Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation

Benjamin Dodson (UC Berkeley)

Ascona talk - July 3, 2012
The mass critical NLS

\[iu_t + \Delta u = \mu |u|^\frac{4}{d} u, \]

\[u(x, 0) = u_0(x), \quad x \in \mathbb{R}^d, \ t \in \mathbb{R}, \ u(x, t) \in \mathbb{C}, \]

Given \(u_0 \in L^2(\mathbb{R}^d), \ \mu = +1, \) *the mass critical NLS is globally well-posed and scattering. When* \(\mu = -1, \) *the mass critical NLS is globally well-posed and scattering for* \(\|u_0\|_{L^2(\mathbb{R}^d)} < \|Q\|_{L^2(\mathbb{R}^d)}. \) *Q is the unique positive solution to the elliptic problem* \(\Delta Q + Q^{1 + \frac{4}{d}} = Q. \)

\(e^{it} Q \) *solves the mass - critical NLS for* \(\mu = -1. \)
The mass critical NLS

\[
iu_t + \Delta u = \mu |u|^4 u,
\]

\[u(x, 0) = u_0(x), \quad x \in \mathbb{R}^d, t \in \mathbb{R}, \quad u(x, t) \in \mathbb{C},\]

Given \(u_0 \in L^2(\mathbb{R}^d), \mu = +1\), the mass critical NLS is globally well-posed and scattering. When \(\mu = -1\), the mass critical NLS is globally well-posed and scattering for \(\|u_0\|_{L^2(\mathbb{R}^d)} < \|Q\|_{L^2(\mathbb{R}^d)}\). \(Q\) is the unique positive solution to the elliptic problem \(\Delta Q + Q^{1 + \frac{4}{d}} = Q\).

\(e^{it}Q\) solves the mass-critical NLS for \(\mu = -1\).
Energy Critical Problem

\[iu_t + \Delta u = \mu |u|^{\frac{4}{d-2}} u, \]
\[u(0, x) \in H^1. \]

(1)

\(d = 3, \mu = +1, \) radial - Bourgain, nonradial (CKSTT)

\(d = 3, \mu = -1, \) radial - Kenig - Merle

\(d = 4, \mu = +1, \) radial Bourgain, nonradial Ryckman - Visan

\(d = 4, \mu = -1, \) radial - Kenig - Merle

\(d \geq 5, \mu = +1, \) radial Tao, nonradial Visan.

\(d \geq 5, \mu = -1, \) radial Kenig - Merle, nonradial Killip - Visan.
Mass Critical Problem

\[iu_t + \Delta u = \mu |u|^4 u, \]
\[u(0, x) \in L^2. \] \hspace{1cm} (2)

\[d = 1, \mu = +1, \text{ D.} \]
\[d = 1, \mu = -1, \text{ D.} \]
\[d = 2, \mu = +1, \text{ radial Tao, Killip, Visan, nonradial D.} \]
\[d = 2, \mu = -1, \text{ radial Tao, Killip, Visan, nonradial D.} \]
\[d \geq 3, \mu = +1, \text{ radial Tao, Visan, Zhang. nonradial D.} \]
\[d \geq 3, \mu = -1, \text{ radial Killip, Visan, Zhang. nonradial D.} \]
Definition Well-posedness

The mass-critical NLS is said to be globally well-posed if a solution $u(t, x)$ exists for all time,

$$u(t, x) \in C^0_t(\mathbb{R}; L^2(\mathbb{R}^d)) \cap L^\frac{2(d+2)}{d} \left(\mathbb{R}; L^\frac{2(d+2)}{d} (\mathbb{R}^d) \right),$$

a solution depends continuously on u_0 in the $L^2(\mathbb{R}^d)$ topology, and the solution is continuous in time. Such a solution is unique.
Definition Scattering

A global solution to the mass critical NLS is said to scatter if there exist \(u_{\pm} \in L^2(\mathbb{R}^d) \) such that

\[
\| u(t, x) - e^{it\Delta} u_+ \|_{L^2(\mathbb{R}^d)} \to 0,
\]

as \(t \to +\infty \) and

\[
\| u(t, x) - e^{it\Delta} u_- \|_{L^2(\mathbb{R}^d)} \to 0
\]

as \(t \to -\infty \). Additionally we say a solution scatters forward in time if it satisfies (3) and backward in time if it satisfies (4).
Theorem

If u solves $iu_t + \Delta u = F$, (p, q), (\tilde{p}, \tilde{q}) are admissible pairs,

$$
\|u\|_{L^p_t L^q_x(I\times\mathbb{R}^d)} \lesssim \|u(0)\|_{L^2(\mathbb{R}^d)} + \|F\|_{L^{\tilde{p}'}_t L^{\tilde{q}'}_x(I\times\mathbb{R}^d)}. \quad (5)
$$

A pair (p, q), is called admissible if $\frac{2}{p} = d\left(\frac{1}{2} - \frac{1}{q}\right)$, $p \geq 2$ for $d \geq 3$, $p > 2$ for $d = 2$, $p \geq 4$ for $d = 1$.

