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Chapter 1

Introduction

1.1 Subgroup analysis in randomized clinical trials

1.1.1 Randomized clinical trials

Clinical trials are the experimental approach to evaluating the effectiveness and safety of
new interventions for the treatment or prevention of diseases (Cook and DeMets, 2007).
In those designed scientific experiments, randomization has become a fundamental part
to ensure comparability between subjects receiving the intervention and control. As a
result, only the causal effect of the treatment instead of chance of assignment contributes
to the oberserved differences (Cook and DeMets, 2007). A successful randomized clinical
trial (RCT) requires sufficient background information, such as the expected size of the
effect of the intervention, the clinical outcome of interest, and plenty of resources, such
as financial support and patient availability. Therefore, investigators need to extract as
much information as possible (Wang et al., 2007). Also, due to the fact that treatment
effects may not be homogeneous across the study population, it stands to reason that
more fine-grained analysis is needed (Tanniou et al., 2016). Subgroup analysis comes into
play because of these two needs.

1.1.2 Subgroup analysis

Subgroup analysis is widely used in RCTs. It means assessment of treatment effects in
subgroups of patients, defined by subject characteristics prior to treatment, in terms of
a specific measure of treatment efficacy, such as hazard ratio or odds ratio. The results
are normally visualized by forest plots in which treatment effects of all subgroups are
displayed together for easy comparison. Such analysis can be undertaken to investigate
the consistency of the treatment effect across various groups of patients, and it can also
be conducted to assess treatment effects for a specific patient characteristics (Cook and
DeMets, 2007; Sun et al., 2014; Wang et al., 2007). For example, when the overall benefit
of the treatment effect is small, it is of interest to examine if a particular type of subjects
might get more benefit than others. Alternatively, given a strong overall treatment effect
in a RCT, the identification of a subset of “non-responders” is also of interest. Such
information may be helpful for clinicians when they prescribe the treatment to patients.

While this sounds promising, subgroup analysis brings in statistical challenges and
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can lead to misleading or overstated results. This can result from the idiosyncrasies of
standard statistical approaches for subgroup analysis, namely, a statistical test for interac-
tion between treatment and the patient characteristics which defines the subgroup (Alosh
et al., 2015; Wang et al., 2007). By using this method, heterogeneity of treatment ef-
fect would be suggested, if a statistically significant result (at a pre-specified significance
level) for the interaction between treatment and the baseline characteristics has been
found. However, these results may be misleading, because smaller sample sizes within
subgroups result in greater variance and reduced power. In other words, the insufficient
power leads to increased risk of false-negative results. Furthermore, the multiple subgroup
analyses exacerbate the risk of false-positive results (inflation of type I error) (Alosh and
Huque, 2013; Alosh et al., 2015; Cook and DeMets, 2007).

There is a rich literature of work addressing these problems. A comprehensive review
of it is beyond the scope of this work. We refer readers to the excellent work by Lipkovich
and collegues (Lipkovich et al., 2017) for a complete overview. We briefly summarize
the most relevant works here. Based on the methodology, they can be categorized into 4
groups:

1. Penalized regression: this stream of work estimates the coefficients by maximizing
a penalized likelihood. They encourage parsimonious models with fewer coefficients
and/or with small values for the coefficients (Imai et al., 2013; Lipkovich et al., 2017;
Thomas and Bornkamp, 2017).

2. Bayesian shrinkage methods: this group of work is analogous to penalized re-
gression. The penalty is formulated as a Bayesian prior and the coefficients are
estimated under the Bayesian framework (Jones et al., 2011; Varadhan and Wang,
2016).

3. Resampling methods: there are works using a resampling technique, the boot-
strap, to reduce the bias of treatment effect estimation after subgroup selection
(Rosenkranz, 2014, 2016).

4. Bayesian model averaging: this type of work provides a coherent mechanism for
accounting for model uncentainty by weighted averaging parameters over multiple
model according to their posterior distributions (Bornkamp et al., 2017; Thomas
and Bornkamp, 2017).

While these methods have gained great popularity in the community, they share one
common limitation: they have only been investigated for continuous outcome. To our
best knowledge, they have not been extended to time-to-event data. As known, time-to-
event outcome appears frequently in RCTs.

1.2 Project aim

We aim to develop new methods for treatment effect estimation in subgroups for survival
outcomes. To this purpose, we:

1. propose two methods to regularize the subgroup treatment effect estimates for time-
to-event data.
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2. examine the properties of these methods in an extensive simulation study. The sim-
ulation study investigates several realistic clinical trial scenarios inspired by actual
trial results allowing for correlation among variables

The evaluation is conducted according to overall root mean square error (RMSE) and over-
all bias. According to the results on the simulated datasets, the best-performing method
is selected and applied to a large randomized registration trial in follicular lymphoma.
The results are illustrated by forest plots and the observations are discussed.
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Chapter 2

Background

In this chapter, we will present the backgroud of this work. Section 2.1 describes the
GALLIUM clinical trial. Section 2.2 to Section 2.8 are devoted to the fundamental statis-
tical theory, such as survival analysis, lasso and ridge regression. Section 2.9 summarizes
the implementations of these statistical methods.

2.1 Case study: the GALLIUM study

A real clinical trial, the GALLIUM trial in follicular lymphoma (Marcus et al., 2017), will
be used as our case study. In addition, parameter settings for the simulation study were
inspired by the GALLIUM data, in order to stay close to the real clinical trial data. In
this section, the GALLIUM study will be described.

2.1.1 Disease and the new intervention

Non-Hodgkin lymphoma (NHL) is the most common hematologic malignancy in adults
(American Cancer Society, 2017). The majority of NHLs start from B-cells and they are
characterized by the expression of a membrane antigen, CD20, which plays an important
role in cell cycle initiation and differentiation (Anderson et al., 1984). NHLs can be
classified into aggressive and indolent NHLs depending on the rate of growth and spread.
Indolent NHLs tend to grow and spread slowly and they account for approximately one
third of all NHLs (American Cancer Society, 2017). Follicular lymphoma (FL) is the most
common type of indolent NHLs and is associated with follicle center-B cells that typically
overexpress the intracellular anti-apoptotic protein BCL2. The abnormality is associated
with the BCL2 chromosome translocation t(14:18).

The current standard treatment for FL is the combination of the anti-CD20 mono-
clonal antibody rituximab with chemotherapy (Herold et al., 2007; Hiddemann et al., 2005;
Marcus et al., 2008, 2017; Salles et al., 2008). It has significantly improved the survival
outcomes in patients with newly diagnosed FL, compared to chemotherapy alone (Herold
et al., 2007; Hiddemann et al., 2005; Marcus et al., 2008, 2017; Salles et al., 2008). It
has been observed that patients who received rituximab maintenance therapy after im-
munochemotherapy showed a progression-free survival rate of 59.2% (95% CI 54.7% -
63.7%) and overall survival rate of 87.4% at 6 years, while patients who received induc-
tion therapy alone 42.7% (95% CI 38 - 46.9%) and 88.7% respectively (Seymour et al.,
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2013). In spite of the medical progress, the majority of patients will relapse and die of
the disease progression after first-line treatment or the treatment-related toxicity.

Obinutuzumab (also known as Gazyva or Gazyvaro, F. Hoffmann-La Roche) is a
humanized glycoengineered type II anti-CD20 monoclonal antibody. It leads to low
complement-dependent cytotoxicity (CDC), but high antibody-dependent cellular cyto-
toxicity (ADCC), high antibody-dependent cellular phagocytosis (ADCP) and high di-
rect B-cell death induction (Marcus et al., 2017). In addition, it has been observed
that the combination of obinutuzumab with chemotherapy has improved the outcomes of
rituximab-refractory patients with indolent NHLs and patients with previously treated
indolent and aggressive NHLs (Mobasher et al., 2013; Radford et al., 2013; Sehn et al.,
2016).

2.1.2 Trial design and result

GALLIUM is a phase III, open-label, multi-center RCT. It was undertaken to investi-
gate the efficacy and safety of obinutuzumab-based chemotherapy in patients with FL
compared to rituximab-based chemotherapy. 1202 patients were enrolled between July 6,
2011, and February 4, 2014. They were randomly assigned in a 1:1 ratio to receive either
of the two antibody treatments plus one of the chemotherapies (Bendamustine, CHOP,
or CVP) and the same antibody treatments as maintenance therapies for up to 2 years.
The primary end point was investigator-assessed progression-free survival (PFS). It was
defined as the time from randomization to the earliest event of progression, relapse, or
death from any cause. Patients without event were censored at the last progression-free tu-
mor assessment. At a pre-planned efficacy interim analysis, the O’Brien-Fleming efficacy
boundary was crossed and following the recommendation of the independant data monitor-
ing committee, the trial was fully evaluated. The result showed that obinutuzumab-based
chemotherapy leads to a significantly lower risk of progression, relapse or death relative
to rituximab-based chemotherapy (hazard ratio (HR) for progression, relapse, or death,
0.66; with 95% confidence interval (CI) from 0.51 to 0.85; p-value = 0.001).

In addition to the primary analysis of PFS, pre-planned subgroup analyses based on
baseline characteristics and stratification factors at randomizationit was performed. They
were generally consistent with the result of the primary analysis. However, according
to Figure 3 in the supplementary Appendix by Marcus et al. (Marcus et al., 2017) or
Figure 6.1 in Section 6.1, the subset of patients with low score in follicular lymphoma
international prognostic index (FLIPI) seems to favor rituximab-based chemotherapy.
Even though the corresponding 95% CI for the HR is wide and the interaction p-value is
not significant, it is important to interpret the subgroup analysis with caution.

2.2 Survival analysis

Survival analysis is generally defined as statistical analysis for data where the outcome
variable is the time from a well-defined starting point to the occurrence of an event of
interest. This event can be death, development of some disease, the appearance of tumor
and so forth (Klein and Moeschberger, 2005). Let T be the time until some specified
event, so T is a nonnegative random variable. Four standard functions are typically used
to characterize the distribution of T , for t ≥ 0:
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• Distribution function: F (t) = Pr(T ≤ t),

• Survival function: S(t) = 1− F (t) = Pr(T > t),

• Density function: f(t) = dF (t)/dt,

• Hazard function: h(t) = lim
∆t→0

Pr(t≤T<t+∆t|T≥t)
∆t

= f(t)/S(T ).

The distribution function is the unconditional probability of an event to occur at time
t. The survival function is the probability that a subject survives to time t. The hazard
function is the time-dependent failure rate, namely, the probability of an individual who
was event-free at t to experience the event of interest in the next instant in time. Because
of the intuitive interpretation of the survival function and hazard function, they are used
for analysis and display of time-to-event data.

Another key feature of survival data is censoring. Observations are called censored
when the information about their survival time is incomplete. For example, a patient does
not experience event of interest for the duration of a study. Then the survival time for this
observation is considered at least as long as the duration of the study. Or a patient drops
out of the study before the end of the study. These observations represent a particular
type of missing data. In order to avoid bias in survival analysis, censoring is required to
be random and non informative.

2.3 Cox proportional hazards model

The Cox proportional hazards model has been widely used to quantify the relationship
between the time to event and a set of explanatory variables (Cox, 1972). Let h(t | x) be
the hazard rate at time t for an individual with covariables x = (x1, . . . , xp)

T , then the
model is specified as

h(t | x) = h0(t) exp(xTβ), t ≥ 0 (2.1)

where h0 is the baseline hazard function and β = (β1, . . . , βp)
T the parameter vector for

covariables (Cox, 1972). This is a semiparametric model because the baseline hazard
function is left unspecified whereas the parametric form is used only for quantifying the
effect of covariates on the baseline hazard. According to (2.1), if we look at two individuals
with covariate vectors x and x∗, the ratio of their hazard rates can be calculated as

h(t | x)

h(t | x∗)
=
h0(t) exp(

∑p
k=1 βkxk)

h0(t) exp(
∑p

k=1 βkx
∗
k)

= exp

[
p∑

k=1

βk(xk − x∗k)

]
.

Thus, the hazard rates are proportional and independent of t. More specifically, if the
two individuals received different treatments (for example x1 = 1 indicates treatment of
interest and x∗1 = 0 indicates placebo) and have the same values for all other covariates,
then exp(β1) represents the hazard of having the event for the individual who received
the treatment relative to the hazard of having the event for the individual who got the
placebo conditional on the other covariates.

