Institut für Mathematik

Person

Not found

No infos found for this person or the person wished to not be listed. Please view the personal page for a list of all Professors, Assistants and Staff of the institute
This is an Alumni, please view alumni list for details

Vita

Here you can find my CV.

Forschung

I am a mathematical physicist interested in problems arising from Quantum Many Body Theory and Condensed Matter Physics. My recent research mostly focused on the following topics:

Derivation of effective evolution equations for interacting fermionic systems

Topological insulators

Models for interacting fermions on the honeycomb lattice, describing graphene.

My page on Google Scholar.

Publikationen

V. Mastropietro, M. Porta
Spin Hall insulators beyond the Helical Luttinger model
ArXiv preprint.

G. Antinucci, V. Mastropietro, M. Porta
Universal edge transport in interacting Hall systems.
ArXiv preprint.

M. Porta, S. Rademacher, C. Saffirio, B. Schlein
Mean field evolution of fermions with Coulomb interaction.
J. Stat. Phys. 166, 1345-1364 (2017).

A. Giuliani, I. Jauslin, V. Mastropietro, M. Porta
Topological phase transitions and universality in the Haldane-Hubbard model.
Phys. Rev. B 94, 205139 (2016).

A. Giuliani, V. Mastropietro, M. Porta
Universality of charge transport in weakly interacting fermionic systems.
Contribution to the proceedings of the XVIII International Congress on Mathematical Physics, Santiago de Chile, July 27 - August 1, 2015.    ArXiv preprint.

A. Giuliani, V. Mastropietro, M. Porta
Universality of the Hall conductivity in interacting electron systems.
Comm. Math. Phys. (2016)

N. Benedikter, M. Porta, C. Saffirio, B. Schlein
From the Hartree dynamics to the Vlasov equation.
Arch. Rational Mech. Anal. 221, 273-334 (2016)

N. Benedikter, M. Porta, B. Schlein
Effective Evolution Equations from Quantum Dynamics.
SpringerBriefs in Mathematical Physics (2015)

N. Benedikter, V. Jaksic, M. Porta, C. Saffirio, B. Schlein
Mean-field evolution of fermionic mixed states.
Comm. Pure Appl. Math. 69 (2016), no. 12, 2250-2303.

N. Benedikter, M. Porta, B. Schlein
Hartree-Fock dynamics for weakly interacting fermions.
Proceedings of the QMath12 conference.   
Preprint arXiv:1404.7769.

N. Benedikter, M. Porta, B. Schlein
Mean-field dynamics of fermions with relativistic dispersion.
J. Math. Phys. 55, 021901 (2014).

N. Benedikter, M. Porta, B. Schlein
Mean-field evolution of fermionic systems.
Comm. Math. Phys. 331, 1087 - 1131 (2014).

G.M. Graf, M. Porta
Bulk-edge correspondence for two-dimensional topological insulators.
Comm. Math. Phys. 324, 851 - 895 (2013).

A. Giuliani, V. Mastropietro, M. Porta
Lattice quantum electrodynamics for graphene.
Ann. Phys. 327, 461 - 511 (2012).

A. Giuliani, V. Mastropietro, M. Porta
Universality of conductivity in interacting graphene.
Comm. Math. Phys. 311, 317 - 355 (2012).

A. Giuliani, V. Mastropietro, M. Porta
Absence of interaction corrections in the optical conductivity of graphene.
Phys. Rev. B 83, 195401 (2011)

A. Giuliani, V. Mastropietro, M. Porta
Lattice gauge theory model for graphene.
Phys. Rev. B 82, 121418(R) (2010).

M. Porta, S. Simonella
Borel summability of $\varphi^{4}_4$ planar theory via multiscale analysis.
Rev. Math. Phys. 22, 9, 995 - 1032 (2010).

A. Giuliani, V. Mastropietro, M. Porta
Anomalous behavior in an effective model of graphene with Coulomb interactions.
Ann. H. Poincaré 11, 1409 - 1452 (2010).

M. Porta
Fluctuation theorem, non linear response and the regularity of time reversal symmetry.
Chaos 20, 023111 (2010).

M. Porta
A lattice gauge theory model for graphene.
Ph.D. Thesis, defended on February 4th, 2011.    Available on arXiv.