
Modeling the association between

eGFR and survival in kidney

research

Joint Models and Extensions

Master Thesis in Biostatistics (STA495)

by

Silvia Panunzi

silvia.panunzi@uzh.ch

matricula 15-741-820

supervised by

Prof. Armando Teixeira-Pinto

University of Sydney, School of Public Health

Prof. Torsten Hothorn

University of Zurich, Department of Biostatistics

Zurich, May 21, 2018



To the memory of my mother

“It always seems impossible until it is done”
— Nelson Mandela



Abstract

In clinical practice biomarkers are becoming of central importance for risk disease
assessment, disease prevention, diagnosis and monitoring of therapies. Increasing
interest is nowadays allocated to study potential associations between biomarkers
and time to event outcomes. Joint models popularity is growing to follow clinical
research needs. Joint models constitutes not only an appropriate tool for inference in
the relationship between two different outcomes, such as longitudinal measurements
and survival, but they have also been utilized to provide individualized predictions.
They enable to study patients’ dynamic survival probabilities, giving deeper insight
in prevention studies.

Alternative methods have been proposed in literature with the same aim as joint
models. Extended version of the Cox model with longitudinal covariates or two-
stage estimation approaches are common examples. However, several limitations
have been proved to exist for these techniques, making joint modelling approaches
more and more popular. The key point for this set of models is that they have to
handle at the same time correlated repeated measurements recorded for each subject
during the period of follow-up, with possible missing observations, and incomplete
time-to-event data, that often occur due to censored observations.

In this work, we provide extensive review of joint models approach for longi-
tudinal and time-to-event data. We particularly focus on the relationship between
patients’ survival after kidney transplant and a biomarker of kidney function, the
estimated glomerular filtration rate (eGFR), and assess the predictive capacity of
this biomarker.
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Chapter 1

Introduction

1.1 Overview

Life sciences analyses often require researchers and scientists to focus on the si-
multaneous analysis of multiple outcomes. In the contest of longitudinal and time-
to-event data for example we usually observe repeated markers measures for the
same set of individuals over time and try to relate them with observations on the
time to a certain event. Joint models have recently being developed to overcome
the inappropriateness of separate analysis that fail to take into account the as-
sociation and dependence between the two components of the data. Joint mod-
eling approach in fact, enables researchers to make the most efficient use of the
complete set of data and to identify effects of variables when controlling for the
interplay among the two processes object of investigation. From their introduc-
tion in the 90s (Self and Pawitan [1992], De Gruttola and Tu [1994], Faucett and
Thomas [1996], Wulfsohn and Tsiatis [1997b]) joint models have been applied in
a large scale of studies and widely extended to address challenging methodological
and applied questions. Rizopoulos [2012] provides a comprehensive overview for a
both theoretical and software exploiting. Interesting and very recent publications
in this modeling framework can be found in the latest special issue of the Bio-
metrical Journal (http://onlinelibrary.wiley.com/doi/10.1002/bimj.v59.6/
issuetoc?campaign=woletoc). The fact that joint models constitute an active area
of statistics research that has received a lot of attention in the recent years support
us in pointing out how actual if our topic of study.

1.2 Motivating Study

Our research is primary motivated by the analysis of a transplantation database. In
kidney disease new immunosuppressive drugs have decreased the incidence of rejec-
tion and have improved graft survival in the short term. However in the long term
graft outcomes do not improve. Mortality of recipients with functioning grafts has
been attributed mostly to cardiovascular diseases, graft losses to chronic allograft
nephropathy [Marcén et al., 2010]. Monitoring the allograft function is very impor-
tant after kidney transplant. Glomerular filtration rate (GFR), is considered the
best index of kidney function, an indicator of long-term graft survival and an inde-
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pendent risk factor for cardiovascular mortality [Santos and Martins, 2015]. In this
study we want, specifically, to examine the relationship between estimated glomeru-
lar filtration rate (eGFR), derivative from serum creatinine blood measurement, and
graft survival.

Data arises from the collaboration with the Center for Kidney Research (CKR),
Westmead (Sydney), that conducts and implements high-priority research in the
prevention, diagnosis, treatment, and care of people with or at risk of chronic kid-
ney disease and related conditions. In chapter 6 we will introduce the Australian
and New Zealand registry of transplants data and further explore our motivational
dataset.

1.3 Goals

The goal of this manuscript is to illustrate an appropriate methodology to jointly
analyse repeated measurements of biomarkers and event times of individuals and give
them an experimental application studying the association between death or graft
failure and a longitudinal biomarker, calculating updated event risks for transplanted
patients and eGFR predictive performance. Joint modeling strategies and their
extensions will be here exhaustively explained.

1.3.1 Research Questions

• Is there an association between time to death (or graft-failure) and the evolu-
tion of the eGFR biomarker?

• Is the analysis of the biomarker evolution helpful in predicting patients’ con-
ditional survival probabilities?
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Chapter 2

Theory Background

This chapter is meant to give the reader an introductory understanding of classical
models commonly used to separately analyze longitudinal and survival data. A
non exhaustive literature studying special issues in the following topics will be also
provided along with the discussion.

2.1 Longitudinal Data Analysis

Typically longitudinal data arise from collection of participants outcomes measured
at different follow-up times.

Longitudinal studies allow us to investigate how for example treatment (or ex-
posures) means differ at specific time points (cross-sectional effect) and how they
change over time (longitudinal effect).They also enable us to distinguish changes
over time within individuals (so called ageing effects) from differences among people
in their baseline levels (cohort effects).

Simplest form in the family of prospective longitudinal studies is the analysis of
changes from baseline to follow-up but even with this simple case we could have com-
plications. In practice we usually have to deal with clinical trial data not balanced
and not equally spaced. In fact it often happens that patients attend a different
number of visits, in different times. One of the major challenges for the analysis of
longitudinal outcomes is that these are often incomplete. Missing data can occur
when patients are missing at intermittent times or when they eventually drop-out
of the study. If subjects that are followed to the planned end of study differ from
subjects with discontinue follow-up then a naive analysis may provide summaries
that are not representative of the original target population. Mechanism leading
to missing data should be carefully evaluated. A common classification of different
missing data mechanisms distinguishes between three general cases:

• Missing completely at random (MCAR) when probability of missing is inde-
pendent of any variable, this is the case for subjects who go out of the study
after providing a pre-determined number of measurements or when laboratory
measurements are lost simply due to equipment malfunction.

• Missing at random (MAR) when probability of missing depends on a set of
covariates but not on the outcome, e.g. study protocols require patients whose
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response value exceeds a threshold to be removed from the study.

• Missing not at random (MNAR) when probability of missing is actually related
to the response variable we observe or not, on the data.

First situation is easily handled because under this state we can consider observed
data as a random sample of the complete data, in the second case we cannot but
we nevertheless can use likelihood inference methods and obtain valid results for
subject-specific evolution and residuals. The third scenario is instead the most
complex one, for appropriate inference on data it requires us to use procedures that
explicitly model the joint distribution of the longitudinal and of the missingness
process.

Longitudinal data are rather common in clinical research. As popular example
HIV studies are usually mentioned, in these analyses CD4 cell counts are repeatedly
measured over time because their value is causally associated with the evolution of
AIDS virus.

Special methods are needed for the analysis of these data, in fact observations
coming from the same subject can be thought as naturally correlated, therefore
classical approaches as t-tests and linear regression models assuming independence
between observations are no longer appropriate. Valid inferences can be achieved
only if this correlation has been taken into account.

Two approaches are usually applied for longitudinal problems: Generalized Lin-
ear Mixed Models (GLMM) and Generalized Estimating Equations (GEE). Their
purpose is to describe the dependence of the response on explanatory variables
distinguishing between continuous, binary, normal and non normal outcomes and
taking into account many further model specific assumptions. In the next subsection
we are going to investigate more deeply the GLMM framework that will serve us
for our research topic, for other approaches using GEE or Generalized Least Square
(GLS) methods we remand the lecturer to a well-argued book such as [Diggle, 2002].

2.1.1 Generalized Linear Mixed-Effects Models

Generalized Linear Mixed Effects Models (GLMM) are the standard setting in lon-
gitudinal data analysis. These models can be seen as an extension of Generalized
linear models (GLM) that incorporates random regression coefficients to character-
ize within-subject correlations in the data. The main idea is that each individual in
the population has his own specific mean response profile over time that has to be
modeled to obtain correct inferences. Let’s use yij to denote the response of subject
i (i = 1, ..., n) at time tij, j = 1, ..., ni. The evolution of each subject in time can be
described by a linear model:

yij = (β0 + bi0) + (β1 + bi1)tij + εij, εij ∼ N(0, σ2) (2.1)

where the terms bi = (bi0, bi1)
T are the random effects that describe the variability of

the individuals in population with some prespecified distribution, usually Normal.
On the other hand parameters β0 and β1 are fixed effects describing the average
population evolution process. If we have a continuous outcome Linear Mixed-Effects
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Models (LMM) are implemented in the analysis. In a more general form we can
rewrite the (marginal) model as:

yi = Xiβ + Zibi + εi,
β = (βi, ...βp)

T

bi ∼ N(0, D)
εi ∼ N(0, σ2Ini

)
bi independent from εi

with X design matrix for fixed effects, Z design matrix for random effects and Ini

is the order ni identity matrix, where ni denotes the number of observations in the
i-th subject (cluster). Parameters interpretation comes straightforward: βj with
j = 1, ..., p are interpreted as the change in the average yi when xj is increased by
one unit; bi express how a subset of the regression parameters for the i-th subject
deviates from those in the population, so the sum βj + bi describes the individual
response. Models as the one above are already an extension of the simpler random
intercept model, they allow intercepts variation across groups but also a random
shift in the subject-specific slopes. When the chosen random-effects structure is
not sufficient to capture the correlation in the data it is possible to change the
model allowing for a more general, covariance matrix for the subject-specific error
components, i.e. εi ∼ N(0, Σi), with Σi depending on i only through its dimensions
ni. In the literature, several different models have been proposed for different types
of correlation functions. Some of the most frequently used are the first order Auto-
regressive, Exponential, and Gaussian correlation structures, but many more options
are provided by standard statistical software. We assume that longitudinal responses
of an individual are independent conditionally on its random effects:

p(yi|bi; θ) =

ni∏
j=1

p(yij|bi; θ), (2.3)

using maximum likelihood principles we can derive the log-likelihood for the set of
parameters

l(θ) =
n∑
i=1

logp(yi; θ) =
n∑
i=1

log

∫
p(yi|bi; β, σ2)p(bi; θb)dbi. (2.4)

Given as known the covariance for the random part cov(Zibi + εi; ) = Vi and

p(yi; θ) = (2π)−ni/2|Vi|−1/2 exp

{
−1

2
(yi −Xiβ)TV −1i (yi −Xiβ)

}
, (2.5)

the fixed-effects estimator is obtained by maximizing the function above condition-
ally on the parameters in Vi and correspond to the generalized least square estimator:

β̂GLS =

(
n∑
i=1

XT
i ViXi

)−1( n∑
i=1

XT
i Viyi

)
. (2.6)
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Concerning random-effects we can no longer talk about estimation, because we
are dealing now with random variable and we have to predict them. Henderson’s
mixed model equations are used in practice to obtain best linear unbiased predictors
(BLUPs) for b [Henderson et al., 2000] and to calculate the best linear unbiased
estimator for Xβ at the same time:

b̂ = DZTV −1(y −Xβ). (2.7)

If Vi is unknown, we can replace it by its maximum likelihood estimate V̂i asymp-
totically unbiased, otherwise restricted maximum likelihood (REML) can be applied
to address a more general situation in small samples. This method estimates the
variance components based on the residuals obtained after the estimation of the fixed
effects (y −Xβ). Neither of those methods however have a close form, so in order
to obtain numerical optimization approaches are needed, such as the Expectation-
Maximization [Dempster et al., 1977] or the Newton-Raphson algorithms [Lange,
2004].

2.1.2 Using splines to model non linear associations

In using maximum likelihood for simultaneous estimation of the parameters the
form of the design matrix X is explicitly involved. One consequence of this is that
if we use the wrong form for X, we may not even get consistent estimators for the
parameters of interest.