The parameter β and its inference can be estimated based on a partial or conditional
likelihood (Cox, 1975). This will be explained in Section 2.4. The baseline hazard function
h0 is treated as a nuisance parameter function. However, if the estimation of the survival
function is of interest, it will be utilized. This will be explained in Section 2.5.
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2.4 Partial likelihood

The partial likelihood and the estimation of parameters for Cox proportional hazards
model based on it has been proposed in (Cox, 1975). We assume that a data set with
sample size n consists of three main components: survival time Tj, censoring indicator δj,
and covariates xj, where j = 1, . . . , n. The covariates of the jth patient have p dimensions,
namely xj = (xj1, . . . , xjp)

T . Also, it is assumed that the event and censoring time for
the jth patient are independent given the covariates xj. Let t1 < t2 < · · · < tD be the
ordered event times and x(i)k be the kth covariate value for the individual whose failure
time is ti, where D is total number of events. Let the risk set at time ti, R(ti), be the set
of individuals who are still under study and at risk of event. The partial likelihood, for
the model shown in (2.1), can be represented as

L(β) =
D∏
i=1

exp(
∑p

k=1 βkx(i)k)∑
j∈R(ti)

exp(
∑p

k=1 βkxjk)
. (2.2)

It is noteworthy that the numerator of the partial-likelihood only contains information
from the individuals who had the event at time ti and were still under follow-up, and that
the denominator only includes information from the individuals who have not experienced
the event yet at time ti. By maximizing the partial likelihood, the maximum partial
likelihood estimates for β can be obtained. Inference for β can be conducted in the same
way as for conventional maximum likelihood estimator (Klein and Moeschberger, 2005).

In addition to the above-mentioned partial likelihood for the proportional hazards
regression problem when there are no ties between the event times, alternative partial
likelihoods which allow for ties have been provided and discussed in the literature (Klein
and Moeschberger, 2005).

2.5 Breslow’s estimator of the baseline cumulative

hazard rate

The parameter β and h0 can be estimated in the maximum likelihood framework as shown
in Breslow (1972). The joint likelihood for β and h0 can be expressed as

L(β, h0) =
n∏
j=1

h(Tj | xj)δjS(Tj | xj)

=
n∏
j=1

h0(Tj)
δj(exp(xTj β))δj exp(−H0(Tj) exp(xTj β)).

(2.3)

By fixing β and treating h0 as piecewise constant between failure times, the profile max-
imum likelihood estimator for h0(ti), i = 1, . . . , D, can be computed. As a consequence,
the cumulative baseline hazard rate H0 is given by

ĥ0(ti) =
di∑

j∈R(ti)
exp(xTj β)

(2.4)

Ĥ0(t) =
∑
ti≤Tj

ĥ0(ti), (2.5)
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where di is the number of events at time ti. This is Breslow’s estimator of the baseline
cumulative hazard rate. To estimate a survival function given a covariate vector x, first
the corresponding cumulative hazard function needs to be calculated by

Ĥ(t | x,β) = Ĥ0(t) exp(xTβ). (2.6)

Then, the survival function given a covariate vector x can be simply obtained by

Ŝ(t | x,β) = exp(−Ĥ(t | x,β)) = exp(−Ĥ0(t) exp(xTβ)). (2.7)

2.6 Problems associated with marginalisation of mul-

tivariable Cox proportional hazards models

Suppose S = {1, 2, ..., N} be the subjects included in a trial. For each i ∈ S, a treatment
zi = {0, 1}, where zi = 1 denoting subject i in the investigational group and zi = 0 in
the control group. Let us denote by K the total number of subgroups and Sk ⊂ S the
kth subgroup, where k ∈ {1, 2, ..., K}. For subject i, ski = 1 if the subject belongs to
subgroup Sk and zero otherwise. Here, the subgroups are overlapping. Assume that the
following proportional hazards model holds for all study participants:

h(t) = h0(t) · exp(βtrzi + β1s1i + . . .+ βKsKi + θ1s1izi + . . .+ +θKsKizi).

Then, we are assuming a model with main effects and interaction terms with treatment
for all subgroup indicator variable.

In subsequent sections, we will aim to use this model to derive an associated marginal
(unadjusted) treatment effect estimate for a subgroup. A naive choice for such a treatment
effect estimator for subgroup Sk would be exp(βtr + θk). However, this estimate is flawed
because there are two problems:

• This HR does not take into account the contribution of subgroups overlapping with
Sk. For instance, subgrouping variables could include gender, age category, and
ethnicity. If the treatment effect in the subgroup of females is investigated, the
estimation should also consider the influence from covariates age and ethnicity.
Therefore, rather than using exp(βtr+θk), a more desirable estimate would “suitably
average” the conditional HRs of subjects in subgroup k across other subgrouping
variables.

• A further complication arises because dropping or adding a covariate to a Cox
proportional hazards model may lead to a misspecified model or violation of the
proportional hazards assumption, thus causing biased estimation for the regression
coeffcients. Moreover, even if none of the subgroups overlapped with subgroup Sk,
exp(βtr + θk) would still not correspond to a marginal treatment effect estimate
but rather to a treatment effect estimate conditional on the other covariates in the
model. For Cox proportional hazards models, unconditional and conditional treat-
ment effect estimates do not coincide(Ford et al., 1995; Gail et al., 1984; Martens
et al., 2008; Strandberg et al., 2014; Struthers and Kalbfleisch, 1986).
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The first of these problems also occurs for continuous outcomes modelled by linear
regression. However, the second problem does not occur for linear regression but we
will have to address it when presenting our new methods for subgroup treatment effect
estimation for survival data. In addition, the second problem indicates that “marginal-
ized” models may violate the proportional hazards assumption even if the proportional
hazards assumption is fulfilled for the conditional model. Thus, a more general defini-
tion of a treatment effect, the so-called “average hazard ratio”, is desired which is also
interpretable under non-proportionality.

2.7 Average hazard ratio

It is unclear how to interpret the estimates from a Cox proportional hazards model if the
proportionality is absent. Thus, it is desired to develop a summary statistic that has an
interpretation even if the proportionality is not satisfied. As a consequence, the average
hazard ratio (AHR) was proposed by Kalbfleish and Prentice (Kalbfleisch and Prentice,
1981). In some circumstances, it provides an alternative to other options to cope with
non-proportional hazards including inclusion of time-dependent covariates, stratification
on a covariate, and separate modeling for different time periods (Schemper et al., 2009).
A definition of the AHR is

AHR =

∫
(h1(t)/h(t))w(t)f(t)dt∫
(h0(t)/h(t))w(t)f(t)dt

, (2.8)

where h1(t) and h0(t) denote the hazards of treatment group and control group at time t
respectively, h(t) = h0(t) + h1(t), f(t) = (f0(t) + f1(t))/2, and the function w(t) is used
to reflect the relative importance of the hazards ratios in different time periods. There
are different choices of weight functions, such as w(t) = 1 and w(t) = S(t) (Schemper
et al., 2009). The latter is preferable because of two reasons. Firstly, we believe that the
importance of hazard ratios at different times is proportional to the numbers of individuals
at risk at these times. Secondly and more importantly, it is approximate to another
important statistic, odds-of-concordance (OC). If w(t) = (S0(t)f1(t)+S1(t)f0(t))/(f0(t)+
f1(t)), namely a weighted average of the survival functions for the treatment group and
the control group, the AHR function can be simplified to

AHROC =

∫
h1(t)S0(t)S1(t)dt∫
h0(t)S0(t)S1(t)dt

. (2.9)

With h1(t) = f1(t)/S1(t) and h0(t) = f0(t)/S0(t), the function can be further simplified
to

AHROC =

∫
S0(t)f1(t)dt∫
S1(t)f0(t)dt

. (2.10)

This expression can be rewritten as

AHROC =

∫
P (T0 > t)f1(t)dt∫
P (T1 > t)f0(t)dt

=
P (T0 > T1)

P (T1 > T0)
=

P (T1 < T0)

1− P (T1 < T0)
= OC. (2.11)

In (2.11), the probability P (T1 < T0) represents the probability that a randomly chosen
survival time T1 from the treatment group is smaller than a randomly chosen survival
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time T0 from the control group and P (T1<T0)
1−P (T1<T0)

is the corresponding odds. OC is a non-
parametric measure of effect size that characterizes the degree of difference of the dis-
tributions of the survival times of two groups. It corresponds to the c-index proposed
by Harrell (Harrell Jr, 2015). The AHR is equal to the usual HR if the proportionality
assumption is fulfilled.

2.8 L1 and L2 norm penalty and regularized cost func-

tion in Cox proportional hazards model

As stated in Section 2.4, the estimate β can be obtained by maximizing the partial likeli-
hood L(β) defined by (2.2). Maximizing the partial likelihood is equivalent to maximizing
a log-partial likelihood,

l(β) =
D∑
i=1

p∑
i=1

βkx(i)k −
D∑
i=1

log

 ∑
j∈R(ti)

exp

(
p∑

k=1

βkxjk

) .
In order to control over-fitting, a regularization term is added to the log partial likelihood.
As a result, the penalized estimate β is obtained by

β̂ = argmaxβ

[
l(β)− λ

p∑
i=1

|βk|q
]
, (2.12)

where λ > 0 is a tuning parameter. If q = 1, L1 norm penalty or lasso penalty is
applied (Tibshirani, 1996, 1997). If q = 2, L2 norm penalty or ridge penalty is ap-
plied (Bishop, 2006; Hoerl and Kennard, 1970).

To illustrate this shrinkage property of lasso and ridge, the geometry of lasso and ridge
for normally distributed data is shown in Figure 2.1. The unregularized error function is
centered at the ordinary least square (OLS) estimates displayed as the elliptical contours
by the solid curves. For lasso in Figure 2.1(a), the constraint region is the rotated square.
The lasso solution is the place in which the contour hits the square. When this occurs
at a corner as seen in this figure, it corresponds to a zero coefficient. In contrast, the
constraint region for the ridge in Figure 2.1(b) has no corners, therefore not generating
zero coefficients. In other words, the lasso gives sparse solution, compared to the ridge.
The lasso thus can be used for variable selection.

In Cox proportional hazards model, the unregularized error function might have a dif-
ferent shape when the sample size is not large enough. Whereas if the sample size is grow-
ing large, the unregularized error function is getting closer to the elliptical contours. This
is due to the asymptotic normality of the partial maximum likelihood estimates (Klein
and Moeschberger, 2005). Regarding to the regularization process, it is similar to that
for a linear model.

2.9 Implementation

All analyses were performed in the R programming language (R Development Core Team,
2009). The partial maximum likelihood estimates are obtained by the function coxph()
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Figure 2.1: Figure courtesy of Tibshirani (1996). Estimation picture for (a) the lasso and
(b) the ridge for linear model. The ellipse standards for the contours of the unregularized
error function for β̂. The black shade indicates the constraint regions.

in the R package survival (Therneau and Lumley, 2016). The Breslow estimator of the
baseline hazard function for a proportional hazard regression is computed by the function
basehaz.gbm() in the R package gbm (Ridgeway, 2010).

The shrunken estimates are achieved by using the function cv.glmnet() in the R
package glmnet (Friedman et al., 2009). All covariates were standardized before applying
the penalty. In this package, more than one value of λ is examined for each model. It first
finds the largest value for the λ, indicated by λmax, by setting it to the smallest value which
ensures all the coefficients β̂ are zero. Then, it sets the minimum value λmin = ελmax and
finally selects a grid of m values between λmin and λmax, where λj = λmax(λmin/λmax)j/m

for j = 0, . . . ,m. In glmnet, the default value for m is 100. If n ≥ p, the default for ε
is 0.0001. If n < p, the default value for ε is 0.05 (Simon et al., 2011). Once a set of
λ’s has been calculated, it is necessary to select an optimal one. k-fold cross validation is
employed for model selection. It means that the data is splitted into k pieces, then k− 1
pieces are used to train the model and validated on the kth pieces. This procedure needs
to be conducted repeatedly until each of the k pieces has been used for validation. glmnet
use a technique proposed by van Houwelingen et al. (van Houwelingen et al., 2006), the
goodness of fit for a given part k and λ is measured by

ĈV k(λ) = l(β−k(λ))− l−k(β−k(λ))

where l−k indicates the log-partial likelihood excluding part k of the data, and β−k(λ)
is the optimal β for the training data. It can be calculated by maximizing l−k − λ|βq|,
q = 0, . . . , 1. The total goodness of fit is the sum of all ĈV k(λ). The optimal λ can be

obtained by the maximizing ĈV k(λ).
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Chapter 3

Methodology for subgroup effect
estimation

In this chapter, we describe four methods for subgroup treatment effect estimation, in-
cluding two standard methods in Section 3.1 and Section 3.2, and two novel methods
proposed by us in Section 3.3 and Section 3.4.

