorphic to $H$ with a presentation on (some of) the Schreier generators of $H$ in $G$. The group $R$ will be created as a subgroup of $G$ and defining relations of $R$ on its generators will be available. Note that the generators of $R$ will, in general, not correspond to the generators of $H$. The isomorphism from $H$ onto $R$ is returned as second return value.

This function may require the computation of a coset table. Experienced users can control the behaviour of a possibly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function $\text{SetGlobalTCPARAMETERS}$. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

\begin{verbatim}
Simplify  BOOLELT  Default : true
\end{verbatim}

If this Boolean-valued parameter is given the value $\text{true}$, then the resulting presentation for $H$ will be simplified (default). The function $\text{Rewrite}$ returns a finitely presented group that is isomorphic to $H$. If simplification is requested (by setting $\text{Simplify} := \text{true}$) then the simplification procedures are invoked (see next section). These procedures perform a sequence of Tietze transformations which typically result in a considerable simplification of the presentation produced by the rewriting process. Alternatively, the user can set $\text{Simplify} := \text{false}$ and then perform the simplification directly if desired. (See next section). If simplification is not requested as part of $\text{Rewrite}$, a small amount of simplification is performed on the presentation before it is returned.

\begin{verbatim}
EliminationLimit  RNGINTELT  Default : 100
ExpandLimit  RNGINTELT  Default : 150
GeneratorsLimit  RNGINTELT  Default : 0
\end{verbatim}
Ch. 68  
FINITELY PRESENTED GROUPS  
2045

LengthLimit RngIntElt Default : $\infty$
SaveLimit RngIntElt Default : 10
SearchSimultaneous RngIntElt Default : 20
Iterations RngIntElt Default : 10000
Print RngIntElt Default : 0

These parameters control the simplification. See the description of Simplify for an explanation of these parameters.

\begin{verbatim}
Rewrite(G, $\sim H : \text{parameters}$)
\end{verbatim}

Given a finitely presented group $G$ and a subgroup $H$ having finite index in $G$, compute a defining set of relations for $H$ on the existing generators, using extended coset enumeration and Reidemeister-Schreier rewriting, and change the presentation of $H$ accordingly.

If the computation is successful, defining relations for $H$ on its generators will be available at the end; any previously computed relations of $H$ will be discarded. If the computation is unsuccessful, $H$ is not changed. In any case, both the isomorphism type of $H$ and its embedding into $G$ as a subgroup is preserved by this function.

Simplify BoolElt Default : true

If this parameter is given the value true (default), then an attempt will be made to simplify the constructed set of relations by substring searches, that is, Tietze transformations not changing any generators. The generating set of $H$ is not modified by this process.

Moreover, the extended coset enumeration can be controlled by a wide range of parameters. The function Rewrite – in addition to the parameter Simplify – accepts the same parameters as the function CosetEnumerationProcess described in Chapter 69.

Example H68E43

Starting with the group $G$ defined by

\[
< x, y \mid x^2, y^3, (xy)^{12}, (xy)^6(xy^{-1})^6 >,
\]

we construct a subgroup $K$ of index 3 generated by the words $x$, $yxy^{-1}$ and $yxy^{-1}xy^{-1}xy$. We present the subgroup $K$, compute its abelian quotient structure and then show that the class 30 2-quotient of $K$ has order $2^{62}$.

\begin{verbatim}
> G<x, y> := Group< x, y | x^2, y^3, (x*y)^12, (x*y)^6*(x*y^-1)^6 >;
> G;
Finitely presented group G on 2 generators
Relations
  x^2 = Id(G)
  y^3 = Id(G)
  (x * y)^12 = Id(G)
  x * y * x * y * x * y * x * y * x * y * x * y * x * y^-1 * x *
\end{verbatim}
\[ y^{-1} \ast x \ast y^{-1} \ast x \ast y^{-1} \ast x \ast y^{-1} \ast x \ast y^{-1} = \text{Id}(G) \]

\[ K := \text{sub}< G \mid x, y \ast x \ast y^{-1}, y \ast x \ast y^{-1} \ast x \ast y >; \]

Finitely presented group K on 3 generators

Generators as words in group G
\[ K.1 = x \]
\[ K.2 = y \ast x \ast y^{-1} \]
\[ K.3 = y \ast x \ast y^{-1} \ast x \ast y^{-1} \ast x \ast y \]

\[ \text{Index}(G, K); \]
3

\[ T := \text{Rewrite}(G, K); \]

Finitely presented group T on 3 generators

Generators as words in group G
\[ T.1 = x \]
\[ T.2 = y \ast x \ast y^{-1} \]
\[ T.3 = x^{y} \]

Relations
\[ T.1^{2} = \text{Id}(T) \]
\[ T.2^{2} = \text{Id}(T) \]
\[ T.3^{2} = \text{Id}(T) \]
\[ (T.3 \ast T.2 \ast T.1 \ast T.3 \ast T.2)^{2} = \text{Id}(T) \]
\[ (T.1 \ast T.3 \ast T.2 \ast T.1 \ast T.3)^{2} = \text{Id}(T) \]
\[ (T.1 \ast T.2 \ast T.1 \ast T.3 \ast T.2)^{2} = \text{Id}(T) \]

\[ \text{AbelianQuotientInvariants}(T); \]
[ 2, 2, 2 ]

\[ Q2 := p\text{Quotient}(T, 2, 30); \]

\[ \text{FactoredOrder}(Q2); \]
[ <2, 62> ]

Example H68E44

In this example we illustrate how the function \texttt{Rewrite} can be used to obtain a presentation of a finitely presented group on a different set of generators.

We start with a presentation of \( L_{2}(7) \) on two generators \( x \) and \( y \).

\[ F<x, y> := \text{Group}< x, y \mid x^{3} = 1, y^{3} = 1, (x \ast y)^{4} = 1, \]
\[ (y \ast y \ast x)^{2} = y \ast x \ast y >; \]

The group is also generated by the elements \( a = (xy)^{2} \) and \( b = y \).

\[ H<a, b> := \text{sub}< F \mid (x \ast y)^{2}, y >; \]

\[ \text{Index}(F, H); \]
1

At the moment, no defining relations of \( H \cong F \) on the generators \( a \) and \( b \) are known.

\[ H; \]

Finitely presented group H on 2 generators
Index in group $F$ is 1
Generators as words in group $F$
  $a = (x \ast y)^2$
  $b = y$

We apply the function `Rewrite` to $H$ as a subgroup of $F$ in order to compute defining relations on the generators $a$ and $b$.

```plaintext
> Rewrite(F, ~H);
> H;
Finitely presented group H on 2 generators
Index in group F is 1
Generators as words in group F
 $a = (x \ast y)^2$
 $b = y$
Relations
 $a^2 = \text{Id}(H)$
 $b^3 = \text{Id}(H)$
 $(a \ast b)^7 = \text{Id}(H)$
 $(a \ast b^{-1} \ast a \ast b)^4 = \text{Id}(H)$
 $(b \ast a \ast b^{-1} \ast a \ast b \ast a)^4 = \text{Id}(H)$
```

The last relation turns out to be redundant; $a$ and $b$ are standard generators for $L_2(7)$.

```plaintext
> Order(DeleteRelation(H,5)) eq Order(H);
true
```

### 68.7 Subgroups of Finite Index

The functions in this section are concerned with the construction of subgroups of finite index. We first describe a method for computing all subgroups whose index does not exceed some (modest) integer bound. The next family of functions are concerned with constructing new subgroups of finite index from one or more known ones.

#### 68.7.1 Low Index Subgroups

**LowIndexSubgroups(G, R : parameters)**

Given a finitely presented group $G$ (possibly the free group), and an expression $R$ defining a positive integer range (see below), determine the conjugacy classes of subgroups of $G$ whose indices lie in the range specified by $R$. The subgroups are generated by systematically building all coset tables consistent with the defining relations for $G$ and which satisfy the range condition $R$. The argument $R$ is one of the following:

(a) An integer $n$ representing the range $[1, n]$;
(b) A tuple $< a, b >$ representing the range $[a, b]$. 

```
The generation of subgroups can be controlled by a set of parameters described below. The returned sequence contains the subgroups found and is sorted in order of increasing index in G.

Example H68E45

(Peter Lorimer) The two graphs known as Tutte’s 8-cage and the Conder graph may be constructed as the Cayley graphs of two conjugacy classes of subgroups having index 10 in the finitely presented group

\[
< q, r, s, h, a \mid h^3 = a^2 = p^2 = 1, p^h = p, p^a = q, q^h = r, r^a = s, \\
h^s = h^{-1}, r^h = pqr, sr = pqr s, pq = qp, pr = rp, ps = sp, qr = rq, qs = sq >.
\]

We use the low index function to construct these subgroups.

```plaintext
> G<p, q, r, s, h, a> := Group<p, q, r, s, h, a | h^3 = a^2 = p^2 = 1, p^h = p, p^a = q, q^h = r, r^a = s,
> h^s = h^{-1}, r^h = pqr, sr = pqr s, pq = qp, pr = rp, ps = sp, qr = rq, qs = sq >;
> LowIndexSubgroups(G, <10, 10>);
[[
Finitely presented group on 6 generators
  Index in group G is 10 = 2 * 5
  Generators as words in group G
  $.1 = p
  $.2 = s
  $.3 = h
  $.4 = q^{-2}
  $.5 = a * h^{-1} * a * r^{-1}
  $.6 = a * h * a * h^{-1} * a * q^{-1},
]]
```

Finitely presented group on 6 generators
Index in group G is 10 = 2 * 5
Generators as words in group G
$.1 = p
$.2 = s
$.3 = h
$.4 = q^{-2}
$.5 = a * h^{-1} * a * r^{-1}
$.6 = a * h * a * h^{-1} * a
Example H68E46

A fairly surprising application for the low index subgroup algorithm is the enumeration of the conjugacy classes of a finite fp-group. In this example, we consider the group

\[G \cong \text{PGL}_2(9) = \langle a, b | a^2, b^3, (ab)^8, [a, b]^5, [a, (ba)^3b^{-1}]^2 \rangle. \]

\[\text{G<a,b> := Group< a,b | a^2, b^3, (a*b)^8, (a,b)^5,} \]
\[\text{(a,(b*a)^3*b^-1)^2 >; } \]
\[\text{Order(G); } \]
\[720 \]

In an infinite fp-group, finding all classes of subgroups up to an index of 720 by applying the low index subgroup algorithm, would be extremely hard. In the case of the finite group \(G \), however, we succeed.

\[\text{> time sgG := LowIndexSubgroups(G, Order(G)); } \]
\[\text{Time: 31.859 } \]
\[\text{> #sgG; } \]
\[26 \]

We get a list of 26 representatives of the conjugacy classes of subgroups. For every representative, its index in \(G \) and a set of generating words are known. We just have a look at two of them.

\[\text{> sgG[10]; } \]
Finitely presented group on 2 generators
Index in group G is 60 = 2^2 * 3 * 5
Generators as words in group G
\[$.1 = b \]
\[$.2 = a * b * a * b * a * b * a * b * a * b^-1 * a \]
\[* b^-1 * a \]
\[\text{> sgG[21]; } \]
Finitely presented group on 1 generator
Index in group G is 180 = 2^2 * 3^2 * 5
Generators as words in group G
\[$.1 = (b * a)^2 \]

The function \texttt{LowIndexSubgroups} constructs all conjugacy classes of subgroups of \(G \) satisfying the following two conditions:

(i) The index of each subgroup is in the range defined by \(R \);
(ii) If the parameter \texttt{Subgroup} defines a subgroup \(H \), then at least one subgroup in each conjugacy class contains the subgroup \(H \).

The subgroups are returned as a sequence of subgroups \(G \), unless otherwise specified by the parameter \texttt{GeneratingSets} (see below). The sequence is sorted by increasing index of the subgroups in \(G \).
The subgroups are constructed using an algorithm due to Sims [Sim94, sect. 5.6]. This algorithm constructs the coset tables by using a backtrack algorithm. At a given position in the coset table, coset definitions are made systematically. Once a new definition has been made, the group relations are traced in an attempt to deduce further entries or to infer that this partial table will not extend to a table corresponding to a new class of subgroups. When either it cannot define a new entry, or when a complete table has been constructed, the algorithm backtracks to try the next possibility (this may introduce a new row, increasing the index). This algorithm may also be run as a process in such a way that the subgroups are returned one at a time, thereby allowing the user to analyze each subgroup as soon as it is found.

ColumnMajor

BoolElt

Default : false

If **ColumnMajor** is set **false** (default), then the location for a new definition in the coset table is determined by searching the table in row major order for undefined entries. If **ColumnMajor** is set **true**, then the position for a new definition is determined by searching the table in column major order. If the presentation for G contains explicit relators expressing the fact that certain of the generators have large order, then the presentation should be organized so that these generators appear first and the column major order should be selected for new coset definition. This strategy often leads to greatly improved performance.

GeneratingSets

BoolElt

Default : false

The conjugacy classes of subgroups are returned in the form of a sequence of sets of words, where the i-th set is a generating set for a representative subgroup from the i-th conjugacy class of subgroups satisfying the given conditions. This is a much more compact representation than returning the subgroups as a sequence of actual subgroups of G and should be used when a very large number of subgroups is expected, as there may be insufficient space to store each of them as a subgroup.

Limit

RngIntElt

Default : ∞

Terminate after finding n conjugacy classes of subgroups satisfying the designated conditions.

Long

* [**RngIntElt**]

Default : []

This option enables the user to designate certain of the defining relators for G as long relators. The relations of G are numbered from 1 to r, in the order they appear in the quo- or Group-constructors. The value L of **Long** is a subset of the integer set $\{1, \ldots, r\}$. MAGMA interprets the relators whose numbers appear in L as long relations. A relator designated as long is not used during the construction of a coset table. Rather, it is applied once a complete table has been found. There is some evidence to suggest that better performance is achieved in those groups having one or more very long relators by deferring application of these relators until such time as a complete coset table has been obtained.

Print

RngIntElt

Default : 0
A description of each class of subgroups may be printed immediately after it is constructed. The value \(n \) assigned to the \texttt{Print} parameter specifies just what information is to be printed, according to the following rules:

\(n = 0 \) : No printing (default).

\(n = 1 \) : For each class, print a heading and a set of generators for the class representative.

\(n = 2 \) : The information printed for \(n = 1 \), together with the permutation representation of \(G \) on the right cosets of the class representative.

\(n = 3 \) : The information printed for \(n = 2 \), together with generators for the normalizer \(N \) of the class representative, and a system of right coset representatives for \(N \) in \(G \).

\textbf{Subgroup} \hspace{1cm} \textbf{GrpFP} \hspace{1cm} \textit{Default : sub< G | >}

By specifying a value \(H \) for \texttt{Subgroup}, only subgroups containing \(H \) will be constructed.

\textbf{TimeLimit} \hspace{1cm} \textbf{RngIntElt} \hspace{1cm} \textit{Default : 0 (no limit)}

A time limit in seconds. A value of 0 (default) means no limit.

\begin{tabular}{|l|l|l|}
\hline
\textbf{LowIndexProcess(G, R : parameters)} & & \\
\hline
\textbf{ColumnMajor} & \textbf{Boolelt} & \textit{Default : false} \\
\textbf{GeneratingSets} & \textbf{Boolelt} & \textit{Default : false} \\
\textbf{Long} & \textbf{[RngIntElt]} & \textit{Default : []} \\
\textbf{Print} & \textbf{RngIntElt} & \textit{Default : 0} \\
\textbf{Subgroup} & \textbf{GrpFP} & \textit{Default : sub< G | >} \\
\textbf{TimeLimit} & \textbf{RngIntElt} & \textit{Default : 0 (no limit)} \\
\hline
\end{tabular}

Create a low index subgroups process. This process may be used to create the conjugacy classes of proper subgroups one at time, with control being handed back to the MAGMA language processor each time a new class of subgroups is found. This function returns a process which is used by the function \texttt{NextSubgroup} to actually produce the subgroups.

The arguments and parameters have the same interpretation as for the function \texttt{LowIndexSubgroups}, except that \texttt{Limit} is not available (since the same effect can be achieved by limiting the number of calls to \texttt{NextSubgroup}).

Setting a time limit for a process \(P \) limits the total amount of time spent in calls to \texttt{NextSubgroup}. If the time limit is exceeded in a call to \texttt{NextSubgroup}, this call is aborted and \(P \) becomes invalid. Further attempts to access \(P \) will cause a runtime error. The function \texttt{IsValid} can be used to check whether a process is valid in order to avoid runtime errors in loops or user written functions.
Given a low index subgroups process \(P \), construct the next conjugacy class of proper subgroups. The process \(P \) must have been previously created using the function \(\text{LowIndexProcess} \) and must be valid. Calling \(\text{NextSubgroup} \) for an empty process has no effect.

ExtractGroup(\(P \))

Extract a representative subgroup for the conjugacy class currently defined by the low index process \(P \). The subgroup extracted will be the one found by the previous invocation of \(\text{NextSubgroup} \), or the first subgroup if \(\text{NextSubgroup} \) has never been invoked on this process. Note that \(\text{ExtractGroup} \) will not search for a new subgroup. If \(P \) is empty or invalid, a runtime error will result.

ExtractGenerators(\(P \))

Extract a generating set for the representative subgroup of the conjugacy class currently defined by the low index process \(P \). The subgroup extracted will be the one found by the previous invocation of \(\text{NextSubgroup} \), or the first subgroup if \(\text{NextSubgroup} \) has never been invoked on this process. Note that \(\text{ExtractGenerators} \) will not search for a new subgroup. If \(P \) is empty or invalid, a runtime error will result.

IsEmpty(\(P \))

Return \(\text{true} \) if the low index process \(P \) has already found all conjugacy classes of subgroups. If \(\text{IsEmpty} \) is called immediately following the creation of the low index process, then it will return the value \(\text{false} \) if there are no subgroups satisfying the specified conditions or advance \(P \) to the first such subgroup otherwise.

IsValid(\(P \))

Return \(\text{true} \) if the low index process \(P \) is valid, that is, no limit has been exceeded. If \(\text{IsValid} \) is called immediately following the creation of the low index process, then it will return the value \(\text{false} \) if no subgroups satisfying the specified conditions can be found within the specified time or advance \(P \) to the first such subgroup otherwise.

Example H68E47

We determine all conjugacy classes of subgroups having index at most 15 in the triangle group

\[< a, b | a^2, b^3, (ab)^7 >. \]

```plaintext
> G<a, b> := Group< a, b | a^2, b^3, (a*b)^7 >;
> L := LowIndexSubgroups(G, 15: Print := 1);
Subgroup class 1 Index 7 Length 7 Subgroup generators :-
{ a, b * a * b^-1, b^-1 * a * b * a * b^-1 * a * b }
```
Subgroup class 2
Index 7 Length 7
Subgroup generators:
{ a, b^-1 * a * b^-1 * a * b * a * b, b * a * b^-1 }

Subgroup class 3
Index 15 Length 15
Subgroup generators:
{ a, b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a * b, b * a * b^-1 }

Subgroup class 4
Index 15 Length 15
Subgroup generators:
{ a, b * a * b^-1, b^-1 * a * b^-1 * a * b * a * b^-1 * a * b, b * a * b^-1 }

Subgroup class 5
Index 14 Length 15
Subgroup generators:
{ a, b^-1 * a * b * a * b^-1 * a * b * a * b^-1 * a * b, b * a * b^-1 }

Subgroup class 6
Index 14 Length 7
Subgroup generators:
{ a, b^-1 * a * b * a * b^-1 * a * b * a, b * a * b^-1 }

Subgroup class 7
Index 14 Length 14
Subgroup generators:
{ a, b^-1 * a * b * a * b^-1 * a * b^-1 * a * b * a * b^-1 * a * b, b * a * b^-1 }

Subgroup class 8
Index 14 Length 7
Subgroup generators:
{ a, b * a * b * a * b^-1 * a * b^-1 * a * b * a * b^-1 * a * b^-1, b^-1 * a * b * a * b^-1 }

Subgroup class 9
Index 15 Length 15
Subgroup generators:
{ a, b * a * b * a * b^-1 * a * b^-1, b^-1 * a * b^-1 * a * b * a * b }

Subgroup class 10
Index 9 Length 9
Subgroup generators:
{ a, b * a * b * a * b * a * b^-1 }

Subgroup class 11
Index 14 Length 7
Subgroup generators:
{ a, b * a * b * a * b * a * b^-1 * a * b, b * a * b^-1 * a * b * a * b^-1 }

Subgroup class 12
Index 14 Length 7
Subgroup generators:
{ a, b * a * b * a * b^-1 * a * b * a * b^-1 * a * b, b * a * b^-1 * a * b * a * b^-1 }

Subgroup class 13
Index 14 Length 7
Subgroup generators:
{ a, b^-1 * a * b * a * b^-1 * a * b, b * a * b * a * b * a * b^-1 * a * b^-1 }

Subgroup class 14
Index 14 Length 7
Subgroup generators:
{ a, b * a * b * a * b^-1 * a * b * a * b^-1 * a * b, b^-1 * a * b * a * b^-1 * a * b }

Subgroup class 15
Index 14 Length 14
Subgroup generators:
{ a, b^-1 * a * b * a * b^-1 * a * b, b * a * b * a * b * a * b^-1 * a * b^-1 }

Subgroup class 16
Index 8 Length 8
Subgroup generators:
{ b, a * b * a * b * a * b^-1 * a }
Example H68E48

In this example we illustrate the use of the low index subgroup process by using it to determine whether the simple group $\text{PSL}(2, 8)$ is a homomorphic image of the triangle group

$$< x, y \mid x^2, y^3, (xy)^7 > .$$

> $\text{F}<x, y>$:= FreeGroup(2);
> $\text{G}<x, y>$:= quo $\langle \text{F} \mid x^2, y^3, (x*y)^7 \rangle$;
> LP := LowIndexProcess(G, 30);
> i := 0;
> while i le 100 and not IsEmpty(LP) do
> H := ExtractGroup(LP);
> NextSubgroup(LP);
> P := CosetImage(G, H);
> if $\text{Order}(P)$ eq 504 and IsSimple(P) then
> print "The group G has L(2, 8) as a homomorphic image.";
> print "It is afforded by the subgroup:-", H;
> break;
> end if;
> i +:= 1;
> end while;

The group G has L(2, 8) as a homomorphic image.
It is afforded by the subgroup:-
Finitely presented group H on 4 generators
Index in group G is 28 = 2^2 * 7
Generators as words in group G

H.1 = x
H.2 = y * x * y^-1
H.3 = y^-1 * x * y * x * y^-1 * x * y * x * y^-1 * x * y * x
H.4 = y^-1 * x * y * x * y^-1 * x * y * x * y^-1 * x * y * x * y
H.5 = y^-1 * x * y * x * y^-1 * x * y

Example H68E49

This example shows how the low index subgroup machinery may be used as part of a function trying to prove that a group is infinite:

> function MyIsInfinite(G)
> // ...
> // Low index subgroup approach: check whether an obviously
> // infinite subgroup can be found in reasonable time.
> P := LowIndexProcess(G, 30 : TimeLimit := 5);
> while IsValid(P) and not IsEmpty(P) do
> H := ExtractGroup(P);
Ch. 68 Finitely Presented Groups

> NextSubgroup(~P);
> if 0 in AbelianQuotientInvariants(H) then
> print "The group G has subgroup:-", H;
> print "whose abelian quotient is infinite";
> print "Hence G is infinite.";
> return true;
> end if;
> end while;
> print "Low index approach fails; trying other methods...";
> // ...
>
> end function;

We try the code fragment on the group

\[< x, z | z^3 x^3 z^{-1}, z^5 x^2 z^2 x^2 >. \]

> G<x, z> := Group<x, z | z^3 x^3 z^{-1}, z^5 x^2 z^2 x^2 >;
> MyIsInfinite(G);

The group G has subgroup:-

Finitely presented group H on 4 generators
Index in group G is 4 = 2^2
Generators as words in group G
H.1 = x
H.2 = z * x * z
H.3 = z^3
H.4 = z * x^{-1} * z * x * z^{-1}
whose abelian quotient has structure [2, 6, 0]
Hence G is infinite.
true

LowIndexNormalSubgroups(G, n: parameters)

The normal subgroups of finitely presented group G up to index n, n \leq 100000. The subgroups are returned as a sequence of records (ordered by subgroup index) where the ith record contains fields

Group: A presentation of the ith normal subgroup.
Index: The index of the ith normal subgroup in G.
Supergroups: The set of positions in the sequence of the groups which are supergroups of the ith group.

PrintLevel \quad RingIntElt \quad Default : 0

This parameter may be set to 0, 1 or 2. At 0, the function prints no diagnostic output. At level 1, it outputs details of each normal subgroup being tested for further normal subgroups. Level 2 gives details of each test being performed on each normal subgroup.
The possible values are "No", "Yes" and "LengthLimit". This determines the parameter values passed to the \texttt{Rewrite(G,H)} function, when this function is used. The value "No" sets parameter \texttt{Simplify:=false}. The value "Yes" sets parameter \texttt{Simplify:=true}. The value "LengthLimit" sets parameter \texttt{LengthLimit:=Index(G,H)}.

68.7.2 Subgroup Constructions

Most operations described in this subsection require a closed coset table for at least one subgroup of an fp-group. If a closed coset table is needed and has not been computed, a coset enumeration will be invoked. If the coset enumeration does not produce a closed coset table, a runtime error is reported.

Experienced users can control the behaviour of such indirectly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function \texttt{SetGlobalTCPParameters}. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

\begin{itemize}
 \item \texttt{Conjugate(H, u)}

 Given an fp-group \(H \) and a word \(u \) in an fp-group \(K \), such that \(H \) and \(K \) are subgroups of some common fp-group \(G \) and words in terms of the generators of \(G \) are known for the generators of both \(H \) and \(K \), construct the subgroup of \(G \) obtained by conjugating \(H \) by \(u \).

 \item \texttt{H meet K}

 Given subgroups \(H \) and \(K \), both of finite index in some fp-group \(G \), return the subgroup which is the intersection of \(H \) and \(K \).

 This function requires closed coset tables for both, \(H \) and \(K \) in \(G \).

 \item \texttt{Core(G, H)}

 Given a subgroup \(H \) of finite index in the fp-group \(G \), construct the core of \(H \) in \(G \).

 This function requires a closed coset table for \(H \) in \(G \).

 \item \texttt{GeneratingWords(G, H)}

 Given a subgroup \(H \) of the fp-group \(G \), this function returns a set of words in the generators of \(G \), generating \(H \) as a subgroup of \(G \) (assuming such words are known or can be constructed). Note that the returned generating set does not necessarily correspond to the internal generators of \(H \). In particular, generating words obtained using the function \texttt{GeneratingWords} cannot be used to coerce elements from \(H \) to \(G \).
\end{itemize}
MaximalOvergroup(G, H)
Given a subgroup H of finite index in the fp-group G, construct a maximal overgroup of H in G. A maximal overgroup of H is a maximal subgroup of G that contains H. If H is already maximal, the group G is returned.
This function requires a closed coset table for H in G.

MinimalOvergroup(G, H)
Given a subgroup H of finite index in the fp-group G, construct a minimal overgroup of H in G. A minimal overgroup of a subgroup H is a subgroup K of G such that K contains H as a maximal subgroup. If H is already maximal in G, the group G is returned.
This function requires a closed coset table for H in G.

NormalClosure(G, H)
Given a subgroup H of finite index in the fp-group G, construct the normal closure of H in G.
This function requires a closed coset table for H in G.

Normaliser(G, H)
Normalizer(G, H)
Given a subgroup H of finite index in the fp-group G, construct the normaliser of H in G. For a sample application of this function, see Example H68E42.
This function requires a closed coset table for H in G.

SchreierGenerators(G, H : parameters)
Simplify BOOLELT Default : true
Given a subgroup H of finite index in the fp-group G, return the Schreier generators for H as a set of words in G.
If the parameter Simplify is set to true (default), a heuristic method of eliminating redundant Schreier generators is applied. To switch this feature off, set Simplify to false.
This function requires a closed coset table for H in G.

SchreierSystem(G, H)
Transversal(G, H)
Given a subgroup H of finite index in the fp-group G, construct a (right) Schreier system of coset representatives for H in G. The function returns
(a) the Schreier system as a set of words in G;
(b) the corresponding Schreier coset function.
This function requires a closed coset table for H in G.
Transversal\((G, H, K)\)

Given subgroups \(H\) and \(K\), both of finite index in the fp-group \(G\), return an indexed set of words which comprise a set of representatives for the double cosets \(H u K\) of \(H\) and \(K\) in \(G\), as well as a map from \(G\) to the representatives. It should be noted that this function is evaluated by first constructing the right cosets of \(H\) in \(G\) and then computing the orbits of the cosets under the action of the generators of the subgroup \(K\).

This function requires a closed coset table for \(H\) in \(G\).

Example H68E50

We illustrate some of the subgroup constructions by using them to construct subgroups of small index in the two-dimensional space group \(p4g\) which has the presentation

\[< r, s | r^2, s^4, (r, s)^2 >. \]

\[> \text{p4g}<r, s> := \text{Group}< r, s | r^2 = s^4 = (r^s^{-1}r^s)^2 = 1 >; \]
\[> \text{p4g}; \]
Finitely presented group p4g on 2 generators

Relations
\[r^2 = \text{Id}(p4g) \]
\[s^4 = \text{Id}(p4g) \]
\[(r * s^{-1} * r * s)^2 = \text{Id}(p4g) \]

We define two subgroups of \(p4g\) and compute their indices in \(p4g\).

\[> \text{h} := \text{sub}<\text{p4g} | (s^{-1}r)^4, s*r>; \]
\[> \text{k} := \text{sub}<\text{p4g} | (s^{-1}r)^2, (s*r)^2>; \]
\[> \text{Index(p4g, h)}; \]
\[8 \]
\[> \text{Index(p4g, k)}; \]
\[8 \]

We construct the normal closure of \(h\) in \(p4g\).

\[> \text{n} := \text{NormalClosure(p4g, h)}; \]
\[> \text{n}; \]
Finitely presented group n on 6 generators

Index in group p4g is 2
Generators as words in group p4g
\[n.1 = (s^{-1}r)^4 \]
\[n.2 = s * r \]
\[n.3 = r * s \]
\[n.4 = r^{-1} * s * r^2 \]
\[n.5 = s^2 * r * s^{-1} \]
\[n.6 = r * s \]

Next, we construct a subgroup of \(p4g\) containing \(h\) as maximal subgroup...

\[> \text{m} := \text{MinimalOvergroup(p4g, h)}; \]
> m;
Finitely presented group m on 3 generators
Index in group p4g is 4 = 2^2
Generators as words in group p4g
m.1 = (s^-1 * r)^4
m.2 = s * r
m.3 = (r * s)^2

...and a maximal subgroup of p4g containing k.

> n := MaximalOvergroup(p4g, k);
> n;
Finitely presented group n on 4 generators
Index in group p4g is 2
Generators as words in group p4g
n.1 = (s^-1 * r)^2
n.2 = (s * r)^2
n.3 = r
n.4 = s^2

Finally, we construct a transversal in p4g for the normaliser of h in p4g...

> T := Transversal(p4g, Normaliser(p4g, h));
> T;
{ @ Id(p4g), r, s^-1, r * s @}

...compute the intersection of h and the conjugate of h by r...

> l := h meet h^r;
> l;
Finitely presented group l
Index in group p4g is 32 = 2^5
Subgroup of group p4g defined by coset table

...and construct the core of h in p4g.

> c := Core(p4g, h);
> c;
Finitely presented group c
Index in group p4g is 32 = 2^5
Subgroup of group p4g defined by coset table

Note, that the two subgroups l and c constructed last are defined as finite index subgroups of p4g by a coset table and that there are no generators known for them. Generators can be obtained e.g. by using the function GeneratingWords. We show this for the subgroup l.

> GeneratingWords(p4g, l);
{ (s * r)^4, (s^-1 * r)^4 }

Once computed, these generators are memorised. Compare the result of printing l to the output obtained above.

> l;
Finitely presented group 1 on 2 generators
Index in group p4g is 32 = 2^5
Generators as words in group p4g
 1.1 = (s * r)^4
 1.2 = (s^-1 * r)^4

Example H68E51

Consider the group \(G \) given by the presentation \(\langle x, y \mid x^2, y^3, (xy)^7 \rangle \).

\[
G<x,y> := \text{Group}\langle x,y \mid x^2, y^3, (x*y)^7 \rangle;
\]

We construct the subgroups of index less than or equal to 7 using the low index algorithm.

\[
G<x,y> := \text{Group}\langle x,y \mid x^2, y^3, (x*y)^7 \rangle;
\]

We define a subgroup as the core of one of the subgroups of index 7. The function \texttt{Core} returns a subgroup of \(G \) defined by a coset table.

\[
G<x,y> := \text{Group}\langle x,y \mid x^2, y^3, (x*y)^7 \rangle;
\]
By default, `SchreierGenerators` returns a reduced generating set. The unreduced set of Schreier generators can be obtained by setting the value of the parameter `Simplify` to `false`.

```plaintext
> sgHu := SchreierGenerators(G, H : Simplify := false);
> #sgHu;
85
```

68.7.3 Properties of Subgroups

The operations described in this subsection all require a closed coset table for at least one subgroup of an fp-group. If a closed coset table is needed and has not been computed, a coset enumeration will be invoked. If the coset enumeration does not produce a closed coset table, a runtime error is reported.

Experienced users can control the behaviour of such indirectly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function `SetGlobalTCParameters`. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

`u in H`

Given an fp-group H and a word u in an fp-group K, such that H and K are subgroups of some common fp-group G, H is of finite index in G, and words for the generators of K in terms of the generators of G are known, return `true` if u is an element of H and `false` otherwise.

This function requires a closed coset table for H in G.

`u notin H`

Given an fp-group H and a word u in an fp-group K, such that H and K are subgroups of some common fp-group G, H is of finite index in G, and words for the generators of K in terms of the generators of G are known, return `true` if u is not an element of H and `false` otherwise.

This function requires a closed coset table for H in G.

`H eq K`

Given subgroups H and K, both of finite index in the fp-group G, return `true` if H and K are equal and `false` otherwise.

This function may require closed coset tables for both, H and K in G.

`H ne K`

Given subgroups H and K, both of finite index in the fp-group G, return `true` if H and K are not equal and `false` otherwise.

This function may require closed coset tables for both, H and K in G.
H subset K
Given subgroups H and K, both of finite index in the fp-group G, return true if H is contained in K and false otherwise.
This function requires a closed coset table for K in G.

H notsubset K
Given subgroups H and K, both of finite index in the fp-group G, return true if H is not contained in K and false otherwise.
This function requires a closed coset table for K in G.

IsConjugate(G, H, K)
Given subgroups H and K, both of finite index in the fp-group G, return true if H and K are conjugate subgroups of G and false otherwise. If H and K are conjugate in G, a conjugating element is returned as second return value.
This function requires a closed coset table for both, H and K in G.

IsNormal(G, H)
Given a subgroup H of finite index in the fp-group G, return true if H is a normal subgroup of G and false otherwise.
This function requires a closed coset table for H in G.

IsMaximal(G, H)
Given a subgroup H of finite index in the fp-group G, return true if H is a maximal subgroup of G and false otherwise.
This function requires a closed coset table for H in G.

IsSelfNormalizing(G, H)
Given a subgroup H of finite index in the fp-group G, return true if H is a self-normalizing subgroup of G and false otherwise. For a sample application of this function, see Example H68E42.
This function requires a closed coset table for H in G.

Example H68E52
We illustrate some of the subgroup predicates by applying them to some subgroups of the two-dimensional space group $p4g = < r, s | r^2, s^4, (r,s)^2 >$ from Example H68E50.

> p4g<r, s> := Group< r, s | r^2 = s^4 = (r*s^-1*r*s)^2 = 1 >;
> h := sub< p4g | (s^-1*r)^4, s*r >;
> k := sub< p4g | (s^-1*r)^2, (s*r)^2 >;
h and k have the same index in $p4g$...

> Index(p4g, h);
8
> Index(p4g, k);
8

...but they are not equal.

> h eq k;
false

We check for normality of \(h \) and \(k \) in \(p4g \).

> IsNormal(p4g, h);
false
> IsNormal(p4g, k);
true

We construct the normal closure of \(h \) in \(p4g \).

> n := NormalClosure(p4g, h);

We see that it is maximal...

> IsMaximal(p4g, n);
true

...and that it contains \(k \).

> k subset n;
true

We define another subgroup of \(p4g \).

> l := sub< p4g | (s*r)^4, s^-1*r >;

In fact, it is conjugate to \(h \).

> IsConjugate(p4g, h, l);
true \(r^{-1} \)

I.e. \(l = h^{r^{-1}} \). The intersection of \(h \) and \(h^{r^{-1}} \) already yields the core of \(h \) in \(p4g \).

> h meet l eq Core(p4g, h);
true

Example H68E53

The constructions of the previous section together with the Boolean function \texttt{IsMaximal} may be used to locate large maximal subgroups in a finite group. Consider the Hall-Janko group \(J_2 \), which may be defined by the presentation

\[
< a, b, c \mid a^3, b^3, c^3, abab^{-1}a^{-1}b^{-1}, (ca)^5, (cb)^5, \\
(cb^{-1}cb)^2, a^{-1}baca^{-1}b^{-1}a^{-1}b^{-1}ac^{-1}, \\
aba^{-1}caba^{-1}c^{-1}ab^{-1}a^{-1}c^{-1} >.
\]
We examine subgroups generated by pairs of randomly chosen short words. Whenever we obtain a proper subgroup, if it is not already maximal we replace it by a maximal subgroup that contains it.

> J2<a, b, c> := Group<a, b, c | a^3, b^3, c^3, a*b*a*b^-1*a^-1*b^-1, (c*a)^5, (c*b)^5, (c*b^-1*c*b)^2, a^-1*b*a*c*a^-1*b^-1*a^-1*c^-1, a*b*a^-1*c*a*b*a^-1*c^-1*a*b^-1*a^-1*c^-1>;

> Seen := {0, 1};
> Found := { };
> Sgs := [];
> for i := 1 to 30 do
> u := Random(J2, 1, 1);
> v := Random(J2, 3, 5);
> H := sub< J2 | u, v >;
> Indx := Index(J2, H);
> if Indx notin Seen then
> Include(~Seen, Indx);
> if not IsMaximal(J2, H) then
> H := MaximalOvergroup(J2, H);
> end if;
> if Indx notin Found then
> Include(~Sgs, H);
> Include(~Seen, Indx);
> Include(~Found, Indx);
> end if;
> end if;
> end for;
> Sgs;

Finitely presented group on 3 generators
Index in group J2 is 315 = 3^2 * 5 * 7
Generators as words in group J2
$.1 = b^-1
$.2 = a^-2 * c * a^-1
$.3 = c,

Finitely presented group on 3 generators
Index in group J2 is 1008 = 2^4 * 3^2 * 7
Generators as words in group J2
$.1 = b^-1
$.2 = a^-1 * c^-1 * a^-1 * b
$.3 = a * c * b * c^-1 * a^-1 * c * b * c^-1,

Finitely presented group on 3 generators
Index in group J2 is 100 = 2^2 * 5^2
Generators as words in group J2
Thus after taking 30 2-generator random subgroups, we have obtained three maximal subgroups, including the two largest maximal subgroups.

68.8 Coset Spaces and Tables

Let $G = \langle X | R \rangle$ be a finitely presented group. Suppose that H is a subgroup of G having finite index m. Let $V = \{c_1(= H), c_2, \ldots, c_m\}$ denote the set of distinct right cosets of H in G. This set admits a natural G-action

$$f : V \times G \rightarrow V$$

where

$$f : < c_i, x >= c_k \iff c_i \ast x = c_k,$$

for $c_i \in V$ and $x \in G$. The set V together with this action is a G-set called a right coset space for H in G. The action may also be represented using a coset table T.

If certain of the products $c_i \ast x$ are unknown, the corresponding images under f are undefined. In this case, T is not closed, and V is called an incomplete coset space for H in G.

68.8.1 Coset Tables

A coset table is represented in MAGMA as a mapping. Given a finitely-presented group G and a subgroup H, the corresponding (right) coset table is a mapping $f : \{1, \ldots, r\} \times G \rightarrow \{0, \ldots, r\}$, where r is the index of H in G. $f(i, x)$ is the coset to which coset i is mapped under the action of $x \in G$. The value 0 is only included in the codomain if the coset table is not closed, and it denotes that the coset is not known.

```
CosetTable(G, H: parameters)
```

The (right) coset table for G over subgroup H, constructed by means of the Todd-Coxeter procedure. If the coset table does not close then the codomain will include the value 0.

Experienced users can control the Todd-Coxeter procedure invoked by this function with a wide range of parameters. This function accepts the same parameters as the function CosetEnumerationProcess described in Chapter 69.
CosetTableToRepresentation(G, T)

Given a coset table T for a subgroup H of G, construct the permutation representation of G given by its action on the cosets of H, using the columns of T. The function returns:

(a) The homomorphism $f : G \to P$;
(b) The permutation group image P;
(c) The kernel K of the action (a subgroup of G).

CosetTableToPermutationGroup(G, T)

Given a coset table T for a subgroup H of G, construct the permutation group image of G given by its action on the cosets of H, using the columns of T. This is the second return value of CosetTableToRepresentation(G, T).

Example H68E54

Consider the infinite dihedral group.

```plaintext
> G<a,b> := DihedralGroup(GrpFP, 0);
> G;
Finitely presented group G on 2 generators
Relations
    b^2 = Id(G)
    (a * b)^2 = Id(G)
```

We define a subgroup S of G and compute the coset table map for S in G.

```plaintext
> S := sub<G|a*b, a^10>;
> ct := CosetTable(G, S);
> ct;
Mapping from: Cartesian Product<{ 1 .. 10 }, GrpFP: G> to { 1 .. 10 }
    $1  $2  $3  $4  $5  $6  $7  $8  $9  $10
  1.  2  2  3
  2.  4  1  1
  3.  1  4  5
  4.  6  3  2
  5.  3  6  7
  6.  8  5  4
  7.  5  8  9
  8. 10  7  6
  9.  7 10 10
 10.  9  9  8
```

When printing the coset table, the action of the generators and of the non-trivial inverses of generators on the enumerated transversal is shown in table form.
Using the coset table, we now construct the permutation representation of G on the cosets of S in G. We assign the representation (a homomorphism), the image (a permutation group of degree $|G : S| = 10$) and the kernel of the permutation representation (a subgroup of G).

> fP, P, K := CosetTableToRepresentation(G, ct);
> fP;
Homomorphism of GrpFP: G into GrpPerm: P, Degree 10,
Order $2^2 \cdot 5$ induced by
 \[a \mapsto (1, 2, 4, 6, 8, 10, 9, 7, 5, 3) \]
 \[b \mapsto (1, 2)(3, 4)(5, 6)(7, 8)(9, 10) \]

Note that the images of a and b correspond to the first two columns of the printed coset table above.

> P;
Permutation group P acting on a set of cardinality 10
Order $= 20 = 2^2 \cdot 5$
 \[(1, 2, 4, 6, 8, 10, 9, 7, 5, 3) \]
 \[(1, 2)(3, 4)(5, 6)(7, 8)(9, 10) \]
> K;
Finitely presented group K
Index in group G is $20 = 2^2 \cdot 5$
Subgroup of group G defined by coset table

Now, we define a subgroup of infinite index in G and compute a coset table for it.

> H := sub<G|b>;
> ct := CosetTable(G, H);
Of course, the coset table cannot be complete; note that 0 is in its codomain, indicating unknown images of cosets.

> ct;
Mapping from: Cartesian Product<\(1 . . 1333331 \)>, GrpFP: G
 to \{ 0 . . 1333331 \}

68.8.2 Coset Spaces: Construction

The indexed (right) coset space V of the subgroup H of the group G is a G-set consisting of the set of integers $\{1, \ldots, m\}$, where i represents the right coset c_i of H in G. The action of G on this G-set is that induced by the natural G-action

\[f : V \times G \to V \]

where

\[f : < c_i, x > = c_k \iff c_i \cdot x = c_k, \]

for $c_i \in V$ and $x \in G$. If certain of the products $c_i \cdot x$ are unknown, the corresponding images under f are undefined, and V is called an incomplete coset space for H in G.
This function attempts to construct a coset space for the subgroup \(H \) in the group \(G \) by means of the Todd-Coxeter procedure. If the enumeration fails to complete, the function returns an incomplete coset space. The coset space is returned as an indexed right coset space. For a sample application of this function see Example H68E56.

Experienced users can control the Todd-Coxeter procedure invoked by this function with a wide range of parameters. This function accepts the same parameters as the function \texttt{CosetEnumerationProcess} described in Chapter 69.

The explicit right coset space of the subgroup \(H \) of the group \(G \) is a \(G \)-set containing the set of right cosets of \(H \) in \(G \). The elements of this \(G \)-set are the pairs \(< H, x > \), where \(x \) runs through a transversal for \(H \) in \(G \). Similarly, the explicit left coset space of \(H \) is a \(G \)-set containing the set of left cosets of \(H \) in \(G \), represented as the pairs \(< x, H > \). These functions use the Todd-Coxeter procedure to construct the explicit right (left) coset space of the subgroup \(H \) of the group \(G \). For a sample application see Example H68E56.

Experienced users can control the Todd-Coxeter procedure invoked by these functions with a wide range of parameters. Both functions accept the same parameters as the function \texttt{CosetEnumerationProcess} described in Chapter 69.

68.8.3 Coset Spaces: Elementary Operations

\[H \ast g \]

Right coset of the subgroup \(H \) of the group \(G \), where \(g \) is an element of \(G \) (as an element of the right coset of \(H \)).

\[C \ast g \]

Coset to which the right coset \(C \) of the group \(G \) is mapped by the (right) action of \(g \), where \(g \) is an element of \(G \).

\[C \ast D \]

and \(D \).

Given two right cosets of the same normal subgroup \(H \) of the group \(G \), return the right coset that is the product of \(C \) and \(D \).

\[g \ \text{in} \ C \]

Return \texttt{true} if element \(g \) of group \(G \) lies in the coset \(C \).

\[g \ \text{notin} \ C \]

Return \texttt{true} if element \(g \) of group \(G \) does not lie in the coset \(C \).
Ch. 68
FINITELY PRESENTED GROUPS

C1 eq C2
Returns true if the coset C_1 is equal to the coset C_2.

C1 ne C2
Returns true if the coset C_1 is not equal to the coset C_2.

68.8.4 Accessing Information

#V
The cardinality of the coset space V.

Action(V)
The mapping $V \times G \rightarrow V$ giving the action of G on the coset space V. This mapping is a coset table.

<i, w> @ T
T(i, w)
The image of coset i as defined in the coset table T, under the action of word w.

ExplicitCoset(V, i)
The element of the explicit coset space that corresponds to indexed coset i.

IndexedCoset(V, w)
The element of the indexed coset space V to which the element w of G corresponds.

IndexedCoset(V, C)
The element of the indexed coset space V to which the explicit coset C of G corresponds.

Group(V)
The group G for which V is a coset space.

Subgroup(V)
The subgroup H of G such that V is a coset space for G over H.

IsComplete(V)
Returns true if the coset space V is complete.
ExcludedConjugates(V)
ExcludedConjugates(T)

Given a partial or complete coset space V for the group G over the subgroup H, or a coset table T corresponding to this coset space, this function returns the set of words \(E = \{ g_i^{-1} h_j g_i \mid g_i \text{ a generator of } G, h_j \text{ a generator of } H, \text{ and, modulo } V, g_i^{-1} h_j g_i \text{ does not lie in } H \} \). If \(E \) is empty, then \(H \) is a normal subgroup of \(G \), while if \(E \) is non-empty, the addition of the elements of \(E \) to the generators of \(H \) will usually be a larger subgroup of the normal closure of \(H \). This function may be used with incomplete coset spaces for \(G \) over \(H \); it may then happen that some of the elements of \(E \) actually lie in \(H \) but there is insufficient information for this to be detected. This function is normally used in conjunction with the Todd-Coxeter algorithm when seeking some subgroup having index sufficiently small so that the Todd-Coxeter procedure completes. The conjugates are returned as a set of words.

Transversal(G, H)
RightTransversal(G, H)

Given a finitely presented group \(G \) and a subgroup \(H \) of \(G \), this function returns

(a) A set of elements \(T \) of \(G \) forming a right transversal for \(G \) over \(H \); and
(b) The corresponding transversal mapping \(\phi : G \rightarrow T \). If \(T = [t_1, \ldots, t_r] \) and \(g \in G \), \(\phi \) is defined by \(\phi(g) = t_i \), where \(g \in H * t_i \).

These functions may require the computation of a coset table. Experienced users can control the behaviour of a possibly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function SetGlobalTCParameters. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

Example H68E55

Consider the infinite dihedral group.

> G<a,b> := DihedralGroup(GrpFP, 0);

We define a subgroup \(H \) of index 10 in \(G \).

> H := sub< G | a*b, a^10 >;
> Index(G, H);
10

... and construct a right transversal for \(H \) in \(G \) and the associate transversal map.

> RT, transmap := Transversal(G, H);
> RT;
{\< Id(G), a, a^\-1, a^\-2, a^\-3, a^\-4, a^\-5 \>}
> transmap;
Mapping from: GrpFP: G to SetIndx: RT

From this a left transversal is easily obtained:

> LT := {\< x^\-1 : x in RT \>};
We construct the coset table and check whether the enumeration of the cosets is compatible to the enumeration of the right transversal RT.

```plaintext
> ct := CosetTable(G, H);
> forall(culprit){ i : i in [1..Index(G, H)]
> | ct(1, RT[i]) eq i};
true
```

It is. Thus, we can very easily define a function $RT \times G \rightarrow RT$, describing the action of G on the set of right cosets of H in G.

```plaintext
> action := func< r, g | RT[ct(Index(RT, r), g)] >;

Note that the definition of the function $action$ relies on the fact that the computed right transversal and its enumeration match the ones internally used for the coset table $ct$.

```plaintext
> action(Id(G), b);
a
I.e. $H \cdot b = H \cdot a$.
> action(a^-4, a*b);
a^4
I.e. $Ha^{-4} \cdot (ab) = Ha^4$.
```

**Example H68E56**

Consider the group $G = \langle a, b \mid a^8, b^7, (ab)^2, (a^{-1}b)^3 >$ and the subgroup $H$ of $G$, generated by $a^2$ and $a^{-1}b$.

```plaintext
> F<x, y> := FreeGroup(2);
> G<a, b> := quo< F | x^8, y^7, (x*y)^2, (x^-1*y)^3 >;
> H := sub< G | a^2, a^-1*b >;
```

We construct an indexed right coset space $V$ and an explicit right coset space $V_r$ for $H$ in $G$.

```plaintext
> V := CosetSpace(G, H);
> Vr := RightCosetSpace(G, H);
```

The coset $H$ always has index 1.

```plaintext
> trivial_cospet := ExplicitCoset(Vr, 1);
> IndexedCoset(V, trivial_cospet);
1
```

We now pick a coset...

```plaintext
> coset := ExplicitCoset(Vr, 42);
> coset;
```
\begin{verbatim}
<GrpFP: H, a^-1 * b^-1 * a^3 * b^-1>
...multiply from the right with b...
> coset * b;
<GrpFP: H, a^-1 * b^-1 * a^3>
...and check where this gets us in the indexed coset space V.
> IndexedCoset(V, coset * b);
23

Example H68E57

We present a function which computes the derived subgroup \(G'\) for the finitely presented group \(G\). It assumes that the Todd-Coxeter procedure can enumerate the coset space of \(G'\) in \(G\).

> function DerSub(G)
>   /* Initially define S to contain the commutator of each pair of distinct generators of G */
>   S := {
      (x,y) : x, y in Generators(G) | (x,y) ne Id(G) 
    };
>   /* successively extend S until it is closed under conjugation by the generators of G */
>   repeat
>     V := CosetSpace(G, sub<G | S>);
>     E := ExcludedConjugates(V);
>     S := S join E;
>   until # E eq 0;
>   return sub<G | S>;
> end function;

Example H68E58

Given a subgroup \(H\) of the finitely presented group \(G\), for which the Todd-Coxeter procedure does not complete, add excluded conjugates one at a time to the generators of \(G\) until a subgroup \(K\) is reached such that either \(K\) is normal in \(G\), or \(K\) has sufficiently small index for the Todd-Coxeter method to complete. The set \(hgens\) contains a set of generating words for \(H\).

> function NormClosure(G, hgens)
>   xgens := hgens;
>   kgens := hgens;
>   indx := 0;
>   while # xgens ne 0 do
>     Include(~kgens, Representative(xgens));
>     V := CosetSpace(G, sub<G | kgens>);
>     if IsComplete(V) then break; end if;
\end{verbatim}
> xgens := ExcludedConjugates(V);
> end while;
> if IsComplete(V) then
> print "The subgroup generated by", kgens, "has index", #V;
> return kgens;
> else
> print "The construction was unsuccessful";
> return {};
> end if;
> end function;

68.8.5 Double Coset Spaces: Construction

**DoubleCoset(G, H, g, K)**

The double coset $H \ast g \ast K$ of the subgroups $H$ and $K$ of the group $G$, where $g$ is an element of $G$.

**DoubleCosets(G, H, K)**

Set of double cosets $H \ast g \ast K$ of the group $G$.

This function may require the computation of a coset table. Experienced users can control the behaviour of a possibly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function SetGlobalTCParameters. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

**Example H68E59**

Consider again the infinite dihedral group $G$...

> G<a,b> := DihedralGroup(GrpFP, 0);

...and the subgroup $H$ of index 10 in $G$.

> H := sub< G | a*b, a^10 >;

The set of $H$-$H$ double cosets in $G$ can be obtained with the statement

> DoubleCosets(G, H, H);

{ <GrpFP: H, Id(G), GrpFP: H>, <GrpFP: H, a^5, GrpFP: H>,
  <GrpFP: H, a^4, GrpFP: H>, <GrpFP: H, a^2, GrpFP: H>,
  <GrpFP: H, a, GrpFP: H>, <GrpFP: H, a^3, GrpFP: H> }


68.8.6 Coset Spaces: Selection of Cosets

Given a fp-group $G$, and a partial or complete coset space $V$ or coset table $T$ for $G$ over the subgroup $H$ generated by the set of words $S$, these functions return representatives for the cosets of $V$ which satisfy the conditions defined in the parameters. In the description of the parameters below, the symbol $l$ will denote a Boolean value, while the symbol $n$ will denote a positive integer in the range $[1, \#V]$.

The functions are not identical. \texttt{CosetsSatisfying} returns a set of coset representatives for $V$ as defined in the parameters. \texttt{CosetSatisfying} is the same as \texttt{CosetsSatisfying} with the \texttt{Limit} parameter equal to 1; thus it returns a set containing a single coset representative, or an empty set if no cosets satisfy the conditions.

\begin{itemize}
  \item \texttt{First} \hspace{1cm} \texttt{RngIntElt} \hspace{1cm} \texttt{Default} : 1
  \begin{itemize}
    \item Start looking for coset representatives satisfying the designated conditions beginning with coset $i$ of $V$.
  \end{itemize}
  \item \texttt{Last} \hspace{1cm} \texttt{RngIntElt} \hspace{1cm} \texttt{Default} : $\#V$
  \begin{itemize}
    \item Stop looking for coset representatives after examining coset $j$ of $V$.
  \end{itemize}
  \item \texttt{Limit} \hspace{1cm} \texttt{RngIntElt} \hspace{1cm} \texttt{Default} : $\infty$
  \begin{itemize}
    \item Terminate the search for coset representatives as soon as $l$ have been found which satisfy the designated conditions. This parameter is not available for \texttt{CosetSatisfying}, since \texttt{Limit} is set to 1 for this function.
  \end{itemize}
  \item \texttt{Normalizing} \hspace{1cm} \texttt{BoolElt} \hspace{1cm} \texttt{Default} : false
  \begin{itemize}
    \item If \texttt{true}, select coset representatives $x$ such that, modulo $V$, the word $x^{-1}h_1x, \ldots, x_1h_ax$ is contained in $H$.
  \end{itemize}
  \item \texttt{Order} \hspace{1cm} \texttt{RngIntElt} \hspace{1cm} \texttt{Default} : 0
  \begin{itemize}
    \item Select coset representatives $x$ such that, modulo $V$, the word $x^n$ is contained in $H$.
  \end{itemize}
  \item \texttt{Print} \hspace{1cm} \texttt{RngIntElt} \hspace{1cm} \texttt{Default} : 0
  \begin{itemize}
    \item If $t > 0$, print the coset representatives found to satisfy the designated conditions.
  \end{itemize}
\end{itemize}

\textbf{Example H68E60}

Consider the braid group $G$ on 4 strings with Artin generators $a$, $b$ and $c$ and the subgroup $H$ of $G$ generated by $a$ and $b$.

\begin{verbatim}
> G<a,b,c> := BraidGroup(GrpFP, 4);
\end{verbatim}
We construct an – obviously incomplete – explicit right coset space for $H$ in $G$.

Using the function `CosetSatisfying`, we compute an element of $G$, not contained in $H$, which normalises $H$.

The conjugates of $a$ and $b$ by this element had better be in $H$...

The permutation representation is obtained by using the Todd-Coxeter procedure to construct the coset table for $H$ in $G$. Note that $G$ may be an infinite group: it is only necessary that the index of $H$ in $G$ be finite.

Construct the permutation representation $L$ of $G$ given by the action of $G$ on the coset space $V$. It returns the permutation representation $\phi$ (as a map) and its image.

Construct the image of $G$ given by its action on the (right) coset space of $H$ in $G$. 
Construct the image of $G$ as defined by its action on the coset space $V$.

The kernel of $G$ in its action on the (right) coset space of $H$ in $G$. (Only available when the index of $H$ in $G$ is very small).

This function may require the computation of a coset table. Experienced users can control the behaviour of a possibly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function SetGlobalTCParameters. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

The kernel of $G$ in its action on the (right) coset space $V$. (Only available when the index of the subgroup $H$ of $G$ defining the coset space is very small).

Example H68E61

The first Conway group has a representation as the image of the group

$$G = \langle a, b, c, d, e, f, g, h \mid a^2, b^2, c^2, d^2, e^2, f^2, g^2, h^2,\]
$$

$$(ab)^3, (ac)^2, (ad)^2, (ae)^4, (af)^2, (ag)^2, (ah)^3,$$

$$(bc)^5, (bd)^2, (be)^2, (bf)^2, (bg)^2, (bh)^4,$$

$$(cd)^3, (ce)^3, (cf)^4, (cg)^2, (ch)^2,$$

$$(de)^2, (df)^3, (dg)^2, (dh)^2,$$

$$(ef)^6, (eg)^2, (eh)^2,$$

$$(fg)^4, (fh)^6,$$

$$(gh)^2,$$

$$a(cf)^2 = (adfh)^3 = b(ef)^3 = (bafg)^3 = 1,$$

$$(cef)^7 = d(bh)^2 = d(aeh)^2 = e(bg)^2 = 1 >$$

under the homomorphism defined by the action of $G$ on the cosets of the subgroup $H$ of $G$ defining the coset space is very small).

