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Abstract

The purpose of this thesis is to demonstrate the use of an analytical method for producing
long-term predictions (Held et al., 2017) within the HHH model framework (Held et al.,
2005) while studying the effect of spatio-temporal model components on prediction of
infectious disease. Of interest is whether inclusion of more sophisticated spatial model
components improves model prediction, and if these improvements are still detected when
aggregating over space to obtain weekly count predictions or over space and time for final
count predictions. This exercise is threefold: (1) to analyze 2008 southern Germany
influenza incidence data in order to make direct comparisons to the results of Meyer and
Held (2014), which were obtained using one-step-ahead and simulated predictions, (2) to
broaden the scope of models considered in Meyer and Held (2014) by including border
effect covariates and gravity measures other than population in order to further study
the effects of spatial components in modeling, and (3) to evaluate an updated dataset
containing counts through the 2017 epidemic season and thereby increasing the training
set on which the models are fit.

This research has shown that power law models with and without gravity components
often perform better than baseline models when evaluated with the multivariate Dawid-
Sebastiani score. The top models indicated are corroborated by univariate results and
results from weekly and regional scores. Unusually large variance is often observed in
autoregressive and first order model predictions, and even some power model predictions.
The sensitivity of models including space to small changes in conditioning week is also
noteworthy and should be researched further.

Notation

The notation for this thesis closely follows that of Meyer and Held (2014). Scalar param-
eters, such as α(ν), are represented by lowercase letters. Vectors, e.g. µP , and matrices,
e.g. ΣP , are printed in bold, with matrices also represented by uppercase letters. The
transpose of a vector or matrix is denoted by >, as in (x− µP )>, for example.

Software

All analyses were performed in R (version 3.3.3 (2017-03-06)), a free software environment
for statistical computing and graphics which is available at https://www.r-project.

org/. The following model-specific packages were used: surveillance (version 1.13.1),
hhh4predict (version 0.1.0.7), and hhh4contacts (version 0.12.1). In addition to base
packages, ggplot2 (2.2.1), knitr (1.15.1), and parallel (3.3.3) were used in analysis and
reporting. The computing environment had the following specifications: Ubuntu 16.04.2
LTS (Xenial Xerus) and Intel Xeon E312xx (Sandy Bridge) x 6 (Processor).
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1 Introduction

Modern mathematical modeling of infectious disease now has over a century-long history.
These models have often been used to understand the mechanisms of spread of disease and
to estimate the duration and size of epidemics. However, another major and increasingly
important purpose of infectious disease modeling is prediction of disease outbreak and
quantification of the uncertainty related to that prediction. Accurate predictions give
health professionals and policymakers the information needed to prepare for upcoming
epidemics.

Models for infectious diseases have been employed as early as the 18th century in
works by Bernoulli and Laplace, however, it was not until Ross (1911) that systematic
development of these models started to occur (Siettos and Russo, 2013). Following up on
this work, Kermack and McKendrick (1927) are credited with creation of the SIR model,
variants of which are still used to this day to understand disease dynamics and explore the
possible effects of interventions. This model framework compartmentalizes populations
into susceptibles, infectives, and recovereds and describes their dynamics through a set of
differential equations. Conclusions are drawn from numerical solutions to these equations.
While deterministic models are very useful for understanding disease dynamics, they do
not incorporate the uncertainty found in epidemics.

To address the issue of uncertainty, numerous extensions of the SIR model with
stochastic components have been proposed, but general statistical models have also been
developed to account for uncertainty while explaining disease dynamics and making pre-
dictions. Such statistical models include: general linear models (Goldstein et al., 2011;
Andersson et al., 2008; Mooney et al., 2002), regression trees (Sočan et al., 2012), clas-
sification models (Nsoesie et al., 2011), Bayesian networks (Sebastiani et al., 2006), and
time series models (Box et al., 2016; Held et al., 2005).

Even before John Snow and the Broad Street pump, people have understood the
importance of space to infectious disease. But now, with increasing computing power and
availability of spatio-temporal data, simplistic assumptions about disease transmission
in space can be dropped for more complex, realistic spatial models which can improve
the epidemic forecasts so important to public health and policy. However, of the thirty-
five studies included in Chretien et al. (2014)’s review of current research on influenza
forecasting, only seven made forecasts in time and space, while twenty-eight employed
only temporal forecasting. It is clear from the review that further research should be
done on spatio-temporal forecasting.

Two of the studies making spatio-temporal forecasts of influenza mentioned in Chre-
tien et al. (2014) use the HHH model, the multivariate time-series model framework for
aggregated surveillance data first proposed by Held et al. (2005). Since first being pro-
posed, this model has been further developed in Paul et al. (2008), Paul and Held (2011),
and Meyer and Held (2014). Additionally, an analytical method for obtaining the first two
moments of multivariate path forecasts produced within the HHH framework is presented
in Held et al. (2017). Meyer and Held (2014) propose modeling infection transmission in
space using a power law for short-time human travel. Together, these studies allow for
long-term predictions of infectious disease in both space and time.

The review of Chretien et al. (2014) also highlights the need for good practices in
prediction and assessment of model calibration. Until recently there was very little in
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the epidemiological literature about prediction evaluation measures (Funk et al., 2016;
Chretien et al., 2014; Gneiting et al., 2007). Across studies, numerous metrics for forecast
validation are used, with mean/median absolute error and mean absolute percent error the
most common, but varying from comparison of number of observations in the predicted
credible intervals to correlation and t-tests to no quantitative metric at all (Chretien et al.,
2014). Several studies argue for the use of absolute error metrics which reduce the impact
of outliers and increase interpretability, and present forecast evaluation frameworks based
on them (Hyndman and Koehler, 2006; Reich et al., 2016).

However, Gneiting (2011) illustrates how such techniques can lead to grossly misguided
inference when the use of any one evaluation metric becomes automatic for all types of
prediction. He argues that target functionals, such as expectations or quantiles, should
be specified and scoring functions should be used that are consistent for that target func-
tional. Scoring functions (also scoring rules) assess the quality of a forecast by assigning
a numerical score based on the predictive distribution and observations. Gneiting and
Raftery (2007) and Gneiting et al. (2007) propose the use of proper scoring rules in pre-
dictive performance evaluation, with a focus on maximizing sharpness subject to forecast
calibration. Applications to count data are further described by Czado et al. (2009) and
Wei and Held (2014). Most of these methods are based on the full predictive distribution
and some only on moments, but all take into account the uncertainty in the predictions.

A related problem in the current literature is the lack of research on the contributions
of different model components to improved prediction (Johansson et al., 2016). One
exception is the study of Yang et al. (2016), in which they examine whether the inclusion
of spatial dynamics improves influenza forecast at different observation scales (borough
or neighborhood) in New York City. They find spatial network data to improve borough-
level predictions but degrade neighborhood-level predictions, possibly due to poor signal
to noise ratios at this finer granularity. Additionally, Meyer and Held (2014) find power
models to produce better predictions of final counts, epidemic curves, and regional final
counts. Held et al. (2017) also find power model predictions to perform better than
predictions from models with simpler spatial assumptions at several aggregation levels.
Further research exploring predictions at different spatial scales, however, is needed.

In this study we investigate the contribution of more complex spatio-temporal com-
ponents in the HHH model framework to forecast performance. This exercise is threefold:
(1) to analyze 2008 southern Germany influenza incidence data in order to make direct
comparisons to the results of Meyer and Held (2014), which were obtained using one-step-
ahead and simulated predictions, (2) to broaden the scope of models considered in Meyer
and Held (2014) by including border effect covariates and gravity measures other than
population in order to further study the effects of spatial components in modeling, and
(3) to evaluate an updated dataset containing counts through the 2017 epidemic season
and thereby increasing the training set on which the models are fit. Our study can then
be seen as an extension of Meyer and Held (2014), in which we evaluate analytical forecast
distributions by multivariate proper scoring rules (instead of univariate score evaluation of
simulated forecasts) at various aggregation levels. Of interest is whether inclusion of more
sophisticated spatial model components improves not only model fit, but also predictions,
and at what aggregation levels these improvements are observed. This includes whether
the incorporation of complex spatio-temporal components significantly contributes to pre-
diction accuracy, even when aggregating over space to obtain weekly count predictions or
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over space and time for final count predictions. In this way, we contribute to a growing
body of knowledge about application of proper scoring rules to forecast evaluation in the
epidemiological setting and the utility of spatio-temporal model components to various
types of forecasts, from those at the finest granularity to final counts for entire epidemic
seasons.

2 Materials and Methods

Using the HHH multivariate time-series model framework for aggregated surveillance data,
as presented in Meyer and Held (2014), and the analytical method for obtaining the first
two moments of multivariate path forecasts presented in Held et al. (2017), long-term
forecasts of influenza are made.

First, the models and data of Meyer and Held (2014) are considered. In Section 4,
the models are trained on data from years 2001 to 2007 and 2008 data acts as a hold-out
sample with which we evaluate model predictive performance. To study the effect of fur-
ther data aggregation on predictive performance, the spatio-temporal data is aggregated
over region, time, and then over both dimensions to yield weekly counts, regional final
counts, and a total final count. The predictions are compared to the actual observations
of the hold-out sample period and proper scoring methods allow predictive performance
of different models to be compared.

Secondly, we broaden the scope of models considered in Meyer and Held (2014) by
considering (1) two additional gravity measures and (2) border effects, described in Sub-
section 2.2. Additionally, mean weekly scores and mean regional scores are calculated
by considering only the predicted count, observed count, and covariance for a given
week/region. This method is further described in Subsection 2.5.

Thirdly, an updated influenza count dataset is considered. Counts for years 2009
through the epidemic season of 2017 have been added, and counts from the original study
period of 2001 to 2008 have been updated. In Section 5, a recursive sampling approach is
used on this data. First, models are trained on updated 2001 to 2007 data with updated
2008 data as the hold-out sample, then the models are refit using this 2001 to 2008 data
and 2009 is used as the hold-out sample. This is repeated so that each additional year
of data is first used as the hold-out sample and then incorporated into the training data
when the following year is used as the hold-out sample.

2.1 Data

Data on incidence of notifiable diseases in Germany can be freely obtained from the
Robert Koch Institute’s (RKI) web query (SurvSat@RKI 2.01). RKI is the center for
disease surveillance and prevention under the German Federal Ministry of Health. It is
responsible for maintaining databases of notifiable diseases reported under the German
‘Protection against Infection Act’ (Infektionsschutzgesetz, IfSG). This law was enacted in
2000 to enable early detection and control of infection. Under IfSG, influenza is classified
as a notifiable disease, but only confirmed cases (i.e., laboratory-confirmed) must be
reported.

1https://survstat.rki.de/Default.aspx
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Seasonal influenza is an acute respiratory infection which circulates in all parts of the
world. The influenza virus spreads easily from person to person via infectious droplets.
It is characterized by fever, cough, sore throat, runny nose, headache, muscle/joint pains,
and fatigue, which take most people less than a week to recover from without medical
attention. Symptoms begin, on average, 2 days after exposure and the estimated time
between onset of symptoms in a primary and secondary case is 3.6 days (95% CI 2.9-
4.3 days) (Cowling et al., 2009). In temperate climates, such as that found in southern
Germany, seasonal epidemics tend to occur during the winter (World Health Organization,
2016).