A linear model, with its respective X matrix, assumes by definition a linear
relationship between outcome and covariates, but it is not unusual that association
between the outcome and covariate varies across covariates. To handle non linear
relationships it is necessary to incorporate the concept of smoothing in the framework
of mixed models. In the following we literature concerning the use of splines as
accurately described in Gurrin et al. [2005]. The relationship between a continuous
response Y and a single covariate x can be modeled by

E[Yi] = f(xi) + εi, (2.8)

with (i = 1, . . . , n) and f(·) as an arbitrary smooth function giving the conditional
mean of Y , εi are independent error random variables with mean zero and variance
σ2
ε . In order to estimate f in this non-parametric regression model we can use a

spline estimator of the form

f(x) = β0 + β1x+
K∑
k=1

bk(x−Kk)+ (2.9)

where

(x−Kk)+ =

{
0, if x ≤ Kk

(x−Kk), if x > Kk

and K1, ..., Kk are knots, this equation describes a sequence of line segments linked
together at the knots, to form a continuous function; it can be extended to take the
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form of a piecewise polynomial of degree p:

fq(x; β, b) = β0 + β1x+ ...+ β1x
q +

K∑
k=1

bk(x−Kk)
q
+ (2.11)

where β = (β0, ..., βq)
T and b = (b1, . . . , bk)

T denote the vectors of coefficients and
[1, x, . . . , xq, (x −Kk)

q
+] denote basis functions. Splines of order q, or degree q − 1,

are defined as linear combination of them.
Types of splines differ each other in the choice of knots and roughness penaliza-

tion [Gurrin et al., 2005]. Natural cubic splines [Green and Silverman, 1993] are the
most used ones; for further investigation please refer to Wood [2006]. Finding the
right level of smoothing is critical in the modelling process, smoothing too much can
lead to lose underlying temporal dynamics, while smoothing too little can lead to
wrong conclusions [Berk, 2013].

For applying a spline smoothing procedure we have to estimate β̂ and b̂ coeffi-
cients. Let’s take a set of n response y = (y1, . . . , yn) and covariates x = (x1, . . . , xn)
and normally distributed errors and random effects b and define the n× 2 fixed ef-
fects design matrix as X = [1 x] and the n×K random effects matrix as
Z = [(x − k11)+, . . . , (x − kK1)+], a connection between mixed models and spline
smoothing methods can be established by considering β̂ and b̂ as the estimators that
minimize the so called penalized least squares (PLS) function

PLS(β, b) = ||y −Xβ − Zb||2 +
σ2
ε

σ2
b

||b||2. (2.12)

Penalization process consist in constraining the magnitude of the random effect
coefficients in b not to grow too large; a penalty ‖b‖2 results, for example, from
the Gaussian distribution assumption. The advantage for spline smoothers in linear
mixed models is that the ratio of variance components σ2

ε/σ
2
b can be selected using

REML estimation [Gurrin et al., 2005].
We can rewrite the estimators as

(β̂, b̂)T = (C
′
C +

σ2
ε

σ2
b

G)−1Cy,

with C = [X Z] and G = diag(0p, 1, . . . , 1), 0p representing the p-dimensional zero
vector where p is the dimension of the vector β of fixed regression coefficients. This
equation can be recovered by substituting the covariance matrix for the random
errors R = σ2

ε I and the one for the random effects D = σ2
bI into the mixed model

equations.
In terms of interpretability an important disadvantage arises when such elaborate

non linear parameterization of the subject-specific mean structure of longitudinal
submodel is assumed. In particular, when polynomials or splines are used to capture
non linear subject-specific evolution, the random effects do not have a the usual
straightforward interpretation.
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2.2 Analysis of Time-to-Event Data

Survival time, or event time, is defined as the time accounted from an initial start
point to the occurrence of the event of interest. Time to death or to treatment
failures are often primary outcomes in clinical studies, for example in randomized
trials that compare a new drug with placebo for its ability to maintain remission
in patients. Time-to-event data differs from classical Generalized Linear Model
(GLM) responses that only concern one outcome variable in that they consist of
both a continuous variable (time to event or censoring time) and a binary variable
(indicating whether the observed time is the event time or not), which is not covered
by GLM. The most important characteristic that distinguishes the analysis of time-
to-event outcomes from other areas in statistics is indeed censoring. By this we mean
that the event time of interest is not fully observed for all subjects under study.
Several definitions have been formalized to describe this phenomenon and to define
its different characterizations with their specific assumptions. Censoring implies that
standard tools, such as the sample average, the t-test, and linear regression cannot
be used and inferences may be sensitive to misspecification of the distribution of the
event times.

We can distinguish censoring types by means of:

• Location of the true event time with respect to the censoring time: Right, Left
and Interval censoring. Left and right censoring are special cases of interval
censoring, with the beginning of the interval at zero or the end at infinity,
respectively. Right censoring occurs when a subject leaves the study before an
event occurs, or the study ends before the event has been experienced.

• Probabilistic relation between the true event time the censoring time: Infor-
mative and Non-informative (or Random) censoring, similar to MNAR and
MAR in missing values analysis.

Depending on the type of censoring mechanism, different inferential procedures
should be followed. The majority of the literature has focused on methods that
can handle right censored data because they are the most common encountered.
Throughout the remaining part of the thesis we will be focusing on event times that
may be be subject to right censoring.

In the following subsections we introduce the notation for key components and
models in the context of survival analysis.

2.2.1 Key functions

Let T be a non-negative random variable representing the event time, this is said to
be right-censored by C, censoring time, if T is not observed but the relation T > C is
known. We say that we observe T ∗ = min(T,C) in the sense that observation time
is the first event occurring between survival and censoring time. Event indicator
δ = I(T ≤ C) is zero when we have censoring and 1 when the event occurs.

Key quantities used in survival analysis are the Survival and the Hazard function:

S(t) = P (T > t) = 1− F (t) = S(t) =

∫ ∞
t

f(x)dx, (2.13)
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h(t) = lim
dt→0

Pr{t ≤ T < t+ dt|T ≥ t}
dt

. (2.14)

S(t) is defined as the probability that event will occur after a certain time point
t while h(t) represents the instantaneous hazard rate or in easier words, it tells us
how likely an individual will experience the event in the next time point, given that
he has not experienced it previously. The following relations must be considered:

S(t) = exp

{
−
∫ t

0

h(x)dx

}
, (2.15)

h(t) =
f(t)

S(t)
= −∂logS(t)

∂t
. (2.16)

Another main quantity that is usually taken into consideration is the cumulative
hazard function

H(t) =

∫ t

0

h(x)dx = −logS(t).

The most well-known estimators of both functions are the Kaplan-Meier and the
Nelson-Aalen estimator.

• Kaplan Meier estimator

ŜKM(t) =

{
1, t < t1,∏

tj≤t

(
1− dj

rj

)
, t > t1,

(2.17)

where we consider 0 < t1 < ... < tD as the distinct uncensored event times,
rj is the total number of individuals ”at risk” prior to time tj and dj is the
number of observed events at tj. The Kaplan-Meier estimator is a step function
with discontinuities or jumps at the observed event times, coinciding with the
empirical survival function if there is no censoring.

• Nelson Aalen estimator

Ĥ(t) =
∑
tj≤t

dj
rj
. (2.18)

In the context of joint modeling we will make use of counting process theory [Aalen,
1978]. Some notation is introduced here for preliminary understanding. Let Ni(t) =
I(T ∗ ≤ t, δi = 1) be the counting process representing the observed events by time t
for subject i and Yi(t) = I(T ∗ ≥ t) the at-risk process, equal to 1 if subject i is indeed
considered at risk prior to time t. Nelson-Aalen estimate can be then rewritten as

Ĥ(t) =

∫ t

0

∂N(x)

Y (x)
, (2.19)
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with N(t) =
∑n

i=1Ni(t) and Y (t) =
∑n

i=1 Yi(t). The Kaplan Meier estimate can
now be alternatively computed as

ŜKM(t) =
∏
x≤t

1− dĤ(x). (2.20)

Alternatively to the above non-parametric estimators a parametric form for the
distribution of the survival time could be assumed. In that case we use maximum
likelihood theory for parameters estimation. Suppose that we have n units with
lifetimes and unit i-th observed for a time ti. If the unit died at ti its contribution
to the likelihood function is the density, written as the product of the survivor and
hazard functions Li = f(ti) = S(ti)h(ti), while if the unit is still alive at ti we will
have Li = S(ti). Combining the information from the censored and uncensored
observations, we obtain the likelihood function:

L(θ) =
n∏
i=1

Li(θ) =
n∏
i=1

p(Ti; θ)
δ
iSi(Ti; θ)

1−δi , (2.21)

or in terms of log-likelihood

l(θ) =
n∑
i=1

δi log p(Ti; θ) + (1− δi) logSi(Ti; θ) =
n∑
i=1

δi log hi(Ti; θ)−
∫ Ti

0

hi(x; θ)dx

(2.22)
Several iterative optimization procedures, such as the Newton-Raphson algorithm
[Lange, 2004], can then be used to locate the maximum likelihood estimates θ̂.

2.2.2 Proportional Hazards Cox models

Up to this point we have considered a population, where the lifetimes of all units
are governed by the same survival function. In reality, we may have survival models
characterized by the presence of a vector of covariates or explanatory variables that
may affect survival time and require us to consider the problem of modeling these
effects. There are different approaches for survival regression. Accelerated Failure
Time models, for example, assume that the effect of a covariate is to accelerate
or decelerate the life course of a disease by some constant. These are essentially
standard regression models applied to the log of survival time, and except for the
fact that observations are censored don’t imply new estimation problems. In this
subsection we will focus on the more popular Cox Proportional Hazards (Cox PH)
models. Cox PH model was originally formulated by Cox [1992] as:

hi(t|Zi) = h0(t) exp
(
βTZi

)
. (2.23)

In the expression above, Zi = (Zi1, ..., Zip) is the vector of covariates, β = (β1, ..., βp)
is the vector of regression coefficients and h0(t) = h(t|0) is the baseline hazard or
baseline risk function, corresponding to the hazard function of a subject with βTZi
= 0. If we rewrite the model in the log scale,

log hi(t|Zi) = log h0(t) + (β1Zi1 + ...+ βpZip), (2.24)
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we can easily derive interpretation for the regression coefficients; we state that βj
is the change in the log hazard at any time t when variable Zij is increased by one
unit (if continuous) and all others are held constant. More generally we will say
that exp(βj) denotes the Hazard Ratio (HR) of subject i with covariate (Zi + 1)
compared to subject i with covariate Zi:

HR =
hi(t|Zi1 + · · ·+ Zij + 1 + · · ·+ Zip)

hi(t|Zi1 + · · ·+ Zij + · · ·+ Zip)
= exp(βj) (2.25)

The main assumptions for Cox PH includes:

• The censoring time C and the event time T are conditional independent given
the covariates.

• The survival curves for two strata must have hazard functions that are pro-
portional over time.

• The distribution of censoring time is unrelated to the unknown parameters
related to survival.

In the relative risk model above we are not specifying any distribution for T ∗. The
baseline hazard function would have a different form depending on the specific dis-
tribution for the survival time. If for example T ∗ follows a Weibull distribution, we
would have that h0(t) = φσtt

σt−1. To simplify estimation without having to specify
any formal expression for h0(·) and considering only parameters of interest, Cox
[1992] proposed the following Partial Likelihood definition for the parameters β:

L(β) =
n∏
i=1

[
exp

(
βTZi

)∑
j∈Ri

exp
(
βTZj

)]δi , (2.26)

where Ri is the risk set at the time just prior to t; or equivalently expressed as
Partial Log-Likelihood

pl(β) =
n∑
i=1

δi

[
βTZi − log

∑
Tj≥Ti

exp(βTZj)

]
(2.27)

which is the Profile Likelihood obtained by maximizing the joint likelihood with
respect to H0 for a fixed β and assuming there are no ties in the observed event
times. Procedure follows exactly in the same way as with the full likelihood. To
obtain the maximum likelihood estimates the scores equations ∂pl(β)/∂βT = 0
have to be solved in order to find a solution for β̂ that is asymptotically normally
distributed with mean βtrue, the true parameter vector, and variance [I(βtrue)]

−1, the
inverse of the expected information matrix. Computing the expected value requires
to know the censoring distribution, but since we don’t have it here standard errors
are typically estimated using the observed information I(β̂)−1.
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2.3 Joint Modeling motivation

Why then to create another set of models if we already have these well performed
statistical tools available?

Let’s take transplantation studies as example. Our interest is the relation inter-
coming between longitudinal measurements taken at the visit times and the proba-
bility to experience graft failure or death. A standard analysis in this contest tends
to ignore the longitudinal information and to use only the last available measurement
as a baseline covariate in the survival model. In this simple way we would be discard-
ing a considerable amount of valuable information. An alternative straightforward
approach could be to put all longitudinal measurements at any time as covariates in
the time-to-event model, but this would require many additional degrees of freedom
and of course could lead to multicollinearity regression issues. Time-dependent Cox
models are the usual setting to incorporate information coming from a covariate
changing over time. The hazard function is here expressed as

hi(t|Zi(t)) = h0(t) exp
(
βTZi(t)

)
, (2.28)

where Zi(t) is the time-dependent covariate and h0(t) is again the unspecified base-
line hazard function. This model requires by construction knowledge of the covariate
process for all subjects in the risk set at the time of each failure. However in clinical
trials it is common to have a marker measured at only discrete time points so that
no measurements for the covariate would exist for those in the risk set when an
event occurs in a middle time between scheduled follow-up visits. A possible solu-
tion for this is to carry forward the last longitudinal measurement preceding failure
time and treat it as if it was the current value, but this would simply ignore mea-
surement errors that characterize the covariate values [Tsiatis et al., 1995], affecting
standard errors of the estimates of interest and causing the relative risk parameter
to be biased towards zero [Prentice, 1982].