Theorem

(Cazenave and Weissler) For $\mu = \pm 1$ the mass critical NLS is globally well-posed and scattering if $\|u_0\|_{L^2(\mathbb{R}^d)} < \epsilon(d)$, $\epsilon(d)$ sufficiently small.

The mass critical NLS is locally well-posed on some interval $[-T, T]$, $T(\|u_0\|_{H^1}) > 0$.
Theorem

(Weinstein) We have the Sobolev embedding

\[\| f \|_{L_x^2 \mathbb{R}^d}^{d \frac{2(d+2)}{2(d+2)}} \leq \frac{d}{2(d+2)} \frac{\| f \|_{L^2(\mathbb{R}^d)}^{4/d}}{\| Q \|_{L^2(\mathbb{R}^d)}^{4/d}} \| \nabla f \|_{L^2(\mathbb{R}^d)}^2 \]

Since

\[E(u(t)) = \frac{1}{2} \int |\nabla u(t, x)|^2 dx + \frac{\mu d}{2(d+2)} \int |u(t, x)|^{2(d+2)/d} dx, \]

the mass-critical problem is globally well-posed when \(u(0) \in H^1 \), \(\mu = +1 \), or when \(u(0) \in H^1 \), \(\| u(0) \|_{L^2} < \| Q \|_{L^2} \), \(\mu = -1 \).
Theorem

A solution to the mass - critical NLS is globally well - posed and scattering if and only if a solution u to the mass - critical problem satisfies

$$\left\| u \right\|_{L_{t,x}^{\frac{2(d+2)}{d}}((-\infty,\infty)\times\mathbb{R}^d)} < \infty.$$ (7)
Theorem

(Killip, Tao, Visan, Zhang) Theorem 1 is true for $d \geq 2$, $u(0)$ radial.

Define the function

$$A_\mu(m) = \sup \{ \| u \|_{L^2_t L^{2(d+2)}_x (\mathbb{R} \times \mathbb{R}^d)} : \| u(t) \|_{L^2} = m, \}
$$

u solves the mass critical NLS.

Theorem

(Killip, Tao, Visan, Zhang) $A_\mu(m)$ is a continuous function of m.

$\{ m : A_\mu(m) = \infty \}$ is a closed set.

$\{ m : A_\mu(m) = \infty \}$ has a minimal element m_0.
Theorem

(Killip, Tao, Visan, Zhang) Suppose $m_0 < \infty$ for $\mu = 1$, $m_0 < \| Q \|_{L^2}$ when $\mu = -1$. Then there exist functions $N(t) : [0, \infty) \to (0, \infty)$, $\xi(t), x(t) : [0, \infty) \to \mathbb{R}^d$ such that for all $\eta > 0$ there exists $C(\eta) < \infty$ such that

$$\int_{|x-x(t)| \geq \frac{c(\eta)}{N(t)}} |u(t, x)|^2 dx + \int_{|\xi-\xi(t)| \geq C(\eta)N(t)} |\hat{u}(t, \xi)|^2 d\xi < \eta,$$ \hspace{1cm} (8)

$N(0) = 1$, $N(t) \leq 1$ for $t \geq 0$, $\xi(0) = x(0) = 0$, $|N'(t)|, |\xi'(t)| \lesssim N(t)^3$, and

$$\int_0^\infty \int |u(t, x)|^{\frac{2(d+2)}{d}} dx dt = +\infty. \hspace{1cm} (9)$$

Also for any compact $I \subset [0, \infty)$

$$\int_I N(t)^2 dt \lesssim \int_I \int |u(t, x)|^{\frac{2(d+2)}{d}} dx dt \lesssim 1 + \int_I N(t)^2 dt. \hspace{1cm} (10)$$
Theorem

(Killip, Tao, Visan, Zhang) $[0, \infty)$ can be divided into intervals of local constancy that satisfy

$$\int_{J_k} \int |u(t, x)|^{\frac{2(d+2)}{d}} \, dx \, dt = 1. \quad (11)$$

On these intervals

$$N(J_k) = \sup_{t \in J_k} N(t) \sim \inf_{t \in J_k} N(t) \sim \int_{J_k} N(t)^3 \, dt. \quad (12)$$