The number of influenza cases reported weekly from January 2001 through December
2008 from each of the 140 counties of the southern German states Bayern and Baden-
Württemberg was obtained by Paul and Held (2011) and updated by Meyer and Held
(2014). It is available as the ready-to-use dataset fluBYBW in the R package surveillance
(Höhle et al., 2016) and is analyzed in Section 4. This enables comparison with the results
of Meyer and Held (2014). The finest available granularity of the incidence data is at the
week-county level. Additional county data, including area and populations of largest
towns (as of 31.12.2001), are obtained from the Federal Statistical Office of Germany.
Area and town population are used when creating the additional gravity measures density
and urbanicity.

Since the last retrieval from RKI’s SurvStat, data for several additional years has
become available. In Section 5, fluBYBW is supplemented with data from 2009 through
the epidemic season of 2017, allowing for analysis through 2017. Figure 2 displays the
time series of influenza incidence for 2001 to 2017. Analysis of the additional data starts
with predictions of the 2011 epidemic season. This is due to the 2009 influenza pandemic.
Extremely high influenza counts are observed during the second half of 2009, followed by
a lack of epidemic season in 2010. For model fitting purposes, the 2009 and 2010 data is
joined by subsetting the first half of 2009 and the second half of 2010 and considering the
combination of these two subsets to be a single year.

2.2 Models

As in the work of Meyer and Held (2014), we use the HHH multivariate time-series
model to describe disease incidence from aggregated spatio-temporal surveillance data.
This model additively decomposes incidence into endemic and epidemic components to
account for exogenous factors and infectiousness, respectively. The epidemic components
are driven by past counts in the region of interest and in neighboring regions, while
the endemic component captures exogenous factors such as seasonality and population
demographics.

Here we describe the model more formally. Disease counts in periods t = 1, . . . , T and
regions i = 1, . . . , I are denoted by Yit and counts in the previous time period by Y ·,t−1.
The counts are assumed to be conditionally negative binomially distributed

Yit|Y ·,t−1 ∼ NegBin(µit, ψ)

with mean
µit = νiteit + λitYi,t−1 + φitΣj 6=iwjiYj,t−1
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and overdispersion parameter ψ. Note that this implies

Var(Yit|Y ·,t−1) = µit(1 + ψµit).

The unknown quantities νit, λit, and φit are log-linear predictors of the form

log(νit) = α(ν) + b
(ν)
i + β(ν)>z

(ν)
it ;

log(λit) = α(λ) + b
(λ)
i + β(λ)>z

(λ)
it ;

log(φit) = α(φ) + b
(φ)
i + β(φ)>z

(φ)
it .

This form allows for fixed intercepts α(·), region-specific intercepts b
(·)
i , and exogenous

covariates z
(·)
it in each model compartment. Population fraction, population density, ur-

banicity, and border effects are used as covariates and explained in detail below. The
region-specific intercepts are random effects accounting for heterogeneity between the re-
gions, such as from differences in case reporting. The random effects are assumed to be
independent and identically distributed across i, but can be correlated across different
model components. They follow a trivariate normal distribution

bi := (b
(λ)
i , b

(φ)
i , b

(ν)
i )> ∼ N3(0,Σb)

with mean zero and unknown covariance matrix Σb.
Several submodels are worth consideration. First we describe our three baseline mod-

els: the endemic model, the endemic+autoregressive model, and the first order model.
The simplest baseline model, the endemic model, contains just the endemic component
eitνit, where νit is the endemic mean and eit is a multiplicative unit-specific offset for
population fraction. The log-linear predictor includes a linear trend and an S = 3 har-
monic wave with respect to time. The next baseline model contains both the endemic
component and first-order autoregressive component, where λit is a log-linear predictor
with an S = 1 sinusoidal wave and Yi,t−1 are counts in region i at the previous timepoint.
The most complex baseline model, the first order model, contains all three components:
the endemic, autoregressive, and neighborhood components. This last component models
infection transmission from neighboring regions (j 6= i). The transmission weights ωji
model the flow of infection from j to i and in this model are assumed to be known. The
first order model is limited to first order, or adjacent, neighbors with weights

wji = 1(j ∼ i)/|k ∼ j|.

Here “∼” means “is adjacent to”, so the normalized weights allow the neighbors j of i to
distribute their cases uniformly to all their neighbors k.

Now we describe several models of interest.

Power-law

Motivated by Brockmann et al. (2006), who found human travel behavior to be well de-
scribed by a decreasing power law of the distance f(x) ∝ x−d, Meyer and Held (2014)
propose inclusion of a power law for distance in the neighborhood component of the model
in order to consider transmission from neighbors of all adjacency orders. Its character-
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istic heavy tail, or slow convergence to zero, allows for occasional long range infection
transmission in addition to the more probable short distance transmissions. Unlike in the
first order model, within the power law model higher order, or nonadjacent, neighbors are
taken into account and weights wji are parametrically estimated.

Brockmann and Helbing (2013) found that effective distances can reveal patterns in
spatio-temporal spread not easily seen when using geographic distances. As in Meyer and
Held (2014), distance here is measured discretely by the neighborhood order. Two regions
are k-th order neighbors if the shortest route between them crosses into k distinct regions.
Neighborhood order can then be expressed as a symmetric square matrix with dimensions
equal to the number of regions and with zeros on the diagonal. The row-normalized weight
matrix, generalized from first-order to higher order, is now made up of

wji =
o−dji∑I
k=1 o

−d
jk

, for j 6= i.

The weights represent the strength of transmission from j to i and are a function of adja-
cency order oji. The power law decay parameter d is considered unknown and estimated
from the data. As d increases, the influence of higher order neighbors decreases.

Gravity models

Gravity models, common in social sciences such as economics and human geography,
measure interactions between all possible location pairs and assume the flows between
them are a function of the location attributes. In the past, spatial coupling was assumed
to be an inverse function of distance, however, this may be too simplistic for the complex
interactions between humans. Xia et al. (2004) propose a gravity model for regional
spread of infectious disease and this motivates Meyer and Held (2014) to account for
commuter-driven spread by scaling region i’s susceptibility (neighborhood component) by
its population fraction. The main idea is that larger cities tend to attract more people.
The population data is incorporated as covariate z

(φ)
it in the power model.

Inspired by Kafadar and Tukey (1993) and Goodall et al. (1998), in addition to pop-
ulation, we use two other “gravity measures” to model “attractiveness” across regions.
Kafadar and Tukey (1993) propose a new urbanicity measure based on the size of the
largest place within a region for characterizing urban effects on epidemiological variables
or for controlling for urban effects in analyses. Because typical measures, such as total
population, population density, and percent urban, are not based on cities, their results
are sometimes inconsistent with what one might consider a reasonable urban-rural scale.
For example, the population fractions of the urban county Fürth (0.004851897) and the
rural county Kelheim (0.004837113) are similarly ranked at 90th and 91st in southern Ger-
many, but their densities are 1756.2 and 104 people per square kilometer, respectively. In
this case, population fraction fails to distinguish between an urban center and a county
with nature parks and farms.

In this study we compare the following gravity measures: population fraction, popula-
tion density, and urbanicity. Population fraction is given by the function population()

in the package surveillance. Population density was calculated by dividing the popu-
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lation fraction by area data obtained from Statistisches Bundesamt (Destatis)2.Goodall
et al. (1998) suggest three variations on urbanicity: the population of the largest subunit
in each unit, the square root of the sum of the squared population of the top three largest
subunits in each unit, and the square root of the sum of the squares of all subunit popu-
lations. In this study, our units are the 140 counties (die Landkreise, die Stadtkreise) of
southern Germany and the subunits are the towns (die Gemeinden). Some counties (die
Stadtkreise), such as the city of Munich, contain no smaller subunits and so we use the
population of the largest subunit as our measure of urbanicity.

The actual code to fit each of these models can be found in the appendix (Section 7.1).

Inclusion of border effects

Extending the work of Meyer and Held (2014), we also include border covariates. Moti-
vation can be found in the 2016 regional yearbook produced by the Statistical Office of
the European Union. The number of employed people in the EU region (EU-28) reached
220.7 million in 2015. Although most of these workers lived in the same region as their
place of work, 8.1% commuted to another region, with 0.9% commuting internationally.
Of the top 20 regions with the largest number of national commuter outflows, 7 are in
Germany. One such region is Rheinhessen-Pfalz, which lends 37.0% of its commuters to
Karlsruhe, found in the northwestern section of our observation region. Additionally, the
German NUTS 2 region of Freiburg is characterized by high numbers of cross-border out-
bound commuters. It is clear that in spatial analysis of infectious disease within Germany,
border effects may play a significant role.

Apart from sharing a border with the rest of Germany, Bayern shares a border with
the Czech Republic and Austria and Baden-Württemberg shares a border with Switzer-
land and France. While the neighborhood component of our model explicitly accounts
for influenza transmission from neighboring counties within the observed region, possible
unobserved transmission from the bordering countries are only accounted for in the en-
demic component in a broad way, along with other exogenous transmissions. Meyer and
Held (2014) found the pattern in the estimated region-specific endemic random effects of
invasive meningococcal disease models to support border effects, but the estimates for the
influenza data, which we also use here, did not. Nonetheless, a detailed investigation of
such effects here may shed light on general patterns that could arise in other applications.

For each of the 3 baseline and 4 power models, distance to the border is included as
covariate zit in either the endemic or neighborhood component (except in the endemic and
autoregressive models in which no neighborhood component exists). The covariate takes
one of the following forms: a discrete index, a log discrete index, inverse of the discrete
index, or a binary indicator. The discrete index quantifies the distance of a county to the
border in terms of the least number of counties that must be crossed to reach the border,
similar to the order of neighborhood.

The binary indicator and the order to the border can be generated and checked with
R-code 1.The function surveillance::polyAtBorder determines which counties have
coordinates in common with the outline of the entire region. The function after determines
the order a county is removed from the border. Visual confirmation for each covariate is

2https://www-genesis.destatis.de/genesis/online, code: 11111-0002, Size of territory: Admin-
istrative districts, reference date
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found in Figure 1.

## make the binary indicator for being at border (Meyer and Held, 2014)

atBorder <- polyAtBorder(fluBYBW@map, snap=1e-5, method="polyclip")

plot(fluBYBW@map, col=atBorder) # visual check

## get the order from the border, written by J. Bracher

distance_from_margin <- function(ne_matrix){
atBorder <- polyAtBorder(fluBYBW@map, snap=1e-5, method="polyclip")

# atBorder=TRUE/FALSE for each region

i <- 1 # start

# choose sufficiently large number so that i always < number

while(any(atBorder == 0) & i < 50){
# add 1 to regions of distance < i to border

atBorder <- atBorder + ((ne_matrix %*% atBorder) > 0)

i <- i + 1 # next value

}
return(max(atBorder) - atBorder) # reverse scale

}
dist <- distance_from_margin(nbOrder1)

plot(fluBYBW@map, col = dist) # visual check

Code Example 1: This code generates a binary variable for whether a county is at the
observation border and a variable for the discrete order of a county to the border and
maps these variables for visual verification.