The permutation group can be constructed as follows:

```plaintext
> F<s, t, u, v, w, x, y, z> := FreeGroup(8);
> G<a, b, c, d, e, f, g, h> := quo<F | s^2, t^2, u^2, v^2, w^2, x^2, y^2, z^2,
> (s*t)^3, (s*u)^2, (s*v)^2, (s*w)^4, (s*x)^2, (s*y)^2, (s*z)^3,
> (t*u)^5, (t*v)^2, (t*w)^2, (t*x)^2, (t*y)^4, (t*z)^4,
> (u*v)^3, (u*w)^2, (u*x)^4, (u*y)^2, (u*z)^2,
> (v*w)^2, (v*x)^3, (v*y)^2, (v*z)^2,
```
Example H68E62

The group $G_2(3)$ is a homomorph of the fp-group $G$ defined below. We construct a permutation representation $G_1$ for $G_2(3)$ on 351 points, and then compute the subgroup generated by the images of the first four generators of $G$ in $G_1$. (The functions applied to permutation groups are described in Chapter 56.)

```plaintext
> F<a,b,c,d,y,x,w> := FreeGroup(7);
> z := y*c*a^-2*b;
> u := x*d;
> t := w*c*a*d*b^-2*c;
> G<a,b,c,d,y,x,w>, g :=
> quo< F | a^4, b^4, c^2, d^2, (a,b), (a*c)^2, (b*c)^2,
> (c*d)^2, d*a*d*b^-1, y^3, (a^-1*b)^y*d*a^-1*b^-1,
> (c*d*a^-1*b)^y*b^-1*a*d*c, a*d*y*d*a^-1*y, x^3,
> a^-x*b^-1, b^-x*a*b, c^-x*c, (x*d)^2, (u*z)^6, w^3,
> (w,y), (a*b)^w*b^-1*a*d*c, (c*d*a^-1*b)^w*d*c*b^-2,
> (b^-2*c*d)^w*a^-1*b^-1, (c*a^-2*b*w)^2,
> (a^-1*b)^w*d*a^-1*b^-1, (t*u)^3 >;

> z1 := g(z);
> u1 := g(u);
> t1 := g(t);
> H := sub< G | z1*a^-2*b^-2, u1*c, t1*a^-2*b^-2 >;
> f, G1, K := CosetAction(G, H);
> Degree(G1);
351
> print Order(G1), FactoredOrder(G1);
4245696 [<2, 6>, <3, 6>, <7, 1>, <13, 1>]
> CompositionFactors(G1);
G
| G(2, 3)
1
> S := sub< G1 | f(a), f(b), f(c), f(d) >;
> BSGS(S);
> S;
Permutation group S of degree 351
```
Thus the images of a, b, c and d in G1 generate the Sylow 2-subgroup

\[
\text{Order } = 64 = 2^6
\]

### 68.9 Simplification

#### 68.9.1 Reducing Generating Sets

Subgroups of finitely presented groups constructed in certain ways may be created with a generating set containing redundant generators. The most important case in which this situation may occur is a subgroup of the domain of a homomorphism \( f \) of groups, defined as the preimage under \( f \) of some given subgroup of the codomain of \( f \). In this case, the generating set of the preimage will contain generators of the kernel of \( f \) and is likely to be not minimal.

Since reducing the generating set may be expensive and is not necessary in all situations, a reduction is not done automatically. Instead, Magma provides a function for reducing generating sets of finitely presented groups.

**ReduceGenerators(G)**

Given a finitely presented group \( G \), attempt to construct a presentation \( H \) on fewer generators. \( H \) is returned as a subgroup of \( G \) (which of course is equal to \( G \)), so that element coerce is possible. The isomorphism from \( G \) to \( H \) is returned as second return value.

If a presentation for \( G \) is known, this function attempts to simplify this presentation (cf. section 68.9.2). Otherwise, it tries to rewrite \( G \) with respect to a suitable supergroup to obtain a presentation on fewer generators.

For a sample application of this function, see Example H68E68.

#### 68.9.2 Tietze Transformations

Given a finitely presented group \( G \), the user can attempt to simplify its presentation using Tietze transformations and substring searching. The choice of simplification strategy can either be left to Magma or selected by the user.

**Simplify(G; parameters)**

Given a finitely presented group \( G \), attempt to simplify the presentation of \( G \) by repeatedly eliminating generators and subsequently shortening relators by substitution of substrings that correspond to the left or right hand side of a relation. The order in which transformations are applied is determined by a set of heuristics. The transformation process terminates when no more eliminations of generators and no more length reducing substring replacements are possible.

A new group \( K \) isomorphic to \( G \) is returned which is (hopefully) defined by a simpler presentation than \( G \). \( K \) is returned as a subgroup of \( G \). The isomorphism \( f : G \to K \) is returned as second return value.
The simplification process can be controlled by a set of parameters described below.

Example H68E63

Consider the Fibonacci group $F(8)$.

```plaintext
> F<x1, x2, x3, x4, x5, x6, x7, x8> := FreeGroup(8);
> F8<x1, x2, x3, x4, x5, x6, x7, x8> :=
> quo< F | x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6,
> x5*x6=x7, x6*x7=x8, x7*x8=x1, x8*x1=x2>;

We use the function `Simplify` in order to obtain a presentation of $F(8)$ on two generators.

```plaintext
> H<\[y\]>, f := Simplify(F8);
> H;
Finitely presented group H on 2 generators
Generators as words in group F8
  y[1] = x3
  y[2] = x4
Relations
  y[1]*^-1 = Id(H)
  * y[1] = Id(H)

The isomorphism f can be used to express the old generators in terms of the new ones.

```plaintext
> f;
Mapping from: GrpFP: F8 to GrpFP: H
> f(x1);
y[1]*^-2 * y[2]*^-1
```

The strategy employed by the function `Simplify` can be controlled using the following set of parameters.

**Preserve**

```
[\text{RngIntElt}]\quad\text{Default :}~[]
```

This parameter can be used to indicate that certain generators of $G$ should not be eliminated (default: no restrictions). `Preserve` is assigned a sequence of integers in the range $[1, \ldots, n]$, where $n$ is the number of generators of $G$, containing the numbers of those generators of $G$ which should be preserved. See Example H68E65 for a sample application.

**Iterations**

```
\text{RngIntElt}\quad\text{Default :}~10000
```

This parameter sets the maximal number of iterations of the main elimination / simplification cycle which will be performed.

**EliminationLimit**

```
\text{RngIntElt}\quad\text{Default :}~100
```
This parameter sets the maximal number of generators which may be eliminated in each elimination phase.

\textbf{LengthLimit} \quad \texttt{RngIntElt} \quad \textit{Default} : \infty

If \textit{LengthLimit} is set to \( n \), any eliminations which would make the total length of the relators grow beyond \( n \) will not be performed (default: no limit).

\textbf{ExpandLimit} \quad \texttt{RngIntElt} \quad \textit{Default} : 150

If \textit{ExpandLimit} is set to \( n \), the total length of the relators is not permitted to grow by more than a factor of \( n\% \) in any elimination phase (default: 150\%). If this limit is reached, the elimination phase is aborted.

\textbf{GeneratorsLimit} \quad \texttt{RngIntElt} \quad \textit{Default} : 0

Any eliminations which would reduce the number of generators below the value of \textit{GeneratorsLimit} will not be performed (default: 0).

\textbf{SaveLimit} \quad \texttt{RngIntElt} \quad \textit{Default} : 10

If \textit{SaveLimit} is set to \( n \), any simplification phase is repeated, if the reduction in the total length of the relators achieved during this phase exceeds \( n\% \) (default: 10\%).

\textbf{SearchSimultaneous} \quad \texttt{RngIntElt} \quad \textit{Default} : 20

This parameter sets the number of relators processed simultaneously in a simplification phase.

\textbf{Print} \quad \texttt{RngIntElt} \quad \textit{Default} : 0

This parameter controls the volume of printing. By default its value is that returned by \texttt{GetVerbose("Tietze")}, which is 0 unless it has been changed through use of \texttt{SetVerbose}.

\begin{كونون}
\textbf{SimplifyLength}(G: \texttt{parameters})
\end{كونون}

Given a finitely presented group \( G \), attempt to eliminate generators and shorten relators by locating substrings that correspond to the left or right hand side of a relation. The order in which transformations are applied is determined by a set of heuristics. As opposed to the function \textbf{Simplify}, this function terminates the transformation process when the total length of the presentation starts to increase with the elimination of further generators.

A new group \( K \) isomorphic to \( G \) is returned which is (hopefully) defined by a simpler presentation than \( G \). \( K \) is returned as a subgroup of \( G \). The isomorphism \( f : G \to K \) is returned as second return value. This function accepts the same set of parameters as the function \textbf{Simplify}.

\begin{كونون}
\textbf{TietzeProcess}(G: \texttt{parameters})
\end{كونون}

Create a Tietze process that takes the presentation for the \texttt{fp-group} \( G \) as its starting point. This process may now be manipulated by various procedures that will be described below.

\textbf{Preserve} \quad \texttt{[RngIntElt]} \quad \textit{Default} : []

\textbf{Iterations} \quad \texttt{RngIntElt} \quad \textit{Default} : 10000
These parameters define the defaults used for the Tietze operations. Each of the various procedures described below allows some or all of these control parameters to be overridden.

For the meanings of the parameters, see the description under Simplify above.

ShowOptions(~P : parameters)
Display the defaults associated with the Tietze process \( P \). The current status of all the control parameters may be viewed by using this function.

SetOptions(~P : parameters)
Change the defaults associated with the Tietze process \( P \). All of the control parameters may be overridden permanently by using this function.

Simplify(~P : parameters)
SimplifyPresentation(~P : parameters)
Use the default strategy to simplify the presentation as much as possible. The transformation process is terminated when no more eliminations of generators and no more length reducing substring replacements are possible. All the control parameters may be overridden for this function.

SimplifyLength(~P : parameters)
Use the default strategy to simplify the presentation as much as possible. The transformation process is terminated when the total length of the presentation starts to increase with the elimination of further generators. All the control parameters may be overridden for this function.

Eliminate(~P : parameters)
EliminateGenerators(~P : parameters)
Eliminate generators in the presentation defined by the Tietze process \( P \) under the control of the parameters. First any relators of length one are used to eliminate trivial generators. Then, if there are any non-involutory relators of length two, the generator with the higher number is eliminated. Of the control parameters, only EliminationLimit, ExpandLimit, GeneratorsLimit and LengthLimit may be overridden by this function.
If $n > 0$, try to eliminate a generator using the $n$-th relator. If no generator is specified by the parameter `Generator` below, then the generator which is eliminated will be the one occurring once in the relator that produced the smallest total relator length.

If $n > 0$, try to eliminate the $n$-th generator. If no relation is specified by the parameter `Relator` above, then the shortest relator in which the $n$-th generator occurs exactly once (if any) is used.

**Search(~P: parameters)**

Simplifies the presentation by repeatedly searching for common substrings in pairs of relators where the length of the substring is greater than half the length of the shorter relator and making the corresponding transformations. Relators of length 1 or 2 are also used to generate simplifications. The control parameters `SaveLimit` and `SearchSimultaneous` can be overridden.

**SearchEqual(~P: parameters)**

Modifies the presentation by repeatedly searching for common substrings in pairs of relators where the length of the substring is exactly half the length of the shorter relator and making the corresponding transformations. The control parameter `SearchSimultaneous` can be overridden.

**Group(P)**

Extract the group $G$ defined by the current presentation associated with the Tietze process $P$, together with the isomorphism between the original group and $G$. $G$ is returned as a subgroup of the original group underlying $P$.

**NumberOfGenerators(P)**

The number of generators for the presentation currently stored by the Tietze process $P$.

**NumberOfRelations(P)**

The number of relations in the presentation currently stored by the Tietze process $P$.

**PresentationLength(P)**

The sum of the lengths of the relators in the presentation currently stored by the Tietze process $P$. 
Example H68E64

The Fibonacci group $F(n)$ is generated by $\{x_1, \ldots, x_n\}$ with defining relations

$$x_i x_{i+1} = x_{i+2}, \quad i \in \{1, \ldots, n\},$$

where the subscripts are taken modulo $n$. Consider the Fibonacci group $F(7)$, which is defined in terms of the presentation

$$< x_1, x_2, x_3, x_4, x_5, x_6, x_7 \mid x_1 x_2 = x_3, x_2 x_3 = x_4, x_3 x_4 = x_5,$$
$$x_4 x_5 = x_6, x_5 x_6 = x_7, x_6 x_7 = x_1, x_7 x_1 = x_2 >.$$ 

The following code will produce a 2-generator, 2-relator presentation for $F(7)$:

```> F<x1, x2, x3, x4, x5, x6, x7> := FreeGroup(7);
> F7<x1, x2, x3, x4, x5, x6, x7> := quo< F | x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6,
> x5*x6=x7, x6*x7=x1, x7*x1=x2 >;
> P := TietzeProcess(F7);
> for i := 7 to 3 by -1 do
> Eliminate(~P: Generator := i);
> end for;
> Search(~P);
> H<x, y>, f := Group(P);
> H;
Finitely presented group H on 2 generators
Generators as words in group F7
 x = x1
 y = x2
Relations
 x^-1 * y^-1 * x^-1 * y^-2 * x^-1 * y * x^-1 * y * x^-1 = Id(H)
 x * y^3 * x^-1 * y * x^-1 * y^2 * x * y * x * y^-1 = Id(H)
```

The resulting presentation is

$$< a, b \mid a^{-1} b^{-1} a^{-1} b^{-2} a^{-1} b a^{-1}, a b^3 a^{-1} b a^{-1} b^2 a b a^{-1} >.$$ 

We can use the isomorphism $f$ returned by the function `Group` to express arbitrary words in the original generators of $F(7)$ in terms of the new generators $x$ and $y$:

```> f;
Mapping from: GrpFP: F7 to GrpFP: H
> f(x7);
 x * y^-2 * x * y^-2 * x * y * x * y^-2 * x * y
```

Alternatively, a similar effect may be obtained using the `Simplify` function:

```> F<x1, x2, x3, x4, x5, x6, x7> := FreeGroup(7);
> F7<x1, x2, x3, x4, x5, x6, x7> := quo< F | x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6,
```

This concludes the documentation for the problem in this section.
> x5*x6=x7, x6*x7=x1, x7*x1=x2;
> H<x, y>, f := Simplify(F7: Iterations := 5);
> H;
Finitely presented group H on 2 generators
Generators as words in group F7
  x = x2
  y = x3
Relations
  x*y^-1*x*y^2*x*y*2 = Id(H)
  y*x*y^2*x^-1*y*x^-2*y*x^-2 = Id(H)

Again, we can use the isomorphism f returned by the function Simplify to express arbitrary words in the original generators of F(7) in terms of the new generators x and y:

> f;
Mapping from: GrpFP: F7 to GrpFP: H
> f(x7);
y*x*y*x*y^2*x*x*y

Example H68E65

In a situation where some proper subset S of the original generating set of a finitely group G is sufficient to generate G, the function Simplify can also be used to rewrite words in the original generators in terms of the elements of S. Consider again one of the Fibonacci groups, say F(8).

> F<x1, x2, x3, x4, x5, x6, x7, x8> := FreeGroup(8);
> F8<x1, x2, x3, x4, x5, x6, x7, x8> :=
  quo< F | x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6,
         x5*x6=x7, x6*x7=x8, x7*x8=x1, x8*x1=x2>;

Obviously, F(8) is generated by x1 and x2. We utilise the function Simplify to obtain a presentation H of F(8) on x1 and x2, using the parameter Preserve to indicate that x1 and x2 – i.e. the first and the second generator – are to be retained in the new presentation. We also compute the isomorphism f : F(8) → H.

> H<x, y>, f := Simplify(F8: Preserve := [1,2]);

Mapping elements of F(8) to H using the map f basically means to rewrite these elements in terms of the generators x = x1 and y = x2. Since H is returned as a subgroup of F(8), the resulting words can be coerced from H back into F(8), yielding words explicitly in x1 and x2.

> F8 ! f(x5*x6);
x1 * x2^-2 * x1 * x2 * x1^-2 * x2^-1 * x1 * x2^-1

Example H68E66

The finiteness of the last of the Fibonacci groups, F(9), was settled in 1988 by M.F. Newman using the following result:
Theorem. Let $G$ be a group with a finite presentation on $b$ generators and $r$ relations, and suppose $p$ is an odd prime. Let $d$ denote the rank of the elementary abelian group $G_1 = [G, G][p]$ and let $e$ denote the rank of $G_2 = [G_1, G][p]$. If

$$r - b < \frac{d^2}{2} - \frac{d}{2} - d - e$$

or

$$r - b \leq \frac{d^2}{2} - \frac{d}{2} - d - e + (e + \frac{d}{2} - \frac{d^2}{4})\frac{d}{2},$$

then $G$ has arbitrary large quotients of $p$-power order.

We present a proof that $F(9)$ is infinite using this result.

```plaintext
> Left := func< b, r | r - b >;
> Right := func< d, e | d^2 div 2 - d div 2 - d - e +
> (e + d div 2 - d^2 div 4)*(d div 2) >;
>
> F< x1,x2,x3,x4,x5,x6,x7,x8,x9 > :=
> ΨGroup< x1, x2, x3, x4, x5, x6, x7, x8, x9 |
> x1*x2=x3, x2*x3=x4, x3*x4=x5, x4*x5=x6, x5*x6=x7,
> x6*x7=x8, x7*x8=x9, x8*x9=x1, x9*x1=x2 >;
>
> F;
Finitely presented group F on 9 generators
Relations
x1 * x2 = x3
x2 * x3 = x4
x3 * x4 = x5
x4 * x5 = x6
x5 * x6 = x7
x6 * x7 = x8
x7 * x8 = x9
x8 * x9 = x1
x9 * x1 = x2
> AbelianQuotientInvariants(F);
[2, 38]
Thus the nilpotent quotient of F is divisible by 2 and 19. We examine the 2- and 19-quotients of F.

> Q1 := pQuotient(F, 2, 0: Print := 1);
Class limit set to 127.
Lower exponent-2 central series for F
Group: F to lower exponent-2 central class 1 has order 2^2
Group: F to lower exponent-2 central class 2 has order 2^3
Group completed. Lower exponent-2 central class = 2, Order = 2^3
> Q2 := pQuotient(F, 19, 0: Print := 1);
Class limit set to 127.
Lower exponent-19 central series for F
```
Group: F to lower exponent-19 central class 1 has order $19^1$
Group completed. Lower exponent-19 central class = 1, Order = $19^1$

Thus, the nilpotent residual of $F$ has index 152. We try to locate this subgroup. We first take a 2-generator presentation for $F$.

> G := Simplify(F);
> G;
Finitely presented group G on 2 generators
Generators as words in group F
  G.1 = x4
  G.2 = x5
Relations
  G.2 * G.1 * G.2 * G.1 * G.2^2 * G.1 * G.2^2 * G.1^-1 * G.2 * G.1^-2 * G.2 * 
  G.1^-2 = Id(G)
  G.1 * G.2^2 * G.1 * G.2 * G.1^2 * G.2^-1 * G.1^2 * G.2^-1 * G.1 * G.2^-1 * 
  G.1^-2 * G.2^-1 * G.1 * G.2^-1 = Id(G)
> H := ncl< G | (G.1, G.2) >;
> H;
Finitely presented group H
Index in group G is 76 = $2^2 * 19$
Subgroup of group G defined by coset table

We haven’t got the full nilpotent residual yet, so we try again.

> H := ncl< G | (G.1*G.1, G.2) >;
> H;
Finitely presented group H
Index in group G is 152 = $2^3 * 19$
Subgroup of group G defined by coset table

Now, we have it.

> AbelianQuotientInvariants(H);
[ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]

The nilpotent residual $H$ has a 5-quotient. We construct a presentation for $H$ and then calculate $d$ and $e$ for its 5-quotient.

> K := Rewrite(G, H: Simplify := false);
> KP := pQuotientProcess(K, 5, 1);
> d := FactoredOrder(ExtractGroup(KP))[1][2];
> NextClass(~KP);
> e := FactoredOrder(ExtractGroup(KP))[1][2] - d;
> "D = ", d, "e = ", e;
  d = 18 e = 81
> "Right hand side = ", Right(d, e);
Right hand side = 135
> "Left hand side = ", Left(Ngens(K), #Relations(K));
Left hand side = 151
Since Left is greater than Right, this presentation for $H$ doesn’t work. Thus we start eliminating generators.

> K := Simplify(K: Iterations := 1);
> "Left hand side = ", Left(Ngens(K), #Relations(K));
Left hand side = 136
> K := Simplify(K: Iterations := 1);
> "Left hand side = ", Left(Ngens(K), #Relations(K));
Left hand side = 123

Got it! By Newman’s theorem, $H$ has an infinite 5-quotient and so $F$ must be infinite.

Example H68E67

In this example, we consider a – quite unpleasant – presentation for some group $G$. In fact, it is a presentation for the group $\text{PSL}_3(7):2$, but we assume that we do not know this and want to compute the order of the finitely presented group $G$ using coset enumeration.

We note in passing that the strategy outlined in this example is, together with other approaches, applied by the function \textit{Order}.

> F<a,b,c> := FreeGroup(3);
> rels := [ a^4, b^2, (a*b)^3, (a*b)^8, ((a*b)^2*(a^-1*b)^3)^2, c^2, (c*a*c*a^2)^2, (c*a)^3*(c*a^-1)^3, c*a*b*c*a^-1*b*a^-1*c*a^2*b*a^-1, c*a*b*c*a^-1*b*c*b*a^-1*c*a^2*b*a^-1, c*a*b*a^-1*c*a*b*a^-1*c*a*b*a^-1*c*a*b*a^-1, c*b*a^-2*b*c*b*c*a^-2*b*c*b*a^-2*b, c*a^-2*c*b*a*c*b*a*c*b*a*c*a^-1*c*a*b*a^-1, c*a^-1*b*a*c*a^-1*b*a*b*c*b*a^2*b*a^-1*b, c*a*b*a^-1*b*c*b*a^-1*b*c*a^-1*b*a*b*c*b*c, c*a*c*b*c*b*c*a*c*b*a*c*b*a*c*b*a, c*b*a^-1*b*c*a^-1*c*a^-1*b*a*b*c*b*c*a^2*b*a*b*a^-1, c*b*a^-1*b*a*b*c*b*a^-1*b*a*b*c*b*a^-1*b*a*b, c*a^-2*b*a^-1*b*c*b*c*b*a^-1*b*a*c*b*a^2*b*a^-1*b ];
> G<a,b,c> := quo< F | rels >;

As it happens, trying to determine the order of $G$ by enumerating the cosets of the trivial subgroup is quite hard. – Even the predefined enumeration strategy "Hard" (cf. \textit{ToddCoxeter} and \textit{CosetEnumerationProcess}) does not give a finite result.

> time ToddCoxeter(G, sub<G|> : Strategy := "Hard");
0
Time: 199.620

Of course we could try to increase the workspace for the coset enumeration, but we decide to be more clever. Trying random words in the generators of $G$, we easily find some subgroup $S$ of $G$ with pretty small index in $G$.

> S := sub< G | b, c*a*c*b*a*b >;
We now have to compute the order of $S$. In order to be able to do this using coset enumeration, we have to construct a presentation for $S$ by rewriting $S$ w.r.t. $G$.

However, the presentation obtained by Reidemeister-Schreier rewriting without any simplification is not suitable for coset enumeration: it contains too many generators and its total length is quite high.

An enumeration with the predefined enumeration strategy "Hard" does not produce a finite result. (Note that in consideration of the high total relator length, we select a coset table based enumeration style; cf. CosetEnumerationProcess in Chapter 69.)

On the other hand, simplifying the presentation by reducing the number of generators as much as possible is not a good idea either, since the total relator length grows massively.

Again, an enumeration with the predefined enumeration strategy "Hard" does not produce a finite result.

The best strategy is, to simplify the presentation obtained from the Reidemeister-Schreier procedure by eliminating generators until the total length of the relators starts to grow.
A coset enumeration for this presentation produces a finite result in a reasonable amount of time.

> time ToddCoxeter(Rsl, sub<Rsl|> : Strategy := "Hard", Style := "C");
32928
Time: 289.410

This finally proves that $G$ is finite and has order $32928 \cdot 114 = 3753792$.

## 68.10 Representation Theory

This section describes some functions for creating $R[G]$-modules for a finitely presented group $G$, which are unique for this category or have special properties when called for fp-groups. For a complete description of the functions available for creating and working with $R[G]$-modules we refer to chapter 86.

Note that the function `GModuleAction` can be used to extract the matrix representation associated to an $R[G]$-module.

All operations described in this subsection may require a closed coset table for at least one subgroup of an fp-group. If a closed coset table is needed and has not been computed, a coset enumeration will be invoked. If the coset enumeration does not produce a closed coset table, a runtime error is reported.

Experienced users can control the behaviour of such indirectly invoked coset enumeration with a set of global parameters. These global parameters can be changed using the function `SetGlobalTCParameters`. For a detailed description of the available parameters and their meanings, we refer to Chapter 69.

### GModulePrimes(G, A)

Let $G$ be a finitely presented group and $A$ a normal subgroup of $G$ of finite index. Given any prime $p$, the maximal $p$-elementary abelian quotient of $A$ can be viewed as a $F_p[G]$-module $M_p$. This function determines all primes $p$ such that $M_p$ is not trivial (i.e. zero-dimensional) and the dimensions of the corresponding modules $M_p$.

The return value is a multiset $S$. If $0 \notin S$, the maximal abelian quotient of $A$ is finite and the multiplicity of $p$ is the dimension of $M_p$. If $S$ contains $0$ with multiplicity $m$, the maximal abelian quotient of $A$ contains $m$ copies of $\mathbb{Z}$. In this case, $M_p$ is non-trivial for every prime $p$. The rank of $M_p$ in this case is the sum of $m$ and the multiplicity of $p$ in $S$. 
Let $G$ be a finitely presented group, $A$ a normal subgroup of finite index in $G$ and $B$ a normal subgroup of $G$ contained in $A$. Given any prime $p$, the maximal $p$-elementary abelian quotient of $A/B$ can be viewed as a $F_p[G]$-module $M_p$. This function determines all primes $p$ such that $M_p$ is not trivial (i.e. zero-dimensional) and the dimensions of the corresponding modules $M_p$. The return value is a multiset $S$. If $0 \notin S$, the maximal abelian quotient of $A/B$ is finite and the multiplicity of $p$ is the dimension of $M_p$. If $S$ contains 0 with multiplicity $m$, the maximal abelian quotient of $A/B$ contains $m$ copies of $\mathbb{Z}$. In this case, $M_p$ is non-trivial for every prime $p$. The rank of $M_p$ in this case is the sum of $m$ and the multiplicity of $p$ in $S$.

Given a finitely presented group $G$, a normal subgroup $A$ of finite index in $G$ and a prime $p$, create the $F_p[G]$-module $M$ corresponding to the conjugation action of $G$ on the maximal $p$-elementary abelian quotient of $A$. The function also returns the epimorphism $\pi : A \to M$.

Note that normality of $A$ in $G$ is not checked. The results for invalid input data are undefined.

Given a finitely presented group $G$, a normal subgroup $A$ of $G$ of finite index, a normal subgroup $B$ of $G$ contained in $A$ and a prime $p$, create the $F_p[G]$-module $M$ corresponding to the conjugation action of $G$ on the maximal $p$-elementary abelian quotient of $A/B$.

$p$ can be omitted, if the maximal elementary abelian quotient of $A/B$ is a $p$-group for some prime $p$. Note, however, that the computation is much faster, if a prime is specified.

The function also returns the epimorphism $\pi : A \to M$.

Note that normality of $A$ and $B$ in $G$ is not checked. The results for invalid input data are undefined.

Given a map $f : A \to M$ from a normal subgroup $A$ of an fp-group $G$ onto a $F_p[G]$-module $M$ and a submodule $N$ of $M$, try to compute the preimage of $N$ under $f$ using a fast pullback method. If successful, the preimage is returned as subgroup of $A$.

If the pullback works, it is in general faster than a direct computation of the preimage using the preimage operator and it produces a more concise generating set for the preimage; see the following example. In cases where the pullback fails, a runtime error is reported and a preimage construction should be used instead.
Example H68E68

Consider the group $G$ defined by the presentation

\[
\langle a, b, c, d, e \mid a^4, b^{42}, c^6, b = b^{-1}, [a, c], [a, d], [a, e],
\]
\[
c^b = ce, d^b = d^{-1}, c^b = e^2, d^c = d^e, e^c = e^2, [d, e] \rangle.
\]

> F<a,b,c,d,e> := FreeGroup(5);
> G<a,b,c,d,e> := quo< F | a^4, b^42, c^6, e^3, 
> b^a=b^-1, (a,c), (a,d), (a,e), 
> c^b=c*e, d^b=d^-1, e^b=e^2, 
> d^c=d*e, e^c=e^2, 
> (d,e) >;

The finite index subgroup $H$ of $G$ generated by $c, d, e$ is normal in $G$.

> H := sub< G | c,d,e >;
> Index(G, H);
168
> IsNormal(G, H);
true

We check, for which characteristics the action of $G$ on $H$ yields non-trivial modules.

> GModulePrimes(G, H);
{0, 2, 3}

We construct the $\mathbb{F}_3[G]$-module $M$ given by the action of $G$ on the maximal 3-elementary abelian quotient of $H$ and the natural epimorphism $\pi$ from $H$ onto the additive group of $M$.

> M, pi := GModule(G, H, 3);
> M;
GModule M of dimension 2 over GF(3)

Using the function Submodules, we obtain the submodules of $M$. Their preimages under $\pi$ are precisely the normal subgroups of $G$ which are contained in $H$ and contain $\ker(\pi)$.

> submod := Submodules(M);
> time nsgs := [ m @@ pi : m in submod ];
Time: 11.640
> [ Index(G, s) : s in nsgs ];
[ 1512, 504, 504, 168 ]

The generating sets for the normal subgroups obtained in this way, contain in general many redundant generators. (E.g. each will contain a generating set for $\ker(\pi)$.)

> [ NumberOfGenerators(s) : s in nsgs ];
[ 19, 20, 20, 21 ]

Optimised generating sets can be obtained using the function ReduceGenerators.

> nsgs_red := [ ReduceGenerators(s) : s in nsgs ];
> [ NumberOfGenerators(s) : s in nsgs_red ];
Alternatively, and in fact this is the recommended way, we can use the function \texttt{Pullback} to compute the preimages of the submodules under \( \pi \). Note that the generating sets for the preimages computed this way contain fewer redundant generators.

\begin{verbatim}
> time nsgs := [ Pullback(pi, m) : m in submod ];
Time: 8.560
> [ Index(G, s) : s in nsgs ];
[ 1512, 504, 504, 168 ]
> [ NumberOfGenerators(s) : s in nsgs ];
[ 4, 4, 3, 2 ]
\end{verbatim}

\textbf{Example H68E69}

Consider the group defined by the presentation

\[ < a, b, c, d, e \mid a^5, b^5, c^6, d^5, e^3, b^a = bd, \]
\[ (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e) > . \]

\begin{verbatim}
> G<a,b,c,d,e> := Group< a,b,c,d,e |
> a^5, b^5, c^6, d^5, e^3, b^a = b*d,
> (a,c), (a,d), (a,e), (b,c), (b,d), (b,e),
> (c,d), (c,e), (d,e) >;

 Obviously the subgroup of \( G \) generated by \( b, c, d, e \) is normal in \( G \).

> H := sub< G | b,c,d,e >;
> IsNormal(G, H);
true

 We use the function \texttt{GModulePrimes} to determine the set of primes \( p \) for which the action of \( G \) on the maximal \( p \)-elementary abelian quotient of \( H \) induces a nontrivial \( \mathbb{F}_p[G] \)-module.

> P := GModulePrimes(G, H);
> 0 in P;
false

 0 is not contained in \( P \), i.e. the maximal free abelian quotient of \( H \) is trivial. Hence, there are only finitely many primes, satisfying the condition above.

 We loop over the distinct elements of \( P \) and for each element \( p \) we construct the induced \( \mathbb{F}_p[G] \)-module, print its dimension and check whether it is decomposable. Note that the dimension of the module for \( p \) must be equal to the multiplicity of \( p \) in \( P \).

\begin{verbatim}
> for p in MultisetToSet(P) do
>   M := GModule(G, H, p);
>   dim := Dimension(M);
>   decomp := IsDecomposable(M);
>   assert dim eq Multiplicity(P, p);
\end{verbatim}
68.11 Small Group Identification

This section describes some special issues arising with the identification of a finitely presented group using the database of small groups described in Section 64.2.

IdentifyGroup(G)

Locate the pair of integers \( \langle o, n \rangle \) so that \( \text{SmallGroup}(o, n) \) is isomorphic to \( G \). If the construction of a permutation representation for \( G \) fails or if there is no group isomorphic to \( G \) in the database, then an error will result.

When trying to look up a finitely presented group \( G \) in the database of small groups, MAGMA tries to construct a permutation representation of \( G \) by enumerating the cosets of the trivial subgroup in \( G \). Assuming that a group isomorphic to \( G \) is contained in the database, the resulting coset table will be fairly small. Hence for performance reasons, a coset limit of \( 100 \cdot o \) is imposed, where \( o \) is the maximal order of groups in the database, unless the order of \( G \) is known to be less or equal to \( o \). If, on the other hand, \( |G| \leq o \) is known, the global set of parameters for implicitly invoked coset enumerations applies. This set of parameters can be changed using the function \( \text{SetGlobalTCPParameters} \).

If the coset enumeration for \( G \) fails with the coset limit \( 100 \cdot o \), this can be seen as a reasonable indication that \( G \) is probably too large to be contained in the database of small groups.

To deal with cases where the coset enumeration fails although \( G \) is known or suspected to be small enough, it is recommended to attempt to compute the order of \( G \) using the function \( \text{Order} \) before the actual group identification. If \( G \) that way can be shown to be small enough to be contained in the database, the function \( \text{SetGlobalTCPParameters} \) can be used to control the behaviour of coset enumerations in a subsequent call to \( \text{IdentifyGroup} \). The following example illustrates this.
Example H68E70

Consider the group defined by the presentation

\[ \langle a, b \mid (ba^{-1})^3, (ba^{-1}b)^2, a^{12}b^2a^7b^2ab^2 \rangle. \]

\[
> \text{G := Group\langle a, b \mid (b*a^{-1})^3, (b*a^{-1}b)^2, } \\
> \text{a^{12}b^2a^7b^2a*b^2 \rangle;} \\
\]

We suspect (for some reason) that \( G \) is a small group and want to identify its isomorphism type in the database of small groups.

\[
> \text{IdentifyGroup(G);} \\
\]

\textbf{IdentifyGroup(} \\
\textbf{G: GrpFP: G)} \\
\textbf{In file } /home/magma/package/Group/Grp/smallgps2.m, line 220, \\
\textbf{column 25:} \\
\textbf{res := IdentifyGroup(db, G);} \\
\textbf{~} \\
\textbf{Runtime error in 'IdentifyGroup': Coset enumeration failed; group} \\
\textbf{may be too large (see handbook entry for details) } \\

The group couldn’t be identified, because it was not possible to obtain a permutation representation with the default value of the coset limit.

Since we still think the group should be small, we try to prove this using the function \texttt{Order}.

\[
> \text{Order(G : Print := true);} \\
\textbf{INDEX = 6 (a=6 r=66709 h=999999 n=999999; l=1247 c=1.56; m=969169} \\
t=999998) \\
6 \\
\]

We were correct; the group is in fact very small. However, we can see from the output of the \texttt{Order} command that this wasn’t that easy to find out: almost one million cosets were used in the coset enumeration.

Since the order of \( G \) is now known to the system, a subsequent call to \texttt{IdentifyGroup} will now use the global parameters for implicitly invoked coset enumerations. To be on the safe side, we tell the system to be prepared to work a little harder using the function \texttt{SetGlobalTCPParameters} and try again to identify \( G \).

\[
> \text{SetGlobalTCPParameters( : Strategy := "Hard");} \\
> > \text{IdentifyGroup(G);} \\
\textbf{<6, 1>} \\
\]

Now \( G \) can be identified.
68.11.1 Concrete Representations of Small Groups

When an finitely-presented group is known to small, it may be useful to write it concretely as a permutation or PC-group. There are two utilities provided for this purpose.

**PermutationGroup(G)**

Construct a faithful permutation representation of $G$, and the isomorphism from $G$ to the representation. The algorithm first computes the order of $G$, then takes the regular representation of $G$, and reduces the degree. Thus the command is restricted to small groups.

**PCGroup(G)**

Construct a faithful PC-group representation of $G$, and the isomorphism from $G$ to the representation. The algorithm first computes the order of $G$, then computes the soluble quotient of $G$ with the order found. Thus the command is restricted to small soluble groups.

68.12 Bibliography


69 FINITELY PRESENTED GROUPS:
ADVANCED

69.1 Introduction . . . . . . . . 2099

69.2 Low Level Operations on Presentations and Words . . . . . . 2099

69.2.1 Modifying Presentations . . . . . 2100
AddGenerator(G) 2100
AddGenerator(G, w) 2100
AddRelation(G, r) 2100
AddRelation(G, g) 2100
AddRelation(G, r, i) 2100
AddRelation(G, g, i) 2100
DeleteGenerator(G, x) 2100
DeleteRelation(G, r) 2100
DeleteRelation(G, g) 2101
DeleteRelation(G, i) 2101
ReplaceRelation(G, s, r) 2101
ReplaceRelation(G, h, r) 2101
ReplaceRelation(G, s, g) 2101
ReplaceRelation(G, h, g) 2101
ReplaceRelation(G, i, r) 2101
ReplaceRelation(G, i, g) 2101

69.2.2 Low Level Operations on Words . . 2102
Eliminate(u, x, v) 2102
Eliminate(U, x, v) 2102
Match(u, v, f) 2103
RotateWord(u, n) 2103
Substitute(u, f, n, v) 2103
Subword(u, f, n) 2103

69.3 Interactive Coset Enumeration 2104

69.3.1 Introduction . . . . . . . . . . 2104

69.3.2 Constructing and Modifying a Coset Enumeration Process . . . 2105
CosetEnumerationProcess(G, H: -) 2105
AddRelator(~P, w) 2108
AddSubgroupGenerator(~P, w) 2108
SetProcessParameters(~P: -) 2109

69.3.3 Starting and Restarting an Enumeration . . . . . . . . . . . . 2110
StartEnumeration(~P: -) 2110
RedoEnumeration(~P: -) 2110
CanRedoEnumeration(P) 2111
ContinueEnumeration(~P: -) 2111
CanContinueEnumeration(P) 2111
ResumeEnumeration(~P: -) 2111

69.3.4 Accessing Information . . . . . . . . 2112
CosetsSatisfying(P: -) 2112
CosetSatisfying(P: -) 2112
CosetTable(P) 2113

HasValidCosetTable(P) 2113
HasClosedCosetTable(P) 2113
HasCompleteCosetTable(P) 2113
ExcludedConjugate(P) 2113
ExcludedConjugates(P) 2113
ExistsCosetSatisfying(P: -) 2114
ExistsExcludedConjugate(P) 2114
ExistsNormalisingCoset(P) 2114
ExistsNormalizingCoset(P) 2114
Group(P) 2115
Index(P) 2115
HasValidIndex(P) 2115
MaximalNumberOfCosets(P) 2115
Subgroup(P) 2115
TotalNumberOfCosets(P) 2115

69.3.5 Induced Permutation Representations . . . . . . . . . . . . 2121
CosetAction(P) 2121
CosetImage(P) 2122
CosetKernel(P) 2122

69.3.6 Coset Spaces and Transversals . . . . 2122
CosetSpace(P) 2122
RightCosetSpace(P) 2123
LeftCosetSpace(P) 2123
Transversal(P) 2123
RightTransversal(P) 2123

69.4 p-Quotients (Process Version) . . 2125

69.4.1 The p-Quotient Process . . . . . . . . 2125
pQuotientProcess(F, p, c: -) 2125
NextClass(~P: -) 2125
NextClass(~P, k: -) 2125

69.4.2 Using p-Quotient Interactively . . . 2126
StartNewClass(~P: -) 2126
Tails(~P: -) 2126
Tails(~P, k: -) 2126
Consistency(~P: -) 2126
Consistency(~P, k: -) 2126
CollectRelations(~P) 2126
ExponentLaw(~P: -) 2127
ExponentLaw(~P, Start, Fin: -) 2127
EliminateRedundancy(~P) 2127
Display(P) 2127
Display(P, DisplayLevel) 2127
RevertClass(~P) 2128
pCoveringGroup(~P) 2128
pCoveringGroup(G) 2128
GeneratorStructure(P) 2128
GeneratorStructure(P, Start, Fin) 2128
69.1 Introduction

This section presents some more advanced techniques available for computing with finitely-presented groups (fp-groups for short) within Magma. The features considered here are regarded as more advanced, either because they are technically or theoretically more complex and they are therefore expected to be used mainly by specialists, or because their efficient (and in a few cases even their merely correct) use requires some more detailed knowledge on the user’s part.

Trying to summarise the expected main purpose of the functions described in this section, one could think of two main situations: On the one hand, user written functions, which may benefit from low-level tools for manipulating presentations or words, or which make use of interruptible process versions of some standard Magma functions for fp-groups. On the other hand, the solution of very hard problems, which require careful fine-tuning of the strategy employed or for which some iterative approach, using feedback of information obtained during the computation, is necessary.

The following topics are discussed in detail. First, some rather low-level operations on presentations and elements of fp-groups (words) are described. Then, the features for interactive coset enumeration in Magma are presented. This section also contains the complete description of all the parameters available for controlling the execution of the Todd-Coxeter procedure, which also applies to the appropriate standard functions documented in Chapter 68. After that, we describe the process version of the \( p \)-quotient algorithm. Note that some care has to be taken when interpreting results obtained with this interactive \( p \)-quotient computation; incorrect use of the existing functions may result in incomplete or wrong answers. The chapter ends with a treatise of the soluble quotient algorithm available in Magma. This final section contains a brief review of the theory underlying the soluble quotient algorithm, a description of the parameters available for functions computing soluble quotients, and the documentation of the interactive soluble quotient facilities.

69.2 Low Level Operations on Presentations and Words

In this section, we describe some rather low level operations on presentations and on elements of fp-groups. The main purpose of the functions described here, is to provide some efficient machinery for manipulating presentations and elements of fp-groups for user written functions.
69.2.1 Modifying Presentations

The functions described in this section construct a new fp-group from an existing one by adding or deleting a generator or by adding, deleting or changing a relation. The new group is created without any relationship to the existing group.

**AddGenerator(G)**

Given an fp-group $G$ with presentation $\langle X \mid R \rangle$, create a new fp-group with presentation $\langle X \cup \{z\} \mid R \rangle$, where $z$ is a symbol not in $X$.

**AddGenerator(G, w)**

Given an fp-group $G$ with presentation $\langle X \mid R \rangle$, and given also a word $w$ in the generators $X$, create a new fp-group having the presentation $\langle X \cup \{z\} \mid R \cup \{z = w\} \rangle$, where $z$ is a symbol not in $X$.

**AddRelation(G, r)**

Given an fp-group $G$, and a relation $r$ on the generators of $G$, create a new fp-group whose presentation consists of the relations of $G$ together with the relation $r$.

**AddRelation(G, g)**

Given an fp-group $G$, and an element $g$ of $G$, create a new fp-group whose presentation consists of the relations of $G$ together with the relation $g = \text{Id}(G)$.

**AddRelation(G, r, i)**

Given an fp-group $G$, and a relation $r$ on the generators of $G$, create a new fp-group which has as its presentation the relations of $G$ together with the relation $r$ inserted after the $i$-th existing relation of $G$.

**AddRelation(G, g, i)**

Given an fp-group $G$, and an element $g$ of $G$, create a new fp-group which has as its presentation the relations of $G$ together with the relation $g = \text{Id}(G)$ inserted after the $i$-th existing relation of $G$.

**DeleteGenerator(G, x)**

Given an fp-group $G$ with presentation $\langle X \mid R \rangle$, and given also an element $z$ in $X$, create a new fp-group with presentation $\langle X \setminus \{z\} \mid R' \rangle$, where the relations $R'$ are obtained from $R$ by deleting all relations containing an occurrence of $z$.

**DeleteRelation(G, r)**

Given an fp-group $G$, which includes the relation $r$ amongst its relations, create a new fp-group which has as its presentation the relations of $G$ with relation $r$ omitted.
DeleteRelation($G$, $g$)

Given an fp-group $G$, which includes the relation $g = \text{Id}(G)$ amongst its relations, create a new fp-group which has as its presentation the relations of $G$ with this relation omitted.

DeleteRelation($G$, $i$)

Given an fp-group $G$, create a new fp-group which has as its presentation the relations for $G$ with the $i$-th relation deleted.

ReplaceRelation($G$, $s$, $r$)

Given an fp-group $G$, which includes the relation $s$ or $h = \text{Id}(G)$ amongst its relations, create a new fp-group which has as its presentation the relations for $G$ with the relation $s$ replaced by the relation $r$ or $g = \text{Id}(G)$.

ReplaceRelation($G$, $i$, $r$)

Given an fp-group $G$ and a relation $r$ in the generators of $G$, create a new fp-group which has as its presentation the relations for $G$ with relation number $i$ replaced by the relation $r$.

ReplaceRelation($G$, $i$, $g$)

Given an fp-group $G$ and an element $g$ of $G$, create a new fp-group which has as its presentation the relations for $G$ with relation number $i$ replaced by the relation $g = \text{Id}(G)$.

Example H69E1

We use the function ReplaceRelation to vary a particular relation in a presentation. The order of the resulting group together with the index of a particular subgroup is determined.

```plaintext
> G<x,y,z,h,k,a> := Group< x, y, z, h, k, a | x^2, y^2, z^2, (x,y), (y,z), (x,z), h^3, k^3, (h,k), (x,k), (y,k), (z,k), x^h*y, y^h*z, z^h*x, a^2, a*x*a*y, a*y*a*x, (a,z), (a,k), (a*h)^2 >;
> for i := 0 to 1 do
> for j := 0 to 1 do
> for k := 0 to 1 do
> for l := 0 to 2 do
> rel := G.1^i*G.2^j*G.3^k*G.5^l*(G.6*G.4)^2 = Id(G);
> K := ReplaceRelation(G, 21, rel);
> print Order(K), Index(K, sub< K | K.6, K.4>);
> end for;
> end for;
> end for;
> end for;
```
69.2.2 Low Level Operations on Words

The functions described in this section perform low level string operations like substitution, elimination or substring matching on elements of fp-groups.

**Eliminate**(u, x, v)

Given words \( u \) and \( v \), and a generator \( x \), all belonging to a group \( G \), return the word obtained from \( u \) by replacing each occurrence of \( x \) by \( v \) and each occurrence of \( x^{-1} \) by \( v^{-1} \).

**Eliminate**(U, x, v)

Given a set of words \( U \), a word \( v \), and a generator \( x \), all belonging to a group \( G \), return the set of words obtained by taking each element \( u \) of \( U \) in turn, and replacing each occurrence of \( x \) in \( u \) by \( v \) and each occurrence of \( x^{-1} \) by \( v^{-1} \).
**Match(u, v, f)**

Suppose $u$ and $v$ are words belonging to the same group $G$, and that $f$ is an integer such that $1 \leq f \leq \#u$. The function seeks the least integer $l$ such that:

(a) $l \geq f$; and

(b) $v$ appears as a subword of $u$, starting at the $l$-th letter of $u$.

If such an integer $l$ is found, `Match` returns the value true and $l$. If no such $l$ is found, `Match` returns the value false.

**RotateWord(u, n)**

The word obtained by cyclically permuting the word $u$ by $n$ places. If $n$ is positive, the rotation is from left to right, while if $n$ is negative the rotation is from right to left. In the case where $n$ is zero, the function returns $u$.

**Substitute(u, f, n, v)**

Given words $u$ and $v$ belonging to a group $G$, and non-negative integers $f$ and $n$, this function replaces the substring of $u$ of length $n$, starting at position $f$, by the word $v$. Thus, if $u = x_{i_1}^{e_1} \cdots x_{i_f}^{e_f} \cdots x_{i_{f+n-1}}^{e_{f+n-1}} \cdots x_{i_m}^{e_m}$ then the substring $x_{i_f}^{e_f} \cdots x_{i_{f+n-1}}^{e_{f+n-1}}$ is replaced by $v$. If the function is invoked with $v = \text{Id}(G)$, then the substring $x_{i_f}^{e_f} \cdots x_{i_{f+n-1}}^{e_{f+n-1}}$ of $u$ is deleted.

**Subword(u, f, n)**

The subword of the word $u$ comprising the $n$ consecutive letters commencing at the $f$-th letter of $u$.

**Example H69E2**

We demonstrate some of these operations in the context of the free group on generators $x$, $y$, and $z$.

```plaintext
> F<x, y, z> := FreeGroup(3);
> u := (x, y*z);
> w := u^(x^2*y);
> #w;
12
> w;
y^-1 * x^-3 * z^-1 * y^-1 * x * y * z * x^2 * y
```

We replace each occurrence of the generator $x$ in $w$ by the word $y * z^{-1}$.

```plaintext
> Eliminate(w, x, y*z^-1);
y^-1 * z * y^-1 * z * y^-1 * z * y^-1 * z^-2 * y * z * y * z^-1 * y * z^-1 * y
```

We count the number of occurrences of each generator in $w$.

```plaintext
> [ExponentSum(w, F.i) : i in [1..Ngens(F)]];
[0, 0, 0]
> GeneratorNumber(w);
```
We locate the start of the word \( u \) in the word \( w \).

```plaintext
> b, p := Match(w, u, 1);
> b, p;
true 4
```

We now replace the subword \( u \) in \( w \) by the word \( y \ast x \).

```plaintext
> t := Substitute(w, p, #u, y*x);
> t;
y^-1 \ast x^-2 \ast y \ast x^3 \ast y
```

We create the set of all distinct cyclic permutations of the word \( u \).

```plaintext
> rots := { RotateWord(u, i) : i in [1 ..#u] };
> rots;
{ y^-1 \ast x \ast y \ast z \ast x^-1 \ast z^-1, x \ast y \ast z \ast x^-1 \ast z^-1 \ast y^-1, x^-1 \ast z^-1 \ast y^-1 \ast x \ast y \ast z, z \ast x^-1 \ast z^-1 \ast y^-1 \ast x \ast y, z^-1 \ast y^-1 \ast x \ast y \ast z \ast x^-1, y \ast z \ast x^-1 \ast z^-1 \ast y^-1 \ast x }
```

---

### 69.3 Interactive Coset Enumeration

#### 69.3.1 Introduction

This section presents the interactive coset enumeration facility of MAGMA. This concept makes it possible to restart an enumeration after changing enumeration parameters or adding relators or subgroup generators, while making use of information obtained up to that point as much as possible. It is thus particularly suitable for very hard enumerations, requiring a careful and interactive choice of enumeration parameters or for series of similar enumerations.

The Todd-Coxeter implementation installed in MAGMA is based on the stand alone coset enumeration programme ACE3 developed by George Havas and Colin Ramsay at the University of Queensland. The reader should consult [CDHW73] and [Hav91] for an explanation of the terminology and a general description of the algorithm. A manual for ACE3 as well as the sources of ACE3 can be found online [Ram].

In MAGMA an interactive coset enumeration is realised as an object of the category `GrpFPCosetEnumProc` which can be created and modified, allows starting and restarting of coset enumerations and provides access to internal data like the coset table and various status information.
69.3.2 Constructing and Modifying a Coset Enumeration Process

\begin{verbatim}
CosetEnumerationProcess(G, H: parameters)
\end{verbatim}

This function creates a coset enumeration process for enumerating the cosets of the subgroup $H$ of the finitely presented group $G$. Note that no actual coset enumeration is started for the created coset enumeration process. This can be done with the function \texttt{StartEnumeration}.

The user can control in detail the way a subsequent enumeration will be performed with the help of the following parameters. For a more thorough explanation of the parameters and of how they affect the coset enumeration, we refer to the ACE3 manual.

- **Compact** \texttt{RngIntElt} \texttt{Default : 10}

  This parameter controls the compaction of the coset table during an enumeration. A compaction will be done if a new coset definition is required, there is no space for a new coset available in the coset table and the percentage of dead cosets exceeds the value of the parameter \texttt{Compact}.

- **CosetLimit** \texttt{RngIntElt} \texttt{Default : 0}

  If \texttt{CosetLimit} is set to $n$, where $n$ is a positive integer, then the coset table may have at most $n$ rows. In other words, a maximum of $n$ cosets can be defined at any instant during the enumeration. It is ensured in this case, that enough memory is allocated to store the requested number of cosets, regardless of the value of the parameter \texttt{Workspace}.

  If \texttt{CosetLimit} is set to 0 (default), the maximal number of active cosets is determined by the size of the coset table (cf. parameter \texttt{Workspace}) and the number of columns of the coset table (i.e. the number of group generators).

- **Workspace** \texttt{RngIntElt} \texttt{Default : 4000000}

  The number of words allocated for the coset table. Note that if \texttt{CosetLimit} is set, at least as much memory is allocated as is necessary to store the requested number of cosets.

- **FillFactor** \texttt{RngIntElt} \texttt{Default : 0}

  In certain situations it is necessary to ensure that a certain proportion, the fill fraction (see Havas (1991)), of the coset table is always kept filled, even if preferred definitions are made. The parameter \texttt{FillFactor} allows the user to specify the fill fraction which is the reciprocal of \texttt{FillFactor}. The default value of 0 selects a fill factor of $\lceil(5 \times (c + 2))/4\rceil$, where $c$ is the number of columns in the coset table.

- **CTFactor** \texttt{RngIntElt} \texttt{Default : 1000}

- **RTFactor** \texttt{RngIntElt} \texttt{Default : 2000/l}

- **Style** \texttt{MonStgElt} \texttt{Default : “R_C R”}

  These parameters control the enumeration style and the balance between coset table style definitions (C-style, Felsch style) and relator table style definitions (R-style, HLT style).
The parameters \texttt{CTFactor} and \texttt{RTFactor} set the number of C-style coset definitions and R-style coset applications, respectively, which are performed in every step of the appropriate type. The default value for \texttt{RTFactor} is \( 2000/l \), where \( l \) is the total length of the relators.

The possible arguments to the parameter \texttt{Style} are "R", "C", "R_CR", "Rc", "Cr", "Rt" and "CR".

In style R all definitions are made via relator scans, i.e. this is HLT mode.

In style C all definitions are made by filling the next empty position in the coset table and testing the new coset in all essentially different positions in the relators, i.e. this is Felsch mode.

In style R_CR we run in style R until an overflow occurs, perform a lookahead on the entire table and then switch to style CR (see below).

The styles Rc and Cr are like the styles R and C, except that a single style C or style R pass is done after the initial R or style C pass, respectively.

In style Rt definitions are made as in style R, but the new cosets are tested in all essentially different positions in the relators as in style C.

In style CR alternate passes of style C and style R are performed, with all definitions tested in all essentially different positions in the relators as in style C.

\textbf{Lookahead} \hspace{1cm} \texttt{RngIntElt} \hspace{1cm} \textit{Default} : 0

In HLT style enumerations, possible implications of new definitions or deductions made while tracing relators may not be detected until much later. One possible solution to this problem is to perform lookaheads occasionally, i.e. to process the coset table, looking for deductions or coincidences. A lookahead can be done using the entire table (\textit{complete}) or only that part of the table above the current coset (\textit{partial}) and it can be done in R-style (scanning cosets from the beginning of relators) or in C-style (testing all definitions in all essentially different relator positions).

The following lookahead modes are supported.

For \texttt{Lookahead} := 0 (default) no lookahead is done.

For \texttt{Lookahead} := 1 a partial R-style lookahead is done.

For \texttt{Lookahead} := 2 a complete C-style lookahead is done.

For \texttt{Lookahead} := 3 a complete R-style lookahead is done.

For \texttt{Lookahead} := 4 a partial C-style lookahead is done.

\textbf{Mendelssohn} \hspace{1cm} \texttt{BoolElt} \hspace{1cm} \textit{Default} : false

If \texttt{Mendelssohn} is set, coset applications are done at all cyclic permutations of the relators. This is usually very expensive but may nevertheless be helpful in certain cases.

\textbf{RelationsInSubgroup} \hspace{1cm} \texttt{RngIntElt} \hspace{1cm} \textit{Default} : \(-1\)

This parameter controls, whether relators are treated as additional subgroup generators, i.e. whether they are applied to coset 1 at the start of an enumeration. An argument of \(-1\) (default) includes all relators, an argument of 0 turns this feature off and a positive argument includes the appropriate number of relators, in order.

\textbf{RowFilling} \hspace{1cm} \texttt{BoolElt} \hspace{1cm} \textit{Default} : true
In R-style it is usual to scan each row of the table after its coset has been applied to all relators, and to make definitions to fill any holes encountered. Failure to do so can cause even simple enumerations to overflow. To switch row filling off, set the parameter RowFilling to false.

**PrefDefMode**

This parameter controls how Felsch style definitions are made. If the argument is 0, then Felsch style definitions are made using the next empty position in the coset table. Otherwise, gaps of length one found during relator scans are preferentially filled. If the argument is 1, they are filled immediately, and if it is 2, the consequent deduction is also made immediately. If the argument is 3, then the gaps are noted in the preferred definition queue and the next coset definition will be made to fill the oldest gap of length one.

**PrefDefSize**

This parameter controls the size of the preferred definition queue, which is implemented as a ring buffer, dropping earliest entries. Setting PrefDefSize to \( n \) allocates a buffer of size \( 2^n \).

**DeductionMode**

A completed table is only valid if every table entry has been tested in all essentially different relator positions. Untested deductions are stored on a stack. This parameter allows the user to specify how deductions should be handled. The possible actions are:

- For DeductionMode := 0: discard deductions if there is no stack space left.
- For DeductionMode := 1: as 0, but redundant cosets are purged off the top of the stack whenever a coincidence is found.
- For DeductionMode := 2: as 0, but all redundant cosets are purged from the stack whenever a coincidence is found.
- For DeductionMode := 3: discard the entire stack if it overflows.
- For DeductionMode := 4: if the stack overflows, then double the stack size and purge all redundant cosets from the stack.

If deductions are discarded for any reason during an enumeration, a final relator application pass will be done at the end of the enumeration automatically to check the result.

**DeductionSize**

Sets the (initial) size of the deduction stack in words, with one deduction taking two words. A value of 0 selects the default size of 1000 words.

**PathCompression**

Switching this option on reduces the amount of data movement during coincidence processing at the expense of tracing and compressing coincidence paths, which involves many coset table accesses. The value of this parameter has no effect on the result but may influence the running time.

**TimeLimit**

Sets a time limit for the computation. A value of 0 selects the default time limit of \(-1\) seconds.
This parameter puts a time limit in seconds on the length of an enumeration. A value of −1 (default) means no limit. A value of 0 performs exactly one pass through the main enumeration loop.