Before diving into the details, we define the notations used by all methods. Let
S = {1, 2, ..., N} be the subjects included in a trial. For each i ∈ S, a treatment zi = {0, 1}
is administrated, where zi = 1 denoting subject i in the investigational group and zi = 0 in
the control group. Let us denote by K the total number of subgroups and Sk ⊂ S the kth

subgroup, where k ∈ {1, 2, ..., K}. For subject i, ski = 1 if the subject belongs to subgroup
Sk and zero otherwise. It is noteworthy that the subgroups are not disjoint as exemplified
in Section 2.6. As a consequence, the assumption of exchangeability is violated, thus
suggesting that the standard Bayesian hierarchical modeling does not apply here (Jones
et al., 2011).

3.1 Naive method

In order to estimate a subgroup treatment effect for time-to-event data, the Cox propor-
tional hazards regression model is applied to estimate the log-hazard ratio of the treatment
group against the control group using the data in the subgroup only. The statistical model
is expressed as

hi(t) = h0(t) exp(βtr,k · zi), i ∈ Sk
where h0 indicates the baseline hazard function, and βtr,k denotes the coefficient for treat-
ment effect. As explained in Section 2.3, the log-HR of treatment group against control
group within subgroup Sk can be represented as log(HR)(Sk) = β̂tr,k. The coefficient β̂tr,k

can be obtained by maximizing the partial likelihood described in Section 2.4. The Wald
2-sided (1-α) × 100% confidence interval for β̂tr can be constructed as

β̂tr,k ± Z1−α/2 · ŝe(β̂tr,k).
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3.2 Naive overall population-based method

Another simple baseline is to apply the overall treatment effect estimated from the whole
population and then to apply it to the subgroup of interest (Cook and DeMets, 2007;
Sleight, 2000). Due to the small sample size of subgroups and the resulting large variability
of the method from Section 3.1, this may be a more statistically reliable than the actual
results obtained on the subgroup population in question. The statistical model is given
by

hi(t) = h0(t) exp(βtr, overall · zi), i ∈ S,
β̂tr,k = β̂tr, overall, k ∈ {1, 2, . . . , K}

The Wald 2-sided (1-α) × 100% confidence interval for β̂tr,overall can be constructed as

β̂tr,overall ± Z1−α/2 · ŝe(β̂tr,overall).

3.3 Marginalization of prediction from a penalized

Cox model to all data (average hazard ratio)

We assume the following model for the hazard of data

hi(t) = h0(t) exp(βtrzi + β1s1i + · · ·+ βKsKi︸ ︷︷ ︸
prognostic effects

+ θ1s1izi + · · · θKsKizi)︸ ︷︷ ︸
predictive effects

, i ∈ S.

Therefore we are assuming models with a main effect and an interaction with treatment for
each subgroup indicator variable. We propose to estimate the parameters by maximizing
penalized likelihood applying the L1-norm penalty (lasso-penalty) or the L2-norm penalty
(ridge-penalty) to the vector (θ1, · · · , θK) as described in Section 2.8.

As explained in Section 2.6, In order to get a population-averaged HR of the treat-
ment group against the control group for the investigated subgroup, we need to calculate
marginal survival functions for the treatment group and the control group by averaging
over conditional covariates. In addition, the proportional hazards assumption for such
a complicate model may not hold. To address these two issues, we propose to use the
average hazard ratio corresponding to the odds of concordance (AHROC) as our target
treatment effect estimator, as described in Section 2.7. According to (2.10), an estimate
of AHROC in subgroup Sk can be derived by the following steps.

1. Based on the model for the full dataset and each patients’ covariate, derive a pre-
dicted survival function Ŝi,0 assuming the patient would receive control and the

corresponding survival function Ŝi,1 assuming that the patient received treatment.
We can calculate the survival function by using the Breslow estimator of the baseline
hazard function for the Cox regression model in combination with the linear predic-
tor as described in Section 2.5. The predicted survival functions are step functions
with steps at each unique event time point (denoted by t1, · · · , tl).

2. The marginal survival function in subgroup k assuming no treatment is estimated
as Ŝk,0 = 1/|Sk|

∑
i∈Sk

Ŝi,0. In the same way, the marginal survival function in

subgroup k assuming treatment is estimated as Ŝk,1 = 1/|Sk|
∑

i∈Sk
Ŝi,1.
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3. According to (2.10), we can derive the treatment effect in subgroup k. As the esti-
mated survival functions are “discrete” step functions with steps at times t1, · · · , tl,
the corresponding discrete probability (density) functions fk,0(t) take the values

f̂k,0(t1) = 1 − Ŝk,0 at t1 and f̂k,0(tk) = Ŝk,0(tk−1) − Ŝk,0(tk) for k = 2, · · · , l. fk,1 is
defined in the same way. The integral is then approximated by a sum to get an
estimate of AHROC

ˆAHROC(Sk) =

∑
t∈t1,··· ,tl Ŝk,0(t) · f̂k,1(t)∑
t∈t1,··· ,tl Ŝk,1(t) · f̂k,0(t)

.

3.4 Penalized composite likelihood

We assume the following model for the hazard of data from subgroup Sk, k ∈ {1, 2, ..., K}:

hi(t) = h0(t) · exp(βtr · zi + αi + βk · zi), i ∈ Sk. (3.1)

Here, h0 is the “overall” baseline hazard function, βtr indicates the “overall” treatment
effect, αk and βk are subgroup-specific deviations to the “overall” baseline hazard and
“overall” treatment effect. The estimated treatment effect (log-hazard ratio) in subgroup
k is βtr + βk. For each subgroup Sk, the model specified above leads to a corresponding
(partial) log likelihood lk(βtr, αk, βk). Because the data is inter-correlated, computing the
full likelihood is not straightforward. we propose to use a composite log-likelihood (or
pseudo log-likelihood) across all subgroups as a replacement (Cox and Reid, 2004). It can
be expressed as

l(βtr, αk, βk) =
K∑
k=1

lk(βtr, αk, βk).

As this equation shows, it ignores the dependencies among observations from overlapping
subgroups. A penalized version of the above composite likelihood is then defined as

K∑
k=1

lk(βtr, αk, βk)− λ
K∑
k=1

‖βk‖q.

where ‖βk‖q denotes the L1-norm penalty (lasso-penalty, q = 1) or L2-norm penalty (ridge
penalty, q = 2) on the vector (β1, · · · , βK). In order to implement this approach, we used
a modified stacked dataset which stacks the data corresponding to each subgroup together
and creates corresponding variables for subgroup indicators and subgroup-treatment in-
teractions. As a consequence, the new stacked dataset would have K · N rows. Then
we use the function cv.glmnet() to choose the penalty parameter λ, based on cross-
validation using the pseudo partial likelihood as the loss function. Importantly, as the
stacked dataset includes multiple entries (rows) corresponding to the same observation in
the original dataset, partitions for the cross-validation should be derived based on parti-
tions of the original dataset; the corresponding derived partition for the stacked dataset
can then be supplied to function cv.glmnet() using the argument foldid.
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Chapter 4

Simulation setup

4.1 Goal

This simulation is to compare the performance of six statistical methods for estimating
a subgroup treatment effect described in Chapter 3 (See Table 4.1 for an overview). In
order to evaluate these subgroup-specific treatment effect estimation, simulated datasets
with known coefficients have been generated and used for comparison in terms of root
mean squared error (RMSE) and bias. To resemble real clinical trial data, the parameter
setting was inspired by the GALLIUM data. To assess the statistical methods thoroughly,
not only have the MSE and bias of estimates for each subgroup been considered, but also
the overall MSE of estimates across all subgroups have been computed.

4.2 Dataset generation

4.2.1 Biomarker generation

The underlying continuous biomarkers X1, X2, · · · , X10 are generated from a multivariate
normal distribution with pre-specified variance-covariance matrix. In order to resemble
the GALLIUM data, we specified: 1) the first 5 covariates are uncorrelated; 2) X6, X7,
and X8 with moderate correlation; and 3) X9 and X10 with high correlation, see (4.1).

X ∼ N10(µ,Σ), (4.1)

where µ = [E(X1), · · · ,E(X10)]T = [0, · · · , 0]T and

Estimation method (estimator) Denoted by
naive naive
naive overall population-based naivepop
lasso-penalized average hazard ratio lassoAHR
ridge-penalized average hazard ratio ridgeAHR
lasso-penalized composite likelihood lassocomposite
ridge-penalized composite likelihood ridgecomposite

Table 4.1: Estimators used in simulations
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Variables levels proportion per level Biomarkers
X1 2 0.5, 0.5 x1.a, x1.b
X2 2 0.4, 0.6 x2.a, x2.b
X3 2 0.2, 0.8 x3.a, x3.b
X4 3 0.5, 0.3, 0.2 x4.a, x4.b, x4.c
X5 4 0.15, 0.15, 0.3, 0.4 x5.a, x5.b, x5.c, x5.d
X6 2 0.4, 0.6 x6.a, x6.b
X7 2 0.4, 0.6 x7.a, x7.b
X8 3 0.2, 0.3, 0.5 x8.a, x8.b, x8.c
X9 2 0.2, 0.8 x9.a, x9.b
X10 3 0.2, 0.3, 0.5 x10.a, x10.b, x10.c

Table 4.2: Dichotomization of variables in the simulated dataset.

diag(Σ) = 1, Cov(Xi=1,··· ,5, Xj 6=i,j=1,··· ,5) = 0,

Cov(Xi=6,··· ,8, Xj 6=i,j=6,··· ,8) = σmoderate, Cov(Xi=9,10, Xj 6=i,j=9,10) = σhigh.

We set σmoderate = 0.2 and σhigh = 0.5 in this simulation study. To have an overview
of the different parameters used in the simulation study, see Table 4.3. After the contin-
uous biomarker generation, the 10 biomarkers are dichotomized to categorical variables
according to pre-specified quantiles. The assumed proportions are listed in Table 4.2.

The treatment number is a binary variable (1 indicates treatment of interest, and
0 indicates control) simulated as independent of X1, . . . , X10 with an equal number of
patients in the investigational group and the control group. To simulate the survival
time and event indicator, detailed explanations are necessary. They are described in the
following sections step by step.

4.2.2 Survival time generation (without censoring)

The Weibull distribution is chosen to simulate the survival time T . There are two rea-
sons for it: first, it is a flexible model; second, it is the only parametric regression model
that has both an accelerated failure-time (AFT) and a proportional hazards (PH) rep-
resentation. The former is easy to simulate from and the latter is compatible with the
Cox proportional hazards model which will be employed to estimate the treatment effect.
The density function, survival function, and the hazard function corresponding to the
Weibull-distributed survival time T can be presented as:

T ∼ Wb(γ = shape, λ = scale), f0(t) = λγtγ−1 exp(−λtγ)
S0(t) = exp(−λtγ), h0(t) = λγtγ−1

with t, λ, γ > 0 (Klein and Moeschberger, 2005). Based on this parametrization to set up
a Weibull regression given a covariate vector x and a corresponding vector β of regression
coefficients, the hazard function can be written as

h(t | x) = h0(t) exp(βTx) = λγtγ−1 exp(βTx). (4.2)
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As a result, the coefficients exp(β) fulfill the proportional hazards property. They can be
interpreted as hazard ratios (HRs). On the other hand, to incorporate covariates into a
Weibull AFT model, we use a log linear model with

Y = log(T ) = αintercept + Xα+ σW (4.3)

where W follows an extreme value distribution with probability density function fw(w) =
exp(w− ew), α denotes the regression coefficients for the covariate matrix X, σ indicates
the scale, and αintercept the intercept in the AFT parametrization (Klein and Moeschberger,
2005). Thus, we can easily generate the survival time T with given αintercept, coefficient
vector α, covariate matrix X, σ and W . W can be simulated by using the function rexp()

with argument rate = 1 and taking the log-transformed values. The simulation of matrix
X has been explained in Section 4.2.1.

In R, Weibull AFT can be obtained by survreg() function. survreg() employs the
framework of an AFT model and the output gives σ(scale), the intercept (αintercept =
−µ/σ), and the regression coefficients α (Collett, 2015; Hubeaux and Rufibach, 2014).
Those parameters can be transformed to the parameters in (4.2) with

γ = σ−1, λ = exp(−µ/σ), β = −α/σ. (4.4)

To obtain a realistic choice for the scale parameter σ and intercept parameter αintercept =
−µ/σ, we fitted an AFT to the GALLIUM data and based on this, we chose

αintercept = 4.5, σ = 0.85, α = −βσ = − log(HR)σ, (4.5)

where the HR is a vector of parameters which we varied in across the different scenarios
(See the section 4.3).