2.3 Prediction

Primarily, long-term predictions are made for the first 20 weeks of 2008 using models fit
to the data from 2001 through 2007 and conditioning on the last week of 2007. This is
accomplished using the function longterm.prediction.hhh4 from package hhh4predict,
which generates the prediction based on the first two moments of the fitted model. For
example, R-code 2 makes predictions for the first 20 weeks of 2008 for a list of model fits
conditioned on the final week of 2007 (week 364 of the data).

flupreds <- mclapply(flufits, longterm_prediction_hhh4,

t_condition=364, lgt=20,

mc.preschedule=FALSE, mc.cores=4)

Code Example 2: Long-term predictions with a length of 20 weeks and conditioned on
week 364 (calendar week 52 of 2007).

The first two conditional moments are the conditional expected value E(Yit|Y t∗) and
the conditional covariance Cov(Yit, Yi,t−1|Y t∗). Here, week is represented by t = 1, . . . , 20
and county by i = 1, . . . , 140. We have counts Yit in county i at week t of the prediction
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Figure 1: Visual confirmation of border covariates: binary indicator of whether a county
is at the border or not (left) and the order the county is removed from the border (right).

and conditioning week Y t∗ = (Y1t∗ , Y2t∗ , . . . , YIt∗), which contains the counts from all
counties during the last week in the training data and is the period directly preceding
the first week of the prediction. The means are iteratively calculated, meaning we first
calculate E(Yit∗+1|Y t∗), then E(Yit∗+2|Y t∗), etc., using the law of total expectation and
model-specific formulas. We obtain means

E(Yit|Y t∗) = E(E(Yit|Y t−1)|Y t∗)

= νiteit + λitE(Yi,t−1|Y t∗) + φitΣj 6=iwjiE(Yj,t−1|Y t∗).

The second moments are obtained similarly, this time calculating E(Y 2
it |Y t∗) and using

the relationship Var(Yit|Y t∗) = E(Y 2
it |Y t∗) − E(Yit|Y t∗)2. These calculations are also

initialized by conditioning week Y t∗ .
For the derivation of the first two moments of the multivariate path forecast, see

Appendix A of Held et al. (2017).

2.4 Evaluation

Forecast evaluation here is guided by the idea that sharpness of a predictive distribution
should be maximized subject to calibration (Gneiting et al., 2007). In other words, the
predictive distribution should be statistically consistent with the observations (calibrated)
and be sufficiently concentrated (sharp). To this end, proper scoring rules are employed
at several aggregation levels: (i) raw space-time data, (ii) the data aggregated over region
yielding weekly counts, (iii) the data aggregated over time yielding region-specific total
counts, and (iv) data aggregated over time and space yielding final counts for the entire
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observation region and 20 weeks.
Scoring rules are used in evaluation to measure the quality of probabilistic forecasts and

to rank competing forecast methods by assigning a numerical score based on the predictive
distribution and the observations (Gneiting and Raftery, 2007). They are considered
summary measures because they address both calibration and sharpness simultaneously.
The score S(P ,x) assigned to the predictive distribution P when we observe x can be
considered a penalty of the statistical difference between observations and predictions
which one wishes to minimize. Propriety of scoring rules encourages honest prediction
and strict propriety ensures that both calibration and sharpness are addressed (Gneiting
and Raftery, 2007; Winkler et al., 1996).

Propriety A forecaster’s best judgement is the predictive distribution P , as opposed
to any other distribution Q. Under propriety, there is no incentive to quote any dis-
tribution Q that is not P (Q 6= P ) because S(P ,P ) ≤ S(Q,P ) for all Q and P . If
S(P ,P ) = S(Q,P ), which occurs only when Q = P , then the score is strictly proper
(Czado et al., 2009). In other words, a scoring rule is considered proper if its expected
value for an observation from some distribution G is minimized when the predictive dis-
tribution F is equal to distribution G and strictly proper when this minimum is unique
Gneiting et al. (2007).

Proper scoring rules compare predictive distributions, not just point predictions. As
these methods are non-parametric and do not depend on nested models, they are widely
applicable. See Gneiting et al. (2007) for further discussion of their advantages. Here we
employ the multivariate Dawid-Sebastiani score (1999), which we denote as mDSS,

mDSS(P ,x) = log|ΣP |+ (x− µP )>ΣP
−1(x− µP )

because it depends only on the mean vector µP and covariance matrix ΣP of the predictive
distribution P , making it easy to compute based on our long-term predictions. In this
analysis, the standardized score is reported, reducing problems from unnecessarily large
values:

mDSS(P ,x) = [log|ΣP |+ (x− µP )>ΣP
−1(x− µP )]/(2d),

where d is the dimension of covariance matrix ΣP .
Like other scores, mDSS is negatively oriented, with lower scores indicating better

predictive performance. As outlined in Held et al. (2017), p-values for forecast validity
can be approximated based on the mDSS. When fitting our models we specify a negative
binomial distribution. For the predictive distribution we know only the first two mo-
ments. Sometimes we approximate the predictive distribution using a negative binomial
distribution, as in the fan plots, and other times with a normal distribution. In order
to calculate p-values for forecast validity we assume the observations are approximately
normal. Then, under the null hypothesis H0 : X ∼ P = Nd(µP ,ΣP ), the mDSS follows
a χ2-distribution with d degrees of freedom but shifted by constant log|ΣP |:

mDSS(X,P )− log|ΣP | ∼ χ2(d).

The mDSS is closely related to the determinant sharpness, denoted by DS,

DS = |ΣP |1/(2d),
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a negatively-oriented multivariate measure of sharpness suggested by Gneiting et al.
(2008). Here we report

DS = log|ΣP |/(2d)

to avoid unnecessarily large numbers, as in Held et al. (2017).
Calculation of these values is easily accomplished with the function hhh4predict::

ds score hhh4, which provides scaled and unscaled mDSS and DS values when the option
detailed is set to true. R-code 3 calculates mDSS, DS, and p-values for forecast validity
for our list of flu predictions.

DSSraw <-as.data.frame(do.call(rbind,

lapply(flupreds, ds_score_hhh4, detailed=TRUE)))

mDSS.pval <- apply(DSSraw, 1, function(df) pchisq(df["term2"],

df=length(flupreds$endemic$mu), lower.tail=FALSE))

Code Example 3: Calculation of multivariate Dawid-Sebastiani score and determinant
sharpness (using hhh4predict::ds score hhh4) and p-values for model validity.

To aid in interpretation, predictive performance is ranked by mDSS scores, with 1
indicating the best model.

2.5 Aggregated data versus “sliced” data

The scoring methods explained in Subsection 2.4 are applied to several different forms
of the data. First, mDSS and DS are applied to the data at different aggregation levels,
as in Meyer and Held (2014). The finest aggregation level available in this study is the
space-time level or counts for each week in each county. When aggregating over only one
dimension, one obtains either weekly (time) level data by summing over all regions per
week or county (space) level data by summing over all weeks in each region. The data can
be completely collapsed into the coarse final count aggregation level by summing over all
weeks and all regions to yield a single number. The data is first aggregated and then all of
the data available at that aggregation level is considered at once in calculating mDSS and
DS for each model. In this way, we analyze whether models perform in the same manner
across different aggregation levels. This is important because in practice predictions at
only a single aggregation level may be of interest.

Second, to further investigate model performance with respect to time and space,
mDSS and DS are also computed weekly and per region. Unlike in the procedure men-
tioned above in which data is first aggregated and then a single score calculated, here
we subset the data by week or county, compute mDSS and DS for each week or county,
and then average the weekly or county scores. This is a novel method and here we refer
to the weekly/regional subsets as data “slices.” This allows for a closer look at model
performance in relation to weekly and regional characteristics.

For weekly scores, this requires subsetting i× i blocks from the diagonal of the it× it
covariance matrix ΣP for each week to be scored. Each i×i block is the covariance matrix
for only that point t in the prediction period. Each row of the t × i realization matrix
and predicted mean matrix give the observed incidence and predictions for time t of the
prediction period. R-code 4 computes the weekly mDSS scores. For regional scores, each
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column of the realization and predicted mean matrices gives the observed and predicted
counts in a specific region i. The covariance matrix for each county is subset as shown in
R-code 4.

# weekly score

for (ind in weeks){
w <- ((140*(ind-1))+1):(140*ind)

term1[ind] <- determinant(pred$Sigma[w, w] ,

logarithm = TRUE)$modulus[1]

term2[ind] <- t(pred$realizations_matrix[ind,] - pred$mu_matrix[ind,])

%*% solve( pred$Sigma[w, w]) %*%

(pred$realizations_matrix[ind,] - pred$mu_matrix[ind,])

det_sharpness[ind] <- term1[ind] / (2 * length(pred$mu_matrix[ind,]))

scaled_DSS[ind] <- (term1[ind] + term2[ind]) /

(2 * length(pred$mu_matrix[ind,]))

}
# regional score

for (z in 1:140){
inds <- z+0:19*140

term1[z] <- determinant(pred$Sigma[inds, inds], log = TRUE)$modulus[1]

term2[z] <- t(pred$realizations_matrix[,z]-pred$mu_matrix[,z]) %*%

solve( pred$Sigma[inds, inds]) %*%

(pred$realizations_matrix[,z]-pred$mu_matrix[,z])

det_sharpness[z] <- term1[z] / (2*length(pred$mu_matrix[,z]))

scaled_DSS[z] <- (term1[z]+term2[z]) / (2*length(pred$mu_matrix[,z]))

}

Code Example 4: This code shows snippets of functions used to extract relevant parts of
the mean and covariance matrices for computing weekly and regional mDSS.

3 Exploratory data analysis

3.1 Spatio-temporal characteristics of influenza in Baden-
Württemberg and Bayern

The plotted time series for 2001 through 2017 (Figure 2) reveals a general seasonality
to the data, with incidence peaking toward the end of the first quarter/beginning of the
second quarter, i.e., in winter, as expected. However, the counts each year vary in several
ways: final size, peak size, and duration (Table 1). The data for 2009 and 2010 (in red)
represent the extreme nature of the H1N1 “swine flu” pandemic. Incidence peaks much
higher, at 8772 counts, than at any other time in the data set and there is only one week
of 2009 with zero cases. The peak week of 2010 is listed as -8 because the 2010 epidemic
season is really the end of the second epidemic season of 2009, which peaked 8 weeks
before the start of 2010. The season persisted for 13 weeks starting from the first week
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of January 2010. However, counting from the beginning of consecutive weeks of elevated
incidence (mid 2009), this epidemic season lasts for 48 consecutive weeks - almost an entire
year. This extreme nature makes 2009-2010 unsuitable for this analysis; it is transformed
(see Subsection 2.1) for use in model fitting but not evaluated in Section 5.