**LoopLimit**	**RngIntElt**	**Default**: 0

The core enumerator is organised as a state machine, with each step performing an action (e.g. lookahead, compaction) or a block of actions (e.g. CTFactor coset definitions or RTFactor coset applications). Using this parameter, a limit on the total number of steps can be imposed. A value of 0 (default) turns this feature off.

**Print**	**BoolElt**	**Default**: false

If this parameter is set to true, the enumerator prints a single message at the end of an enumeration and possibly some progress messages during an enumeration (cf. parameter **Messages**).

**Messages**	**RngIntElt**	**Default**: 0

If the argument \(n\) of this parameter is non-zero (and **Print** is set to true), then a progress message is printed after every \(|n|\) “actions” (i.e. coset definitions, deductions, coincidences, etc.) A negative value of \(n\) turns hole monitoring on.

**Strategy**	**MonStgElt**	**Default**:

Using this parameter one of several predefined strategies can be selected. The effect is equivalent to selecting an appropriate combination of arguments for some of the parameters explained above. Any predefined strategy can be modified by explicitly overriding parameter values.

The following predefined strategies exist: “Default”, “Easy”, “Hard”, “Felsch”, “HLT”, “CT”, “RT”, “Sims1”, “Sims3”, “Sims5”, “Sims7”, “Sims9”. All predefined strategies set **PrefDefSize** := 8, **DeductionSize** := 1000, **PathCompression** := false and **LoopLimit** := 0. For the remaining parameter settings see Table 1 on page 2109, Table 2 on page 2109 and Table 3 on page 2110.

**AddRelator(∼P, w)**

Add a word \(w\) in the generators of the group \(G\) underlying the coset enumeration process \(P\) to the defining relations of \(G\). This means that a coset enumeration process \(P\) for the cosets of \(H\) in \(G\) is transformed into a coset enumeration process for the cosets of \(\pi(H)\) in \(\pi(G)\), where \(\pi : G \to \pi(G)\) is an epimorphism with kernel \(<w>^G\). (Here \(<w>^G\) denotes the normal closure in \(G\) of the subgroup of \(G\) generated by \(w\).)

**AddSubgroupGenerator(∼P, w)**

Add an element \(w\) of the group \(G\) underlying the coset enumeration process \(P\) to the generators of the subgroup. This means that a coset enumeration process \(P\) for the cosets of \(H\) in \(G\) is transformed into a coset enumeration process for the cosets of \(\langle H, w \rangle\) in \(G\), where \(\langle H, w \rangle\) denotes the subgroup of \(G\) generated by \(H\) and \(w\).
Table 1: Strategies

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CTFactor</th>
<th>RTFactor</th>
<th>Style</th>
<th>Lookahead</th>
<th>Mendelsohn</th>
<th>RelationsInSubgroup</th>
<th>RowFilling</th>
<th>PrefDefMode</th>
<th>DeductionMode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact</td>
<td>10</td>
<td>100</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Workspace (in 10⁶)</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>false</td>
<td>true</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>FillFactor</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>CTFactor</td>
<td>1000</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>1000</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>RTFactor</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>false</td>
<td>true</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Style</td>
<td>R_CR</td>
<td>R</td>
<td>CR</td>
<td>C</td>
<td>R</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>Lookahead</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>RelationsInSubgroup</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>RowFilling</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>PrefDefMode</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>DeductionMode</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Table 2: Strategies (continued)

Change enumeration parameters of the coset enumeration process $P$. The set of parameters accepted by this function is the same as for the function CosetEnumerationProcess; see there for a description.

All parameters which are not explicitly changed or modified by selecting one of the predefined strategies retain their old values.
<table>
<thead>
<tr>
<th></th>
<th>Sims7</th>
<th>Sims9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Workspace (in $10^6$)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>FillFactor</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CTFactor</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>RTFactor</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>Style</td>
<td>Rt</td>
<td>C</td>
</tr>
<tr>
<td>Lookahead</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mendelsohn</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>RelationsInSubgroup</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RowFilling</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>PrefDefMode</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DeductionMode</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 3: Strategies (continued)

It should be noted that it is not possible to decrease the workspace allocated by a coset enumeration process, once an enumeration has been started. However the workspace can be extended without invalidating any information contained in the process.

### 69.3.3 Starting and Restarting an Enumeration

There are several ways of starting and restarting an enumeration for a coset enumeration process, which retain information from previous enumerations to a varying extent.

**StartEnumeration($\sim P$: parameters)**

Start a new enumeration for $P$. All information in $P$ is discarded. This function can be called at any time for an existing coset enumeration process. The enumeration parameters for $P$ can be modified by passing parameters to this function. (This is equivalent to calling the function `SetProcessParameters` before calling `StartEnumeration`.) The set of parameters accepted by this function is the same as for the function `CosetEnumerationProcess`; see there for a description.

**RedoEnumeration($\sim P$: parameters)**

Restart an enumeration for $P$. All information in $P$ is retained and the enumeration is restarted at coset number 1. This function can be called for any coset enumeration process, which contains a valid coset table. (If $P$ does not contain a valid coset table, a call to `RedoEnumeration` causes a runtime error. Use the function `CanRedoEnumeration` to check whether a call to `RedoEnumeration` is legal for a certain coset enumeration process.) Note that the coset table of $P$ need not be complete to use this function.
This function is intended for the case where additional relators and/or subgroup generators have been introduced. The coset table contained in \( P \) is still valid. However, the additional data may allow the enumeration to compete, or cause a collapse to a smaller index.

The enumeration parameters for \( P \) can be modified by passing parameters to this function. (This is equivalent to calling the function \texttt{SetProcessParameters} before calling \texttt{RedoEnumeration}.) The set of parameters accepted by this function is the same as for the function \texttt{CosetEnumerationProcess}; see there for a description.

\begin{verbatim}
CanRedoEnumeration(P)
Returns true, if a call to \texttt{RedoEnumeration} is legal for the coset enumeration process \( P \).
\end{verbatim}

\begin{verbatim}
ContinueEnumeration(~P: parameters)
Continue an enumeration for \( P \), which has been interrupted because some limit was exceeded. All information in \( P \) is retained and the enumeration is restarted at the coset where the previous enumeration was stopped. This function can only be called for a coset enumeration process, if the previous enumeration produced a valid coset table and the subgroup underlying \( P \) has not been changed since then. (Otherwise, a call to \texttt{ContinueEnumeration} causes a runtime error. Use the function \texttt{CanContinueEnumeration} to check whether a call to \texttt{ContinueEnumeration} is legal for a certain coset enumeration process.) Note that the coset table of \( P \) need not be complete to use this function.

This function is intended for the case where an enumeration stopped without producing a finite index. This function allows to continue the enumeration with modified enumeration parameters with the minimal possible overhead.

The enumeration parameters for \( P \) can be modified by passing parameters to this function. (This is equivalent to calling the function \texttt{SetProcessParameters} before calling \texttt{ContinueEnumeration}.) The set of parameters accepted by this function is the same as for the function \texttt{CosetEnumerationProcess}; see there for a description.

\begin{verbatim}
CanContinueEnumeration(P)
Returns true, if a call to \texttt{ContinueEnumeration} is legal for the coset enumeration process \( P \).
\end{verbatim}

\begin{verbatim}
ResumeEnumeration(~P: parameters)
Resume or start an enumeration for \( P \) in the “cheapest” way permitted by the state of the coset enumeration process \( P \). The call

\begin{verbatim}
ResumeEnumeration(~P : parameters);
\end{verbatim}

is equivalent to

\begin{verbatim}
if CanContinueEnumeration(P) then
    ContinueEnumeration(~P : parameters);
elif CanRedoEnumeration(P) then
\end{verbatim}
RedoEnumeration(~P : parameters);
else
    StartEnumeration(~P : parameters);
end if;

The enumeration parameters for $P$ can be modified by passing parameters to this function. (This is equivalent to calling the function SetProcessParameters before calling ResumeEnumeration.) The set of parameters accepted by this function is the same as for the function CosetEnumerationProcess; see there for a description.

### 69.3.4 Accessing Information

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CosetsSatisfying</td>
<td>$P$, parameters</td>
</tr>
<tr>
<td>CosetSatisfying</td>
<td>$P$, parameters</td>
</tr>
</tbody>
</table>

Given a coset enumeration process $P$ with underlying group $G$ and subgroup $H$, which contains a valid coset table, these functions return a set of words representing cosets which satisfy the conditions defined in the parameters.

A call to CosetSatisfying is equivalent to calling CosetsSatisfying with Limit set to 1 and First set to 2 (unless a higher value for First is specified explicitly), i.e. the function returns when the first coset, other than $H$, satisfying the specified conditions has been found.

**First**

RNGINTELT

Default : 1

This parameter determines at which coset the search for coset representatives satisfying the designated conditions is started. The coset $H$ always is coset number 1, i.e. setting First to 2 restricts the search to non-trivial cosets.

For the function CosetSatisfying, the minimal possible value for this parameter is 2; setting it to 1 does not cause an error but will be ignored.

**Last**

RNGINTELT

Default : 0

This parameter determines at which coset the search for coset representatives satisfying the designated conditions is stopped. If it is set to 0 (default), all active cosets (starting from First) are searched.

**Limit**

RNGINTELT

Default : 0

If this parameter is set to $l > 0$, the search for coset representatives is aborted as soon as $l$ cosets satisfying the designated condition have been found. If it is set to 0 (default for CosetsSatisfying), no limit is in force.

This parameter is not available for the function CosetSatisfying.

**Normalizing**

BOOLELT

Default : false

If true, select coset representatives $x$ such that $x^{-1}h_ix$ is known to be contained in $H$ from the information in the coset table of $P$ for every generator $h_i$ of $H$. (I.e. $x$ is recognised as an element of the normaliser of $H$ in $G$.)

**Order**

RNGINTELT

Default : 0
Select coset representatives $x$ such that $x^n$ is known to be contained in $H$ from the information in the coset table of $P$.

Print $\text{RngIntElt}$ Default : 0

If the value of this parameter is positive, print the coset representatives found to satisfy the designated conditions.

These functions can be called for any coset enumeration process, which contains a valid coset table. If $P$ does not contain a valid coset table, a call to any of these functions causes a runtime error. You can use the function $\text{HasValidCosetTable}$ to check whether a call to these functions is legal for a certain coset enumeration process.

### CosetTable($P$)

The current coset table of $P$ as a map $f : \{1, \ldots, r\} \times G \to \{0, \ldots, r\}$, where $G$ and $H$ are the finitely presented group and the subgroup underlying $P$, respectively, and $r$ is number of active cosets. $f(i, x)$ is the coset to which coset $i$ is mapped under the action of $x \in G$. The value 0 is only included in the codomain if the coset table is not complete, and it denotes that the image of $i$ under $x$ is not known.

This function can be called for any coset enumeration process, which contains a valid coset table. If $P$ does not contain a valid coset table, a call to $\text{CosetTable}$ causes a runtime error. Use the function $\text{HasValidCosetTable}$ to check whether a call to $\text{CosetTable}$ is legal for a certain coset enumeration process. Note that the coset table of $P$ need not be complete to use this function.

### HasValidCosetTable($P$)

Returns true, if $P$ contains a valid (but not necessarily closed) coset table, i.e. if a call to $\text{CosetTable}$ is legal for the coset enumeration process $P$.

### HasClosedCosetTable($P$)

### HasCompleteCosetTable($P$)

Returns true, if $P$ contains a closed, valid coset table.

Note that if $\text{HasClosedCosetTable}$ returns true for a coset enumeration process $P$, then in particular a call to $\text{CosetTable}$ is legal for $P$.

### ExcludedConjugate($P$)

### ExcludedConjugates($P$)

Given a coset enumeration process $P$ with underlying group $G$ and subgroup $H$, which contains a valid coset table, these functions return a set $E$ containing either at most one word ($\text{ExcludedConjugate}$) or all words ($\text{ExcludedConjugates}$) of the form $g_i^{-1}h_jg_i$, where $g_i$ is a generator of $G$ and $h_j$ is a generator of $H$, such that $g_i^{-1}h_jg_i$ is not known to lie in $H$ from the information contained in the coset table of $P$.

If $E$ is empty, then $H$ is a normal subgroup of $G$. Otherwise the addition of elements of $E$ to the generators of $H$ may yield a larger subgroup of the normal
closure of $H$ in $G$. In the case of a non-complete coset table it may happen, however, that excluded conjugates are found which actually lie in $H$.

These functions can be called for any coset enumeration process, which contains a valid coset table. If $P$ does not contain a valid coset table, a call to `ExcludedConjugate` or `ExcludedConjugates` causes a runtime error. You can use the function `HasValidCosetTable` to check whether a call to these functions is legal for a certain coset enumeration process.

### ExitsCosetSatisfying(P : parameters)

Given a coset enumeration process $P$ with underlying group $G$ and subgroup $H$, which contains a valid coset table, return whether or not there exists a coset other than $H$, which satisfies the conditions defined in the parameters. If such a coset exists, a representing word is returned as second return value. This function accepts the same set of parameters as the function `CosetSatisfying`; see there for a description.

This function can be called for any coset enumeration process, which contains a valid coset table. If $P$ does not contain a valid coset table, a call to `ExitsCosetSatisfying` causes a runtime error. You can use the function `HasValidCosetTable` to check whether a call to `ExitsCosetSatisfying` is legal for a certain coset enumeration process.

### ExitsExcludedConjugate(P)

Given a coset enumeration process $P$ with underlying group $G$ and subgroup $H$, which contains a valid coset table, return whether or not there exists a word of the form $g_i^{-1}h_jg_i$, where $g_i$ is a generator of $G$ and $h_j$ is a generator of $H$, such that $g_i^{-1}h_jg_i$ is not known to lie in $H$ from the information contained in the coset table of $P$. If the answer is positive, such a word is returned as second return value.

This function can be called for any coset enumeration process, which contains a valid coset table. If $P$ does not contain a valid coset table, a call to `ExitsExcludedConjugate` causes a runtime error. You can use the function `HasValidCosetTable` to check whether a call to `ExitsExcludedConjugate` is legal for a certain coset enumeration process.

Note that the coset table of $P$ need not be complete to call this function. A negative result of `ExitsExcludedConjugate` always implies that $H$ is a normal subgroup of $G$, even if the coset table of $P$ is not complete. In the case of a non-complete coset table it may happen, however, that excluded conjugates are found which actually lie in $H$.

### ExitsNormalisingCoset(P)

Returns `true`, if an element of $G \setminus H$ which normalises $H$ can be found from the coset table contained in $P$. (Here, $G$ and $H$ are the finitely presented group and the subgroup underlying $P$, respectively.) If the answer is positive, such an element is returned as second return value.
This function can be called for any coset enumeration process, which contains a valid coset table. If \( P \) does not contain a valid coset table, a call to \texttt{ExistsNormalisingCoset} causes a runtime error. You can use the function \texttt{HasValidCosetTable} to check whether a call to \texttt{ExistsNormalisingCoset} is legal for a certain coset enumeration process.

Note that the coset table of \( P \) need not be complete to call this function. However, no conclusion can be drawn from a negative result in the case of a non-complete coset table.

\begin{itemize}
  \item \textbf{Group}(P)
    \begin{align*}
      \text{Returns the group underlying } P \text{ as a finitely presented group.}
    \end{align*}
  
  \item \textbf{Index}(P)
    \begin{align*}
      \text{Returns the index of } H \text{ in } G. \text{ (Here, } G \text{ and } H \text{ denote the finitely presented group and the subgroup underlying } P, \text{ respectively.)}
    \end{align*}
    \begin{align*}
      \text{This function can only be called, if the last enumeration done for } P \text{ has completed successfully with a finite index. Otherwise, a call to } \text{Index} \text{ will cause a runtime error. Use the function } \text{HasValidIndex} \text{ to check whether a call to } \text{Index} \text{ is legal for a certain coset enumeration process.}
    \end{align*}
  
  \item \textbf{HasValidIndex}(P)
    \begin{align*}
      \text{Returns true, if the last enumeration done for } P \text{ has completed successfully with a finite index, i.e., if a call to } \text{Index} \text{ is legal for the coset enumeration process } P.
    \end{align*}
  
  \item \textbf{MaximalNumberOfCosets}(P)
    \begin{align*}
      \text{Returns the maximal number of cosets which were simultaneously active during the last enumeration done for } P, \text{ or } 1 \text{ if no enumeration has been done for } P.
    \end{align*}
    \begin{align*}
      \text{This function may be useful for assessing the performance of a certain set of enumeration parameters.}
    \end{align*}
  
  \item \textbf{Subgroup}(P)
    \begin{align*}
      \text{Returns the subgroup } H \text{ underlying the coset enumeration process } P. \text{ } H \text{ is returned as a subgroup of } G, \text{ where } G \text{ is the finitely presented group underlying } P.
    \end{align*}
  
  \item \textbf{TotalNumberOfCosets}(P)
    \begin{align*}
      \text{Returns the total number of cosets defined during the last enumeration done for } P, \text{ or } 1 \text{ if no enumeration has been done for } P.
    \end{align*}
    \begin{align*}
      \text{This function may be useful for assessing the performance of a certain set of enumeration parameters.}
    \end{align*}
\end{itemize}
Example H69E3

In the Harada-Norton sporadic simple group

\[ < x, a, b, c, d, e, f, g \mid x^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2, \]
\[ (x, a), (x, g), \]
\[ (b c)^3, (b d)^2, (b e)^2, (b f)^2, (b g)^2, \]
\[ (c d)^3, (c e)^2, (c f)^2, (c g)^2, \]
\[ (d e)^3, (d f)^2, (d g)^2, \]
\[ (e f)^3, (e g)^2, \]
\[ (f g)^3, \]
\[ (b, x b x), \]
\[ (a, c d e f, x b x), (b, x c d e f x), (c d e f, x c d e f x) > \]

we want to construct the coset table for the subgroup generated by \( x, b, c, d, e, f, g \) interactively. First, we create a coset enumeration process. Since the index of the chosen subgroup is 1 140 000, we request a coset limit of 1 200 000. Then we start the enumeration.

\[ \text{HN}<x, a, b, c, d, e, f, g> := \]
\[ \text{Group}< x, a, b, c, d, e, f, g | \]
\[ x^2, a^2, b^2, c^2, d^2, e^2, f^2, g^2, \]
\[ (x, a), (x, g), \]
\[ (b c)^3, (b d)^2, (b e)^2, (b f)^2, (b g)^2, \]
\[ (c d)^3, (c e)^2, (c f)^2, (c g)^2, \]
\[ (d e)^3, (d f)^2, (d g)^2, \]
\[ (e f)^3, (e g)^2, \]
\[ (f g)^3, \]
\[ (b, x b x), \]
\[ (a, c d e f, x b x), (b, x c d e f x), (c d e f, x c d e f x) > \]

\[ \text{H} := \text{sub}<\text{HN} | x, b, c, d, e, f, g> ; \]
\[ \text{P} := \text{CosetEnumerationProcess}(\text{HN}, \text{H} : \text{CosetLimit} := 1200000, \]
\[ \text{Print} := \text{true}; \]
\[ \text{StartEnumeration}(\text{P}); \]
\[ \text{Overflow} \]
\[ (a=1110331 \ r=58605 \ h=101193 \ n=1200001; \]
\[ l=5444 \ c=105.36; \]
\[ m=1110331 \ t=2001537) \]

The enumeration could not be completed successfully. \( P \) does contain a valid coset table, but this coset table fails to be closed.

\[ \text{HasValidCosetTable}(P); \]
\[ \text{true} \]
We extract the coset table map, check its domain and its codomain, and determine the position of the first “hole” in the coset table.

```plaintext
> HasClosedCosetTable(P);
false

We change the enumeration parameters for the process P, selecting the predefined strategy Hard. Since this predefined strategy sets a workspace of 10000000, we must expressly override this, if we want the old value to be retained. Because the workspace size never is decreased once an enumeration has been started, we can retain the old value simply by setting Workspace to 0; this overrides the setting done by selecting the predefined strategy, but actually doesn’t change the process' workspace. We then continue the enumeration with the new set of parameters, after checking that this is legal.

```plaintext
> SetProcessParameters(~P : Strategy := "Hard",
> Workspace := 0);
> CanContinueEnumeration(P);
true
> ContinueEnumeration(~P);
INDEX = 1140000
(a=1140000 r=58512 h=1144534 n=1144534;
l=70 c=6.50;
m=1140000 t=2035739)
```

We have obtained a closed coset table. Note that the codomain of the new coset table map does not contain 0.

```plaintext
> HasClosedCosetTable(P);
true
> ct := CosetTable(P);
> Domain(ct) : Minimal;
Cartesian Product<{ 1 .. 1140000 }, GrpFP: HN>
> Codomain(ct);
{ 1 .. 1140000 }
```
Example H69E4

First, we create a coset enumeration process for the trivial subgroup of the finite group $G := \langle a, b \mid a^8, b^7, (a * b)^2, (a^{-1} * b)^3 \rangle$ and start the enumeration.

```maple
> F<x, y> := FreeGroup(2);
> G<a, b> := quo<F | x^8, y^7, (x*y)^2, (x^-1*y)^3>;
> H := sub<G | >;
> P := CosetEnumerationProcess(G, H : Print := true);
> StartEnumeration(~P);
INDEX = 10752
(a=10752 r=57263 h=1 n=57263;
1=292 c=0.11;
m=47825 t=57262)
```

We want to enumerate the cosets of the two non-trivial subgroups of G generated by $a^{-1} * b$ and a^2, respectively. To do this, we create two copies of the coset enumeration process P and use the function `AddSubgroupGenerator` for each of them. Since the copies inherit all information contained in P, we then can call the function `RedoEnumeration` to enumerate the cosets of the two non-trivial subgroups, making use of the existing coset table.

```maple
> P1 := P;
> AddSubgroupGenerator(~P1, a^-1*b);
> Subgroup(P1);
Finitely presented group on 2 generators
Generators as words in group G
$.1 = Id(G)
$.2 = a^-1 * b
> CanRedoEnumeration(P1);
true
> RedoEnumeration(~P1);
INDEX = 3584
(a=3584 r=57263 h=1 n=57263;
1=49 c=0.02;
m=47825 t=57262)
```

```maple
> P2 := P;
> AddSubgroupGenerator(~P2, a^2);
> Subgroup(P2);
Finitely presented group on 2 generators
Generators as words in group G
$.1 = Id(G)
$.2 = a^2
> CanRedoEnumeration(P2);
true
> RedoEnumeration(~P2);
INDEX = 2688
(a=2688 r=57263 h=1 n=57263;
1=37 c=0.02;
```
Finally, we are interested in the quotient of G by the normal closure of the subgroup generated by a^4 and want to enumerate the cosets of the image of the subgroup generated by a^2 in this quotient. Since this is the subgroup used in P_2, we create a copy of P_2 and add the relation a^4. Again, we are able to make use of information obtained earlier, by continuing the inherited enumeration.

```plaintext
> P3 := P2;
> AddRelator(~P3, a^4);
> CanContinueEnumeration(P3);
true
> ContinueEnumeration(~P3);
INDEX = 84
(a=84 r=57263 h=1 n=57263;
l=2 c=0.00;
m=47825 t=57262)
```

We extract the quotient and its subgroup from the process P_3, using the appropriate access functions.

```plaintext
> G3<a3,b3> := Group(P3);
> G3;
Finitely presented group G3 on 2 generators
Relations
a3^8 = Id(G3)
b3^7 = Id(G3)
(a3 * b3)^2 = Id(G3)
(a3^-1 * b3)^3 = Id(G3)
a3^4 = Id(G3)
> H3<u3, v3> := Subgroup(P3);
> H3;
Finitely presented group H3 on 2 generators
Generators as words in group G3
u3 = Id(G3)
v3 = a3^2
```

Example H69E5

Consider the subgroup H of the (infinite) group $G := \langle a, b \mid b^7, (a * b)^2, (a^{-1} * b)^3 \rangle$ generated by a. We create a coset enumeration process and start an enumeration with the default parameters.

```plaintext
> F<x, y> := FreeGroup(2);
> G<a, b> := quo<F | y^7, (x*y)^2, (x^-1*y)^3>;
> H := sub<G | a>;
> P := CosetEnumerationProcess(G, H);
> StartEnumeration(~P : Print := true);
Overflow
(a=957026 r=415230 h=415230 n=999999;
l=3553 c=2.38;
```
The enumeration produces a valid (albeit not complete) coset table.

```plaintext
> HasValidCosetTable(P);
true
> HasCompleteCosetTable(P);
false
```

Even the partial coset table is sufficient to find an element in the normaliser of H in G.

```plaintext
> found, elt := ExistsNormalisingCoset(P);
> found;
true
> elt;
b^-4 * a * b^-2
```

Example H69E6

Consider again the subgroup H of the (infinite) group $G := \langle a, b \mid b^7, (a*b)^2, (a^{-1}*b)^3 \rangle$ generated by a. We create a coset enumeration process and start an enumeration with the default parameters.

```plaintext
> F<x, y> := FreeGroup(2);
> G<a, b> := quo<F | y^7, (x*y)^2, (x^{-1}*y)^3>;
> H := sub<G | a>;
> P := CosetEnumerationProcess(G, H);
> StartEnumeration(~P : Print := true);
Overflow
(a=957026 r=415230 h=415230 n=999999; l=3553 c=2.38;
m=960050 t=999998)
```

We check, whether the coset table exhibits excluded conjugates.

```plaintext
> ExistsExcludedConjugate(P);
true a^b
```

It does. This means in particular, that H is not normal in G. We create a copy P_1 of the coset enumeration process P, extend the subgroup of P_1 by the excluded conjugates found in the previous step and restart the enumeration for P_1.

```plaintext
> P1 := P;
> for c in ExcludedConjugates(P) do
> AddSubgroupGenerator(~P1, c);
> end for;
> RedoEnumeration(~P1);
INDEX = 1 (a=1 r=2 h=2 n=2; l=2 c=0.94; m=960050 t=999998)
```

We return to the coset enumeration process P and check whether we can find a non-trivial element $x \in N_G(H)$ such that $x^3 \in H$.

```plaintext
> ExistsCosetSatisfying(P : Order := 2, Normalizing := true);
```
true \(b^{-4} \cdot a \cdot b^{-2} \)

We can. In fact, \(b^{-4} \cdot a \cdot b^{-2} \) is the only non-trivial coset which is known to satisfy this condition...

\>
CosetsSatisfying(P : Order := 2, Normalizing := true);
{ Id(G), b^{-4} \cdot a \cdot b^{-2} }

...and we can’t find in a similar way a non-trivial element \(x \in N_G(H) \) such that \(x^3 \in H \).

\>
ExistsCosetSatisfying(P : Order := 3, Normalizing := true);
false

Note the difference in the output of CosetSatisfying and CosetsSatisfying: The former takes into account only cosets other than \(H \), whereas the latter (unless we set the parameter First) includes the coset \(H \), which obviously satisfies the specified conditions.

\>
CosetSatisfying(P : Order := 3, Normalizing := true);
{}

\>
CosetsSatisfying(P : Order := 3, Normalizing := true);
{ Id(G) }
CosetImage(P)

Given a coset enumeration process P with underlying group G and subgroup H for which a valid finite index has been obtained, this function returns the image of the permutation representation ρ of G induced by the action of G on the set of right cosets of H in G as a permutation group on $[G:H]$ digits.

This function can only be called, if the last enumeration done for P has completed successfully with a finite index. Otherwise, a call to `CosetImage` will cause a runtime error. Use the function `HasValidIndex` to check whether a call to `CosetImage` is legal for a certain coset enumeration process.

CosetKernel(P)

Given a coset enumeration process P with underlying group G and subgroup H for which a valid finite index has been obtained, this function returns the kernel of the permutation representation ρ of G induced by the action of G on the set of right cosets of H in G. This function is only available if the index of H in G is sufficiently small.

This function can only be called, if the last enumeration done for P has completed successfully with a finite index. Otherwise, a call to `CosetKernel` will cause a runtime error. Use the function `HasValidIndex` to check whether a call to `CosetKernel` is legal for a certain coset enumeration process.

69.3.6 Coset Spaces and Transversals

The (right) indexed coset space V of the subgroup H of the group G is a G-set consisting of the set of integers $\{1,\ldots,m\}$, where i represents some right coset c_i of H in G. The action of G on this G-set is that induced by the natural G-action

$$f : V \times G \rightarrow V$$

where

$$f : \langle c_i, x \rangle = c_k \quad \iff \quad c_i \ast x = c_k,$$

for $c_i \in V$ and $x \in G$. If certain of the products $c_i \ast x$ are unknown, the corresponding images under f are undefined, and V is called an *incomplete coset space* for H in G.

CosetSpace(P)

The coset space defined by the current state of the coset enumeration process P.

This function can be called for any coset enumeration process, which contains a valid coset table. (If P does not contain a valid coset table, a call to `CosetSpace` causes a runtime error. Use the function `HasValidCosetTable` to check whether a call to `CosetSpace` is legal for a certain coset enumeration process.) Note that the coset table of P need not be complete to use this function.
The explicit right coset space of a subgroup \(H \) of some group \(G \) is a \(G \)-set containing the set of right cosets of \(H \) in \(G \). The elements of this \(G \)-set are the pairs \(\langle H, x \rangle \), where \(x \) runs through a transversal for \(H \) in \(G \). Similarly, the explicit left coset space of \(H \) is a \(G \)-set containing the set of left cosets of \(H \) in \(G \), represented as the pairs \(\langle x, H \rangle \).

These functions return the explicit right (left) coset space defined by the current state of the coset enumeration process \(P \).

This function can be called for any coset enumeration process, which contains a valid coset table. (If \(P \) does not contain a valid coset table, a call to any of these functions causes a runtime error. Use the function \texttt{HasValidCosetTable} to check whether a call to these functions is legal for a certain coset enumeration process.) Note that the coset table of \(P \) need not be complete to use these functions.

Given a coset enumeration process \(P \) with underlying group \(G \) and subgroup \(H \) for which a valid finite index has been obtained, these functions return

(a) An indexed set \(T \) of elements of \(G \) forming a right transversal for \(H \) in \(G \); and

(b) The corresponding transversal mapping \(\phi : G \to T \). If \(T = \{ @ t_1, \ldots, t_r @ \} \) and \(g \in G \), then \(\phi \) is defined by \(\phi(g) = t_i \), where \(g \in H \ast t_i \).

These functions can only be called, if the last enumeration done for \(P \) has completed successfully with a finite index. Otherwise, a call to any of these functions will cause a runtime error. Use the function \texttt{HasValidIndex} to check whether a call to these functions is legal for a certain coset enumeration process.

Example H69E7

We construct a coset enumeration process for the subgroup \(H = \langle a^2, a^{-1}b \rangle \) in the group \(G = \langle a, b \mid a^8, b^7, (ab)^2, (a^{-1}b)^3 \rangle \) and start an enumeration.

```plaintext
> F<x, y> := FreeGroup(2);
> G<a, b> := quo<F | x^8, y^7, (x*y)^2, (x^{-1}*y)^3>;
> H := sub<G | a^2, a^{-1}*b>;
> P := CosetEnumerationProcess(G, H);
> StartEnumeration(~P);

After checking that a finite index has been obtained, we extract a transversal and the corresponding transversal map from \( P \).

```
Finally, we construct the permutation representation of \(G \) on the cosets of \(H \) in \(G \), its image and its kernel.

```plaintext
> r, S, K := CosetAction(P);
> r : Minimal;
Homomorphism of GrpFP: G into GrpPerm: S, Degree 448, Order 2^9 * 3 * 7
> S;
Permutation group S acting on a set of cardinality 448
Order = 10752 = 2^9 * 3 * 7
> K;
Finitely presented group K
Index in group G is 10752 = 2^9 * 3 * 7
Subgroup of group G defined by coset table
```

The kernel turns out to be trivial, i.e. the permutation representation is faithful.

```plaintext
> Order(K);
1
```

Example H69E8

Consider the subgroup \(H \) of the (infinite) group \(G := \langle a, b \mid b^7, (a * b)^2, (a^{-1} * b)^3 \rangle \) generated by \(a \). We create a coset enumeration process and start an enumeration with the default parameters.

```plaintext
> F<x, y> := FreeGroup(2);
> G<a, b> := quo<F | y^7, (x*y)^2, (x^{-1}*y)^3>;
> H := sub<G | a>;
> P := CosetEnumerationProcess(G, H);
> StartEnumeration(~P : Print := true);
Overflow
(a=957026 r=415230 h=415230 n=999999; l=3553 c=2.38; m=960050 t=999998)
```

The enumeration produces a valid (albeit not complete) coset table.

```plaintext
> HasValidCosetTable(P);
true
> HasCompleteCosetTable(P);
false
```

We extract the incomplete coset space from the process.

```plaintext
> V := CosetSpace(P);
> #V;
957026
> IsComplete(V);
```
Let F be a finitely presented group, p a prime and c a positive integer. A p-quotient algorithm constructs a consistent power-conjugate presentation for the largest p-quotient of F having lower exponent-p class at most c. For details of this algorithm, see [NO96].

Assume that the p-quotient has order p^n, Frattini rank d, and that its generators are a_1, \ldots, a_n. Then the power-conjugate presentation constructed has the following additional structure. The set $\{a_1, \ldots, a_d\}$ is a generating set for G. For each a_k in $\{a_{d+1}, \ldots, a_n\}$, there is at least one relation whose right hand side is a_k. One of these relations is taken as the definition of a_k. (The list of definitions is also returned by pQuotient.) The power-conjugate generators also have a weight associated with them: a generator is assigned a weight corresponding to the stage at which it is added and this weight is extended to all normal words in a natural way.

The p-quotient process and its associated commands allows the user to construct a power-conjugate presentation (pcp) for a p-group.

69.4.1 The p-Quotient Process

```plaintext
pQuotientProcess(F, p, c: parameters)
```

Given an fp-group F, a prime p and a positive integer c, create a p-quotient process for the group F with the indicated arguments. As part of the initialisation of the process, a pcp for the largest p-quotient of F having class at most c will be constructed. If c is given as 0, then the limit 127 is placed on the class. This function supports the same parameters as pQuotient and returns a process P.

```plaintext
NextClass(~P: parameters)

NextClass(~P, k: parameters)
```

Assumes that a pcp has already been constructed for the class c quotient of F. It seeks to construct a pcp for the class $c+1$ p-quotient of F. If k is supplied, continue to construct until the pcp for the largest quotient of class k is constructed.

The parameters Exponent, Print, and Metabelian are used as before. If MaxOccurrence := Q, then the sequence Q has length equal to the rank of the class 1 quotient of F; its entries are integers which specify the maximum number of occurrences of the class 1 generators in the definitions of pcp generators of F. An
entry of 0 for a particular generator indicates that no limit is placed on the number of occurrences of this generator.

Care should be exercised when supplying values for parameters. Once set, they retain their values until explicitly reassigned.

69.4.2 Using p-Quotient Interactively

We assume that we have constructed a pcp for the largest class c p-quotient of F and now seek to construct a pcp for the largest class $c + 1$ p-quotient.

The following options allow the user to construct a pcp for the next class of the group interactively. The steps are laid out in one of a number of natural sequences in which they may be executed. Some of them may be interleaved; however, the user should pay particular attention to the assumptions mentioned below. The procedures that drive the process do not verify that the assumptions are satisfied.

- **StartNewClass($\sim P$: parameters)**
 If P is a process for a class c p-quotient, commence construction of class $c + 1$.

- **Tails($\sim P$: parameters)**

- **Tails($\sim P$, k: parameters)**
 - **Metabelian**
 - **Boolelt**
 - **Default**: false
 - Add tails to the current pcp; default is to add all tails for this class. If k is supplied, then tails for weight k only are added; in this case, it is assumed that the tails for each of weight $c + 1, c, \ldots, k + 1$ have already been added. The valid range of k is $2, \ldots, c + 1$. The one valid parameter is Metabelian; if true, then only the tails for the metabelian p-quotient are inserted.

- **Consistency($\sim P$: parameters)**

- **Consistency($\sim P$, k: parameters)**
 - **Metabelian**
 - **Boolelt**
 - **Default**: false
 - Apply the consistency algorithm to the pcp to compute any redundancies among the tails already added. Default is to apply it to all tails; in this case, it is assumed that all tails have been added. If k is supplied, it is assumed that tails for weight k have been added; in this case, the tails added for weight k only are checked. The range of k is $3, \ldots, c + 1$. The one valid parameter is Metabelian; if true, we assume that the tails inserted were those for a metabelian p-quotient and hence invoke the (less expensive) metabelian consistency algorithm.

- **CollectRelations($\sim P$)**

 Collect the defining relations (if any) in the current pcp. If the tails operation is not complete, then the relations may be evaluated incorrectly.
ExponentLaw(∼P : parameters)

ExponentLaw(∼P, Start, Fin: parameters)

Enforce the supplied exponent law on the current pcp. If Start and Fin are supplied, then enforce the law for those weights between Start and Fin; otherwise, enforce the law for all weights. It is assumed that the tails operation is complete. If the display parameter DisplayLevel (which may be set using SetDisplayLevel) has value 2, those words whose powers are collected and give redundancies among the pcp generators are printed out. If DisplayLevel has value 3, all words whose powers are collected are printed out. The following additional parameters are available:

Exponent RngIntElt Default : 0

If Exponent := m, enforce the exponent law, \(x^m = 1 \), on the group.

Print RngIntElt Default : 1

As for pQuotient.

Trial BoolElt Default : false

Generate the list of words used to enforce the exponent law and print out statistics but do not power words or echelonise the results.

ShortList BoolElt Default : false

Generate the list of enforcement words whose entries have the form \(w \) or \(1 \ast w \) where \(w \) is an element of the Frattini subgroup of \(F \).

DisplayList BoolElt Default : false

Display the list of all enforcement words generated – not just those which are collected.

IdentifyFilters BoolElt Default : false

Identify filters used to eliminate words from list.

InitialSegment [\(<\text{GrpFPElt}, \text{RngIntElt}\)>] Default : []

If InitialSegment := \(w \), generate only those enforcement words which have \(w \) as an initial segment, where \(w \) is supplied as a sequence of generator-exponent pairs.

Report RngIntElt Default : 0

If Report := \(n \), report after computing the powers of each collection of \(n \) enforcement words.

EliminateRedundancy(~P)

Eliminate all redundant generators from the pcp defined by process \(P \). This operation may be performed at any time.

We now list the remaining functions which can be applied to a pQuotient process.

Display(P)

Display(P, DisplayLevel)
Display the pcp for the p-quotient G of the fp-group F. The argument DisplayLevel may be 1, 2, or 3, and is used to control the amount of information given:
1 : Display order and class of G;
2 : Display non-trivial relations for G;
3 : Display the structure of pcp generators of G, non-trivial relations of G, and the map from the defining generators of F to the pcp generators of G.

The presentation displayed by this function is in power-commutator form. If DisplayLevel is not supplied, the information displayed is determined by its existing (or default) value.

RevertClass(~P)

Given a pcp for the class $c + 1$ p-quotient of F, this procedure reverts to the pcp for the class c p-quotient of F. Note that this command can be applied only once during construction of a single class.

pCoveringGroup(~P)

pCoveringGroup(G)

Given a process or a pcp for a p-group, this procedure computes a pcp for the p-covering group of this group. In the process case, it is equivalent to Tails(~P); Consistency(~P); EliminateRedundancy(~P).

GeneratorStructure(P)

GeneratorStructure(P, Start, Fin)

Display the structure of the generators in the pcp. If Start and Fin are given, then print out the structure of those pcp generators numbered from Start to Fin.

Jacobi(~P, c, b, a, ~r)

Jacobi(~P, c, b, a)

Calculate the Jacobi c, b, a and echelonise the resulting relation against the current pcp. If a redundant generator results from the echelonisation, the optional variable r is the number of that generator; otherwise r has value 0.

Collect(P, Q)

The sequence Q, consisting of generator-exponent pairs, defines a word w in the pcp generators of the group defined by the process P. Collect this word and return the resulting normal word as an exponent vector.

EcheloniseWord(~P, ~r)

EcheloniseWord(~P)

Echelonise the word most recently collected using Collect against the relations of the pcp. If a redundant generator results from the echelonisation, the optional variable r is the number of that generator; otherwise r has value 0. This function must be called immediately after Collect.
SetDisplayLevel(∼P, Level)

This procedure alters the display level for the process to the supplied value, Level.

ExtractGroup(P)

Extract the group G defined by the pcp associated with the process P, as a member of the category GrpPC of finite soluble groups. The function also returns the natural homomorphism π from the original group F to G, a sequence S describing the definitions of the pc-generators of G and a flag indicating whether G is the maximal p-quotient of F.

The k-th element of S is a sequence of two integers, describing the definition of the k-th pc-generator $G.k$ of G as follows.

- If $S[k] = [0, r]$, then $G.k$ is defined via the image of $F.r$ under π.
- If $S[k] = [r, 0]$, then $G.k$ is defined via the power relation for $G.r$.
- If $S[k] = [r, s]$, then $G.k$ is defined via the conjugate relation involving $G.r^{G.s}$.

Order(P)

The order of the group defined by the pcp associated with the process P.

FactoredOrder(P)

The factored order of the group defined by the pcp associated with the process P.

NumberOfPCGenerators(P)

The number of pc-generators of the group defined by the pcp associated with the process P.

pClass(P)

The lower exponent-p class of the group defined by the pcp associated with the process P.

NuclearRank(G)

NuclearRank(P)

Return the rank of the p-multiplicator of the p-group G, where G may be supplied or defined by the process P.

pMultiplicatorRank(G)

pMultiplicatorRank(P)

Return the rank of the p-multiplicator of the p-group G, where G may be supplied or defined by the process P.
Example H69E9

Starting with an exponent 9 group having two generators of order 3, we set up the largest class 4 quotient and then interactively compute two more classes.

```plaintext
> G<a, b> := Group<a, b | a^3, b^3>;
> q := pQuotientProcess(G, 3, 4: Exponent := 9, Print :=1);
Lower exponent-3 central series for G
Group: G to lower exponent-3 central class 1 has order 3^2
Group: G to lower exponent-3 central class 2 has order 3^3
Group: G to lower exponent-3 central class 3 has order 3^5
Group: G to lower exponent-3 central class 4 has order 3^7
> Display(q, 2);
Group: G to lower exponent-3 central class 4 has order 3^7
Non-trivial powers:
.3^3 = .6^2
Non-trivial commutators:
[ .2, .1 ] = .3
[ .3, .1 ] = .4
[ .3, .2 ] = .5
[ .4, .1 ] = .6
[ .4, .2 ] = .7
[ .5, .1 ] = .7
[ .5, .2 ] = .6
We construct the class 5 quotient using the function NextClass.
> NextClass(~q);
```