Time-dependent cox models also implicitly assume to deal with exogenous co-
variates, defined by Kalbfleisch and Prentice [2002] as those which path at any future
time point t is not affected by the occurrence of an event at time s < t. They should
satisfy the relation

Pr(Yi(t)|Yi(s), T ∗i ≥ s) = Pr(Yi(t)|Yi(s), T ∗i = s). (2.29)

This hypothesis holds for time-dependent variables such as environmental factors,
while it is clearly unfulfilled by biomarkers, which value at any time is influenced
by the occurrence of the event in the past. A longitudinal endogenous variable is
therefore said to be informatively censored at the event time, with patients non-
random dropouts; in this case the hazard function cannot be directly relation to the
survival by the usual formula

Si(t|Yi(t)) = exp

{
−
∫ t

0

hi(s|Yi(s))ds
}
, (2.30)

so the log-likelihood construction used before is no more appropriate.
Stated above are the main reasons why joint models have been introduced in

statistical theory. First attempt method to overcome the disadvantages of the naive
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methods was done by Tsiatis et al. [1995] who proposed a two-stage estimation
analysis. This basically consists in retrieving the empirical Bayes estimates from
the longitudinal model and plugging in the predictions into the survival one and
eventually using Monte Carlo simulations to sample from the posterior distribution
of the random effects, to account for the fact that we use estimates instead of true
values.
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Chapter 3

Joint Models Framework

Since the seminal paper Wulfsohn and Tsiatis [1997a], longitudinal covariates have
played an increasingly important role in the modeling of survival data. Based on the
theoretical background we just introduced we are now able to present the standard
joint model, which incorporates all the basics from survival and longitudinal analy-
sis. In this chapter we will start by introducing the general model formulation, in a
second section we will discuss and compare two different estimation’s methods: the
full maximum likelihood approach and its ancestor, the two-stage approach; we will
also briefly mention optimization and numerical integration algorithms and com-
putational issues arising when dealing with complex models. Inference on model’s
parameters, their interpretation and possible diagnostics tools to judge model’s ap-
propriateness will follow. Additionally, we will try to include a complete list of
model’s extensions that cover situations very often encountered in the real world
contest of analysis.

3.1 The General Model

The joint modeling approach postulates a relative risk model for the event-time
outcome directly associated with the longitudinal process. Using similar notation
as in 2 we will denote as T ∗i the true event time for the i-th subject and as yi(t)
the endogenous time-dependent covariate values at time point t for the i-th subject.
In real clinical studies, longitudinal marker values are rarely available at event time
but rather at specific occasions tij denoted as follow-up times, actually observed
measurements are denoted as yij = yi(tij) with j = 1, . . . , ni number of visits for
each patients.

Joint models belong to a broaden class of models called shared random effects
with a key underline assumption:

f(Y, T, b) = f(T |b)f(Y |b)f(b); (3.1)

i.e. the event time responses are independent from the longitudinal response, con-
ditionally on the random effects.

More precisely a joint likelihood for the two outcome is now formulated as prod-
uct of two conditional independent distributions:

p(Ti, δi, yi|bi; θ) = p(Ti, δi|bi; θ)p(yi|bi; θ), (3.2)
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with
p(yi|bi; θ) =

∏
j

p(yi(tij)|bi; θ) (3.3)

and θ = (θt, θy, θb)
T the parameter vector for the event time variable, the longitudinal

variable and for random effects covariance matrix, respectively. Also, intermittent
missing data (censoring and visiting processes) are assumed non-informative and
independent from true event times and future longitudinal measurements. Violation
of the latter assumption would in fact imply dependence of subject’s prognosis with
latent characteristics.

The standard joint model set up links together a linear-mixed model for the
longitudinal outcome with a cox proportional hazard model for the time-to-event
outcome. The survival submodel is:

hi(t|Mi(t), wi) = lim
dt→0

Pr t ≤ T ∗i < t+ dt|T ∗i ≥ t,Mi(t), wi/dt,

= h0(t) exp
{
γTwi + α(mi(t))

}
. (3.4)

where Mi(t) = {mi(t), 0 < s < t} denotes the history of the true (unobserved)
longitudinal process up to time t with mi(t) being the true current value, wi is a
vector of baseline covariates and h0(t) the well known baseline hazard. From the
above we can further determine the survival function by the relation

Si(t) = Pr(T ∗i > t|Mi(t), wi) (3.5)

= exp

{
−
∫ t

0

h0(s) exp{γTwi + α(mi(s))}ds
}
, (3.6)

which implies that patient’s survival depend on the entire history of the covariate. In
classical survival analysis the usual practice is to leave the baseline hazard function
h0(t) completely unspecified, this avoids the restriction resulting from specifying
a certain form for the baseline hazard and at the same time still can offer valid
statistical inference through the use of partial likelihood. In the joint models context
this choice will generally lead to underestimation of the standard errors of the model
parameters ([Yuen and Mackinnon, 2016],[Hsieh et al., 2006]). The risk function can
be set as known parametric distributions such as the Weibull, Log-Normal, Gamma
or alternatively to more flexible non parametric distributions as step-functions and
linear splines. Two common options often encountered are in fact:

• the Piecewise-constant model, where h0(t) =
∑Q

q=1 ξqI(vq−1 < t ≤ vq),
with 0 = v0 < v1 < · · · < vQ denoting a partition of the time scale (vQ larger
than the largest observed time) and ξq is the value of the hazard in the interval
(vq−1, vq].

• the Regression splines model, where log(h0(t)) = k0 +
∑m

d=1 kdBd(t, q),
with k = (k0, . . . , km) denoting the spline coefficients and q the degree of the
B-spline basis functions. In the general model we have to keep in mind that a
standard rule of thumb is to retain a total number of parameter between 1/10
and 1/20 of the number of events in the sample, in order to avoid over-fitting,
therefore choosing a baseline hazard spline formulation with too many degrees
of freedom could be inappropriate [Rizopoulos, 2012].
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Once determined the submodel for the survival data (Eq.3.4) we formulate the lon-
gitudinal submodel as:

yi(t) = xTi (t)β + zTi (t)bi + εi(t)

= mi(t) + εi(t), (3.7)

with bi ∼ N(0, D) and εi(t) ∼ N(0, σIni
). In the above we notice that the design

vectors for the fixed and random effects xi(t) and zi(t) are time-dependent, fur-
thermore the same assumptions for LMM models we saw in 2 are still valid. The
model highlight the idea to decompose the longitudinal outcome for each patient at
event time between true level mi(t) and error term εi(t). This is in fact the main
improvement of joint models over extended cox models, where the estimation error
was not accounted for the longitudinal process.

3.2 Estimation: Two stages approach

The main idea of the beginning version of joint models was to build the likelihood of
the above mentioned models separately. A two stages approach has the advantage
to be quick and relatively easy to implement with standard software, but on the
other hand has been widely demonstrated how it leads to less efficient estimates.
This procedure is also denoted as ordinary regression calibration (ORC) and works
as follows.

At Stage I we obtain θ̂y maximizing the log-likelihood:

ly(θy) =
n∑
i

p(Yi|bi; θ)p(bi|θ),

this requires numerical integration as Gaussian quadrature rules for example, we
then obtain the corresponding empirical Bayes estimates

b̂i = argmaxθ
{
log(p(Yi|bi; θ)) + log(p(bi|θ))

}
and compute the predicted values ŷi = xiβ̂ + zib̂.

At Stage II we fit the relative risk model plugging in the fitted values ŷi(t) as
time-dependent covariates and maximize the partial likelihood to get an estimate for
γ. A remarkable disadvantage here is that it we do not correct for event-dependent
drop-out, and uncertainty in the estimated MLEs and BLUPs (best linear unbiased
predictors) is not carried forward to the survival model, resulting in estimates that
are too precise. Also, the form of the BLUPs depends critically on the validity of
normally distributed random effects and error terms, which becomes less satisfactory
as time increases and subjects suffer informative drop-out [Tsiatis and Davidian,
2004].

3.3 Estimation: Full Likelihood approach

Both Bayesian and Frequentist approaches could be applied for the estimation of the
joint likelihood, however our focus is on the latter one. This choice doesn’t intend to
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underestimate the importance of Bayesian techniques when dealing with complicated
situations as for example high-dimensional random effects, where it can be worth
to consider Monte Carlo sampling methods for numerical integration instead of
Gaussian quadrature or Laplace Approximation. The methods just mentioned will
be here investigated.

Under the assumptions presented in previous sections and under conditional
independence of the two outcomes given the underline random effects, the joint-
likelihood contribution for the i-th subject can be formulated as follows

logp(Ti, δi, yi|bi; θ) = log

∫
p(Ti, δi, yi, bi; θ)dbi

= log

∫
p(Ti, δi|bi; θt, β)dbi

[∏
j

p(yi(tij)|bi, θy)
]
p(bi; θb)dbi.

(3.8)

The three components in the equation above are:

• the likelihood for the survival part

p(Ti, δi|bi; θt, β) = hi(Ti|Mi(t); θ)
δiSi(Ti|Mi(t); θ)

=

(
h0(Ti) exp{γTwi + αmi(Ti)}

)δi
× exp

(
−
∫ Ti

0

h0(s) exp
{
γTwi + αmi(Ti)

}
ds

)
,

• the joint density for the longitudinal responses and random effects

∏
j

p(yi(tij)|bi, θy) =
1

(2πσ2)ni/2

exp
{
− ||yiXiβ − Zibi||2

}
2σ2

× 1

(2π)qb/2det(D)1/2
exp(−bTi D−1bi)

2
,

where qb denotes the dimensionality of the random-effects vector and || · || the
Euclidean vector norm.

To maximize the log-likelihood function l(θ) =
∑

i logp(Ti, δi, yi|bi; θ) for all the
observed data with respect to θ, Wulfsohn and Tsiatis [1997a] have proposed a two
steps iterative procedure.

3.3.1 EM algorithm

The purpose of the EM algorithm is to estimate parameters of interest by maximizing
the likelihood of the observed data. This is done by iterating between an E-step,
where we compute the expected log-likelihood of the complete data conditional on
the observed data and the current estimate of the parameters, and an M-step, where
new parameter estimates are computed by maximizing this expected log-likelihood.
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• E-step: estimates parameters θ = (θt, θy, θb)
T of the complete data Yo and Y m

by using only observed data, we compute the expected value of the observed
data log−likelihood

Q(θ|θ(it)) = E{logp(y; θ)|yo; θ(it)} =

∫
logp(ym, yo; θ)p(ym|yo; θ(it))dym.

(3.10)

Referring to the joint likelihood formulation, in particular, we want to maxi-
mize l(θ) by maximizing

Q(θ|θ(it)) =
∑
i

∫
logp(Ti, δi, yi, bi; θ)p(bi|Ti, δi, yi; θ(it))dbi

=
∑
i

∫ {
logp(Ti, δi|bi; θt, β) + logp(yi|bi; θy) + logp(bi; θb)

}
×p(bi|Ti, δi, yi; θ(it))dbi, (3.11)

treating random effects as missing data.

• M-step: we obtain the updated parameters θ(it+1) by maximizing the expected
value first computed θit+1 = argmaxθQ(θ|θit).
This imply splitting the complete data log-likelihood into three parts

logp(Ti, δi, yi, bi; θ) = logp(Ti, δi|bi; θt, β) + logp(yi|bi; θy) + logp(bi; θy) (3.12)

with maximization that therefore involves for each parameter only the pieces
where it appears.

Closed forms are available for the variance of residuals of the longitudinal model
and the variance-covariance matrix of the random effect:

σ̂2 =

∑
i

∫
(yi −Xiβ − Zibi)T (yi −Xiβ − Zibi)p(bi|Ti, δi, yi; θ)dbi∑

i=1 ni

=

∑
i(yi −Xiβ)T (yi −Xiβ − 2Zib̄i) + tr(ZT

i ZiV ar(bi|Ti, δi, yi; θ)) + b̄i
T
ZT
i Zib̄i∑

i=1 ni
,

where tr denote the trace of a matrix and b̄i = E the expectation function.
The estimate for the covariance matrix of the random-effects is

D̂ =

∑
i(bi|Ti, δi, yi; θ)b̄i + b̄ib̄i

T

n
.

However since fixed effect coefficients are involved in both the longitudinal and
survival models no closed form solution can be found for them, therefore a Newton-
Raphson updating scheme is implemented for both:

β̂(it+1) = β(it) −
{
∂S(β̂(it))/∂β

}−1
S(β̂(it))
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with

S(β) =
∑
i

XT
i

{
yi −Xiβ − Zi bi

}
/σ2 + αδixi(Ti)

− exp(γTwi)

[ ∫∫ Ti

0

h0(s)αxi(s) exp
(
αxTi (s)β + zTi (s)bi

)
×p(bi|Ti, δi, yi; θ)dsdbi

]
.