4.2.3 Non-administrative censoring time and censoring indica-
tor generation

While simulating the right-censored survival data, two independent survival distributions
are required: one is the distribution for the survival time T and the other for the censoring
mechanism C (Wan, 2017). One of the common choices for censoring distribution is the
exponential distribution C ∼ exp(θ), where θ > 0 and we chose the annual censoring rate
as 2% which is realistic for a well-conducted trial such as the GALLIUM study. Here, the
censoring time can be generated by using the function rexp() with argument rate = 0.02.

If we assume the survival time T is independent of the censoring time C, then we can
get the observed follow-up time Y = min(T,C). Thus, the censoring indicator should be
given by δ = I(T ≤ C) (Wan, 2017):

δ =

{
1 if T ≤ C,
0 otherwise .

4.2.4 Number of events calculation

In clinical trials of which the outcome is time-to-failure, the terminal point of the study
is usually determined by the number of events required to achieve the desired total in-
formation (Klein and Moeschberger, 2005). It means that the study continues until the

20



target event number is observed. The number of events Nev can be calculated based on
the formula:

Nev =
(Z1−α/2 + Z1−β)2

ξ1ξ2 log(HR)2
,

where α (two-tailed) denotes the type I error rate, β indicates the type II error rate, and
ξ1 and ξ2 mean the proportions of individuals in the investigational group and the control
group respectively, and HR denotes the target hazard ratio (treatment group/control
group) which the trial aims to detect with power 1 − β . Usually, α = 0.05 and β = 0.2
are chosen to calculate the sample size. Also, the clinical trial uses 1:1 randomization,
thus giving ξ1 = 0.5 and ξ2 = 0.5. Here, these values have been used to calculate the
required Nev.

4.2.5 Calendar time generation (with administrative censoring)

In clinical trials the individuals enter the study at different times, so the calendar event or
censoring time of each individual should equal the sum of entry time and the survival time
or censoring time. Moreover, once Nev event are reached, all the observations survived
longer than that time point have to be considered as censored. This type of censoring is
called administrative censoring. As a consequence, the entry time of each patient has to
be sampled.
We assume that in every month there are on average the same number of newly included
patients, so the entry time of patients are uniformly distributed. If the recruitment
duration lasts 36 months, then rec.time = 36. Then, the entry time of each patient can
be expressed as

Tentryi
∼ U(0, rec.time),

where i = 1, 2, · · · , n.
Then the calendar time Tcalendar should be the sum of the entry time and the right-

censoring time/event time.

Tcalendari =

{
Tentryi

+ Ci if δ = 0,
Tentryi

+ Ti if δ = 1.

In order to find the calendar time point for study ending time, the calendar event time
should be ordered increasingly

tcalendar(δ=1)1 ≤ tcalendar(δ=1)2 ≤ tcalendar(δ=1)3 ≤ · · · .

Consequently the clinical cutoff date for the simulated study can be determined by

tend = tcalendar(δ=1)Nev
,

where Nev denotes the total number of required events.

4.2.6 Progression-free survival time and event indicator gener-
ation

After all the steps described in previous sections have been conducted, the primary out-
come, progression-free survival (PFS) time, can be calculated as TPFS = min(Tcalendari , tend)−
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Tentryi
. All patients whose calendar times are larger than tend will be treated as right-

censored. For the cases that TPFS < 0, the subjects will be treated as right-censored at
0.

4.3 Simulation scenarios

In order to cover the most common scenarios in subgroup analyses of clinical trials, we
simulate datasets based on the characteristics of six scenarios. They will be described in
detail.

Homo:positive

In this scenario, the subgroups are homogeneous with overall beneficial treatment effect.
In our setting, we set the overall treatment effect to 0.67 (on HR-scale) which is the overall
treatment effect in GALLIUM study and choose two biomarkers which have prognostic
effects. There is no predictive biomarker.

αintercept = 4.5, σ = 0.85, αtr = − log(0.67)σ,

αx4.c = − log(0.7)σ, αx6.b = − log(1.5)σ.

We refer to (4.5) for the relation of those AFT parameters to the corresponding parameter
of the PH model. αx4.c indicates the prognostic effect of biomarker x4.c, compared to the
reference level. αx6.b represents the prognostic effec of biomarker x6.b, compared to the
reference level.

Homo:no

In this scenario, the population is homogeneous with overall zero treatment effect. In our
settings, we set the overall treatment effect to 1 (on HR-scale) and chose two biomarkers
which have prognostic effects. Again, the subgroups are homogeneous, so there is no
predictive biomarker.

αintercept = 4.5, σ = 0.85, αtr = − log(1)σ = 0,

αx4.c = − log(0.7)σ, αx6.b = − log(1.5)σ.

GOYA-inspired

This scenario is to mimic the GOYA clinical trial which was a randomized phase III study
that compares G-CHOP (Obinutuzumab-cyclophosphamide, doxorubicin, vincristine, pred-
nisone) and R-CHOP ( Rituximab-cyclophosphamide, doxorubicin, vincristine, prednisone)
in previously untreated diffuse large B-cell lymphoma (DLBCL) (Vitolo et al., 2017). In
this study, there was generally lack of benefit of G-CHOP over R-CHOP in patients with
DLBCL except possibly for patients with the germinal-center B cell-like subtype. There-
fore, in our setting, let the overall treatment effect be 1 (on HR-scale) and one biomarker
“x5.b” with strong positive treatment effect. In order to compensate this strong treatment
effect and thus keep the overall treatment effect around 1, we chose “x5.c” and “x5.d”
with negative treatment effect 1.16 (on HR-scale). Similarly, we choose two biomarkers
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with prognostic effects. Noteworthy, to simplify the scenario, an uncorrelated covariate is
considered as the predictive covariate. Thus, the parameter setting for this scenario was

αintercept = 4.5, σ = 0.85, αtr = − log(1)σ,

αx4.c = − log(0.7)σ, αx6.b = − log(1.2)σ, αtr:x5.b = − log(0.5)σ,

αtr:x5.c = − log(1.16)σ, αtr:x5.d = − log(1.16)σ.

The interpretation of the first four parameters can be found in Section 4.3. αtr:x5.b indicates
the predictive effect of biomarker x5.b, compared to the overall treatment effect. αtr:x5.c

indicates the predictive effect of x5.c, compared to the overall treatment effect. αtr:x5.d

indicates the predictive effect of x5.d, compared to the overall treatment effect.

GALLIUM-inspired

This scenario is inspired by the GALLIUM clinical trial which has been introduced in
Section 2.1. To mimic this study, we set the overall treatment effect to 0.67 (on HR-scale)
and one biomarker “x5.b” with negative treatment effect. As explained in Section 4.3, we
chose subgroup “x5.c” and “x5.d” to compensate the strong negative treatment effect in
subgroup “x5.b”. The parameter setting for this scenario was

αintercept = 4.5, σ = 0.85, αtr = − log(0.67)σ,

αx4.c = − log(0.7)σ, αx6.b = − log(1.2)σ, αtr:x5.b = − log(1.79)σ,

αtr:x5.c = − log(0.89)σ, αtr:x5.d = − log(0.88)σ.

Hetero-mild

To test our methods in a heterogeneous population, this scenario was defined. The sub-
group effects are heterogeneous and the treatment effects varied mildly. The parameter
setting for this scenario was

αintercept = 4.5, σ = 0.85, αtr = − log(0.67)σ,

αi = − log(βi)σ, αtr:i = − log(βtr:i)σ,

where i could be all subgroups except for“x1.a”, “x2.a”, . . . ,“x10.a”. Those subgroups
were the reference level and thus not individually specifiable. In order to simulate the
values for βi and βtr:i, we use the following settings

θi ∼ N (0, 0.2), βi = exp(θi), γi ∼ N (0, 0.2), βtr:i = exp(γi),

with θi and γi simulated independently.
The strategy described above is sufficient to generate a dataset. In this work, we would

like to use a dataset of which the overall treatment effect was around 1. To this aim,
we employed a trial-and-error strategy by looping over altering values of γi, generating
a dataset, and verifying the ground-truth values as explained in Section 4.5 until the
requirement is fulfilled.
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Parameter Abbreviation Settings
Number of simulation Nsim 1000

Sample size n 1202, 1500
Annual censoring rate cens.rate 0.02

Recruitment time over study (month) rec.time 36
Total number of events Nev 245, 370
Moderate correlation σmoderate 0.2

High correlation σhigh 0.5

Table 4.3: Parameter settings in the simulations.

Hetero-high

In this scenario, the population was heterogeneous and the treatment effects among sub-
groups were highly deviating. In addition, the treatment effect in the whole population
was around 1. The parameter setting for this scenario was

αintercept = 4.5, σ = 0.85, αtr = − log(0.67)σ,

αi = − log(βi)σ, αtr:i = − log(βtr:i)σ,

where i could be all subgroups except for“x1.a”, “x2.a”, . . . ,“x10.a”. Those subgroups
were the reference level and thus not individually specifiable. In order to simulate the
values for βi and βtr:i, we use the following settings

θi ∼ N (0, 0.1), βi = exp(θi), γi ∼ N (0, 0.5), βtr:i = exp(γi).

The strategy described above is sufficient to generate a dataset. In this work, we would
like to use a dataset of which the overall treatment effect was around 1. To this aim,
we employed a trial-and-error strategy by looping over altering values of γi, generating
a dataset, and verifying the ground-truth values as explained in Section 4.5 until the
requirement is fulfilled.

4.4 Parameter setting (general) for the simulation

The method to conduct the simulation study has been described in Section 4.2.1. Also, the
parameter settings for specific scenarios are given in Section 4.3. This section is devoted
to how to set the parameter values for all cases. To resemble the GALLIUM data, we use
the same sample size and total number of events as the first option, which are 1202 and
245 respectively. This number of event gives approximately 80% power to detect a target
HR of 0.7 at the two-sided 5% significance level in the overall population. Another sample
size we consider is n = 1500. This is slightly larger while remaining representative of a
large Phase III clinical trial, thus leading to a larger sample size in each subgroup. The
corresponding total number of events Nev was 370 in order to obtain approximately 80%
power to detect a target HR of 0.75 at the two-sided 5% significance level in the overall
population.

Note that for each scenario investigated, a new dataset is generated. In order to
compare the six approaches, simulated datasets are saved and the six estimators are all
applied to the same datasets.
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4.5 From ground-truth model to “ground-truth” treat-

ment effects

In order to calculate the “true” subgroup-specific treatment effect, datasets with large
sample size, n = 1202000 and Nev = 245000, have been generated. Corresponding to
specific scenarios described in Section 4.3, the same parameter setting have been used for
data simulation.

To obtain the “true” subgroup-specific treatment effect, Cox proportional hazards
model has been applied to those large datasets. The model includes all available biomark-
ers and treatment indicator as main effects and the interactions between treatment effect
and the biomarkers. Namely, the model which has been used for data simulation was
applied for ground-truth calculation. Because of the complications of Cox proportional
hazards model explained in Section 2.6, the average hazard ratio corresponding to the
odds of concordance (AHROC) introduced in Section 2.7 was used as target subgroup-
specific treatment effect estimators. The “true” subgroup-specific treatment effect was
notated as AHRtrue(Sk). AHRtrue(Sk) under all scenarios were generated and shown in
Table 4.4. As Table 4.4 shows, in addition to the subgroup-specific treatment effect, the
overall treatment effect has been also generated.