```plaintext`
```
Group: G to lower exponent-3 central class 5 has order 3^9
We now construct the class 6 quotient step by step. For this, we set the output level to 1.

> SetDisplayLevel(~q, 1);
Now we start the next class.
> StartNewClass(~q);
The first step is to add the tails.
> Tails(~q);
After that, we apply the consistency algorithm,...
> Consistency(~q);
...collect the defining relations,...
> CollectRelations(~q);
...and enforce the exponent law.
> ExponentLaw(~q);
Finally, we eliminate redundant generators.
> EliminateRedundancy(~q);
This results in the following presentation for class 6 quotient.
> Display(q, 2);

Group: G to lower exponent-3 central class 6 has order 3^11

Non-trivial powers:
.3^3 = .6^2 .8^2 .10 .11

Non-trivial commutators:
[.2, .1] = .3
[.3, .1] = .4
[.3, .2] = .5
[.4, .1] = .6
[.4, .2] = .7
[.4, .3] = .8 .10^2 .11^2
[.5, .1] = .7 .8 .9^2 .10^2 .11^2
[.5, .2] = .6 .8 .9^2 .10^2
[.5, .3] = .9^2 .11
[.5, .4] = .10 .11
[.6, .2] = .10^2
[.7, .1] = .8
[.7, .2] = .9
[.7, .3] = .10^2 .11
[.8, .2] = .10
[.9, .1] = .11
Example H69E10

Starting with the free product of two cyclic groups of order 5, we bound the number of occurrences of pcp generators of the class 1 quotient in definitions of new pcp generators. We start with setting up the class 1 quotient of the group.

> G := Group<a, b | a^5, b^5>;
> q := pQuotientProcess(G, 5, 1);
> Display(q, 1);
Group: G to lower exponent-5 central class 1 has order 5^2

Now we start the next class, setting bounds on the number of occurrences of the pcp generators of the class 1 quotient in the definitions of new pcp generators.

> NextClass(~q, 6: MaxOccurrence := [3, 2]);
Group: G to lower exponent-5 central class 2 has order 5^3
Group: G to lower exponent-5 central class 3 has order 5^5
Group: G to lower exponent-5 central class 4 has order 5^7
Group: G to lower exponent-5 central class 5 has order 5^9
> Display(q, 2);
Group: G to lower exponent-5 central class 5 has order 5^9
Non-trivial powers:
Non-trivial commutators:
[.2, .1] = .3
[.3, .1] = .4
[.3, .2] = .5
[.4, .1] = .6
[.4, .2] = .7
[.4, .3] = .8^4 .9
[.5, .1] = .7 .8^4 .9
[.6, .2] = .8
[.7, .1] = .9

Example H69E11

We construct the class 6 quotient q of $R(2, 5)$ and then partially construct the class 7 quotient interactively to find out how many normal words having initial segment $q.1^2$ need to be considered when imposing the exponent law.

> F := FreeGroup(2);
> q := pQuotientProcess(F, 5, 6: Exponent := 5);
Lower exponent-5 central series for F
Group: F to lower exponent-5 central class 1 has order 5^2
Group: F to lower exponent-5 central class 2 has order 5^3
Group: F to lower exponent-5 central class 3 has order 5^5
Group: F to lower exponent-5 central class 4 has order 5^8
Group: F to lower exponent-5 central class 5 has order 5^10
Group: F to lower exponent-5 central class 6 has order 5^14
> StartNewClass(~q);
> Tails(~q);
Example H69E12

We demonstrate several of the remaining procedures in the course of interactively extending the class 6 quotient of the group $\langle a, b, c, d \mid (b c^{-1} d)^7, (c d^{-1})^7, (b, a) = c^{-1}, (c, a) = 1, (c, b) = d^{-1} \rangle$ to class 7.

> $G := \text{Group}<a, b, c, d \mid (b c^{-1} d)^7, (c d^{-1})^7, (b, a) = c^{-1}, (c, a) = 1, (c, b) = d^{-1}>;$
> $q := \text{pQuotientProcess}(G, 7, 6);$

Lower exponent-7 central series for G

Group: G to lower exponent-7 central class 1 has order 7^2
Group: G to lower exponent-7 central class 2 has order 7^4
Group: G to lower exponent-7 central class 3 has order 7^6
Group: G to lower exponent-7 central class 4 has order 7^8
Group: G to lower exponent-7 central class 5 has order 7^11
Group: G to lower exponent-7 central class 6 has order 7^14
> StartNewClass(~q);
> Tails(~q);
> GeneratorStructure(q, 15, 34);

Class 7

15 is defined on [12, 1] = 2 1 2 2 1 2 1
16 is defined on [12, 2] = 2 1 2 2 1 2 2
17 is defined on [13, 1] = 2 1 2 2 2 2 1
18 is defined on [13, 2] = 2 1 2 2 2 2 2
19 is defined on [14, 1] = 1 1 1 1 1 1 1
20 is defined on [14, 2] = 1 1 1 1 1 1 2
21 is defined on 14^7 = 1 1 1 1 1 1 1
22 is defined on [9, 1] = 2 1 2 2 1 1
23 is defined on [10, 1] = 2 1 2 2 2 1
24 is defined on \([11, 1] = 1 1 1 1 1 1\)
25 is defined on \([11, 2] = 1 1 1 1 1 2\)
26 is defined on \([8, 1] = 1 1 1 1 1\)
27 is defined on \([8, 2] = 1 1 1 1 2\)
28 is defined on \([5, 1] = 2 1 2 1\)
29 is defined on \([6, 1] = 1 1 1 1\)
30 is defined on \([6, 2] = 1 1 1 2\)
31 is defined on \([3, 1] = 2 1 1\)
32 is defined on \([4, 1] = 1 1 1\)
33 is defined on \([4, 2] = 1 1 2\)
34 is defined on \(2^7 = 2 2\)

\[\text{Jacobi}(\tilde{q}, 6, 6, 1);\]
Generator 26 is trivial
Jacobi was 6 6 1

\[\text{Jacobi}(\tilde{q}, 3, 2, 1);\]
Generator 28 is redundant
Jacobi was 3 2 1

\[v := \text{Collect}(q, [<29, 2>, <26, -3>]);\]

\[v;\]
\[
[0, 4, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
\]

\[\text{EcheloniseWord}(\tilde{q}, \text{redgen});\]
Generator 29 is trivial

\[\text{Display}(q, 1);\]
Group: G to lower exponent-7 central class 7 has order 7^{34}

Now we enforce the relations...

\[\text{CollectRelations}(\tilde{q});\]

...and apply the consistency algorithm.

\[\text{Consistency}(\tilde{q});\]
\[\text{Display}(q, 1);\]
Group: G to lower exponent-7 central class 7 has order 7^{36}

\[\text{EliminateRedundancy}(\tilde{q});\]
\[\text{Display}(q, 1);\]
Group: G to lower exponent-7 central class 7 has order 7^{19}
69.5 Soluble Quotients

69.5.1 Introduction
This section presents a short overview towards the theory of the soluble quotient algorithm, the functions designed for computing soluble quotients and the functions designed for dealing with soluble quotient processes.

69.5.2 Construction
For a finite group G, the property of being soluble means that the derived series $G = G^{(0)} > G^{(1)} > \ldots > G^{(n)}$ terminates with $G^{(n)} = \langle 1 \rangle$. Each section $G^{(i)}/G^{(i+1)}$ is a finite abelian group, hence it can be identified with a $\mathbb{Z}G/G^{(i)}$-module M, where the action of $G/G^{(i)}$ on M is given by the conjugation action on $G^{(i)}/G^{(i+1)}$.

From module theory we see that there exists a series $M = M^{(0)} > M^{(1)} > \ldots > M^{(r_i)}$, where each section is an irreducible $GF(p)$-$G^{(i)}$-module for some prime p. Using these series we obtain a refinement $G = G^{(0)} > G^{(1)} > \ldots > G^{(n)} = \langle 1 \rangle$ of the commutator series with the properties:

- The series is normal,
- Each section $G^{(i)}/G^{(i+1)}$ is elementary abelian of prime power order, and is irreducible as a $G/G^{(i)}$-module.
- If $G = G^{(0)} > H^{(1)} > \ldots > H^{(t)} = \langle 1 \rangle$ is another series with these properties, then $n = t$ and there exists a permutation $\pi \in S_n$ such that $G^{(i)}/G^{(i+1)}$ is isomorphic to $H^{(i\pi)}/H^{(i\pi+1)}$ (as $GF(p)$ modules).

Note: A PC-presentation defined by a further refinement of this series leads to a “conditioned” presentation. The converse is not always true, because the irreducibility of the sections is not required for a conditioned presentation.

The soluble quotient algorithm uses these series to construct soluble groups. Starting with the trivial group $G^{(0)}$, it successively chooses irreducible $G/G^{(i)}$ modules M_i and extensions

$$\zeta_i \in H^2(G/G^{(i)}, M_i)$$

which give rise to exact sequences

$$1 \to M_i \to G/G^{(i+1)} = G/G^{(i)}.M_i \to G/G^{(i)} \to 1.$$

To describe the algorithmic approach, we consider the following situation. Let G be a finite soluble group, M a normal elementary abelian subgroup of G such that M is a $H = G/M$ irreducible module. (The action of H on M is identified with the conjugation action of G/M on the subgroup M.) Then the relations of the group G have the shape

$$g_i^{p_i} = w_i m_i \quad \text{resp.} \quad g_j^{q_j} = w_{ij} m_{ij}, \quad m_i, m_{ij} \in M$$

where w_i, w_{ij} are the canonical representatives of H in G. Then $g_i^{p_i} = \bar{w}_i$ resp. $g_j^{q_j} = \bar{w}_{ij}$ is a PC-presentation of H and the set of images $\left((g_i^{p_i-1}, g_i) \mapsto m_i, (g_j, g_i) \mapsto m_{ij} \right)$ determines a unique element of the cocycle space $C^2(H, M)$.
According to the p-group situation, we call the system $t = (m_i, m_{ij})$, the tail defining $G = H.M_t$ as an extension of M by H.

Not every choice of a system $t = (m_i, m_{ij})$ defines an extension. To make sure that t corresponds to an element s of $C^2(G, M)$ it must satisfy a certain equation system, the so-called consistency equations (see Vaughan-Lee). These are linear homogeneous equations in M, so the solution space can be determined.

For the construction of soluble quotients we also have to find the epimorphism $\varepsilon : F \rightarrow G$. The existence of the epimorphism is obviously a restriction of the possible images G, and it can be checked simultaneously with constructing ε. This means that ε is necessarily surjective, hence defines a soluble quotient. Let us call an element of S an extended tail.

Let K be the minimal splitting field of M, i.e. the character field of the unique character of H which corresponds to M. Then M is obviously a KH-module and S is also a K-space. The space S has a K-subspace S_S of split extensions, i.e. the projection of S_S into $H^2(H, M)$ is only the trivial element. For any element $t \in S/S_S$ the corresponding map $\varepsilon_t : F \rightarrow H.M_t$ is necessarily surjective, hence defines a soluble quotient. Let s_1, s_2 be two elements of S/S_S and let $\varepsilon_1 : F \rightarrow H.M_{s_1} =: G_1$ denote the corresponding soluble quotients. If s_1 and s_2 are K-linear dependent, the groups G_1 and G_2 will be isomorphic. Unfortunately, the converse is not true, even K-linear independent elements may lead to isomorphic groups. Nevertheless, if s_1 and s_2 are independent, the kernels of the epimorphisms will be different, hence one can iterate the lifting to

$$\varepsilon_{1, 2} : F \rightarrow (G_1).M_{s_2} = (H.M_{s_1}).M_{s_2} = H.(M \oplus M)_{s_1 \cdot s_2}.$$

(The last equality can be read as a definition of $s_1 \cdot s_2$ in the righthand side term.)

The dimension $a = \dim_K(S/S_S)$ is therefore characterised as the maximal multiplicity

$$a = \max \left\{ z \in \mathbb{Z}^+ \mid \exists \varepsilon : F \rightarrow H, M^z \right\}.$$

S_S itself also has a K-subspace S_C, for which the map

$$\varepsilon_s : F \rightarrow H.M_s, s \in S_C$$

is not surjective. The K-dimension $b = \dim_K(S_S/S_C)$ is again characterised as the maximal multiplicity

$$b = \max \left\{ z \in \mathbb{Z}^+ \mid \exists \varepsilon : F \rightarrow H, M^z \right\}.$$

Moreover, after taking a maximal extension $\varepsilon : F \rightarrow H.M^b$, M never has to be considered for split extensions again.
69.5.3 Calculating the Relevant Primes

A crucial step in finding finite soluble quotients \(\varepsilon : F \to G \) is the calculation of the relevant primes, i.e. the prime divisors of \(|G| \). This is the most time consuming part of the algorithm, so it is crucial to apply it as efficiently as possible, and any other information about possible prime divisors is very helpful. We do not explain this calculation in detail. However, to use the functions and options provided by Magma in a correct manner, we outline the idea of the calculation.

Let \(\varepsilon : F \to G \) be a finite soluble quotient and let \(N \) denote the kernel of \(\varepsilon \). If a module \(M \) allows an extension \(\bar{\varepsilon} : F \to G.M \), then \(M \) must be a constituent of \(N/N' \), and the relevant primes are the prime divisors of \(N/N' \). Again \(N/N' \) can be viewed as an \(F/N \)-module, hence an \(H \)-module. Therefore it is a direct sum \(N/N' \cong M_{p_1} \oplus M_{p_2} \oplus \ldots \oplus \mathbb{Z}^d \), where the \(M_{p_i} \) are finite modules of order a power of the prime \(p_i \). Let \(p \) not divide \(|H| \). Then by Zassenhaus the extension \(H.M_p \) must split. We consider an irreducible module \(M \) in the head of \(M_{p} \), i.e. there is an \(H \)-epimorphism \(M_{p} \to M \). Then there is a valid soluble quotient \(\varepsilon : F \to H.M \) and the extension \(H.M \) splits.

Now there exists an irreducible \(\mathbb{Z}H \)-module \(L \) such that \(M \) is a \(GF(p) \)-modular constituent of \(L/pL \). Moreover, \(\Delta : H \to GL(L) \) is the corresponding representation of \(H \) and any \(\Delta \)-module will have this property.

Now using the theory of space groups, one can construct homomorphisms \(\varepsilon_1 : F \to H.L \) and \(\varepsilon_2 : H.L \to H.M \) such that the composition is surjective. Hence \(p \) can be detected in \(\Delta \). Let \(P_\Delta \) denote the set of primes obtained from \(\Delta \). To find these primes, we have to know a set \(D \) of representatives of the irreducible rational representations of \(F/N \), hence of \(H \). The set of prime divisors of \(K/K' \) is a subset of

\[
P = \bigcup_{\Delta \in D} P_\Delta \cup \{ p \mid p \text{ prime, } p \mid |G| \}.
\]

We want to point out the following:

- Usually the set of primes dividing \(|K/K'| \) is a proper subset of \(P \), because the primes dividing \(|G| \) may or may not divide \(|K/K'| \).

 Conversely, if \(p \) does not divide \(|G| \), then there certainly exists a module \(M \) in characteristic \(p \) such that there is a soluble quotient \(F \to G.M \), and the extension splits.

- The algorithm can also recognise infinite abelian sections. This means that already \(\varepsilon_1 : F \to H.L \) is surjective. All primes are relevant and no maximal finite soluble quotient exists.

- Let \(\phi : F \to H \) be a lift of \(\varepsilon : F \to G \), i.e. \(G \) is a quotient of \(H \): \(\phi : H \to G \). If the relevant primes of \(G \) are known, these are also relevant primes of \(H \), and only those representations \(\Delta \) of \(H \) must be considered for which \(\ker \phi \not\subset \ker \Delta \) is valid.

69.5.4 The Functions

Magma provides two different ways to calculate finite soluble quotients: a main function for the whole calculation, and a process which gives control over each individual step.

Let \(F \) be a finitely presented group.
Find a soluble quotient $\varepsilon : F \rightarrow G$ with a specified order. n must be a nonnegative integer. P must be a set of primes.

The three forms reflect possible information about the order of an expected soluble quotient. In the first form the order of G is given by n, if n is greater than zero. If n equals zero, nothing about the order is known and the relevant primes will be calculated completely.

The second form, with no n argument, is equivalent to the first with $n = 0$. This is a standard argument, and usually it is the most efficient way to calculate soluble quotients.

Note that, if $n > 0$ is not the order of the maximal finite soluble quotient, it may happen that no group of order n can be found, since an epimorphic image of size n may not be exhibited by the chosen series.

In the third form a set P of relevant primes is given. The algorithm calculates the biggest quotient such that the order has prime divisors only in P. P may have a zero as element, this is just for consistency reasons. It is equivalent to the first form with n equal zero.

The returned values are the group G and the epimorphism $\varepsilon : F \rightarrow G$. The third returned value is a sequence describing the series and modules by which G has been constructed.

The fourth value is a string which explain the reason for termination. The following list gives the termination conditions. The algorithm terminates normally if:
1. A quotient of the given order has been constructed.
2. A maximal quotient (with respect to the conditions given on the order) has been constructed.

The algorithm will be aborted and returns a warning if:
3. A bound on the length of a series or subseries has been hit.
4. A limit on the size of the quotient or a section has been hit.
5. The algorithm detects a free abelian section.

With the following options one can define abort conditions corresponding to the third and fourth item. The idea of all these conditions is to control the occurrence of infinite soluble quotients.

| SeriesLength | RngIntElt | Default : 0 |
Limits the length of the chief series to r. For sag-series it is the nilpotent length of the series, for derived series it is the derived length. The default value of zero means no limit.

If the algorithm hits the limit, it gives a warning message and returns the last soluble quotient.

SubseriesLength
RngIntElt
Default : 0

Limits the length of a series in a section. If the sag-series is used, it is the length of the lower descending series. For the derived series, the limit is applied to the exponent of an element of a section with maximal prime power order. For example, if the limit is set to 3, the limit would be hit by a section of type C_8, but not by C_2^3 and not even by C_2^4.

#QuotientSize
RngIntElt
Default : 0

If the value n is bigger than zero, the algorithm returns if a quotient of order bigger or equal to n has been found. A warning message will be printed.

#SectionSize
RngIntElt
Default : 0

If the value s is bigger than zero, the algorithm returns if the order of a section is bigger than or equal to s. A warning message will be printed.

Note: Since an additive bound on a group order is not as meaningful as a multiplicative bound, the latter options are only useful as break conditions when the quotient gets too big for further calculations. The return quotient which hits such a bound is somewhat randomly chosen, since only a change in the order of checking modules may lead to other quotients.

With the following options the strategy of the algorithm and some subalgorithms can be chosen.

#MSQ.Series
MonStgElt
Default : "sag"

Determines the series which is used for the construction of soluble groups.

The default value is "sag", since it is usually the most efficient choice. Of course, there is a value "derived", exhibiting the derived series.

Another choice is "lowercentral", choosing the lower central series. This restricts the algorithm to finite nilpotent quotients. The choice "pcentral" only exhibits p-groups as quotients.

The nilpotent resp. p-quotient algorithms are usually more efficient, so these options may only be useful to obtain additional information needed for a SQ-process.

MSQ.PrimeSearchModus
RngIntElt
Default : 3

Defines at what status of the algorithm the relevant prime search is called.

The possible choices reflect the different intentions of constructing a soluble quotient; for the general situation, (i.e. finding a finite soluble quotient without any information about relevant primes and check its maximality) this option makes only little difference in runtime behaviour.
0: No calculation of relevant primes. This is the default value, if the second argument does not request a prime calculation, e.g. if the order of the quotient or its relevant primes are known.

1: The relevant primes will be calculated after the soluble quotient algorithm (with the given input) terminates normally. Possibly new relevant primes are returned in a message. If, for example, the second argument is a set S (so no limit on the exponent) and no new relevant primes have been found, the maximality of the soluble quotient is proved.

2: As 1, but continues the algorithm when finding new relevant primes.

3: Perform the relevant prime calculation after a “main” step in the series, i.e. after completing a nilpotent section in a sag-series resp. a commutator section for the derived series. This is the default value, if prime calculation is required by the second argument. It is a good choice if one wants to construct large finite quotients quickly.

Note: This option can cause problems in case of a sag-series when infinite soluble quotients exist. For finite quotients, it seems to be the best choice.

4: Perform the relevant prime calculation after calculating an elementary abelian layer. This option is preferable, if the sag-series is used and an infinite soluble quotient is possible.

5: Perform the relevant prime calculation after each successful lift of a quotient. This option is preferable when infinite sections shall be detected as soon as possible (with respect to the chosen series).

MSQ_ModulCalcModus **RngIntElt**

Default: 0

In the construction of soluble quotients using a sag-series one can restrict the number of modules by using tensor products and skew symmetric products. This can improve the performance in the case of big soluble quotients, for small quotients the overhead may invalidate the improvement. For other series this option has no meaning. The possible values are:

0: Do not apply this technique (default).

1: Fast version, just apply those parts which can be calculated quickly.

2: Full version, this is only recommended for “big” soluble quotients, i.e. quotients with long descending series in nilpotent sections.

MSQ_CollectorModus **RngIntElt**

Default: 2

Defines the setup modus for the symbolic collector, i.e. the ratio of precalculation to dynamic setup:

0: Full precalculation, preferable for small soluble groups.

1: Partial precalculation (test version).

2: Dynamic setup (default).

The function also provides a general print option determining the amount of timings status information during the function call. Additionally there are some
verbose flags which determine the amount of information given about various sub-
algorithms. If both a general print value and a verbose flag are given, the verbose
flag has higher preference.

Print \textbf{RngIntElt} \textit{Default : 0}
Determined what timing information and status messages are given during the cal-
culation (0 = no printing, 5 = maximal information).

Verbose \textbf{MSQ.Messages} \textit{Maximum : 2}
If set to 1, the sizes of new soluble quotients are printed.

Verbose \textbf{MSQ.PrimeSearch} \textit{Maximum : 15}
Bitflag for print levels during the calculation of relevant primes:
1: Timings and statistics about the calculation of rational representations.
2: Timings for transforming rational into integral representations.
4: Timing for finding the relevant primes.
8: Printing of new relevant primes.

Verbose \textbf{MSQ.RepsCheck} \textit{Maximum : 3}
1: Timing for checking extensions of modules.
2: Statistics about the modules to be checked.

Verbose \textbf{MSQ.RepsCalc} \textit{Maximum : 3}
1: Timing information about the module calculation.
2: Statistics about the module calculation.

Verbose \textbf{MSQ.Collector} \textit{Maximum : 1}
If set to 1, the timing for the setup of the symbolic collector is printed.

Verbose \textbf{MSQ.TraceFunc} \textit{Maximum : 2}
Give messages about the main function calls (1) resp. most function calls (2) in the
\textsc{Magma} language during the algorithm.

69.6 Bibliography
Implementation and analysis of the Todd-Coxeter algorithm. \textit{Math. Comp.}, 27:463–

70 POLYCYCLIC GROUPS

70.1 Introduction 2145

70.2 Polycyclic Groups and Polycyclic Presentations 2145

70.2.1 Introduction 2145

70.2.2 Specification of Elements 2146

* 2147
*:= 2147
":= 2147
/ 2148
/:= 2148
":= 2148
(\text{g}_1, \ldots, \text{g}_n) 2148

70.3 Subgroups, Quotient Groups, Homomorphisms and Extensions2153

70.3.1 Construction of Subgroups 2153

70.3.2 Coercions Between Groups and Subgroups 2154

70.3.3 Construction of Quotient Groups 2155

70.3.4 Homomorphisms 2155

70.3.5 Construction of Extensions 2156

70.3.6 Construction of Standard Groups 2156

70.4 Conversion between Categories 2159

70.5 Access Functions for Groups 2160

70.6 Set-Theoretic Operations in a Group 2161

70.6.1 Functions Relating to Group Order 2161
Finitely-presented Groups

70.6.3 Set Operations

Representative(G)
Rep(G)
RandomProcess(G)
Random(P)
Random(G)
Random(G, max)

70.7 Coset Spaces

CosetTable(G, H)
Transversal(G, H)
RightTransversal(G, H)
CosetAction(G, H)
CosetImage(G, H)
CosetKernel(G, H)

70.8 The Subgroup Structure

70.8.1 General Subgroup Constructions

Conjugate(H, g)

nc1< >
NormalClosure(G, H)
CommutatorSubgroup(G, H, K)
CommutatorSubgroup(G, H, K)

70.8.2 Subgroup Constructions Requiring a Nilpotent Covering Group

meet
meet:=
Centraliser(G, g)
Centralizer(G, g)
Centraliser(G, H)
Centralizer(G, H)
Core(G, H)
Normaliser(G, H)
Normalizer(G, H)

70.9 General Group Properties

IsAbelian(G)
IsCyclic(G)
IsElementaryAbelian(G)
IsFinite(G)
IsNilpotent(G)
IsPerfect(G)
IsSimple(G)
IsSoluble(G)
IsSolvable(G)

70.9.1 General Properties of Subgroups

IsCentral(G, H)
IsNormal(G, H)

70.9.2 Properties of Subgroups Requiring a Nilpotent Covering Group

IsConjugate(G, H, K)
IsSelfNormalising(G, H)
IsSelfNormalizing(G, H)

70.10 Normal Structure and Characteristic Subgroups

70.10.1 Characteristic Subgroups and Subgroup Series

Centre(G)
Center(G)
DerivedLength(G)
DerivedSeries(G)
DerivedSubgroup(G)
DerivedGroup(G)
EFASeries(G)
FittingLength(G)
FittingSeries(G)
FittingSubgroup(G)
FittingGroup(G)
HasComputableLCS(G)
LowerCentralSeries(G)
NilpotencyClass(G)
NilpotentPresentation(G)
SemisimpleEFASeries(G)
UpperCentralSeries(G)

70.10.2 The Abelian Quotient Structure of a Group

AbelianQuotient(G)
AbelianQuotientInvariants(G)
AQInvariants(G)
ElementaryAbelianQuotient(G, p)
FreeAbelianQuotient(G)

70.11 Conjugacy

IsConjugate(G, h)
IsConjugate(G, H, K)

70.12 Representation Theory

EFAModuleMaps(G)
EFAModules(G)
GModule(G, A, p)
GModule(G, A)
GModule(G, A, B, p)
GModule(G, A, B)
GModulePrimes(G, A)
GModulePrimes(G, A, B)
SemisimpleEFAModuleMaps(G)
SemisimpleEFAModules(G)

70.13 Power Groups

Parent(G)
PowerGroup(G)

70.14 Bibliography
Chapter 70
POLYCYCLIC GROUPS

70.1 Introduction
In this chapter, we consider a class of finitely presented groups for which the word problem is solvable, the category of possibly infinite polycyclic groups. The corresponding MAGMA category is called GrpGPC. To distinguish this class from finite solvable groups described by a power-conjugate presentation (MAGMA category GrpPC, cf. chapter 61), we use the term general polycyclic group.

An introduction to the theory of polycyclic groups and a collection of some basic algorithms can be found in [Sim94, ch. 9]. Unless otherwise mentioned, implementations of MAGMA functions are mostly based on ideas described in this reference.

70.2 Polycyclic Groups and Polycyclic Presentations

70.2.1 Introduction
A polycyclic group is a group G with a subnormal series $G = G_1 \triangleright G_2 \triangleright \ldots \triangleright G_{n+1} = 1$ in which each of the quotients G_i/G_{i+1} is cyclic. Every polycyclic group G has a presentation of the form

$$< a_1, \ldots, a_n | a_i^{m_i} = w_{i,i} \quad (i \in I), \quad a_j^{a_i} = w_{i,j} \quad (1 \leq i < j \leq n), \quad a_j^{-1} = w_{-i,j} \quad (1 \leq i < j \leq n, i \notin I) >$$

where

(i) $I \subseteq \{1, \ldots, n\}$,

(ii) $m_i > 1$ for $i \in I$, and

(iii) the words $w_{i,j}$ are of the form $w_{i,j} = a_{l(i,j)}^{l(i,j)} \ldots a_{l(i,j,n)}^{l(i,j,n)}$, with $0 \leq l(i,j,k) < m_k$ if $k \in I$.

Such a presentation is called a polycyclic presentation for G. For $1 \leq i \leq n$, let G_i be the subgroup of G generated by a_i, \ldots, a_n and define G_{n+1} to be the trivial group. The presentation is called consistent, if $|G_i/G_{i+1}| = m_i$ whenever $i \in I$ and G_i/G_{i+1} is infinite whenever $i \notin I$. The generators a_1, \ldots, a_n are referred to as polycyclic generators (pc-generators) for G and the values m_i ($i \in I$) are called the corresponding pc-exponents.

In MAGMA, the user can define a polycyclic group by providing a consistent polycyclic presentation or by using one of the existing category transfer functions.

Given a consistent polycyclic presentation for G, every element a of G can be written uniquely in the form $a = a_1^{e_1} \ldots a_n^{e_n}$, where the e_i are integers satisfying $0 \leq e_i < m_i$.
if \(i \in I \). This form is called normal form. There exists an algorithm (the collection algorithm), which given an arbitrary word in the generators \(a_1, \ldots, a_n \), will determine the corresponding normal word. MAGMA uses a collection algorithm written by Volker Gebhardt. The cost of collection for this algorithm grows logarithmically in a bound on the absolute values of the exponents \(e_i \) occurring during the collection [Geb02].

Infinite polycyclic groups are a comparatively new topic in computational group theory and the number of available algorithms is much smaller than in the case of finite polycyclic groups. For this reason, the data type \texttt{GrpPC} (cf. chapter 61) should be preferred for finite polycyclic groups.

70.2.2 Specification of Elements

Elements of polycyclic groups are words. A word is defined inductively as follows:

(i) A generator is a word;

(ii) The expression \((u)\) is a word, where \(u \) is a word;

(iii) The product \(u \ast v \) of the words \(u \) and \(v \) is a word;

(iv) The conjugate \(u^v \) of the word \(u \) by the word \(v \) is a word (\(u^v \) expands into the word \(v^{-1} \ast u \ast v \));

(v) The power of a word \(u^n \), where \(u \) is a word and \(n \) is an integer, is a word;

(vi) The commutator \((u, v)\) of the words \(u \) and \(v \) is a word (\((u, v) \) expands into the word \(u^{-1} \ast v^{-1} \ast u \ast v \)).

\[
G \rightarrow Q
\]

Given the polycyclic group \(G \) and a sequence \(Q \) of length \(n \), containing integers \(e_1 \ldots e_n \), where \(0 \leq e_i < m_i \) if \(i \in I \), construct the element \(x \) of \(G \) given by

\[
x = a_1^{e_1} \ldots a_n^{e_n}.
\]

\[
\text{Identity}(G)
\]

\[
\text{Id}(G)
\]

\[
G \rightarrow 1
\]

Construct the identity element of the polycyclic group \(G \).

70.2.3 Access Functions for Elements

Throughout this subsection, \(G \) will be a polycyclic group with pc-generators \(a_1, \ldots, a_n \).

\[
\text{ElementToSequence}(x)
\]

\[
\text{Eltseq}(x)
\]

Given an element \(x \) belonging to the polycyclic group \(G \), where \(x = a_1^{e_1} \ldots a_n^{e_n} \) in normal form, return the sequence \(Q \) of \(n \) integers defined by \(Q[i] = e_i \), for \(i = 1, \ldots, n \).
LeadingTerm(x)

Given an element \(x \) of a polycyclic group \(G \) with \(n \) pc-generators, where \(x \) is of the form \(a_1^{e_1} \cdots a_n^{e_n} \), return \(a_i^{e_i} \) for the smallest \(i \) such that \(e_i > 0 \). If \(x \) is the identity of \(G \), then the identity is returned.

LeadingGenerator(x)

Given an element \(x \) of a polycyclic group \(G \) with \(n \) pc-generators, where \(x \) is of the form \(a_1^{e_1} \cdots a_n^{e_n} \), return \(a_i \) for the smallest \(i \) such that \(e_i > 0 \). If \(x \) is the identity of \(G \), then the identity is returned.

LeadingExponent(x)

Given an element \(x \) of a polycyclic group \(G \) with \(n \) pc-generators, where \(x \) is of the form \(a_1^{e_1} \cdots a_n^{e_n} \), return \(e_i \) for the smallest \(i \) such that \(e_i > 0 \). If \(x \) is the identity of \(G \), then 0 is returned.

Depth(x)

Given an element \(x \) of a polycyclic group \(G \) with \(n \) pc-generators, where \(x \) is of the form \(a_1^{e_1} \cdots a_n^{e_n} \), return the smallest \(i \) such that \(e_i > 0 \). If \(x \) is the identity of \(G \), then \(n + 1 \) is returned.

Depth returns the maximal value of \(i \), such that \(x \in G_i \).

70.2.4 Arithmetic Operations on Elements

Throughout this subsection, \(G \) will be a polycyclic group with pc-generators \(a_1, \ldots, a_n \).

\[g * h \]

Product of the element \(g \) and the element \(h \), where \(g \) and \(h \) belong to some common subgroup \(G \) of a polycyclic group \(U \). If \(g \) and \(h \) are given as elements belonging to the same proper subgroup \(G \) of \(U \), then the result will be returned as an element of \(G \); if \(g \) and \(h \) are given as elements belonging to distinct subgroups \(H \) and \(K \) of \(U \), then the product is returned as an element of \(G \), where \(G \) is the smallest subgroup of \(U \) known to contain both elements.

\[g *:= h \]

Replace \(g \) with the product of element \(g \) and element \(h \).

\[g ^ n \]

The \(n \)-th power of the element \(g \), where \(n \) is a positive or negative integer.

\[g ^:= n \]

Replace \(g \) with the \(n \)-th power of the element \(g \).
\(g / h \)

Quotient of the element \(g \) by the element \(h \), i.e. the element \(g \ast h^{-1} \). Here \(g \) and \(h \) must belong to some common subgroup \(G \) of a polycyclic group \(U \). The rules for determining the parent group of \(g/h \) are the same as for \(g \ast h \).

\(g := h \)

Replace \(g \) with \(g \ast h^{-1} \).

\(g \circ h \)

Conjugate of the element \(g \) by the element \(h \), i.e. the element \(h^{-1} \ast g \ast h \). Here \(g \) and \(h \) must belong to some common subgroup \(G \) of a polycyclic group \(U \). The rules for determining the parent group of \(g^h \) are the same as for \(g \ast h \).

\(g \circ := h \)

Replace \(g \) with the conjugate of the element \(g \) by the element \(h \).

\((g_1, \ldots, g_n)\)

Given the \(n \) words \(g_1, \ldots, g_n \) belonging to some common subgroup \(G \) of a polycyclic group \(U \), compute the left-normed commutator of \(g_1, \ldots, g_n \). This is defined inductively as follows: \((g_1, g_2) = g_1^{-1} \ast g_2^{-1} \ast g_1 \ast g_2\) and \((g_1, \ldots, g_n) = ((g_1, \ldots, g_{n-1}), g_n)\).

If \(g_1, \ldots, g_n \) are given as elements belonging to the same proper subgroup \(G \) of \(U \), then the result will be returned as an element of \(G \); if \(g_1, \ldots, g_n \) are given as elements belonging to distinct subgroups of \(U \), then the product is returned as an element of \(G \), where \(G \) is the smallest subgroup of \(U \) known to contain all elements.

70.2.5 Operators for Elements

Order(x)

The order of the element \(x \).

Parent(x)

The parent group \(G \) of the element \(x \).

70.2.6 Comparison Operators for Elements

g eq h

Given elements \(g \) and \(h \) belonging to a common polycyclic group, return **true** if \(g \) and \(h \) are the same element, **false** otherwise.

g ne h

Given elements \(g \) and \(h \) belonging to a common polycyclic group, return **true** if \(g \) and \(h \) are distinct elements, **false** otherwise.
IsIdentity\(g\)
\(\text{IsId}(g)\)

Returns \texttt{true} if \(g\) is the identity element, \texttt{false} otherwise.

70.2.7 Specification of a Polycyclic Presentation

\[
\text{quo< GrpGPC : F | R : parameters >}
\]

Check: \texttt{BooELT}
Default : \texttt{true}

Given a free group \(F\) of rank \(n\) with generating set \(X\), and a collection \(R\) of polycyclic relations on \(X\), construct the polycyclic group \(G\) defined by the polycyclic presentation \(<X|R>\).

The construct \(R\) denotes a list of polycyclic relations. Thus, an element of \(R\) must be one of:

(a) A power relation \(a_i^{m_i} = w_{i,i}, i \in I \subseteq \{1, \ldots, n\}\), where \(m_i > 1\) is an integer, and \(w_{i,i}\) is \(\text{Id}(F)\) or a word in the generators \(a_{i+1}, \ldots, a_n\) for \(i < n\), and \(w_{i,i} = \text{Id}(F)\) for \(i = n\).

(b) A conjugate relation \(a_i^{e_{i,j}} = w_{e_{i,j}}, 1 \leq i < j \leq n\), where \(w_{e_{i,j}}\) is a word in the generators \(a_{i+1}, \ldots, a_n\), \(e = 1\) if \(i \in I\) and \(e \in \{-1, 1\}\) if \(i \notin I\).

(c) A power \(a_i^{m_i}, i \in I \subseteq \{1, \ldots, n\}\), where \(m_i > 1\) is an integer, which is treated as the power relation \(a_i^{m_i} = \text{Id}(F)\).

(d) A set of (a) – (c).

(e) A sequence of (a) – (c).

Note the following points:

(i) If there is no power relation for some generator \(a_i, i = 1, \ldots, n\) (i.e. \(i \notin I\)), conjugate relations \(a_i^{e_{i,j}} = w_{-i,j}\) must be present for \(i < j \leq n\) (except for pairs of commuting generators). If there is a power relation for \(a_i\), on the other hand, conjugate relations involving \(a_i^{-1}\) are not permitted.

(ii) Conjugate relations for pairs of commuting generators may be omitted. If no conjugate relations are given for a certain pair of generators, the corresponding generators are assumed to commute.

(iii) The words \(w_{i,j}\) must be in normal form.

(iv) The presentation must be consistent. In particular, right hand sides of conjugate relations must not be the empty word.

This constructor returns a polycyclic group because the category \texttt{GrpGPC} is stated. If no category were stated, it would return an \texttt{fp-group}.

The parameter \texttt{Check} may be used to indicate whether or not the presentation should be checked for consistency. Disabling this check can be useful for avoiding runtime errors if the constructor is called in user written loops or functions. The boolean valued function \texttt{IsConsistent} is provided to check presentations obtained
with disabled consistency check. It should be noted that the results of working with an inconsistent presentation are undefined, hence it is strongly advised to enable the consistency check in the constructor or to use the function IsConsistent.

The natural homomorphism from $F \to G$ is returned as second return value.

```plaintext
PolycyclicGroup< x_1, ..., x_n | R : parameters >
```

- **Check**
 - **BOOLELT**
 - **Default**: `true`

- **Class**
 - **MONSTGELT**
 - **Default**:

Construct the polycyclic group G defined by the consistent polycyclic presentation $< x_1, ..., x_n | R >$.

The construct $x_1, ..., x_n$ defines names for the generators of G that are local to the constructor, i.e. they are used when writing down the relations to the right of the bar. However, no assignment of names to these generators is made. If the user wants to refer to the generators by these (or other) names, then the *generators assignment* construct must be used on the left hand side of an assignment statement.

The construct R denotes a list of polycyclic relations. The syntax and semantics for the relations clause is identical to that appearing in the quo-constructor above.

A map f from the free group on $x_1, ..., x_n$ to G is returned as second return value.

The parameter **Check** may be used as described for the quo-constructor.

If R is both, a valid power-conjugate presentation for a finite soluble group (cf. Chapter 61) and a consistent polycyclic presentation, this constructor by default returns a group in the category GrpPC. To force creation of a group in the category GrpGPC, the parameter **Class** must be set to "GrpGPC" in these situations.

Example H70E1

1. Consider the infinite polycyclic group defined by the presentation

 $$< a, b, c | b^a = b * c, (a, c), (b, c) > .$$

Starting from a free group and giving the relations in the form of a sequence, this presentation would be specified as follows:

```plaintext
> F<a,b,c> := FreeGroup(3);
> rels := [ b^a = b*c, b^(a^-1) = b*c^-1 ];
> G<a,b,c> := quo< GrpGPC : F | rels >;
> G;
GrpGPC : G of infinite order on 3 PC-generators
PC-Relations:
   b^a = b * c,
   b^(a^-1) = b * c^-1
```

Note, that the relation $b^{a^-1} = b * c^{-1}$ has to be included, although it can be derived from the relations $b^a = b * c$ and (a, b).

(2) The infinite dihedral group is obtained as epimorphic image of the free group of rank two as follows:

```plaintext
c> F<a,b> := FreeGroup(2);
c> D<u,v>, pi := quo<GrpGPC: F | a^2, b^a = b^-1>; 
c> D;
c> GrpGPC : D of infinite order on 2 PC-generators 
   PC-Relations:
   u^2 = Id(D),
   v^u = v^-1 
c> pi;
Mapping from: GrpFP: F to GrpGPC: D
```

(3) We create an element \(e \) of the group \(D \) defined above from a sequence of coefficients and extract both its leading generator and its leading exponent.

```plaintext
c> e := D ! [1,42];
c> e;
u * v^42 
c> gen := LeadingGenerator(e);
c> gen;
u 
c> Parent(gen);
c> gen := LeadingExponent(e);
c> exp;
1 
```

We obtain an element of depth 2 from \(e \), by replacing \(e \) with its quotient by the appropriate power of the leading generator.

```plaintext
c> e /:= gen^-exp;
c> Depth(e);
2 
c> e;
v^-42 
c> ElementToSequence(e);
[ 0, -42 ]
```

Example H70E2

Using the constructor `PolycyclicGroup` with different values of the parameter `Class`, we construct the dihedral group of order 10 first as a finite soluble group given by a power-conjugate presentation (`GrpPC`) and next as a general polycyclic group (`GrpGPC`). Note that the presentation \(\langle a, b | a^2, b^5, b^a = b^4 \rangle \) is both a valid power-conjugate presentation and a consistent polycyclic
presentation, so we have to set the parameter \texttt{Class} to "GrpGPC" if we want to construct a group in the category \texttt{GrpGPC}.

```plaintext
> G1<a,b> := PolycyclicGroup< a, b | a^2, b^5, b^a=b^4 >;
> G1;
GrpPC : G1 of order 10 = 2 * 5
PC-Relations:
  a^2 = Id(G1),
  b^5 = Id(G1),
  b^a = b^4

> G2<a,b> := PolycyclicGroup< a,b | a^2, b^5, b^a=b^4 : Class := "GrpGPC">;
> G2;
GrpGPC : G2 of order 10 = 2 * 5 on 2 PC-generators
PC-Relations:
  a^2 = Id(G2),
  b^5 = Id(G2),
  b^a = b^4
```

We construct the infinite dihedral group as a group in the category \texttt{GrpGPC} from a consistent polycyclic presentation. We do not have to use the parameter \texttt{Class} in this case.

```plaintext
> G3<a,b> := PolycyclicGroup< a,b | a^2, b^a=b^-1>;
> G3;
GrpGPC : G3 of infinite order on 2 PC-generators
PC-Relations:
  a^2 = Id(G3),
  b^a = b^-1
```

The presentation \langle a, b | a^2, b^4, b^a = b^3 \rangle is not a valid power-conjugate presentation for the dihedral group of order 8, since the exponent of \(b \) is not prime. However, it is a consistent polycyclic presentation. Consequently, the constructor \texttt{PolycyclicGroup} without specifying a value for the parameter \texttt{Class} returns a group in the category \texttt{GrpGPC}.

```plaintext
> G4<a,b> := PolycyclicGroup< a,b | a^2, b^4, b^a=b^3 >;
> G4;
GrpGPC : G4 of order 2^3 on 2 PC-generators
PC-Relations:
  a^2 = Id(G3),
  b^4 = Id(G3),
  b^a = b^3
```
70.2.8 Properties of a Polycyclic Presentation

- **IsConsistent(G)**
 Returns `true` if the stored presentation for G is consistent, `false` otherwise.

- **IsIdenticalPresentation(G, H)**
 Returns `true` if the polycyclic presentations for G and H are identical, `false` otherwise.

- **PresentationIsSmall(G)**
 Returns `true` if only small integers occur in the presentation of G, `false` otherwise. The category transfer functions `FPGroup` and `PCGroup` currently support only groups with a small presentation.

70.3 Subgroups, Quotient Groups, Homomorphisms and Extensions

70.3.1 Construction of Subgroups

sub< G | L >
Construct the subgroup H of the polycyclic group G generated by the elements specified by the terms of the generator list L.
A term $L[i]$ of the generator list may consist of any of the following objects:
(a) An element liftable to G;
(b) A sequence of integers representing an element of G;
(c) A subgroup of G;
(d) A set or sequence of (a), (b), or (c). The collection of words and groups specified by the list must all belong to the group G and H will be constructed as a subgroup of G.

The generators of H consist of the words specified directly by terms of $L[i]$ together with the stored generating words for any groups specified by terms of $L[i]$. Repetitions of an element and occurrences of the identity element are removed.

The inclusion map from H to G is returned as a second value.

ncl< G | L >
Construct the subgroup N of the polycyclic group G as the normal closure of the subgroup generated by the elements specified by the terms of the generator list L.

The possible forms of a term $L[i]$ of the generator list are the same as for the `sub` constructor.

The inclusion map from N to G is returned as a second value.
70.3.2 Coercions Between Groups and Subgroups

\[G \rightarrow g \]
Given an element \(g \) belonging to the subgroup \(H \) of the group \(G \), rewrite \(g \) as an element of \(G \).

\[H \leftarrow g \]
Given an element \(g \) belonging to the group \(G \), and given a subgroup \(H \) of \(G \) containing \(g \), rewrite \(g \) as an element of \(H \).

\[K \leftarrow g \]
Given an element \(g \) belonging to the group \(H \), and a group \(K \), such that \(H \) and \(K \) are subgroups of \(G \), and both \(H \) and \(K \) contain \(g \), rewrite \(g \) as an element of \(K \).

\textbf{InclusionMap}(G, H)

The map from the subgroup \(H \) of \(G \) to \(G \).

\textbf{Example H70E3}\hfill

Consider again the infinite polycyclic group \(G \) defined by the polycyclic presentation

\[< a, b, c \mid b^a = b \cdot c, (a, c), (b, c) > . \]

\begin{verbatim}
> F<a,b,c> := FreeGroup(3); > rels := [b^a = b*c, b^(a^-1) = b*c^-1]; > G<a,b,c> := quo< GrpGPC : F | rels >; > G; GrpGPC : G of infinite order on 3 PC-generators PC-Relations:
 b^a = b * c,
 b^(a^-1) = b * c^-1
Using the function \textbf{PCGenerators} which is described later, the groups \(G_1, \ldots, G_4 \) and the corresponding inclusion maps can be defined as follows:

> G_ := []; incl_ := [PowerStructure(Map) |]; > for i := 1 to #PCGenerators(G)+1 do > G_[i], incl_[i] := sub< G | [g : g in PCGenerators(G) | > Depth(g) ge i] >; > end for; > for i := 1 to #G_ do > printf "G_%o = {@ G!x : x in > PCGenerators(G_[i]) @}; print ""; > end for; G_1 = {@ a, b, c @} G_2 = {@ b, c @} G_3 = {@ c @}
\end{verbatim}
\text{G}_4 = \langle @ @ \rangle \\

Note that we must set the universe of the sequence \texttt{incl} to \texttt{PowerStructure(Map)} manually, since we want to store maps which do not have a common domain. If we failed to do this, the universe would be chosen automatically to be the set of all maps from \(G_1\) to \(G\) when the first map is inserted into the sequence. Inserting the second map, which does not have the domain \(G_1\), would then cause a runtime error.

70.3.3 Construction of Quotient Groups

\texttt{quo< G | L >}

Construct the quotient \(Q\) of the polycyclic group \(G\) by the normal subgroup \(N\), where \(N\) is the smallest normal subgroup of \(G\) containing the elements specified by the terms of the generator list \(L\).

The possible forms of a term \(L[i]\) of the generator list are the same as for the \texttt{sub-}constructor.

The quotient group \(Q\) and the corresponding natural homomorphism \(f : G \rightarrow Q\) are returned.

\texttt{G / N}

Given a normal subgroup \(N\) of the polycyclic group \(G\), construct the quotient of \(G\) by \(N\).

70.3.4 Homomorphisms

For a general description of homomorphisms, we refer to Chapter 16. This section describes some special aspects of homomorphisms the domain of which is a polycyclic group.

70.3.4.1 General remarks

The kernel of a homomorphism with a domain of type \texttt{GrpGPC} can be computed using the function \texttt{Kernel}, if the codomain is of one of the types \texttt{GrpGPC}, \texttt{GrpPC} (cf. Chapter 61), \texttt{GrpAb} (cf. Chapter 67), \texttt{GrpPerm} (cf. Chapter 56), \texttt{ModAlg} or \texttt{ModGrp} (cf. Chapter 86) or if the codomain is of the type \texttt{GrpMat} (cf. Chapter 57) and the image is finite.

In particular, preimages of substructures can be computed in these situations. The kernel of a map will be computed automatically, if the preimage of a substructure of the codomain is to be computed.

The kernel (and hence preimages of substructures) may also be computable, if the codomain is of the type \texttt{GrpFP} (cf. Chapter 68) and the domain is nilpotent.
70.3.4.2 Construction of Homomorphisms

\[
\text{hom< P -> G | S : parameters >}
\]

Returns the homomorphism from the polycyclic group \(P \) to the group \(G \) defined by the assignment \(S \). \(S \) can be one of the following:

(i) A list, sequence or indexed set containing the images of the \(n \) polycyclic generators \(P.1, \ldots, P.n \) of \(P \). Here, the \(i \)-th element of \(S \) is interpreted as the image of \(P.i \), i.e. the order of the elements in \(S \) is important.

(ii) A list, sequence, enumerated set or indexed set, containing \(r \) tuples \(< x_i, y_i > \) or arrow pairs \(x_i \rightarrow y_i \), where \(x_i \in P, y_i \in G \) \((i = 1, \ldots, r) \) and the set \(\{x_1, \ldots, x_r\} \) is a generating set for \(P \). In this case, \(y_i \) is assigned as the image of \(x_i \), hence the order of the elements in \(S \) is not important. Note that the preimages \(x_i \) need not be the polycyclic generators of \(P \).

If the data type of the codomain supports element arithmetic and element comparison, by default the constructed homomorphism is checked by verifying that the would-be images of the polycyclic generators satisfy the defining relations of \(P \) and that this assignment is consistent with the assignments made by the user. In this case, it is assured that the returned map is a well-defined homomorphism with the desired images. The most important situation in which it is not possible to perform checking is the case in which the domain is a finitely presented group (\texttt{FPGroup}; cf. Chapter 68) which is not free. Checking may be disabled using the parameter Check.

\[\text{Check} \quad \text{BooleElt} \quad \text{Default} : \text{true} \]

If Check is set to false, checking of the homomorphism is disabled.

70.3.5 Construction of Extensions

\[
\text{DirectProduct(G, H)}
\]

The direct product \(K \) of the polycyclic groups \(G \) and \(H \). The second value returned is a sequence containing the inclusion maps \(I_G : G \rightarrow K \) and \(I_H : H \rightarrow K \). The third value returned is a sequence containing the projection maps \(P_G : K \rightarrow G \) and \(P_H : K \rightarrow H \).

70.3.6 Construction of Standard Groups

A number of functions are provided which construct polycyclic presentations for various standard groups.

\[
\text{AbelianGroup(GrpGPC, Q)}
\]

Construct the abelian group defined by the sequence \(Q = [n_1, \ldots, n_r] \) as a polycyclic group. The entries \(n_i \) may be either zero, indicating an infinite cyclic factor, or integers greater than 1. The function returns the polycyclic group which is the direct product of the cyclic groups \(Z_1 \times \cdots \times Z_r \), where \(Z_i \) is a cyclic group of infinite order if \(n_i = 0 \), or a cyclic group of order \(n_i \) if \(n_i > 1 \).
CyclicGroup(GrpGPC, n)
For \(n > 0 \), the cyclic group of order \(n \) is returned, while for \(n = 0 \), the infinite cyclic group is returned as a polycyclic group.

DihedralGroup(GrpGPC, n)
For \(n \geq 3 \), the dihedral group of order \(2n \) is returned, while for \(n = 0 \), the infinite dihedral group is returned as a polycyclic group.

ElementaryAbelianGroup(GrpGPC, p, n)
Given a prime \(p \) and a positive integer \(n \), construct the elementary abelian group of order \(p^n \) as a polycyclic group.

ExtraSpecialGroup(GrpGPC, p, n : parameters)
Given a prime \(p \) and a small positive integer \(n \), construct an extra-special group \(G \) of order \(p^{2n+1} \) as a polycyclic group. The isomorphism type of \(G \) can be selected using the parameter \texttt{Type}.

\texttt{Type} \hspace{1cm} \texttt{MONSTGELT} \hspace{1cm} \texttt{Default : “+”}

Possible values for this parameter are “+” (default) and “−”.

If \texttt{Type} is set to “+”, the function returns for \(p = 2 \) the central product of \(n \) copies of the dihedral group of order 8, and for \(p > 2 \) it returns the unique extra-special group of order \(p^{2n+1} \) and exponent \(p \).

If \texttt{Type} is set to “−”, the function returns for \(p = 2 \) the central product of a quaternion group of order 8 and \(n - 1 \) copies of the dihedral group of order 8, and for \(p > 2 \) it returns the unique extra-special group of order \(p^{2n+1} \) and exponent \(p^2 \).

FreeAbelianGroup(GrpGPC, n)
Given a positive integer \(n \), construct the free abelian group of rank \(n \) as a polycyclic group.

FreeNilpotentGroup(r, e)
The free nilpotent group of rank \(r \) and class \(e \) is returned as a polycyclic group.

Example H70E4
Consider the dihedral group \(D_4 \).
\[
> G\langle a, b \rangle := \text{DihedralGroup}(\text{GrpGPC}, 4); \\
\]
We obtain a well-defined homomorphism \(f \) of \(G \) onto a group \(A = \mathbb{Z}_2 \times \mathbb{Z}_2 \), by assigning two generators of \(A \) as the images of \(a \) and \(ab \), respectively. Note that in the definition of \(f \) we can use the generating set \(\{a, ab\} \) of \(G \), instead of the defining polycyclic generating sequence of \(G \).
\[
> A\langle u, v \rangle := \text{AbelianGroup}([2,2]); \\
\]
We compute the kernel K of f and express the generators of K as elements of G, using the function \texttt{PCGenerators} described later.

```plaintext
> K := Kernel(f);
> PCGenerators(K, G);
{ b^2 @}
```

Example H70E5

A polycyclic representation for the group $D_3 \times D_\infty$ may be obtained as follows:

```plaintext
> G1<a,b> := DihedralGroup(GrpGPC, 3);
> G2<u,v> := DihedralGroup(GrpGPC, 0);
> D, incl, proj := DirectProduct(G1, G2);
> D;
GrpGPC : D of infinite order on 4 PC-generators
PC-Relations:  
D.1^2 = Id(D),  
D.2^3 = Id(D),  
D.3^2 = Id(D),  
D.2^D.1 = D.2^2,  
D.4^D.3 = D.-4
```

Using the inclusion maps returned by \texttt{DirectProduct}, we define a subgroup and compute the quotient by its normal closure:

```plaintext
> S := sub<D| incl[1](a)*incl[2](u), incl[1](b)*incl[2](v)>;
> S;
GrpGPC : S of infinite order on 3 PC-generators
PC-Relations:  
S.1^2 = Id(S),  
S.2^3 = S.3,  
S.2*S.1 = S.2^2 * S.-3,  
S.3*S.1 = S.-3
```

```plaintext
> Q, pi := quo<D|S>;
> Q;
GrpGPC : Q of order 2 on 1 PC-generators
PC-Relations:  
Q.1^2 = Id(Q)
```

> Q.1 @@ pi;
D.3
70.4 Conversion between Categories

This section describes category transfers from polycyclic groups to other MAGMA categories of groups. For category transfers to permutation groups (cf. Chapter 56) the functions CosetAction and CosetImage can be used. For category transfers to matrix groups (cf. Chapter 57) we refer to section 70.12.

AbelianGroup(G)

A GrpAb (cf. Chapter 67) representation A of the abelian polycyclic group G and the isomorphism from G to A.

FPGroup(G)

A GrpFP (cf. Chapter 68) representation F of G and the isomorphism from F to G. This category transfer is currently only possible provided that all exponents occurring in the presentation of G are small integers. This can be checked by means of the function PresentationIsSmall.

PCGroup(G)

A GrpPC (cf. Chapter 61) representation F of the finite polycyclic group G and the isomorphism from G to F.

This category transfer is currently only possible provided that all exponents occurring in the presentation of G are small integers. This can be checked by means of the function PresentationIsSmall.

GPCGroup(G)

A GrpGPC representation P of the solvable group G and the isomorphism from G to P. The group G can be of one of the following types: GrpPerm (cf. Chapter 56), GrpMat (cf. Chapter 57), GrpAb (cf. Chapter 67), GrpPC (cf. Chapter 61). Currently G must be finite, if it is of type GrpMat.

Example H70E6

We define a finite, solvable matrix group and convert it to a (general) polycyclic group G.

```plaintext
> a := GL(2,3) ! [1,1,0,1];
> b := GL(2,3) ! [0,1,1,0];
> M := sub<Parent(a)|a,b>;
> IsSolvable(M);    # true
> IsFinite(M);     # true
> G, f := GPCGroup(M);
```

We now compute the direct product D of G and the infinite dihedral group H, define a subgroup S of D, its normal closure N and construct the quotient Q of D by N.

```plaintext
> H<x,v> := DihedralGroup(GrpGPC, 0);
> D := G * H;
> S := sub<Parent(D)|x,v>;
> N := NormalClosure(D, S);
> Q := Quotient(D, N);
```
> D, incl, proj := DirectProduct(G, H);
> S := sub<D | incl[1](f(a*b)), incl[2]((u,v)^2)>;
> N := ncl<D|S>;
> Q := D/N;
> Q;
GrpGPC : Q of order 2^3 on 2 PC-generators
PC-Relations:
 Q.1^2 = Id(Q),
 Q.2^4 = Id(Q),
 Q.2^Q.1 = Q.2^3

Since Q is finite, it can be transformed into a group of type GrpPC using the function PCGroup. This should (in non-trivial examples) be done, if further computations with it are intended.

> Q_ := PCGroup(Q);
> Q_;
GrpPC : Q_ of order 8 = 2^3
PC-Relations:
 Q_.2^2 = Q_.3,
 Q_.2^Q_.1 = Q_.2 * Q_.3

70.5 Access Functions for Groups

The functions described here provide access to basic information stored for a polycyclic group G.

$G . i$
The i-th polycyclic generator for G if $i > 0$, the inverse of the $|i|$-th polycyclic generator for G if $i < 0$ and the identity element of G if $i = 0$.

Generators(G)
PCGenerators(G)

An indexed set containing the polycyclic generators of G.

Generators(H, G)
PCGenerators(H, G)

An indexed set containing the polycyclic generators of H as elements of G.

NumberOfGenerators(G)
Ngens(G)
NumberOfPCGenerators(G)
NPCgens(G)

The number of polycyclic generators for the polycyclic group G.
Ch. 70 POLYCYCLIC GROUPS 2161

PCExponents(G)

The orders of the cyclic factors in the polycyclic series defined by the polycyclic presentation of G. The orders are returned in a sequence Q. $|G_i/G_{i+1}| = m_i = Q[i]$ if $Q[i] > 0$ and G_i/G_{i+1} is infinite (i.e. $i \notin I$) if $Q[i] = 0$.

HirschNumber(G)

The Hirsch number of G, i.e. the number of infinite cyclic factors in the polycyclic series defined by the polycyclic presentation of G.

The Hirsch number of G is equal to $n - |I|$, i.e. to the number of polycyclic generators of G for which there is no power relation. A polycyclic group G is finite if and only if its Hirsch number is 0.

70.6 Set-Theoretic Operations in a Group

70.6.1 Functions Relating to Group Order

FactoredIndex(G, H)

Given a group G and a subgroup H of G of finite index, return the factored index of H in G.

FactoredOrder(G)

The factored order of the finite group G.

Index(G, H)

The index of the subgroup H in the group G, returned as an ordinary integer.

Order(G)

#G

The order of the group G, returned as an ordinary integer.

70.6.2 Membership and Equality

g in G

Given an element g and a group G, return `true` if g is an element of G, `false` otherwise.

g notin G

Given an element g and a group G, return `true` if g is not an element of G, `false` otherwise.

S subset G

Given a group G and a set S of elements belonging to a group H, where G and H have some covering group, return `true` if S is a subset of G, `false` otherwise.
Given a group G and a set S of elements belonging to a group H, where G and H have some covering group, return true if S is not a subset of G, false otherwise.

Given groups G and H, having some covering group, return true if H is a subgroup of G, false otherwise.

Given groups G and H, having some covering group, return true if H is not a subgroup of G, false otherwise.

Given groups G and H, having some covering group, return true if G and H are the same group, false otherwise.

Given groups G and H, having some covering group, return true if G and H are distinct groups, false otherwise.

70.6.3 Set Operations

A representative element of G.

Create a process to generate pseudo-randomly chosen elements from the group G. The process uses an ‘expansion’ procedure to construct a set of elements corresponding to fairly long words in the generators of G [CLGM+95]. At all times, N elements forming a generating set for G are stored. Here, N is the maximum of $n + 1$ and the specified value for Slots, where n is the number of generators of G. Initially, these are just the generators of G and products of pairs of generators of G. Random elements are now produced by successive calls to Random(P), where P is the process created by this function. Each such call chooses an element previously stored by the process as the new random element. The process then replaces this stored element with the product of this element and another one of the stored elements (on the left or the right). Setting Scramble:= m causes m such operations to be performed before the process is returned.

Care should be taken when trying to apply this function to infinite polycyclic groups. Firstly, the computations may take a considerable amount of time and secondly, the quality of the pseudo-random element generator may be extremely poor, depending on the required properties of the sequence of pseudo-random elements.
Given a random element process P created by the function $\text{RandomProcess}(G)$ for the group G, construct a pseudo-random element of G by forming a random product over the expanded generating set currently stored by the process. The remarks concerning random elements of infinite polycyclic groups given in the description of RandomProcess apply here.

An element, pseudo-randomly chosen, from the group G. An exponent vector in normal form is chosen at random. Exponents of polycyclic generators for which there is no power relation, are chosen to have absolute value less or equal to \max. A default value for \max is 10.

It should be kept in mind that the distribution of the elements returned by Random is uniform only in the case that G is finite.

70.7 Coset Spaces

The (right) coset table for G over the subgroup H of finite index, relative to the polycyclic generators. This is defined to be a map

$$\{1, \ldots, |G : H|\} \times G \to \{1, \ldots, |G : H|\}$$

describing the action of G on the enumerated set of right cosets of H in G by right multiplication.

The underlying set of right coset representatives is identical to the right transversal returned by Transversal and RightTransversal and the same enumeration of the elements is used.

Given a group G and a subgroup H of G, this function returns:

(a) An indexed set of elements T of G forming a right transversal for G over H. The right transversal and its enumeration are identical to those internally used by the function CosetTable.

(b) The corresponding transversal mapping $\phi : G \to T$. If $T = [t_1, \ldots, t_r]$ and g in G, ϕ is defined by $\phi(g) = t_i$, where $g \in H * t_i$.
We compute a right transversal of a subgroup H of the infinite dihedral group G.

```plaintext
> G<a,b> := DihedralGroup(GrpGPC, 0);
> H := sub<G|a*b, b^10>;
> Index(G, H);
10
> RT, transmap := Transversal(G, H);
> transmap;
Mapping from: GrpGPC: G to SetIndx: RT
> RT;
{Id(G), b^-1, b^-2, b^-3, b^-4, b^-5, b^-6, b^-7, b^-8, b^-9 @}
> LT := { x^-1 : x in RT @};
> LT;
{Id(G), b, b^2, b^3, b^4, b^5, b^6, b^7, b^8, b^9 @}
```

From this a left transversal is easily obtained:

```plaintext
> action(Id(G), b);
b^-9
I.e. $H \ast b = Hb^{-9}$.
> action(b^-4, a*b);
b^-6
I.e. $Hb^{-4} \ast (ab) = Hb^{-6}$.
```

Note that the definition of the function `action` relies on the fact that the computed right transversal and its enumeration are identical to those internally used by the function `CosetTable`.

CosetAction(G, H)

Given a subgroup H of the group G of finite index, construct the permutation representation of G, induced by the action of G on the set of (right) cosets of H in G. The function returns:

(a) The permutation representation $f : G \to L \leq \text{Sym}(|G : H|)$, induced by the action of G on the set of (right) cosets of H in G;

(b) The epimorphic image L of G under the representation f;

(c) The kernel K of the representation f.

The returned group is the epimorphic image L of G under the permutation representation $f : G \to L \leq \text{Sym}(|G:H|)$, induced by the action of G on the set of (right) cosets of H in G.

CosetKernel(G, H)

Given a subgroup H of the group G of finite index, construct the kernel of the permutation representation $f : G \to L \leq \text{Sym}(|G:H|)$, induced by the action of G on the set of (right) cosets of H in G.

Example H70E8

We use the function `CosetAction` to construct a (non-faithful) permutation representation of the group G defined by the polycyclic presentation

\[
< a, b, c \mid b^a = b \star c, (a, c), (b, c) >.
\]

```plaintext
> F<a,b,c> := FreeGroup(3);
> rels := [ b^a=b*c, b^(a^-1)=b*c^-1 ];
> G<a,b,c> := quo<GrpGPC: F | rels>;
> S := sub<G|(a*b)^3, c^7, b^21>;
> Index(G, S);
441
> pi, P, K := CosetAction(G, S);
> P;
Permutation group P acting on a set of cardinality 441
> K;
GrpGPC : K of infinite order on 3 PC-generators
PC-Relations:
  K.2*K.1 = K.2 * K.3^63,
  K.2^(K.-1) = K.2 * K.-3^63
> Index(G, K);
3087
We express the generators of the kernel $K$ in terms of the generators of $G$:

```
70.8 The Subgroup Structure

70.8.1 General Subgroup Constructions

The operators and functions which construct a subgroup of a polycyclic group always return the subgroup as a polycyclic group.

\[\text{Conjugate}(H, g) \]

Construct the conjugate \(g^{-1} \ast H \ast g \) of the group \(H \) under the action of the element \(g \). The group \(H \) and the element \(g \) must belong to a common group.

\[\text{NormalClosure}(G, H) \]

Given a subgroup \(H \) of the group \(G \), construct the normal closure of \(H \) in \(G \).

\[\text{CommutatorSubgroup}(G, H, K) \]

Construct the commutator subgroup of groups \(H \) and \(K \), where \(H \) and \(K \) are subgroups of a common group \(G \).

70.8.2 Subgroup Constructions Requiring a Nilpotent Covering Group

The operators and functions described in this section require the existence of a nilpotent covering group. They are based on algorithms published in [Lo98]. Again, the constructed subgroup is returned as a polycyclic group.

\[\text{H meet K} \]

Given two groups \(H \) and \(K \), contained in some common group \(G \) which is nilpotent, construct the intersection of \(H \) and \(K \).

\[\text{H meet:= K} \]

Given two groups \(H \) and \(K \), contained in some common group \(G \) which is nilpotent, replace \(H \) with the intersection of \(H \) and \(K \).

\[\text{Centraliser}(G, g) \]

The subgroup of \(G \) centralising \(g \). Both \(g \) and \(G \) must be contained in some common nilpotent group.
Centraliser(G, H)

The subgroup of G centralising H. Both H and G must be subgroups of some common nilpotent group.

Core(G, H)

The maximal normal subgroup of the nilpotent group G that is contained in the subgroup H of G.

Normaliser(G, H)

The subgroup of G normalising H. Both H and G must be subgroups of some common nilpotent group.

70.9 General Group Properties

IsAbelian(G)

Returns true if the group G is abelian, false otherwise.

IsCyclic(G)

Returns true if the group G is cyclic, false otherwise.

IsElementaryAbelian(G)

Returns true if the group G is elementary abelian, false otherwise. The following definition is used:

A group G is called elementary abelian if it is an abelian p-group of exponent p for some prime p.

IsFinite(G)

Returns true if the group G is finite, false otherwise.

IsNilpotent(G)

Returns true if the group G is nilpotent, false otherwise. This function uses an algorithm described in [Lo98].

IsPerfect(G)

Returns true if the group G is perfect, false otherwise. A polycyclic group G is perfect, if and only if it is trivial.

IsSimple(G)

Returns true if the group G is simple, false otherwise. A polycyclic group is simple, if and only if it is cyclic of prime order.
IsSoluble(G)

Returns true if the group \(G \) is solvable, false otherwise. Every polycyclic group is solvable.

70.9.1 General Properties of Subgroups

IsCentral(G, H)

Returns true if the subgroup \(H \) of the group \(G \) lies in the centre of \(G \), false otherwise.

IsNormal(G, H)

Returns true if the subgroup \(H \) of the group \(G \) is a normal subgroup of \(G \), false otherwise.

70.9.2 Properties of Subgroups Requiring a Nilpotent Covering Group

The functions described in this section require the existence of a nilpotent covering group. They are based on algorithms published in [Lo98].

IsConjugate(G, H, K)

Given groups \(G \), \(H \) and \(K \) with a nilpotent common covering group, return the value true if there exists \(c \in G \) such that \(H^c = K \). If so, the function returns such a conjugating element as second value.

IsSelfNormalising(G, H)

Returns true if the subgroup \(H \) of the nilpotent group \(G \) is self-normalising in \(G \), false otherwise.

Example H70E9

We define a group \(G \) on 5 generators \(a, \ldots, e \) of infinite order by fixing the commutators of the generators:

\[
(b, a) = e^2, \quad (d, c) = e^3
\]

All other pairs of generators commute.

\[
\begin{align*}
> \text{F}<a,b,c,d,e> & := \text{FreeGroup}(5); \\
> \text{rels} & := [b^a = b* e^2, \ b^a*(a^-1) = b* e^-2, \ d^c = d* e^3, \\
> & \quad d^c*(c^-1) = d* e^-3]; \\
> \text{G}<a,b,c,d,e> & := \text{quo}< \text{GrpGPC: F} | \text{rels}>; \\
> \text{IsNilpotent}(\text{G}); \\
& \text{true}
\end{align*}
\]

Since \(G \) is nilpotent, we can compute intersections of subgroups of \(G \).
We define the subgroups generated by a, \ldots, e and their nontrivial commutator groups as subgroups of G.

\[
H_1 := \text{sub}\langle G \mid a \rangle; \\
H_2 := \text{sub}\langle G \mid b \rangle; \\
H_3 := \text{sub}\langle G \mid c \rangle; \\
H_4 := \text{sub}\langle G \mid d \rangle; \\
H_5 := \text{sub}\langle G \mid e \rangle; \\
\]

\[
C_{12} := \text{CommutatorSubgroup}(H_1, H_2); \\
\{ G\!x : x \in \text{PCGenerators}(C_{12}) \} \\
\{ e^2 \} \\
C_{12} \subset H_5; \\
\text{true} \\
\]

\[
C_{34} := \text{CommutatorSubgroup}(H_3, H_4); \\
\{ G\!x : x \in \text{PCGenerators}(C_{34}) \} \\
\{ e^3 \} \\
C_{34} \subset H_5; \\
\text{true} \\
\]

Finally, we compute the intersection C of C_{12} and C_{13}.

\[
C := C_{12} \cap C_{34}; \\
\{ G\!x : x \in \text{PCGenerators}(C) \} \\
\{ e^6 \} \\
\]

This intersection C is cyclic and central in G.

\[
\text{IsCyclic}(C); \\
\text{true} \\
\text{IsCentral}(G, C); \\
\text{true} \\
\]

Example H70E10

Consider the nilpotent group $G := D_{16} \wr S_2$ generated by the 5 generators a, b, c, d, t with the relations

\[
a^2 = 1, \quad b^{16} = 1, \quad b^a = b^{15} \\
c^2 = 1, \quad d^{16} = 1, \quad d^c = d^{15} \\
t^2 = 1, \quad a^t = c, \quad b^t = d, \quad c^t = a, \quad d^t = b
\]

(All other pairs of generators commute.)

\[
F\langle t, a, b, c, d \rangle := \text{FreeGroup}(5); \\
G\langle t, a, b, c, d \rangle := \text{quo}<\text{GrpGPC}: F \mid a^{2}, b^{16}, b^a = b^{15}, \text{c}^2, d^{16}, d^c = d^{15}, \text{t}^2, a^t = c, b^t = d, c^t = a, d^t = b>; \\
\text{IsNilpotent}(G); \\
\]
true

Since G is nilpotent, we can compute normalisers and centralisers in G. We define the (dihedral) subgroup D_3 of G generated by ac and bd and compute its normaliser in G and its centraliser in the (dihedral) subgroup D_2 of G generated by c and d.

```plaintext
> D2 := sub<G|c,d>; > D3<u,v> := sub<G|a*c, b*d>; > D3;
GrpGCP : D3 of order 2^5 on 2 PC-generators
PC-Relations:
   u^2 = Id(D3),
   v^16 = Id(D3),
   v^u = v^15
>
> N3 := Normaliser(G, D3); > PCGenerators(N3, G);
{t, a * c, b * d, d^8 @}
>
> C3 := Centraliser(D2, D3); > PCGenerators(C3, G);
{d^8 @}
```

Finally we compute the centraliser of the element t in G.

```plaintext
> Ct := Centraliser(G, t); > PCGenerators(Ct, G);
{t, a * c, b * d @}
```

70.10 Normal Structure and Characteristic Subgroups

70.10.1 Characteristic Subgroups and Subgroup Series

<table>
<thead>
<tr>
<th>Centre(G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center(G)</td>
</tr>
</tbody>
</table>

The centre of the group G. For nilpotent groups the centre is computed using the centraliser algorithm [Lo98]. Otherwise, it is computed as the simultaneous fixed point space of the action of the generators of G on the centre of the Fitting subgroup of G [Eic01].

| DerivedLength(G) |

The derived length of the group G.
The derived series of the group G. The series is returned as a sequence of subgroups.

The derived subgroup of the group G.

Returns a normal series of G, the factors of which are either elementary abelian p-groups or free abelian groups.

The Fitting length of the group G, i.e. the smallest integer k such that $F_k = G$ where the groups F_i are defined recursively by $F_0 := 1$ and $F_i/F_{i-1} := \text{Fit}(G/F_{i-1})$ ($i > 0$). Note that such a k exists for every polycyclic group G.

The Fitting series of the group G, where the groups F_i are defined recursively by $F_0 := 1$ and $F_i/F_{i-1} := \text{Fit}(G/F_{i-1})$ ($i > 0$). The series is returned as the sequence $[F_0, \ldots, F_k]$ of subgroups of G. Note that every polycyclic group G has a finite Fitting series ending in G.

The Fitting subgroup of the group G, i.e. the maximal nilpotent normal subgroup of G. This function uses an algorithm described in [Eic01].

This function returns the value true if the lower central series of G is computable, otherwise it returns the value false. This is useful to avoid runtime errors, when LowerCentralSeries is called in user written loops or functions.

The lower central series for the group G. The series is returned as a sequence of subgroups. Since infinite polycyclic groups need not satisfy the descending chain condition for subgroups, computation of the lower central series may fail. To determine if the series can be computed and thereby avoid runtime errors, the function HasComputableLCS may be used. This function uses an algorithm described in [Lo98].

The nilpotency class of the group G. If G is not nilpotent, then -1 is returned.
NilpotentPresentation(G)

A polycyclic presentation is called nilpotent, if for all \(i = 1, \ldots, n \), \(G_{i+1} \) is normal in \(G \) and \(G_i/G_{i+1} \) is central in \(G/G_{i+1} \). Every nilpotent polycyclic group has a nilpotent polycyclic presentation. A suitable polycyclic series can be obtained by refining the lower central series.

The function \texttt{NilpotentPresentation} computes a group \(N \) isomorphic to \(G \), given by a nilpotent polycyclic presentation and the isomorphism from \(G \) to \(N \).

SemisimpleEFASeries(G)

Returns a normal series of \(G \), the factors of which are either elementary abelian \(p \)-groups which are semisimple as \(F_p[G] \)-modules or free abelian groups which are semisimple as \(Q[G] \)-modules.

The normal series returned by the function \texttt{SemisimpleEFASeries} is a refinement of the normal series returned by the function \texttt{EFASeries}.

UpperCentralSeries(G)

The upper central series \([Z_0, \ldots, Z_k]\) of the group \(G \), where the groups \(Z_k \) are defined recursively by \(Z_0 := 1 \) and \(Z_i/Z_{i-1} := Z(G/Z_{i-1}) \) \((i > 0)\). The series is returned as a sequence of subgroups of \(G \). Note that since polycyclic groups satisfy the ascending chain condition for subgroups, every polycyclic group \(G \) has a finite upper central series.

Example H70E11

The dihedral group of order 32 is nilpotent; we compute its lower central series.

