Benedikt Grässle
Universität Zürich
Winterthurerstrasse 190
CH-8057 Zürich
E-Mail:
Fax: +41 44 635 57 05
Büro: Y27J40
Forschung
- Numerical analysis of partial differential equations
- Integral equations for transmission problems
- Development and implementation of fast solvers
- Galerkin and non-standard finite element methods (FEM)
- High-precision computation of eigenvalue problems
- A posteriori error analysis and numerical verification
- Convergence analysis of adaptive schemes
List of Publications
Preprints
-
Bohne, N.-E., B. Gräßle and S. A. Sauter
Pressure-improved Scott-Vogelius type elements
2024. arXiv: 2403.04499 [cs, math]. http://arxiv.org/abs/2403.04499.
2025
-
Carstensen, C., B. Gräßle and E. Pirch
‘Comparison of guaranteed lower eigenvalue bounds with three skeletal schemes’
Computer Methods in Applied Mechanics and Engineering 433:117477 (2025). https://linkinghub.elsevier.com/retrieve/pii/S004578252400731X.
2024
-
Carstensen, C. and B. Gräßle
‘Rate-optimal higher-order adaptive conforming FEM for biharmonic eigenvalue problems on polygonal domains’
Computer Methods in Applied Mechanics and Engineering 425:116931 (2024). https://linkinghub.elsevier.com/retrieve/pii/S0045782524001877. -
Carstensen, C., B. Gräßle and N. Nataraj
‘A posteriori error control for fourth-order semilinear problems with quadratic nonlinearity’
SIAM Journal on Numerical Analysis 62.2 (2024), pp. 919–945. https://epubs.siam.org/doi/10.1137/23M1589852. -
Carstensen, C., B. Gräßle and N. Nataraj
‘Unifying a posteriori error analysis of five piecewise quadratic discretisations for the biharmonic equation’
Journal of Numerical Mathematics 32.1 (2024), pp. 77–109. https://www.degruyter.com/document/doi/10.1515/jnma-2022-0092/html. -
Carstensen, C., B. Gräßle and N. T. Tran
‘Adaptive hybrid high-order method for guaranteed lower eigenvalue bounds’
Numerische Mathematik 156.3 (2024), pp. 813–851. https://link.springer.com/10.1007/s00211-024-01407-w. -
Gräßle, B., N.-E. Bohne and S. Sauter
‘The pressure-wired Stokes element: a mesh-robust version of the Scott–Vogelius element’
Numerische Mathematik 156.5 (2024), pp. 1781–1807. https://link.springer.com/10.1007/s00211-024-01430-x.
2023
-
Bertrand, F., C. Carstensen, B. Gräßle and N. T. Tran
‘Stabilization-free HHO a posteriori error control’
Numerische Mathematik 154.3-4 (2023), pp. 369–408. https://link.springer.com/10.1007/s00211-023-01366-8.
2022
-
Gräßle, B.
‘Conforming multilevel FEM for the biharmonic equation’
MA thesis. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2022. http://dx.doi.org/10.18452/24833. -
Gräßle, B.
‘Optimal multilevel adaptive FEM for the Argyris element’
Computer Methods in Applied Mechanics and Engineering 399:115352 (2022). https://linkinghub.elsevier.com/retrieve/pii/S0045782522004352.