4.6 Assessment criteria

To obtain a thorough assessment, the performance metrics containing root mean squared-
error (RMSE) and bias for subgroup-specific treatment effect estimate (log(ĤR(Sk))) were
computed. Also, the overall RMSE and bias across all subgroups has been considered.
They can be obtained as the following:

RMSE(Sk) =

√√√√ 1

Nsim

Nsim∑
n=1

{
log[ĤR(Sk)n]− log[AHRtrue(Sk))

}2

,

Bias(Sk) =
1

Nsim

Nsim∑
n=1

log[ĤR(Sk)n]− log[AHRtrue(Sk)],

RMSEoverall =

√√√√ 1

K

K∑
k=1

{
1

Nsim

Nsim∑
n=1

[
log[ĤR(Sk)n]− log [AHRtrue(Sk)]

]2
}
.
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Homo:positive Homo:no Goya-inspired Gallium-inspired Hetero:mild Hetero:high

x1.a 0.67 1.00 1.02 0.68 0.97 1.05
x1.b 0.68 1.00 1.02 0.69 1.05 1.01
x2.a 0.67 1.00 1.01 0.68 1.14 1.26
x2.b 0.68 1.00 1.03 0.69 0.94 0.89
x3.a 0.67 1.00 1.02 0.69 0.75 0.57
x3.b 0.68 1.00 1.02 0.68 1.07 1.17
x4.a 0.68 1.00 1.01 0.68 1.03 0.79
x4.b 0.67 1.00 1.03 0.69 0.93 0.85
x4.c 0.67 1.00 1.02 0.69 1.16 2.18
x5.a 0.67 1.00 1.00 0.68 0.85 1.25
x5.b 0.68 1.00 0.50 1.19 0.73 1.67
x5.c 0.68 1.00 1.16 0.60 1.03 0.88
x5.d 0.67 1.00 1.15 0.59 1.20 0.87
x6.a 0.67 1.00 1.02 0.68 1.09 1.16
x6.b 0.67 1.00 1.02 0.68 0.96 0.95
x7.a 0.67 1.00 1.03 0.69 1.08 0.99
x7.b 0.68 1.00 1.02 0.68 0.96 1.06
x8.a 0.68 1.00 1.02 0.68 0.94 0.90
x8.b 0.67 1.00 1.02 0.69 1.09 1.28
x8.c 0.68 1.00 1.02 0.69 0.99 0.95
x9.a 0.69 1.00 1.02 0.68 0.88 1.07
x9.b 0.67 1.00 1.02 0.69 1.04 1.02
x10.a 0.68 1.00 1.01 0.68 1.03 1.10
x10.b 0.68 1.00 1.03 0.68 0.92 0.86
x10.c 0.67 1.00 1.02 0.69 1.06 1.12

Overall 0.68 1.00 1.02 0.68 1.01 1.03

Table 4.4: True average hazard ratio (AHR) for every subgroup under different sce-
narios. Homo:positive: all subgroups show the same amount of positive treatment
effect. Homo:no: all subgroups show no treatment effect. Goya-inspired: except for
one subgroup “x5.b” the other subgroups show no treatment effect. Gallium-inspired:
except for one subgroup “x5.b” the other subgroups show positive treatment effect. Het-
ero:mild: all subgroups show mild differential treatment effect. Hetero:high: all sub-
groups show highly differential treatment effect. Each of these values were computed
based on 1 simulated data set with n = 1202000 and Nev = 245000. The subgroups
in green are dichotomized from uncorrelated multivariate normally distributed variables.
The subgroups in yellow are dichotomized from moderately correlated multivariate nor-
mally distributed variables. The subgroups in red are dichotomized from highly correlated
multivariate normally distributed variables.
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Chapter 5

Simulation results

In order to have a thorough evaluation, we generated 1000 datasets for each of the six
realistic clinical trial scenarios as described in Chapter 4, and performed the experiments
thereon. The treatment effects for all subgroups were estimated using all estimators
introduced in Chapter 3, and were evaluated by three standard metrics: RMSEoverall,
RMSE(Sk), and Bias(Sk). The results can be found in Section 5.1 and Section 5.2. In
addition, further investigation has been carried out for the predictive biomarker “x5.b” in
the “GOYA-inspired” and “GALLIUM-inspired” scenarios. “x5.b” was used to compare
the shrinkage-estimators in terms of bias, as shown in Section 5.3. Finally, the performance
of the lasso penalized AHR-estimator has been evaluated on data with different numbers
of subgroups, as shown Section 5.4. In this chapter, we only show the result for datasets
with sample size n = 1202 and target number of events Nev = 245. The result for datasets
with sample size n = 1500 and target number of events Nev = 370 are similar and can be
found in Appendix 8.5.

5.1 Overall RMSE across all subgroups

Figure 5.1 summarizes the performance of the six methods in different scenarios in terms
of overall RMSE across all subgroups. To better visualize the result, all RMSEoverall have
been standardized with respect to that of the naive-estimator.

The four shrinkage-estimators perform better than the naive estimator, except for
the scenario in which the population was highly heterogeneous and where ridgeAHR was
worse. In addition, the type of penalties has larger influence than the type of methods
(using the average hazard ratio or composite likelihood).

In the homogeneous population, the shrinkage methods reduced RMSE by more than
40%, compared to the naive method. The ridge-penalty performs slightly better than
lasso-penalty. This is attributed to the fact that there was no predictive biomarker in
these two scenario. The ridge-penalty prefers a model of which the parameters are small
and homogeneous. We also compared those four shrinkage-estimators to the naivepop-
estimator. The naivepop-estimator performs the best because there was no differential
treatment effect across all subgroups and any subgroup-specific treatment effect was the
overall treatment effect. Figure 5.1 shows that the shrinkage estimates were close to the
naivepop estimates.

In the “GOYA-inspired” and “GALLIUM-inspired” scenarios, the shrinkage estima-
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Figure 5.1: Root mean square error RMSEoverall under different scenarios. The values
were computed based on 1000 simulated datasets with sample size n = 1202 and target
event Nev = 245. The naive estimates were scaled to 1 and the rest was scaled by the
same factor.
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tors reduced RMSE by more than 20%, compared to the naive estimator. In these two
situations where there was only one predictive biomarker out of 25, the lasso-penalty
performs better than the ridge-penalty. This may be due to the fact that lasso is better
in finding sparse solutions. In addition, compared to the shrinkage methods, the naive-
pop method performs worse because it ignores any potential differential treatment effect
across all subgroups.

In the mildly heterogeneous population in which the subgroup-specific treatment ef-
fects range from 0.73 to 1.16 (see Table 4.4), the shrinkage methods reduced RMSE by
more than 25% compared to the naive method. In this case, all of 25 subgroups have
differential treatment effects but the differences are small and are centered around the
overall treatment effect of 1. As a consequence, the ridge-penalty and lasso-penalty have
not shown advantages over the naivepop method.

Regarding to the highly heterogeneous population in which the subgroup-specific treat-
ment effects range from 0.57 to 2.18 (see Table 4.4), the lasso-penalized methods performs
better than the ridge-penalized methods. This can be attributed to the fact that ridge-
penalty gives much stronger penalty over the extremely large variables. In this case, the
naivepop method performs the worst because it ignores the highly heterogeneous pattern
and uses only the overall treatment effect as an estimate for all subgroups.

5.2 Subgroup-specific RMSE and Bias

In this section, we only show the subgroup-specific RMSE and bias for datasets with
sample size n = 1202 and target event Nev = 245. Results for the larger sample size
are similar and can be found in the Appendix. Figure 5.2 shows the subgroup-specific
RMSEs under six scenarios. The result is consistent with the observation in Section 5.1.
For example, except for the “hetero-high” scenario, the shrinkage estimates were better
than the naive estimates.

In the “GOYA-inspired” and “GALLIUM-inspired” scenarios for predictive biomarker
“x5.b”, the RMSEs of the four shrinkage-estimators are larger than that of the naive
estimator, because the penalty shrink the subgroup-specific treatment effect toward the
overall treatment effect. As a result, these subgroup-specific shrinkage estimates are
biased. In the “hetero-high” scenario for the subgroup “x4.c” and “x3.a”, the respective
subgroup-specific true treatment effect are of extreme values 2.18 and 0.57. In these cases,
the ridge-penalty gives the worst estimates, thus confirming the observation in Section 5.1.

Figure 5.3 shows the subgroup-specific bias under the six scenarios. As expected, the
naive estimates are the best in terms of bias. For the predictive biomarkers across all
scenarios, shrinkage methods tend to shrink the estimates toward the overall treatment
effect, therefore generating more biased result. Although having higher bias, those shrink-
age methods reduce variance considerably as shown in Figure 5.2, leading to overall less
RMSE in all subgroups.
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Figure 5.2: Root mean square error RMSE(Sk) under different scenarios. The values were
computed based on 1000 simulated datasets with sample size n = 1202 and target event
Nev = 245. Variables with no correlation: X1, X2, X3, X4, X5; with mild correlation: X6,
X7, X8; with strong correlation: X9, X10.
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Figure 5.3: Bias(Sk) under under different scenarios. The values were computed based on
1000 simulated datasets with sample size n = 1202 and target event Nev = 245. Variables
with no correlation: X1, X2, X3, X4, X5; with mild correlation: X6, X7, X8; with strong
correlation: X9, X10.

31



5.3 Effect estimation for predictive biomarkers in

“GOYA-” and “GALLIUM-inspired” scenarios

As observed in Figure 5.3, the effect estimation by shrinkage methods for predictive
biomarkers tends to be more biased. In order to further visualize the bias and compare the
estimates to the subgroup-specific ground-truth treatment effect and the overall treatment
effect, we displayed the boxplot of 1000 estimated log-HRs for subgroup “x5.b” in the
“GOYA-inspired” and “GALLIUM-inspired” scenarios. Please see Figure 5.4 for the
results. Our general observations from the two plots in Figure 5.4 are:

1. the results of the naive method are centered around the subgroup-specific ground-
truth treatment effect represented by the red line. However, they spread out very
widely.

2. the estimates by the naivepop method, in contrast, are centered tightly around the
overall ground-truth treatment effect represented by the blue line. This low variance
comes at a price of higher bias.

3. the estimates by all our shrinkage methods fall to the middle ground – having moder-
ate bias and moderate variance. This suggests that the shrinkage methods perform
better via striking a better trade-off between bias and variance. This balance is
determined by minimizing cross-validation error. Different degrees of regularization
can be achieved by using other criteria of interest.

4. as to the shrinkage methods, lasso-penalized estimates have larger variances and
smaller biases, compared to ridge-penalized estimates.

5.4 Performance of shrinkage method on data with

different numbers of subgroups

In order to evaluate the performance of shrinkage methods on data with different numbers
of subgroups, we simulated data with varying number of subgroups while remaining the
same sample size. The numbers of subgroups considered were 5, 10, 25, 50, and 100. They
were dichotomized from 2, 4, 10, 20, and 40 variables respectively. To obtain a precise
comparison, we simulated the dataset with 40 variables first and all other datasets were
generated by copying out the first 2, 4, 10, and 20 variables from the dataset with 40
variables. In this way, we make sure that the shared variables are the same. We repeated
the simulation 1000 times and set the parameters according to the “GALLIUM-inspired”
scenario. Then, we obtained the estimates by the lasso-AHR method for subgroup “x2.b”
which is the only biomarker with predictive effect.

In particular, the data was simulated according to the following procedure:

1. The continuous biomarkers X̄1, X̄2, · · · , X̄40 are generated from a multivariate nor-
mal distribution with pre-specified variance-covariance matrix.

X̄ ∼ N40(µ̄, Σ̄)
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Figure 5.4: log(HR) of subgroup “x5.b” under scenarios “Goya-inspired” and “Gallium-
inspired”. The values were computed based on 1000 simulated datasets with sample size
n = 1202 and target event Nev = 245. The red lines correspond to the ground-truth
values. For “Goya-inspired:x5.b”, the ground-truth value on log-scale is -0.69 (0.5 on HR
scale). For “Gallium-inspired:x5.b”, the ground-truth value on log-scale is 0.17 (1.19 on
HR scale). The blue lines correpond to the ground-truth values for overall treatment
effect in “Goya-inspired” and “Gallium-inspired” scenarios shown in Table 4.4.
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Variables levels proportion per level Biomarkers
X̄1 2 0.5, 0.5 x1.a, x1.b
X̄2 3 0.4, 0.3, 0.3 x2.a, x2.b, x2.c
X̄3 2 0.5, 0.5 x3.a, x3.b
X̄4 3 0.5, 0.3, 0.2 x4.a, x4.b, x4.c
X̄5 3 0.3, 0.3, 0.4 x5.a, x5.b, x5.c
X̄6 2 0.4, 0.6 x6.a, x6.b
X̄7 2 0.4, 0.6 x7.a, x7.b
X̄8 3 0.2, 0.3, 0.5 x8.a, x8.b, x8.c
X̄9 2 0.6, 0.4 x9.a, x9.b
X̄10 3 0.2, 0.3, 0.5 x10.a, x10.b, x10.c

Table 5.1: Dichotomization of variables in the simulated dataset.

where µ̄ = [E(X̄1), · · · ,E(X̄40)]T = [0, · · · , 0]T , Σ̄ =


Σ 0 0 0
0 Σ 0 0
0 0 Σ 0
0 0 0 Σ

 and Σ is

the one specified in (4.1).

2. the simulated X̄ were dichotomized to obtain categorical variables. Table 5.1 tabu-
lates the pre-specified quantiles for the first 10 variables. The second, the third, and
the last 10 variables were dichotomized in the same way as the first 10 variables.

3. the progression-free survival time and event indicator variable were simulated as
described in Section 4.2. We set parameters

αintercept = 4.5, σ = 0.85, αtr = − log(0.67)σ,

αx1.b = − log(0.7)σ, αx2.b = − log(1.2)σ, αtr:x2.b = − log(1.79)σ,

αtr:x2.c = − log(0.56)σ.