Remark: Possibly after modifying $C(\eta)$ by a constant we can transform

$$N(t) \mapsto \alpha(t) N(t), \quad (13)$$

for some $\epsilon > 0$,

$$\epsilon < \alpha(t) < \frac{1}{\epsilon}. \quad (14)$$
Study two situations separately.

\[
\int_0^\infty N(t)^3 \, dt < \infty
\]

(15)

This is called the rapid frequency cascade.

\[
\int_0^\infty N(t)^3 \, dt = +\infty.
\]

(16)

This is called the quasi-soliton.
Long time Strichartz estimates

Theorem

(D’) (2009) Suppose $d > 2$ and $u(t, x)$ is a minimal mass blowup solution in the form of slide 10. Suppose $\int J N(t)^3 dt = K$, J is a compact subset of $[0, \infty)$. Then

$$\| u|_{\xi - \xi(t)}> M \|_{L_t^2 L_x^{\frac{2d}{d-2}}(J \times \mathbb{R}^d)} \lesssim \left(\frac{K}{M} \right)^{1/2} + \sigma_J(\frac{M}{2}),$$

(17)

where $\sigma_J(\frac{M}{2})$ is a frequency envelope that majorizes

$$\inf_{t \in J} \| u|_{\xi - \xi(t)}> \frac{M}{2} \|_{L_x^2(\mathbb{R}^d)}.$$

(18)

A more technical version of this theorem was proved for dimensions $d = 1, 2$ by (D’ 2010). In this case we use a norm constructed from the spaces of U^2_{Δ} of (Hadac, Herr, and Koch), (Koch and Tataru).
Rapid Frequency Cascade

Suppose $\int_0^\infty N(t)^3 \, dt = K < \infty$. For $0 \leq s < 1 + \frac{4}{d}$,

$$\|u\|_{L^\infty_t \dot{H}^s([0,\infty) \times \mathbb{R}^d)} \lesssim K^s. \quad (19)$$

This implies $E(t) \equiv 0$, which is a contradiction.
Quasi - soliton

Suppose $\int_{t} N(t)^3 dt = K$.

In the defocusing case use the interaction Morawetz estimates of (Colliander, Keel, Staffilani, Takaoka, Tao) ($d = 3$), (Tao, Visan, Zhang) ($d \geq 4$), (Colliander, Grillakis, Tzirakis) ($d = 1, 2$), (Planchon, Vega) ($d \geq 1$).
\[N(t)^3 \lesssim \frac{d^2}{dt^2} \int |u(t, x)|^2 |x - y||u(t, y)|^2 dxdy. \] (20)

\[\frac{d}{dt} \int |u(t, x)|^2 |x - y||u(t, y)|^2 dxdy \]

\[= 2 \int |u(t, y)|^2 \text{Im}[\bar{u}(t, x)\partial_j u(t, x)] \frac{(x - y)_j}{|x - y|} dxdy. \] (21)

Use the long time Strichartz estimates to estimate the error arising from truncating \(u \) to frequencies \(\leq CK \). Have \(K \lesssim o(K) \). Contradicts \(K \nearrow \infty \) as \(T \to \infty \).
In the focusing case have to construct an interaction Morawetz estimate. In the defocusing case the potential is \(\frac{(x-y)_j}{|x-y|} \).

The error estimates apply equally well in the focusing and defocusing case for a potential \(a_j(t, x-y) \) such that

1. \(|a_j(t, x)| \lesssim 1 \),
2. \(|\nabla a_j(t, x)| \lesssim \frac{1}{|x|} \) for \(d \geq 2 \), \(\|\nabla a(t, x)\|_{L^1(\mathbb{R})} \lesssim 1 \),
3. \(a_j(t, x) = -a_j(t, -x) \),
4. \(\|\partial_t a_j(t, x)\|_{L^1(\mathbb{R}^2)} \lesssim 1 \).
Construction of the interaction Morawetz estimate.

1. \(N(t) \equiv 1, \ u \ \text{even}, \ d = 1. \)

2. \(N(t) \equiv 1, \ d = 1. \)

3. \(N(t) \equiv 1. \)

4. \(\int_0^{+\infty} N(t)^3 \, dt = +\infty. \)
Construction of the interaction Morawetz estimate.