This also applies to the parameters of the survival model:

θ̂
(it+1)
t = θ

(it)
t −

{
∂S(θ̂

(it)
t )/∂θt

}−1
S(θ̂

(it)
t )

with

S(γ) =
∑
i

wTi

[
δi − exp(γTwi)

∫∫ Ti

0

h0(s) exp
(
αxTi (s)β + zTi (s)bi

)
×p(bi|Ti, δi, yi; θ)ds dbi

]
;

S(α) =
∑
i

δix
T
i (Ti)β + zTi (Ti)bi

− exp(γTwi)

[ ∫∫ Ti

0

h0(s) exp
(
αxTi (s)β + zTi (s)bi

)
×p(bi|Ti, δi, yi; θ)ds dbi

]
;

S(θh0) =
∑
i

δi∂h0(Ti; θh0/∂θ
T
h0

− exp(γTwi)

[ ∫∫ Ti

0

∂h0(Ti; θh0/∂θ
T
h0

exp
(
αxTi (s)β + zTi (s)bi

)
×p(bi|Ti, δi, yi; θ)ds dbi

]
.

The EM algorithm essentially treats random effects as missing values. Once
derived parameters θ for the joint model, patient-specific trajectories bi (random
variables) can be predicted using the Bayesian paradigm. Assuming p(b;θ) to be
the prior distribution, and p(Ti, δi|bi; θ)p(yi|bi; θ) the conditional likelihood part we
formulate their posterior distribution as

p(bi|Ti, δi, yi; θ) ∝ p(Ti, δi|bi; θ)p(yi|bi; θ)p(b;θ). (3.13)

An empirical Bayes approach is then used to estimate the posterior mean and mode
that describes the posterior distribution stated above:

• bi =
∫
bip(bi|Ti, δi, yi; θ)dbi,

• b̂i = argmaxb{logp(b|Ti, δi, yi; θ).
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3.3.2 Numerical Integration

We briefly introduce numerical integration techniques used in joint models to ap-
proximate intractable integrals. Standard and adaptive Gauss Hermite quadrature
rules are usually applied. These consists in approximating the integral in the defi-
nition of the score vector by a weighted sum of integral evaluations at prespecified
abscissas [Rizopoulos, 2012]. First of all we notice that the score function for the
model’s parameters can be written as

S(θ) =
∑
i

∫
∂{logp(Ti, δi|bi; θ) + logp(yi|bi; θ) + logp(bi; θ)}/∂θTp(bi|Ti, δi, yi; θ)dbi

(3.14)

=
∑
i

∫
A(θ, bi)p(bi|Ti, δi, yi; θ)dbi, (3.15)

with A(·) denoting the complete data score vector. For any form of the A() func-
tion of the random effects, the integral in the definition of the score vector can be
approximated by a weighted sum of integral evaluations at prespecified abscissas

E{A(θ, bi)|Ti, δi, yi; θ} ≈ 2qb/2
∑
t1,...,tq

πtA(θ, bt
√

2)p(bt
√

2|Ti, δi, yi; θ)exp(||bt||2),

where
∑

t1,...,tq
=
∑K

t1=1 · · ·
∑K

tq=1, K denoting the number of quadrature points

and bTt = (bt1, ..., btq) the abscissas with corresponding weights πt. Accuracy of the
approximation improves as K is increased while computational cost exponentially
increases with qb (dimension of random effects) but also the locations of the quadra-
ture points with respect to the location of the main mass of the integral could be
critical. If A(θ, bi)p(bi|Ti, δi, yi; θ) is concentrated far from zero or its width is quite
different from the weight function exp(||b||2), an adaptive procedure is applied.

The new approximation will be

E{A(θ, bi)|Ti, δi, yi; θ} ≈ 2qb/2|B̂i|−1
∑
t1,...,tq

πtA(θ, b̂i
√

2B̂−1i bt)

×p(bt
√

2|Ti, δi, yi; θ)exp(||bt||2),

where b̂i = argmaxb{logp(Ti, δi, yi, b; θ)} is the mode of the random effects and B̂i

is the Choleski factor of the estimated hessian matrix Ĥi.

3.4 Inference

Model testing on the null hypothesis on H0 : θ = θ0 versus HA : θ 6= θ0 can involve
three different statistics

• the Likelihood Ratio Test: LRT = −2{l(θ̂0)− l(θ̂)},
where θ̂0 and θ̂ are the maximum likelihood estimates under the null and
alternative hypothesis.
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• the Score Test: U = ST (θ̂0)I(θ̂0)
−1
S(θ̂0),

with I(·) denoting the observed information matrix of the model under the
alternative hypothesis.

• the Wald Test: W = (θ̂ − θ0)T I(θ̂)(θ̂ − θ0).

All of them, under the null hypothesis, follow asymptotically a chi-squared distribu-
tion, with p (number of parameters to be tested) degrees of freedom. The likelihood
ratio test is more computationally expensive because it requires the model to be
fitted under both hypotheses, on the other hand the Wald test does not take into
account the variability introduced by estimating the variance components.

These tests are only appropriate for the comparison of two nested models but
to carry out the comparison of non-nested models, information criteria can be used,
such as the Akaike’s Information Criterion (AIC, [Akaike, 1974]), and the Bayesian
Information Criterion (BIC, [Schwarz, 1978]):
AIC = −2(l(θ̂)) + 2p,
BIC = −2(l(θ̂)) + plog(n).

3.5 Model Diagnostics

When fitting a regression model it is always important to determine whether all the
model assumptions are valid. Residual graphical methods are a standard tool to
perform model diagnostics that has being intensively studied for longitudinal and
survival analysis. Standard model diagnostics for mixed effects and relative risk
models can be used as for the complete data set:

• Residuals for the longitudinal part Standardized marginal residuals

rymi = V̂
−1/2
i (yi −Xiβ̂), (3.16)

where V̂
−1/2
i = ZibDZ

T
i +σ̂2Ini

represents the marginal covariance matrix of yi,
can be used to investigate miss-specification of the mean structure Xiβ and to
check assumptions about Vi within-subjects covariance matrix. Standardized
subject specific residuals

rysi (tij) = {yi(tij)− xTi (tij)β − zTi (tij)b̂i}/σ̂, (3.17)

instead can be used to validate homosckedasticity and normality assumptions.

• Residuals for the survival part Martingale residuals defined as

rtmi = δi −
∫ Ti

0

hi(s|M̂(s); θ̂)ds, (3.18)

are frequently used to verify whether functional forms of the covariates are
appropriate. On the other hand Cox-Snell residuals in the form

rtcsi =

∫ Ti

0

hi(s|M̂(s); θ̂)ds =

∫ Ti

0

ĥ0(s) exp{γTwi + α̂m̂i(s)}ds, (3.19)
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represent the values of the estimated cumulative risk function (H(t) = −log(S(t)))
at the observed event times Ti and can be used to assess the fit of the relative
risk model. By definition rtcsi follow a unit exponential distribution however
judging the model from their distribution can be misleading without keeping
in mind that when Ti are censored they are censored too. It would be helpful
instead to compare the unit exponential distribution of the survival function
Sexp(t) = −exp(t) with the Kaplan-Meier curve to see if they match.

In the joint modeling framework it is assumed that the occurrence of events is
related with the underlying evolution of the subjects specific longitudinal profiles,
which corresponds to a non-random dropout mechanism (MNAR). Residual plots
can be misleading because patients that dropped out may have different longitudinal
evolution than patients who do not, in other words observed data are not a random
sample of the target population. Rizopoulos [2012] proposed an interesting method
for calculating residuals and producing diagnostic plots in joint models, creating
random versions of the completed data set by multiple imputation of the missing
longitudinal responses under the fitted model, allowing to analyze possible trends.
Assuming longitudinal measurements scheduled at prefixed visit times, for each
subject under study we have observations up to the last visit time before Ti. Multiple
imputation is carried with a Bayesian approach, by repeated sampling from the
posterior distribution of missing data given observed data:

p(ymi |yoi , Ti, δi; θ) =

∫
p(ymi |bi, yoi , Ti, δi; θ)p(bi|yoi , Ti, δi; θ)dbi

=

∫
p(ymi |bi; θ)(bi|yoi , ymi ; θ)dbi. (3.20)

When n is sufficient large the posterior of the parameters can be approximated by
a normal distribution and derived by the following scheme:

1. Draw θ(l) ∼ N(θ̂, v̂ar(θ)).

2. Draw b
(l)
i ∼ bi|yoi , Ti, δi, θ(l).

3. Draw y
m(l)
i (tij) ∼ N(m̂

(l)
i (tij), σ

2(l)), for visit times tij≥Ti not observed for the
current individual.

Each step is repeated for a total number of iterations, simulated y
m(l)
i (tij) together

with yoi can now be used to calculate imputed residuals.

3.6 Model Extensions

Starting from the basic structure of a joint model we could build a more flexible
parameterization in different ways.

3.6.1 Association structures

Classical extensions proposed by Rizopoulos [2012] involve the inclusion of features
of the longitudinal covariate history that were not captured by only considering its
current value at each event time point t, for example:
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• the current slope of the marker as ho(t) exp{γTwi + αmi(t)
′} to capture situ-

ations where at a specific time point patients show similar true marker levels,
but differ in the rate of change of the marker

• the marker with a time lag ∆t as ho(t) exp{γTwi + αmi(t−∆t)}

• the cumulative effect of the marker as ho(t) exp{γTwi +α
∫ t
0
mi(s)} where the

area under the longitudinal trajectory up to each event time is regarded as a
summary measure of the whole marker history.

• a possible interaction with baseline covariates ho(t) exp{xT1iβ + α(x2i ·mi(t))}

• only random effects as ho(t) exp{γTwi + αT bi} that, except for the baseline
hazard, results in a time-constant risk model and therefore can be used to fa-
cilitate estimation [Barrett et al., 2015] with the drawback that the association
parameter is not interpretable in case of a flexible spline parameterization of
individual trajectories.

The association structure can be chosen at priori, based on problem knowledge, or
after fitting the model using AIC and BIC criteria. In a Bayesian setting approaches
as Bayesian model averaging and Bayesian shrinkage have been developed to include
a combination of different associations or to include different association structures
and achieve a parsimonious model by placing shrinkage priors on the association
parameters.

3.6.2 Submodels structures

The standard joint model set up can also be extended with regard to the two spe-
cific submodels. In many situations, for example, it can be necessary to relax the
normality assumption of the random effects [Tang et al., 2017] or to use a differ-
ent longitudinal response distribution (e.g for a categorical marker) substituting the
LMM with a more general GLMM model (see chapter 2). For a GLMM longitudi-
nal submodel we specify by yi = yij, j = 1, ..., ni the vector of observed longitudinal
responses for the i-th subject and denote the probability density function in the
exponential family form, expressing the conditional mean by a general monotonic
function g(·) that works as link to the linear predictor.

The joint model is therefore formulated as:
p(yi|bi; β, φ) = exp{

∑ni

j=1

[
yijψij(bi)− c{ψij(bi)}

]
/a(φ)− d(yij, φ)},

mi(t) = E(yi(t)|bi) = g−1(xi(t)
β + zi(t)

b
i),

hi(t) = h0(t) exp
{
γTw1i + f(mi(t− c), bi, w2i;α)

}
,

where ψij(bi) and φ denote the natural and dispersion parameters, c(·), d(·) and a(·)
are functions for the members of the exponential family, such as Binomial, Poisson,
Gamma, and normal distributions, bi ∼ N(0, D) and α now measures the strength
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of the association between the risk for an event at time t and the expected value of
the longitudinal outcome at the same time point.

Furthermore it is not uncommon that scientists want to investigate more than
one biomarker in association with the same event outcome, a multivariate longitu-
dinal model should be formulated in these cases; to reduce computational burden
in this contest Proust-Lima et al. [2009] proposed a multivariate joint model where
the longitudinal outcomes are considered as realizations of a single latent process
that represents the common unobserved factor that drives the observed longitudinal
trajectories. Different association structures are also allowed in multivariate mod-
els, we refer to Hickey et al. [2016] for an extensive review of possible multivariate
association structures.

Finally, quantile regression joint models have been also developed to assess the
association between quantiles of the longitudinal profile with the hazard [Farcomeni
and Viviani, 2015].

With regard to the relative risk model, potential extensions could be considered
to account for interval-censored outcomes, recurrent events and competing risks. In
the competing risk setting, for example, if we assume K different causes of failure,
a survival model for each of the causes is postulated (hik(t), k = 1, . . . , K) and the
likelihood of the event process is constructed as the product of the single likelihoods:

p(Ti, δi|bi; θ) =
K∏
k=1

[
h0k(Ti) exp{γTk wi + αkmi(Ti)}

]I(δi=k)
× exp

( K∑
k=1

∫ Ti

0
h0k(s) exp{γTk wi + αkmi(s)}ds

)
.