Figure 5.5 displays the boxplot of the 1000 estimated log-HRs by lasso-AHR method
for subgroup “x5.b” from datasets with varying number of subgroups. It shows that the
more subgroups there are, the larger the bias is. There are two reasons for this. First, the
more subgroups there are, the more challenging the variable selection is. Second, subgroup
values were generated by dichotomizing the continuous outcome following a multivariate
normal distribution. The shared patients render treatment effect of overlapping subgroups
among variables. This situation gets more severe as the number of subgroups increases.
This problem is alleviated somehow by using adaptive lasso. Please see Chapter 7 for the
result and discussion.
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Figure 5.5: Performance of the lassoAHR-estimator (on log-scale) under the scenario
“Gallium-inspired” with different number of subgroups. Here, only subgroup “x5.b” which
has subgroup reversal effect is shown. The values were computed based on 1000 simulated
datasets with sample size n = 1202 and target event Nev = 245. The red line corresponds
to the ground-truth value for subgroup “x5.b”. It is 0.17 on log-scale (1.19 on HR scale).
The blue line corresponds to the ground-truth value for the overall population. It is -0.31
on log-scale (0.73 on HR scale).
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Chapter 6

Application: the GALLIUM study

Since lasso-AHR method generally performs the best for the “GALLIUM-inspired” sce-
nario, we applied the lasso-AHR method to the GALLIUM data and compared the results
of the subgroup analysis to the estimates from the naive method. Two rounds of sub-
group analysis have been conducted. The first round includes all pre-specified variables,
such as baseline characteristics (age at randomization, sex, race), stratification factors
(chemotherapy regimen for FL, International Prognostic Index (FLIPI) risk group, geo-
graphic region), and potential prognostic factors (Eastern Cooperative Oncology Group
(ECOG) performance status, Ann Arbor stage, and histology). The results can be found
in Section 6.1. The second round only includes stratification factors. Due to practical
reasons in data collection process, variables have varied amounts of missing values. While
14 out of 23 variables do not have any missing values, 4 variables like Ann Arbor stage
have very few (e.g. 7 out of 1202), and the other 5 variables, belonging to Fcγ receptor
status and activities of daily living, have a lot of missing values (up to 13%). In order
to use glmnet for this data, the missing values need to be handled beforehand. In this
work, we imputed the missing values with the mode of the non-missing values of the
corresponding variables.

6.1 Application of lasso-AHR method on GALLIUM

data with all variables

In this section, we applied the lasso-AHR method to the GALLIUM data with full vari-
ables and compared the estimates to that by the naive method. Figure 6.1 summarizes
the estimated HRs for investigator-assessed progression-free survival (PFS) by all patients
subgroup. We observed that the estimates by lasso-AHR method have less differential
treatment effect across all subgroups, compared to the estimates by the naive method.
Compared to the estimates by the naivepop method, lasso-AHR method yields similar
results with a subtle difference. All subgroup treatment effects by lasso-AHR method are
largely regularized towards the results of the naivepop method. These findings are similar
to the result in Figure 5.5. As explained in Section 5.4, when the number of subgroups is
large, variable selection for identifying differential treatment effect tends to be very chal-
lenging and the estimated subgroup-specific treatment effect by lasso-AHR method tends
to get close to the overall treatment effect. In this case, there are 43 subgroups considered,
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therefore generating estimates that generally correspond to the overall treatment effect.

6.2 Application of lasso-AHR method on GALLIUM

data with fewer variables

As described in Section 6.1, the larger the number of subgroups is, the more difficult is
the task for variable selection as shown in Figure 6.1. In other words, the more variance
we have with a homogeneous effect, the more a non-homoegenous effect is penalized. For
example, the Flipi1Low has been shrunken a lot. While it is interesting to perform variable
selection across all variables, it might be more insightful to consider fewer variables as the
task gets more attackable.

In this section, we performed two experiments: 1) we reduced the number of biomark-
ers from 43 to 24; and 2) we reduced the number further down to 11 in which only
pre-defined stratification factors were included. This prunning process is conducted by
the consideration of the importance of the biomarkers and the number of missing values
in them; the biomarkers of less importance and having many missing values are pruned.
Please see Figure 6.2 and Figure 6.3 for the considered variables for experiment 1) and
2), respectively.

From Figure 6.1 to Figure 6.2, and to Figure 6.3, it is observed that as the number
of variables decrease, the effect of variable selection and shrinkage by lasso gets less
pronounced. For example, in the case of 24 and 43 variables, lasso-AHR method leads to
very similar results to the naivepop method. However, in the case of 11 variables, one can
clearly see the treatment effect estimates are varied across the subgroups. In all cases,
the estimates for “flipiLow” subgroup are shrunken toward the direction of beneficial
treatment effect.
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Figure 6.1: Gallium data: HRs for investigator-assessed progression-free survival (PFS)
by patient subgroups in FL ITT population. ADL denotes activities of daily living,
CHOP cyclophosphamide, doxorubicin, vincristine and prednisone, CI confidence inter-
val, CVP cyclophosphamide, vincristine and prednisone, ECOG Eastern Cooperative On-
cology Group, FL follicular lymphoma, HR hazard ratio, IADL instrumental activities of
daily living, IPI International Prognostic Index, ITT intent-to-treat.
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Figure 6.2: Gallium data: HRs for investigator-assessed progression-free survival (PFS)
by patient subgroups in FL ITT population. CHOP cyclophosphamide, doxorubicin,
vincristine and prednisone, CI confidence interval, CVP cyclophosphamide, vincristine
and prednisone, FL follicular lymphoma, ECOG Eastern Cooperative Oncology Group,
HR hazard ratio, IPI International Prognostic Index, ITT intent-to-treat.
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Figure 6.3: Gallium data: HRs for investigator-assessed progression-free survival (PFS)
by patient subgroups in FL ITT population. CHOP cyclophosphamide, doxorubicin,
vincristine and prednisone, CI confidence interval, CVP cyclophosphamide, vincristine
and prednisone, FL follicular lymphoma, HR hazard ratio, IPI International Prognostic
Index, ITT intent-to-treat.
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Chapter 7

Discussion

We have developed two new methods for treatment effect estimation in subgroups for
time-to-event data. Since the lasso-penalty and ridge-penalty are both considered, four
variants of our methods (the penalized average hazard ratio (AHR) or the penalized com-
posite likelihood) under all combinations have been evaluated and compared to the base-
line methods, which are the naive method and naive overall population-based methodin
in simulated data. The best-performed method lasso-AHR has been applied to the GAL-
LIUM data.

The main conclusion based on the simulated data is that all variants of our methods,
generally, outperform the naive method and the naive overall population-based method.
This can be ascribed to the regularization by lasso and ridge which leads to a more
favorable trade-off of variance and bias. The naive estimation method leads to unbiased
results but with large variance. However, the results estimated by the naive overall
population-based method have low variance but high bias. All in all, the treatment effect
estimation across all subgroups by the variants of our methods are better by striking a
balance between bias and variance.

From the simulation results, it seeems that the type of shrinkage methods (lasso-
penalty or ridge-penalty) plays a more influential role, compared to the type of estimation
methods (the penalized average hazard ratio (AHR) or the penalized composite likeli-
hood). If we compare lasso-penalty and ridge-penalty across all the six scenarios, the for-
mer performs slightly better in “Goya-inspired”, “Gallium-inspired”, and “Hetero-high”
scenarios, while the latter does better in “Homo:positive”, “Homo:no”, and “Hetero-mild”
scenarios. Please see Figure 5.1 for the results. It can be observed from the figure that
the commonality shared by the scenarios in which ridge-penalty outperforms lasso-penalty
is: the treatment effects across subgroups are homogeneous or mildly heterogeneous. On
the contrary, lasso-penalty outperforms ridge-penalty in scenarios in which the treatment
effects across subgroups are more heterogeneous. This can be attributed to the feature of
variable selection of the lasso-penalty.

The lasso-penalized AHR method performs the best in the simulated data under the
“GALLIUM-inspired” scenario and shows a good variable selection capability as visualized
in Figure 5.2 and Figure 5.3. Thus, we applied this method to the GALLIUM data. No
clear differential treatment effects in subgroups has been observed as shown in Figure 6.1.
This can be explained by the following reason: the GALLIUM data might indeed have
very small differential treatment effects in subgroups. Thus, the method yields correct
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estimation. However, this is hard to verify as the ground truth treatment effects are
unknown for GALLIUM data. To get further insights, we applied the lasso-penalized
AHR to fewer subgroups of the GALLIUM data (11 instead of 43). In this case, the effect
of variable selection by our method appears as illustrated in Figure 6.3. This is more
reliable because only the most important subgroups — pre-defined stratification factors
— have been included.

By comparing the penalized-AHR and the penalized-composite method, we observed
that the former performs slightly better than the latter across all the scenarios except for
the “Hetero-high”. In the “Hetero-high” scenario, the penalized-AHR performs unexpect-
edly poorly when the ridge-penalty is applied. This may be relevant to the complexity of
the models – the model used in the penalized-AHR method (see (3.1)) is more sophisti-
cated and complex than that in the penalized-composite method (see (3.3)). In an extreme
case when the population is wildly heterogeneous, the more complex penalized-composite
method tends to be unstable. This is, however, only observed in the “Hetero-high” sce-
nario, when it is used together with ridge-penalty. Ridge-penalty is less effective in terms
of variable selection and seems to fail to regularize the method for this extreme case.

In this work, we chose the λ that leads to minimal cross validation (CV) error instead
of the largest λ at which the CV-error is within 1 standard deviation of the minimum.
Even though the one-standard-error rule has been usually recommended (Friedman et al.,
2001), in our case it will shrink the coefficients too much. This is due to the fact that
the penalized variables, which are the predictive effects of biomarkers, are relatively much
smaller than the unregularized prognostic effects. A large penality may lead to a over-
regularized solution.

7.1 Limitations

Correlation. We have designed a simulation study in which the simulated data was in-
spired by actual clinical trial. The correlations among variables have been considered and
implemented through multivariate normal distribution. We believe this is more realistic
than the datasets used by previous works in which the correlations among variables have
been simply ignored (Bornkamp et al., 2017; Jones et al., 2011). Considering the corre-
lation of variables by our method, however, increases the difficulty of simulating datasets
for some clinical trial scenarios. This is due to the fact that adjusting treatment effect
of one subgroup will change the treatment effects of all other subgroups. As a result,
if pre-defined differential treatment effects of multiple subgroups are desired, choosing
parameters to fulfill all these requirements needs many tries with great care. Due to this
reason, in the “GALLIUM-inspired” scenario, we made two choices to define the subgroup
with negative predictive effect: 1) only uncorrelated variables were considered; 2) only
biomarker with a small population was preferred. In this case, the reverse treatment effect
can be compensated more easily.

Missing values. Due to practical reasons in data collection process, variables have
varied amounts of missing values as described in Chapter 6. In order to use glmnet

for this data, the missing values have to be handled beforehand. Composite likelihood
method only requires complete data for each variable at a time whereas AHR method
requires complete observations for all variables. Thus this could be an advantage of the
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composite likelihood method but we have not systematically investigated it. We replaced
the missing values with the mode of the non-missing values in the corresponding variables.
This choice is made because of its simplicity. However, we acknowledge that there are
more sophisticated method to handle missing data, such as multiple imputation (Buuren
and Groothuis-Oudshoorn, 2011; Sterne et al., 2009; White et al., 2011).

7.2 Outlook

Extensions of lasso method. In addition to the lasso-penalty and the ridge-penalty,
we have implemented the elastic net (Friedman et al., 2001; Zou and Hastie, 2005), adap-
tive lasso (Friedman et al., 2001; Zou, 2006), and relaxed lasso (Friedman et al., 2001;
Meinshausen, 2007). We have not observed consistent improvement across all the six
scenarios over the lasso-penalty and the ridge-penalty. However, we found that adaptive
lasso tend to shrink less than lasso as the number of subgroups increases. We have evalu-
ated it for varied number of variables, from 5 to 100. The preliminary result can be found
in Figure 8.4 in Appendix. The integration of our estimation methods and these three
penalty methods still needs further investigation and we leave it as our future work.

Confidence interval. Our methods in this work only give point estimates for coeffi-
cients without having confidence intervals. For standard lasso method, a rigorous frame-
work for inferring selection-corrected p-values and confidence intervals for lasso-type meth-
ods has been developed and an R package has been provided (Lee et al., 2016; Taylor and
Tibshirani, 2015). However, it is not trivial to extend it to our methods. We have consid-
ered developing counterpart models of our methods under the Bayesian framework and
leverage the posterior distributions of the parameters to obtain the credible interval. This
has been discussed, but has not been implemented due to time constraint. We consider
this as future research.
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Nathan Fowler, Vincent Delwail, Oliver Press, Gilles Salles, et al. Obinutuzumab plus
bendamustine versus bendamustine monotherapy in patients with rituximab-refractory
indolent non-hodgkin lymphoma (gadolin): a randomised, controlled, open-label, mul-
ticentre, phase 3 trial. The Lancet Oncology, 17(8):1081–1093, 2016.