```plaintext
> D16:=DihedralGroup(GrpGPC, 16);
> IsNilpotent(D16);
true
> NilpotencyClass(D16);
4
> L:=LowerCentralSeries(D16);
```

The generators of the subgroups in the lower central series expressed as elements of \(D_{16} \) are:

```plaintext
> for i:=1 to 1+NilpotencyClass(D16) do
> print i, ":", {D16!x : x in PCGenerators(L[i]) @};
> end for;
1 : {@ a, b @}
2 : {@ b^2 @}
3 : {@ b^4 @}
4 : {@ b^8 @}
5 : {@ @}
```

We compute a nilpotent presentation and express the new generators in terms of \(a \) and \(b \):

```plaintext
> N:=NilpotentPresentation(D16);
> N;
```
GrpGPC : N of order 2^5 on 5 PC-generators

PC-Relations:
- $p^2 = \text{Id}(N)$,
- $q^2 = r$,
- $r^2 = s$,
- $s^2 = t$,
- $t^2 = \text{Id}(N)$,
- $q^p = q \ast r \ast s \ast t$,
- $r^p = r \ast s \ast t$,
- $s^p = s \ast t$

$\{ @ x @@f : x \in \text{PCGenerators}(N) @ \};$

$\{ @ a, b, b^2, b^4, b^8 @ \}$

The infinite dihedral group has an infinite, strictly descending, lower central series which cannot be computed:

```plaintext
> D := DihedralGroup(GrpGPC, 0);
> HasComputableLCS(D);
false
```

It is easy to see, that b^{2^i-1} would be a generator of L_i.

The symmetric group on 3 letters is not nilpotent, but has a lower central series which becomes stationary and which can be computed:

```plaintext
> F2<a,b> := FreeGroup(2);
> rels := [ a^2 = F2!1, b^3 = F2!1, b^a = b^2 ];
> G<a,b> := quo<GrpGPC : F2 | rels>;
> G;
GrpGPC : G of order 6 = 2 * 3 on 2 PC-generators

PC-Relations:
- $a^2 = \text{Id}(G)$,
- $b^3 = \text{Id}(G)$,
- $b^a = b^2$

> IsNilpotent(G);
false
> HasComputableLCS(G);
true
> L := LowerCentralSeries(G);
> for i := 1 to #L do
> print i, ":", {@ G!x : x \in \text{PCGenerators}(L[i]) @};
> end for;
1 : { @ a, b @}
2 : { @ b @}
```
70.10.2 The Abelian Quotient Structure of a Group

\[\text{AbelianQuotient}(G) \]

The maximal abelian quotient \(G/G' \) of the group \(G \) as \text{GrpAb} (cf. Chapter 67). The natural epimorphism is returned as second return value.

\[\text{AbelianQuotientInvariants}(G) \]
\[\text{AQInvariants}(G) \]

Returns a sequence containing the invariants of the maximal abelian quotient \(G/G' \) of the group \(G \). Each infinite cyclic factor of \(G/G' \) is represented by zero.

\[\text{ElementaryAbelianQuotient}(G, p) \]

The maximal \(p \)-elementary abelian quotient of the group \(G \) as \text{GrpAb} (cf. Chapter 67). The natural epimorphism is returned as second return value.

\[\text{FreeAbelianQuotient}(G) \]

The maximal free abelian quotient of the group \(G \) as \text{GrpAb} (cf. Chapter 67). The natural epimorphism is returned as second return value.

70.11 Conjugacy

The functions described in this section require the existence of a nilpotent covering group. They are based on algorithms published in [Lo98].

\[\text{IsConjugate}(G, g, h) \]

Given elements \(g \) and \(h \) and a group \(G \), which are contained in some nilpotent common group, return the value \text{true} if there exists \(c \in G \) such that \(gc = h \). If so, the function returns such a conjugating element as second value.

\[\text{IsConjugate}(G, H, K) \]

Given groups \(G \), \(H \) and \(K \) with a nilpotent common covering group, return the value \text{true} if there exists \(c \in G \) such that \(H^c = K \). If so, the function returns such a conjugating element as second value.

Example H70E12

We again consider the nilpotent group \(G := D_{16}/2 \).

\[
\begin{align*}
&> \text{free} = \text{FreeGroup}(5); \\
&> G = \text{GrpGPC}\{F | a^2, b^{16}, b^a = b^{15}, \ c^2, d^{16}, d^c = d^{15}, \ t^2, a^t = c, b^t = d, c^t = a, d^t = b\}; \\
&> \text{IsNilpotent}(G); \\
&> \text{true}
\end{align*}
\]

Since \(G \) is nilpotent, a test for conjugacy in \(G \) is available.
We define the following subgroups of G: D_1 generated by a and b, D_2 generated by c and d and D_3 generated by ac and bd.

$$D_1 := \text{sub}\langle G | a, b \rangle;$$
$$D_2 := \text{sub}\langle G | c, d \rangle;$$
$$D_3 := \text{sub}\langle G | a*c, b*d \rangle;$$

D_1 and D_2 are, of course, conjugate in G; t is a conjugating element.

$$\text{IsConjugate}(G, D_1, D_2);$$
$$\text{true}$$

The elements b and d^{-1} are conjugate in G; we compute a conjugating element.

$$\text{IsConjugate}(G, b, d^{-1});$$
$$\text{true} * a * c$$

However, neither the subgroups D_1 and D_2 nor the elements b and d^{-1}, are conjugate in the subgroup D_3.

$$\text{IsConjugate}(D_3, D_1, D_2);$$
$$\text{false}$$

$$\text{IsConjugate}(D_3, b, d^{-1});$$
$$\text{false}$$

70.12 Representation Theory

This section describes some functions for creating $R[G]$-modules for a polycyclic group G, which are unique for this category or have special properties when called for polycyclic groups. For a complete description of the functions available for creating and working with $R[G]$-modules we refer to Chapter 86.

Note that the function GModuleAction can be used to extract the matrix representation associated to an $R[G]$-module.

EFAModuleMaps(G)

Every polycyclic group G has a normal series $G = N_1 \triangleright N_2 \triangleright \ldots \triangleright N_{r+1} = 1$, such that every quotient $M_i := N_i/N_{i+1}$ is either free abelian or p-elementary abelian for some prime p. The action of G by conjugation induces a $\mathbb{Z}[G]$-module structure on M_i if M_i is free abelian and an $\mathbb{F}_p[G]$-module structure if M_i is p-elementary abelian.

This function returns a sequence $[f_1, \ldots, f_r]$, where $f_i : N_i \to M_i$ is the natural epimorphism onto the additive group of an $R_i[G]$-module M_i ($R_i \in \{\mathbb{F}_p, \mathbb{Z}\}$), constructed as above.

The functions EFAModuleMaps and EFAModules use the normal series returned by the function EFASeries.

Note that the kernels of the epimorphisms f_i can be computed and hence it is possible to form preimages of submodules of M_i, which are normal subgroups of G contained in N_i and containing N_{i+1}.
Every polycyclic group G has a normal series $G = N_1 \triangleright N_2 \triangleright \ldots \triangleright N_{r+1} = 1$, such that every quotient $M_i := N_i/N_{i+1}$ is either free abelian or p-elementary abelian for some prime p. The action of G by conjugation induces a $\mathbb{Z}[G]$-module structure on M_i if M_i is free abelian and an $\mathbb{F}_p[G]$-module structure if M_i is p-elementary abelian.

This function returns a sequence $[M_1, \ldots, M_r]$ of $R_i[G]$-modules (where $R_i \in \{ \mathbb{F}_p, \mathbb{Z} \}$), constructed as above.

The functions `EFAModuleMaps` and `EFAModules` use the normal series returned by the function `EFASeries`.

Let A be a normal subgroup of the polycyclic group G. If $p = 0$, the function returns the $\mathbb{Z}[G]$-module corresponding to the conjugation action of G on the maximal free abelian quotient of A. If p is a prime, it returns the $\mathbb{F}_p[G]$-module corresponding to the conjugation action of G on the maximal p-elementary abelian quotient of A.

The epimorphism $\pi : A \to M$ onto the additive group of the constructed module M is returned as second return value. Note that the kernel of π can be computed and hence it is possible to form preimages of submodules of M, which are normal subgroups of G contained in A.

If the maximal abelian quotient A/A' of A is either free abelian or p-elementary abelian for some prime p, p can be omitted in the function call.

Note that it is the user’s responsibility to ensure that A is in fact normal in G.

Let A and $B < A$ be normal subgroups of the polycyclic group G. If $p = 0$, the function returns the $\mathbb{Z}[G]$-module corresponding to the conjugation action of G on the maximal free abelian quotient of A/B. If p is a prime, it returns the $\mathbb{F}_p[G]$-module corresponding to the conjugation action of G on the maximal p-elementary abelian quotient of A/B. The epimorphism $\pi : A \to M$ onto the additive group of the constructed module M is returned as second return value. Note that the kernel of π can be computed and hence it is possible to form preimages of submodules of M, which are normal subgroups of G contained in A and containing B.

If the maximal abelian quotient of A/B is either free abelian or p-elementary abelian for some prime p, p can be omitted in the function call.

Note that it is the user’s responsibility to ensure that A and B are in fact normal in G.
Let G be a polycyclic group and A a normal subgroup of G. Given any prime p, the maximal p-elementary abelian quotient of A can be viewed as an $\mathbf{F}_p[G]$-module M_p. The maximal free abelian quotient of A can be viewed as a $\mathbf{Z}[G]$-module M_0. This function determines those primes p for which the module M_p is non-trivial (i.e. not zero-dimensional) and the dimensions of the corresponding modules M_p. The return value is a multiset S. If $0 \notin S$, the maximal abelian quotient of A is finite and the multiplicity of p is the dimension of M_p. If S contains 0 with multiplicity m, the maximal abelian quotient of A contains m copies of \mathbf{Z}. In this case, the rank of M_0 is m and M_p is non-trivial for every prime p and its rank is the sum of m and the multiplicity of p in S.

Let G be a polycyclic group, A a normal subgroup of G and B a normal subgroup of G contained in A. Given any prime p, the maximal p-elementary abelian quotient of A/B can be viewed as an $\mathbf{F}_p[G]$-module M_p. The maximal free abelian quotient of A/B can be viewed as a $\mathbf{Z}[G]$-module M_0. This function determines those primes p for which the module M_p is non-trivial (i.e. not zero-dimensional) and the dimensions of the corresponding modules M_p. The return value is a multiset S. If $0 \notin S$, the maximal abelian quotient of A/B is finite and the multiplicity of p is the dimension of M_p. If S contains 0 with multiplicity m, the maximal abelian quotient of A/B contains m copies of \mathbf{Z}. In this case, the rank of M_0 is m and M_p is non-trivial for every prime p and its rank is the sum of m and the multiplicity of p in S.

Every polycyclic group G has a normal series $G = N_1 \triangleright N_2 \triangleright \ldots \triangleright N_{r+1} = 1$, such that every quotient $M_i := N_i/N_{i+1}$ is either free abelian and semisimple as a $\mathbf{Q}[G]$-module or p-elementary abelian and semisimple as an $\mathbf{F}_p[G]$-module for some prime p.

This function returns a sequence $[f_1, \ldots, f_r]$, where $f_i : N_i \rightarrow M_i$ is the natural epimorphism onto the additive group of an $R_i[G]$-module M_i ($R_i \in \{\mathbf{F}_p, \mathbf{Z}\}$), constructed as above.

The functions SemisimpleEFAModules and SemisimpleEFAModuleMaps use the normal series returned by the function SemisimpleEFASeries. Moreover, this normal series is a refinement of the normal series returned by the function EFASeries.

Note that the kernels of the epimorphisms f_i can be computed and hence it is possible to form preimages of submodules of M_i, which are normal subgroups of G contained in N_i and containing N_{i+1}.
This function returns a sequence \([M_1, \ldots, M_r]\) of \(R_i[G]\)-modules (where \(R_i \in \{\mathbb{F}_p, \mathbb{Z}\}\)), constructed as above.

The functions \texttt{SemisimpleEFAModules} and \texttt{SemisimpleEFAModuleMaps} use the normal series returned by the function \texttt{SemisimpleEFASeries}. Moreover, this normal series is a refinement of the normal series returned by the function \texttt{EFASeries}.

Example H70E13

Consider the group \(G\) defined by the polycyclic presentation

\[
\langle a, b, c, d, e \mid c^6, e^3, d^e = de, e^c = e^2, b^a = b^{-1}, b^{a^{-1}} = b^{-1}, c^b = ce, c^{b^{-1}} = ce, d^b = d^{-1}, d^{b^{-1}} = d^{-1}, e^b = e^2, e^{b^{-1}} = e^2 \rangle.
\]

(Trivial commutator relations have been omitted.)

```plaintext
> F<a,b,c,d,e> := FreeGroup(5);
> G<a,b,c,d,e> := quo< GrpGPC : F | c^6 = F!1, e^3 = F!1,
> d^c=d*e, e^c=e^2, b^a=b^-1, 
> b^(a^-1)=b^-1, c^b=c*e, c^(b^-1)=c*e,
> d^b=d^-1, d^(b^-1)=d^-1, e^b=e^2,
> e^(b^-1)=e^2 >;

The subgroup \(H\) of \(G\) generated by \(c, d, e\) is normal in \(G\).

> H := sub< G | c,d,e >;
> IsNormal(G, H);
true

We determine the primes such that the action of \(G\) on \(H\) yields non-trivial modules.

> GModulePrimes(G, H);
{0, 2, 3}

We construct the \(\mathbb{F}_3[G]\)-module \(M\) given by the action of \(G\) on the maximal 3-elementary abelian quotient of \(H\) and the natural epimorphism \(\pi\) from \(H\) onto the additive group of \(M\).

> M, pi := GModule(G, H, 3);
> M;
GModule M of dimension 2 over GF(3)

Using the function \texttt{Submodules}, we obtain the submodules of \(M\). Their preimages under \(\pi\) are precisely the normal subgroups of \(G\) which are contained in \(H\) and contain \(\text{ker}(\pi)\).

> submod := Submodules(M);
> nsgs := [ m @@ pi : m in submod ];
> [ PCGenerators(s, G) : s in nsgs ];
```
Example H70E14

Consider the group defined by the polycyclic presentation

\[
< a, b, c, d, e \mid a^5, b^5, c^6, d^5, e^3, b^a = bd >.
\]

We loop over the distinct elements of \(P \) and for each element \(p \) we construct the induced \(\mathbb{F}_p[G] \)-module, print its dimension and check whether it is decomposable. Note that the dimension of the module for \(p \) must be equal to the multiplicity of \(p \) in \(P \).
Example H70E15

The Fitting subgroup of a polycyclic group G can be characterised as the intersection of the centralisers in G of the semisimple G-modules defined by the action of G on the factors of a semisimple EFA-series of G. The centraliser in G of a G-module is just the kernel of the action map.

We illustrate this with the group G defined in the example above.

```plaintext
> F<a,b,c,d,e> := FreeGroup(5);
> G<a,b,c,d,e> := quo< GrpGPC : F | c^6 = F!1, e^3 = F!1, 
b^a = b * d,
b^(a^-1) = b * d^-1 >;
```

We first construct the G-modules defined by the action of G on the factors of a semisimple EFA-series of G.

```plaintext
> modules := SemisimpleEFAModules(G);
> modules;

[  
  GModule of dimension 2 over Integer Ring,
  GModule of dimension 1 over Integer Ring,
  GModule of dimension 1 over GF(2),
  GModule of dimension 2 over GF(3)
]
```

Now, we compute the intersection of the kernels of the module action maps, which can be obtained using the function `GModuleAction`.

```plaintext
> S := G;
> for m in modules do
>     S meet := Kernel(GModuleAction(m));
> end for;
```

Finally, we compare the result with the Fitting subgroup of G, returned by the MAGMA function `FittingSubgroup`.

```plaintext
> S eq FittingSubgroup(G);
true
```
Example H70E16

The functions `EFAModuleMaps` and `SemisimpleEFAModuleMaps` are useful whenever it is desired to refine an EFA-series or a semisimple EFA-series by computing the subgroups corresponding to submodules of the G-modules given by the factors of the series. Consider again the group defined above.

```plaintext
> F<a,b,c,d,e> := FreeGroup(5);
> G<a,b,c,d,e> := quo< GrpGPC : F | c^6 = F!1, e^3 = F!1,
> b^a = b * d,
> b^(a^-1) = b * d^-1 >;
We extract the map $f$ from $G$ (the first group in any EFA-series of $G$) onto the module given by the first factor of an EFA-series of $G$.
> f := EFAModuleMaps(G)[1];
> f;
Mapping from: GrpGPC: G to GModule of dimension 2 over Integer Ring
The module itself can be accessed as the codomain of $f$.
> M := Codomain(f);
> M;
GModule M of dimension 2 over Integer Ring
Spinning up random elements, we try to construct a submodule $S$ of $M$.
> repeat
>    S := sub<M|[Random(-1, 1): i in [1 .. Dimension(M)]]>;
> until Dimension(S) gt 0 and S ne M;
> S;
GModule S of dimension 1 over Integer Ring
The preimage $N$ of $S$ under $f$ is a normal subgroup of $G$, which lies between the first and the second subgroup of the original EFA-series for $G$.
> N := S @@ f;
> PCGenerators(N, G);
{a^2 * b^4, c, d, e @}
```

70.13 Power Groups

Parent(G)
The PowerStructure of category GrpGPC.

PowerGroup(G)
The set of all subgroups of G. This is very useful when constructing sets of polycyclic groups. If the user will be building a set of subgroups of a polycyclic group G, then it is best to specify the set’s universe to be `PowerGroup(G)`. If the set’s universe is not specified it will be the parent structure of G as returned by `Parent(G)`.
70.14 Bibliography

71 BRAID GROUPS

71.1 Introduction .. 2185
71.1.1 Lattice Structure and Simple Elements 2186
71.1.2 Representing Elements of a Braid Group 2187
71.1.3 Normal Form for Elements of a Braid Group 2188
71.1.4 Mixed Canonical Form and Lattice Operations 2189
71.1.5 Conjugacy Testing and Conjugacy Search 2190

71.2 Constructing and Accessing Braid Groups 2192
BraidGroup(n: -) 2192
BraidGroup(GrpBrd, n: -) 2192
GetPresentation(B) 2192
SetPresentation(B, s) 2192
GetForceCFP(B) 2192
SetForceCFP(B, b) 2192
GetElementPrintFormat(B) 2192
SetElementPrintFormat(B, s) 2192
NumberOfStrings(B) 2193
NumberOfGenerators(B) 2193
Ngens(B) 2193

71.3 Creating Elements of a Braid Group 2193
Representative(B) 2193
Rep(B) 2193
Identity(B) 2193
Id(B) 2193
FundamentalElement(B: -) 2193
Generators(B: -) 2193
Cycle(B: -) 2194
Cycle(B: -) 2194
Cycle(B: -) 2194
Inv(B: -) 2195
IsProductOfParallelDescendingCycles(p) 2195
Random(B, r, s, m, n: -) 2195
RandomCFP(B, r, s, m, n: -) 2195
Random(B: -) 2195
RandomCFP(B: -) 2195
Random(B, m, n: -) 2195
RandomWord(B, m, n: -) 2195
RandomWord(B: -) 2195

71.4 Working with Elements of a Braid Group 2199

71.4.1 Accessing Information 2199
Parent(u) 2199
CanonicalFactorRepresentation(u: -) 2199
CFP(u: -) 2199
WordToSequence(u: -) 2199
ElementToSequence(u: -) 2199
Eltseq(u: -) 2199
InducedPermutation(u) 2200
CanonicalLength(u: -) 2200
Infimum(u: -) 2200
Supremum(u: -) 2200
SuperSummitCanonicalLength(u: -) 2201
SuperSummitInfimum(u: -) 2201
SuperSummitSupremum(u: -) 2201

71.4.2 Computing Normal Forms of Elements 2202
LeftNormalForm(u: -) 2203
NormalForm(u: -) 2203
LeftNormalForm(u: -) 2203
NormalForm(u: -) 2203
RightNormalForm(u: -) 2203
RightNormalForm(u: -) 2203
LeftMixedCanonicalForm(u: -) 2203
MixedCanonicalForm(u: -) 2203
RightMixedCanonicalForm(u: -) 2204

71.4.3 Arithmetic Operators and Functions for Elements 2205
*
*=
/
/=.`
`:=
`:=
Inverse(u) 2206
Inverse(u: -) 2206
LeftConjugate(u, v) 2207
LeftConjugate(u, v) 2207
LeftDiv(u, v) 2207
LeftDiv(u, v) 2207
Cycle(u: -) 2207
Cycle(u: -) 2207
Decycle(u: -) 2208
Decycle(u: -) 2208

71.4.4 Boolean Predicates for Elements 2209
in
notin
IsEmptyWord(u: -) 2210
AreIdentical(u, v: -) 2210
IsSimple(u: -) 2210
IsSuperSummitRepresentative(u: -) 2210
71.4.5 Lattice Operations 2213
LeftGCD(u, v: -) 2214
LeftGcd(u, v: -) 2214
LeftGreatestCommonDivisor(u, v: -) 2214
GCD(u, v: -) 2214
Gcd(u, v: -) 2214
GreatestCommonDivisor(u, v: -) 2214
RightGCD(u, v: -) 2214
RightGcd(u, v: -) 2214
RightGreatestCommonDivisor(u, v: -) 2214
LeftGCD(S: -) 2214
LeftGcd(S: -) 2214
LeftGreatestCommonDivisor(S: -) 2214
GCD(S: -) 2214
Gcd(S: -) 2214
GreatestCommonDivisor(S: -) 2214
RightGCD(S: -) 2214
RightGcd(S: -) 2214
RightGreatestCommonDivisor(S: -) 2214
LeftLCM(u, v: -) 2215
LeftLcm(u, v: -) 2215
LeftLeastCommonMultiple(u, v: -) 2215
LCM(u, v: -) 2215
Lcm(u, v: -) 2215
LeastCommonMultiple(u, v: -) 2215
RightLCM(u, v: -) 2215
RightLcm(u, v: -) 2215
RightLeastCommonMultiple(u, v: -) 2215
LeftLCM(S: -) 2215
LeftLcm(S: -) 2215
LeftLeastCommonMultiple(S: -) 2215
LCM(S: -) 2215
Lcm(S: -) 2215
LeastCommonMultiple(S: -) 2215
RightLCM(S: -) 2216
RightLcm(S: -) 2216
RightLeastCommonMultiple(S: -) 2216
71.4.6 Invariants of Conjugacy Classes . . 2217
PositiveConjugates(u: -) 2218
SuperSummitRepresentative(u: -) 2218
SuperSummitSet(u: -) 2218
UltraSummitRepresentative(u: -) 2218
UltraSummitSet(u: -) 2218
PositiveConjugatesProcess(u: -) 2221
SuperSummitProcess(u: -) 2221
UltraSummitProcess(u: -) 2221
BaseElement(P) 2221
2221
Representative(P) 2221
Rep(P) 2221
IsEmpty(P) 2221
Elements(P) 2221
in 2222
notin 2222
NextElement(~P) 2222
Complete(~P) 2222
MinimalElementConjugatingTo
Positive(x, s: -) 2224
MinimalElementConjugatingTo
SuperSummit(x, s: -) 2224
MinimalElementConjugatingTo
UltraSummit(x, s: -) 2224
Transport(x, s: -) 2225
Pullback(x, s: -) 2225
71.5 Homomorphisms 2226
71.5.1 General Remarks 2226
71.5.2 Constructing Homomorphisms . . 2226
hom< > 2226
71.5.3 Accessing Homomorphisms 2227
e @ f 2227
f(e) 2227
B @ f 2227
f(B) 2227
u @@ f 2227
Domain(f) 2227
Codomain(f) 2227
Image(f) 2227
71.5.4 Representations of Braid Groups . 2230
SymmetricRepresentation(B) 2230
BurauRepresentation(B) 2231
BurauRepresentation(B, p) 2231
71.6 Bibliography 2232
Chapter 71

BRAID GROUPS

71.1 Introduction

This chapter deals with another, quite specialised, class of finitely presented groups for which the word problem is solvable, the category of braid groups. The corresponding Magma category is called \GrpBrd.

The notion of braid groups was introduced by Artin [Art47], who considered a sequence \(B_n\) \((n = 1, 2, \ldots)\) of groups, where \(B_n\) is presented on \(n - 1\) generators \(\sigma_1, \ldots, \sigma_{n-1}\) with the defining relations

\[
\sigma_i \sigma_j = \sigma_j \sigma_i \quad (1 \leq i < j < n, \; j - i > 1), \\
\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \quad (1 \leq i < n - 1).
\]

\(B_n\) is called the braid group on \(n\) strings. In the sequel, we refer to the above presentation as Artin presentation and to \(\sigma_1, \ldots, \sigma_{n-1}\) as Artin generators of \(B_n\).

Birman, Ko and Lee introduced an alternative way of presenting braid groups [BKL98]. Here, \(B_n\) is presented on \(n(n-1)/2\) generators \(a_{r,t}\) \((n \geq r > t \geq 1)\) with the defining relations

\[
a_{t,s} a_{r,q} = a_{r,q} a_{t,s} \quad \text{for} \quad n \geq t > s \geq 1, \; n \geq r > q \geq 1, \; (t-r)(t-q)(s-r)(s-q) > 0 \]
\[
a_{t,s} a_{s,r} = a_{t,r} a_{t,s} = a_{s,r} a_{t,r} \quad \text{for} \quad n \geq t > s > r > 0.
\]

We refer to this presentation as BKL presentation and to \(a_{r,t}\) \((n \geq r > t \geq 1)\) as BKL generators of \(B_n\).

A possible choice for the BKL generators in terms of Artin generators is \(a_{r,t} = (\sigma_{r-1} \cdots \sigma_{t+1}) \sigma_t (\sigma_{t+1}^{-1} \cdots \sigma_{r-1}^{-1})\). This identification is used in Magma.

Recently, braid groups came under consideration as possible sources for public key cryptosystems [AAG99, KLC+00]. The features of braid groups which make them interesting for public key cryptography are the following.

- The basic group operations in braid groups can be implemented efficiently on a computer.
- The word problem in braid groups is solvable, that is, there is a normal form for elements of a braid group and elements can be compared. Moreover, there are algorithms which are able to compute the normal form of an element efficiently.
- There are several problems in braid groups which are believed to be mathematically hard and whose use for cryptographic purposes has been suggested. The most important examples are variations of the conjugacy problem.
However, both recent attacks on particular cryptosystems [GKT+02, HS03, Hug02, LL02, LP03] and advances in the analysis of the conjugacy problem [GM02, Geb03] in general shed some doubts on the security of braid group cryptosystems. At the time of this writing it is an open question whether braid group cryptosystems can be made secure by an appropriate choice of parameters and keys or whether they have to be considered as insecure. More research into these issues is necessary.

The Magma category GrpBrd was introduced mainly with these applications in mind. Focus was put on providing fast operations with elements and on giving the user as much control over the details of computations as possible.

71.1.1 Lattice Structure and Simple Elements

In this section we briefly recall the basic terminology used for describing elements of braid groups. More detailed descriptions can be found in [ECH+92] for the Artin presentation and in [BKL98] for the BKL presentation.

We remark that both Artin presentation and BKL presentation are special cases of so-called Garside groups [Deh02].

In the sequel, let M be either the Artin presentation or the BKL presentation of the braid group B on n strings, let X denote the generators of M and let R denote the relations of M. As the relations in R do not contain inverses of generators, we can interpret M as monoid presentation. We denote the finitely presented monoid defined by M by B^+. The natural homomorphism from B^+ to B can be shown to be injective. We identify its image with B^+ and call it the set of positive elements of B. Finally, we denote the identity of B by 1.

We can now define two partial orderings on B. For elements $u, v \in B$ we say $u \preceq v$, if there exists a positive element a such that $ua = v$, and we say $v \succeq u$, if there exists a positive element a such that $v = au$. Note that these partial orderings are different; $u \preceq v$ is not equivalent to $v \succeq u$.

B can be shown to be a lattice with respect to both partial orderings, that is, for elements $u, v \in B$ there are elements $d_l, m_l, d_r, m_r \in B$ such that

\[
\begin{align*}
 d_l \preceq u, & \quad d_l \preceq v \quad \text{and} \quad d \preceq u, \quad d \preceq v \quad \text{implies} \quad d \preceq d_l \quad \text{for all} \quad d \in B \\
 u \preceq m_l, & \quad v \preceq m_l \quad \text{and} \quad u \preceq m, \quad v \preceq m \quad \text{implies} \quad m_l \preceq m \quad \text{for all} \quad m \in B \\
 u \succeq d_r, & \quad v \succeq d_r \quad \text{and} \quad u \succeq d, \quad v \succeq d \quad \text{implies} \quad d_r \succeq d \quad \text{for all} \quad d \in B \\
 m_r \succeq u, & \quad m_r \succeq v \quad \text{and} \quad m \succeq u, \quad m \succeq v \quad \text{implies} \quad m \succeq m_r \quad \text{for all} \quad m \in B .
\end{align*}
\]

We call d_l, m_l, d_r and m_r the left-gcd, the left-lcm, the right-gcd and the right-lcm, respectively, of u and v.

It can be shown that the left-lcm of the elements of X and the right-lcm of the elements of X are equal; we call this element the fundamental element of the presentation M and denote it by D. The fundamental element is crucial for the study of braid groups. One of its most important properties is that a certain power D^N of D generates the centre of B. ($N = 2$ for the Artin presentation and $N = n$ for the BKL presentation.) Moreover, $u \preceq D^k$ is equivalent to $D^k \succeq u$ and $D^k \preceq u$ is equivalent to $u \succeq D^k$ for all $k \in \mathbb{Z}$, $u \in B$.
In Magma, the partial ordering \leq is provided as operator \leq and the partial ordering \geq is provided as operator \geq; see Section 71.4.4. For a description of the functions computing lcm and gcd of elements, see Section 71.4.5.

The positive elements c of B satisfying $c \leq D$ are called simple elements; we denote the set of simple elements by C. Simple elements can be uniquely described by permutations on n points. In Magma, a simple element c inducing a permutation π on the strings on which B is defined, is represented by the permutation π^{-1}.

If M is the Artin presentation, every permutation on n points corresponds to a simple element, that is, $|C| = n!$.

If M is the BKL presentation, $|C| = (2n)!/(n!(n+1)!)$ and only permutations on n points which are products of parallel, descending cycles correspond to simple elements. Here, a cycle (i_1, \ldots, i_r) is called descending if $i_1 > \ldots > i_r$ and two descending cycles (i_1, \ldots, i_r) and (j_1, \ldots, j_s) are called parallel if $(i_k - j_l)(i_{k'} - j_{l'}) > 0$ for all $1 \leq k, k' \leq r$ and $1 \leq l, l' \leq s$. The descending cycle (i_1, \ldots, i_r) corresponds to the element $a_{i_1,i_2}a_{i_2,i_3}\cdots a_{i_{r-1},i_r}$ of B. It is obvious from the defining relations that the simple elements defined by two parallel descending cycles commute.

Every element u of B can be written in the form $u = D^lc_1\cdots c_k$, where l is a suitable integer and c_1, \ldots, c_k are simple elements. We call representations of this form simple element representations or canonical factor products (CFP).

71.1.2 Representing Elements of a Braid Group

This section describes the ways in which elements of a braid group can be represented internally by Magma. From the user’s point of view, this mainly affects input and printing of elements. This section is intended to be a concise overview; for a detailed description of functions and for examples we refer to Section 71.2, Section 71.3 and Section 71.4.1.

Since an element of a braid group B can be represented either as word in the generators or as product of simple elements (see Section 71.4.5) with respect to either the Artin presentation or the BKL presentation of B, there are four different ways of representing elements of B, which can be used for entering or printing elements and for computing with elements.

71.1.2.1 Automatic Conversions

Magma can work with all the above representations and conversions are done automatically when necessary, for example, when multiplying an element defined as word in the Artin generators with an element given as product of simple elements for the BKL presentation. Hence, the user normally does not have to give too much thought about how elements are represented. It should be noted, however, that automatic conversions can affect performance and that in time critical situations, the best results in general are obtained if automatic conversions are avoided.

71.1.2.2 Default Presentations

When creating a braid group B using the command BraidGroup, the user can specify whether the Artin presentation or the BKL presentation should be used as default presentation for B. Unless specified otherwise by the user, this presentation is used in all
subsequent operations with B or with elements of B. In particular, group operations and printing of elements are performed with respect to this presentation. It is possible to change the default presentation using the command `SetPresentation`. Certain commands accept a parameter `Presentation`, which can be used to perform that command with respect to a presentation other than the default presentation.

71.1.2.3 Representation Used for Group Operations

By default, group operations with elements of a braid group B are performed using representations of the elements as products of simple elements for the default presentation of B. Experienced users can change this behaviour using the command `SetForceCFP`. If this flag is set to `false`, arguments of a group operation are not automatically converted into CFP representation if both arguments are represented as words in the generators of the default presentation of B, but the operation is performed, if possible, using the word representations instead.

71.1.2.4 Printing of Elements

The default printing format for an element u of a braid group B is that both a representation of u as word in the generators of the default presentation of B and a representation of u as product of simple elements for the default presentation of B are printed. Depending on the application, the user may wish to change the print format so that only one of the above representations of u is printed. This can be achieved using the command `SetElementPrintFormat`.

71.1.3 Normal Form for Elements of a Braid Group

This section briefly describes the normal form for elements of braid groups. For details we refer to [ECH+92] and [BKL98]. The Magma commands for computing normal forms are described in Section 71.4.2.

Let B be the braid group on n strings and fix a presentation M for B, either the Artin presentation or the BKL presentation. A product of simple elements $D^l c_1 \cdots c_k$ is said to be in **left normal form** with respect to M, if $c_1 \neq D$, $c_k \neq 1$ and $(c_i^{-1}D) \land c_{i+1} = 1$ for $i = 1, \ldots, k - 1$, where $(c_i^{-1}D) \land c_{i+1}$ denotes the left-gcd of $c_i^{-1}D$ and c_{i+1} with respect to the presentation M.

Similarly, we define $c_1 \cdots c_k D^l$ to be in **right normal form** with respect to M, if $c_k \neq D$, $c_1 \neq 1$ and $c_i \land_r (Dc_{i+1}^{-1}) = 1$ for $i = 1, \ldots, k - 1$, where \land_r denotes right-gcd with respect to the presentation M.

It can be shown that the numbers of simple elements and the powers of D in the left and right normal forms of an element are equal, that is, if $x \in B$ has left normal form $D^l c_1 \cdots c_k$ and right normal form $\bar{c}_1 \cdots \bar{c}_{k'} D^{l'}$ then $k' = k$ and $l' = l$. In this situation we call l the **infimum** of x, denoted by $\inf(x)$, k the **canonical length** of x, denoted by $\text{len}(x)$, and $l + k$ the **supremum** of x, denoted by $\sup(x)$. l is the maximal integer d satisfying $D^d \preceq x$ and $l + k$ is the minimal integer d satisfying $x \preceq D^d$.

To bring a product $D^l c_1 \cdots c_{k-1}$ of simple elements into left normal form, we proceed by induction, assuming that $D^l c_1 \cdots c_{k-1}$ is in left normal form. For $i = k - 1, \ldots, 1$ we now
compute \(d = (c_i^{-1}D) \land c_{i+1} \) and, if \(d \neq 1 \), replace \(c_i \) by \(c_i d \) and \(c_{i+1} \) by \(d^{-1} c_{i+1} \). Finally, we delete trailing trivial simple elements and absorb simple elements equal to \(D \) into the leading power of \(D \). The result can be shown to be in left normal form [ECH+92, BKL98].

Both the theoretical complexity of this algorithm and its performance in practice are determined by the gcd computations.

For the Artin presentation, the cost of computing the left-gcd of two simple elements is \(O(n \log n) \) [ECH+92], whence the complexity of bringing a product of simple elements as above into left normal form is \(O(k^2 n \log n) \).

For the Artin presentation, the cost of computing the left-gcd of two simple elements is \(O(n) \) [BKL98], whence the complexity of bringing a product of simple elements as above into left normal form is \(O(k^2 n) \).

Computing right normal forms is analogous.

71.1.4 Mixed Canonical Form and Lattice Operations

This section outlines the algorithms used for lattice operations in a braid group. Let \(u \) and \(v \) be elements of a braid group \(B \) and let \(M \) be either the Artin presentation or the BKL presentation of \(B \). The MAGMA commands for computing mixed canonical forms are described in Section 71.4.2 and the commands providing lattice operations are described in Section 71.4.5.

Evaluating partial orderings for \(u \) and \(v \) with respect to \(M \) is straightforward. \(u \preceq v \) if and only if \(u^{-1} v \) is a positive element with respect to \(M \). The latter can be decided by computing the left normal form \(D l c_1 \cdots c_k \) of \(u^{-1} v \) with respect to \(M \): \(u^{-1} v \) is positive if and only if \(l \geq 0 \). Evaluating the partial ordering \(\succeq \) is analogous.

We call the tuple \(< a, b > \) the left-mixed canonical form of an element \(x \in B \), if \(a = a_1 \cdots a_k \) and \(b = b_1 \cdots b_s \) are positive elements in left normal form (\(a_1 = D, b_1 = D \) is permitted), \(x = a^{-1} b \) and the left-gcd of \(a_1 \) and \(b_1 \) is trivial.

Similarly, we call the tuple \(< a, b > \) the right-mixed canonical form of \(x \), if \(a = a_1 \cdots a_k \) and \(b = b_1 \cdots b_s \) are positive elements in right normal form (\(a_k = D, b_s = D \) is permitted), \(x = ab^{-1} \) and the right-gcd of \(a_k \) and \(b_s \) is trivial.

It is not difficult to show that the left-gcd of \(u \) and \(v \) is given by \(ua^{-1} \), where \(< a, b > \) is the left-mixed canonical form of \(u^{-1} v \), and that the right-gcd of \(u \) and \(v \) is given by \(a^{-1} u \), where \(< a, b > \) is the right-mixed canonical form of \(uv^{-1} \) [ECH+92].

Similarly, the left-lcm of \(u \) and \(v \) is given by \(ua \), where \(< a, b > \) is the right-mixed canonical form of \(u^{-1} v \) and the right-lcm of \(u \) and \(v \) is given by \(au \), where \(< a, b > \) is the left-mixed canonical form of \(uv^{-1} \).

Computing the left-mixed canonical form of an element \(x \) can, after writing \(x = a^{-1} b \) with two positive elements \(a \) and \(b \), easily be reduced to computing repeatedly the left-normal forms of \(a \) and \(b \) and cancelling the left-gcd of the leading simple elements. Computing the right-mixed canonical form is analogous.
Conjugacy testing and Conjugacy Search

Conjugacy testing, that is, deciding whether two given braids are conjugate, and conjugacy search, that is, computing a conjugating element for a pair of conjugate braids, are of particular importance to public key cryptosystems based on braid groups. Known algorithms for both conjugacy testing and conjugacy search require the (at least partial) computation of an invariant of the conjugacy classes of the elements in question, either the super summit set [Gar69, ERM94] or the ultra summit set [Geb03].

This section recalls the definition of these invariants and sketches the algorithms used for computing them, for conjugacy testing and for conjugacy search. The relevant MAGMA commands are described in Section 71.4.6.

For this section let B be a braid group and let M be either the Artin presentation or the BKL presentation of B.

Definition of the Class Invariants

We define two operations, the cycling operation c and the decycling operation d, each mapping an arbitrary element $x \in B$ to a conjugate of x as follows. Let $x \in B$ be a braid with left normal form $x = D^l c_1 \cdots c_k$ as defined in Section 71.1.3. If $k = 0$, we define $c(x) = x$ and $d(x) = x$. Otherwise, we define $c(x) = D^l c_2 \cdots c_k (c_1 D^l)$ and $d(x) = D^l (c_k D^l) c_1 \cdots c_{k-1}$.

We now fix an element $x \in B$ and consider the set C_x of all conjugates of x. Proofs for the following facts can be found in [ECH +92] or [BKL98].

- The set $\{\inf(y) : y \in C_x\}$ is bounded above; we denote its maximum by $\text{ss-inf}(x)$.
- The set $\{\sup(y) : y \in C_x\}$ is bounded below; we denote its minimum by $\text{ss-sup}(x)$.
- The maximum of \inf on C_x and the minimum of \sup on C_x can be achieved simultaneously.

We define three sets of conjugates of x as follows.

- The set $P_x = \{y \in C_x : y \in B^+\}$, containing the positive conjugates of x.
- The set $S_x = \{y \in C_x : \inf(y) = \text{ss-inf}(x), \sup(y) = \text{ss-sup}(x)\}$, called the super summit set of x.
- The set $U_x = \{y \in S_x : \exists i > 0 : c^i(y) = y\}$, called the ultra summit set of x.

Clearly, the sets P_x, S_x, and U_x only depend on the conjugacy class of x. Moreover, the set P_x is empty if $\text{ss-inf}(x) < 0$ and it contains S_x if $\text{ss-inf}(x) \geq 0$.

Proofs of the following properties can be found in [ECH +92] and [BKL98] for the sets P_x and S_x and in [Geb03] for the set U_x.

- The sets P_x, S_x, and U_x are finite.
- The sets S_x and U_x are non-empty.
- Representatives of P_x, S_x, and U_x, respectively, can be obtained from x by a finite number of cycling and decycling operations.
71.1.5.2 Computing the Class Invariants

The main tools for computing the class invariants introduced in Section 71.1.5.1 are the following “convexity” results established in [ERM94] and [FGM03] for the sets P_x and S_x and in [Geb03] for the set U_x. Let $I_x \in \{P_x, S_x, U_x\}$.

- For $y, z \in I_x$, there exists a finite sequence $y = y_0, \ldots, y_r = z$ such that for $i = 1, \ldots, r$, $y_i \in I_x$ and $y_i = y_{i-1}^{c_i}$ for a simple element c_i.
- For $y \in I_x$ and a simple element c, there exists a unique \leq-minimal element $\iota_y(c)$ such that $c \leq \iota_y(c)$ and $y^{\iota_y(c)} \in I_x$. Moreover, $\iota_y(c)$ is simple.

By the above results, any non-empty subset $I \subseteq I_x$ with the property that $y^{\iota_y(s)} \in I$ for all $y \in I$ and all generators s of the presentation M is equal to I_x. In particular, I_x can be computed, starting from a single representative, as closure under conjugation with minimal simple elements.

Algorithms for computing the minimal simple elements $\iota_y(c)$ are given in [FGM03] for the case $I_x \in \{P_x, S_x\}$ and in [Geb03] for the case $I_x = U_x$.

The Magma commands for computing the class invariants P_x, S_x and U_x as well as corresponding minimal simple elements $\iota_y(c)$ are described in Section 71.4.6.

71.1.5.3 Conjugacy Testing and Conjugacy Search

Testing conjugacy of two braids $x, y \in B$ can be performed using either super summit sets or ultra summit sets. It is obvious from the results cited in Section 71.1.5.1 that the following are equivalent.

- x and y are conjugate in B.
- $S_x = S_y$.
- $U_x = U_y$.
- $S_x \cap S_y \neq \emptyset$.
- $U_x \cap U_y \neq \emptyset$.

If x and y are conjugate, a conjugating element can be obtained by establishing an element $z \in S_x \cap S_y$ or $z \in U_x \cap U_y$ both as conjugate of x and of y and keeping track of the conjugating elements in each step.

The size of super summit sets grows rapidly with increasing values of braid index n and canonical length. In general, computing super summit sets is difficult or infeasible for braids on more than 5-10 strings, except for very short canonical lengths. Ultra summit sets, on the other hand tend to be much smaller and can frequently be computed for braids on up to 100 strings and canonical length up to 1000, provided sufficient memory is available [Geb03]. Conjugacy search may be successful even in situations where the entire class invariant is too large to be computed.

In Magma, conjugacy testing and conjugacy search based on ultra summit sets is provided by the function IsConjugate.
71.2 Constructing and Accessing Braid Groups

This section describes the facilities for creating a braid group and for accessing and changing its basic properties.

\[
\text{BraidGroup}(n: \text{parameters}) \quad \text{BraidGroup}(\text{GrpBrd}, \ n: \ \text{parameters})
\]

Given a small integer \(n \) \(> 0 \), return the braid group on \(n \) strings, that is, \(n - 1 \) Artin generators.

\[
\text{Presentation} \quad \text{MONSTGELT} \quad \text{Default: “Artin”}
\]

The presentation can be selected using the parameter \text{Presentation}. Possible values for this parameter are "Artin" (default) and "BKL".

\[
\text{GetPresentation}(B)
\]

Returns a string \(s \) indicating the presentation currently used for \(B \). \(s \) is either "Artin" or "BKL".

\[
\text{SetPresentation}(\sim B, s)
\]

Set the presentation used for \(B \) to the presentation indicated by \(s \). Possible values for \(s \) are "Artin" and "BKL".

\[
\text{GetForceCFP}(B)
\]

Returns whether arithmetic operations with elements of \(B \) are always done using representations of the elements as products of simple elements.

\[
\text{SetForceCFP}(\sim B, b)
\]

By default, arithmetic operations with elements of \(B \) are always done using representations of the elements as products of simple elements. If necessary, such representations are computed.

Experienced users can turn this feature off for a braid group \(B \) using the procedure \text{SetForceCFP} with \(b \) set to false.

\[
\text{GetElementPrintFormat}(B)
\]

Returns a string \(s \) indicating the format currently used for printing elements of \(B \). \(s \) is one of "Word", "CFP" or "Both".

\[
\text{SetElementPrintFormat}(\sim B, s)
\]

When printing an element of a braid group \(B \), by default both the representation as word in the generators and the representation as product of simple elements in the presentation selected for \(B \) are printed.

Experienced users can use the procedure \text{SetElementPrintFormat} for changing the print format. Possible values for \(s \) are "Word", "CFP" and "Both".
Given a braid group \(B \), return the number of strings on which \(B \) is defined.

Given a braid group \(B \), return the number of Artin generators of \(B \). Note that the number of Artin generators is returned regardless of the presentation selected for \(B \).

71.3 Creating Elements of a Braid Group

This section describes the facilities for creating elements of a braid group.

Given a braid group \(B \), return a representative of \(B \).

Given a braid group \(B \), return the identity element of \(B \).

Return the fundamental element for the presentation of \(B \) indicated by the parameter \texttt{Presentation}. Possible values for this parameter are "Artin" and "BKL". If the parameter \texttt{Presentation} is not used, the fundamental element for the presentation currently selected for \(B \) is returned.

Return a sequence containing the generators for the presentation of \(B \) indicated by the parameter \texttt{Presentation}. Possible values for this parameter are "Artin" and "BKL". If the parameter \texttt{Presentation} is not used, a sequence containing the generators for the presentation currently selected for \(B \) is returned.

Given a braid group \(B \) on \(n \) strings and an integer \(i \), where \(0 < |i| < n \), return the \(|i|\)-th Artin generator \(\sigma_i \), if \(i > 0 \), or its inverse \(\sigma_{|i|}^{-1} \), if \(i < 0 \).
Given a braid group \(B \) on \(n \) strings and a tuple \(T = \langle r, t \rangle \), where \(1 \leq |t| < |r| \leq n \), return the BKL generator \(a_{|r|,|t|} \), if \(r, t > 0 \), or its inverse \(a_{|r|,|t|}^{-1} \) otherwise.

Given a braid group \(B \) on \(n \) strings and a sequence \([i_1, \ldots, i_k]\) of integers satisfying \(0 < |i_j| < n \ (j = 1, \ldots, k) \), return the element of \(B \) given by the product
\[
s_{|i_1|} \sigma_{|i_2|} \cdots \sigma_{|i_k|} sgn(i_k) sgn(i_1).
\]

Given a braid group \(B \) on \(n \) strings and a sequence \([T_1, \ldots, T_k]\) of tuples satisfying \(T_j = \langle r_j, t_j \rangle \), \(1 \leq |t_j| < |r_j| \leq n \ (j = 1, \ldots, k) \), return the element of \(B \) given by
\[
a_{|r_1|,|t_1|}^{e_1} \cdots a_{|r_k|,|t_k|}^{e_k}
\]
where \(e_j = 1 \) if \(r_j, t_j > 0 \) and \(e_j = -1 \) otherwise \((j = 1, \ldots, k) \).

Given a braid group \(B \) on \(n \) strings and a permutation \(p \) on \(n \) points, return the simple element defined by \(p \) in the presentation currently selected for \(B \) as new element of \(B \).

Note that the result in general depends on the presentation selected for \(B \). Note further that in the BKL presentation, only permutations which are products of parallel descending cycles correspond to simple elements; attempting to coerce an invalid permutation will result in a runtime error. The function \texttt{IsProductOfParallelDescendingCycles} can be used to test whether a given permutation corresponds to a BKL simple element.

Given a braid group \(B \) on \(n \) strings and a sequence \([p_1, \ldots, p_k]\) of permutations on \(n \) points, return the product \(c_1 \cdots c_k \) as new element of \(B \), where \(c_j \) is the simple element defined by \(p_j \) in the presentation currently selected for \(B \) \((j = 1, \ldots, k) \).

Note that the result in general depends on the presentation selected for \(B \). Note further that in the BKL presentation, only permutations which are products of parallel descending cycles correspond to simple elements; attempting to coerce a sequence containing an invalid permutation will result in a runtime error. The function \texttt{IsProductOfParallelDescendingCycles} can be used to test whether a given permutation corresponds to a BKL simple element.
Given a braid group \(B \) on \(n \) strings and an tuple \(T = < s, l, S, r > \), where \(s \) is either the string "Artin" or the string "BKL", \(l \) and \(r \) are integers and \(S \) is a sequence \([p_1, \ldots, p_k] \) of permutations on \(n \) points, return the product \(D^lc_1 \ldots c_kD^r \) as new element of \(B \), where \(D \) is the fundamental element and \(c_j \) is the simple element defined by \(p_j \ (j = 1, \ldots, k) \) in the presentation indicated by \(s \).

Note that in the BKL presentation, only permutations which are products of parallel descending cycles correspond to simple elements; if \(S \) contains an invalid permutation, a runtime error will result. Whether the elements of a given sequence \(S \) correspond to BKL simple elements can be tested using the function \texttt{IsProductOfParallelDescendingCycles}.

Given a permutation \(p \) on \(n \) points, return whether \(p \) is a product of parallel descending cycles, that is, whether \(p \) defines a simple element in the BKL monoid on \(n \) strings.

Given a braid group \(B \) and integers \(r, s, m, n \), satisfying \(r \leq s \) and \(0 \leq m \leq n \), a pseudo-random element of \(B \) is constructed as follows. Let \(D \) be the fundamental element and \(C \) the set of simple elements for the presentation indicated by the parameter \texttt{Presentation}. First, integers \(e \in [r, s] \) and \(l \in [m, n] \) are chosen using uniform distributions on these sets. Then, for \(i = 1, \ldots, l \), \(c_i \in C \) is chosen using a uniform distribution on \(C \) and the element \(D^lc_1 \ldots c_l \) is returned.

If no value is given for the parameter \texttt{Presentation}, the presentation selected for \(B \) is used.

The versions with a single argument are short for \texttt{Random(B, 0, 0, 0, 42)}.
of the presentation indicated by the parameter **Presentation** and X^{-1} is the set of
generator inverses.

If no value is given for the parameter **Presentation**, the presentation selected
for B is used.

The signature **RandomWord**(B) is short for **RandomWord**(B, 0, 42).

Example H71E1

We construct the braid group B on 6 strings and the symmetric group S on 6 points.

```plaintext
> S := Sym(6);
> B := BraidGroup(6);
> B;
GrpBrd : B on 6 strings

By default, $B$ is created using the Artin presentation.

```plaintext
> GetPresentation(B);
Artin
```

We now define the fundamental element with respect to the BKL presentation of $B$ and print this
element with respect to the presentation currently used for $B$, that is, with respect to the Artin
presentation. Note that both a word in the Artin generators and a representation of the element
in terms of Artin simple elements are printed.

```plaintext
> D_BKL := FundamentalElement(B : Presentation := "BKL");
> D_BKL;
B.5 * B.4 * B.3 * B.2 * B.1
<Artin, 0, [
 (1, 6, 5, 4, 3, 2)
], 0>
```

```plaintext
> GetElementPrintFormat(B);
Both
```

We print the BKL generator $a_{3,1}$.

```plaintext
> B.<3,1>;
B.2 * B.1 * B.2^-1
<Artin, 0, [
 (1, 3, 2),
 (1, 6)(2, 5, 3, 4)
], -1>
```

Next we change the format for printing elements of $B$ using the function **SetElementPrintFormat**
so that only a representation in terms of simple elements is printed.

```plaintext
> SetElementPrintFormat(~B, "CFP");
```

We now define and print several elements of $B$, illustrating the use of some of the functions
described in the previous section.
First we create a pseudo-random element of $B$ as product of 3 random simple elements for the Artin presentation.

```plaintext
> u := Random(B, 0, 0, 3, 3);
> u;
<Artin, 0, [(1, 6)(3, 5, 4), (1, 3)(2, 6)(4, 5), (2, 3)], 0>
```

Next we define an element of $B$ by a product of simple elements for the BKL presentation using the coercion operator ‘!’.

```plaintext
> v := B ! <"BKL", 0, [S | (1,6)(3,5,4), (1,3)(4,5)], 0>;
> v;
<Artin, 0, [(1, 6, 5, 4, 3, 2), (1, 2, 6)(3, 5), (2, 4, 5, 6), (1, 6)(2, 4, 3, 5)], -2>
```

Finally, we look at the simple elements defined by the permutations $p = (1,3)(4,2)$ and $q = (1,4,3)$ on 6 points.

```plaintext
> p := S ! (1,3)(4,2);
> q := S ! (1,4,3);
```

Creating the simple elements for the Artin presentation defined by $p$ and $q$ is straightforward using the coercion operator ‘!’.

```plaintext
> p_Artin := B!p;
> p_Artin;
<Artin, 0, [(1, 3)(2, 4)], 0>
> q_Artin := B!q;
> q_Artin;
<Artin, 0, [(1, 4, 3)], 0>
```

We now change the presentation used for $B$ to the BKL presentation. Note that this also changes the presentation with respect to which elements are printed.

```plaintext
> SetPresentation(~B, "BKL");
> GetPresentation(B);
```
The attempt to define a simple element for the BKL presentation using the permutation $p$ fails.

```
> p_BKL := B!p;
```

Runtime error in '!'': Illegal coercion
LHS: GrpBrd
RHS: GrpPermElt

We should have been more careful: using the function `IsProductOfParallelDescendingCycles` we see that $p$ is not a product of parallel descending cycles and hence does not define a simple element for the BKL presentation.

```
> IsProductOfParallelDescendingCycles(p);
false
```

$q$, on the other hand, does define a simple element for the BKL presentation and we can coerce $q$ to an element of $B$ using the operator `!'.

```
> IsProductOfParallelDescendingCycles(q);
true
> q_BKL := B!q;
> q_BKL;
<BKL, 0, [(1, 4, 3)], 0>
```

Note however, that the simple element for the BKL presentation defined by $q$ and the simple element for the Artin presentation defined by $q$ are different elements of $B!$ (The comparison operator `eq` is described in Section 71.4.4.)

```
> q_BKL eq q_Artin;
false
```

The representations of the Artin simple elements defined by $p$ and $q$ in terms of BKL simple elements have no obvious connection to $p$ and $q$, respectively.

```
> p_Artin;
<BKL, 0, [(1, 3, 2), (2, 4, 3)], 0>
> q_Artin;
<BKL, 0, [(1, 4, 3, 2), (2, 3)], 0>
```
71.4 Working with Elements of a Braid Group

71.4.1 Accessing Information

This section describes how the internal representations of an element and a number of basic invariants can be accessed.

**Parent**

Given an element \( u \) of a braid group \( B \), return the parent group of \( u \), that is \( B \).

**#u**

Given an element \( u \) of a braid group \( B \), return the length of the representing word in the generators corresponding to the presentation selected for \( B \). Note that this is not an invariant of \( u \).

**CanonicalFactorRepresentation**

\( \text{CanonicalFactorRepresentation}(u: \text{parameters}) \)

**CFP**

\( \text{CFP}(u: \text{parameters}) \)

**Presentation MonStgElt Default**

Given an element \( u \) of a braid group \( B \), return a tuple \( T = < s, l, S, r > \) describing the representation in terms of simple elements for the presentation indicated by the value of the parameter \( \text{Presentation} \). If no value for \( \text{Presentation} \) is given, the presentation selected for \( B \) is used.

The interpretation of the components of \( T \) is as follows: \( s \) is a string, either equal to "Artin" or equal to "BKL" indicating the presentation, \( l \) and \( r \) are integers and \( S \) is a sequence \([p_1, \ldots, p_k]\) of permutations on \( n \) points, such that

\[ D^l c_1 \cdots c_k D^r \]

is the representation of \( u \) in terms of simple elements, where \( D \) is the fundamental element and \( c_j \) is the simple element defined by \( p_j \) \((j = 1, \ldots, k)\) in the presentation indicated by \( s \).

**WordToSequence**

\( \text{WordToSequence}(u: \text{parameters}) \)

**ElementToSequence**

\( \text{ElementToSequence}(u: \text{parameters}) \)

**Eltseq**

\( \text{Eltseq}(u: \text{parameters}) \)

**Presentation MonStgElt Default**

Given an element \( u \) of a braid group \( B \), return a sequence describing the representing word in the generators corresponding to the presentation indicated by the value of the parameter \( \text{Presentation} \). If no value for \( \text{Presentation} \) is given, the presentation selected for \( B \) is used.