1. \(N(t) \equiv 1, \ u \text{ even}, \ d = 1. \)

Take \(\psi(0) = 0, \ \psi'(x) = \phi(x), \ \phi \text{ even}, \ \phi \equiv 1 \text{ on } [-R, R], \ \phi \text{ supported on } [-2R, 2R]. \)

\[
\partial_t \text{Im}(\bar{u} \partial_j u) = -2 \partial_k \text{Re}(\partial_k \bar{u} \partial_j u) + \frac{1}{2} \partial_j \partial_k^2(|u|^2) + \frac{2}{d + 2} \partial_j(|u|^{\frac{2(d+2)}{d}}).
\tag{22}
\]

\[
M(t) = \int \psi(x) \text{Im}[\bar{u} \partial_j u](t, x) dx.
\tag{23}
\]

\[
\dot{M}(t) = 2 \int \phi(x)[|u_x|^2 - \frac{1}{3}|u|^6] dx - \frac{1}{2} \int \phi''(x)|u(t, x)|^2 dx \\
\geq C(\|u\|_{L^2}) \|u_x\|^2_{L^2} - o_R(1) \gtrsim N(t)^2 = N(t)^3.
\tag{24}
\]
\(\mathcal{N}(t) \equiv 1, \; d = 1. \)

Let \(\psi(0) = 0, \; \psi'(x) = \phi(x) \),

\[
\phi(x - y) = \frac{1}{R} \int \chi(x - s)\chi(y - s)ds,
\]

(25)

\(\chi \equiv 1 \) on \([-R, R] \), \(\chi \equiv 0 \) on \(|x| \geq R + 1 \).

\[
M(t) = \int \psi(x - y)|u(t, y)|^2 \Im[\bar{u}\partial_x u](t, x)dx\,dy. \tag{26}
\]

\[
\dot{M}(t) = 2 \int \psi'(x - y)|u(t, y)|^2\left[|u_x|^2 - \frac{1}{3}|u|^6\right]dx
\]

\[
-2 \int \psi'(x - y)\Im(\bar{u}\partial_x u)\Im(\bar{u}\partial_x u)dx\,dy
\]

\[
-\frac{1}{2} \int \psi'''(x - y)|u(t, y)|^2|u(t, x)|^2dx\,dy. \tag{27}
\]
If we could get rid of $-2 \int \psi'(x - y) \text{Im}(\bar{u} \partial_x u) \text{Im}(\bar{u} \partial_x u) \, dx \, dy$ we could proceed as in case 1. For any $\xi(s)$,

\[
\frac{1}{R} \int \chi(x - s) \chi(y - s) |u(t, y)|^2 |u_x|^2 \, dx \, dy
\]

\[
- \frac{1}{R} \int \chi(x - s) \chi(y - s) \text{Im}(\bar{u} \partial_y u) \text{Im}(\bar{u} \partial_x u) \, dx \, dy
\]

\[
= \frac{1}{R} \int \chi(x - s) \chi(y - s) |u(t, y)|^2 |\partial_x (e^{-ix \cdot \xi(s)} u)|^2 \, dx \, dy
\]

\[
- \frac{1}{R} \int \chi(x - s) \chi(y - s) \text{Im}(e^{ix \cdot \xi(s)} \bar{u} \partial_y (e^{-ix \cdot \xi(s)} u)) \times \text{Im}(e^{ix \cdot \xi(s)} \bar{u} \partial_x (e^{-ix \cdot \xi(s)} u)) \, dx \, dy.
\]

Therefore,

\[
\dot{M}(t) \geq C(\|u\|_{L^2}) \|u\|_6^6 - o_R(1) \geq N(t)^2 = N(t)^3.
\]
3. \(N(t) \equiv 1 \). In this case

\[
M(t) = \int S_{d-1} \int \int \psi((x - y)\omega)|u(t, y)|^2 \text{Im}(\bar{u}\partial_\omega u)(t, x)dx dy d\omega. \tag{31}
\]

4. \(\int_0^\infty N(t)^3 dt = \infty \).

Here we take

\[
M(t) = \int S_{d-1} \int \int \psi((x - y)\tilde{N}(t))|u(t, y)|^2 \text{Im}(\bar{u}\partial_\omega u)(t, x)dx dy d\omega.
\tag{32}
\]

\(\tilde{N}(t) \leq N(t), \tilde{N}(t) \sim N(t), \)

\[
\frac{|\tilde{N}'(t)|}{\tilde{N}(t)^3} \leq \frac{|N'(t)|}{N(t)^3}. \tag{33}
\]

\[
\int |\tilde{N}'(t)| dt \leq \delta(\|u\|_{L^2}) \int N(t)^3 dt. \tag{34}
\]