John Francis Seymour, Pierre Feugier, Fritz Offner, Armando Lopez-Guillermo, David
Belada, Luc Xerri, Reda Bouabdallah, John Catalano, Brice Pauline, Dolores Ca-
ballero, et al. Updated 6 year follow-up of the prima study confirms the benefit of
2-year rituximab maintenance in follicular lymphoma patients responding to frontline
immunochemotherapy, 2013.

Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths
for coxs proportional hazards model via coordinate descent. Journal of statistical soft-
ware, 39(5):1, 2011.

Peter Sleight. Debate: Subgroup analyses in clinical trials: fun to look at-but don’t believe
them! Trials, 1(1):25, 2000.

Jonathan AC Sterne, Ian R White, John B Carlin, Michael Spratt, Patrick Royston,
Michael G Kenward, Angela M Wood, and James R Carpenter. Multiple imputation
for missing data in epidemiological and clinical research: potential and pitfalls. Bmj,
338:b2393, 2009.

Erika Strandberg, Xinyi Lin, and Ronghui Xu. Estimation of main effect when covariates
have non-proportional hazards. Communications in Statistics-Simulation and Compu-
tation, 43(7):1760–1770, 2014.

Cyntha A Struthers and John D Kalbfleisch. Misspecified proportional hazard models.
Biometrika, 73(2):363–369, 1986.

Xin Sun, John PA Ioannidis, Thomas Agoritsas, Ana C Alba, and Gordon Guyatt. How
to use a subgroup analysis: users guide to the medical literature. Jama, 311(4):405–411,
2014.

Julien Tanniou, Ingeborg van der Tweel, Steven Teerenstra, and Kit CB Roes. Subgroup
analyses in confirmatory clinical trials: time to be specific about their purposes. BMC
medical research methodology, 16(1):20, 2016.

Jonathan Taylor and Robert J Tibshirani. Statistical learning and selective inference.
Proceedings of the National Academy of Sciences, 112(25):7629–7634, 2015.

Terry M Therneau and Thomas Lumley. survival, 2016.

Marius Thomas and Björn Bornkamp. Comparing approaches to treatment effect esti-
mation for subgroups in clinical trials. Statistics in Biopharmaceutical Research, 9(2):
160–171, 2017.

47



Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

Robert Tibshirani. The lasso method for variable selection in the cox model. Statistics
in medicine, 16(4):385–395, 1997.

Hans C van Houwelingen, Tako Bruinsma, Augustinus AM Hart, Laura J van’t Veer, and
Lodewyk FA Wessels. Cross-validated cox regression on microarray gene expression
data. Statistics in medicine, 25(18):3201–3216, 2006.

Ravi Varadhan and Sue-Jane Wang. Treatment effect heterogeneity for univariate sub-
groups in clinical trials: Shrinkage, standardization, or else. Biometrical Journal, 58
(1):133–153, 2016.
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Chapter 8

Appendix

8.1 Functions defined for simulation and estimation

8.1.1 Functions defined for dataset generation

dichotoCovariate() can generate variables following a multivariate normal distribu-
tion, according to user-specified covariance matrix. Then the continuous variables can be
dichotomized to categorical variables, according to user-defined quantile list which con-
tain quantiles used for cutting (each covariate has its specific quantiles). survTimesim()
can generate progression-free survival time and event indicator with the consideration of
“drop-out”, administrative censoring, and different entry time of every patient. simDatasets()
is to generate a certain number of data sets with the same parameter settings. To simulate
datasets for the ground-truth calculation, let n = 1202000, Nev = 245000, Nsim = 1, and
the rest are exactly same to the values described in section 4.3.

dichotoCovariate():

##########################################################################

# n : sample size

# sigmaMatrix: covariance matrix used for simulating multivariate

# normal distributed data

# cutquantile: a list object; used for dichotomoizing continuous data

##########################################################################

dichotoCovariate <- function(n, sigmaMatrix, cutquantile){

require(MASS)

# treatment arm, independent of all covariates

arm <- sample(rep(c(0,1),c(n%/%2,n-n%/%2)))

#simulate continuous variables

ncovariate <- ncol(sigmaMatrix)

z <- data.frame(mvrnorm(n,mu=rep(0,ncovariate),Sigma=sigmaMatrix))

colnames(z) <- paste("z",1:ncovariate,sep="")

# transform to categorical covariates

name.var <- names(cutquantile)
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x <- z

colnames(x) <- name.var

for(a in 1:ncovariate){

tmp.name <- name.var[a]

tmp.cov <- cut(z[,a],c(-Inf, qnorm(cutquantile[[tmp.name]]$quantile), Inf),

labels = cutquantile[[tmp.name]]$labels)

x[,a] <- tmp.cov

}

cov.mat <- data.frame(arm,x)

model.mat <- model.matrix(~.+.:arm,data=cov.mat)

return(list(cov.mat=cov.mat, model.mat=model.mat))

}

survTimesim():

#########################################################################

# output.dichotoCov : output of function dichotoCovariate;

# a list object containing covariance matrix and

# model matrix of the simulated biomarkers

# beta : the coefficients indicate prognostic or predictive effects

in hazard ratio scale

# target.events : the target event

#########################################################################

survTimesim <- function(output.dichotoCov, beta, target.events){

cov.mat <- output.dichotoCov$cov.mat

model.mat <- output.dichotoCov$model.mat

# set default coefficients

sigma <- 0.85

covariates <- rep(0,ncol(model.mat)); names(covariates) <- colnames(model.mat)

covariates["(Intercept)"] <- 4.5

# set self-specified coefficients

name.par <- names(beta)

for(p in 1:length(name.par)){

tmp.par <- name.par[p]

covariates[tmp.par] <- -log(beta[[tmp.par]])*sigma

}

# calculate time

lp <- model.mat%*%covariates # linear predictor

log.tt.pfs <- lp+sigma*log(rexp(n,rate=1))

tt.pfs.uncens <- exp(log.tt.pfs) # uncensored time to event
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#simulate the censoring time, 2% censoring per year, 0.02

tt.pfs.cens <- rexp(n, rate = 0.02)

#simulate the event indicator

ev.pfs.noadmin <- ifelse(tt.pfs.uncens <= tt.pfs.cens, 1, 0)

tt.pfs.noadmin <- pmin(tt.pfs.uncens, tt.pfs.cens)

#simulate administrative censoring when 245 event have been reached

# (as in Gallium)

# Assume uniform recruitment over 36 months and only administrative censoring

recr.duration <- 36

rec.time <- seq(0,recr.duration,length=n)

tt.pfs.calendar <- rec.time + tt.pfs.noadmin

tt.pfs.calendar.event <- tt.pfs.calendar[which(ev.pfs.noadmin==1)]

study.stop.time <- sort(tt.pfs.calendar.event)[target.events]

if (study.stop.time<recr.duration) warning("Target number of events reached

before last patient recruited. --> Please modify settings! ")

tt.pfs <- pmin(tt.pfs.calendar,study.stop.time)-rec.time

ev.pfs <- ev.pfs.noadmin

ind <- which(tt.pfs.calendar>study.stop.time)

ev.pfs[ind] <- 0

if (sum(tt.pfs < 0) > 0) warning("Progression-free survivial

time has negative values.---> Please delete them!")

simul.dd <- data.frame(tt.pfs=tt.pfs, ev.pfs=ev.pfs)

simul.dd <- cbind(simul.dd, cov.mat)

return(simul.dd)

}

simDatasets():

###################################################################

# Nsim : number of simulation

# n : sample size in each dataset

# sigmaMatrix : covariance matrix

# cutquantile : list object; used for dichotomization

# beta : parameters for specifying prognostic/predictive effects

# in hazard ratio scale

# target.event : target number of event

###################################################################

simDatasets <- function(Nsim, n, sigmaMatrix, cutquantile, beta, target.events){

51



sim_data <- vector("list", length = Nsim)

for(N in 1:Nsim){

dd <- dichotoCovariate(n, sigmaMatrix, cutquantile)

sim_data[[N]] <- survTimesim(dd, beta, target.events)

}

return(sim_data)

}

8.2 Function defined for naive estimator

naiveMethod():

#################################################################

# data : simulated data or real data

# variables : variables which define subgroups;

# a vector of variable names

# subgroups : all subgroups; a vector of subgroup names

# outcome.ind : column index for the survival outcome

#################################################################

naiveMethod <- function(data, variables, subgroups, outcome.ind){

require("survival")

if(is.data.frame(data)==T){

Y <- Surv(data[, outcome.ind[1]], data[, outcome.ind[2]])

naive.logHR <- naive.logHR.low <- naive.logHR.upp <- vector("numeric",

length = length(subgroups))

names(naive.logHR) <- names(naive.logHR.low) <- subgroups

names(naive.logHR.upp) <- subgroups

for(v in 1:length(variables)){

var <- variables[v]

subgr <- levels(data[,var])

for(s in 1:length(subgr)){

ind <- which(data[, var]==subgr[s])

mod <- coxph(Y ~ arm, subset = ind, data=data)

naive.logHR[subgr[s]] <- coef(mod)

naive.logHR.low[subgr[s]] <- confint(mod)[1]

naive.logHR.upp[subgr[s]] <- confint(mod)[2]

}

}

}

if(is.list(data)==T){

naive.logHR <- naive.logHR.low <- matrix(NA, nrow = length(subgroups),
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ncol = length(data))

naive.logHR.upp <- matrix(NA, nrow = length(subgroups),

ncol = length(data))

rownames(naive.logHR) <- rownames(naive.logHR.low) <- subgroups

rownames(naive.logHR.upp) <- subgroups

for(N in 1:length(data)){

dd <- data[[N]]

Y <- Surv(dd[, outcome.ind[1]], dd[, outcome.ind[2]])

for(v in 1:length(variables)){

var <- variables[v]

subgr <- levels(dd[,var])

for(s in 1:length(subgr)){

ind <- which(dd[, var]==subgr[s])

mod <- coxph(Y ~ arm, subset = ind, data=dd)

naive.logHR[subgr[s], N] <- coef(mod)

naive.logHR.low[subgr[s], N] <- confint(mod)[1]

naive.logHR.upp[subgr[s], N] <- confint(mod)[2]

}

}

}

}

return(list(naive.logHR=naive.logHR, naive.logHR.low=naive.logHR.low,

naive.logHR.upp=naive.logHR.upp))

}

8.3 Functions defined for lasso/ridge AHR estimator

There are four functions written for implementing this method. predictCoxlp() can pre-
dict the survival probability for each patient of interest at “discrete” time points by using
the Breslow estimator of the baseline hazard function for a Cox model. Probfunction()
can compute the corresponding discrete probability (density) function given a known
survival probability function. predictSurvprobSubgr() is to get subgroup-specific aver-
age hazard ratio (AHR) after penalization given a model matrix, a response object, and
row indexes for the subgroup. penalizeAverage() is a function to estimate subgroup-
specific AHR across all subgroups given a dataset or a list of datasets. We can choose
lasso-penalty by using the argument alpha = 1 or ridge-penalty by using the argument
alpha = 0. In these cases, the lasso-penalty or ridge penalty were determined by using
function cv.glmnet() in the R package glmnet which chooses the penalty parameter as
described in Section 2.9.