This is done in practice by previous transforming the dataset, each patients have
to be represented by a number of rows equal the number of causes, creating a
stratification factor for the competing risks variable and a binary status variable
equal to 1 if the corresponding event occurred.

When the proportional hazard assumption fails accelerated failure models (AFT)
can be applied as alternative to Cox models. In this framework the effect of covari-
ates is specified as additive on the the log failure time:

logT ∗i = γTwi + σtεti,

where σt is a scale parameter and ti can be assumed to follow a normal, Student’s-t
or extreme value distribution. The subject’s risk rate function can be re-expressed
as

hi(t|Mi(t), wi) = h0(Vi(t)) exp
{
γTwi + α(mi(t))

}
,

with Vi(t) =
∫ t
0

exp{γTwi + α(mi(t))}ds. In contrast to the classical model here
h0(·) is evaluated at Vi(t), so that the entire covariate history Mi(t) is assumed to
influence the subject-specific hazard.

Besides the flexibility of the longitudinal model we have seen above a gener-
alization of the association is required when we want to consider a time-varying
relationship between the biomarker and the time-to-event. The most flexible frame-
work for joint models allowing for flexible longitudinal trajectories and potentially
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nonlinear time-varying association modeled by penalized splines has been only re-
cently developed [Köhler et al.]. The very general setup the hazard of an event at t
as

hi(t) = exp(ηi(t)) = exp
{
ηλi(t) + ηγi + ηαi(t) · ηµi(t)

}
,

with the full predictor η including a predictor ηλ for all time-varying survival covari-
ates or those with a time-varying coefficient (also the log baseline hazard), a predic-
tor for baseline survival covariates ηγ, a predictor ηα for potentially time-dependent
association between the hazard and the longitudinal marker ηµ, the latter is allowed
to follow a non parametric distribution eventually. Identifiability problems occur if
constraints are not assumed in the additive structure of the model. All nonlinear
terms are imposed to sum to zero over all observations for predictors in both sub-
models, for B-splines [De Boor et al., 1978] the basis matrix Xkm is transformed into
a n× (pkm − 1) matrix for which it holds Xkm1k−1 = 0 [Wood, 2006] and adjusting
the penalty.

Estimation of joint models with such complex structure becomes very challenge
with a frequentist estimation approaches due to the necessary integration over poten-
tially high-dimensional random effects distributions, Bayesian estimation is therefore
often employed (R packages bamlss and JMbayes).
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Chapter 4

Dynamic Predictions

Accuracy of risk assessment for prevention and treatment of different diseases is
required in clinical practice. Doctors make decisions regarding treatments, tests or
alternative therapies based on risk scores. These risk scores are mostly influenced by
common measured variables as age, sex, BMI, smoking habit, genetic components,
biomarkers.

For statisticians the goal becomes to give updated estimates of survival prob-
abilities for a new patient as long as additional information is recorded for that
subject. In other words the question is: “what is the likelihood of developing an
adverse outcome among individuals who survived up to a specific time and given
the available extra information up to that time?”.

An early approach for solving this question has been landmarking [van Houwelin-
gen and Putter, 2011]. Landmark analysis consists in extrapolating survival proba-
bilities from a Cox model fitted to the patients from the original dataset who are still
at risk at a specific time point called “landmark time”. A relatively newer method
to produce dynamic predictions for survival probabilities is based instead, on the
class of joint models for longitudinal and time-to-event data. In aim of this chapter
is to explore predictions models in their dynamic version, comparing and judging
the available techniques and to provide guidance on model choices and performance
evaluation by mean of prediction criteria for discrimination and calibration.

4.1 What are individual dynamic predictions?

Let Dn = {Ti, δi, yi; i = 1, ..., n} denote a sample from the target population, where
Ti indicates again the observed event time and yi the longitudinal outcome measured
at time tij for the i-th subject. Our interest in this case is to derive predictions for a
new subject i from the same population on whom a set of longitudinal measurements
Yi(t) = {yi(tij); 0 ≤ tij ≤ t, j = 1, ..., ni} have been observed. In the context of
endogenous covariates, it’s important to highlight that a measurement recorded at
time t implies survival of the patient up to this time point, this is the reason why
we focus on conditional subject-specific probability of surviving time u > t given
survival up to t:

πJMi (u|t) = Pr(T ∗i ≥ u|T ∗i > t, Yi(t), wi, Dn; θtrue), (4.1)
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where wi are baseline covariates and θtrue true parameters. Making use of the con-
ditional independence assumption, between the longitudinal and survival outcome,
and omitting wi for easy of notation we can rewrite the right hand side of the
equation as

Pr(T ∗i ≥ u|T ∗i > t, Yi(t), Dn; θ) =

∫
Pr(T ∗i ≥ u|T ∗i > t, Yi(t), bi; θ)

× p(bi|T ∗I > t, Yi(t); θ)dbi

=

∫
Pr(T ∗I ≥ u|T ∗I > t, bi; θ)

× p(bi|T ∗I > t, Yi(t); θ)dbi

=

∫
Si{u|Mi(u, bi); θ}
Si{t|Mi(t, bi); θ}

p(bi|T ∗i > t, Yi(t); θ)dbi,

(4.2)

with Si(·) being the patient’s survival function and Mi(·) indicating the longitudinal
biomarker history as formulated in the longitudinal repeated measures model 3.4.
An estimate for the conditional probability can be derived using the empirical Bayes
estimate for bi or alternatively implementing a Monte Carlo simulation scheme with
the following steps

Step 1. First we take K samples of θ(k), k = 1, . . . , K from the MCMC sample
of p(θ|Dn) that asymptotically corresponds to a normal posterior distribu-
tion N(θ̂, In) where the variance-covariance matrix In = −H−1hessian equals the
observed information matrix

In =
{
−

n∑
i=1

∂2logp(yi;Ti; δi; θ))

∂θT∂θ

∣∣∣∣∣
θ=θ̂

}−1
. (4.3)

Step 2. Second we drawK realizations b
(k)
i for the random effects of the new subject

i from their posterior distribution

p(bi|Ti > t;Yi(t); θ
(k)) ∝

{ ni(t)∏
j=1

p(yij|bi; θ(k))
}
Si{t|Mi(t; bi); θ

(k)}p(bi; θ(k)),

(4.4)
where ni(t) is the number of subject i measurements available by time t.

Step 3. . Third we derive an estimate of πJMi (u|t)

π̂JMi (u|t) =
1

K

K∑
k=1

Si{u|Mi(u, bi); θ
(k)}

Si{t|Mi(t, bi); θ(k)}
. (4.5)

Given the structure of a joint model it can also be possible to compute predic-
tions for the projected longitudinal profile of the marker, to initiate for example a
preventive treatment and prevent worsening of the disease. For a subject i still alive
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by follow-up time t the conditional expected value of the longitudinal outcome at
time u > t would be

wi(u|t) = E{yi(u)|T ∗i > t, Yi(t), Dn; θtrue}. (4.6)

In the same way as we have done with survival probabilities we can rewrite the
expected value under the conditional independence assumption as

E{yi(u)|T ∗i > t, Yi(t), Dn} =

∫
E{yi(u)|T ∗i > t, Yi(t), bi; θ}p(bi|T ∗i > t, Yi(t); θ)dbi

= E{yi(u)|bi}p(bi|T ∗i > t, Yi(t); θ)dbi

= xTi (u)β + zTi (u)

∫
bip(bi|T ∗i > t, Yi(t); θ)dbi. (4.7)

Assuming a large enough sample size such that θ|Dn ≈ N(θ̂, In) as before, we derive
the following Monte Carlo estimate for wi(u|t) using a three-step scheme as above:

ŵJMi (u|t) =
1

K

K∑
k=1

wi(u|t)(k), (4.8)

where wi(u|t)(k) = xTi (u)β(k) + zTi (u)b(k) are computed for each sample k in the
simulation.

4.2 Comparison between Landmarking and Joint

Modeling

In this section we will follow Rizopoulos et al. [2013] and Rizopoulos et al. [2017]
and Maziarz et al. [2017] comparing landmarking and joint modeling approaches for
computing dynamic predictions. We have already mentioned in the introduction to
this chapter that an alternative methods exists to predict dynamic survival prob-
abilities. Landmark analysis is in contrast of joint modeling a simpler Landmark
analysis can be considered a simpler procedure in this context because it’s easily im-
plemented by applying a standard time-dependent Cox, that considers only subjects
at risk at the landmark time t (R(t) =: Ti > t).

The model is fitted to these individuals by setting the landmark time as time
zero (baseline):

hi(u) = lim
∆t→0

1

∆t
Pr(u ≤ T ∗i < u+∆t|T ∗i ≥ u, Yi(t)) = h0(u) exp{γTwi + αỹi(t)},

(4.9)
with ỹi(t) being the last available longitudinal response. After the fitting, an esti-
mate of π(u|t) is then simply obtained using the Breslow estimator for the cumulative
baseline hazard:

π̂LMi (u|t) = exp
[
− Ĥ0(u) exp{γ̂Twi + α̂ỹi(t)}

]
, (4.10)
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with

Ĥ0(u) =
∑
i∈R(t)

I(Ti ≤ u)δi∑
l∈R(u) exp{γ̂Twl + α̂ỹl(t)}

. (4.11)

This formulation can be further extended to allow the baseline hazard to be a func-
tion of the visit time and not only of the last measurement, relaxing the propor-
tional hazards assumption [Zheng and Heagerty, 2005], or to account for measure-
ment error in the time-varying covariate by considering the predicted longitudinal
outcome as seen in the two-stages approach for joint models (Section 3.2). A for-
mulation for this landmarking mixed model is obtained by substituting ỹi(t) above
with m̂i(t) = yi(t)− εi(t)

π̂LMixed
i (u|t) = exp

[
− Ĥ0(u) exp{γ̂Twi + α̂m̂i(t)}

]
, (4.12)

A clear disadvantage of π̂LMi (u|t) compared to π̂JMi (u|t) is that it considers only
a part of the total information resulting in lack of efficiency. However joint mod-
els makes more model assumptions. A misspecification or a different association
structure in the joint model have been demonstrated in literature to strongly affect
predictions.

Apart from the endogeneity concept that we already used in motivating joint
models, a definition formulated by Jewell and Nielsen [1993], stated that of valid
prediction function must satisfy the consistency condition:

hi(t+ s|Yi(t)) = E{hi(0|Yi(t+ s))|Yi(t)}. (4.13)

This means that prediction at time t + s should be calculated integrating out over
the probability distribution of the longitudinal outcome in the interval (t, t + s),
this only possible if we derived it from the joint distribution of the outcomes, not
modeled in standard and mixed landmarking.

4.3 Prediction accuracy measures

Normally, prediction models performance is assessed focusing on their discrimination
(how well can the model discriminate between patients who had the event from those
who did not) and calibration (how well the model predicts the observed data) power.
Specific estimates for predictive measures in the joint models framework have been
studied by Blanche et al. [2015]:

• Discrimination measure
For any cut-off value c in [0, 1] we classify subject i as a case if πi(t+∆t|t) ≤ c
and to the opposite we classify i as a control if πi(t+∆t|t) > c. As generally
done, we can compute the area under the receiver operating characteristic
curve (AUC) by selecting a random pair of subjects i, j with measurements
up to time t. Varying c, we have that if patient i experiences the event within
the time interval t+∆t whereas j does not the model should assign to patient
j higher probability of surviving longer than t+∆t:

AUC(t,∆t) = Pr[πi(t+∆t|t) < πj(t+∆t|t)|{T ∗i ∈ (t, t+∆t
]
} ∩ {T ∗j > t+∆t}].(4.14)
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The estimates is derived by decomposition:

ÂUC(t,∆t) = ÂUC1(t,∆t) + ÂUC2(t,∆t) + ÂUC3(t,∆t) + ÂUC4(t,∆t),
(4.15)

where ÂUC1(t,∆t) is the proportion of concordant pairs of subjects out of

those with sortable observed event times; whether ÂUC2(t,∆t), ÂUC3(t,∆t),

ÂUC4(t,∆t) are the pairs of subjects who, due to censoring, cannot be com-
pared, they are weighted with the probability that they would be comparable.

• Calibration measure
Considering longitudinal information available up to time t, predictive accu-
racy at a specific time u > t is given by the expected prediction error:

PE(u|t) = E[L{Ni(u)− πi(u|t)}], (4.16)

where the expectation is taken with respect to the distribution of the event
times, Ni(t) = I(T ∗i > t) is the event status at time t and L(·) denotes a loss
function.

Accounting for censoring an estimate has been derived as follows:

P̂E(u|t) =
1

n(t)

∑
i:Ti≥t

I(Ti ≥ u)L{1− π̂i(u|t)}+ δiI(Ti < u)L{0− π̂i(u|t)}

+(1− δi)I(Ti < u)
[
πi(u|Ti)L{1− πi(u|t)}

+{1− πi(u|Ti)}L{0− πi(u|t)}
]
; (4.17)

with n(t) that is the risk set at time t.