For a representing word

\[ \sigma_{i_1}^{e_1} \cdots \sigma_{i_k}^{e_k} \]
in the Artin generators with \(0 < i_j < n\) and \(e_j \in \{-1,1\}\) for \(j = 1,\ldots,k\), the sequence of integers
\[
[e_1 i_1, \ldots, e_k i_k]
\]
is returned.

For a representing word
\[
d_{r_1,t_1}^{e_1} \ldots d_{r_k,t_k}^{e_k}
\]
in the BKL generators with \(1 \leq t_j < r_j \leq n\) and \(e_j \in \{-1,1\}\) for \(j = 1,\ldots,k\), the sequence of tuples
\[
[< e_1 r_1, e_1 t_1 >, \ldots, < e_k r_k, e_k t_k >]
\]
is returned.

\textbf{InducedPermutation}(u)

Given an element \(u\) of a braid group \(B\) on \(n\) strings, return the permutation on \(n\) points induced by \(u\) acting on the strings on which \(B\) is defined.

For the following description of the functions \textbf{CanonicalLength}, \textbf{Infimum} and \textbf{Supremum}, let \(D\) be the fundamental element and let \(D^i c_1 \cdots c_k\) be the left normal form of the element \(u\) of the braid group \(B\) in the presentation indicated by the value of the parameter \textbf{Presentation}. If no value for \textbf{Presentation} is given, the presentation selected for \(B\) is used.

\textbf{CanonicalLength}(u: parameters)

\begin{itemize}
  \item \textbf{Presentation} \textbf{MonStgElt} \textbf{Default :}
  \end{itemize}

Given an element \(u\) of a braid group \(B\), return the canonical length \(k\) of \(u\) for the appropriate presentation of \(B\). The argument is converted into left normal form.

\textbf{Infimum}(u: parameters)

\begin{itemize}
  \item \textbf{Presentation} \textbf{MonStgElt} \textbf{Default :}
  \end{itemize}

Given an element \(u\) of a braid group \(B\), return the infimum \(l\) of \(u\) for the appropriate presentation of \(B\). The argument is converted into left normal form.

\textbf{Supremum}(u: parameters)

\begin{itemize}
  \item \textbf{Presentation} \textbf{MonStgElt} \textbf{Default :}
  \end{itemize}

Given an element \(u\) of a braid group \(B\), return the supremum \(l + k\) of \(u\) for the appropriate presentation of \(B\). The argument is converted into left normal form.

For the following description of the functions \textbf{SuperSummitCanonicalLength}, \textbf{SuperSummitInfimum} and \textbf{SuperSummitSupremum}, let \(D\) be the fundamental element and let \(D^i c_1 \cdots c_k\) be the normal form of a representative of the super summit set the element \(u\) of the braid group \(B\) with respect to the presentation indicated by the value of the parameter \textbf{Presentation}. If no value for \textbf{Presentation} is given, the presentation selected for \(B\) is used.
SuperSummitCanonicalLength(u: parameters)
Presentation MONStgELT Default :
Given an element $u$ of a braid group $B$, return the canonical length $k$ of a representative of the super summit set of $u$ with respect to the appropriate presentation of $B$, that is, the minimal canonical length among all conjugates of $u$. The argument is converted into left normal form.

SuperSummitInfimum(u: parameters)
Presentation MONStgELT Default :
Given an element $u$ of a braid group $B$, return the infimum $l$ of a representative of the super summit set of $u$ with respect to the appropriate presentation of $B$, that is, the maximal infimum among all conjugates of $u$. The argument is converted into left normal form.

SuperSummitSupremum(u: parameters)
Presentation MONStgELT Default :
Given an element $u$ of a braid group $B$, return the supremum $l+k$ of a representative of the super summit set of $u$ with respect to the appropriate presentation of $B$, that is, the minimal supremum among all conjugates of $u$. The argument is converted into left normal form.

Example H71E2
We define the braid group $B$ on 6 strings using the BKL presentation and create an element $u$ as a random word of length between 5 and 10 in the BKL generators.

```plaintext
> B := BraidGroup(6 : Presentation := "BKL");
> u := RandomWord(B, 5, 10);
```
The parent group of $u$ can be accessed using the function Parent.

```plaintext
> Parent(u);
GrpBrd : B on 6 strings
```
As word in the BKL generators, $u$ has length 5. We define a sequence describing the representation of $u$ as word in the BKL generators.

```plaintext
> #u;
5
> seq_BKL := WordToSequence(u);
> seq_BKL;
[<5, 1>, <5, 2>, <5, 4>, <4, 1>, <2, 1>]
```
When we ask for a representation as word in the Artin generators, such a representation is created automatically.

```plaintext
> seq_Artin := WordToSequence(u : Presentation := "Artin");
> seq_Artin;
```
We now define the permutation \( p \) induced by \( u \) on the strings on which \( B \) is defined.

\[
\begin{align*}
> & \text{p := InducedPermutation(u);}\\
> & \text{p;}\\
& (4, 5)
\end{align*}
\]

The representation of \( u \) in terms of simple elements for the Artin presentation can be obtained using the function \texttt{CanonicalFactorRepresentation}.

\[
\begin{align*}
> & \text{CanonicalFactorRepresentation(u : Presentation := "Artin");}\\
& \langle \text{Artin, 0, [}\\
& \hspace{1cm} (1, 5, 4, 3),\\
& \hspace{1cm} (1, 2),\\
& \hspace{1cm} (1, 6)(2, 5, 3),\\
& \hspace{1cm} (5, 6)\\
& \rangle, -1\rangle
\end{align*}
\]

We now compute the canonical lengths of \( u \) with respect to the Artin presentation and with respect to the BKL presentation. Note that these lengths are different.

\[
\begin{align*}
> & \text{CanonicalLength(u : Presentation := "Artin");}\\
& 4\\
> & \text{CanonicalLength(u : Presentation := "BKL");}\\
& 3
\end{align*}
\]

Finally, we compute for both presentations the canonical lengths of a super summit representative of \( u \).

\[
\begin{align*}
> & \text{SuperSummitCanonicalLength(u : Presentation := "Artin");}\\
& 2\\
> & \text{SuperSummitCanonicalLength(u : Presentation := "BKL");}\\
& 3
\end{align*}
\]

Obviously, \( u \) does not belong to its super summit set with respect to the Artin presentation. (We cannot tell for the BKL presentation from the information we have computed.)

### 71.4.2 Computing Normal Forms of Elements

This section describes functions and procedures for computing various normal forms of elements of a braid group \( B \). All normal forms are defined in terms of representations of elements as products of simple elements and depend on the presentation of \( B \) which is used. The functions documented in this section all accept a parameter \texttt{Presentation} which can be used to specify the presentation of \( B \) with respect to which the computation should be performed. Possible values for this parameter are the strings "Artin" and "BKL". If no value is given for \texttt{Presentation}, the presentation selected for \( B \) is used.
LeftNormalForm(u: parameters)

NormalForm(u: parameters)

Presentation MonStgElt Default :
Given an element $u$ of a braid group $B$, return a new element of $B$ defined by the left normal form of $u$ with respect to the indicated presentation.

LeftNormalForm(∼u: parameters)

NormalForm(∼u: parameters)

Presentation MonStgElt Default :
Given an element $u$ of a braid group $B$, bring $u$ into left normal form with respect to the indicated presentation.

RightNormalForm(u: parameters)

RightNormalForm(∼u: parameters)

Presentation MonStgElt Default :
Given an element $u$ of a braid group $B$, return a new element of $B$ defined by the right normal form of $u$ with respect to the indicated presentation.

LeftMixedCanonicalForm(u: parameters)

MixedCanonicalForm(u: parameters)

Presentation MonStgElt Default :
Given an element $u$ of a braid group $B$, return two tuples $T_1$ and $T_2$ defining products $v_1 \cdots v_k$ and $w_1 \cdots w_l$, respectively, of simple elements for the indicated presentation, such that $v_1 \cdots v_k$ and $w_1 \cdots w_l$ are in left normal form, the left-gcd of $v_1$ and $w_1$ is trivial and

$$u = (v_1 \cdots v_k)^{-1}(w_1 \cdots w_l).$$

See the entry for CanonicalFactorRepresentation for a description of the tuple format. Note that the tuples can be coerced into elements of $B$ using the coercion operator ‘!’. 
RightMixedCanonicalForm(u: parameters)

Presentation MONSTGELT Default:

Given an element \( u \) of a braid group \( B \), return two tuples \( T_1 \) and \( T_2 \) defining products \( v_1 \cdot \cdots \cdot v_k \) and \( w_1 \cdot \cdots \cdot w_l \), respectively, of simple elements for the indicated presentation, such that \( v_1 \cdot \cdots \cdot v_k \) and \( w_1 \cdot \cdots \cdot w_l \) are in right normal form, the right-gcd of \( v_1 \) and \( w_1 \) is trivial and

\[
    u = (v_1 \cdot \cdots \cdot v_k)(w_1 \cdot \cdots \cdot w_l)^{-1}.
\]

See the entry for CanonicalFactorRepresentation for a description of the tuple format. Note that the tuples can be coerced into elements of \( B \) using the coercion operator ‘!’. 

Example H71E3

We define the braid group \( B \) on 6 strings using the Artin presentation, set the print format for elements to "CFP" and define an element \( u \) of \( B \).

```maple
> B := BraidGroup(6);
> SetElementPrintFormat(~B, "CFP");
>
> u := B ! <"Artin",
> 0,
> [Sym(6) | (1,6)(3,5,4), (1,3)(2,6)(4,5), (2,3)],
> 0>;
> u;
<Artin, 0, [
 (1, 6)(3, 5, 4),
 (1, 3)(2, 6)(4, 5),
 (2, 3)
], 0>
```

We compute and print the left normal form of \( u \) with respect to the Artin presentation of \( B \).

```maple
> u_Artin := LeftNormalForm(u);
> u_Artin;
<Artin, 1, [
 (1, 2, 6, 5, 4, 3),
 (2, 3)
], 0>
```

We now compute the left normal form of \( u \) with respect to the BKL presentation of \( B \). Since elements are printed with respect to the presentation selected for the parent group, that is, in the Artin presentation in our example, we use the function CanonicalFactorRepresentation to print the representation in terms of simple elements for the BKL presentation.

```maple
> u_BKL := LeftNormalForm(u : Presentation := "BKL");
> CFP(u_BKL : Presentation := "BKL");
<BKL, 2, [
 (2, 6, 5, 4, 3),
]
```
We define another element $v$ of $B$ in left normal form.

\begin{verbatim}
> v := LeftNormalForm(B.5*B.2^-2*B.4*B.3^-1*B.5^-1*B.3^-1*B.5);
> v;
<Artin, -3, [(1, 6)(2, 4, 3, 5), (1, 2, 6)(3, 5), (1, 6, 2, 5)(3, 4), (3, 5)(4, 6)], 0>
\end{verbatim}

As can easily be read off the representation of $v$ in terms of simple elements which is in left normal form, $v$ has infimum -3, canonical length 4 and supremum 1 with respect to the Artin presentation.

\begin{verbatim}
> Infimum(v);
-3
> CanonicalLength(v);
4
> Supremum(v);
1
\end{verbatim}

Note that infimum, canonical length and supremum of an element can also be obtained from its right normal form.

\begin{verbatim}
> RightNormalForm(v);
<Artin, 0, [(4, 6, 5), (1, 6)(2, 5, 3, 4), (1, 6)(2, 4, 5), (1, 6)(2, 5)], -3>
\end{verbatim}

### 71.4.3 Arithmetic Operators and Functions for Elements

This section describes the basic arithmetic operations for elements of a braid group. Strictly speaking, all functions should be considered as functions on representatives of elements, that is, words in the generators or products of simple elements.

Unless stated otherwise, arithmetic operations with elements of a braid group $B$ are performed using representations with respect to the presentation selected for $B$. This presentation can be changed using the function `SetPresentation`.

By default, arithmetic operations with elements of $B$ are performed using representations in terms of simple elements; such representations are created if necessary. Experienced users can change this behaviour, if desired, using the function `SetForceCFP`.
The complexity of all basic arithmetic operations is linear in the length of the representations of the input elements. No normalisations are performed automatically, as doing so would restrict the user’s control of operations with elements. It is, however, recommended to use the function `NormalForm` or its procedural version in time critical situations to limit the length of representations of elements; see Example H71E4.

\begin{itemize}
\item **\texttt{u * v}**
  
  Given elements \( u \) and \( v \) belonging to the same braid group \( B \), return the product \( uv \) as a new element of \( B \).

\item **\texttt{u := v}**
  
  Given elements \( u \) and \( v \) belonging to the same braid group \( B \), replace \( u \) with the product \( uv \).

\item **\texttt{u / v}**
  
  Given elements \( u \) and \( v \) belonging to the same braid group \( B \), return the product \( uv^{-1} \) as a new element of \( B \).

\item **\texttt{u := v}**
  
  Given elements \( u \) and \( v \) belonging to the same braid group \( B \), replace \( u \) with the product \( uv^{-1} \).

\item **\texttt{u ^ n}**
  
  Given an element \( u \) of a braid group \( B \) and an integer \( n \), return the power \( u^n \) as a new element of \( B \).

\item **\texttt{u := n}**
  
  Given an element \( u \) of a braid group \( B \) and an integer \( n \), replace \( u \) with the power \( u^n \).

\item **\texttt{u ^ v}**
  
  Given elements \( u \) and \( v \) belonging to the same braid group \( B \), return the conjugate \( u^v = v^{-1}uv \) as a new element of \( B \).

\item **\texttt{u := v}**
  
  Given elements \( u \) and \( v \) belonging to the same braid group \( B \), replace \( u \) with the conjugate \( u^v = v^{-1}uv \).

\item **\texttt{Inverse(u)}**
  
  Given an element \( u \) of a braid group \( B \), return its inverse \( u^{-1} \) as a new element of \( B \).

\item **\texttt{Inverse(~u)}**
  
  Given an element \( u \) of a braid group \( B \), replace \( u \) with its inverse \( u^{-1} \).
\end{itemize}
LeftConjugate($u, v$)

Given elements $u$ and $v$ belonging to the same braid group $B$, return the “left conjugate” $vuv^{-1}$ as a new element of $B$.

LeftConjugate($\sim u, v$)

Given elements $u$ and $v$ belonging to the same braid group $B$, replace $u$ with the “left conjugate” $vuv^{-1}$.

LeftDiv($u, v$)

Given elements $u$ and $v$ belonging to the same braid group $B$, return the product $u^{-1}v$ as a new element of $B$.

LeftDiv($u, \sim v$)

Given elements $u$ and $v$ belonging to the same braid group $B$, replace $v$ with the product $u^{-1}v$.

The following functions Cycle and Decycle accept a parameter Presentation which can be set either to "Artin" or to "BKL". The results of the cycling and decycling operations are defined in terms of the left normal form $D^i c_1 \cdots c_k$ of the argument $u \in B$ in terms of simple elements for a presentation of $B$ and the results in general depend on the presentation used. The results of these functions are returned in left normal form.

If no value for the parameter Presentation is given, the presentation selected for the parent group of the argument will be used.

**Cycle($u$: parameters)**

**Presentation** MONStgELT **Default :**

Given an element $u \in B$ with left normal form $D^i c_1 \cdots c_k$, return the result of a cycling operation on $u$, that is,

$$u(c_1^{D^i})$$

as new element of $B$ in left normal form.

**Cycle($\sim u$: parameters)**

**Presentation** MONStgELT **Default :**

Given an element $u \in B$ with left normal form $D^i c_1 \cdots c_k$, replace $u$ by the result of a cycling operation on $u$, that is, by

$$u(c_1^{D^i})$$

in left normal form.
Decycle\(u: \text{parameters}\)  
\begin{align*}  
\text{Presentation} & \quad \text{MonStgElt} \quad \text{Default} : \\
\text{Given an element } u \in B \text{ with left normal form } D^i c_1 \cdots c_k, \text{ return the result of a decycling operation on } u, \text{ that is,} \\
& u^{(c_k^{-1})} \\
\text{as new element of } B \text{ in left normal form.}
\end{align*}

Decycle\(\sim u: \text{parameters}\)  
\begin{align*}  
\text{Presentation} & \quad \text{MonStgElt} \quad \text{Default} : \\
\text{Given an element } u \in B \text{ with left normal form } D^i c_1 \cdots c_k, \text{ replace } u \text{ by the result of a decycling operation on } u, \text{ that is, by} \\
& u^{(c_k^{-1})} \\
\text{in left normal form.}
\end{align*}

Example H71E4

We illustrate the importance of limiting the length of representations of elements using the function NormalForm when performing a sequence of arithmetic operations on an element. Consider the following computation in the braid group \(B\) on 6 strings. Starting with an element \(w\), we repeatedly replace \(w\) by the product \(ww^{\sigma_1}\) where \(\sigma_1\) is the first Artin generator of \(B\). A naive way of implementing this computation would be as follows.

```plaintext
> B := BraidGroup(6);
> u := B.5*B.2^-2*B.4*B.3^-1;
> v := B.1;
> N := 14;
>
> T := Cputime();
> w := u;
> for i := 1 to N do
> w := w * w^v;
> end for;

This, however, yields an extremely complicated representation for the result; the representation in terms of simple elements has the length 114686.

> #CFP(w)[3];
114686

Performing subsequent computations with the result, for example computing its normal form, is very expensive.

> NormalForm(~w);
> print "total time used: ", Cputime()-T;
```
One might be tempted to solve this problem by working only with elements in normal form, that is, by bringing every result of an arithmetic operation into normal form after computing it. Using this approach, computing the result of the above iteration is indeed much faster.

```plaintext
> T := Cputime();
> w := u;
> for i := 1 to N do
> t := w^v;
> NormalForm(~t);
> w := w * t;
> end for;
> NormalForm(~w);
> print "total time used: ", Cputime()-T;
```

```
total time used: 0.53
```

However, this strategy is not optimal either. For the above example, the optimal performance is obtained if the result is normalised every third pass through the iteration.

```plaintext
> T := Cputime();
> w := u;
> for i := 1 to N do
> w := w * w^v;
> if i mod 3 eq 0 then
> NormalForm(~w);
> end if;
> end for;
> NormalForm(~w);
> print "total time used: ", Cputime()-T;
```

```
total time used: 0.171
```

Unfortunately, the frequency of normalisation giving best results depends heavily on the situation, that is, both on the arithmetic operations and on the characteristics of the arguments. As a rule of thumb, the effects of normalising results too frequently are less of a problem than normalising results not often enough or not at all.

### 71.4.4 Boolean Predicates for Elements

This section describes the tests for membership, equality and partial orderings which are available for elements of a braid group $B$.

Unless stated otherwise, all computations are performed in the presentation selected for $B$ or in the presentation specified by the value of the parameter `Presentation`, either "Artin" or "BKL" if a value for this parameter is given.

`u in B`

Given an element $u$ of a braid group and a braid group $B$, return `true` if $u \in B$ and `false` otherwise.
Given an element $u$ of a braid group and a braid group $B$, return $\text{false}$ if $u \in B$ and $\text{true}$ otherwise.

**IsEmptyWord($u$: parameters)**

*Presentation MonStgElt Default:*

Given an element $u$ of a braid group, return $\text{true}$ if $u$ is the represented by the empty word in the specified presentation and $\text{false}$ otherwise.

**AreIdentical($u$, $v$: parameters)**

*Presentation MonStgElt Default:*

Given elements $u$ and $v$ belonging to the same braid group $B$, return $\text{true}$ if $u$ and $v$ are represented by identical words in the specified presentation and $\text{false}$ otherwise.

**IsSimple($u$: parameters)**

*Presentation MonStgElt Default:*

Given an element $u$ of a braid group, return $\text{true}$ if $u$ is a simple element with respect to the specified presentation and $\text{false}$ otherwise. The argument is converted into normal form.

**IsSuperSummitRepresentative($u$: parameters)**

*Presentation MonStgElt Default:*

Given an element $u$ of a braid group, return $\text{true}$ if $u$ is an element of its super summit set with respect to the specified presentation and $\text{false}$ otherwise. The argument is converted into normal form.

**IsUltraSummitRepresentative($u$: parameters)**

*Presentation MonStgElt Default:*

Given an element $u$ of a braid group, return $\text{true}$ if $u$ is an element of its ultra summit set with respect to the specified presentation and $\text{false}$ otherwise. The argument is converted into normal form.

**IsIdentity($u$: parameters)**

**IsId($u$: parameters)**

*Presentation MonStgElt Default:*

Given an element $u$ of a braid group $B$, return $\text{true}$ if $u$ is the identity element of $B$ and $\text{false}$ otherwise. The argument is converted into normal form.

Given elements $u$ and $v$ belonging to the same braid group $B$, return $\text{true}$ if $u = v$ and $\text{false}$ otherwise. Both arguments are converted into normal form.
Given elements \( u \) and \( v \) belonging to the same braid group \( B \), return \texttt{false} if \( u = v \) and \texttt{true} otherwise. Both arguments are converted into normal form.

**IsLE**

\[
\text{IsLE}(u, v: \text{parameters})
\]

**Presentation** \texttt{MonStgElt} 

Given elements \( u \) and \( v \) belonging to the same braid group \( B \), return \texttt{true} if \( u \preceq v \), that is, if \( u^{-1}v \) is a positive element, with respect to the specified presentation and \texttt{false} otherwise.

Note that the parameter **Presentation** is not available for the operator version of this predicate.

**IsGE**

\[
\text{IsGE}(u, v: \text{parameters})
\]

**Presentation** \texttt{MonStgElt} 

Given elements \( u \) and \( v \) belonging to the same braid group \( B \), return \texttt{true} if \( u \succeq v \), that is, if \( uv^{-1} \) is a positive element, with respect to the specified presentation and \texttt{false} otherwise.

Note that the parameter **Presentation** is not available for the operator version of this predicate.

**IsConjugate**

\[
\text{IsConjugate}(u, v: \text{parameters})
\]

**Presentation** \texttt{MonStgElt} 

Given elements \( u \) and \( v \) belonging to the same braid group \( B \), return \texttt{true} and an element \( c \in B \) satisfying \( u^c = v \) if \( u \) and \( v \) are conjugate and return \texttt{false} otherwise.

The function first computes representatives \( u_s \) and \( v_s \) of the ultra summit sets of \( u \) and \( v \), respectively, with respect to the specified presentation. If this does not prove that the elements are not conjugate, the function tries to compute elements of the ultra summit set of \( u \) until either the element \( v_s \) is found, proving that \( u \) and \( v \) are conjugate, or the ultra summit set of \( u \) is seen not to contain \( v_s \), proving that \( u \) and \( v \) are not conjugate. See Example H71E8 for a more detailed description.

Note that testing elements for conjugacy is a hard problem and may require significant amounts of memory and CPU time.
Example H71E5

We define the braid group $B$ on 6 strings using the Artin presentation and set the print format for elements to "CFP".

```plaintext
> B := BraidGroup(6);
> SetElementPrintFormat(~B, "CFP");
```

(1) We create pseudo-random elements of $B$ until we find an element $u$ which is contained in its super summit set with respect to the Artin presentation of $B$.

```plaintext
> repeat
> u := Random(B, 5, 10);
> until IsSuperSummitRepresentative(u);
> NormalForm(u);
<Artin, -2, [
 (1, 5)(2, 3, 6),
 (1, 5, 6, 3, 2, 4),
 (2, 6)(3, 4, 5)
], 0>
```

$u$ is not contained in its super summit set with respect to the BKL presentation of $B$, showing that the super summit set of an element in general depends on the presentation with respect to which it is defined.

```plaintext
> IsSuperSummitRepresentative(u : Presentation := "Artin");
true
> IsSuperSummitRepresentative(u : Presentation := "BKL");
false
```

(2) This example shows that the Artin presentation and the BKL presentation give rise to distinct partial orderings on $B$.

$\sigma_1^{-1}\sigma_2\sigma_1$ has negative infimum with respect to the Artin presentation and hence is not a positive element with respect to this presentation.

```plaintext
> Infimum(B.1^-1*B.2*B.1 : Presentation := "Artin");
-1
```

Consequently, $\sigma_1 \not\leq \sigma_2\sigma_1$ in the partial ordering defined with respect to the Artin presentation.

```plaintext
> B.1 le B.2*B.1;
false
```

We can also use the function version to check this.

```plaintext
> IsLE(B.1, B.2*B.1 : Presentation := "Artin");
false
```

However, $\sigma_1^{-1}\sigma_2\sigma_1$ is equal to the BKL generator $a_{3,1}$ and hence is, in particular, a positive element with respect to the BKL presentation in the BKL generators.

```plaintext
> B.1^-1*B.2*B.1 eq B.<3,1>;
```
true

Hence, $\sigma_1 \preceq \sigma_2 \sigma_1$ in the partial ordering defined with respect to the BKL presentation.

> IsLE(B.1, B.2*B.1 : Presentation := "BKL");
true

(3) We change the print format for elements of $B$ so that only words in the Artin generators are printed.

> SetElementPrintFormat(~B, "Word");

Inducing permutations with different cycle structure, $\sigma_1$ and $\sigma_1 \sigma_2$ cannot be conjugate in $B$.

> InducedPermutation(B.1);
(1, 2)
> InducedPermutation(B.2*B.1);
(1, 2, 3)
> IsConjugate(B.1, B.2*B.1);
false

$\sigma_1$ and $\sigma_2$, however, are conjugate in $B$. We compute a conjugating element $c$.

> res, c := IsConjugate(B.1, B.2);
> res;
true
> NormalForm(c);
B.2 * B.1

c, as desired, conjugates $\sigma_1$: $s_1$: to $\sigma_2$: $s_2$:

> B.1^c eq B.2;
true

71.4.5 Lattice Operations

This section describes the functions available for computing lattice operations, least common multiple and greatest common divisor, for elements of a braid group $B$. The results of all lattice operations depend on the presentation used for $B$ and on the partial ordering considered.

The functions documented in this section all accept a parameter Presentation which can be used to specify the presentation of $B$ with respect to which the computation should be performed. Possible values for this parameter are the strings "Artin" and "BKL". If no value is given for Presentation, the presentation selected for $B$ is used.
Given elements $u$ and $v$ belonging to the same braid group $B$, return the left-gcd of $u$ and $v$, that is, the with respect to $\preceq$ maximal element $d$ of $B$ satisfying $d \preceq u$ and $d \preceq v$. Here, $\preceq$ is the partial ordering on $B$ defined as follows: $a \preceq b$ iff $a^{-1}b$ is representable as a positive word in the specified presentation of $B$.

Given elements $u$ and $v$ belonging to the same braid group $B$, return the right-gcd of $u$ and $v$, that is, the with respect to $\succeq$ maximal element $d$ of $B$ satisfying $u \succeq d$ and $v \succeq d$. Here, $\succeq$ is the partial ordering on $B$ defined as follows: $a \succeq b$ iff $ab^{-1}$ is representable as a positive word in the specified presentation of $B$.

Given a set or a sequence $S$ containing elements of a braid group $B$, return the left-gcd of the elements of $S$, that is, the with respect to $\preceq$ maximal element $d$ of $B$ satisfying $d \preceq s$ for all $s \in S$, where $\preceq$ is defined as above.
Given a set or a sequence $S$ containing elements of a braid group $B$, return the right-gcd of the elements of $S$, that is, the with respect to $\geq$ maximal element $d$ of $B$ satisfying $s \geq d$ for all $s \in S$, where $\geq$ is defined as above.

```
LeftLCM(u, v: parameters)
LeftLcm(u, v: parameters)
LeftLeastCommonMultiple(u, v: parameters)
LCM(u, v: parameters)
Lcm(u, v: parameters)
LeastCommonMultiple(u, v: parameters)
```

Presentation MonStgElt Default:
Given elements $u$ and $v$ belonging to the same braid group $B$, return the left-lcm of $u$ and $v$, that is, the with respect to $\leq$ minimal element $d$ of $B$ satisfying $u \leq d$ and $v \leq d$, where $\leq$ is defined as above.

```
RightLCM(u, v: parameters)
RightLcm(u, v: parameters)
RightLeastCommonMultiple(u, v: parameters)
```

Presentation MonStgElt Default:
Given elements $u$ and $v$ belonging to the same braid group $B$, return the right-lcm of $u$ and $v$, that is, the with respect to $\geq$ minimal element $d$ of $B$ satisfying $d \geq u$ and $d \geq v$, where $\geq$ is defined as above.

```
LeftLCM(S: parameters)
LeftLcm(S: parameters)
LeftLeastCommonMultiple(S: parameters)
LCM(S: parameters)
Lcm(S: parameters)
LeastCommonMultiple(S: parameters)
```

Presentation MonStgElt Default:
Given a set or a sequence $S$ containing elements of a braid group $B$, return the left-gcd of the elements of $S$, that is, the with respect to $\leq$ minimal element $d$ of $B$ satisfying $s \leq d$ for all $s \in S$, where $\leq$ is defined as above.
Given a set or a sequence $S$ containing elements of a braid group $B$, return the right-lcm of the elements of $S$, that is, the with respect to $\succeq$ minimal element $d$ of $B$ satisfying $d \succeq s$ for all $s \in S$, where $\succeq$ is defined as above.

**Example H71E6**

We define the braid group $B$ on 6 strings.

```plaintext
> B := BraidGroup(6);
> SetElementPrintFormat(~B, "CFP");
```

(1) For both Artin and BKL presentation, the fundamental element is the (left or right) least common multiple of the generators. We check this for the Artin presentation...

```plaintext
> D_Artin := LeftLCM({B.i : i in [1..NumberOfGenerators(B)]});
> D_Artin eq FundamentalElement(B);
true
> D_Artin eq RightLCM({B.i : i in [1..NumberOfGenerators(B)]});
true
```

...and for the BKL presentation.

```plaintext
> idx := { <r,t> : r,t in {1..NumberOfStrings(B)} | r gt t };
> D_BKL := LeftLCM({B.T : T in idx} : Presentation := "BKL");
> D_BKL eq FundamentalElement(B : Presentation := "BKL");
true
> D_BKL eq RightLCM({B.T : T in idx} : Presentation := "BKL");
true
```

In general, left and right least common multiple of elements are different.

```plaintext
> LeftLCM(B.1,B.1*B.2) eq RightLCM(B.1,B.1*B.2);
false
```

(2) For both Artin and BKL presentation, the following hold. Let $D$ denote the fundamental element.

- The simple elements are those positive elements $s$ satisfying $s \preceq D$ (or $D \succeq s$).
- A product $u_1 \cdots u_r$ of simple elements is in left normal form, if and only if the left greatest common divisor of $u_i^{-1} D$ and $u_{i+1}$ is trivial for all $i = 1, \ldots, r - 1$.

We illustrate this for the Artin presentation.

```plaintext
> D := FundamentalElement(B);
> forall{ s : s in Sym(6) | B!1 le B!s and B!s le D };
true
> forall{ s : s in Sym(6) | D ge B!s and B!s ge B!1 };
```
true

We create an element $u$ as product of random simple elements.

```plaintext
> u := Random(B, 0, 0, 3, 5);
> u;
<Artin, 0, [(1, 5, 2)(3, 6),
 (1, 6, 5, 3),
 (1, 6, 5, 3, 2)], 0>
```

We define a sequence of elements of $B$, containing the simple elements of the above representation of $u$ using the function `CanonicalFactorRepresentation` and the coercion operator $!$.

```plaintext
> cfu := [B!x : x in CFP(u)[3]];
This representation is not in left normal form, as the above condition is violated for $i = 1$.
> IsId(LeftGCD(cfu[1]^D, cfu[2]));
false
```

We now bring $u$ into left normal form and extract again the sequence of simple elements.

```plaintext
> n := NormalForm(u);
> n;
<Artin, 0, [(1, 5, 3, 6, 2),
 (1, 6, 3, 2, 5)], 0>
> cfn := [B!x : x in CFP(n)[3]];
This time, the above condition is satisfied.
> IsId(LeftGCD(cfn[1]^D, cfn[2]));
true
```

### Invariants of Conjugacy Classes

This section describes the functions for computing the set of positive conjugates, the super summit set and the ultra summit set for an element of a braid group $B$ as defined in Section 71.1.5, as well as related MAGMA functions.

All the class invariants in general depend on the presentation of $B$ used for their definition. Many functions documented in this section accept a parameter `Presentation` which can be used to specify the presentation of $B$ with respect to which the computation should be performed. Possible values for this parameter are the strings "Artin" and "BKL". If no value is given for `Presentation`, the presentation selected for $B$ is used.

For any given element $u \in B$, all the invariants defined in Section 71.1.5 are finite and can be computed in principle. In practice, however, computations may fail because the sets can get very large with increasing canonical length of $u$ or with increasing braid index of $B$. This is in particular the case for sets of positive conjugates and for super summit sets.
PositiveConjugates(u: parameters)

Presentation MonStgElt Default :

Given an element $u$ of a braid group $B$, return an indexed set containing the conjugates of $u$ which can be represented as positive words in the specified presentation of $B$.

SuperSummitRepresentative(u: parameters)

Presentation MonStgElt Default :

Given an element $u$ of a braid group $B$, return an element $u_s$ of the super summit set of $u$ with respect to the specified presentation of $B$ and an element $c$ of $B$ satisfying $u^c = u_s$.

Note that $u_s$ is a positive conjugate of $u$, if $u_s$ has non-negative infimum and that $u$ does not have any positive conjugates if the infimum of $u_s$ is negative.

SuperSummitSet(u: parameters)

Presentation MonStgElt Default :

Given an element $u$ of a braid group $B$, return the super summit set of $u$ with respect to the specified presentation as indexed set of elements of $B$.

UltraSummitRepresentative(u: parameters)

Presentation MonStgElt Default :

Given an element $u$ of a braid group $B$, return an element $u_s$ of the ultra summit set of $u$ with respect to the specified presentation of $B$ and an element $c$ of $B$ satisfying $u^c = u_s$.

Note that $u_s$ is an element of the super summit set of $u$, that $u_s$ is a positive conjugate of $u$, if $u_s$ has non-negative infimum and that $u$ does not have any positive conjugates if the infimum of $u_s$ is negative.

UltraSummitSet(u: parameters)

Presentation MonStgElt Default :

Given an element $u$ of a braid group $B$, return the ultra summit set of $u$ with respect to the specified presentation as indexed set of elements of $B$.

Example H71E7

(1) In the braid group $B$ on 4 strings we compute the sets of positive conjugates and the super summit sets of $u = \sigma_1\sigma_2\sigma_1$ with respect to both Artin presentation and BKL presentation.

> B := BraidGroup(4);
> u := B.1*B.2*B.1;
> p_Artin := PositiveConjugates(u : Presentation := "Artin");
> p_BKL := PositiveConjugates(u : Presentation := "BKL");
> s_Artin := SuperSummitSet(u : Presentation := "Artin");
Since the Artin generators form a subset of the BKL generators, every element which is positive with respect to the Artin presentation is also positive with respect to the BKL presentation. In particular, $p_{\text{Artin}}$ is a subset of $p_{\text{BKL}}$.

The converse inclusion does not hold.

For both presentations the super summit set is a subset of the set of positive conjugates, as $u$ is positive. The converse inclusions do not hold.

(2) As we have seen in Section 71.1.5, we can decide whether two braids are conjugate by checking whether their super summit sets are equal.

We illustrate this approach with two elements of $B$, using the Artin presentation of $B$.

Suppose we want to prove that $u$ and $v$ are not conjugate in $B$. We could start by checking the cycle structure of the induced permutations on the strings on which $B$ acts.

This does not help. Next we can check the infima and the suprema of super summit representatives.

Again, we cannot conclude anything. We decide to compare the super summit sets of $u$ and $v$.
Success! The super summit sets of \( u \) and \( v \) are different, proving that \( u \) and \( v \) are not conjugate. For a more efficient version of conjugacy testing see Example H71E8.

(3) Finally, we illustrate the significant difference in the sizes of super summit sets and ultra summit sets for slightly larger values of braid index and canonical length.

```maple
> B := BraidGroup(8);
We create a pseudo-random element of \(B \) as product of 5 simple elements independently chosen at random.

```maple
> x := B.4 * B.3 * B.2 * B.1 * B.5 * B.4 * B.5 * B.6 * B.7 * B.6 * B.5;
> x := x^2;
> Sx := SuperSummitSet(x);
> #Sx;
10972
> Ux := UltraSummitSet(x);
> #Ux;
36
The ultra summit set is much smaller than the super summit set. We try again.

```maple
> x := B.4 * B.3 * B.2 * B.1 * B.5 * B.4 * B.5;
> x := x^3;
> Sx := SuperSummitSet(x);
> #Sx;
882
> Ux := UltraSummitSet(x);
> #Ux;
18
The difference in sizes is still large. The behaviour exhibited by these examples is quite typical. In particular, the sizes of super summit sets for braids on a given number of strings and with a given canonical length show much larger fluctuations than the sizes of ultra summit sets. For a more detailed analysis we refer to [Geb03].

71.4.6.1 Computing Class Invariants Interactively

This section describes the functions relevant for interactive computation of the set of positive conjugates, the super summit set and the ultra summit set for a given element of a braid group \(B \) as defined in Section 71.1.5.

Process versions of the algorithms used by the functions PositiveConjugates, SuperSummitSet and UltraSummitSet are available for computing these invariants one element at a time.
PositiveConjugatesProcess\((u: \text{parameters}) \)

Presentation\(\text{MonStgElt} \)\(\text{Default} : \)

Given an element \(u \) of a braid group \(B \), return a process for constructing the conjugates of \(u \) which can be represented as positive words in the specified presentation of \(B \).

The returned process contains the first positive conjugate of \(u \) if positive conjugates exist and is \textit{empty} otherwise.

SuperSummitProcess\((u: \text{parameters}) \)

Presentation\(\text{MonStgElt} \)\(\text{Default} : \)

Given an element \(u \) of a braid group \(B \), return a process for constructing the super summit elements of \(u \) with respect to the specified presentation of \(B \).

The returned process contains the first super summit element of \(u \).

UltraSummitProcess\((u: \text{parameters}) \)

Presentation\(\text{MonStgElt} \)\(\text{Default} : \)

Given an element \(u \) of a braid group \(B \), return a process for constructing the ultra summit elements of \(u \) with respect to the specified presentation of \(B \).

The returned process contains the first ultra summit element of \(u \).

BaseElement\((P) \)

Return the element used for the construction of the process \(P \).

#P

Return the number of elements that have been found by the process \(P \).

Representative\((P) \)

Rep\((P) \)

Given a non-empty process \(P \), return the element most recently found by \(P \).

If \(P \) is empty, a runtime error will occur. The function \textit{IsEmpty} can be used for checking whether a process is empty, in order to avoid runtime errors in loops and user written functions.

IsEmpty\((P) \)

Return \textit{true} if \(P \) is empty and \textit{false} otherwise.

This function can be used to check whether \textit{Representative} can be called for a process \(P \).

Elements\((P) \)

Return an indexed set containing the elements found so far by the process \(P \).
Given an element \(u \) of a braid group and a process \(P \) for computing positive conjugates or super summit elements of the element \(b \), return \texttt{true} and an element \(c \) satisfying \(b^c = u \) if \(u \) is one of the elements that have been constructed by \(P \) and \texttt{false} otherwise.

Given an element \(u \) of a braid group and a process \(P \), return \texttt{false} if \(u \) is one of the elements that have been constructed by \(P \) and \texttt{true} otherwise.

Given a process \(P \), continue searching for elements until the next element is found or the search completes without finding a new element.

If a new element if found, it can subsequently be accessed using the function \texttt{Representative}. If the search completes without finding a new element, \(P \) is marked as \texttt{empty}. Calling \texttt{NextElement} on an empty process has no effect.

Given a process \(P \), complete the search for elements. After executing this procedure, \(P \) is \texttt{empty} and the set of all elements found by \(P \) can be accessed using the function \texttt{Elements}. Calling \texttt{Complete} on an empty process has no effect.

We sketch how the functions described in the preceding section could be used for testing whether two elements are conjugate and for computing a conjugating element if they are.

The approach outlined here is basically the algorithm used by the function \texttt{IsConjugate}.

```plaintext
> function MyIsConjugate(u, v)
>     // check obvious invariants
>     infu := SuperSummitInfimum(u);
>     infv := SuperSummitInfimum(v);
>     supu := SuperSummitSupremum(u);
>     supv := SuperSummitSupremum(v);
>     if infu ne infv or supu ne supv then
>         return false, _;
>     end if;
>     // compute an ultra summit element for v
>     sv, cv := UltraSummitRepresentative(v);
>     // set up a process for computing the ultra summit set of u
>     P := UltraSummitProcess(u);
>     // compute ultra summit elements of u until sv is found
>     // or sv is seen not to be in the ultra summit set of u
```
> while sv notin P and not IsEmpty(P) do
> NextElement(~P);
> end while;
>
> print #P, "elements computed";
> isconj, c := sv in P;
> if isconj then
> // return true and an element conjugating u to v
> return true, c*cv^-1;
> else
> return false, _;
> end if;
>
> end function;

We test our function using two pairs of elements of the braid group B on 4 strings.

> B := BraidGroup(4);

As we have seen in Example H71E7, the following elements u and v are not conjugate.

> u := B.2 * B.1 * B.2^2 * B.1 * B.2;
> v := B.2^2 * B.1 * B.3 * B.1 * B.3;

To prove this, our function has to compute the whole ultra summit set of u.

> MyIsConjugate(u,v);
2 elements computed
false
> #UltraSummitSet(u);
2

We try our function on another pair of elements.

> r := B.3*B.2*B.3*B.2^2*B.1*B.3*B.1*B.2;
> s := B.3^-1*B.2^-1*B.3*B.2*B.3*B.2^2*B.1*B.3*B.1*B.2^2*B.3;
> isconj, c := MyIsConjugate(r,s);
3 elements computed
true
> r^c eq s;
true

The ultra summit representative of s was the 3rd ultra summit element of r found. Note that the function did not have to compute the whole ultra summit set of r to find the answer.

> #UltraSummitSet(r);
6

In this small example, we could also have used super summit sets for conjugacy testing, as the super summit set of r is not much larger than its ultra summit set.

> #SuperSummitSet(r);
A more challenging application of the function \texttt{MyIsConjugate} from above will be presented in Example H71E10.

71.4.6.2 Computing Minimal Simple Elements

This section describes the functions for computing minimal simple elements as introduced in Section 71.1.5.2 and functions for computing the \textit{transport} and the \textit{pullback} as defined in [Geb03].

All functions documented in this section accept two parameters, \texttt{Presentation} and \texttt{CheckArguments}. The parameter \texttt{Presentation} can be used to specify the presentation of a braid group \(B \) with respect to which the computation should be performed. Possible values for this parameter are the strings "Artin" and "BKL". If no value is given for \texttt{Presentation}, the presentation selected for \(B \) is used. The parameter \texttt{CheckArguments} can be used to turn off argument checking for performance reasons. It should be noted that the results are undefined if functions are called with invalid arguments and argument checking is disabled.

MinimalElementConjugatingToPositive(x, s: parameters)

- \texttt{Presentation} \texttt{MONStgELT} \texttt{Default :}
- \texttt{CheckArguments} \texttt{BOOLELT} \texttt{Default : true}

Given a positive element \(x \) of a braid group \(B \) and a simple element \(s \), return the minimal simple element \(r_x(s) \) satisfying \(s \preceq r_x(s) \) and \(x^{r_x(s)} \in B^+ \).

MinimalElementConjugatingToSuperSummit(x, s: parameters)

- \texttt{Presentation} \texttt{MONStgELT} \texttt{Default :}
- \texttt{CheckArguments} \texttt{BOOLELT} \texttt{Default : true}

Given an element \(x \) of a braid group \(B \) which is contained in its super summit set \(S_x \) and a simple element \(s \), return the minimal simple element \(\rho_x(s) \) satisfying \(s \preceq \rho_x(s) \) and \(x^{\rho_x(s)} \in S_x \).

MinimalElementConjugatingToUltraSummit(x, s: parameters)

- \texttt{Presentation} \texttt{MONStgELT} \texttt{Default :}
- \texttt{CheckArguments} \texttt{BOOLELT} \texttt{Default : true}

Given an element \(x \) of a braid group \(B \) which is contained in its ultra summit set \(U_x \) and a simple element \(s \), return the minimal simple element \(c_x(s) \) satisfying \(s \preceq c_x(s) \) and \(x^{c_x(s)} \in U_x \).
Given an element \(x \) of a braid group \(B \) and a simple element \(s \) such that both \(x \) and \(x^s \) are super summit elements, return the transport of \(s \) along \(x \to c(x) \), that is, the element \(\varphi_x(s) = (D \land_1 x D^{-\inf(x)})^{-1} \cdot s \cdot (D \land_1 x^s D^{-\inf(x)}) \), where \(D \) is the fundamental element of \(B \). The transport is a simple element satisfying \(c(x^s) = c(x)^{\varphi_x(s)} \) [Geb03].

Given an element \(x \) of a braid group \(B \) which is contained in its super summit set \(S_x \) and a simple element \(s \), return the pullback of \(s \) along \(x \to c(x) \), that is, the unique \(\preceq \)-minimal element \(\pi_x(s) \) satisfying \(x^{\pi_x(s)} \in S_x \) and \(s \preceq \varphi_x(\pi_x(s)) \) [Geb03].

The following function uses the technique sketched in Section 71.1.5 for computing the ultra summit set of a given braid. This is basically the algorithm used by the MAGMA function `UltraSummitSet`.

```plaintext
> function MyUltraSummitSet(x)
>   // create a subset of the ultra summit set of x
>   U := { @ UltraSummitRepresentative(x) @};
>   gens := Generators(Parent(x));
>   pos := 1;
>   // close U under conjugation with minimal simple elements
>   while pos le #U do
>     y := U[pos];
>     // add missing conjugates of y
>     for z in { y^MinimalElementConjugatingToUltraSummit(y, s) : s in gens } do
>       if z notin U then
>         Include(~U, z);
>       end if;
>     end for;
>     pos := pos + 1;
>   end while;
>   return U;
> end function;
```
71.5 Homomorphisms
For a general description of homomorphisms, we refer to Chapter 16. This section describes some special aspects of homomorphisms whose domain is in the category \texttt{GrpBrd}.

71.5.1 General Remarks
An important special case of homomorphisms with domain in the category \texttt{GrpBrd} is the following. A homomorphism \(f : B \rightarrow G \), where \(B \) and \(B' \) are braid groups on \(n \) and \(m \) strings, respectively, and \(f \) is an embedding of \(B \) in \(G \) induced by
\[
\sigma_i \rightarrow \sigma'_{k+\epsilon}^j \quad (i = 1, \ldots, n - 1)
\]
where the \(\sigma_i \) are the Artin generators of \(B \), the \(\sigma_j' \) are the Artin generators of \(B' \), \(|\epsilon| = 1\) and \(k \) is a suitable constant.

The \textsc{Magma} implementation uses special optimisation techniques, if a homomorphism with domain in the category \texttt{GrpBrd} has the additional properties listed above. Compared to the general case, this results in faster evaluation of such homomorphisms, in particular in the case \(\epsilon = 1 \).

Computing preimages under homomorphisms with domain in the category \texttt{GrpBrd} currently is only supported for the special case described above. Moreover, computing the preimage of an element \(u \) under a map \(f \) may fail, even if \(u \) is contained in the image of \(f \).

71.5.2 Constructing Homomorphisms
\begin{tabular}{|l|}
\hline
\texttt{hom< B -> G | S : parameters >} \\
\hline
Check \texttt{BOOLELT} Default : true \\
\hline
\end{tabular}

Returns the homomorphism from the braid group \(B \) to the group \(G \) defined by the assignment \(S \). \(S \) can be the one of the following:

(i) A list, sequence or indexed set containing the images of all \(k \) Artin generators \(B.1, \ldots, B.k \) of \(B \). Here, the \(i \)-th element of \(S \) is interpreted as the image of \(B.i \), that is, the order of the elements in \(S \) is important.

(ii) A list, sequence, enumerated set or indexed set, containing \(k \) tuples \(< x_i, y_i > \) or arrow pairs \(x_i \rightarrow y_i \), where \(x_i \) is a generator of \(B \) and \(y_i \in G \) \((i = 1, \ldots, k) \) and the set \(\{x_1, \ldots, x_k\} \) is the full set of Artin generators of \(B \). In this case, \(y_i \) is assigned as the image of \(x_i \), hence the order of the elements in \(S \) is not important.

Note, that it is currently not possible to define a homomorphism by assigning images to the elements of an arbitrary generating set of \(B \).

If the category of the codomain supports element arithmetic and element comparison, by default the constructed homomorphism is checked by verifying that the would-be images of the Artin generators satisfy the braid relations of \(B \). In this case, it is assured that the returned map is a well-defined homomorphism. The most important situation in which it is not possible to perform checking is the case in which the domain is a finitely presented group (\texttt{FPGroup}; cf. Chapter 68) which is not free. Checking may be disabled by setting the parameter \texttt{Check} to \texttt{false}.
71.5.3 Accessing Homomorphisms

Given a homomorphism whose domain is a braid group \(B \) and an element \(e \) of \(B \), return the image of \(e \) under \(f \) as element of the codomain of \(f \).

Given a homomorphism whose domain is a braid group \(B \), return the image of \(B \) under \(f \) as a subgroup of the codomain of \(f \).

This function is not supported for all codomain categories.

Given a homomorphism whose domain is a braid group \(B \) and an element \(u \) of the image of \(f \), return the preimage of \(u \) under \(f \) as an element of \(B \).

This function currently is only supported if \(f \) is an embedding of one braid group into another as described in Section 71.5.1. Note, moreover, that computing the preimage of \(u \) may fail, even if \(u \) is contained in the image of \(f \).

The domain of the homomorphism \(f \).

The codomain of the homomorphism \(f \).

The image or range of the homomorphism \(f \) as a subgroup of the codomain of \(f \).

This function is not supported for all codomain categories.

Example H71E10

(1) The symmetric group on \(n \) letters is an epimorphic image of the braid group on \(n \) strings, where for \(0 < i < n \) the image of the Artin generator \(\sigma_i \) is given by the transposition \((i, i + 1)\). We construct this homomorphism for the case \(n = 10 \).

```latex
\begin{verbatim}
> Bn := BraidGroup(10);
> Sn := Sym(10);
> f := hom< Bn->Sn | [ Sn!(i,i+1) : i in [1..Ngens(Bn)] ] >;
Of course, the image of \( f \) is the full symmetric group.
> Image(f) eq Sn;
true
Now we compute the image of a pseudo-random element of \( Bn \) under \( f \).
> f(Random(Bn));
\end{verbatim}
```
(1, 5, 8)(2, 4, 9, 7, 6, 3)

(2) (Key exchange as proposed in [KLC+00])

Consider a collection of \(l + r \) strings \(t_1, \ldots, t_{l+r} \) and the braid group \(B \) acting on \(t_1, \ldots, t_{l+r} \) with Artin generators \(\sigma_1, \ldots, \sigma_{l+r-1} \). The subgroups of \(B \) fixing the strings \(t_{l+1}, \ldots, t_{l+r} \) and \(t_1, \ldots, t_l \) may be identified with braid groups \(L \) on \(l \) strings and \(R \) on \(r \) strings, respectively, with the Artin generators of \(L \) and \(R \) corresponding to \(\sigma_1, \ldots, \sigma_{l-1} \) and \(\sigma_{l+1}, \ldots, \sigma_{l+r-1} \), respectively.

We set up these groups for \(l = 6 \) and \(r = 7 \) using the BKL presentations.

```plaintext
> l := 6;
> r := 7;
> B := BraidGroup(l+r : Presentation := "BKL");
> L := BraidGroup(l : Presentation := "BKL");
> R := BraidGroup(r : Presentation := "BKL");
```

We now construct the embeddings \(f : L \to B \) and \(g : R \to B \).

```plaintext
> f := hom< L-> B | [ L.i -> B.i : i in [1..Ngens(L)] ] >;
> g := hom< R-> B | [ R.i -> B.(l+i) : i in [1..Ngens(R)] ] >;
```

To complete the preparatory steps, we choose a random element of \(B \) which is not too short.

```plaintext
> x := Random(B, 15, 25);
```

The data constructed so far is assumed to be publicly available. Each time two users \(A \) and \(B \) require a shared key, the following steps are performed.

(a) \(A \) chooses a random secret element \(a \in L \) and sends the normal form of \(y_1 := x^a \) to \(B \).

(b) \(B \) chooses a random secret element \(b \in R \) and sends the normal form of \(y_2 := x^b \) to \(A \).

(c) \(A \) receives \(y_2 \) and computes the normal form of \(y_1^a \).

(d) \(B \) receives \(y_1 \) and computes the normal form of \(y_1^b \).

Note the following.
- Transmitting \(y_1 \) and \(y_2 \) in normal form disguises their structure as products \(a^{-1}xa \) and \(b^{-1}xb \), provided the words used are long enough and prevents simply reading off the conjugating elements \(a \) and \(b \).
- Since the subgroups \(L \) and \(R \) of \(B \) commute, we have \(ab = ba \), which implies \(y_2^a = x^{ba} = x^{ab} = y_1^b \). Thus, the normal forms computed by \(A \) and \(B \) in steps (c) and (d), respectively, must be identical and can be used to extract a secret shared key.

We illustrate this, using the groups set up above. For step (a):

```plaintext
> a := Random(L, 15, 25);
> y1 := NormalForm(x^f(a));
```

Now for step (b):

```plaintext
> b := Random(R, 15, 25);
> y2 := NormalForm(x^g(b));
```

We now verify that \(A \) and \(B \) arrive at the same information in steps (c) and (d).

```plaintext
> K_A := NormalForm(y2^f(a));
```
> K_B := NormalForm(y1^g(b));
> AreIdentical(K_A, K_B);
true

We see that the information computed by A and B in steps (c) and (d) is indeed identical and hence can be used (in suitable form) as a common secret. Note, however, that the number of strings and the lengths of the elements used in the example above are much smaller than the values suggested for real cryptographic purposes.

(3) (Attack on key exchange)

We now show an attack on the key exchange outlined above using conjugacy search based on ultra summit sets.

An eavesdropper can try to compute an element c conjugating x to y_1. While this is not guaranteed to reproduce the braid a, the chances for a successful key recovery are quite good.

We decide to change to the Artin presentation of B and use the function MyIsConjugate from Example H71E8 for computing a conjugating element c as above.

> SetPresentation(~B, "Artin");
> time _, c := MyIsConjugate(x, y1);
42 elements computed
Time: 0.020

Finding a conjugating element is no problem at all. Using the conjugating element, we can try to recover the shared secret. In this example we are lucky.

> NormalForm(y2^c) eq K_A;
true

In the conjugacy search above, a conjugating element was found after computing 42 ultra summit elements. The ultra summit set itself is larger, but can still be computed very easily.

> time Ux := UltraSummitSet(x);
Time: 3.150
> #Ux;
1584

The super summit set is, even in this small example, too large to be computed; conjugacy search based on super summit sets would quite likely fail.

> time Sx := SuperSummitSet(x);
Current total memory usage: 4055.1MB
System error: Out of memory.

Finally, we show that the attack using conjugacy search based on ultra summit sets is also applicable to larger examples. We try to recover a key, which is generated using elements with canonical lengths between 500 and 1000 in a braid group on 100 strings.

> l := 50;
> r := 50;
> B := BraidGroup(l+r);
> L := BraidGroup(l);
We again try to recover the key by computing an element conjugating x to y_1. This time, we use the built-in \textsc{Magma} function for efficiency reasons.

```plaintext
> time _, c := IsConjugate(x, y1);
Time: 18.350
> K_A eq NormalForm(y2^c);
false
```

Bad luck. – We managed to compute a conjugating element, but this failed to recover the key. We try with an element conjugating x to y_2.

```plaintext
> time _, c := IsConjugate(x, y2);
Time: 3.800
> K_B eq NormalForm(y1^c);
true
```

Success! – Good that we didn’t use this key to encrypt our credit card number!

71.5.4 Representations of Braid Groups

This section describes the functions available for creating a number of well known representations of braid groups.

\textbf{SymmetricRepresentation(B)}

Given a braid group B on n strings, return the natural epimorphism from B onto the symmetric group on n points, induced by the action of B on the strings by which B is defined.
BurauRepresentation(B)

Given a braid group B on n strings, return the Burau representation of B as homomorphism from B to the matrix algebra of degree n over the rational function field over the integers.

BurauRepresentation(B, p)

Given a braid group B on n strings and a prime p, return the p-modular Burau representation of B as homomorphism from B to the matrix algebra of degree n over the rational function field over the field with p elements.

Example H71E11

We construct the Burau representation of the braid group on 4 strings.

```plaintext
> B := BraidGroup(4);
> f := BurauRepresentation(B);
```

Its codomain is a matrix algebra of degree 4 over the rational function field over the integers.

```plaintext
> A := Codomain(f);
> A;
GL(4, FunctionField(IntegerRing()))
> F := BaseRing(A);
> F;
Univariate rational function field over Integer Ring
Variables: $.1
```

To obtain nicer printing, we assign the name t to the generator of the function field F.

```plaintext
> AssignNames(~F, ["t"]);
```

Now we can check easily whether we remembered the definition of the Burau representation correctly.