Peak height ranges from 124 counts in 2001 and 2002 to 5036 counts in 2017. The
epidemic season peaks between weeks 5 and 13, with a median peak week of 9. Final
size increases dramatically over the observation period, with just 642 counts in 2001,
but 27,143 counts in 2017. The higher counts in the later years are suspected to come
from improvements in reporting practices since the IfSG was enacted in 2000. Consecutive
weeks of elevated counts (> 0), both counting from the beginning of the calendar year and
from the beginning of elevated counts at the end of the previous year, have also increased.
This also indicates that reporting has improved, especially outside of the epidemic season.

Consecutive Consecutive
Peak height Peak week Final size weeks (Jan.) weeks (season)

2001 124 7 642 15 15
2002 124 11 745 17 17
2003 517 9 2559 18 18
2004 127 7 937 18 27
2005 645 9 3797 16 20
2006 269 13 1303 22 22
2007 1181 9 6315 18 26
2008 791 5 6286 21 27
2009 8772 6 61596 16 29
2010 507 -8 1250 13 48
2011 1881 6 11570 21 33
2012 1042 11 6431 24 33
2013 2374 8 18440 28 40
2014 370 11 3892 31 45
2015 4152 8 26078 25 36
2016 1587 11 12880 23 45
2017 5036 6 27143 21 41

Table 1: Characteristics of the epidemic season for each year from 2001 through 2017.

From the map of the final incidence counts in Figure 3 one can see that the largest num-
ber of cases tend to be found in and near the two largest cities, Munich and Stuttgart. Pas-
sau (LK) also reports large numbers of cases, surpassing even the major city it envelops.
However, a breakdown of this information by year is more informative (see Figure 36 and
Figure 37 in appendix). Some regions consistently report zero (SK Memmingen) or few
counts while the region with the highest yearly incidence is fairly stable throughout the
observation period. Several counties report zero counts at the start of the observation
period, but by year 2008, almost all counties are reporting some incidence every year.

Heterogeneity of counts exists in both time and space. According to the ’Protection
Against Infection’ statute (IfSG, BGBl. I S. 1045), only verified influenza cases must be
reported, leaving considerable room for underreporting at different rates across regions.
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Figure 2: Time series of influenza counts in Bayern and Baden-Württemberg from 2001
to 2017. The counts for the period between the red lines are a result of the 2009 pandemic
and are not considered in model evaluation.
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Figure 3: Total incidence per county in Bayern and Baden-Württemberg from 2001 to
2017 using the most recent data. The color scale, from green to red, represents increasing
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Differences between fluBYBW and newly-retrieved data

The first exercise in this study (Section 4) is to make predictions for the first 20 weeks of
2008. This enables comparison with the results of Meyer and Held (2014). Since the data
was last retrieved, RKI has updated the counts for the 2001-2008 period. The results in
Table 1 are for the updated counts. According to the original fluBYBW data the peak size
ranges from 111 in 2002 to 1158 in 2007 and the final count for each year ranges from 612
in 2001 to 6136 in 2007. Consecutive weeks with elevated counts range from 15 to 22 per
year, or 15 to 27 per epidemic season.

For the 2008 prediction period, the largest weekly change in counts was 60, occurring in
week 5, corresponding to the time of the unexpected early first peak. The average change
was an increase of 8.75 counts and no decreases were observed by week (see Figure 3.1).
In Figure 5, the change in counts is only discernible in 2 regions: Pfaffenhofen a.d.Ilm
and Dillingen a.d.Donau. These regions saw increases of 28 and 53 counts, respectively.
The mean change per region, however, is only an increase of 1.25 counts.

3.2 Comparison of gravity measures

In addition to population fraction, we use population density and urbanicity as further
“gravity” measures. The log of all of these measures are used for comparison. Figure 6
displays the distributions of population fraction, population density, and urbanicity on the
diagonal, the correlations between them in the upper triangle and scatter plots in the lower
triangle. For both density and urbanicity, a comparison with population fraction results
in two separate clusters for Stadtkreise and Landkreise, where Stadtkreise are counties
composed of one large city and Landkreise are counties made up of several subunits, such
as towns. The two clusters exist in the scatter plot between density and urbanicity but
are part of a single continuous pattern, suggesting that density and urbanicity measure
the urban nature of a region more similarly than either compared to population fraction.
Stadtkreise are clearly more dense and more urban than Landkreise given any population
fraction, suggesting that population fraction alone may not sufficiently capture the idea
of urbanicity. When comparing population fraction and urbanicity, the Stadtkreise form a
straight line because Stadtkreise do not have subunits; for Stadtkreise population fraction
and urbanicity are equivalent. These units contribute their own populations toward the
measure of urbanicity, while urbanicity for Landkreise contain only partial population
information for a given unit. Density and urbanicity correlate highly (r=0.86) with each
other, but less so with population (r=0.12 and r=0.38).

Table 2 provides a comparison of the highest and lowest ten ranking counties by pop-
ulation fraction, population density, and urbanicity. All three measures rank Munich and
Stuttgart as the top counties. The top four rankings by density and urbanicity are iden-
tical, as well as 4 of the 5 lowest ranking counties for these measures. Population fraction
is unlike the other measures at the low end of the rankings because small Stadtkreise
account for the lowest 17 ranks (lowest 12.1%). By density and urbanicity, however, these
same regions have ranks between eight and fifty-seven. As observed in the scatter plots,
density and urbanicity are more related to each other than to population fraction.

In our analysis, regions most likely to draw commuters to them should be considered
the most urban. Using population fraction alone may allow regions with high total pop-
ulations but low relative density and low largest populations to be more attractive in the
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Figure 5: Maps of 2008 influenza season counts based on the original (left) and updated
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Figure 6: Scatter plots, distributions, and correlations for the three gravity measures on
the log scale: population fraction, population density, and urbanicity. Each ‘S’ represents
a Stadtkreise and ‘L’ a Landkreise.
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Population rank Density rank Urbanicity rank
SK München SK München SK München
SK Stuttgart SK Stuttgart SK Stuttgart
LK Rhein-Neckar-Kreis SK Nürnberg SK Nürnberg
LK Esslingen SK Mannheim SK Mannheim
LK Ludwigsburg SK Augsburg SK Karlsruhe
SK Nürnberg SK Fürth SK Augsburg
LK Karlsruhe SK Karlsruhe SK Freiburg i.Breisgau
LK Rems-Murr-Kreis SK Rosenheim SK Heidelberg
LK Ortenaukreis SK Regensburg SK Würzburg
LK Böblingen SK Schweinfurt SK Regensburg
SK Passau LK Amberg-Sulzbach LK Hof
SK Hof LK Garmisch-Partenkirchen LK Würzburg
SK Straubing LK Bayreuth LK Landshut
SK Amberg LK Rhön-Grabfeld LK Bamberg
SK Weiden i.d.OPf. LK Regen LK Schweinfurt
SK Coburg LK Freyung-Grafenau LK Freyung-Grafenau
SK Kaufbeuren LK Straubing-Bogen LK Straubing-Bogen
SK Memmingen LK Neustadt/Aisch-Bad Windsheim LK Miltenberg
SK Ansbach LK Tirschenreuth LK Tirschenreuth
SK Schwabach LK Neustadt a.d.Waldnaab LK Neustadt a.d.Waldnaab

Table 2: Top ten and lowest ten ranking counties by population fraction, population
density, and urbanicity.

4 Influenza surveillance data (fluBYBW) from 2001-

2008

4.1 Applying analytical method for long-term forecasts to fluBYBW

Figure 8 shows the predictive means of the final size (in red) of the 2008 epidemic season
for each model with the first through ninety-ninth predictive quantiles represented by
the green-gray scale. The observed final size depicted by the horizontal dashed line is
5781. As in Meyer and Held (2014), power-law configurations overestimate the final size
while the first order and autoregressive models underestimate it. Similar to the results of
Held et al. (2017) with regards to norovirus, the endemic model is the only model which
does not include the actual final size in its 95% prediction interval, meaning the observed
final count is not supported by the prediction. Prediction interval lengths increase in
size with the inclusion of epidemic potential and to a lesser extent with the number of
parameters in the model. The endemic model is simply a negative binomial regression
model for independent observations and so it has the narrowest interval. The power law
configurations have relatively large, but similarly sized 95% prediction intervals, but large
prediction intervals are common for long-term predictions. The autoregressive model
and power law model without gravity components come closest to the observed count,
underestimating by 290 and overestimating by 294 respectively.

21



Figure 7, the time series of observed and predicted weekly counts, more clearly depicts
differences between the models. Predictions are similar across models at the season start
and end, when counts are low. The biggest differences are observed when counts are
highest. As in Figure 8, the endemic model overestimates the most and the autoregressive
and first order models have the lowest predicted counts. Power law formulations are
similar to each other and lie between the simpler models, as observed in Meyer and Held
(2014). The observed counts (black) peak twice, once at week 5 and again at week 9,
however, none of the models capture this. All models peak only once, and not until
week 9 or 10. Failing to predict the early start of the 2008 epidemic season may be
a consequence of later starts in the epidemic seasons of the training data and to the
inflexibility in the seasonality added to the model. Occurrence of one peak instead of two
is a result of training on data with only single peaks. Such a large spread between peaks
is only observed again in the 2009 pandemic.

The models can be visually evaluated further with the fanplots in Figure 40 and the
prediction maps in Figure 41, both found in the appendix. The endemic model predictions
plotted in Figure 40 are least like the observed counts, reaffirming the trend seen in
Figure 8. While this trend is difficult to see in Figure 41, one can see that all models are
predicting the highest counts in the two largest cities, Munich and Stuttgart, as observed,
but are less consistent with the observations when no (as in Kelheim, Memmingen, and
Kempten) or low counts are recorded. Surprisingly high counts are predicted by all models
for Schwäbisch Hall and Neustadt an der Waldnaab. Both cities have quite different ranks
according to the three different urban measures. Schwäbisch Hall, for example, ranks 35th
by population fraction, 59th by urbanicity, but 99th by density.

To summarize and rank the predictive performance of each model, we use the multi-
variate Dawid-Sebastiani score (mDSS) and determinant sharpness (DS). In Table 3 these
scores are given, along with p-values quantifying evidence against the null hypothesis, H0 :
model calibrated. These scores are computed at various levels of data aggregation: (1)
space-time - the data is unaggregated with counts for each region at each week; (2) time
- the weekly counts in each region are summed up for total weekly counts in the entire
observation region; (3) space - total counts in each region for the entire time period are
obtained by summing the weekly counts; (4) final counts - the data is aggregated over
week and region for a single total count. Each model is ranked according to its mDSS,
with lowest scores ranked best.