The sum is composed by three main terms, the first denotes patients who
were alive after time u, the second patients who dead before u and the third
patients who were censored in the interval [t, u].
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Chapter 5

Simulation study

5.1 Simulation design for joint models

Simulation studies are a common strategy to evaluate the performance of a statistical
model.

A joint model simulation requires itself to set up two different simulations, a
mixed-effects model for the continuous longitudinal outcome and a relative risk
model for individual survival probabilities. In both settings outcomes and covari-
ates are simulated in order to reflect plausible scenarios. Visiting times for the
longitudinal process can be differently simulated from a given distribution, for ex-
ample gamma or uniform, or as a fixed grid of time points. Furthermore different
For the survival process things are more complicated.

A reference papers which accurately describes how to possibly generate survival
event times are Crowther and Lambert [2013] and Bender et al. [2005]. Classi-
cal choices for event times distributions are the Exponential, the Weibull and the
Gompertz distribution, however these often simplify too much real clinical contexts.
Bender et al. [2005] gives a first description of the basis theory for survival times
simulations. Starting from the formula of the cumulative hazard function

H(T |X) = H0(t) exp(Xβ) =

∫ t

0

h0(u)du exp(Xβ), (5.1)

with T being the survival simulated time, it has been shown that

F (T |X) = 1− S(T |X) = 1− exp[−H(T |X)] = u, (5.2)

where u ∼ U(0, 1), which results in the conditional survival function S(T |X) = u.
Consequently, we find T solving the equation

T = H−10 [−log(U) exp(−Xβ)]. (5.3)

A necessary condition is the invertibility of the cumulative hazard function. This
is the case for classical survival times distributions, but can be a problem in other
situations requiring root-finding techniques to solve for T [Crowther and Lambert,
2013], e.g. “Brent’s univariate root-finding method” that uses a function to itera-
tively find a solution for the equation S(t)− U = 0.
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In practice, we can easily simulate a Cox model with a Weibull baseline hazard
function, h0(t) = abtb−1 where a and b are the shape and scale parameters respec-
tively. The Cox model then, can be assumed to depend on the current value of the
longitudinal biomarker, or eventually on the slope or cumulative effect. To simu-
late the event times, we first simulated a subject-specific survival probability, si,
from a Uniform(0, 1) distribution and solved for Ti using for example R functions
integrate() and uniroot(), from the following equation:

si − exp{−
∫ T ∗i

0

abub−1 exp(α1y
∗
1(u))du} = 0. (5.4)

In the following we report the specific R code to compute the inverse of the survival
function, where:

• invS is the inverse of the survival function and h is the hazard function

• t is the upper time limit of the integral

• u is the upper time limit of the integral

• i is the subject identifier

• n is the number of subjects in the sample

• XX and ZZ are the fixed and random effects matrices for the longitudinal
process

• phi is the scale of a Weibull baseline hazard

• ff is the association parameter between the true value of the longitudinal
outcome f1 and the event process

invS <- function (t, u, i) {
h <- function (s) {
f1 <- as.vector(XX %*% betas + rowSums(ZZ * b[rep(i, nrow(ZZ)), ]))

exp(log(phi) + (phi - 1) * log(s) + eta.t[i] + f1 * alpha)

}
integrate(h, lower = 0, upper = t)$value + log(u)

}
u <- runif(n)

trueTimes <- numeric(n)

for (i in 1:n) {
Up <- 50

tries <- 5

Root <- try(uniroot(invS, interval = c(1e-05, Up), u = u[i], i = i)$root, TRUE)

while(inherits(Root, "try-error") && tries > 0) {
tries <- tries - 1

Up <- Up + 200

Root <- try(uniroot(invS, interval = c(1e-05, Up), u = u[i], i = i)$root, TRUE)

}
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trueTimes[i] <- if (!inherits(Root, "try-error")) Root else NA

}
na.ind <- !is.na(trueTimes)

trueTimes <- trueTimes[na.ind]

Censoring times were independently simulated from another uniform distribution
and the event variable is then created following the rule in survival analysis
Y = min(T,C):

set.seed(1)

Ctimes <-runif(n, first_measurement_time, last_measurement_time)

Time <- pmin(trueTimes, Ctimes)

event <- as.numeric(trueTimes <= Ctimes) # event indicator

With the results from simulated datasets we can verify common properties and
assumptions underlying the fitted model, for example bias, coverage and estimates
robustness and its ability to handle highly complex longitudinal trajectories, mim-
icking in every detail the real association process.

5.2 Simulation in practice

In the following we are going to implement a joint model simulation in practice.
Primary objective of this simulation is to compare the two-stages with the EM
estimation approach for joint models. As we have already mentioned in chapter 2,
the two-stages approach does not consider bias due to possible non random drop-
outs and to the fact that using estimates for the values of the longitudinal outcomes
it also does not considered that these are affected by measurement errors [Qiu et al.,
2016].

We performed a 100 simulations for 100 patients that were assumed to be followed
up for a maximum period of 15 years, resembling the setting in Rizopoulos et al.
[2017]:

• longitudinal measurements were recorded at baseline and afterwards at 14
random follow-up times.

• we simulated normally distributed random effects.

• in the longitudinal process we used B-splines of time with two internal knots
placed at 2.5 and 6 years and boundary knots at 0.5 and 13 years. The fixed
effects matrix included a dummy variable to indicate treatment group and its
interaction with visit time (as modeled by splines). Natural cubic splines for
time were also used to simulate the random effects matrix.

• the survival process was formulated as hi(t) = h0(t) exp[γ1Treatment+α1yi(t)],
with a Weibull baseline hazard.

• censoring times were simulated from a uniform distribution.
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• we dropped longitudinal measurements taken after the observed event time for
each subject.

True parameters for γ, φ scale for the Weibull baseline hazard, D covariance matrix
for random effects were taken from Rizopoulos et al. [2017] supplementary material
file. A seed has been introduced prior to the simulation to have reproducible results.

The simulation was repeated for various scenarios of α = {0.04672, 0.8672, 1.01}.
For all scenarios and simulations we fitted a joint model and an extended Cox model
plugin-in the time-varying blups as estimated from the linear mixed model. We also
fitted a misspecified version for both models, including visit time covariate in a linear
form in the LME model instead of modeling its association with the longitudinal
outcome by mean of natural cubic splines.

For all scenarios, mean estimates, standard errors, bias (
∑100

i=1 θ̂i/100−θtrue) and

mean square error (
∑100

i=1(θ̂i − θtrue)
2/100) haven been calculated and reported in

table 5.1.

Parameter True Value Model Coeff Std.Err Bias Mse
Alpha 0.4672 joint 0.4749 0.1048 0.0077 0.0118

twostage 0.4195 0.0992 -0.0477 0.014
joint.linear 0.3111 0.1019 -0.1561 0.062
twostage.linear 0.3116 0.1026 -0.1556 0.0596

Gamma 0.48 joint 0.526 0.3178 0.046 0.1307
twostage 0.5045 0.317 0.0245 0.1123
joint.linear 0.4451 0.3139 -0.0349 0.1129
twostage.linear 0.4441 0.3162 -0.0359 0.108

Alpha 0.8672 joint 0.9081 0.1562 0.0409 0.0296
twostage 0.761 0.1327 -0.1062 0.0387
joint.linear 0.8225 0.1805 -0.0447 0.067
twostage.linear 0.7119 0.148 -0.1553 0.0745

Gamma 0.48 joint 0.4938 0.2743 0.0138 0.0751
twostage 0.4116 0.2617 -0.0684 0.0717
joint.linear 0.4583 0.2821 -0.0217 0.0943
twostage.linear 0.3868 0.2647 -0.0932 0.0858

Alpha 1.01 joint 1.0084 0.1704 -0.0016 0.0331
twostage 0.8781 0.1455 -0.1319 0.0545
joint.linear 1.0066 0.2071 -0.0034 0.0734
twostage.linear 0.8535 0.1626 -0.1565 0.0752

Gamma 0.48 joint 0.4635 0.2694 -0.0165 0.0732
twostage 0.3951 0.2532 -0.0849 0.0749
joint.linear 0.481 0.2834 0.001 0.1029
twostage.linear 0.3947 0.2574 -0.0853 0.0836

Table 5.1: Models results from the 100 simulated datasets.
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In this simulation example we confirm what reported from literature, so that EM
approach is more efficient and less biased than two stages methods for estimating
the association between a longitudinal and a time-to-event process.

In particular, we notice that the fitted joint model for all three scenarios gives
lower bias and mean square error compared to the two stage model for estimating
the association coefficient α. With respect to the estimation of γ parameter for the
baseline treatment covariate, mse stays very similar in both approaches, only in the
first scenario (with low association effect α = 0.46) bias and mse results slightly
higher for the joint model. When increasing the effect of association in second and
third scenarios (α = {0.86, 1.01}) the difference in terms of α and γ estimation bias
between the two methods increases. We see in the case when models are misspec-
ified (“joint.linear” and “two stage.linear”) the EM approach (“joint.linear”) gives
less biased results than two stage method. Further investigation could be done by
increasing or decreasing the variance of the longitudinal outcome, the percentage of
censoring and the number of measurements for each subject. Similar simulations
have been studied in Wen et al., Ibrahim et al. [2010], Sweeting and Thompson
[2011],Murawska et al. [2012].
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Chapter 6

Data Application

In this chapter, the methods previously introduced in Joint Modeling techniques
are now applied to liver transplantation data. In order to analyze our dataset, we
will start by describing pre-existent variables, including percentages of respective
missing values and exploring relationships. After a first exploratory analysis we will
introduce the modeling approach suitable for the goal of the study, we will then de-
scribe results and inherent issues encountered, regarding for example computational
aspects. Finally we also tried to build a simulation study with similar characteris-
tics of our real data, in this way we try to better understand, justify and judge the
model by also comparing it with alternatives parameterizations and approaches.

6.1 Kidney Research Data

As we introduced in the first chapter of this manuscript, our study has been moti-
vated by the analysis of kidney transplantation data.

Data come from the Australian and New Zealand Dialysis and Transplant Reg-
istry (ANZDATA) that collects and reports the incidence, prevalence and outcome
of dialysis treatment and kidney transplantation for patients with end stage kid-
ney disease across Australia and New Zealand. The registry gather information on
Australian patients starting receiving renal replacement therapy between 1971 and
2014 and transplantation between 1980 and 2014. In total, 16820 incident post-
transplant patients were included in the study and prospectively followed. Patients
consist only in transplant recipients, this is the case because only for them is pos-
sible to collect serum creatine measurements (mol/L) and from this to estimate
glomerular filtration rate values (mL/min/1.73m2).

eGFR acronym stands for “Estimated Glomerular Filtration Rate”. The eGFR
measures how well the kidneys filter the wastes from the blood and is recognized as
the best overall measure of kidney function. It helps to determine if there is any
kidney damage, if the filtration rate is low the kidneys are not working properly.

It is difficult to calculate the exact glomerular filtration rate at which patient’s
kidneys are working, therefore a special formula has been developed to estimate it:

eGFR = 175× (
SCr

88.4
)−1.154× age−0.203× 0.742× I(female)× 1.21× I(race) (6.1)
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This formula uses age, gender and blood level of creatinine (SCr). Creatinine is a
waste product made by the muscles, usually removed by the kidneys before passing
out in the urine. When the kidneys are not working well more creatinine stays in
the blood.

Normal filtration rate in young adults is about 90-100 milliliters every minute,
but generally speaking only a value below 60 mL/min/1.73m2 is said to suggest a sign
of kidney loss function and is usually taken as possible cut-off value in clinical studies.
The information above are presented in detail in the website http://kidney.org.au
under the library resources fact sheets, otherwise easy understandable formulas and
concepts about eGFR can also be found in Wikipedia https://en.wikipedia.org/

wiki/Renal_function or in various medical resources.
In our clinical study patients had periodical medical visits after transplant. These

visits have been prestablished following medical advice at 1,2,3,6 months and sub-
sequently at 1,2,3,5,7,10,15,20,30,35,40 years. As frequently happens some mea-
surements may be missing for some patients. For example, they may be randomly
missing if they skip a visit, or non randomly if they stop going to the hospital if they
feel completely fine or in contrast if they die. No biomarker’s values are recorded
after death.

In the attempt to work with clean and reliable data, we first excluded from our
dataset 967 patients with no eGFR measurements and 1604 patients with less than
three eGFR measurements, to better catch their longitudinal process over time.
After data preprocessing the total number of subjects in the study has been reduced
to 15216.

Information available in our dataset were recorded in two different registration
dates. In those occasions the current patient status, categorized as alive, graft-
failure or death, was registered along with the possible death date or graft-failure
date. In our analysis we don’t consider intermediate recordings but only outcomes
at the latest follow up date for every subject.

We are interested in the patients’ survival. We analyze a composite outcome, for
which a patient is recognized to have experienced an event if at the end of follow up
he or she is died or has experienced graft-failure. Lost to follow-up up is, as usual,
considered as censoring event.