```plaintext
> f(B.1);
[-t + 1&t&0&0
[1&0&0&0
[0&0&1&0
[0&0&0&1
> f(B.2);
[1&0&0&0
[0&-t + 1&t&0
[0&1&0&0
[0&0&0&1
> f(B.3);
[1&0&0&0
[0&1&0&0
[0&0&-t + 1&t
[0&0&1&0
```
71.6 Bibliography

72 GROUPS DEFINED BY REWRITE SYSTEMS

72.1 Introduction 2235
72.1.1 Terminology 2235
72.1.2 The Category of Rewrite Groups . 2235
72.1.3 The Construction of a Rewrite Group2235

72.2 Constructing Confluent Presentations 2236
72.2.1 The Knuth-Bendix Procedure 2236
RWSGroup(F: -) 2236
72.2.2 Defining Orderings 2237
RWSGroup(F: -) 2237
72.2.3 Setting Limits 2239
RWSMonoid(F: -) 2240
SetVerbose("KBMMAG", v) 2241
72.2.4 Accessing Group Information 2241
Generators(G) 2242
NumberOfGenerators(G) 2242
Ngens(G) 2242
Relations(G) 2242
NumberOfRelations(G) 2242
Nrels(G) 2242
Ordering(G) 2242

72.3 Properties of a Rewrite Group 2243
IsConfluent(G) 2243
IsFinite(G) 2243
Order(G) 2243
#

72.4 Arithmetic with Words . . . 2244
72.4.1 Construction of a Word 2244
Identity(G) 2244
Id(G) 2244
!

72.5 Operations on the Set of Group Elements 2247
Random(G, n) 2247
Random(G) 2247
Representative(G) 2247
Rep(G) 2247
Set(G, a, b) 2248
Set(G) 2248
Seq(G, a, b) 2248

72.6 Homomorphisms 2249
72.6.1 General Remarks 2249
72.6.2 Construction of Homomorphisms . 2249
hom< > 2249

72.7 Conversion to a Finitely Presented Group 2250

72.8 Bibliography 2250
Chapter 72

GROUPS DEFINED BY
REWRI TE SYSTEMS

72.1 Introduction
The class of finitely presented groups defined by finite rewrite systems provide a Magma
level interface to Derek Holt’s KBMAG programs, and specifically to the Knuth–Bendix
completion procedure for groups defined by a finite (monoid) presentation. Much of the
material in this chapter is taken from the KBMAG documentation [Hol97]. Familiarity
with the Knuth–Bendix completion procedure is assumed. Some familiarity with KBMAG
would be beneficial.

72.1.1 Terminology
A rewrite group G is a finitely presented group in which equality between elements of
G, called words or strings, may be decidable via a sequence of rewriting equations, called
reduction relations, rules, or equations. In the interests of efficiency the reduction rules are
codified into a finite state automaton called a reduction machine. The words in a rewrite
group G are ordered, as are the reduction relations of G. Several possible orderings of
words are supported, namely short-lex, recursive, weighted short-lex and wreath-product
orderings. A rewrite group can be confluent or non-confluent. If a rewrite group G is
confluent its reduction relations, or more specifically its reduction machine, can be used
to reduce words in G to their irreducible normal forms under the given ordering, and so
the word problem for G can be efficiently solved.

72.1.2 The Category of Rewrite Groups
The family of all rewrite groups forms a category. The objects are the rewrite groups and
the morphisms are group homomorphisms. The Magma designation for this category of
groups is GrpRWS. Elements of a rewrite group are designated as GrpRWSElt.

72.1.3 The Construction of a Rewrite Group
A rewrite group G is constructed in a three-step process:

(i) We construct a free group FG.

(ii) We construct a quotient F of FG.

(iii) We create a monoid presentation of F and then run a Knuth–Bendix completion
procedure on this presentation to create a rewrite group G.

The Knuth–Bendix procedure may or may not succeed. If it fails the user may need to
perform the above steps several times, manually adjusting the parameters to the Knuth–
Bendix procedure. If it succeeds then the rewrite system constructed will be confluent.
2236 FINITELY-PRESENTED GROUPS Part X

72.2 Constructing Confluent Presentations

72.2.1 The Knuth-Bendix Procedure

\texttt{RWSGroup(F: parameters)}

Suppose \(F \) is a finitely presented group. Internally, the first step is to construct a presentation for a monoid \(M \). By default, the generators of \(M \) are taken to be \(g_1, g_1^{-1}, \ldots, g_n, g_n^{-1} \), where \(g_1, \ldots, g_n \) are the generators of \(F \). The relations for \(M \) are taken to be the relations of \(F \) together with the trivial relations \(g_1 g_1^{-1} = g_1^{-1} g_1 = 1 \). The Knuth–Bendix completion procedure for monoids is now applied to \(M \). Regardless of whether or not the completion procedure succeeds, the result will be a rewrite monoid, \(M \), containing a reduction machine and a sequence of reduction relations. If the procedure succeeds \(M \) will be marked as confluent, and the word problem for \(M \) is therefore decidable. If, as is very likely, the procedure fails then \(M \) will be marked as non-confluent. In this case \(M \) will contain both the reduction relations and the reduction machine computed up to the point of failure. Reductions made using these relations will be correct in \(F \), but words that are equal in \(F \) are not guaranteed to reduce to the same word.

The Knuth–Bendix procedure requires ordering to be defined on both the generators and the words. The default generator ordering is that induced by the ordering of the generators of \(F \) while the default ordering on strings is the \texttt{ShortLex} order. We give a simple example and then discuss the parameters that allow the user to specify these two orderings.

As the Knuth–Bendix procedure will more often than not run forever, some conditions must be specified under which it will stop. These take the form of limits that are placed on certain variables, such as the number of reduction relations. If any of these limits are exceeded during a run of the completion procedure it will fail, returning a non-confluent rewrite monoid. The optimal values for these limits vary from example to example. The various parameters that allow the user to specify these limits will be described in a subsequent section.

\textbf{Example H72E1}

We construct the Von Dyck \((2, 3, 5)\) group. Since a string ordering is not specified the default \texttt{ShortLex} ordering is used. Similarly, since a generator ordering is not specified, the default generator ordering, in this case \([a, a^{-1}, b, b^{-1}]\), is used.

\begin{verbatim}
> FG<a,b> := FreeGroup(2);
> F := quo< FG | a*a=1, b*b=b^-1, a*b^-1*a*b^-1*a=b*a*b*a*b>;
> G := RWSGroup(F);
> G;
A confluent rewrite group.
Generator Ordering = [a, a^-1, b, b^-1]
Ordering = ShortLex.
The reduction machine has 39 states.
The rewrite relations are:
\end{verbatim}
\[a^{-2} = \text{Id}(F) \]
\[b \cdot b^{-1} = \text{Id}(F) \]
\[b^{-1} \cdot b = \text{Id}(F) \]
\[b^{-2} = b \]
\[b^{-1} \cdot a \cdot b^{-1} \cdot a \cdot b^{-1} = a \cdot b \cdot a \cdot b \]
\[a^{-1} = a \]
\[a \cdot b^{-1} \cdot a \cdot b^{-1} \cdot a \cdot b = b \cdot a \cdot b \cdot a \cdot b^{-1} \]
\[b \cdot a \cdot b^{-1} \cdot a \cdot b^{-1} \cdot a \cdot b = b^{-1} \cdot a \cdot b^{-1} \cdot a \cdot b \]
\[b^{-1} \cdot a \cdot b \cdot a \cdot b^{-1} \cdot a \cdot b = b \cdot a \cdot b^{-1} \cdot a \cdot b \cdot a \cdot b^{-1} \]
\[b^{-1} \cdot a \cdot b \cdot a \cdot b^{-1} \cdot a \cdot b \cdot a \cdot b^{-1} = (b^{-1} \cdot a \cdot b \cdot a)^2 \]
\[b^{-1} \cdot a \cdot b \cdot a \cdot b^{-1} \cdot a \cdot b \cdot a \cdot b^{-1} = (b \cdot a \cdot b^{-1} \cdot a)^2 \]

72.2.2 Defining Orderings

RWSGroup(F: parameters)

Attempt to construct a confluent presentation for the finitely presented group \(F \) using the Knuth-Bendix completion algorithm. In this section we describe how the user can specify the generator order and the ordering on strings.

GeneratorOrder

Give an ordering for the generators. This ordering affects the ordering of words in the alphabet. If not specified the ordering defaults to the order induced by \(F \)'s generators, that is \([g_1, \ldots, g_n]\) where \(g_1, \ldots, g_n \) are the generators of \(F \).

Ordering

Use the short-lex ordering on strings. Shorter words come before longer, and for words of equal length lexicographical ordering is used, using the given ordering of the generators.

Ordering := "ShortLex"

Use a recursive ordering on strings. There are various ways to define this. Perhaps the quickest is as follows. Let \(u \) and \(v \) be strings in the generators. If one of \(u \) and \(v \), say \(v \), is empty, then \(u \geq v \). Otherwise, let \(u = u'a \) and \(v = v'b \), where \(a \) and \(b \) are generators. Then \(u > v \) if and only if one of the following holds:
(i) \(a = b\) and \(u' > v'\);
(ii) \(a > b\) and \(u > v'\);
(iii) \(b > a\) and \(u' > v\).

The \texttt{RtRecursive} ordering is similar to the \texttt{Recursive} ordering, but with \(u = au'\) and \(v = bv'\). Occasionally one or the other runs significantly quicker, but usually they perform similarly.

\textbf{Ordering} := "\texttt{WtLex}": Use a weighted-lex ordering. \texttt{Weights} should be a sequence of non-negative integers, with the \(i\)-th element of \texttt{Weights} giving the weight of the \(i\)-the generator. The length of \texttt{Weights} must equal the number of generators. The length of words in the generators is then computed by adding up the weights of the generators in the words. Otherwise, ordering is as for short-lex.

\textbf{Ordering} := "\texttt{Wreath}": Use a wreath-product ordering. \texttt{Levels} should be a sequence of non-negative integers, with the \(i\)-th element of \texttt{Levels} giving the level of the \(i\)-the generator. The length of \texttt{Levels} must equal the number of generators. In this ordering, two strings involving generators of the same level are ordered using short-lex, but all strings in generators of a higher level are larger than those involving generators of a lower level. That is not a complete definition; one can be found in [Sim94, pp. 46–50]. Note that the recursive ordering is the special case in which the level of generator number \(i\) is \(i\).

\textbf{Example H72E2}:

A confluent presentation is constructed for an infinite non-hopfian group using the \texttt{Recursive} ordering.

\begin{verbatim}
> F<a,b> := Group< a, b | b^-1*a^2*b=a^3 >;
> G := RWSGroup(F : Ordering :="Recursive");
> G;
A confluent rewrite group.
Generator Ordering = [a, a^-1, b, b^-1]
Ordering = Recursive.
The reduction machine has 7 states.
The rewrite relations are:
 a * a^-1 = Id(FG)
 a^-1 * a = Id(FG)
 b * b^-1 = Id(FG)
 b^-1 * b = Id(FG)
 a^3 * b^-1 = b^-1 * a^2
 a^2 * b = b * a^3
 a^-1 * b^-1 = a^2 * b^-1 * a^-2
 a^-1 * b = a * b * a^-3
\end{verbatim}
Example H72E3

A confluent presentation of a free nilpotent group of rank 2 and class 2 is constructed by the following code. Note that the lower weight generators (in the sense of nilpotency class) need to come first in the ordering of generators.

```plaintext
> FG<a,b,c> := FreeGroup(3);
> F := quo< FG | b*a=a*b*c, c*a=a*c, c*b=b*c>;
> G := RWSGroup(F : Ordering := "Recursive",
               GeneratorOrder := [c,c^-1,b,b^-1,a,a^-1]);
> G;
A confluent rewrite group.
Generator Ordering = [ c, c^-1, b, b^-1, a, a^-1 ]
Ordering = Recursive.
The reduction machine has 7 states.
The rewrite relations are:
c * c^-1 = Id(FG)
c^-1 * c = Id(FG)
b * b^-1 = Id(FG)
b^-1 * b = Id(FG)
a * a^-1 = Id(FG)
a^-1 * a = Id(FG)
b * a = a * b * c
c * a = a * c
c * b = b * c
c^-1 * a = a * c^-1
c * a^-1 = a^-1 * c
c^-1 * b = b * c^-1
c * b^-1 = b^-1 * c
b^-1 * a = a * b^-1 * c^-1
b^-1 * a^-1 = a^-1 * b^-1 * c
a^-1 * a^-1 = a^-1 * c^-1
a^-1 * b^-1 = b^-1 * c^-1
b * a^-1 = a^-1 * b * c^-1
```

72.2.3 Setting Limits

In this section we introduce the various parameters used to control the execution of the Knuth-Bendix procedure.
Attempt to construct a confluent presentation for the finitely presented group F using the Knuth-Bendix completion algorithm. We present details of the various parameters used to control the execution of the Knuth-Bendix.

- **MaxRelations**: Limit the maximum number of reduction equations to `MaxRelations`. Default: 32767

- **TidyInt**: After finding `TidyInt` new reduction equations, the completion procedure interrupts the main process of looking for overlaps, to tidy up the existing set of equations. This will eliminate any redundant equations performing some reductions on their left and right hand sides to make the set as compact as possible. (The point is that equations discovered later often make older equations redundant or too long.) Default: 100

- **RabinKarp**: Use the Rabin-Karp algorithm for word-reduction on words having length at least l, provided that there are at least n equations, where `RabinKarp := <l, n>`. This uses less space than the default reduction automaton, but it is distinctly slower, so it should only be used when seriously short of memory. Indeed this option is only really useful for examples in which collapse occurs - i.e. at some intermediate stage of the calculation there is a very large set of equations, which later reduces to a much smaller confluent set. Collapse is not uncommon when analysing pathological presentations of finite groups, and this is one situation where the performance of the Knuth-Bendix algorithm can be superior to that of Todd-Coxeter coset enumeration. The best setting for `RabinKarp` varies from example to example - generally speaking, the smaller l is, the slower things will be, so set it as high as possible subject to not running out of memory. The number of equations n should be set to a value greater than the expected final number of equations.

- **MaxStates**: Limit the maximum number of states of the finite state automaton used for word reduction to `MaxStates`. By default there is no limit, and the space allocated is increased dynamically as required. The space needed for the reduction automaton can also be restricted by using the `RabinKarp` parameter. This limit is not usually needed. Default:

- **MaxReduceLen**: Limit the maximum allowed length that a word can reach during reduction to `MaxReduceLen`. It is only likely to be exceeded when using the recursive ordering on words. This limit is usually not needed. Default: 32767

- **ConfNum**: If `ConfNum` overlaps are processed and no new equations are discovered, then the overlap searching process is interrupted, and a fast check for confluence performed on the existing set of equations. Doing this too often wastes time, but doing it at the
right moment can also save a lot of time. If \texttt{ConfNum} = 0, then the fast confluence check is performed only when the search for overlaps is complete.

\textbf{Warning:} Changing the default setting on any of the following parameters may either cause the procedure to terminate without having found a confluent presentation or may change the underlying group.

\begin{itemize}
 \item \texttt{MaxStoredLen} \texttt{Tup} \texttt{Default :}

 Only equations in which the left and right hand sides have lengths at most \(l \) and \(r \), respectively, where \(\text{MaxStoredLen} := <l, r> \) are kept. Of course this may cause the overlap search to complete on a set of equations that is not confluent. In some examples, particularly those involving collapse (i.e. a large intermediate set of equations, which later simplifies to a small set), it can result in a confluent set being found much more quickly. It is most often useful when using a recursive ordering on words. Another danger with this option is that sometimes discarding equations can result in information being lost, and the monoid defined by the equations changes.

 \item \texttt{MaxOverlapLen} \texttt{RngIntElt} \texttt{Default :}

 Only overlaps of total length at most \(\text{MaxOverlapLen} \) are processed. Of course this may cause the overlap search to complete on a set of equations that is not confluent.

 \item \texttt{Sort} \texttt{BoolElt} \texttt{Default : false}

 If \texttt{Sort} is set to \texttt{true} then the equations will be sorted in order of increasing length of their left hand sides, rather than the default, which is to leave them in the order in which they were found. \(\text{MaxOpLen} \) should be a non-negative integer. If \(\text{MaxOpLen} \) is positive, then only equations with left hand sides having length at most \(\text{MaxOpLen} \) are output. If \(\text{MaxOpLen} \) is zero, then all equations are sorted by length. Of course, if \(\text{MaxOpLen} \) is positive, there is a danger that the monoid defined by the output equations may be different from the original.
\end{itemize}

\texttt{SetVerbose("KBMAG", v)}

Set the verbose printing level for the Knuth-Bendix completion algorithm. Setting this level allows a user to control how much extra information on the progress of the algorithm is printed. Currently the legal values for \(v \) are 0 to 3 inclusive. Setting \(v \) to 0 corresponds to the ‘-silent’ option of KBMAG in which no extra output is printed. Setting \(v \) to 2 corresponds to the ‘-v’ (verbose) option of KBMAG in which a small amount of extra output is printed. Setting \(v \) to 3 corresponds to the ‘-vv’ (very verbose) option of KBMAG in which a huge amount of diagnostic information is printed.

\subsection{Accessing Group Information}

The functions in this group provide access to basic information stored for a rewrite group \(G \).
The i-th defining generator for G. The integer i must lie in the range $[-r, r]$, where r is the number of group G.

A sequence containing the defining generators for G.

The number of defining generators for G.

A sequence containing the defining relations for G. The relations will be given between elements of the free group of which G is a quotient. In these relations the (image of the) left hand side (in G) will always be greater than the (image of the) right hand side (in G) in the ordering on words used to construct G.

The number of relations in G.

The ordering of G.

We illustrate the access operations using the following presentation of $\mathbb{Z} \wr \mathbb{C}_2$.

```plaintext
> FG<a,b,t> := FreeGroup(3);
> F := quo< FG | t^2=1, b*a=a*b, t*a*t=b >;
> G<x,y,z> := RWSGroup(F);
> G;
A confluent rewrite group.
Generator Ordering = [ a, a^-1, b, b^-1, t, t^-1 ]
Ordering = ShortLex.
The reduction machine has 6 states.
The rewrite relations are:
an * a^-1 = Id(F)
a^-1 * a = Id(F)
b * b^-1 = Id(F)
b^-1 * b = Id(F)
t^2 = Id(F)
b * a = a * b
a * t = b * t
b^-1 * a = a * b^-1
t * b = a * t
```
\[b \cdot a^{-1} = a^{-1} \cdot b \]
\[t \cdot a^{-1} = b^{-1} \cdot t \]
\[t^{-1} = t \]
\[b^{-1} \cdot a^{-1} = a^{-1} \cdot b^{-1} \]
\[t \cdot b^{-1} = a^{-1} \cdot t \]

> G.1;
> G.1*G.2;
> Generators(G);
> Ngens(G);
> Relations(G);
> Nrels(G);
> Ordering(G);

72.3 Properties of a Rewrite Group

IsConfluent(G)

Returns true if \(G \) is confluent, false otherwise.

IsFinite(G)

Given a confluent group \(G \) return true if \(G \) has finite order and false otherwise. If \(G \) does have finite order also return the order of \(G \).

Order(G)

The order of the group \(G \) as an integer. If the order of \(G \) is known to be infinite, the symbol \(\infty \) is returned.
Example H72E5

We construct the Weyl group E_8.

```maple
> FG<a,b,c,d,e,f,g,h> := FreeGroup(8);
> Q := quo< FG | a^2=1, b^2=1, c^2=1, d^2=1, e^2=1, f^2=1, g^2=1,
> h^2=1, b*a*b=a*b*a, c*a=a*c, d*a=a*d, e*a=a*e, f*a=a*f,
> g*a=a*g, h*a=a*h, c*b*c=b*c*b, d*b=b*d, e*b=b*e, f*b=b*f,
> g*b=b*g, h*b=b*h, d*c*d=c*d*c, e*c*e=c*e*c, f*c=c*f,
> g*c=c*g, h*c=c*h, e*d=d*e, f*d=d*f, g*d=d*g, h*d=d*h,
> f*e*f=e*f*e, g*e=e*g, h*e=e*h, g*f*g=f*g*f, h*f=f*h,
> h*g*h=g*h*g>;
> G := RWSGroup(Q);
> IsConfluent(G);
true
> IsFinite(G);
true 696729600
```

So the group is finite of order 696,729,600.

Example H72E6

We construct a 2-generator 2-relator group and use the order function to show that the group is infinite. The symbol Infinity, returned by Order, indicates that the group has infinite order.

```maple
> G := Group< x, y | x^2 = y^2, x*y*x = y*x*y >;
> R := RWSGroup(G);
> print Order(G);
Infinity
```

72.4 Arithmetic with Words

72.4.1 Construction of a Word

Given a rewrite group G defined on r generators and a sequence $[i_1, \ldots, i_s]$ of integers lying in the range $[-r, r]$, excluding 0, construct the word

$$G, |i_1|^{\epsilon_1} \ast G, |i_2|^{\epsilon_2} \ast \cdots \ast G, |i_s|^{\epsilon_s}$$

where ϵ_j is +1 if i_j is positive, and −1 if i_j is negative. The resulting word is reduced using the reduction machine associated with G.

```maple
Identity(G)
Id(G)
G ! 1
G ! [ i_1, \ldots, i_s ]
```
Ch. 72
GROUPS DEFINED BY REWRITE SYSTEMS

Parent(w)

The parent group G for the word w.

Example H72E7

We construct the Fibonacci group $F(2,7)$, and its identity.

```latex
> FG<a,b,c,d,e,f,g> := FreeGroup(7);
> F := quo< FG | a*b=c, b*c=d, c*d=e, d*e=f, e*f=g, f*g=a, g*a=b>;
> G := RWGroup(F : TidyInt := 1000);
> Id(G);
Id(G)
> G!1;
Id(G)
> G![1,2];
G.3
```

72.4.2 Element Operations

Having constructed a rewrite group G one can perform arithmetic with words in G. Assuming we have $u,v \in G$ then the product $u \ast v$ will be computed as follows:

(i) the product $w = u \ast v$ is formed as a product in the appropriate free group.
(ii) w is reduced using the reduction machine associated with G.

If G is confluent, then w will be the unique minimal word that represents $u \ast v$ under the ordering of G. If G is not confluent, then there are some pairs of words which are equal in G, but which reduce to distinct words, and hence w will not be a unique normal form. Note that:

(i) reduction of w can cause an increase in the length of w. At present there is an internal limit on the length of a word – if this limit is exceeded during reduction an error will be raised. Hence any word operation involving reduction can fail.
(ii) the implementation is designed more with speed of execution in mind than with minimizing space requirements; thus, the reduction machine is always used to carry out word reduction, which can be space-consuming, particularly when the number of generators is large.

$u \ast v$

Given words w and v belonging to a common group, return their product.

u / v

Given words w and v belonging to a common group, return the product of the word u by the inverse of the word v, i.e. the word $u \ast v^{-1}$.

$u ^ n$

The n-th power of the word w.

Given words \(w \) and \(v \) belonging to a common group, return the conjugate of the word \(u \) by the word \(v \), i.e. the word \(v^{-1} * u * v \).

Inverse(w)

The inverse of the word \(w \).

\((u, v)\)

Given words \(w \) and \(v \) belonging to a common group, return the commutator of the words \(u \) and \(v \), i.e., the word \(u^{-1}v^{-1}uv \).

\((u_1, \ldots, u_r)\)

Given \(r \) words \(u_1, \ldots, u_r \) belonging to a common group, return their commutator. Commutators are left-normed, so they are evaluated from left to right.

\(u \text{ eq } v\)

Given words \(w \) and \(v \) belonging to the same group, return \text{true} if \(w \) and \(v \) reduce to the same normal form, \text{false} otherwise. If \(G \) is confluent this tests for equality. If \(G \) is non-confluent then two words which are the same may not reduce to the same normal form.

\(u \text{ ne } v\)

Given words \(w \) and \(v \) belonging to the same group, return \text{false} if \(w \) and \(v \) reduce to the same normal form, \text{true} otherwise. If \(G \) is confluent this tests for non-equality. If \(G \) is non-confluent then two words which are the same may reduce to different normal forms.

IsId(w)

IsIdentity(w)

Returns \text{true} if the word \(w \) is the identity word.

\#u

The length of the word \(w \).

ElementToSequence(u)

Eltseq(u)

The sequence \(Q \) obtained by decomposing the element \(u \) of a rewrite group into its constituent generators and generator inverses. Suppose \(u \) is a word in the rewrite group \(G \). Then, if \(u = G.e_1 \cdots G.e_m \), with each \(e_i = \pm 1 \), then \(Q[j] = i_j \) if \(e_j = +1 \) and \(Q[j] = -i_j \) if \(e_j = -1 \), for \(j = 1, \ldots, m \).
Example H72E8

We illustrate the word operations by applying them to elements of the Fibonacci group $F(2, 5)$.

```plaintext
> FG<a,b,c,d,e> := FreeGroup(5);
> F := quo< FG | a*b=c, b*c*d, c*d=e, d*e=a, e*a=b >;
> G<a,b,c,d,e> := RWSGroup(F);
> a*b^-1;  
e^-1
> a/b;  
e^-1
> (c*d)^4;  
a
> a^-b, b^-1*a*b;  
a a
> a^-2;  
> Inverse(a)^2;  
d d
> c^-1*d^-1*c*d eq (c,d);  
true
> IsIdentity(a*b*c^-1);  
true
> #(c*d);  
1
```

72.5 Operations on the Set of Group Elements

Random(G, n)

A random word of length at most n in the generators of G.

Random(G)

A random word (of length at most the order of G) in the generators of G.

Representative(G)

An element chosen from G.
Set(G, a, b)

Search

Create the set of reduced words, \(w \), in \(G \) with \(a \leq \text{length}(w) \leq b \). If **Search** is set to "DFS" (depth-first search) then words are enumerated in lexicographical order. If **Search** is set to "BFS" (breadth-first-search) then words are enumerated in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker. Since the result is a set the words may not appear in the resultant set in the search order specified (although internally they will be enumerated in this order).

Default : "DFS"

Set(G)

Search

Create the set of reduced words that is the carrier set of \(G \). If **Search** is set to "DFS" (depth-first search) then words are enumerated in lexicographical order. If **Search** is set to "BFS" (breadth-first-search) then words are enumerated in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker. Since the result is a set the words may not appear in the resultant set in the search order specified (although internally they will be enumerated in this order).

Default : "DFS"

Seq(G, a, b)

Search

Create the sequence \(S \) of reduced words, \(w \), in \(G \) with \(a \leq \text{length}(w) \leq b \). If **Search** is set to "DFS" (depth-first search) then words will appear in \(S \) in lexicographical order. If **Search** is set to "BFS" (breadth-first-search) then words will appear in \(S \) in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker.

Default : "DFS"

Example H72E9

We construct the group \(D_{22} \), together with a representative word from the group, a random word and a random word of length at most 5 from the group, and the set of elements of the group.

\[
\begin{align*}
> \text{FG}<a,b,c,d,e,f> & := \text{FreeGroup}(6); \\
> Q & := \text{quo}<\text{FG} | a^c=1*a^-1*d=1, b*f*b^-1*e^-1=1, c*e*c^-1*d^-1=1, \\
> d*f^-1*a^-1=1, e*b*e^-1*a^-1=1, f*c^-1*f^-1*b^-1=1>; \\
> \text{G}<a,b,c,d,e,f> & := \text{RWSGroup}(Q); \\
> \text{Representative}(G);
\end{align*}
\]
Id(G)
> Random(G);
b
> Random(G, 5);
a * d * b
> Set(G);
{ a * d * b, a * b * e, a * c, a * d, d * b, b * e, a * b * a,
a * b * d, b * a, a * c * e, Id(G), b * d, c * e, e, f, a, a * e, b,
c, a * f, d }
> Seq(G : Search := "DFS");
[Id(G), a, a * b, a * b * a, a * b * d, a * b * e, a * c, a * c * e,
a * d, a * d * b, a * e, a * f, b, b * a, b * d, b * e, c, c * e, d,
d * b, e, f]

72.6 Homomorphisms

For a general description of homomorphisms, we refer to chapter 16. This section describes some special aspects of homomorphisms whose domain or codomain is a rewrite group.

72.6.1 General Remarks

Groups in the category \texttt{GrpRWS} currently are accepted as codomains only in some special situations. The most important cases in which a rewrite group can be used as a codomain are group homomorphisms whose domain is in one of the categories \texttt{GrpFP}, \texttt{GrpGPC}, \texttt{GrpRWS} or \texttt{GrpAtc}.

72.6.2 Construction of Homomorphisms

\begin{verbatim}
\textbf{hom< R -> G | S >}
\end{verbatim}

Returns the homomorphism from the rewrite group R to the group G defined by the expression S which can be one of the following:

(i) A list, sequence or indexed set containing the images of the n generators $R.1,\ldots,R.n$ of R. Here, the i-th element of S is interpreted as the image of $R.i$, i.e. the order of the elements in S is important.

(ii) A list, sequence, enumerated set or indexed set, containing n tuples $< x_i, y_i >$ or arrow pairs $x_i \rightarrow y_i$, where x_i is a generator of R and $y_i \in G$ ($i = 1,\ldots,n$) and the set $\{ x_1,\ldots,x_n \}$ is the full set of generators of R. In this case, y_i is assigned as the image of x_i, hence the order of the elements in S is not important.

It is the user's responsibility to ensure that the provided generator images actually give rise to a well-defined homomorphism. No checking is performed by the constructor.

Note that it is currently not possible to define a homomorphism by assigning images to the elements of an arbitrary generating set of R.

72.7 Conversion to a Finitely Presented Group

There is a standard way to convert a rewrite group into a finitely presented group using the functions `Relations` and `Simplify`. This is shown in the following example.

Example H72E10

We construct a two generator free abelian group as a rewrite group and then convert it into a finitely presented group.

```plaintext
> FG<a,b> := FreeGroup(2);
> F := quo< FG | b^-1*a*b=a >;
> G := RWSGroup(F);
> print G;
A confluent rewrite group.
Generator Ordering = [ a, a^-1, b, b^-1 ]
Ordering = ShortLex.
The reduction machine has 5 states.
The rewrite relations are:
a * a^-1 = Id(FG)
a^-1 * a = Id(FG)
b * b^-1 = Id(FG)
b^-1 * b = Id(FG)
b^-1 * a = a * b^-1
b * a = a * b
b^-1 * a^-1 = a^-1 * b^-1
b * a^-1 = a^-1 * b
> P<x,y> := Simplify(quo< FG | Relations(G)>);
> print P;
Finitely presented group P on 2 generators
Generators as words
  x = $.1
  y = $.2
Relations
    (y, x^-1) = Id(P)
```

72.8 Bibliography

73 AUTOMATIC GROUPS

73.1 Introduction 2253
73.1.1 Terminology 2253
73.1.2 The Category of Automatic Groups 2253
73.1.3 The Construction of an Automatic Group 2253

73.2 Creation of Automatic Groups 2254
73.2.1 Construction of an Automatic Group 2254
AutomaticGroup(F: -) 2254
IsAutomaticGroup(F: -) 2254
73.2.2 Modifying Limits 2255
AutomaticGroup(F: -) 2255
IsAutomaticGroup(F: -) 2255
SetVerbose("KBMAG", v) 2256
73.2.3 Accessing Group Information . . . 2258
Generators(G) 2258
NumberOfGenerators(G) 2259
Ngens(G) 2259

73.3 Properties of an Automatic Group 2260
IsFinite(G) 2260
Order(G) 2260
2260

73.4 Arithmetic with Words . . . 2261
73.4.1 Construction of a Word 2261
! 2261
Identity(G) 2262
Id(G) 2262
! 2262
Parent(w) 2262
73.4.2 Operations on Elements 2262
* 2263
/ 2263
\ 2263
^ 2263
Inverse(w) 2263
(u, v) 2263
(u_1, ..., u_r) 2263
eq 2263
ne 2263
IsId(w) 2263
IsIdentity(w) 2263
2263
ElementToSequence(u) 2264
Eltseq(u) 2264

73.5 Homomorphisms 2265
73.5.1 General Remarks 2265
73.5.2 Construction of Homomorphisms . 2265
hom< > 2265

73.6 Set Operations 2265
Random(G, n) 2265
Random(G) 2265
Representative(G) 2265
Rep(G) 2265
Set(G, a, b) 2266
Set(G) 2266
Seq(G, a, b) 2266
Seq(G) 2266

73.7 The Growth Function 2267
GrowthFunction(G) 2267

73.8 Bibliography 2268
Chapter 73
AUTOMATIC GROUPS

73.1 Introduction
Automatic groups provide a Magma level interface to Derek Holt’s KBMAG programs, and specifically to KBMAG’s automatic groups program autgroup. Much of the material in this chapter is based on the KBMAG documentation [Hol97]. Familiarity with the Knuth–Bendix completion procedure and the automata associated with a short-lex automatic group is assumed. Some familiarity with KBMAG would be beneficial.

73.1.1 Terminology
An automatic group G is a finitely presented group in which various group operations, notably equality between words of G and word enumeration, are decidable through the use of various automata. The words in the automatic group G that can be computed in Magma are ordered using the short-lex ordering on words (shorter words come before longer, and for words of equal length lexicographical ordering is used, based on the given ordering of the generators).

73.1.2 The Category of Automatic Groups
The family of all automatic groups forms a category. The objects are the automatic groups and the morphisms are group homomorphisms. The Magma designation for this category of groups is GrpAtc. Elements of a automatic group are designated as GrpAtcElt.

73.1.3 The Construction of an Automatic Group
An automatic group G is constructed in a three-step process:
(i) We construct a free group FG.
(ii) We construct a quotient F of FG.
(iii) We create a monoid presentation for F and then run procedures which attempt to construct the automata associated with G and to prove them correct.
These procedures may or may not succeed. Of course, if G is not an automatic group then they have no chance of succeeding.
73.2 Creation of Automatic Groups

73.2.1 Construction of an Automatic Group

Internally a monoid presentation \(P \) of the group \(F \) is constructed. By default the generators of \(P \) are taken to be \(g_1, g_1^{-1}, \ldots, g_n, g_n^{-1} \) where \(g_1, \ldots, g_n \) are the generators of \(F \). The relations of \(P \) are taken to be the relations of \(F \). The trivial relations between the generators and their inverses are also added. The word ordering is the short-lex ordering. The Knuth–Bendix completion procedure for monoids is now run on \(P \) to calculate the word difference automata corresponding to the generated equations, which are then used to calculate the finite state automata associated with a short-lex automatic group. In successful cases these automata are proved correct in the final step.

If the procedure succeeds the result will be an automatic group, \(G \), containing four automata. These are the first and second word-difference machines, the word acceptor, and the word multiplier. The form \texttt{AutomaticGroup} returns an automatic group while the form \texttt{IsAutomaticGroup} returns the boolean value \texttt{true} and the automatic group. If the procedure fails, the first form does not return a value while the second returns the boolean value \texttt{false}.

For simple examples, the algorithms work quickly, and do not require much space. For more difficult examples, the algorithms are often capable of completing successfully, but they can sometimes be expensive in terms of time and space requirements. Another point to be borne in mind is that the algorithms sometimes produce temporary disk files which the user does not normally see (because they are automatically removed after use), but can occasionally be very large. These files are stored in the \texttt{/tmp} directory. If you interrupt a running automatic group calculation you must remove these temporary files yourself.

As the Knuth–Bendix procedure will more often than not run forever, some conditions must be specified under which it will stop. These take the form of limits that are placed on certain variables, such as the number of reduction relations. If any of these limits are exceeded during a run of the completion procedure it will fail, returning a non-confluent automatic group. The optimal values for these limits varies from example to example. Some of these limits may be specified by setting parameters (see the next section). In particular, if a first attempt to compute the automatic structure of a group fails, it should be run again with the parameter \texttt{Large} set to \texttt{true}.

\textbf{Example H73E1}

We construct the automatic structure for the fundamental group of the torus. Since a generator ordering is not specified, the default generator ordering, \([a, a^{-1}, b, b^{-1}, c, c^{-1}, d, d^{-1}]\), is used.

\begin{verbatim}
> FG<a,b,c,d> := FreeGroup(4);
\end{verbatim}
> F := quo< FG | a^-1*b^-1*a*b=d^-1*c^-1*d*c>;
> f, G := IsAutomaticGroup(F);
Running Knuth-Bendix with the following parameter values
MaxRelations = 200
MaxStates = 0
TidyInt = 20
MaxW diffs = 512
HaltingFactor = 100
MinTime = 5
#Halting with 118 equations.
#First word-difference machine with 33 states computed.
#Second word-difference machine with 33 states computed.
#System is confluent, or halting factor condition holds.
#Word-acceptor with 36 states computed.
#General multiplier with 104 states computed.
#Validity test on general multiplier succeeded.
#General length-2 multiplier with 220 states computed.
#Checking inverse and short relations.
#Checking relation: _8*6*_7*_5 = _2*4*_1*_3
#Axiom checking succeeded.
> G;
An automatic group.
Generator Ordering = [a, a^-1, b, b^-1, c, c^-1, d, d^-1]
The second word difference machine has 33 states.
The word acceptor has 36 states.

73.2.2 Modifying Limits
In this section we describe the various parameters used to control the execution of the
procedures employed to determine the automatic structure.

AutomaticGroup(F: parameters)
IsAutomaticGroup(F: parameters)

Attempt to construct an automatic structure for the finitely presented group F (see
the main entry). We now present details of the various parameters used to control
the execution of the procedures.

Large Boolelt Default : false
If Large is set to true large hash tables are used internally. Also the Knuth–
Bendix algorithm is run with larger parameters, specifically TidyInt is set to 500,
MaxRelns is set to 262144, MaxStates is set to unlimited, HaltingFactor is set to
100, MinTime is set to 20 and ConfNum is set to 0. It is advisable to use this option
only after having first tried without it, since it will result in much longer execution
times for easy examples.

MaxRelations RNGIntElt Default : 200
Limit the maximum number of reduction equations to MaxRelations.

\[\text{TidyInt} \quad \text{RngIntElt} \quad \text{Default : 20} \]

After finding n new reduction equations, the completion procedure interrupts the main process of looking for overlaps, to tidy up the existing set of equations. This will eliminate any redundant equations performing some reductions on their left and right hand sides to make the set as compact as possible. (The point is that equations discovered later often make older equations redundant or too long.) The word-differences arising from the equations are calculated after each such tidying and the number reported if verbose printing is on. The best strategy in general is to try a small value of TidyInt first and, if that is not successful, try increasing it. Large values such as 1000 work best in really difficult examples.

\[\text{GeneratorOrder} \quad \text{SeqEnum} \quad \text{Default :} \]

Give an ordering for the generators of P. This ordering affects the ordering of words in the alphabet. If not specified, the ordering defaults to $[g_1, g_1^{-1}, \ldots, g_n, g_n^{-1}]$ where g_1, \ldots, g_n are the generators of F.

\[\text{MaxWordDiffs} \quad \text{RngIntElt} \quad \text{Default :} \]

Limit the maximum number of word differences to MaxWordDiffs. The default behaviour is to increase the number of allowed word differences dynamically as required, and so usually one does not need to set this option.

\[\text{HaltingFactor} \quad \text{RngIntElt} \quad \text{Default : 100} \]

\[\text{MinTime} \quad \text{RngIntElt} \quad \text{Default : 5} \]

These options are experimental halting options. HaltingFactor is a positive integer representing a percentage. After each tidying it is checked whether both the number of equations and the number of states have increased by more than HaltingFactor percent since the number of word-differences was last less than what it is now. If so the program halts. A sensible value seems to be 100, but occasionally a larger value is necessary. If the MinTime option is also set then halting only occurs if at least MinTime seconds of cpu-time have elapsed altogether. This is sometimes necessary to prevent very early premature halting. It is not very satisfactory, because of course the cpu-time depends heavily on the particular computer being used, but no reasonable alternative has been found yet.

\begin{verbatim}
SetVerbose("KBMAG", v)
\end{verbatim}

Set the verbose printing level for the Knuth–Bendix completion algorithm. Setting this level allows a user to control how much extra information on the progress of the algorithm is printed. Currently the legal values for v are 0 to 3 inclusive. Setting v to 0 corresponds to the ‘-silent’ option of KBMAG in which no extra output is printed. Setting v to 2 corresponds to the ‘-v’ (verbose) option of KBMAG in which a small amount of extra output is printed. Setting v to 3 corresponds to the ‘-vv’ (very verbose) option of KBMAG in which a huge amount of diagnostic information is printed.
We attempt to construct an automatic structure for one of Listing’s knot groups.

```maple
> F := Group< d, f | f*d*f^-1*d*f*d*f^-1*d^-1*f^-1*d*f^-1*d^-1=1>;
> b, G := IsAutomaticGroup(F);
Running Knuth-Bendix with the following parameter values
MaxRelations = 200
MaxStates = 0
TidyInt = 20
MaxWdiffs = 512
HaltingFactor = 100
MinTime = 5
#Maximum number of equations exceeded.
#Halting with 195 equations.
#First word-difference machine with 45 states computed.
#Second word-difference machine with 53 states computed.
> b;
false;
So this attempt has failed. We run the IsAutomaticGroup function again setting Large to true. This time we succeed.

> f, G := IsAutomaticGroup(F: Large := true);
Running Knuth-Bendix with the following parameter values
MaxRelations = 262144
MaxStates = 0
TidyInt = 500
MaxWdiffs = 512
HaltingFactor = 100
MinTime = 5
#Halting with 3055 equations.
#First word-difference machine with 49 states computed.
#Second word-difference machine with 61 states computed.
#System is confluent, or halting factor condition holds.
#Word-acceptor with 101 states computed.
#General multiplier with 497 states computed.
#Multiplier incorrect with generator number 3.
#General multiplier with 509 states computed.
#Multiplier incorrect with generator number 3.
#General multiplier with 521 states computed.
#Multiplier incorrect with generator number 3.
#General multiplier with 525 states computed.
#Validity test on general multiplier succeeded.
#General length-2 multiplier with 835 states computed.
#Checking inverse and short relations.
#Checking relation: _3*_1*_4*_1*_3 = _1*_3*_2*_3*_1
#Axiom checking succeeded.
> G;
An automatic group.
```
Generator Ordering = [d, d^-1, f, f^-1]
The second word difference machine has 89 states.
The word acceptor has 101 states.

Example H73E3

We construct the automatic group corresponding to the fundamental group of the trefoil knot. A generator order is specified.

> F<a, b> := Group< a, b | b*a^-1*b=a^-1*b*a^-1>; > f, G := IsAutomaticGroup(F: GeneratorOrder := [a,a^-1, b, b^-1]); Running Knuth-Bendix with the following parameter values
MaxRelations = 200
MaxStates = 0
TidyInt = 20
MaxWdiffs = 512
HaltingFactor = 100
MinTime = 5
#Halting with 83 equations.
#First word-difference machine with 15 states computed.
#Second word-difference machine with 17 states computed.
#System is confluent, or halting factor condition holds.
#Word-acceptor with 15 states computed.
#General multiplier with 67 states computed.
#Multiplier incorrect with generator number 4.
#General multiplier with 71 states computed.
#Validity test on general multiplier succeeded.
#General length-2 multiplier with 361 states computed.
#Checking inverse and short relations.
#Checking relation: _3*_2*_3 = _2*_3*_2
#Axiom checking succeeded.
> G;
An automatic group.
Generator Ordering = [a, a^-1, b, b^-1]
The second word difference machine has 21 states.
The word acceptor has 15 states.

73.2.3 Accessing Group Information

The functions in this group provide access to basic information stored for a rewrite group G.

$$G . i$$

The i-th defining generator for G. The integer i must lie in the range $[-r, r]$, where r is the number of group G.
Generators(G)
A sequence containing the defining generators for \(G \).

NumberOfGenerators(G)
Ngens(G)
The number of defining generators for \(G \).

Example H73E4

We illustrate the access operations using the Von Dyck \((2,3,5)\) group (isomorphic to \(A_5 \)).

\[
\begin{align*}
&> \text{F<a,b>} := \text{FreeGroup}(2); \\
&> \text{Q} := \text{quo< F | a*a=1, b*b=b^(-1), a*b^(-1)*a*b^(-1)*a=b*a*b*a*b>;} \\
&> f, G<a,b> := \text{IsAutomaticGroup(Q);} \\
&> G; \\
&\text{An automatic group.} \\
&\text{Generator Ordering} = [a, a^{-1}, b, b^{-1}] \\
&\text{The second word difference machine has 33 states.} \\
&\text{The word acceptor has 28 states.} \\
&> \text{print G.1*G.2;} \\
&\text{a * b} \\
&> \text{print Generators(G);} \\
&[a, b] \\
&> \text{print Ngens(G);} \\
&2 \\
&> \text{rels := Relations(G);} \\
&> \text{print rels[1];} \\
&\text{Q.2 * Q.2^(-1) = Id(Q)} \\
&> \text{print rels[2];} \\
&\text{Q.2^(-1) * Q.2 = Id(Q)} \\
&> \text{print rels[3];} \\
&\text{Q.1^2 = Id(Q)} \\
&> \text{print rels[4];} \\
&\text{Q.2^2 = Q.2^(-1)} \\
&> \text{print Nrels(G);} \\
&18 \\
&> \text{print Ordering(G);} \\
&\text{ShortLex}
\end{align*}
\]
73.3 Properties of an Automatic Group

IsFinite(G)

Given an automatic group G return `true` if G has finite order and `false` otherwise.

If G does have finite order also return the order of G.

Order(G)

The order of the group G as an integer. If the order of G is known to be infinite, the symbol ∞ is returned.

Example H73E5

We construct the group $\mathbb{Z} \wr C_2$ and compute its order. The result of *Infinity* indicates that the group has infinite order.

```
> F<a,b,t> := FreeGroup(3);
> Q := quo< F | t^2=1, b*a=a*b, t*a*t=b>;
> f, G := IsAutomaticGroup(Q);
Running Knuth-Bendix with the following parameter values
MaxRelations = 200
MaxStates = 0
TidyInt = 20
MaxWdiffs = 512
HaltingFactor = 100
MinTime = 5
#System is confluent.
#Halting with 14 equations.
#First word-difference machine with 14 states computed.
#Second word-difference machine with 14 states computed.
#System is confluent, or halting factor condition holds.
#Word-acceptor with 6 states computed.
#General multiplier with 27 states computed.
#Validity test on general multiplier succeeded.
#Checking inverse and short relations.
> Order(G);
Infinity
```

Example H73E6

We construct a three fold cover of A_6 and check whether it has finite order.

```
> FG<a,b> := FreeGroup(2);
> F := quo< FG | a^3=1, b^3=1, (a*b)^4=1, (a*b^-1)^5=1>;
> f, G := IsAutomaticGroup(F : GeneratorOrder := [a,b,a^-1,b^-1]);
Running Knuth-Bendix with the following parameter values
MaxRelations = 200
```
MaxStates = 0
TidyInt = 20
MaxW diffs = 512
HaltingFactor = 100
MinTime = 5
System is confluent.
Halting with 183 equations.
First word-difference machine with 289 states computed.
Second word-difference machine with 360 states computed.
System is confluent, or halting factor condition holds.
Word-acceptor with 314 states computed.
General multiplier with 1638 states computed.
Multiplier incorrect with generator number 4.
General multiplier with 1958 states computed.
Multiplier incorrect with generator number 2.
General multiplier with 2020 states computed.
Multiplier incorrect with generator number 1.
General multiplier with 2038 states computed.
Validity test on general multiplier succeeded.
General length-2 multiplier with 4252 states computed.
Checking inverse and short relations.
Checking relation: _1 * _2 * _1 * _2 = _4 * _3 * _4 * _3
Checking relation: _1 * _4 * _1 * _4 * _1 = _2 * _3 * _2 * _3 * _2

Axiom checking succeeded.
> IsFinite(G);
true 1080
> isf, ord := IsFinite(G);
> isf, ord;
true 1080

73.4 Arithmetic with Words

73.4.1 Construction of a Word

Given an automatic group G defined on r generators and a sequence $[i_1, \ldots, i_s]$ of integers lying in the range $[-r, r]$, excluding 0, construct the word

$$ G. |i_1|^{\epsilon_1} * G. |i_2|^{\epsilon_2} * \cdots * G. |i_s|^{\epsilon_s} $$

where ϵ_j is $+1$ if i_j is positive, and -1 if i_j is negative. The word will be returned in reduced form.
Construct the identity word in the automatic group G.

The parent group G for the word w.

Example H73E7

We construct some words in a two-generator two-relator group.

```plaintext
> F<a, b> := Group< a, b | a^2 = b^2, a*b*a = b*a*b >;
> f, G<a, b> := IsAutomaticGroup(F);
> G;
An automatic group.
Generator Ordering = [ $.1, $.1^-1, $.2, $.2^-1 ]
The second word difference machine has 11 states.
The word acceptor has 8 states.

> Id(G);
Id(G)
> print G!1;
Id(G)
> a*b*a*b^3;
a^4 * b * a
> G![1,2,1,2,2,2];
a^4 * b * a
```

73.4.2 Operations on Elements

Having constructed an automatic group G one can perform arithmetic with words in G. Assuming we have $u, v \in G$ then the product $u \ast v$ will be computed as follows:

(i) The product $w = u \ast v$ is formed as a product in the appropriate free group.

(ii) w is reduced using the second word difference machine associated with G.

Note that:

(i) Reduction of w can cause an increase in the length of w. At present there is an internal limit on the length of a word – if this limit is exceeded during reduction an error will be raised. Hence any word operation involving reduction can fail.

(ii) The implementation is designed more with speed of execution in mind than with minimizing space requirements; thus, the reduction machine is always used to carry out word reduction, which can be space-consuming, particularly when the number of generators is large.
Given words \(w \) and \(v \) belonging to a common group, return their product.

Given words \(w \) and \(v \) belonging to a common group, return the product of the word \(u \) by the inverse of the word \(v \), i.e. the word \(u \ast v^{-1} \).

The \(n \)-th power of the word \(w \).

Given words \(w \) and \(v \) belonging to a common group, return the conjugate of the word \(u \) by the word \(v \), i.e. the word \(v^{-1} \ast u \ast v \).

The inverse of the word \(w \).

Given words \(w \) and \(v \) belonging to a common group, return the commutator of the words \(u \) and \(v \), i.e., the word \(u^{-1}v^{-1}uv \).

Given \(r \) words \(u_1, \ldots, u_r \) belonging to a common group, return their commutator. Commutators are left-normed, so they are evaluated from left to right.

Given words \(w \) and \(v \) belonging to the same group, return \texttt{true} if \(w \) and \(v \) reduce to the same normal form, \texttt{false} otherwise. If \(G \) is confluent this tests for equality. If \(G \) is non-confluent then two words which are the same may not reduce to the same normal form.

Given words \(w \) and \(v \) belonging to the same group, return \texttt{false} if \(w \) and \(v \) reduce to the same normal form, \texttt{true} otherwise. If \(G \) is confluent this tests for non-equality. If \(G \) is non-confluent then two words which are the same may reduce to different normal forms.

Returns \texttt{true} if the word \(w \) is the identity word.

The length of the word \(w \).
ElementToSequence(u)

Eltseq(u)

The sequence Q obtained by decomposing the element u of a rewrite group into its constituent generators and generator inverses. Suppose u is a word in the rewrite group G. Then, if $u = G_i e_1 \cdots G_i e_m$, with each $e_i = \pm 1$, then $Q[j] = i_j$ if $e_j = +1$ and $Q[j] = -i_j$ if $e_j = -1$, for $j = 1, \ldots, m$.

Example H73E8

We illustrate the word operations by applying them to elements of the fundamental group of a 3-manifold.

We illustrate the word operations by applying them to elements of a free group of rank two (with lots of redundant generators).

```plaintext
> FG<a,b,c,d,e> := FreeGroup(5);
> F := quo< FG | a*d*d=1, b*d*d*d=1, c*d*d*d*d*e*e*e*e*e=1>;
> f, G<a,b,c,d,e> := IsAutomaticGroup(F);
> G;
An automatic group.  
Generator Ordering = [ a, a^-1, b, b^-1, c, c^-1, d, d^-1, e, e^-1 ]
The second word difference machine has 41 states.
The word acceptor has 42 states.
The word acceptor has 42 states.
> print a*d;
d'^-1
> print a/(d'^-1);
d'^-1
> print c*d^5*e^2;
e'^-1
> print a^b, b'^-1*a*b;
a a
> print (a*d)'^-2, Inverse(a*d)^'^-2;
  a'^-1 a'^-1
> print c'^^-1*d'^^-1*c^d eq (c,d);
true
> print IsIdentity(b*d^3);
true
> print #(c*d*d*d*d*e*e);
1
```
73.5 Homomorphisms
For a general description of homomorphisms, we refer to chapter 16. This section describes some special aspects of homomorphisms whose domain or codomain is an automatic group.

73.5.1 General Remarks
Groups in the category GrpAtc currently are accepted as codomains only in some special situations. The most important cases in which an automatic group can be used as a codomain are group homomorphisms whose domain is in one of the categories GrpFP, GrpGPC, GrpRWS or GrpAtc.

73.5.2 Construction of Homomorphisms

\texttt{hom< A -> G | S >}

Returns the homomorphism from the automatic group \(A \) to the group \(G \) defined by the expression \(S \) which can be the one of the following:

(i) A list, sequence or indexed set containing the images of the \(n \) generators \(A.1, \ldots, A.n \) of \(A \). Here, the \(i \)-th element of \(S \) is interpreted as the image of \(A.i \), i.e. the order of the elements in \(S \) is important.

(ii) A list, sequence, enumerated set or indexed set, containing \(n \) tuples \(< x_i, y_i > \) or arrow pairs \(x_i \rightarrow y_i \), where \(x_i \) is a generator of \(A \) and \(y_i \in G \) \((i = 1, \ldots, n)\) and the set \(\{x_1, \ldots, x_n\} \) is the full set of generators of \(A \). In this case, \(y_i \) is assigned as the image of \(x_i \), hence the order of the elements in \(S \) is not important.

It is the user's responsibility to ensure that the provided generator images actually give rise to a well-defined homomorphism. No checking is performed by the constructor.

Note that it is currently not possible to define a homomorphism by assigning images to the elements of an arbitrary generating set of \(A \).

73.6 Set Operations
In this section we describe functions which allow the user to enumerate various sets of elements of an automatic group \(G \).

\texttt{Random(G, n)}

A random word of length at most \(n \) in the generators of \(G \).

\texttt{Random(G)}

A random word (of length at most the order of \(G \)) in the generators of \(G \).

\texttt{Representative(G)}

\texttt{Rep(G)}

An element chosen from \(G \).
Set(G, a, b)
Search
MONSTGElt
Default : “DFS”
Create the set of words, \(w \), in \(G \) with \(a \leq \text{length}(w) \leq b \). If Search is set to "DFS" (depth-first search) then words are enumerated in lexicographical order. If Search is set to "BFS" (breadth-first-search) then words are enumerated in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker. Since the result is a set the words may not appear in the resultant set in the search order specified (although internally they will be enumerated in this order).

Set(G)
Search
MONSTGElt
Default : “DFS”
Create the set of words that is the carrier set of \(G \). If Search is set to "DFS" (depth-first search) then words are enumerated in lexicographical order. If Search is set to "BFS" (breadth-first-search) then words are enumerated in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker. Since the result is a set the words may not appear in the resultant set in the search order specified (although internally they will be enumerated in this order).

Seq(G, a, b)
Search
MONSTGElt
Default : “DFS”
Create the sequence \(S \) of words, \(w \), in \(G \) with \(a \leq \text{length}(w) \leq b \). If Search is set to "DFS" (depth-first search) then words will appear in \(S \) in lexicographical order. If Search is set to "BFS" (breadth-first-search) then words will appear in \(S \) in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker.

Seq(G)
Search
MONSTGElt
Default : “DFS”
Create a sequence \(S \) of words from the carrier set of \(G \). If Search is set to "DFS" (depth-first-search) then words will appear in \(S \) in lexicographical order. If Search is set to "BFS" (breadth-first-search) then words will appear in \(S \) in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker.

Example H73E9
We construct the group \(D_{22} \), together with a representative word from the group, a random word and a random word of length at most 5 from the group, and the set of elements of the group.

```plaintext
> FG<a,b,c,d,e,f> := FreeGroup(6);
> F := quo< FG | a*c^-1*a^-1*d=1, b*f*b^-1*e^-1=1,
>       c*e*c^-1*d^-1=1, d*f^-1*d^-1*a=1,
>       e*b*e^-1*a^-1=1, f*c^-1*f^-1*b^-1=1 >;
```
> f, G<a,b,c,d,e,f> := IsAutomaticGroup(F);
Running Knuth-Bendix with the following parameter values
MaxRelations = 200
MaxStates = 0
TidyInt = 20
MaxW diffs = 512
HaltingFactor = 100
MinTime = 5
#System is confluent.
#Halting with 41 equations.
#First word-difference machine with 16 states computed.
#Second word-difference machine with 17 states computed.
#System is confluent, or halting factor condition holds.
#Word-acceptor with 6 states computed.
#General multiplier with 58 states computed.
#Validity test on general multiplier succeeded.
#Checking inverse and short relations.
#Axiom checking succeeded.
> Representative(G);
Id(G)
> Random(G);
a*c;
> Random(G, 5);
a * b
> Set(G);
{ a * d * b, a * b, a * b * e, a * c, a * d, d * b, b * e,
 a * b * a, a * b * d, b * a, a * c * e, Id(G), b * d, c * e,
 e, f, a, a * e, b, c, a * f, d }
> Seq(G : Search := "BFS");
[Id(G), a, b, c, d, e, f, a * b, a * c, a * d, a * e, a * f,
 b * a, b * d, b * e, c * e, d * b, a * b * a, a * b * d,
 a * b * e, a * c * e, a * d * b]

73.7 The Growth Function

GrowthFunction(G) Primes
Primes SEQENUM Default : []

Compute the rational growth function of the word acceptor automaton associated
with G. The rational growth function of an automaton A is the quotient of two
integral polynomials in a single variable x. The coefficient of x^n in the Taylor
expansion of this quotient is equal to the number of accepted words of A of length
n.

The algorithm is by Derek Holt. The Primes parameter is no longer used, but
is kept for backward compatibility. It may be removed in future releases.
Example H73E10

We construct a cyclic group of order 5 and compute the rational growth function of its word acceptor. Note here that the R!f is only necessary to get pretty printing, specifically to ensure that f is printed in the variable x.

```maple
> R<x> := RationalFunctionField(Integers());
> FG<a> := FreeGroup(1);
> Q := quo< FG | a^5=1>;
> G := AutomaticGroup(Q);
> f := GrowthFunction(G);
> R!f;
2*x^2 + 2*x + 1
```

Now we give an example of an infinite group.