As found in Meyer and Held (2014) (Table 5), the power law models perform better
than the baseline models at the raw, time, and space aggregation levels. In contrast to
these findings, however, the autoregressive and first order models are best-ranked at the
final count level. There is evidence, though, that all models are miscalibrated at the
space-time and time levels (p-values < 0.001). The DS indicates the power law models
are also sharper than the baseline models at all levels except the final count level, even
though the fan plots in Figure 40 are wider for these models. This is because determinant
sharpness also reflects the strength of the implied autocorrelations. In Figure 10 we see the
power models have the highest autocorrelations for almost the entire prediction period.
Held et al. (2017) also find a power law model with a gravity component to be sharper
than baseline models for the epidemic curve because of high autocorrelations. Another
similarity is that models with the largest DS (first order model shown) have the smallest
correlations between regions (Figure 11).
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Figure 7: Time series of observed and predictive mean counts.
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Of note are the large p-values (1.00 and 0.74) for the autoregressive and first order
models at the regional count level. If we restrict our overdispersion parameter to ψ = 0,
i.e., a poisson model instead of a negative binomial, the mDSS increases (3.9780 and
4.6027), but the DS decreases (2.5625 and 2.3070), i.e., the new models do not perform
as well but they are sharper. Both p-values have shrunk to < 0.0001. This indicates
that the problem has to do with large estimated overdispersion leading to large variance,
as displayed in Figure 9. For large enough variance estimates, the models cannot be
considered miscalibrated.
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Figure 9: Fanplots of long-term predictions of the 2008 epidemic season using the original
negative binomial autoregressive model (left) and a poisson autoregressive model (right).

At the final count level, the endemic model is sharpest, but there is much more evidence
against calibration of the endemic model than against the other models. Models should
be sharp, but subject to first being calibrated. Even at the final count level, there is still
some evidence of miscalibration of the endemic model (p-value 0.014). This is confirmed
by Figure 8, in which the endemic model is the only model whose 95% prediction interval
does not include the observed final size. At the space level, the population model performs
best by mDSS and is the only complex model for which there is no evidence against
calibration. In general, the scores of the power law models are all close and there is
no clear best across all aggregation levels. This is expected because when plotting the
estimated weights against neighborhood order, one observes similar weights for all power
models.

Table 4 displays the univariate Dawid-Sebastiani score (uDSS) for these models and
is most comparable to Meyer and Held’s (2014) Table 5. Both use the univariate Dawid-
Sebastiani score, however Meyer and Held apply it to simulated predictions and here it is
applied to predictive distributions characterized by the analytical mean and covariance.
Ranks of models common to both tables are the same, except for the power models at the
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Figure 10: First order autocorrelations be-
tween weeks.
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Figure 11: Correlations between regions im-
plied by several models.

space-time level. The mDSS detected no difference between the simulated power model
and power model with population (both 2.29), but the analytical results show the power
model to be slightly better (2.24 and 2.27). The results are also similar to the multivariate
results: power law formulations consistently perform better than the simpler models until
final count level (not reported in (Meyer and Held, 2014)). When ranking the power law
models only, the results are the same for the multivariate and univariate scores, with the
power law or population models always best.

The updated counts do not alter the evaluation of the 2008 predictions much (Table 5).
Even with the updated counts, power models are still performing better than the baseline
models at all data aggregation levels except for final counts. The endemic+autoregressive
model still ranks best at the final count level, but now the power model outperforms the
first order model. There is a large amount of evidence against calibration of all models
at the space-time and time levels, as before, but now there is more evidence against
calibration at the space level, as well. The p-values for the power, density, and urbanicity
models were 0.019, 0.017, and 0.016, but with the updated data are 0.0016, 0.0018, and
0.0023. The sharpness ranks are unchanged for the top 2 models at any aggregation level.

4.2 Extending Meyer and Held (2014)’s fluBYBW analysis

Weekly and regional “slices”

The mean weekly mDSS and mean regional mDSS (Table 6) indicate that the power law
models perform better on average across the twenty weeks of prediction and across the
140 regions. The mean scores separate models with and without the power law, with
power law configurations scoring better. Amongst the better scoring models, the power
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Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 1.4294 0.3116 <0.0001 7 13.4979 3.5427 <0.0001 7
End + AR 1.0945 0.4427 <0.0001 6 10.3229 3.5789 <0.0001 6
First order 1.0721 0.2057 <0.0001 5 9.9263 3.5724 <0.0001 5

Power 0.9570 0.1939 <0.0001 1 8.3223 3.3702 <0.0001 4
PL + pop 0.9734 0.2056 <0.0001 4 8.2217 3.3837 <0.0001 1

PL + dens 0.9640 0.1942 <0.0001 2 8.2572 3.3800 <0.0001 3
PL + urb 0.9705 0.1962 <0.0001 3 8.2417 3.3891 <0.0001 2

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 3.9218 2.7416 <0.0001 7 9.1885 6.1874 0.014 7
End + AR 3.9046 3.7952 1.00 6 7.1878 7.1625 0.82 1
First order 3.6682 3.2072 0.74 5 7.6475 7.5976 0.75 2

Power 3.6469 3.0149 0.019 2 7.7079 7.6991 0.89 3
PL + pop 3.6221 3.0299 0.067 1 7.7694 7.7451 0.83 6

PL + dens 3.6536 3.0191 0.017 3 7.7301 7.7179 0.88 4
PL + urb 3.6574 3.0213 0.016 4 7.7464 7.7310 0.86 5

Table 3: Multivariate Dawid-Sebastiani scores, determinant sharpness, p-values, and ranks
for the models at various aggregation levels (fluBYBW data).

Space-time Time Space Final
mDSS rank mDSS rank mDSS rank mDSS rank

Endemic 2.8589 7 26.9959 5 7.8437 7 18.3770 7
End + AR 2.5014 6 30.6564 7 7.8092 6 14.3757 1
First order 2.4727 5 27.6817 6 7.4771 5 15.2950 2

Power 2.2431 1 16.0305 4 7.2923 2 15.4159 3
PL + pop 2.2743 4 15.2788 1 7.2506 1 15.5389 6

PL + dens 2.2569 2 15.8731 3 7.3023 3 15.4601 4
PL + urb 2.2712 3 15.7301 2 7.3075 4 15.4929 5

Table 4: Univariate Dawid-Sebastiani scores and ranks for the models at various aggre-
gation levels (fluBYBW data).

model without a gravity component scores best. The weekly and regional endemic model
scores are exactly the same; this is expected because the covariance matrix for this model
is diagonal. The weekly and regional rankings align with the space-time rankings better
than with the time or space rankings of Table 3. Rather than scores on data aggregated
over time or space, the weekly and regional scores are scores on smaller subsets of the
predictions that are averaged together. The univariate scores also indicate that the power
law model performs best, followed by the power law models with gravity components.
The univariate weekly and regional scores are the same; they are averages of the same
data just taken in a different order.

The weekly scores are expected to be relatively low when counts are low as, for ex-
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Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 1.7177 0.3405 <0.0001 7 14.0064 3.5620 <0.0001 7
End + AR 1.4570 0.4753 <0.0001 5 11.1083 3.6253 <0.0001 6
First order 1.5778 0.2358 <0.0001 6 10.3459 3.6975 <0.0001 5

Power 1.3175 0.2266 <0.0001 1 8.8283 3.4717 <0.0001 4
PL + pop 1.3307 0.2388 <0.0001 4 8.7032 3.4882 <0.0001 1

PL + dens 1.3259 0.2278 <0.0001 2 8.7563 3.4758 <0.0001 3
PL + urb 1.3290 0.2305 <0.0001 3 8.7279 3.4849 <0.0001 2

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 4.0443 2.7789 <0.0001 7 8.8770 6.2107 0.021 7
End + AR 3.9503 3.8273 1.00 6 7.2427 7.1965 0.76 1
First order 3.7902 3.2432 0.21 5 7.7785 7.7444 0.79 3

Power 3.7482 3.0531 0.0016 2 7.7758 7.7693 0.91 2
PL + pop 3.7063 3.0700 0.016 1 7.8319 7.8121 0.84 6

PL + dens 3.7510 3.0586 0.0018 4 7.7939 7.7847 0.89 4
PL + urb 3.7489 3.0626 0.0023 3 7.8058 7.7939 0.88 5

Table 5: Evaluation of 2008 (updated count data) predictions including multivariate
Dawid-Sebastiani score, determinant sharpness, p-value, and rank for models at various
aggregation levels.

ample, at week 1 and again at the end of the epidemic season. In Figure 12 low scores
are seen at week 1, with no large differences between models. Differences can already be
seen at week 2, with trajectories already starting to separate. All model scores peak at
week 4, due to the fact that all models failed to predict the early first peak of the 2008
epidemic season. The models did predict the second half of the epidemic, and the scores
all decrease at this time. After level scores for several weeks, a decrease can be seen as the
epidemic dies out. The local peak at week 18 is partially explained by an abnormally high
observed count in Freising at this time. The scores for the baseline models are higher (i.e.,
worse predictions) than the scores for the power law formulations at the week 4 and 18
peaks and in general over the whole prediction period, except at weeks 5 and 6, when the
autoregressive model scores best. The differences between the power law models are only
vaguely perceptible over the entire prediction period. Figure 13, the plot of the univariate
scores, shows a very similar pattern except on a slightly larger scale.

The regional scores are expected to be relatively low for less urban regions, where
counts are usually low, and higher for urban regions, which may have much greater vari-
ation in counts. In Table 7 the scores for the ten most and least dense regions are given
for each model. The two most dense regions, Munich and Stuttgart, do have noticeably
larger scores than the other regions, but surprisingly large scores are also found for sev-
eral of the most rural regions, such as Freyung-Grafenau and Neustadt a.d. Waldnaab.
The counts of these rural regions with high scores do not peak until after week 9, when
the total weekly counts start dropping. The power models score better than the simpler
models more consistently for the more rural regions, whereas results for the most urban
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Multivariate mean scores
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Week 1.4294 1.2507 1.1747 1.0400 1.0549 1.0467 1.0531
Region 1.4294 1.0945 1.0729 0.9703 0.9870 0.9770 0.9835

Univariate mean scores
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Week 2.8589 2.5014 2.4727 2.2431 2.2743 2.2569 2.2712
Region 2.8589 2.5014 2.4727 2.2431 2.2743 2.2569 2.2712

Table 6: Mean weekly and regional multivariate Dawid-Sebastiani scores.
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Figure 12: Weekly multivariate Dawid-
Sebastiani scores for each model.
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Figure 13: Weekly univariate Dawid-
Sebastiani scores for each model.

regions are more mixed. In urban counties most counts are expected to come from within
and therefore the autoregressive component would be more important to these areas. For
small communities, incidence in neighbors is expected to be more important and so the
neighborhood component would be more important.