6.1.1 Descriptive analysis

In this section we will summarize our data, with descriptive statistics from tables
and plots.

In table 6.1 we give a short overview of a selection of variables in the original
dataset:

• n total number of patients from the original registry

• txage1 is the patient’s age at transplant time and sex is the patient’s gender

• egfr sc1m, . . . , egfr sc30y are levels of eGFR at the specific visit points (one,
six months and one, five, ten, thirty years)
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• txstatus1a is subjects’ status in the intermediate recording date while fus-
tatus is the status as recorded at the end of the subject follow-up period.

We see that biomarker means and standard deviations are slightly different at dif-
ferent visit times.

Overall

n 16820

txage1 (mean (sd)) 43.71 (15.34)

egfr sc1m (mean (sd)) 55.40 (49.94)

egfr sc6m (mean (sd)) 57.45 (41.48)

egfr sc1y (mean (sd)) 57.59 (40.33)

egfr sc5y (mean (sd)) 54.78 (27.22)

egfr sc10y (mean (sd)) 54.69 (24.32)

egfr sc30y (mean (sd)) 66.89 (30.19)

timetoend (mean (sd)) 10.09 (7.96)

sex = M (%) 10172 (60.5)

txstatus1a (%)

alive 9025 (53.7)

graft-failure 4542 (27.0)

death 3253 (19.3)

fustatus (%)

alive 9068 (53.9)

graft-failure 2200 (13.1)

death 5552 (33.0)

Table 6.1: Descriptive statistics for the main variables, before dataset’s pre-
processing.

Overall distribution of eGFR, for all the patients and their measurements, is
reported in figure 6.1 showing an improvement in the skewness of the variable, after
the logarithmic transformation.
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Figure 6.1: Distribution of eGFR variable and log(eGFR), we added a kernel
and a normal density curve overlaying the histograms.

In figure 6.2 we report changes of log(eGFR) variable along follow-up years. As
we can see, its mean value is increasing from the first visit point, occuring at one
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month after transplant, to the latest one. This should suggest that patients with
lower eGFR are dying and dropping out of the cohort (non random drop-out).
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Figure 6.2: Bivariate Trellis Plot showing mean and standard deviation of
log(eGFR) among visits.

We investigated the relationship between patients’ eGFR levels at each visit time
and patients’ status at the end of the follow-up period. We notice in figure 6.3 that
for the first three measurements points patients classified as deaths, at the end of
the follow-up, have lower mean of estimated filtration rate compared to the others.
In later years this is the case, instead, for patients who experienced a graft-failure.
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Figure 6.3: Box plots showing relationships between eGFR and status vari-
ables at five different visit times. For the status variable level “0” stays for
alive, “1” for graft-failure and “2” for death.

During a data preprocessing, the original dataset was transformed into a long
format dataset, having a number of rows for each patients that correspond to the
number of measurements available. A new subject-specific variable for eGFR values,
varying along years of follow up, was created. In the following 6.4 we describe the
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visiting process distribution and visualize a sample of subjects trajectories for the
longitudinal biomarker measurements.
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Figure 6.4: On the left: number observations at each visit time. Dashed
line rapresent the half level of the sample population. On the right: eGFR
trajectories of twentyfour randomly selected patients.

Figure 6.5 exhibits specific indivual smoothed log(eGFR) curves, plotted for a
small sample of twelve subjects.
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Figure 6.5: Smoothed curves eGFR profiles for twelve patients.

This simple visualization helps the analyst to explore how biomarker trajectories
vary across patients and along time of visit for each individual. We clearly see that
evolution of eGFR is very different between patients, it can change from having a
flat trend in time, to have a very variable trend that cannot be captured with a
linear curve.
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Figure 6.6: Smoothed trajectories eGFR for patients with or without an event
at the of follow up.

At the end of the analysis a total number of 6478 events was recorded(43%).
Median follow-up time was 8.73 years. Figure 6.7 displays estimates for unadjusted
survival probabilities. On the right side, the plot of Ŝkm stratified by a binary vari-
able for log(eGFR) values at baseline, shows that survival probabilities are indeed
lower for those having eGFR < 60 mL/min/1.73m2 at first visit.
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Figure 6.7: Kaplan Meier estimate for the survival function curve. On the
right we stratified for eGFR factor at baseline (level “normal” indicates a
value for eGFR ≥ 60 mL/min/1.73m2).

If we were specifically interested in graft-failure after transplant probability, sur-
vival analysis should have been taking into account the “Competing Risks” [Putter
et al., 2007] context, as reported in Andrinopoulou et al..

6.2 Model Building

In this section we set up theoretical models to adapt them to our data. With joint
models we try to explain and measure the effect of repeated eGFR measurements
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on time to all-cause death for patients under study.
A linear mixed models (LMM) was specified to estimate individual trajectory

changes in time and across individuals in renal functionality. The logarithm of
eGFR was chosen as form of the longitudinal response, because it approximately
follows a symmetrical, normal distribution with mean equal to3.92 and standard
deviation 0.48. In the original eGFR biomarker variable mean was equal to 56.84
and standard deviation to 39.81. On the other hand, the usual Cox proportional
hazard model was utilized to investigate independent mortality(or graft-failure) risk
factors caused by baseline characteristics (age and sex).

6.2.1 Longitudinal process of glomerular filtration rate

A linear mixed effects model (LMM) was implemented to model the longitudinal
process of log(eGFR) along of years of follow-up visits. The basic model we first
specify was a random intercept and slope model in the form

• log(eGFR)i(t) = β0 + β1t+ b0i + b1it+ εi(t).

However, we noticed from raw longitudinal plots we noted that it becomes necessary
in our model to allow for more flexibility in the specification of the patient-specific
longitudinal trajectories. In a second specification natural cubic splines ns() and
B-splines bs() from library splineDesign in R were used, varying their degrees of
freedom; knots were placed at the corresponding quartiles of the follow-up times.

The new formulated spline models were :

• log(eGFR)i(t) = (β0 + bi0) +
∑3

k=1(βk + bik)Bn(t, dk) + εi(t)

• log(eGFR)i(t) = (β0 + bi0) + (βk + bik)
TB(t, df, 4) + εi(t);

where B(t,dk); k = 1, 2, 3 denotes a B-spline basis matrix for a natural cubic spline
of time with two internal knots placed at the 33.3% and 66.7% percentiles of the
follow-up times and B(t; df = 4, 5; q = 4) denotes the matrix for q−1 degree splines
with df − q+ 1 internal knots; βk and bik are the vectors of fixed and random effects
corresponding to the B-splines matrix. The random effects are assumed to have a
diagonal covariance matrix.
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Model Variable Coeff Std.Error t-value p-value
Model0 (Intercept) 3.9254 0.0037 1069.4614 <0.0001

time -0.0186 8e-04 -24.1238 <0.0001

Model1 (Intercept) 3.8972 0.0039 999.4395 <0.0001
ns(time, 3)1 -0.2501 0.0098 -25.5202 <0.0001
ns(time, 3)2 -0.1416 0.009 -15.6868 <0.0001
ns(time, 3)3 -0.14 0.0165 -8.4853 <0.0001

Model2 (Intercept) 3.882 0.004 975.5573 <0.0001
bs(time, 4)1 0.0697 0.0032 21.9533 <0.0001
bs(time, 4)2 -0.2677 0.0141 -18.9985 <0.0001
bs(time, 4)3 -0.3385 0.0294 -11.5122 <0.0001
bs(time, 4)4 -0.3041 0.0456 -6.6703 <0.0001

Model3 (Intercept) 3.8492 0.0041 944.6994 <0.0001
bs(time, 5)1 0.0906 0.0025 36.0202 <0.0001
bs(time, 5)2 0.0699 0.0037 19.1382 <0.0001
bs(time, 5)3 -0.1505 0.0136 -11.0446 <0.0001
bs(time, 5)4 -0.4366 0.0304 -14.3632 <0.0001
bs(time, 5)5 -0.2237 0.0453 -4.9346 <0.0001

Table 6.2: Linear mixed models results for the association between the log-
arithm of estimated filtration rate and visit times.

df AIC BIC
Model0 6.00 55683.39 55741.78
Model1 9.00 50531.36 50618.94
Model2 11.00 41453.91 41560.95
Model3 13.00 38656.01 38782.51

Table 6.3: Information criteria for the fitted linear mixed models.

Tables 6.2 and 6.3 respectively report results for coefficients’ estimation in the
different linear mixed models formulated along with information criteria (AIC and
BIC), these recognize as best model to be kept into the joint formulation Model
3 with B-splines of five degrees of freedom and two internal knots. However, this
longitudinal model is also the more complex in terms of random effects specification,
resulting therefore in a computationally more demanding estimation procedure for
the joint model.
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6.2.2 Cox PH model for the event process

For the survival submodel we formulated a Cox proportional hazard model with age
and sex baseline covariates and log(eGFR) as time-dependent variable

hi(t) = h0(t) exp[γ1age+ γ1sex+ αlog(eGFR)i(t)],

with h0(t) is the baseline risk function, t is the time-to-event and log(eGFR) is the
true (unobserved) value of the longitudinal biomarker.

6.3 Results

A crude baseline Cox proportional hazards analysis was first formulated as starting
point. The model included individuals values of log(eGFR) at first measurement
time as baseline covariate with age and sex characteristics. This resulted in a hazard
ratio for death/graft-failure of 0.81(95% CI: 0.78; 0.85) for each unit increase in the
logarithm of eGFR level, having fixed the other covariates at baseline. If we want to
interpret the outcome in terms of unit decreasing of log(eGFR), the HR is equal to
the exponential of the negative coefficient, exp{−β̂log(egfr)}. In this specific case we
would stay that for each unit decrease in log(eGFR) variable there is a 23% increase
in the risk of event.

A first attempt to include repeated biomarker measurements in a survival model
is the classical time-dependent Cox model (also known as the “Andersen-Gill”
model). As previously mentioned in this paper, an extended Cox model is not
be adequate for the analysis of a time-varying internal covariate. With this in mind
we nevertheless fitted the misspecified model to see how it affects estimation results.
In the extended Cox model time-dependent covariates are usually encoded using the
(start, stop] notation, therefore we further modified the dataset to have for each
subject information on the longitudinal process yi(t) for each specific time interval.

We proceeded to implement joint models and to report here the estimates for
the association coefficient as obtained from different formulations. In the following
table we present results from the joint model where the linear mixed model specify
a non linear association between the logarithm of eGFR and time of follow up visit,
modeled by splines (df=4, one knot at one year).
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Event Process Longitudinal Process
Value Std.Err p-value Value Std.Err p-value

txage1 0.04 0.00 < 0.0001 (Intercept) 3.88 0.00 < 0.0001
sexM 0.14 0.03 < 0.0001 bs(time, 4)1 0.07 0.00 < 0.0001
Assoct -0.91 0.02 < 0.0001 bs(time, 4)2 -0.29 0.01 < 0.0001
log(ξ1) -2.49 0.10 bs(time, 4)3 -0.30 0.03 < 0.0001
log(ξ2) -2.27 0.10 bs(time, 4)4 -0.60 0.03 < 0.0001
log(ξ3) -1.96 0.09 log(σ) -1.70 0.00
log(ξ4) -1.68 0.09
log(ξ5) -1.42 0.09 (Intercept) 0.22 0.00
log(ξ6) -1.08 0.09 bs(time, 4)1 0.09 0.00
log(ξ7) -0.37 0.08 bs(time, 4)2 1.70 0.03

bs(time, 4)3 2.07 0.07
bs(time, 4)4 1.04 0.05

Table 6.4: Parameter estimates, standard errors and p-values under the joint
modeling analysis. Dij denote the ij-element of the covariance matrix for
the random effects.

In the results for the survival process, ‘Assoct’ is the parameter denoted as α
in joint models notation and measures the association between the current value of
the biomarker mi(t) (in our case log(eGFR) level at time t) and the risk for death
or graft-failure. The parameters ε1, . . . , ε7 are the parameters for the piecewise-
constant baseline risk function assumed. The model finds a strong association be-
tween the longitudinal and the time-to-event outcome, with a unit decrease in the
marker corresponding to a exp(−α) = 2.49-fold increase in the risk for the event
(95% CI: 2.38; 2.6).

An alternative parameterization was also formulated, including the slope of the
longitudinal marker at time t, m

′
i(t), as covariate in the model:

hi(t) = h0(t) exp[γ1age+ γ1sex+ α1log(eGFR)i(t) + α2log(eGFR)
′

i(t)].

A significant effect was found. The association between the current value and the
event outcome was now α1 = −1.15 (95% CI: -1.21 ; -1.09 ) whereas the association
between the slope of the marker and the event outcome at time t was α2 = 5.32
(95% CI: 4.4 ; 6.24).