```maple
> FG2<d,e> := FreeGroup(2);
> Q2 := quo<FG2| d^2, e^3>;
> G2 := AutomaticGroup(Q2);
> R!GrowthFunction(G2);
(-2*x^2 - 3*x - 1)/(2*x^2 - 1)
```

73.8 Bibliography

74 GROUPS OF STRAIGHT-LINE PROGRAMS

74.1 Introduction 2271
74.2 Construction of an SLP-Group and its Elements 2271
 74.2.1 Structure Constructors 2271
 SLPGroup(n) 2271
 74.2.2 Construction of an Element 2272
 Identity(G) 2272
 Id(G) 2272
 ! 2272
74.3 Arithmetic with Elements . . 2272
 * 2272
 - 2272
 # 2272
 74.3.1 Accessing the Defining Generators and Relations 2272
 . 2272
 Generators(G) 2272
 NumberOfGenerators(G) 2272
 Ngens(G) 2272
 Parent(u) 2272
74.4 Addition of Extra Generators . 2273
 AddRedundantGenerators(G, Q) 2273
74.5 Creating Homomorphisms . . 2273
 hom< > 2273
 Evaluate(u, Q) 2273
 Evaluate(u, G) 2273
 Evaluate(v, Q) 2273
 Evaluate(v, G) 2273
74.6 Operations on Elements . . . 2275
 74.6.1 Equality and Comparison 2275
 eq 2275
 ne 2275
74.7 Set-Theoretic Operations . . . 2275
 74.7.1 Membership and Equality 2275
 in 2275
 notin 2275
 subset 2275
 notsubset 2275
 74.7.2 Set Operations 2276
 RandomProcess(G) 2276
 Random(P) 2276
 Rep(G) 2276
 74.7.3 Coercions Between Related Groups 2277
 ! 2277
74.8 Bibliography 2277
Chapter 74
GROUPS OF STRAIGHT-LINE PROGRAMS

74.1 Introduction
This Chapter describes the category of straight-line program groups (SLP-groups). A straight-line program is formally a sequence \([s_1, s_2, \ldots, s_n]\) such that each \(s_i\) is one of the following:

(i) A generator of the SLP-group;
(ii) A product \(s_js_k, \ j < i, k < i\);
(iii) A power \(s_j^n, \ j < i\);
(iv) A conjugate \(s_j^s, \ j < i, k < i\).

Effectively, a straight-line program can be regarded as a word in the generators which is stored as an expression tree instead of a list of generator-exponent pairs.

The importance of such a category of groups is that storing a word as an expression tree allows much faster evaluation of homomorphisms given as the unique extension of a mapping of the generators into a group of any category, as common subexpressions may be computed once only, and powers or conjugates may be more efficiently computed in the target group than by a linear product of generators and their inverses.

The name in MAGMA for the category of SLP-groups is \text{GrpSLP}.

74.2 Construction of an SLP-Group and its Elements

74.2.1 Structure Constructors

\texttt{SLPGroup(n)}

Construct the free group \(F\) of straight-line programs on \(n\) generators, where \(n\) is a non-negative integer. The \(i\)-th generator may be referenced by the expression \(F.i, \ i = 1, \ldots, n\).

Example H74E1

The statement

\[
> F := \text{SLPGroup}(2);
\]

creates the free group on two generators. Here the generators may be referenced using the standard names, \(F.1\) and \(F.2\). Group operations on the elements will be stored as part of the result.
74.2.2 Construction of an Element

<table>
<thead>
<tr>
<th>Identity(G)</th>
<th>Id(G)</th>
<th>G 1</th>
</tr>
</thead>
</table>

Construct the identity element (the straight-line program [] of length 0) for the SLP-group \(G \).

74.3 Arithmetic with Elements

<table>
<thead>
<tr>
<th>(u \ast v)</th>
</tr>
</thead>
</table>

Given straight-line programs \(u = [u_1, \ldots, u_m] \) and \(v = [v_1, \ldots, v_n] \) belonging to the same SLP-group \(G \), return a straight-line program corresponding to the product of \(u \) and \(v \). It is clear that the straight-line program \([u_1, \ldots, u_m, v_1, \ldots, v_n, u_m v_n] \) satisfies the formal definition. In practice, the \(u_i \) and \(v_i \) need not be distinct, so the resulting program may be shorter.

<table>
<thead>
<tr>
<th>(u \wedge m)</th>
</tr>
</thead>
</table>

Given an integer \(m \) and a straight-line program \(u \), return the straight-line program corresponding to the \(m \)-th power of \(u \).

<table>
<thead>
<tr>
<th>(u \wedge v)</th>
</tr>
</thead>
</table>

Given straight-line programs \(u \) and \(v \), return the straight-line program corresponding to the conjugate of \(u \) by \(v \).

<table>
<thead>
<tr>
<th>#u</th>
</tr>
</thead>
</table>

Given a straight-line program \(u \), return the number of multiplication, power or conjugate operations required to evaluate a homomorphism on \(u \).

74.3.1 Accessing the Defining Generators and Relations

The functions described here provide access to basic information stored for an SLP-group \(G \).

<table>
<thead>
<tr>
<th>(G \cdot i)</th>
</tr>
</thead>
</table>

The \(i \)-th generator for \(G \).

<table>
<thead>
<tr>
<th>Generators(G)</th>
</tr>
</thead>
</table>

A set containing the generators for \(G \).

<table>
<thead>
<tr>
<th>NumberOfGenerators(G)</th>
</tr>
</thead>
</table>

The number of generators for \(B \).

<table>
<thead>
<tr>
<th>Parent(u)</th>
</tr>
</thead>
</table>

The parent group \(G \) of the straight-line program \(u \).
74.4 Addition of Extra Generators

It is often the case that a particular expression in the original generators is important in some homomorphic image of the group in the sense that it will very often form a common subexpression of subsequent expression. For this reason, MAGMA provides facilities to build related SLP-groups in which particular words acquire generator status themselves.

```plaintext
AddRedundantGenerators(G, Q)
```

An SLP-group \(H \) on \(n + q \) generators (where \(G \) has \(n \) generators and \(Q \) has \(q \) elements). Furthermore, the identification of \(G.i \) with \(H.i \ (i \leq n) \) and of \(Q[i] \) with \(H.(n + i) \) is maintained, allowing coercion between \(G \) and \(H \) and also simple definition of homomorphisms.

74.5 Creating Homomorphisms

Because SLP-groups exist primarily to allow the user to write efficient code for evaluating words under a homomorphism, there are some extra features in the homomorphism constructor which rely on the user providing correct input.

When evaluating single words, it may not be desirable to explicitly construct the homomorphism. The `Evaluate` function uses the same evaluation mechanism as the homomorphisms and may be a useful alternative.

```plaintext
hom< G -> H | L: parameters >
```

- **CheckCodomain** \(\text{ BoolElt } \) \(\text{ Default : true } \)

 Return the group homomorphism \(\phi : G \rightarrow H \) defined by the list \(L \). The list may contain:

 (i) Elements of the codomain. This form can only be used when all the preceding entries have given the image of the corresponding generator of \(G \);

 (ii) Generator-image pairs of the form \(G.i \rightarrow x \) or \(<G.i, x> \);

 (iii) A homomorphism \(\psi \) from an SLP-group \(B \) to \(H \) where \(G \) has been defined as a result of adding redundant generators to \(B \). If this item appears, it must appear first. After the remaining generators have been processed, any images which are not yet assigned are computed from \(\psi \). If the parameter \(\text{CheckCodomain} \) has the value \(\text{false} \), then it is assumed that the generator images lie in the codomain.

```plaintext
Evaluate(u, Q)
Evaluate(u, G)
Evaluate(v, Q)
Evaluate(v, G)
```

Evaluate the word \(u \) using the elements of \(Q \) as images of the generators of the parent of \(u \). The sequence \(Q \) must contain at least as many group elements as the parent of \(u \) has generators.
The second form evaluates all the words in \(v \) simultaneously, which is usually quicker than doing individual evaluations.

When the second argument is a group \(G \), \(Q \) is taken as the sequence of generators of \(G \).

Example H74E2

An illustration of the use of \texttt{AddRedundantGenerators} and the homomorphism constructing machinery.

```plaintext
> G := SLPGroup(2);
> M := GeneralLinearGroup(19, 7);
> P := RandomProcess(G);
> x := Random(P);
> #x;
74

We evaluate \( x \) in \( M \) using the \texttt{Evaluate} function.

```plaintext
> m := Evaluate(x, [M.1, M.2]);
> Order(m);
118392315154200
```

If we wish to evaluate several different words, we may be better off using a homomorphism.

```plaintext
> Q := [x^G.1, x^G.2, x^(G.1*G.2)];
> phi := hom<G -> M | M.1, M.2>;
> time R1 := phi(Q);
Time: 0.129

We note that \(x \) has become important since it is now a common sub-expression of several straight-line programs. We can build a homomorphism which will store the image of \(x \) by adding \(x \) as a redundant generator and defining the same homomorphism from the resulting group.

```plaintext
> H := AddRedundantGenerators(G, [x]);
> QQ := [H | x: x in Q];

We will define \( \psi \) as the unique map on \( H \) which matches \( \phi \).

```plaintext
> psi := hom<H -> M | phi>;
> time R2 := psi(QQ);
Time: 0.000
> R1 eq R2;
true
```

In fact, if we had looked at the expression lengths of the straight-line programs involved, we would have found the following, which explains the significant speed up:

```plaintext
> [#x: x in Q];
[75, 75, 75]
> [#x: x in QQ];
[1, 1, 2]
```
74.6 Operations on Elements

74.6.1 Equality and Comparison

\( u \text{ eq } v \)

Returns true if and only if the straight-line programs \( u \) and \( v \) are identical. Identical here means they are identical as expression trees, not that they will always evaluate to the same word in the generators.

\( u \text{ ne } v \)

Returns true if and only if the straight-line programs \( u \) and \( v \) are not identical. Identical here means they are identical as expression trees, not that they will always evaluate to the same word in the generators.

74.7 Set-Theoretic Operations

74.7.1 Membership and Equality

\( g \text{ in } G \)

Given a straight-line program \( g \) and an SLP-group \( G \), return true if \( g \) is an element of \( G \), false otherwise.

\( g \text{ notin } G \)

Given an straight-line program \( g \) and an SLP-group \( G \), return true if \( g \) is not an element of \( G \), false otherwise.

\( S \text{ subset } G \)

Given an group \( G \) and a set \( S \) of elements belonging to a group \( H \), where \( G \) and \( H \) are related, return true if \( S \) is a subset of \( G \), false otherwise.

\( S \text{ notsubset } G \)

Given a group \( G \) and a set \( S \) of elements belonging to a group \( H \), where \( G \) and \( H \) are related, return true if \( S \) is not a subset of \( G \), false otherwise.
74.7.2 Set Operations

RandomProcess(G)

<table>
<thead>
<tr>
<th>Slots</th>
<th>RngIntElt</th>
<th>Default : 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scramble</td>
<td>RngIntElt</td>
<td>Default : 100</td>
</tr>
</tbody>
</table>

Create a process to generate randomly chosen elements from the group \( G \). The process is based on the product-replacement algorithm of [CLGM+95], modified by the use of an accumulator. At all times, \( N \) elements are stored where \( N \) is the maximum of the specified value for \( \text{Slots} \) and \( \text{Ngens}(G)+1 \). Initially, these are just the generators of \( G \). As well, one extra group element is stored, the accumulator. Initially, this is the identity. Random elements are now produced by successive calls to Random(P), where \( P \) is the process created by this function. Each such call chooses one of the elements in the slots and multiplies it into the accumulator. The element in that slot is replaced by the product of it and another randomly chosen slot. The random value returned is the new accumulator value. Setting Scramble := \( m \) causes \( m \) such operations to be performed before the process is returned.

It should be noted that this process is not suitable for infinite groups, since all elements produced are products of the generators only and not their inverses. However, as long as the homomorphic image of \( G \) that is being worked with is finite, there is no problem.

Random(P)

Given a random element process \( P \) created by the function RandomProcess(G) for the SLP-group \( G \), construct a random element of \( G \) by forming a random product over the expanded generating set stored as part of the process. The expanded generating set stored with the process is modified by replacing an existing generator by the element returned.

Rep(G)

A representative element of \( G \).

Example H74E3

As an illustration of the efficiency of computing homomorphisms from SLP-groups, we set up the same random expression as both a straight-line program and a linear word.

```plaintext
> G := SLPGroup(3);
> F := FreeGroup(3);
> M := GeneralOrthogonalGroup(7, 3);
> gf := hom<G -> F | F.1, F.2, F.3>;
> gm := hom<G -> M | M.1, M.2, M.3>;
> fm := hom<F -> M | M.1, M.2, M.3>;
> P := RandomProcess(G);
> x := Random(P);
> #x;
```
The evaluation of the straight-line program will take 85 operations in M.

```plaintext
> w := gf(x);
> #w;
52307
```

The evaluation of the word will take 52306 multiplications in M.

```plaintext
> time h1 := gm(x);
Time: 0.020
> time h2 := fm(w);
Time: 1.640
> h1 eq h2;
true
```

### 74.7.3 Coercions Between Related Groups

\[
G \rightarrow g
\]

Given an element \( g \) belonging to an SLP-group \( H \) related to the group \( G \), rewrite \( g \) as an element of \( G \).

### 74.8 Bibliography

75 FINITELY PRESENTED SEMIGROUPS

75.1 Introduction . . . . . . . . 2281
75.2 The Construction of Free Semigroups and their Elements . . 2281
  75.2.1 Structure Constructors . . . . . . 2281
    FreeSemigroup(n) 2281
    FreeMonoid(n) 2281
  75.2.2 Element Constructors . . . . . . 2282
    ! 2282
    Id(M) 2282
    ! 2282

75.3 Elementary Operators for Words2282
  75.3.1 Multiplication and Exponentiation . 2282
    * 2282
    ^ 2282
    ! 2282
  75.3.2 The Length of a Word . . . . . . 2282
    # 2282
  75.3.3 Equality and Comparison . . . . . . 2283
    eq 2283
    ne 2283
    lt 2283
    le 2283
    ge 2283
    gt 2283
    IsOne(u) 2283

75.4 Specification of a Presentation 2284
  75.4.1 Relations . . . . . . . . . . . . 2284
    = 2284
    LHS(r) 2284
    RHS(r) 2284
  75.4.2 Presentations . . . . . . . . . . 2284
    Semigroup< > 2284
    Monoid< > 2285

75.4.3 Accessing the Defining Generators and Relations . . . . . . . . 2285

75.5 Subsemigroups, Ideals and Quotients . . . . . . . . . . 2286
  75.5.1 Subsemigroups and Ideals . . . . . . 2286
    sub< > 2286
    ideal< > 2286
    rideal< > 2286
  75.5.2 Quotients . . . . . . . . . . . . 2287
    quo< > 2287

75.6 Extensions . . . . . . . . . . . . 2287
    DirectProduct(R, S) 2287
    FreeProduct(R, S) 2287

75.7 Elementary Tietze Transformations . . . . . . 2287
    AddRelation(S, r) 2287
    AddRelation(S, r, i) 2287
    DeleteRelation(S, r) 2288
    DeleteRelation(S, i) 2288
    ReplaceRelation(S, r_1, r_2) 2288
    ReplaceRelation(S, i, r) 2288
    AddGenerator(S) 2288
    AddGenerator(S, w) 2288
    DeleteGenerator(S, y) 2288

75.8 String Operations on Words . . . . . . . . . . . . . . . . . . . . 2289
    Eliminate(u, x, v) 2289
    Match(u, v, f) 2289
    Random(S, m, n) 2289
    RotateWord(u, n) 2289
    Substitute(u, f, n, v) 2289
    Subword(u, f, n) 2289
    ElementToSequence(u) 2289
    Eltseq(u) 2289
Chapter 75
FINITELY PRESENTED SEMIGROUPS

75.1 Introduction
This Chapter presents the functions designed for computing with finitely-presented semi-
groups (fp-semigroups for short).

75.2 The Construction of Free Semigroups and their Elements

75.2.1 Structure Constructors

*FreeSemigroup*(n)
Construct the free semigroup \(F\) on \(n\) generators, where \(n\) is a positive integer. The
\(i\)-th generator may be referenced by the expression \(F.i\), \(i = 1, \ldots, n\). Note that
a special form of the assignment statement is provided which enables the user to
assign names to the generators of \(F\). In this form of assignment, the list of generator
names is enclosed within angle brackets and appended to the variable name on the
left hand side of the assignment statement.

*FreeMonoid*(n)
Construct the free monoid \(F\) on \(n\) generators, where \(n\) is a positive integer. The
\(i\)-th generator may be referenced by the expression \(F.i\), \(i = 1, \ldots, n\). Note that
a special form of the assignment statement is provided which enables the user to
assign names to the generators of \(F\). In this form of assignment, the list of generator
names is enclosed within angle brackets and appended to the variable name on the
left hand side of the assignment statement.

Example H75E1
The statement

\[
> F := \text{FreeSemigroup}(2);
\]
creates the free semigroup on two generators. Here the generators may be referenced using the
standard names, \(F.1\) and \(F.2\).

The statement

\[
> F<x, y> := \text{FreeSemigroup}(2);
\]
defines \(F\) to be the free semigroup on two generators and assigns the names \(x\) and \(y\) to the
generators.
75.2.2 Element Constructors

Suppose $S$ is an fp-semigroup, not necessarily free, for which generators have already been defined. A word is defined inductively as follows:

(i) A generator is a word;
(ii) The product $uv$ of the words $u$ and $v$ is a word;
(iii) The power of a word, $u^n$, where $u$ is a word and $n$ is an integer, is a word.

An element (word) of $S$ may be constructed as an expression in the generators as outlined below.

Given a semigroup $S$ defined on $r$ generators and a sequence $Q = [i_1, \ldots, i_s]$ of integers lying in the range $[1, r]$, construct the word $G.i_1G.i_2\cdots G.i_s$.

Construct the identity element (empty word) for the fp-monoid $M$.

75.3 Elementary Operators for Words

75.3.1 Multiplication and Exponentiation

The word operations defined here may be applied either to the words of a free semigroup or the words of a semigroup with non-trivial relations.

Given words $u$ and $v$ belonging to the same fp-semigroup $S$, return the product of $u$ and $v$.

The $n$-th power of the word $u$, where $n$ is a positive integer.

Given a sequence $Q$ of words belonging to the fp-semigroup $G$, return the product $Q[1]Q[2]\cdots Q[n]$ of the terms of $Q$ as a word in $G$.

75.3.2 The Length of a Word

The length of the word $u$. 
### Equality and Comparison

The words of an fp-semigroup $S$ are ordered first by length and then lexicographically. The lexicographic ordering is determined by the following ordering on the generators:

$$S.1 < S.2 < S.3 < S.4 < \cdots$$

Here, $u$ and $v$ are words belonging to some common fp-semigroup.

- **u eq v**: Returns `true` if the words $u$ and $v$ are identical (as elements of the appropriate free semigroup), `false` otherwise.

- **u ne v**: Returns `true` if the words $u$ and $v$ are not identical (as elements of the appropriate free semigroup), `false` otherwise.

- **u lt v**: Returns `true` if the word $u$ precedes the word $v$, with respect to the ordering defined above for elements of an fp-semigroup, `false` otherwise.

- **u le v**: Returns `true` if the word $u$ either precedes, or is equal to, the word $v$, with respect to the ordering defined above for elements of an fp-semigroup, `false` otherwise.

- **u ge v**: Returns `true` if the word $u$ either follows, or is equal to, the word $v$, with respect to the ordering defined above for elements of an fp-semigroup, `false` otherwise.

- **u gt v**: Returns `true` if the word $u$ follows the word $v$, with respect to the ordering defined above for elements of an fp-semigroup.

- **IsOne(u)**: Returns `true` if the word $u$, belonging to the monoid $M$, is the identity word, `false` otherwise.
75.4 Specification of a Presentation

75.4.1 Relations

\[ w_1 = w_2 \]

Given words \( w_1 \) and \( w_2 \) over the generators of an fp-semigroup \( S \), create the relation \( w_1 = w_2 \). Note that this relation is not automatically added to the existing set of defining relations \( R \) for \( S \). It may be added to \( R \), for example, through use of the quo-constructor (see below).

**LHS(\( r \))**

Given a relation \( r \) over the generators of \( S \), return the left hand side of the relation \( r \). The object returned is a word over the generators of \( S \).

**RHS(\( r \))**

Given a relation \( r \) over the generators of \( S \), return the right hand side of the relation \( r \). The object returned is a word over the generators of \( S \).

75.4.2 Presentations

A semigroup with non-trivial relations is constructed as a quotient of an existing semigroup, possibly a free semigroup.

**Semigroup< generators | relations >**

Given a generators clause consisting of a list of variables \( x_1, \ldots, x_r \), and a set of relations relations over these generators, first construct the free semigroup \( F \) on the generators \( x_1, \ldots, x_r \) and then construct the quotient of \( F \) corresponding to the ideal of \( F \) defined by relations.

The syntax for the relations clause is the same as for the quo-constructor. The function returns:

(a) The quotient semigroup \( S \);
(b) The natural homomorphism \( \phi : F \to S \).

Thus, the statement

\[
S < y_1, \ldots, y_r > := \text{Semigroup}< x_1, \ldots, x_r | w_1, \ldots, w_s >;
\]

is an abbreviation for

\[
F < x_1, \ldots, x_r > := \text{FreeSemigroup}(r);
S < y_1, \ldots, y_r > := \text{quo} < F | w_1, \ldots, w_s >;
\]
Monoid< generators | relations >

Given a generators clause consisting of a list of variables \( x_1, \ldots, x_r \), and a set of relations relations over these generators, first construct the free monoid \( F \) on the generators \( x_1, \ldots, x_r \) and then construct the quotient of \( F \) corresponding to the ideal of \( F \) defined by relations.

The syntax for the relations clause is the same as for the quo-constructor. The function returns:

(a) The quotient monoid \( M \);
(b) The natural homomorphism \( \phi : F \rightarrow M \).

Thus, the statement

\[
M < y_1, \ldots, y_r > := \text{Monoid}< x_1, \ldots, x_r | w_1, \ldots, w_s >;
\]

is an abbreviation for

\[
F < x_1, \ldots, x_r > := \text{FreeMonoid}(r);
M < y_1, \ldots, y_r > := \text{quo}< F | w_1, \ldots, w_s >;
\]

Example H75E2

We create the monoid defined by the presentation \( < x, y | x^2, y^2, (xy)^2 > \).

\[
\begin{align*}
M<x, y> & := \text{Monoid}< x, y | x^2, y^2, (x*y)^2 >; \\
> M;
\end{align*}
\]

Finitely presented monoid

Relations:

- \( x^2 = \text{Id}(M) \)
- \( y^2 = \text{Id}(M) \)
- \( (x * y)^2 = \text{Id}(M) \)

75.4.3 Accessing the Defining Generators and Relations

The functions in this group provide access to basic information stored for a finitely-presented semigroup \( G \).

\( S . i \)

The i-th defining generator for \( S \).

\( \text{Generators}(S) \)

A set containing the generators for \( S \).

\( \text{NumberOfGenerators}(S) \)

The number of generators for \( S \).

\( \text{Parent}(u) \)

The parent semigroup \( S \) of the word \( u \).
A sequence containing the defining relations for S.

75.5 Subsemigroups, Ideals and Quotients

75.5.1 Subsemigroups and Ideals

\texttt{sub< S \mid L_1, \ldots, L_r >}

Construct the subsemigroup \( R \) of the fp-semigroup \( S \) generated by the words specified by the terms of the generator list \( L_1, \ldots, L_r \).

A term \( L_i \) of the generator list may consist of any of the following objects:

\begin{itemize}
  \item (a) A word;
  \item (b) A set or sequence of words;
  \item (c) A sequence of integers representing a word;
  \item (d) A set or sequence of sequences of integers representing words;
  \item (e) A subsemigroup of an fp-semigroup;
  \item (f) A set or sequence of subsemigroups.
\end{itemize}

The collection of words and semigroups specified by the list must all belong to the semigroup \( S \), and \( R \) will be constructed as a subgroup of \( S \).

The generators of \( R \) consist of the words specified directly by terms \( L_i \) together with the stored generating words for any semigroups specified by terms of \( L_i \). Repetitions of an element and occurrences of the identity element are removed (unless \( R \) is trivial).

\texttt{ideal< S \mid L_1, \ldots, L_r >}

Construct the two-sided ideal \( I \) of the fp-semigroup \( S \) generated by the words specified by the terms of the generator list \( L_1, \ldots, L_r \).

The possible forms of a term \( L_i \) of the generator list are the same as for the \texttt{sub}-constructor.

\texttt{lideal< G \mid L_1, \ldots, L_r >}

Construct the left ideal \( I \) of the fp-semigroup \( S \) generated by the words specified by the terms of the generator list \( L_1, \ldots, L_r \).

The possible forms of a term \( L_i \) of the generator list are the same as for the \texttt{sub}-constructor.

\texttt{rideal< G \mid L_1, \ldots, L_r >}

Construct the right ideal \( I \) of the fp-semigroup \( S \) generated by the words specified by the terms of the generator list \( L_1, \ldots, L_r \).

The possible forms of a term \( L_i \) of the generator list are the same as for the \texttt{sub}-constructor.
75.5.2 Quotients

\begin{verbatim}
 quo< F | relations >
\end{verbatim}

Given an fp-semigroup \( F \), and a list of relations \( \text{relations} \) over the generators of \( F \), construct the quotient of \( F \) by the ideal of \( F \) defined by \( \text{relations} \).

The expression defining \( F \) may be either simply the name of a previously constructed semigroup, or an expression defining an fp-semigroup.

Each term of the list \( \text{relations} \) must be a relation, a relation list or, if \( S \) is a monoid, a word.

A word is interpreted as a relator if \( S \) is a monoid.

A relation consists of a pair of words, separated by '\='. (See above).

A relation list consists of a list of words, where each pair of adjacent words is separated by '\=': \( w_1 = w_2 = \cdots = w_r \). This is interpreted as the relations \( w_1 = w_r, \ldots, w_{r-1} = w_r \).

Note that the relation list construct is only meaningful in the context of the \texttt{fp semigroup}-constructor.

In the context of the \texttt{quo}-constructor, the identity element (empty word) of a monoid may be represented by the digit 1.

Note that this function returns:
(a) The quotient semigroup \( S \);
(b) The natural homomorphism \( \phi : F \to S \).

75.6 Extensions

\begin{verbatim}
 DirectProduct(R, S)
\end{verbatim}

Given two fp-semigroups \( R \) and \( S \), construct the direct product of \( R \) and \( S \).

\begin{verbatim}
 FreeProduct(R, S)
\end{verbatim}

Given two fp-semigroups \( R \) and \( S \), construct the free product of \( R \) and \( S \).

75.7 Elementary Tietze Transformations

\begin{verbatim}
 AddRelation(S, r)
 AddRelation(S, r, i)
\end{verbatim}

Given an fp-semigroup \( S \) and a relation \( r \) in the generators of \( S \), create the quotient semigroup obtained by adding the relation \( r \) to the defining relations of \( S \). If an integer \( i \) is specified as third argument, insert the new relation after the \( i \)-th relation of \( S \). If the third argument is omitted, \( r \) is added to the end of the relations that are carried across from \( S \).
DeleteRelation(S, r)
Given an fp-semigroup $S$ and a relation $r$ that occurs among the given defining relations for $S$, create the semigroup $T$, having the same generating set as $S$ but with the relation $r$ removed.

DeleteRelation(S, i)
Given an fp-semigroup $S$ and an integer $i$, $1 \leq i \leq m$, where $m$ is the number of defining relations for $S$, create the semigroup $T$ having the same generating set as $S$ but with the $i$-th relation omitted.

ReplaceRelation(S, r_1, r_2)
Given an fp-semigroup $S$ and relations $r_1$ and $r_2$ in the generators of $S$, where $r_1$ is one of the given defining relations for $S$, create the semigroup $T$ having the same generating set as $S$ but with the relation $r_1$ replaced by the relation $r_2$.

ReplaceRelation(S, i, r)
Given an fp-semigroup $S$, an integer $i$, $1 \leq i \leq m$, where $m$ is the number of defining relations for $S$, and a relation $r$ in the generators of $S$, create the semigroup $T$ having the same generating set as $S$ but with the $i$-th relation of $S$ replaced by the relation $r$.

AddGenerator(S)
Given an fp-semigroup $S$ with presentation $< X \mid R >$, create the semigroup $T$ with presentation $< X \cup \{y\} \mid R >$, where $y$ denotes a new generator.

AddGenerator(S, w)
Given an fp-semigroup $S$ with presentation $< X \mid R >$ and a word $w$ in the generators of $S$, create the semigroup $T$ with presentation $< X \cup \{y\} \mid R \cup \{y = w\} >$, where $y$ denotes a new generator.

DeleteGenerator(S, y)
Given an fp-semigroup $S$ with presentation $< X \mid R >$ and a generator $y$ of $S$ such that either $S$ has no relations involving $y$, or a single relation $r$ containing a single occurrence of $y$, create the semigroup $T$ with presentation $< X - \{y\} \mid R - \{r\} >$. 


75.8 String Operations on Words

**Eliminate**(u, x, v)

Given words u and v, and a generator x, belonging to a semigroup S, return the word obtained from u by replacing each occurrence of x by v.

**Match**(u, v, f)

Suppose u and v are words belonging to the same semigroup S, and that f is an integer such that 1 ≤ f ≤ #u. If v is a subword of u, the function returns true, as well as the least integer l such that:

(a) l ≥ f; and,

(b) v appears as a subword of u, starting at the l-th letter of u.

If no such l is found, Match returns only false.

**Random**(S, m, n)

A random word of length l in the generators of the semigroup S, where m ≤ l ≤ n.

**RotateWord**(u, n)

The word obtained by cyclically permuting the word u by n places. If n is positive, the rotation is from left to right, while if n is negative the rotation is from right to left. In the case where n is zero, the function returns u.

**Substitute**(u, f, n, v)

Given words u and v belonging to a semigroup S, and non-negative integers f and n, this function replaces the substring of u of length n, starting at position f, by the word v. Thus, if u = x_{i_1} \cdots x_{i_f} \cdots x_{i_{f+n-1}} \cdots x_{i_m} then the substring x_{i_f} \cdots x_{i_{f+n-1}} is replaced by v. If u and v belong to a monoid M and the function is invoked with v = Id(M), then the substring x_{i_f} \cdots x_{i_{f+n-1}} of u is deleted.

**Subword**(u, f, n)

The subword of the word u comprising the n consecutive letters commencing at the f-th letter of u.

**ElementToSequence**(u)

The sequence obtained by decomposing u into the indices of its constituent generators. Thus, if u = x_{i_1} \cdots x_{i_m}, then the sequence constructed by ElementToSequence is [i_1, i_2, \ldots, i_m].
76 MONOIDS GIVEN BY REWRITE SYSTEMS

76.1 Introduction . . . . . . . . 2293
76.1.1 Terminology . . . . . . . . . . 2293
76.1.2 The Category of Rewrite Monoids . 2293
76.1.3 The Construction of a Rewrite Monoid . . . . . . . . . . 2293

76.2 Construction of a Rewrite Monoid . . . . . . . . 2294
RWSMonoid(Q: -) 2294
SetVerbose("KBMAG", v) 2296

76.3 Basic Operations . . . . . . 2299
76.3.1 Accessing Monoid Information . . 2299
Generators(M) 2299
NumberOfGenerators(M) 2299
Ngens(M) 2299
Relations(M) 2299
NumberOfRelations(M) 2299
Nrels(M) 2299
Ordering(M) 2299
Parent(w) 2299
76.3.2 Properties of a Rewrite Monoid . . . . . 2300
IsConfluent(M) 2300
IsFinite(M) 2300
Order(M) 2301
#
76.3.3 Construction of a Word . . . . . . 2302
Identity(M) 2302
Id(M) 2302
!
!
76.3.4 Arithmetic with Words . . . . . . . . . . 2302
* 2303
- 2303
eq 2303
ne 2303
IsId(w) 2303
IsIdentity(w) 2303
# 2303
ElementToSequence(u) 2303
Eltseq(u) 2303
76.4 Homomorphisms . . . . . . 2304
76.4.1 General Remarks . . . . . . . . . . 2304
76.4.2 Construction of Homomorphisms . . . . . . . . . . . . 2304
hom< > 2304
76.5 Set Operations . . . . . . . . . . 2304
Random(M, n) 2304
Random(M) 2304
Representative(M) 2304
Rep(M) 2304
Set(M, a, b) 2305
Set(M) 2305
Seq(M, a, b) 2305
Seq(M) 2305
76.6 Conversion to a Finitely Presented Monoid . . . . . . . . . . . . 2306
76.7 Bibliography . . . . . . . . . . 2307
76.1 Introduction
The category of monoids defined by finite sets of rewrite rules provide a Magma level interface to Derek Holt’s KBMAG programs, and specifically to KBMAG’s Knuth–Bendix completion procedure on monoids defined by a finite presentation. As such much of the documentation in this chapter is taken from the KBMAG documentation [Hol97]. Familiarity with the Knuth–Bendix completion procedure is assumed. Some familiarity with KBMAG would be beneficial.

76.1.1 Terminology
A rewrite monoid $M$ is a finitely presented monoid in which equality between elements of $M$, called words or strings, is decidable via a sequence of rewriting equations, called reduction relations, rules, or equations. In the interests of efficiency the reduction rules are codified into a finite state automaton called a reduction machine. The words in a rewrite monoid $M$ are ordered, as are the reduction relations of $M$. Several possible orderings of words are supported, namely short-lex, recursive, weighted short-lex and wreath-product orderings. A rewrite monoid can be confluent or non-confluent. If a rewrite monoid $M$ is confluent its reduction relations, or more specifically its reduction machine, can be used to reduce words in $M$ to their irreducible normal forms under the given ordering, and so the word problem for $M$ can be efficiently solved.

76.1.2 The Category of Rewrite Monoids
The family of all rewrite monoids forms a category. The objects are the rewrite monoids and the morphisms are monoid homomorphisms. The Magma designation for this category of monoids is $\text{MonRWS}$. Elements of a rewrite monoid are designated as $\text{MonRWSElt}$.

76.1.3 The Construction of a Rewrite Monoid
A rewrite monoid $M$ is constructed in a three-step process:
(i) A free monoid $F$ of the appropriate rank is defined.
(ii) A quotient $Q$ of $F$ is created.
(iii) The Knuth–Bendix completion procedure is applied to the monoid $Q$ to produce a monoid $M$ defined by a rewrite system.

The Knuth–Bendix procedure may or may not succeed. If it fails the user may need to perform the above steps several times, manually adjusting parameters that control the execution of the Knuth–Bendix procedure. If it succeeds then the rewrite systems constructed will be confluent.
76.2 Construction of a Rewrite Monoid

The Knuth–Bendix completion procedure for monoids is run, with the relations of \( Q \) taken as the initial reduction rules for the procedure. Regardless of whether or not the completion procedure succeeds, the result will be a rewrite monoid, \( M \), containing a reduction machine and a sequence of reduction relations. If the procedure succeeds \( M \) will be marked as confluent, and the word problem for \( M \) is therefore decidable. If, as is very likely, the procedure fails then \( M \) will be marked as non-confluent. In this case \( M \) will contain both the reduction relations and the reduction machine computed up to the point of failure.

As the Knuth–Bendix procedure will more often than not run forever, some conditions must be specified under which it will stop. These take the form of limits that are placed on certain variables, such as the number of reduction relations. If any of these limits are exceeded during a run of the completion procedure it will fail, returning a non-confluent rewrite monoid. The optimal values for these limits varies from example to example.

\[
\begin{align*}
\text{MaxRelations} & \quad \text{RngIntElt} \quad \text{Default} : 32767 \\
\text{GeneratorOrder} & \quad \text{SeqEnum} \quad \text{Default} : \\
\text{Ordering} & \quad \text{MonStgElt} \quad \text{Default} : \text{"ShortLex"} \\
\text{Levels} & \quad \text{SeqEnum} \quad \text{Default} : \\
\text{Weights} & \quad \text{SeqEnum} \quad \text{Default} : \\
\end{align*}
\]

Limit the maximum number of reduction equations to \text{MaxRelations}.

Give an ordering for the generators. This ordering affects the ordering of words in the alphabet. If not specified the ordering defaults to the order induced by \( Q \)'s generators, that is \([g_1, \ldots, g_n]\) where \( g_1, \ldots, g_n \) are the generators of \( Q \).

\text{Ordering} := \text{"ShortLex"}: Use the short-lex ordering on strings. Shorter words come before longer, and for words of equal length lexicographical ordering is used, using the given ordering of the generators.

\text{Ordering} := \text{"Recursive" | "RTRRecursive"}: Use a recursive ordering on strings. There are various ways to define this. Perhaps the quickest is as follows. Let \( u \) and \( v \) be strings in the generators. If one of \( u \) and \( v \), say \( v \), is empty, then \( u \geq v \). Otherwise, let \( u = u' a \) and \( v = v' b \), where \( a \) and \( b \) are generators. Then \( u > v \) if and only if one of the following holds:

(i) \( a = b \) and \( u' > v' \);
(ii) \( a > b \) and \( u > v' \);
(iii) \( b > a \) and \( u' > v \).

The \text{RTRRecursive} ordering is similar to the \text{Recursive} ordering, but with \( u = au' \) and \( v = bv' \). Occasionally one or the other runs significantly quicker, but usually they perform similarly.
Ordering := "WTShortLex": Use a weighted-lex ordering. Weights should be a sequence of non-negative integers, with the $i$-th element of Weights giving the weight of the $i$-the generator. The length of Weights must equal the number of generators. The length of words in the generators is then computed by adding up the weights of the generators in the words. Otherwise, ordering is as for short-lex.

Ordering := "Wreath": Use a wreath-product ordering. Levels should be a sequence of non-negative integers, with the $i$-th element of Levels giving the level of the $i$-the generator. The length of Levels must equal the number of generators. In this ordering, two strings involving generators of the same level are ordered using short-lex, but all strings in generators of a higher level are larger than those involving generators of a lower level. That is not a complete definition; one can be found in [Sim94, pp. 46–50]. Note that the recursive ordering is the special case in which the level of generator number $i$ is $i$.

TidyInt
RngIntElt
Default : 100

After finding TidyInt new reduction equations, the completion procedure interrupts the main process of looking for overlaps, to tidy up the existing set of equations. This will eliminate any redundant equations performing some reductions on their left and right hand sides to make the set as compact as possible. (The point is that equations discovered later often make older equations redundant or too long.)

RabinKarp
Tup
Default :

Use the Rabin-Karp algorithm for word-reduction on words having length at least $l$, provided that there are at least $n$ equations, where RabinKarp := $\langle l, n \rangle$. This uses less space than the default reduction automaton, but it is distinctly slower, so it should only be used when seriously short of memory. Indeed this option is only really useful for examples in which collapse occurs - i.e. at some intermediate stage of the calculation there is a very large set of equations, which later reduces to a much smaller confluent set. Collapse is not uncommon when analysing pathological presentations of finite groups, and this is one situation where the performance of the Knuth–Bendix algorithm can be superior to that of Todd-Coxeter coset enumeration. The best setting for RabinKarp varies from example to example - generally speaking, the smaller $l$ is, the slower things will be, so set it as high as possible subject to not running out of memory. The number of equations $n$ should be set higher than the expected final number of equations.

MaxStates
RngIntElt
Default :

Limit the maximum number of states of the finite state automaton used for word reduction to MaxStates. By default there is no limit, and the space allocated is increased dynamically as required. The space needed for the reduction automaton can also be restricted by using the RabinKarp parameter. This limit is not usually needed.

MaxReduceLen
RngIntElt
Default : 32767

Limit the maximum allowed length that a word can reach during reduction to MaxReduceLen. It is only likely to be exceeded when using the recursive ordering...
on words. This limit is usually not needed.

\textbf{ConfNum} \\
\textbf{RngIntElt} \\
\textbf{Default} : 500

If \textbf{ConfNum} overlaps are processed and no new equations are discovered, then the overlap searching process is interrupted, and a fast check for confluence performed on the existing set of equations. Doing this too often wastes time, but doing it at the right moment can also save a lot of time. If \textbf{ConfNum} = 0, then the fast confluence check is performed only when the search for overlaps is complete.

\textbf{Warning:} Changing the default setting for any of the following parameters may either cause the procedure to terminate without having found a confluent presentation or change the monoid.

\textbf{MaxStoredLen} \\
\textbf{Tup} \\
\textbf{Default} : \\

Only equations in which the left and right hand sides have lengths at most $l$ and $r$, respectively, where \textbf{MaxStoredLen} := $<l, r>$ are kept. Of course this may cause the overlap search to complete on a set of equations that is not confluent. In some examples, particularly those involving collapse (i.e. a large intermediate set of equations, which later simplifies to a small set), it can result in a confluent set being found much more quickly. It is most often useful when using a recursive ordering on words. Another danger with this option is that sometimes discarding equations can result in information being lost, with the effect of changing the monoid defined by the equations.

\textbf{MaxOverlapLen} \\
\textbf{RngIntElt} \\
\textbf{Default} : \\

Only overlaps of total length at most \textbf{MaxOverlapLen} are processed. Of course this may cause the overlap search to complete on a set of equations that is not confluent.

\textbf{Sort} \\
\textbf{BoolElt} \\
\textbf{Default} : false

\textbf{MaxOpLen} \\
\textbf{RngIntElt} \\
\textbf{Default} : 0

If \textbf{Sort} is set to \texttt{true} then the equations will be sorted in order of increasing length of their left hand sides, rather than the default, which is to leave them in the order in which they were found. \textbf{MaxOpLen} should be a non-negative integer. If \textbf{MaxOpLen} is positive, then only equations with left hand sides having length at most \textbf{MaxOpLen} are output. If \textbf{MaxOpLen} is zero, then all equations are sorted by length. Of course, if \textbf{MaxOpLen} is positive, there is a danger that the monoid defined by the output equations may be different from the original.

\texttt{SetVerbose("KBMAG", v)}

Set the verbose printing level for the Knuth-Bendix completion algorithm. Setting this level allows a user to control how much extra information on the progress of the algorithm is printed. Currently the legal values for $v$ are 0 to 3 inclusive. Setting $v$ to 0 corresponds to the ‘-silent’ option of KBMAG in which no extra output is printed. Setting $v$ to 2 corresponds to the ‘-v’ (verbose) option of KBMAG in which a small amount of extra output is printed. Setting $v$ to 3 corresponds to the ‘-vv’ (very verbose) option of KBMAG in which a huge amount of diagnostic information is printed.
Example H76E1

Starting with a monoid presentation for the alternating group \(A_4\), we construct a rewrite system. Since we don’t specify an ordering the default ShortLex ordering is used. Since we don’t specify a generator ordering, the default generator ordering, in this case that from \(Q\), is used.

\[
\begin{align*}
&> \text{FM}<g_{10}, g_{20}, g_{30}> := \text{FreeMonoid}(3); \\
&> Q := \text{quo}< \text{FM} | g_{10}^2=1, g_{20}g_{30}=1, g_{30}g_{20}=1, \\
&> \quad g_{20}g_{20}=g_{30}, g_{30}g_{10}g_{30}=g_{10}g_{20}g_{10}>; \\
&> M := \text{RWSMonoid}(Q); \\
&> \text{print } M;
\end{align*}
\]

A confluent rewrite monoid.
Generator Ordering = [ g_{10}, g_{20}, g_{30} ]
Ordering = ShortLex.
The reduction machine has 12 states.
The rewrite relations are:
- \(g_{10}^2 = \text{Id}(\text{FM})\)
- \(g_{20} * g_{30} = \text{Id}(\text{FM})\)
- \(g_{30} * g_{20} = \text{Id}(\text{FM})\)
- \(g_{20}^2 = g_{30}\)
- \(g_{30} * g_{10} * g_{30} = g_{10} * g_{20} * g_{10}\)
- \(g_{30}^2 = g_{20}\)
- \(g_{20} * g_{10} * g_{20} = g_{10} * g_{30} * g_{10}\)
- \(g_{30} * g_{10} * g_{20} * g_{10} = g_{20} * g_{10} * g_{30}\)
- \(g_{10} * g_{30} * g_{10} * g_{20} = g_{30} * g_{10} * g_{20}\)
- \(g_{20} * g_{10} * g_{30} * g_{10} = g_{30} * g_{10} * g_{20}\)
- \(g_{10} * g_{30} * g_{10} * g_{20} = g_{20} * g_{10} * g_{30}\)

Example H76E2

We construct the second of Bernard Neumann’s series of increasingly complicated presentations of the trivial monoid. The example runs best with a large value of TidyInt. Again the default ShortLex ordering is used.

\[
\begin{align*}
&> \text{FM}<x, X, y, Y, z, Z> := \text{FreeMonoid}(6); \\
&> Q := \text{quo}< \text{FM} | \\
&> \quad x*X=1, X*x=1, y*Y=1, Y*y=1, z*Z=1, Z*z=1, \\
&> \quad y*y*X*Y*x*Y*z*Z*X*X*Y*Y*z*z*Y*Z*y*z*y*z*y=1, \\
&> \quad z*z*Y*Z*y*z*X*X*Y*z*z*X*X*X*X*Z*X*z=1, \\
&> \quad x*x*Z*X*Z*X*y*x*Y*Z*z+z*X*X*X*X*Y*x*y*y*X*X*X*Y*x=1>; \\
&> M := \text{RWSMonoid}(Q : \text{TidyInt} := 3000); \\
&> \text{print } M;
\end{align*}
\]

A confluent rewrite monoid.
Generator Ordering = [ x, X, y, Y, z, Z ]
Ordering = ShortLex.
The reduction machine has 1 state.
The rewrite relations are:
- \(Z = \text{Id}(\text{FM})\)
- \(Y = \text{Id}(\text{FM})\)
Let $z = \text{Id}(FM)$, $X = \text{Id}(FM)$, $y = \text{Id}(FM)$, and $x = \text{Id}(FM)$.

### Example H76E3

We construct a confluent presentation of a submonoid of a nilpotent group.

```plaintext
> FM<a,b,c> := FreeMonoid(6);
> Q := quo< FM | b*a=a*b*c, c*a=a*c, c*b=b*c >;
> M := RWSMonoid(Q:Ordering:="Recursive", GeneratorOrder:=[c,b,a]);
> M;
```

A confluent rewrite monoid.

Generator Ordering = [ c, b, a ]

Ordering = Recursive.

The reduction machine has 3 states.

- $b \cdot a = a \cdot b \cdot c$
- $c \cdot a = a \cdot c$
- $c \cdot b = b \cdot c$

```plaintext
> Order(M);
Infinity
```

### Example H76E4

We construct a monoid presentation corresponding to the Fibonacci group $F(2,7)$. This is a very difficult calculation unless the parameters of \texttt{RWSMonoid} are selected carefully. The best approach is to run the Knuth-Bendix once using a \texttt{Recursive} ordering with a limit on the lengths of equations stored ($\text{MaxStoredLen} := <15,15>$ works well). This will halt returning a non-confluent rewrite monoid $M$, and give a warning message that the Knuth-Bendix procedure only partly succeeded. The original equations should then be appended to the relations of $M$, and the Knuth-Bendix re-run with no limits on lengths. It will then quickly complete with a confluent set. This is typical of a number of difficult examples, where good results can be obtained by running more than once.

```plaintext
> FM<a,b,c,d,e,f,g> := FreeMonoid(7);
> I := [a*b=c, b*c=d, c*d=e, d*e=f, e*f=g, f*g=a, g*a=b];
> Q := quo<FM | I>;
> M := RWSMonoid(Q:Ordering := "Recursive", MaxStoredLen := <15,15>);
Warning: Knuth Bendix only partly succeeded
> Q := quo< FM | Relations(M) cat I>;
> M := RWSMonoid(Q:Ordering := "Recursive");
> print M;
A confluent rewrite monoid.

Generator Ordering = [a, b, c, d, e, f, g]

Ordering = Recursive.

The reduction machine has 30 states.

The rewrite relations are:
c = a^25
d = a^20
e = a^16
f = a^7
g = a^23
b = a^24
a^30 = a

> Order(M);
30

It turns out that the non-identity elements of this monoid form a submonoid isomorphic to the Fibonacci group $F(2,7)$ which is cyclic of order 29.

76.3 Basic Operations

76.3.1 Accessing Monoid Information

The functions in this section provide access to basic information stored for a rewrite monoid M.

- **$M . i$**
 - The i-th defining generator for M.
- **Generators(M)**
 - A sequence containing the defining generators for M.
- **NumberOfGenerators(M)**
 - The number of defining generators for M.
- **Relations(M)**
 - A sequence containing the defining relations for M. The relations will be given between elements of the free monoid of which M is a quotient. In these relations the (image of the) left hand side (in M) will always be greater than the (image of the) right hand side (in M) in the ordering on words used to construct M.
- **NumberOfRelations(M)**
 - The number of relations in M.
- **Ordering(M)**
 - The ordering of M.
- **Parent(w)**
 - The parent monoid M for the word w.
Example H76E5

We illustrate the access operations using the following presentation of S_4.

```plaintext
> FM<a,b> := FreeMonoid(2);
> Q := quo< FM | a^2=1, b^3=1, (a*b)^4=1 >;
> M<x,y> := RWSMonoid(Q);
> print M;
A confluent rewrite monoid.
Generator Ordering = [ a, b ]
Ordering = ShortLex.
The reduction machine has 12 states.
   a^2 = Id(FM)
   b^3 = Id(FM)
   b * a * b * a * b = a * b^2 * a
   b^2 * a * b^2 = a * b * a * b * a
   b * a * b^2 * a * b * a = a * b * a * b^2 * a * b
> print Order(M);
24
> print M.1;
x
> print M.1*M.2;
x * y
> print Generators(M);
[ x, y ]
> print Ngens(M);
2
> print Relations(M);
[ a^2 = Id(FM), b^3 = Id(FM), b * a * b * a * b = a * b^2 * a, b^2 * a * b^2 = a * b * a * b * a = a * b * a * b^2 * a * b ]
> print Nrels(M);
5
> print Ordering(M);
ShortLex
```

76.3.2 Properties of a Rewrite Monoid

- **IsConfluent(M)**
 Returns `true` if M is confluent, `false` otherwise.

- **IsFinite(M)**
 Given a confluent monoid M return `true` if M has finite order and `false` otherwise.
 If M does have finite order also return the order of M.
Given a monoid M defined by a confluent presentation, this function returns the cardinality of M. If the order of M is known to be infinite ∞ is returned.

Example H76E6

We construct a threefold cover of A_6.

```plaintext
> FM<a,b> := FreeMonoid(2);
> Q := quo< FM | a^3=1, b^3=1, (a*b)^4=1, (a*b^2)^5 = 1 >;
> M := RWSMonoid(Q);
> print Order(M);
1080
> IsConfluent(M);
true
```

Example H76E7

We construct the 2-generator free abelian group and compute its order. The result Infinity indicates that the group has infinite order.

```plaintext
> FM<a,A,b,B> := FreeMonoid(4);
> Q := quo< FM | a*A=1, A*a=1, b*B=1, B*b=1, B*a*b=a >;
> M := RWSMonoid(Q);
> Order(M);
Infinity
```

Example H76E8

We construct the Weyl group E_8 and test whether or not it has finite order.

```plaintext
> FM<a,b,c,d,e,f,g,h> := FreeMonoid(8);
> Q := quo< FM | a^2=1, b^2=1, c^2=1, d^2=1, e^2=1, f^2=1, g^2=1, 
  h^2=1, b*a*b=a*b*a, c*a=a*c, d*a=a*d, e*a=a*e, f*a=a*f, 
  g*a=a*g, h*a=a*h, c*b*c=b*c*b, d*b=d*b, e*b=e*b, f*b=f*b, 
  g*b=g*b, h*b=b*h, d*c*d=c*d*c, e*c*e=c*e*c, f*c=c*f, 
  g*c=c*g, h*c=c*h, e*d=d*e, f*d=d*f, g*d=d*g, h*d=d*h, 
  f*e=f*e, g*e=e*g, h*e=e*h, g*f*g=f*g*f, h*f=f*h, 
  h*g=h*g*h; 
> M := RWSMonoid(Q);
> print IsFinite(M);
true
> isf, ord := IsFinite(M);
true 696729600
```
76.3.3 Construction of a Word

Construct the identity word in M.

Given a rewrite monoid M defined on r generators and a sequence $[i_1, \ldots, i_s]$ of integers lying in the range $[1, r]$, construct the word $M.i_1 \ast M.i_2 \ast \cdots \ast M.i_s$.

Example H76E9

We construct the Fibonacci group $F(2,7)$, and it’s identity.

```plaintext
> FM< a,A,b,B,c,C,d,D,e,E,f,F,g,G > := FreeMonoid(14);
> Q := quo< FM | a*A=1, A*a=1, b*B=1, B*b=1, c*C=1, C*c=1,
>      d*D=1, D*d=1, e*E=1, E*e=1, f*F=1, F*f=1, g*G=1, G*g=1,
>      a*b=c, b*c=d, c*d=e, d*e=f, e*f=g, f*g=a, g*a=b >;
> M := RWSMonoid(Q : TidyInt := 1000);
> print Id(M);
Id(M)
> print M!1;
Id(M)
> Order(M);
29
```

76.3.4 Arithmetic with Words

Having constructed a rewrite monoid M one can perform arithmetic with words in M. Assuming we have $u, v \in M$ then the product $u \ast v$ will be computed as follows:

(i) The product $w = u \ast v$ is formed as a product in the appropriate free monoid.

(ii) The word w is reduced using the reduction machine associated with M.

If M is confluent, then w will be the unique minimal word that represents $u \ast v$ under the ordering of M. If M is not confluent, then there are some pairs of words which are equal in M, but which reduce to distinct words, and hence w will not be a unique normal form. Note that:

(i) Reduction of w can cause an increase in the length of w. At present there is an internal limit on the length of a word – if this limit is exceeded during reduction an error will be raised. Hence any word operation involving reduction can fail.

(ii) The implementation is designed more with speed of execution in mind than with minimizing space requirements; thus, the reduction machine is always used to carry out word reduction, which can be space-consuming, particularly when the number of generators is large.
u * v
Product of the words w and v.

u ^ n
The n-th power of the word w, where n is a positive or zero integer.

u eq v
Given words w and v belonging to the same monoid, return true if w and v reduce
to the same normal form, false otherwise. If M is confluent this tests for equality. If
M is non-confluent then two words which are the same may not reduce to the same
normal form.

u ne v
Given words w and v belonging to the same monoid, return false if w and v reduce to
the same normal form, true otherwise. If M is confluent this tests for non-equality.
If M is non-confluent then two words which are the same may reduce to different
normal forms.

IsId(w)
IsIdentity(w)
Returns true if the word w is the identity word.

#u
The length of the word w.

ElementToSequence(u)
Eltseq(u)
The sequence Q obtained by decomposing the element u of a rewrite monoid into
its constituent generators. Suppose u is a word in the rewrite monoid M. If u =
M.i_1 \cdot M.i_m, then Q[j] = i_j, for j = 1, \ldots, m.

Example H76E10
We illustrate the word operations by applying them to elements of the Fibonacci monoid FM(2, 5).

> FM<a,b,c,d,e> := FreeMonoid(5);
> Q:=quo< FM | a*b=c, b*c=d, c*d=e, d*e=a, e*a=b >;
> M<a,b,c,d,e> := RWSMonoid(Q);
> a*b*c*d;
> (c*d)^4 eq a;
true
> IsIdentity(a^0);
true
> IsIdentity(b^2*e);
false
76.4 Homomorphisms

For a general description of homomorphisms, we refer to chapter 16. This section describes some special aspects of homomorphisms whose domain is a rewrite monoid.

76.4.1 General Remarks

Monoids in the category \texttt{MonRWS} currently are accepted as codomains only for monoid homomorphisms, whose codomain is a rewrite monoid as well.

76.4.2 Construction of Homomorphisms

\begin{verbatim}
 hom< M -> N | S >
\end{verbatim}

Returns the homomorphism from the rewrite group \(M \) to the monoid \(N \) defined by the expression \(S \) which must be the one of the following:

(i) A list, sequence or indexed set containing the images of the \(n \) generators \(M.1, \ldots, M.n \) of \(M \). Here, the \(i \)-th element of \(S \) is interpreted as the image of \(M.i \), i.e. the order of the elements in \(S \) is important.

(ii) A list, sequence, enumerated set or indexed set, containing \(n \) tuples \(< x_i, y_i > \) or arrow pairs \(x_i \rightarrow y_i \), where \(x_i \) is a generator of \(M \) and \(y_i \in N \) \((i = 1, \ldots, n)\) and the set \(\{x_1, \ldots, x_n\} \) is the full set of generators of \(M \). In this case, \(y_i \) is assigned as the image of \(x_i \), hence the order of the elements in \(S \) is not important.

It is the user’s responsibility to ensure that the provided generator images actually give rise to a well-defined homomorphism. No checking is performed by the constructor. Presently, \(N \) must be either a rewrite monoid or a group, and it is not possible to define a homomorphism by assigning images to the elements of an arbitrary generating set of \(M \).

76.5 Set Operations

\begin{verbatim}
 Random(M, n)
\end{verbatim}

A random word of length at most \(n \) in the generators of \(M \).

\begin{verbatim}
 Random(M)
\end{verbatim}

A random word (of length at most the order of \(M \)) in the generators of \(M \).

\begin{verbatim}
 Representative(M)
 Rep(M)
\end{verbatim}

An element chosen from \(M \).
Set(M, a, b)

Search: Default: "DFS"

Create the set of words, \(w \), in \(M \) with \(a \leq \text{length}(w) \leq b \). If Search is set to "DFS" (depth-first search) then words are enumerated in lexicographical order. If Search is set to "BFS" (breadth-first-search) then words are enumerated in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker. Since the result is a set the words may not appear in the resultant set in the search order specified (although internally they will be enumerated in this order).

Set(M)

Search: Default: "DFS"

Create the set of words that is the carrier set of \(M \). If Search is set to "DFS" (depth-first search) then words are enumerated in lexicographical order. If Search is set to "BFS" (breadth-first-search) then words are enumerated in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker. Since the result is a set the words may not appear in the resultant set in the search order specified (although internally they will be enumerated in this order).

Seq(M, a, b)

Search: Default: "DFS"

Create the sequence \(S \) of words, \(w \), in \(M \) with \(a \leq \text{length}(w) \leq b \). If Search is set to "DFS" (depth-first search) then words will appear in \(S \) in lexicographical order. If Search is set to "BFS" (breadth-first-search) then words will appear in \(S \) in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker.

Seq(M)

Search: Default: "DFS"

Create a sequence \(S \) of words from the carrier set of \(M \). If Search is set to "DFS" (depth-first search) then words will appear in \(S \) in lexicographical order. If Search is set to "BFS" (breadth-first-search) then words will appear in \(S \) in lexicographical order for each individual length (i.e. in short-lex order). Depth-first-search is marginally quicker.

Example H76E11

We construct the group \(D_{22} \), together with a representative word from the group, a random word and a random word of length at most 5 from the group, and the set of elements of the group.

```plaintext
> FM<a,b,c,d,e,f> := FreeMonoid(6);
> Q := quo< FM | a^2=1, f^2=1,
> d*a=a*c, e*b=b*f, d*c=c*e, d*f=a*d, a*e=e*b, b*f*c=f >;
> M<a,b,c,d,e,f> := RWSMonoid(Q);
```
> print Order(M);
22
> print Representative(M);
Id(M)
> print Random(M);
c * e
> print Random(M, 5);
d
> Set(M);
{ a * c, e, a * d, f, a * e, a * f, Id(M), a * c * e, b * a,
b * d, a * d * b, b * e, c * e, a * b * a, d * b, a * b * d,
a, a * b * e, b, c, a * b, d }
> Seq(M : Search := "BFS");
[Id(M), a, b, c, d, e, f, a * b, a * c, a * d, a * e, a * f,
b * a, b * d, b * e, c * e, d * b, a * b * a, a * b * d,
a * b * e, a * c * e, a * d * b]

76.6 Conversion to a Finitely Presented Monoid

There is a standard way to convert a rewrite monoid into a finitely presented monoid using the function \texttt{Relations}. This is shown in the following example.

Example H76E12

We construct the Fibonacci monoid $FM(2, 4)$ as a rewrite monoid, and then convert it into a finitely presented monoid.

```plaintext
> FM<a,b,c,d> := FreeMonoid(4);
> Q := quo< FM | a*b=c, b*c=d, c*d=a, d*a=b >;
> M := RWSMonoid(Q);
> Order(M);  
11
> P<w,x,y,z> := quo < FM | Relations(M) >;
> P;
Finitely presented monoid
Relations
  w * x = y
  x * y = z
  y * z = w
  z * w = x
  y^2 = w * z
  z^2 = x * w
  z * y = x^2
  y * x = w^2
  x * w * z = x^2
  w^3 = w * z
  x * w^2 = x * z
```
x^2 \cdot z = x
w^2 \cdot y = w
x^3 = x \cdot w
x^2 \cdot w = z
z \cdot x = x \cdot z
y \cdot w = w \cdot y
w^2 \cdot z = y
x \cdot w \cdot y = x

76.7 Bibliography