Border effects

For each of the 3 baseline and 4 power models, distance to the border was included as a
covariate as either a discrete index, the log of the discrete index, the inverse of the discrete
index, or a binary indicator. The discrete index quantifies the distance of a county to the
border in terms of the least number of districts that must be crossed to reach the border,
similar to the order of neighborhood. The covariate was added to either the endemic
component or the neighborhood component (when it exists).
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Greatest population density
Endemic End + AR First order Power PL + pop PL + dens PL + urb

SK München 3.5779 3.5206 3.4968 3.3287 3.3015 3.2978 3.2722
SK Stuttgart 2.6315 2.4769 2.2677 2.2078 2.2211 2.2070 2.2049
SK Nürnberg 1.8924 2.0444 1.7825 1.7325 1.7370 1.7337 1.7311
SK Mannheim 1.5010 0.8277 0.8742 1.0243 1.0189 1.0199 1.0156
SK Augsburg 1.3413 1.1343 0.9006 0.9576 0.9706 0.9628 0.9654
SK Fürth 0.2830 0.3302 0.3240 0.2857 0.2864 0.2576 0.2497
SK Karlsruhe 1.0480 0.9448 0.6932 0.6497 0.6861 0.6536 0.6584
SK Rosenheim 0.6580 0.4895 0.8845 0.6429 0.7134 0.5633 0.5777
SK Regensburg 0.5803 0.5627 0.4650 0.3222 0.3107 0.3289 0.3286
SK Schweinfurt 0.3932 0.2635 0.0890 0.0146 0.0184 0.0216 0.0220

Smallest population density
Endemic End + AR First order Power PL + pop PL + dens PL + urb

LK Amberg-Sulzbach 0.5345 0.6247 0.6696 0.5802 0.5656 0.5908 0.5928
LK Garmisch 0.1964 0.4131 0.2415 0.1253 0.1487 0.1292 0.1307
LK Bayreuth 0.2876 0.1046 0.1334 0.1725 0.2052 0.1939 0.2047
LK Rhön-Grabfeld 0.4736 0.4861 0.2202 0.2128 0.2067 0.2068 0.2030
LK Regen 1.2110 1.2151 1.2066 0.8667 0.8759 0.8748 0.8794
LK Freyung-Grafenau 3.3338 1.3671 1.8010 1.6578 1.6612 1.6932 1.6638
SK Straubing 0.4496 0.3106 0.2967 0.0955 0.1739 0.0798 0.0836
LK Neustadt 0.7726 0.9296 0.5993 0.5016 0.5070 0.5032 0.5043
LK Tirschenreuth 0.3275 0.3045 0.7229 0.2562 0.1924 0.2631 0.2555
LK Neustadt a.d.W. 2.1019 2.2296 2.1306 1.9396 1.9593 1.9861 2.0221

Table 7: Regional multivariate Dawid-Sebastiani scores for the most and least dense
regions.

The results for baseline (Table 8) and power models (Table 9) are quite different.
For baseline models, the models without any border effect covariate perform best in
terms of mDSS in 7 rankings out of 12 and perform second best in 2 more rankings.
However, the endemic and autoregressive models aggregated for weekly counts perform
better with the covariate. Again, testing the calibration of the autoregressive model and
to a lesser extent the first order model results in p-values which are unusually large due to
extremely large values in the covariance matrix. The first order model without a border
covariate ranks best, however, when such a covariate is added, it tends to perform better
in the neighborhood compartment. No such statements can be made for the endemic and
autoregressive models because neither contain a neighborhood component.

By contrast, when ranking power models with a border covariate against those without,
the model without border effects only ranks best in 1 of the set of 16 rankings, specifically
for the population model at the regional count level. For the density and urbanicity
power models, models with a border covariate in the neighborhood component perform
better than those with the covariate in the endemic component in almost all cases at all
aggregation levels. Results for the power and population models are mixed. The top
power model always includes the border effect covariate in the neighborhood component,
but the rest of the neighborhood component border covariate power models do not always
beat the models with the covariate in the endemic component. As opposed to all other
models, results for the population model suggest better performance with the covariate
in the endemic component, at least at the raw and final count levels.
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Although including distance to the border as a covariate in the neighborhood com-
ponent performed better overall, no one form of the border covariate performed best for
every model and aggregation level. Thus weekly and regional scores were determined for
all combinations of model and border covariate. To summarize the weekly analysis (Ta-
ble 10), the mean weekly score and rank is given for each power model and border covariate
combination, followed by the mean weekly mDSS for the model without border effects.
The best type of border effect covariate again changes from model to model. Again, the
best ranked models by week better align with the rankings of the border effect models at
the space-time level, not at the time level. All top models remain the same except for
the density model, whose best-ranked space-time model includes the inverse border index
covariate in the neighborhood component and whose best-ranked average weekly model
includes the binary covariate in the neighborhood component. However, the scores of the
top two border effects density models at the space-time level are indistinguishable to four
decimal places.

The rank of the model without border effects against those with border effects is given
along with that weekly mDSS score. The models without border effects rank between
middle (5th) and last (9th) by average weekly scoring, as seen for overall mDSS at all
levels of aggregation. The rankings of the top power models with border effects also
remains unchanged, with the pure power model ranking best, followed by the density,
urbanicity and population models. As illustrated in Figure 14, the differences between
the various power models remain small. The range of scores over the weeks is much
larger than the range of differences in scores for the various models and these differences
cannot be seen in the plot. From the full results shown in Table 23, one can see that
models with border effects in the neighborhood component perform better than those
with border effects in the endemic component when counts are unexpectedly high, such
as the early rise in counts in weeks four and five and the unexpected counts in week
eighteen. The endemic component border effect models perform better when counts are
low or expectedly high, such as during the expected peak around week nine and ten.

Power Population Density Urbanicity
mDSS rank mDSS rank mDSS rank mDSS rank

log Index 1.0406 8 1.0539 1 1.0474 8 1.0536 8
Index 1.0413 9 1.0541 4 1.0483 9 1.0545 9

Inverse 1.0402 6 1.0540 2 1.0469 7 1.0531 6
Binary 1.0398 4 1.0544 6 1.0465 5 1.0528 5

NE log Index 1.0398 3 1.0545 7 1.0441 3 1.0494 2
NE Index 1.0405 7 1.0546 8 1.0447 4 1.0500 4

NE Inverse 1.0392 2 1.0544 5 1.0438 2 1.0492 1
NE Binary 1.0385 1 1.0541 3 1.0438 1 1.0495 3

No BE 1.0400 5 1.0549 9 1.0467 6 1.0531 7

Best overall 1.0400 1 1.0542 4 1.0457 2 1.0515 3

Table 10: Mean weekly multivariate Dawid-Sebastiani scores for models with border
effects and overall means per model type and overall ranking.
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Figure 14: Weekly multivariate Dawid-Sebastiani scores for top-ranked power models with
border effects compared to the same models without border effects. There seems to be
one line plotted, but they actually lie on top of each other. The scale of the weekly mDSS
is large than the scale of the differences in mDSS of the different models.

Power Population Density Urbanicity
mDSS rank mDSS rank mDSS rank mDSS rank

log index 0.9709 8 0.9860 1 0.9778 8 0.9842 8
index 0.9714 9 0.9860 2 0.9785 9 0.9849 9

inverse 0.9706 6 0.9861 3 0.9774 7 0.9837 7
binary 0.9703 4 0.9865 7 0.9770 5 0.9834 5

NE log index 0.9701 3 0.9865 6 0.9746 2 0.9801 2
NE index 0.9708 7 0.9866 8 0.9751 4 0.9805 4

NE inverse 0.9696 2 0.9864 5 0.9744 1 0.9800 1
NE binary 0.9690 1 0.9862 4 0.9746 3 0.9805 3

no BE 0.9703 5 0.9870 9 0.9770 6 0.9835 6

Table 11: Mean regional multivariate Dawid-Sebastiani scores for power models with
border effects.
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Average regional scores for power models with border effects (Table 11) reveal similar
patterns to those found for the general and weekly analyses. Overall, the power model still
performs best, followed by density, urbanicity, and population models. Models without
border effects perform worse than those with the covariate in the neighborhood compo-
nent, but often perform better than those with the covariate in the endemic component.
Models with the border effects in the neighborhood component are best for all power
models except the population model.

We, however, observe differences between the 10 least and 10 most dense regions
(Table 26 and Table 25). Border effect covariates in the endemic component perform
better than the neighborhood component covariates more often for both the power and
population models for the least dense regions. For the densest regions, the neighborhood
covariates perform best more often. The inverse distance to the border covariate in the
endemic component never ranks best by mDSS for either cities or rural areas. The distance
covariate performs best for the rural regions, but whether to include it in the endemic or
neighborhood component changes with the model. For the power and population models,
the distance covariate performs best in the endemic component, and for density and
urbanicity models it performs better in the neighborhood component. For the densest
regions, no clear pattern emerges. The rank patterns for mDSS averaged over regions do
not align with the patterns found for regions at extreme ends of the density scale.

5 Updated influenza surveillance data for 2001-2017

Due to the varying nature of seasonal influenza year to year, the results for each epidemic
season from 2011 to 2017 are also quite varied. Few patterns between observed epidemic
characteristics and model rankings are apparent. The only two years in which all models
underestimate the final count are 2013 and 2015, which are also the only two years the
epidemic season peaks “on time,” or within one week of the median. Only during these
two years do the top ranked models indicated by the mDSS and the univariate Dawid-
Sebastiani score match for every aggregation level (compare with Table 21 in appendix).

In general, the top-ranked models by multivariate and univariate Dawid-Sebastiani
score are the same for at least 3 of the 4 aggregation levels each year. Across years, the
top-ranking models by average weekly and average regional score (see appendix Table 20)
also tend to agree with each other and be the same as indicated by mDSS at the space-
time level. The results for the 2014 and 2017 seasons, however, are the exception to these
findings. The 2014 season is marked by very low peak and final count size while 2017
has the largest counts. Unusually large p-values are observed for space-time, weekly, and
regional count aggregation levels for both years.

The performance of power models against the baseline models varies by year and
aggregation level and so we discuss specific results for each year.

5.1 Analysis by year

2011

The 2011 epidemic season starts and peaks earlier than most observed seasons, and all
models fail to catch this, with predicted peaks at week 9 instead of week 6 (Figure 15).
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Figure 15: Time series of observed and predictive mean counts for the 2011 epidemic
season.

First indications of issues with large variances are apparent in the p-values of the autore-
gressive and population models at the raw data level (1.00 and 0.0012, Table 12) and for
the autoregressive and first order models for regional counts (p-value = 1.00, 0.0043).

Models including space outperform models without at the raw data level in terms of
mDSS and DS, with the density model ranking best. The power models rank best at
the weekly count level by mDSS. The density model has the lowest DS at both of these
levels, partly due to high autocorrelations. The endemic model, ignoring all relationships
in space and time, has the second lowest DS at the weekly count level. Weekly scores
(Figure 17) are high for all models during the early rise in counts, with the endemic model
performing worst during this time.