To calculate the ground-truth of each scenario, we fit a Cox proportional hazards
model to simulated datasets. Function coxph() from R package survival was used. To
obtain the ˆAHRtrue(Sk), the same method described in Section 3.3 was applied. Functions
described here were applied.

predictCoxlp():
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#####################################################################

# response: Surv-object of training data

# lp : Linear predictor of training data

# lp.new : Linear predictor of test data for which survival

predictions are sought

# t.eval : Time points at which survival predictions are

sought [by default, unique event times]

#####################################################################

predictCoxlp <- function(response,lp,lp.new,t.eval = NULL){

require(survival); require(gbm)

# calculate baseline hazard

tt <- response[,1]

ev <- response[,2]

if (is.null(t.eval)) t.eval <- sort(unique(tt[ev==1])) # unique event times

cumBaseHaz <- basehaz.gbm(t=tt,delta=ev,t.eval=t.eval,f.x=lp,smooth=F,cumulative=T)

# impute cumulative hazard of 0 for times before first event

cumBaseHaz[t.eval<(min(tt[ev==1]))] <- 0

# calculate survival predictions at t.eval for lp.new

survProbs <- exp(exp(lp.new) %*% - t(cumBaseHaz))

colnames(survProbs) <- t.eval

# final result

list(t.eval=t.eval,cumBaseHaz=cumBaseHaz,survProbs=survProbs)

}

Probfunction():

#######################################################################

# surv.prob : a vector with survival probability at discrete time

#######################################################################

Probfunction <- function(surv.prob){

l <- length(surv.prob)

f <- vector("numeric", length = l)

f[1] <- 1 - surv.prob[1]

for(t in 2:l){

f[t] <- surv.prob[t-1] - surv.prob[t]

}

return(f)

}

predictSurvprobSubgr():
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###########################################################################

# X: model matrix used for fitting cv.glmnet, without intercept

# Y: response

# mod: cv.glmnet model object

# ind.subgr : row index for subgroup observations; used for prediction

###########################################################################

predictSurvprobSubgr <- function(X, Y, mod, ind.subgr){

n.penalized <- length(grep(":", colnames(X)))

pred.surv.lasso.trt <- predictCoxlp(response=Y,

lp=c(predict(mod, newx=X,

s = "lambda.min",

type="link")),

lp.new=c(predict(mod,newx=cbind(1,

X[ind.subgr,2:(ncol(X)-n.penalized)],

X[ind.subgr,2:(ncol(X)-n.penalized)]),

s="lambda.min",type="link")),

t.eval = NULL)

pred.surv.lasso.ctrl <- predictCoxlp(response=Y,

lp=c(predict(mod, newx=X, s = "lambda.min",

type="link")),

lp.new=c(predict(mod,newx=cbind(0, X[ind.subgr,

2:(ncol(X)-n.penalized)], matrix(0,

ncol=n.penalized, nrow=nrow(X)),

s="lambda.min",type="link")),

t.eval = NULL)

survProb.subgr.trt <- apply(pred.surv.lasso.trt$survProbs, 2, mean)

survProb.subgr.ctrl <- apply(pred.surv.lasso.ctrl$survProbs, 2, mean)

eventProb.subgr.trt <- Probfunction(survProb.subgr.trt)

eventProb.subgr.ctrl <- Probfunction(survProb.subgr.ctrl)

AHC.subgr <- (t(survProb.subgr.ctrl) %*% eventProb.subgr.trt)/

(t(survProb.subgr.trt) %*% eventProb.subgr.ctrl)

return(AHC.subgr)

}

penalizeAverage():

######################################################

# data : simulated datasets or real dataset

# variables: a vector of variable names which

# define subgroups

# subgroups: a vector of subgroup names

# outcome.ind : column index for survival outcome

# covariate.ind : column index for covariates
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# formular: model formular

# alpha : alpha = 1 (lasso) or alpha =0 (ridge)

######################################################

penalizeAverage <- function(data, variables, subgroups, outcome.ind,

covariate.ind, formular, alpha){

require("glmnet")

require("survival")

require("gbm")

if(is.data.frame(data)==T){

Y <- Surv(data[, outcome.ind[1]], data[, outcome.ind[2]])

#without intercept, without reference level for covariates

command <- paste("X <- model.matrix(", eval(formular), ",

data = data, contrasts.arg=lapply(data[, covariate.ind],

contrasts, contrasts=FALSE))[,-1]", sep = "")

eval(parse(text = command))

n.penalized <- length(grep(":", colnames(X)))

mod <- cv.glmnet(X, Y, family="cox", penalty.factor=c(rep(0,

ncol(X)-n.penalized), rep(1, n.penalized)),

alpha=alpha)

penalizeAHC <- vector("numeric", length = length(subgroups))

names(penalizeAHC) <- subgroups

ind.matrix <- model.matrix(~., data = data[, covariate.ind],

contrasts.arg = lapply(data[, covariate.ind],

contrasts, contrasts=FALSE))[,-1]

for(v in 1:length(subgroups)){

ind.subgr <- which(ind.matrix[, v]==1)

penalizeAHC[subgroups[v]] <- predictSurvprobSubgr(X, Y, mod, ind.subgr)

}

}

else if(is.list(data)==T){

penalizeAHC <- matrix(NA, nrow = length(subgroups), ncol = length(data))

rownames(penalizeAHC) <- subgroups

for(N in 1:length(data)){

dd <- data[[N]]

Y <- Surv(dd[, outcome.ind[1]], dd[, outcome.ind[2]])

command <- paste("X <- model.matrix(", eval(formular), ",

data = dd, contrasts.arg=lapply(dd[, covariate.ind],

contrasts, contrasts=FALSE))[,-1]", sep = "")

eval(parse(text = command))

n.penalized <- length(grep(":", colnames(X)))
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mod <- cv.glmnet(X, Y, family="cox", penalty.factor=c(rep(0, ncol(X)-

n.penalized), rep(1, n.penalized)), alpha=alpha)

ind.matrix <- model.matrix(~., data = dd[, covariate.ind],

contrasts.arg = lapply(dd[, covariate.ind],

contrasts, contrasts=FALSE))[,-1]

for(v in 1:length(subgroups)){

ind.subgr <- which(ind.matrix[, v]==1)

penalizeAHC[subgroups[v], N] <- predictSurvprobSubgr(X, Y, mod, ind.subgr)

}

}

}

return(penalizeAHC=penalizeAHC)

}

8.4 Functions for lasso/ridgeComposite estimators

The function penalizeComposite() has been written for extracting the coefficients by
penalizing the composite likelihood, given a user-specified model and a dataset or a list of
datasets. The argument alpha can choose either lasso-penalty (α = 1) or ridge-penalty
(α = 0).

penalizeComposite():

#############################################################

# data : dataset

# variables.ind : column index for variables which

# define the subgroups

# subgroups : a vector of subgroup names

# outcome.ind : column index of survival outcome

# formular : model formular

# alpha : alpha = 1 (lasso), alpha = 0 (ridge)

#############################################################

penalizeComposite <- function(data, variables.ind, subgroups,

outcome.ind, formular, alpha){

require("glmnet")

require("caret")

require("survival")

if(is.data.frame(data)==T){

long <- reshape(data, idvar = "Subject", varying = list(variables.ind),

v.names = "Subgroups", direction = "long")

long$Subgroups <- factor(paste(rep(colnames(data)[variables.ind],

each=nrow(data)), long$Subgroups, sep = ""),
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levels = subgroups)

foldid <- createFolds(unique(long$Subject), k=10, list = T)

long$foldid <- vector("numeric", length = nrow(long))

for(i in 1:length(foldid)){

for(j in 1:length(foldid[[i]]))

long[which(long$Subject==foldid[[i]][j]),"foldid"] <- i

}

Y <- Surv(long[, outcome.ind[1]], long[, outcome.ind[2]])

command <- paste("X <- model.matrix(", eval(formular), ", data = long,

contrasts.arg=list(Subgroups=diag(nlevels(long$Subgroups)

)))[,-1]", sep = "") #without intercept

eval(parse(text = command))

n.penalized <- length(grep(":", colnames(X)))

mod.lasso <- cv.glmnet(X, Y, family="cox", foldid = long$foldid,

penalty.factor=c(rep(0, ncol(X)-n.penalized),

rep(1, n.penalized)), alpha=alpha)

beta <- as.matrix(coef(mod.lasso, s="lambda.min"))

rownames(beta) <- rownames(coef(mod.lasso))

}

if(is.list(data)==T){

beta <- matrix(NA, nrow = 2*length(subgroups)-1, ncol = length(data))

for(N in 1:length(data)){

dd <- data[[N]]

long <- reshape(dd, idvar = "Subject", varying = list(variables.ind),

v.names = "Subgroups", direction = "long")

foldid <- createFolds(unique(long$Subject), k=10, list = T)

long$foldid <- vector("numeric", length = nrow(long))

for(i in 1:length(foldid)){

for(j in 1:length(foldid[[i]]))

long[which(long$Subject==foldid[[i]][j]),"foldid"] <- i

}

Y <- Surv(long[, outcome.ind[1]], long[, outcome.ind[2]])

command <- paste("X <- model.matrix(", eval(formular), ", data = long,

contrasts.arg=list(Subgroups=diag(nlevels(long$Subgroups)

)))[,-1]", sep = "")

eval(parse(text = command))
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n.penalized <- length(grep(":", colnames(X)))

mod.lasso <- cv.glmnet(X, Y, family="cox", foldid = long$foldid,

penalty.factor=c(rep(0, ncol(X)-n.penalized),

rep(1, n.penalized)), alpha=alpha)

beta[,N] <- as.matrix(coef(mod.lasso, s="lambda.min"))

rownames(beta) <- rownames(coef(mod.lasso))

}

}

return(beta=beta)

}

convertSubgroup():

#######################################################

# data = matrix of coefficients

# name.subgroups = names of subgroups

#######################################################

convertSubgroup <- function(data, name.subgroups){

subgrouplogHR <- matrix(NA, nrow = length(name.subgroups), ncol = ncol(data))

ind.subgrtrt <- grep(":", rownames(data))

subgrouplogHR <- matrix(c(rep(data["arm",], length(ind.subgrtrt))),

nrow = length(ind.subgrtrt), ncol = ncol(data), byrow = T) +

data[ind.subgrtrt,]

rownames(subgrouplogHR) <- name.subgroups

return(subgrouplogHR=subgrouplogHR)

}

8.5 Further result for data with larger sample size

n = 1500 and Nev = 370
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Figure 8.1: Root mean square error RMSEoverall under different scenarios. The values
were computed based on 1000 simulated datasets with sample size n = 1500 and target
event Nev = 370. The naive estimates were scaled to 1 and the rest were scaled by the
same factor.
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Figure 8.2: Root mean square error RMSE(Sk) under different scenarios. The values were
computed based on 1000 simulated datasets with sample size n = 1500 and target event
Nev = 370. Variables with no correlation: X1, X2, X3, X4, X5; with mild correlation: X6,
X7, X8; with strong correlation: X9, X10.
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Figure 8.3: Bias(Sk) under under different scenarios. The values were computed based on
1000 simulated datasets with sample size n = 1500 and target event Nev = 370. Variables
with no correlation: X1, X2, X3, X4, X5; with mild correlation: X6, X7, X8; with strong
correlation: X9, X10.
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Figure 8.4: Performance of the lassoAHR-estimator (on log-scale) under the scenario
“Gallium-inspired” with different number of subgroups. Here, only subgroup “x5.b” which
has subgroup reversal effect is shown. The values were computed based on 1000 simulated
datasets with sample size n = 1202 and target event Nev = 245. The red line corresponds
to the ground-truth value for subgroup “x5.b”. It is 0.17 on log-scale (1.19 on HR scale).
The blue line corresponds to the ground-truth value for the overall population. It is -0.31
on log-scale (0.73 on HR scale).

63


	Introduction
	Subgroup analysis in randomized clinical trials
	Randomized clinical trials
	Subgroup analysis

	Project aim

	Background
	Case study: the GALLIUM study
	Disease and the new intervention
	Trial design and result

	Survival analysis
	Cox proportional hazards model
	Partial likelihood
	Breslow's estimator of the baseline cumulative hazard rate
	Problems associated with marginalisation of multivariable Cox proportional hazards models
	Average hazard ratio
	L1 and L2 norm penalty and regularized cost function in Cox proportional hazards model
	Implementation

	Methodology for subgroup effect estimation
	Naive method
	Naive overall population-based method
	Marginalization of prediction from a penalized Cox model to all data (average hazard ratio)
	Penalized composite likelihood

	Simulation setup
	Goal
	Dataset generation
	Biomarker generation
	Survival time generation (without censoring)
	Non-administrative censoring time and censoring indicator generation
	Number of events calculation
	Calendar time generation (with administrative censoring) 
	Progression-free survival time and event indicator generation

	Simulation scenarios
	Parameter setting (general) for the simulation
	From ground-truth model to ``ground-truth" treatment effects
	Assessment criteria

	Simulation results
	Overall RMSE across all subgroups
	Subgroup-specific RMSE and Bias
	Effect estimation for predictive biomarkers in  ``GOYA-'' and ``GALLIUM-inspired'' scenarios
	Performance of shrinkage method on data with different numbers of subgroups

	Application: the GALLIUM study
	Application of lasso-AHR method on GALLIUM data with all variables
	Application of lasso-AHR method on GALLIUM data with fewer variables

	Discussion
	Limitations
	Outlook

	Appendix
	Functions defined for simulation and estimation
	Functions defined for dataset generation

	Function defined for naive estimator
	Functions defined for lasso/ridge AHR estimator
	Functions for lasso/ridgeComposite estimators
	Further result for data with larger sample size n=1500 and Nev=370