Model comparisons In table 6.5 we list the estimated α parameters under a set of
alternatives to the classical joint model. By row, first model appearing in the table
is the baseline Cox model where only log(eGFR) level at first visit was included
for each patient, the second one is the extended Cox model where measurement
error for the time-varying covariate is not taken into account. Finally the last three
models denotes two stages estimation’s methods, under different splines degrees,
that considers the blups from the longitudinal models as time-dependent covariate
in the survival analysis. Last model used B-splines with five degrees of freedom and
two knots are assumed.
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Model Coeff Std.Err z-value p-value AIC BIC
surv.basecox -0.2082 0.0228 -9.131 <0.0001 107189.15 107209.48
surv.tdcox -0.84 0.0181 -46.4153 <0.0001 102694.81 102715.07
surv.twolin -0.9709 0.0247 -39.285 <0.0001 103167.08 103187.34
surv.twons -0.9898 0.0239 -41.4389 <0.0001 103042.82 103063.07
surv.twobs -0.9823 0.0226 -43.437 <0.0001 102871.84 102892.1
surv.twobs2 -0.9674 0.0221 -43.798 <0.0001 102845.37 102865.63

Table 6.5: Extended Cox models scenarios. Results for the estimates of the
‘Assoct’ parameter that measures association between the log(eGFR) and
time-to-event outcome

In table 6.6 instead we compare results for the estimated α coefficient in joint
models settings. Last two models differs from the one in 6.4 for the baseline haz-
ard, here respectively assumed as following a Weibull distribution or alternatively
modeled by regression splines.

Model Coeff Std.Err z-value p-value AIC BIC
joint.linear -0.4314 0.0129 -33.4635 <0.0001 105472.72 105594.8
joint.ns -1.0118 0.0255 -39.611 <0.0001 99759.37 99904.34
joint.bs -0.9126 0.0225 -40.5828 <0.0001 90338.37 90498.6
joint.bs2 -0.9336 0.0225 -41.5198 <0.0001 87477.23 87652.72
joint.bs spline -0.8581 0.0219 -39.1234 <0.0001 90077.29 90252.78
joint.bs weibull -0.9008 0.0219 -41.0507 <0.0001 90684.33 90806.41

Table 6.6: Joint models scenarios. Results for the estimates of the ‘Assoct’
parameter that measures association between the log(eGFR) and time-to-
event outcome

As we can notice, most of the models give similar results. Only the baseline Cox
model and the joint model with a linear specification seem to largely underestimate
the association between log(eGFR) and survival.

Dynamic predictions Here we illustrate how the fitted joint model can be used
for individualized predictions for the survival and longitudinal outcomes. We com-
puted conditional survival probabilities πi(u|t) at time u > t, for one patient in our
dataset survived up to last point t. In figure 6.8 we observe the patient’s evolution
of log(eGFR) biomarker up to 10 years.
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Figure 6.8: Survival probabilities for Patient 16814. The dashed and solid
lines correspond to the median and mean estimators, the dotted lines are the
corresponding 95% pointwise confidence intervals.

To better understand how the changes in the logarithm eGFR are reflected in
changes in the dynamic updates of the survival probabilities in time, we plotted
the updated survival curves after the baseline measurement (one month after trans-
plant)and at one, two, five and ten years after transplant. Figure 6.9 captures an
increase of the biomarker level at one year after transplant and a further improve-
ment after two years; but the trajectory then becomes flat (stable) till the end of
the following period.
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Figure 6.9: Dynamic survival probabilities for Patient 16814 during follow-
up. The vertical dotted lines represent the time point of the last marker
measurement, on the left of the line the longitudinal trajectory is detected,
on the right the solid line represents the median estimator for πi(u|t), and
the dashed lines the corresponding 95% pointwise confidence intervals.

Figure 6.10 explains in more detail the process in the subject’s survival prob-
ability estimation, illustrating how point estimates for median survival along with
their 95% confidence intervals change from one visit time to another and increasing
the time of prediction u.

After five and even more after ten years, we can easily notice that estimated
median survival probability decrease for Patient 16814 and confidence bands become
wider.
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Figure 6.10: Dynamic survival probabilities for Patient 16814. In each panel
five estimates and the associated 95% confidence intervals of πi(u|t) are
presented, for t that equals the time point the most recent log(eGFR) mea-
surement was collected.

Till now our principal interest was on patient’s survival. Nevertheless, joint
models also allow us to compute dynamic predictions for the longitudinal outcome.
In a similar way as before and for a specific subject, still alive by follow-up time
t, we may want to know the expected value wi(u|t) of his longitudinal outcome at
time u > t given the values observed for the same individual up to that time point.

We kept as example a different patient in our dataset and computed dynamic
predictions for his log(eGFR) values. As for conditional survival probabilities, these
predictions are dynamically updated in time when extra information about the pa-
tient is available. We observe that
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Figure 6.11: Dynamic predictions of longitudinal responses for Patient 14312.
In each panel the dotted vertical line denotes the time point of the last
observed longitudinal response. The solid line left to the dotted line denotes
the fitted longitudinal trajectory prior to the last visit, and the dashed line
right to the dotted line denotes the predicted longitudinal trajectory. The
grey areas denote the 95% pointwise confidence intervals.

At the end of our analysis we proceeded to assess the eGFR biomarker predictive
accuracy. Time-dependent sensitivity and specificity and corresponding ROC curve
and AUC have been calculated.

We built a new data frame by considering as representative, a subject with a
mean age at baseline and who has provided, for example, five eGFR measurements at
one month, three months, one year, three and five years. We are required to specify
the lengths ∆t of the medically relevant time intervals, we choose six months, one,
five and ten years. With R function rocJM() we estimated sensitivity and specificity
by mean of Monte Carlo simulations and from this constructed the corresponding
ROC curve and calculate the AUC.

##

## Areas under the time-dependent ROC curves

##

## Estimation: Monte Carlo (500 samples)

## Difference: absolute, lag = 1 (0)

## Thresholds range: (-2.28, 11.69)

##

## Case: 1

## Recorded time(s): 0.08, 0.25, 1, 3, 5

## dt t + dt AUC Cut

## 0.6 5.6 0.6756 3.306

## 1.0 6.0 0.6786 3.306
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## 5.0 10.0 0.7100 3.362

## 10.0 15.0 0.7500 3.474

Output provides the time-dependent AUCs under different dt and threshold val-
ues for the biomarker that maximize the product of sensitivity and specificity under
the same options. The simple prediction rule above is based on the last marker
measurement able to discriminate between cases and controls. On the other hand,
a composite prediction rule assumes that a patient has higher chance to experience
the event within the time interval (t, t + ∆t] when he shows a 20% decrease in his
eGFR levels between two subsequent visits.

##

## Areas under the time-dependent ROC curves

##

## Estimation: Monte Carlo (500 samples)

## Difference: relative, lag = 2 (1, 0.8)

## Thresholds range: (-2.28, 11.69)

##

## Case: 1

## Recorded time(s): 0.08, 0.25, 1, 3, 5

## dt t + dt AUC Cut.1 Cut.2

## 0.6 5.6 0.6563 4.033 3.226

## 1.0 6.0 0.6595 4.033 3.226

## 5.0 10.0 0.6944 4.088 3.271

## 10.0 15.0 0.7421 4.256 3.405

We can see how AUCs and ROCs are very similar between the two prediction
rules. A better discrimination is achieved for ∆t = 10 6.12.
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Figure 6.12: ROC curves at time t = 5 and four options for ∆t under the
simple (left) and composite (right) prediction rule, assuming for the second
plot a 20% decrease in log(eGFR) levels between visits. The calculation is
based on joint.bs model for the ANZdataset.
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To investigate the influence of the joint model parameterization, on the predic-
tions for the survival outcome, we explored discrimination power for the alternative
slope model we formulated before.

##

## Areas under the time-dependent ROC curves

##

## Estimation: Monte Carlo (500 samples)

## Difference: relative, lag = 2 (1, 0.8)

## Thresholds range: (-2.28, 11.69)

##

## Case: 1

## Recorded time(s): 0.08, 0.25, 1, 3, 5

## dt t + dt AUC Cut.1 Cut.2

## 0.6 5.6 0.4935 4.815 3.852

## 1.0 6.0 0.4912 4.815 3.852

## 5.0 10.0 0.4692 4.815 3.852

## 10.0 15.0 0.3484 4.927 3.942

We observe that the parameterization that combines both the current value term
mi(t) and the slope term m

′
i(t) seems to have worst discrimination compared to first

model presented. More surprisingly, in this case we see that AUCs tend to decrease
increasing dt lengths.
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Chapter 7

Conclusions

7.1 Discussion

In this thesis we reviewed joint models and their extensions as methods for inference
on the possible association between a longitudinal and an event process. In contrast
to classical survival models, joint models arise as appropriate technique to model
time-dependent covariates with informative dropouts. This is achieved by jointly
maximizing a likelihood constructed using both the longitudinal and time-to-event
data.

In our work we were interested in the association between the eGFR biomarker an
the composite survival event, graft-failure or death, in kidney transplant recipients.
We fitted a series of suitable models to investigate if a significant association was
present. We started with classical survival approaches, that have been demonstrated
to give biased results in most of the analysis when a time-varying internal covariate,
as a biomarker, is taken into account. We also fitted different versions from the joint
model we have assumed. We varied, for example, the parameterization of the asso-
ciation between log(eGFR) and its evolution in time of follow-up in the longitudinal
submodel, the baseline hazard parameterization in the survival submodel and also
formulated a joint model including as covariate the slope of longitudinal outcome in
addiction to its current value.

Results of both the two stages approach and joint analyses were consistent and
very close each others. A significant strong association was found between the pro-
cesses. Also, the eGFR biomarker was found to be accurate for predicting survival
probabilities in kidney diseases. These results could advice and motivate medical
operators so that transplanted patients may benefit from early intervention and dial-
ysis planning. With this in mind and in order to improve kidney research, eGFR
could also be used to identify patients most likely to have a decline in kidney function
and possibly target them as participants in interventional trials.

An advantage of our study was the vastness of the cohort sample size and of
data information, about subjects’ marker measurements, we were able to include.
As opposite, we had disadvantage in dealing with random shared models where
high-dimensional random effects were assumed. This has become a computational
issue in the joint model framework.
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7.2 Computational issues

Maximum likelihood joint modeling is computationally costly. It involves a combi-
nation of a double numerical integration and optimization, requiring lot of machine
time to be computed. The R jointModel() function locates the maximum likelihood
estimates, starting with the EM algorithm and going on eventually with a quasi-
Newton algorithm, until convergence. Double optimization and numerical integra-
tion required in this setting can be complex and can lead to convergence problems.
Likelihood evaluations number increases exponentially with the number of random
effects and frailty terms, till the point where the Gauss Hermite Quadrature method
is too much computationally expensive for dealing with high-dimensional integration
problems [Hof et al., 2017]. In our case, in the linear mixed effects submodel, we
considered an high-dimensional vector of functions of time t expressed in terms of
splines. Hessian matrix computation and inversion resulted largely demanding, so
that high-performance-computing was required. Even that procedure involved lot
of time to complete the calculations.

GHQ integration to calculate the individual log-likelihood

li(θ) = log

∫ { ni∏
j=1

p(yij|bi)
}{
hi(Ti|bi; θ)δiSi(Ti|bi; θ)

}
p(bi; θ)dbi, (7.1)

can be avoided implementing the Bayesian approach as alternative to the classical
maximum likelihood estimation.

In the Bayesian framework we write the posterior distribution as

p(θ, b) ∝
n∏
i=1

ni∏
j=1

p(yij|bi, θ)p(Ti, δi|bi, θ)p(bi, θ)p(θ). (7.2)

In the formula for p(Ti, δi|bi, θ), the integral in the definition of the survival function

Si(t|Mi(t), wi) = exp −
∫ t

0

h0(s; θ) exp
{
γTwi + αmi(s)

}
ds, (7.3)

still doesn’t have a closed form and it requires to use numerical methods such as e
Gauss-Kronrod and Gauss-Legendre quadrature rules. Bayesian approach is based
on Markov chain Monte Carlo (MCMC) algorithms where each Markov chain it-
eration depends on the previous one. Even with this method computational costs
cannot be cut down, however papers using Bayesian estimation for joint models with
high-dimensional random effects are very frequent in literature (see [Brown et al.],
[Köhler et al.], [Andrinopoulou et al., 2017]).

7.3 Outlook

Our work could extended in various ways. First of all we could investigate the Com-
peting Risk setting for graft-failure outcome alone. Bayesian estimation efficiency
can also be analyzed as compared to maximum likelihood. A more flexible model
can be formulated in the forms presented in Köhler et al. as for example testing a
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time-dependent association effect α(t) in joint models or by including automatic non
linear or functional formulation for both the longitudinal process and the association
between the two processes. An easier extensions could be to incorporate possible
confounding covariates in the model and eventually considering a multivariate lon-
gitudinal outcome composed by multiple biomarkers. As a further step in general
joint models computation, we would like to encourage the implementation in pack-
age JM of utilities of s() function for smooth terms,from mgcv library and a test
to possibly determine whether an extra random effects should be or not included in
the model.
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