For regional counts, mDSS indicates the autoregressive and first order models to be
best. These two models also have p-values suggesting model calibration but the largest
DS scores. Plots (Figure 18 and Figure 16) of each model reveal large 99% prediction
intervals for these two models at the weekly and final count levels. They are as large
as or larger than that of more complex models for weekly and final counts. In contrast,
the univariate score at the space level indicates that the power models perform best. At
the final count level the autoregressive model ranks best, followed by the density model.
This result is a clear indication that mDSS accounts for both calibration and sharpness
because the predicted final count of the first order model is closer to the observed than
that of the density model, but the 99% prediction interval for the density model is smaller
(Figure 16) and so it ranks second and the first order model third.

For 2011, the power models perform better at the space-time and weekly count levels,
but results are mixed for regional and final counts.
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Figure 16: Fan box plots for final count predictions from each model predicting the 2011
epidemic season.

Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 1.6696 0.9493 <0.0001 7 12.4613 4.2812 <0.0001 7
End + AR 1.5135 1.0519 1.00 6 6.9887 4.9975 <0.0001 6
First order 1.4779 0.8417 <0.0001 3 6.6552 4.8152 <0.0001 5

Power 1.4849 0.9247 <0.0001 5 6.1738 4.3859 <0.0001 1
PL + pop 1.4661 0.9245 0.0012 2 6.3110 4.3486 <0.0001 3

PL + dens 1.4241 0.7839 <0.0001 1 6.6126 4.1939 <0.0001 4
PL + urb 1.4811 0.9213 <0.0001 4 6.2532 4.3702 <0.0001 2

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 5.2103 3.4522 <0.0001 7 13.6624 6.9662 0.0003 7
End + AR 4.7684 4.5221 1.00 2 8.9976 8.9647 0.80 1
First order 4.6705 3.9994 0.0043 1 9.1861 9.1456 0.78 3

Power 4.8576 3.8164 <0.0001 4 9.3816 9.1658 0.51 6
PL + pop 4.7970 3.8101 <0.0001 3 9.3203 9.0563 0.47 4

PL + dens 4.9202 3.7205 <0.0001 6 9.1039 8.9451 0.57 2
PL + urb 4.8593 3.8087 <0.0001 5 9.3479 9.1131 0.49 5

Table 12: Multivariate Dawid-Sebastiani score, determinant sharpness, p-value, and rank
for 2011 predictions by each model at each data aggregation level.
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Figure 17: Weekly mDSS for 2011.
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Figure 18: 2011 prediction fan plots for selected models: autoregressive, first
order, power, and population models.
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2012

The 2012 epidemic season is late (peak at week 11, median peak week = 9), with a
relatively low final count. A power model ranks best and the baseline models tend to
rank at the center or worst for all aggregation levels except the original space-time level
(Table 13). Power models have the lowest DS at all levels except the final count level.
Here, the endemic model has the lowest DS, but there is evidence against only the endemic
model’s calibration (p-value <0.0001) at this level and this model ranks last by mDSS.
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Figure 19: Plotted weekly mDSS scores for models predicting the 2012 epidemic season.

The weekly mDSS score is very sensitive to unexpected counts at the end of the
epidemic season (Figure 19). At week 17 there is a large spike in the weekly score of
all models, where more suburban/rural towns (LK Passau, LK Rems-Murr-Kreis, LK
Rhön-Grabfeld) still have 2 or 3 counts of influenza at a time when they had previously
had zero. The two models without a spatial component, the endemic and autoregressive
models, perform best at this time and during a smaller peak at week 19, but are worst for
the first 10 weeks of the prediction. These models also overestimate the counts the most
(Figure 20, top and bottom).

Often, there is evidence against calibration of all models at the regional aggregation
level, but in 2012 such evidence exists only against the density and endemic models
(Table 13). In Figure 21 we see that the density model has the smallest 98% prediction
interval and the autoregressive model the widest. This pattern seems to occur at the
regional level as well.

Often, the power models perform alike, but in all plots a clear difference between the
density model and other power models is obvious. The density model is the only model to
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underestimate the influenza counts, however, its final count prediction is only 172 counts
below the observed 6172 counts, the closest to the observed of any model. At the final
count level, this model is second sharpest (endemic first), and it is most sharp by DS
at every other aggregation level. However, by mDSS, this model performs poorly at all
levels, except the final count level where it is ranked best. Differences between the density
model and other models is also apparent in the weekly fanplots (Figure 21), where the
density model’s underestimation and sharpness are depicted.
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Figure 20: Time series of observed and mean predicted counts (top) and fan box plots for
final count predictions (bottom) for models predicting the 2012 epidemic season.
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Figure 21: 2012 prediction fan plots for selected models: autoregressive, first
order, power, population, and density models.

40



Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 2.7323 1.1369 <0.0001 1 11.5200 4.4527 <0.0001 5
End + AR 2.8909 1.0826 <0.0001 2 9.9743 4.5900 <0.0001 4
First order 3.3581 0.6347 <0.0001 6 12.8068 3.8486 <0.0001 6

Power 3.0270 0.6471 <0.0001 4 9.6596 3.9194 <0.0001 2
PL + pop 3.0065 0.6313 <0.0001 3 9.6528 3.8573 <0.0001 1

PL + dens 3.9749 0.1136 <0.0001 7 15.0299 3.2344 <0.0001 7
PL + urb 3.0551 0.6268 <0.0001 5 9.7727 3.8704 <0.0001 3

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 4.9483 3.6601 <0.0001 7 62.5745 7.1475 <0.0001 7
End + AR 4.7860 4.6020 1.00 6 10.3348 8.6121 0.063 6
First order 4.1232 3.7324 0.97 4 9.5221 8.0382 0.085 2

Power 4.0101 3.5212 0.56 3 9.5594 8.5688 0.16 4
PL + pop 3.9846 3.4993 0.58 1 9.6004 8.4361 0.13 5

PL + dens 4.6459 2.8073 <0.0001 5 7.5422 7.5380 0.93 1
PL + urb 4.0089 3.4938 0.39 2 9.5486 8.4715 0.14 3

Table 13: Multivariate Dawid-Sebastiani score, determinant sharpness, p-value, and rank
for 2012 predictions by each model at each data aggregation level.

2013

The 2013 epidemic season is characterized by a tall peak of 2374 counts at week 8 (median
week 8.5). All models except the endemic model underestimate the counts (Figure 22, left
and right). The 98% prediction interval of the endemic model, however, barely supports
the observed final count of 18325. At the final count and space-time level, the power
models perform best in terms of mDSS and DS (Table 14). The power models give similar
predictions to baseline models at the final count level, but have smaller 98% prediction
intervals.

On the other hand, the baseline models perform best for weekly and regional counts.
Unusually high p-values and larger prediction intervals (Table 14 and Figure 24) draw
attention to issues with variance/overdispersion estimation of the baseline models. Except
at the final count level, DS indicates that power models are sharper than baseline models.

The weekly scores fluctuate more in 2013 (Figure 23). At week 15 all models see a
sharp rise in score. As seen in Figure 22 (left) there is a local peak at this time. Counts
which are usually low at this time reach as high as 39 in Ludwigsburg and 16 in Rastatt.
The power model scores fluctuate most between weeks 4 and 8. This is partly due to the
dip in counts at week 7. Until then, the power models are underestimating the counts.
Because of the dip at week 7 the predictions are relatively close to the observed, but the
counts increase again at week 8.
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Figure 22: Time series of observed and predictive mean counts (left), fan box plots for
final count predictions (right) for models predicting the 2013 epidemic season.

Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 1.7369 1.3350 1.00 6 5.2021 4.6549 0.35 1
End + AR 1.7711 1.3441 1.00 7 5.5653 5.2432 0.88 3
First order 1.6462 0.9806 <0.0001 5 5.3747 4.4238 0.0088 2

Power 1.6037 0.8690 <0.0001 3 5.7451 4.0617 <0.0001 5
PL + pop 1.5935 0.8698 <0.0001 1 5.7643 4.0459 <0.0001 7

PL + dens 1.6044 0.8695 <0.0001 4 5.7430 4.0613 <0.0001 4
PL + urb 1.6025 0.8702 <0.0001 2 5.7491 4.0563 <0.0001 6

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 5.1736 3.7752 <0.0001 3 8.9141 7.2325 0.067 6
End + AR 5.1027 4.9091 1.00 1 9.2512 9.2329 0.85 7
First order 5.1628 4.0520 <0.0001 2 8.7681 8.6347 0.61 5

Power 5.5869 3.6385 <0.0001 6 8.6662 8.4823 0.54 4
PL + pop 5.4560 3.6438 <0.0001 4 8.6410 8.4521 0.54 1

PL + dens 5.5899 3.6405 <0.0001 7 8.6612 8.4807 0.55 3
PL + urb 5.5666 3.6428 <0.0001 5 8.6522 8.4697 0.55 2

Table 14: Multivariate Dawid-Sebastiani score, determinant sharpness, p-value, and rank
for 2013 predictions by each model at each data aggregation level.
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Figure 23: Plotted weekly mDSS scores for models predicting the 2013 epidemic season.
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Figure 24: 2013 prediction fan plots for selected models: autoregressive, first
order, power, and population models.
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2014

The 2014 epidemic season is marked by the lowest peak and final count of the years since
2008. All models overestimate the incidence, but power models overestimate less than
the baseline models (Figure 25, left and right). The time series predicted by every model
expects a peak in counts that never really occurs. These predicted peaks lead to higher
predicted final counts than actually observed.
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Figure 25: Time series of observed and predictive mean counts (left) and fan box plots
for final count predictions (right) for models predicting the 2014 epidemic season.

The power models perform best by mDSS at all aggregation levels except the final
count level. The endemic and first order models rank among the worst at every aggregation
level. Power models are also among the sharpest at all levels except for final counts. The
sharpest model at the final count level is the endemic model, but we observe more evidence
against calibration of this model than for the others. At the final count level the mDSS
indicates that the autoregressive model performs best, however, from the fan box plots
of the final counts in Figure 15, one can see that the autoregressive model prediction
overestimates much more than the other models and has an unusually large prediction
interval. The difference between the observed and predicted count is twice as large for
the autoregressive model as the second best model, the density model, but its variance
is seven times as large, giving the autoregressive model the advantage in the second part
of the mDSS equation ((x−µP )>ΣP

−1(x−µP )). The DS, however, correctly indicates
that the autoregressive model is the least sharp.

As seen in Table 20 (appendix), mean weekly and mean regional scores resulting from
“slicing” the data usually indicate the same top-ranking model. In 2014, however, the
population model ranks best by the weekly score and the power model by regional score.
The top models by these mean scores also usually correspond with the top model at
the space-time aggregation level. Here, the model indicated at this aggregation level only
agrees with the regional score. When the “slice” scores disagree, there is also usually more
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disagreement between the multivariate and univariate scores. While here they indicate
different models at the raw and time levels, they both indicate some form of power model.

Unusual activity is detected in Figure 26. At week 5, 56 cases are reported in LK
Miltenberg, which otherwise reports few cases. All models underestimate this unexpected
count, but there is a larger penalty for this for the power models. The power models
have smaller (better) weekly mDSS scores for almost the whole prediction period, but
rise sharply above the baseline models at week 5.

As in 2008, the 98% prediction interval for the final count predicted by the endemic
model does not even contain the observed final count of 3646. However, in 2014, no
model does; all prediction intervals fall above the dashed line representing the observed
final count. The p-values at the final count level of Table 15 are also lower than usual.
There is evidence against calibration of all models at an aggregation level where there
usually is not. This is corroborated by Figure 25, right.

Unusually high p-values are observed for all other aggregation levels in 2014. Unlike
in other years, however, this observation is not limited to the autoregressive and first
order models, but common to most models. In Figure 27, however, an unusually wide
prediction interval is only observed for the autoregressive model.

Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 1.8466 1.5174 1.00 7 11.7834 4.8402 <0.0001 7
End + AR 1.6496 1.4240 1.00 6 6.6284 4.9939 <0.0001 6
First order 1.2932 0.9641 1.00 5 5.2156 4.1593 0.0026 5

Power 1.1242 0.6495 0.97 1 4.3669 3.7746 0.26 4
PL + pop 1.1273 0.6420 0.86 4 4.3441 3.7436 0.24 1

PL + dens 1.1264 0.6493 0.96 2 4.3661 3.7717 0.25 3
PL + urb 1.1270 0.6491 0.95 3 4.3633 3.7641 0.24 2

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 6.0705 3.9637 <0.0001 7 105.8109 7.4146 <0.0001 7
End + AR 5.1939 4.9333 1.00 6 11.6994 8.9229 0.018 1
First order 4.2117 3.9754 1.00 5 13.4501 8.2355 0.0012 6

Power 3.6191 3.3168 1.00 3 11.8387 7.9161 0.0051 2
PL + pop 3.6082 3.3043 1.00 1 12.1768 7.8444 0.0032 5

PL + dens 3.6200 3.3174 1.00 4 11.8957 7.9088 0.0047 3
PL + urb 3.6147 3.3171 1.00 2 12.0253 7.8886 0.004 4

Table 15: Multivariate Dawid-Sebastiani score, determinant sharpness, p-value, and rank
for 2014 predictions by each model at each data aggregation level.
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Figure 26: Plotted weekly mDSS scores for models predicting the 2014 epidemic season.
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Figure 27: 2014 prediction fan plots for selected models: autoregressive, first
order, power, and population models.
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2015

The 2015 epidemic season peaks higher and ends with a larger final count than any
observed previous year (except for the 2009 pandemic). An unexpected peak of 431 cases
occurs at week 16 (Figure 28, left), with 62 cases in LK Straubing-Bogen, 58 cases in LK
Passau, and 39 cases in LK Regensburg. This causes a dramatic peak in weekly scores for
all models (Figure 28, bottom), with power models performing worse at this time. Again,
the power model scores fluctuate more than baseline model scores, but in 2015 the power
models also often perform worse according to weekly mDSS scores. The differences in
penalties for the peak size predictions at week 8 are, however, much more subtle.

As seen on the map in Figure 38, cases in 2015 have a different spatial pattern: the
county surrounding Munich has a higher final count than the city itself. This is also true
for the counties surrounding Bamberg and Passau. Because of these peculiarities in time
and space, the baseline models perform better than the power models at all aggregation
levels (Table 16). According to DS, the power models are sharper, owing to both large
spatial/temporal correlations and smaller variance.

All models underestimate the counts (Figure 28, left and right) but the 98% prediction
intervals of all models support the observed final count of 25774. The endemic model
ranks best by mDSS twice in 2015, at the space-time and final count levels, and the
autoregressive model ranks best at the time and space aggregations. As observed in
several years, calibration p-values for the autoregressive model are unusually high at the
time and space aggregations. This is clearly depicted in Figure 29.

Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 3.6607 1.5266 <0.0001 1 7.2460 4.8435 <0.0001 3
End + AR 4.0271 1.5029 <0.0001 2 5.9287 5.5011 0.65 1
First order 4.5179 1.0863 <0.0001 3 6.3937 4.5630 <0.0001 2

Power 4.6471 0.9125 <0.0001 7 8.3086 4.1140 <0.0001 4
PL + pop 4.5200 0.9117 <0.0001 4 8.4655 4.0916 <0.0001 7

PL + dens 4.6347 0.9125 <0.0001 6 8.3426 4.1115 <0.0001 5
PL + urb 4.6014 0.9123 <0.0001 5 8.3967 4.1053 <0.0001 6

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 6.6291 3.9421 <0.0001 3 7.6621 7.3760 0.45 1
End + AR 5.3932 5.1237 1.00 1 9.6832 9.5535 0.61 3
First order 5.6816 4.1324 <0.0001 2 9.5678 8.8237 0.22 2

Power 7.9458 3.6111 <0.0001 7 11.0718 8.4281 0.021 4
PL + pop 7.8911 3.6120 <0.0001 4 11.2713 8.3883 0.016 7

PL + dens 7.9414 3.6122 <0.0001 6 11.0877 8.4226 0.021 5
PL + urb 7.9339 3.6125 <0.0001 5 11.1478 8.4089 0.019 6

Table 16: Multivariate Dawid-Sebastiani score, determinant sharpness, p-value, and rank
for 2015 predictions by each model at each data aggregation level.
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Figure 28: Time series of observed and mean predicted counts (left), fan box plots for final
count predictions (right), and plotted weekly mDSS scores (bottom) for models predicting
the 2015 epidemic season.
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Figure 29: 2015 prediction fan plots for selected models: autoregressive, first
order, power, and population models.
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2016

The 2016 epidemic season peaks late at week 11 (median 9) and, although not a low
count year (12880 final count), it is much smaller than 2015 and 2017, with 26078 and
27143 counts each. This pattern of high incidence year followed by a lower incidence year
is common in seasonal infectious disease. A portion of the population may be protected
from infection in 2016 by previous infection or vaccination in 2015. The time series also
exhibits a small first peak in week 5 before really taking off later in the season. As in
2008, no model predicts this.

The baseline models overestimate more than the power models (Figure 30, left), lead-
ing the power models to perform better at almost all levels (Table 17). The 98% final
count prediction interval of the endemic model does not even support the observed count
(Figure 30, right). The first order model, however, does rank best for the weekly count
level. Again, the DS of power models is lower than that of baseline models. This is readily
apparent in Figure 32, in which the scale necessary to visualize the autoregressive and
first order models makes it difficult to see and interpret the power models.
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Figure 30: Time series of observed and mean predicted counts (left), fan box plots for
final count predictions (right) for models predicting the 2016 epidemic season.

Regions with medium to high counts are not limited to the largest cities in 2016
(Figure 38); several cities and counties have counts as high as or larger than that of
Munich. At the county level, we again observe unusually high p-values, this time for all
models except the endemic model.

The differences in plots of weekly scores from baseline and power models are visually
greater this year for the period from week 4 to 13 (Figure 31). The power models perform
best here. However, the power models and the first order model are heavily penalized for
underestimating in the first prediction week.
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Figure 31: Plotted weekly mDSS scores for models predicting the 2016 epidemic season.

Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 2.0276 1.7492 1.00 7 8.7184 5.0587 <0.0001 7
End + AR 2.0000 1.6931 1.00 6 6.1712 5.4554 0.095 5
First order 1.8276 1.2504 <0.0001 5 5.8221 4.6625 0.0007 1

Power 1.6331 1.0106 <0.0001 2 6.1543 4.2192 <0.0001 3
PL + pop 1.6246 0.9990 <0.0001 1 6.2361 4.1764 <0.0001 6

PL + dens 1.6340 1.0104 <0.0001 4 6.1529 4.2145 <0.0001 2
PL + urb 1.6335 1.0091 <0.0001 3 6.1595 4.2041 <0.0001 4

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 5.5338 4.1839 <0.0001 7 62.4449 7.5966 <0.0001 7
End + AR 5.4217 5.3252 1.00 6 9.9395 9.3882 0.29 6
First order 4.5616 4.3287 1.00 5 9.7897 8.7713 0.15 5

Power 4.3124 3.7349 0.10 3 9.1279 8.4015 0.23 2
PL + pop 4.3106 3.7218 0.074 1 9.0866 8.3441 0.22 1

PL + dens 4.3124 3.7361 0.10 4 9.1363 8.3936 0.22 3
PL + urb 4.3119 3.7355 0.10 2 9.1419 8.3764 0.22 4

Table 17: Multivariate Dawid-Sebastiani score, determinant sharpness, p-value, and rank
for 2016 predictions by each model at each data aggregation level.

51



0

2000

4000

6000

8000

10000

12000

Autoregressive

Week

C
ou

nt
s

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

0 5 10 15 20

0

2000

4000

6000

8000

10000

12000

First order

Week

C
ou

nt
s

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

0 5 10 15 20

0

2000

4000

6000

8000

10000

12000

Power law

Week

C
ou

nt
s

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

0 5 10 15 20

0

2000

4000

6000

8000

10000

12000

PL + population

Week

C
ou

nt
s

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

0 5 10 15 20

Figure 32: 2016 prediction fan plots for selected models: autoregressive, first
order, power, and population models.
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2017

The 2017 epidemic season is marked by the largest peak and final size, and peaks earlier
(week 6, median 8.5) than most years. This combination leads the power models, but also
the first order model, to severely overestimate the weekly and final counts (Figure 33, left
and right). Conditioning on such high counts as the 671 counts in the last week of 2016
leads these models to predict excessively large peaks. Nonetheless, the first order model
ranks best at the space-time and final count levels and the power models perform best
for aggregations over time or space (Table 18). In 2017, DS indicates one model to be
sharpest across all aggregation levels: the endemic model. Again we observe extremely
wide 98% prediction intervals (Figure 34) and unusually large p-values at the raw, time,
and space aggregation levels for almost all models.

Figure 33 (bottom) depicts high penalties for the endemic model underestimating
the early counts. It is worth noting that the autoregressive model and models with
spatial components perform poorly compared to the endemic model from week 6 on, but
for different reasons. The spatial models extremely overestimate the counts while the
variance of the autoregressive model is extremely large.

This is one of only two years in which the top model by average weekly, regional, and
univariate scores do not match the top model according to mDSS at the space-time level.
The space-time mDSS indicates the first order model performs best (Table 18), while the
average weekly, regional, and univariate scores point to the endemic, autoregressive, and
endemic models, respectively (Table 19).

Space-time Time
mDSS DS p-value rank mDSS DS p-value rank

Endemic 2.5498 1.9016 <0.0001 6 16.1832 5.1704 <0.0001 7
End + AR 2.5350 2.2979 1.00 2 7.8759 7.7054 1.00 6
First order 2.5143 2.3534 1.00 1 7.2352 7.1290 1.00 5

Power 2.5405 2.4311 1.00 3 6.3700 5.9867 0.76 3
PL + pop 2.5565 2.4533 1.00 7 6.3738 5.9690 0.70 4

PL + dens 2.5421 2.4327 1.00 4 6.3672 5.9830 0.76 2
PL + urb 2.5440 2.4354 1.00 5 6.3639 5.9771 0.75 1

Space Final
mDSS DS p-value rank mDSS DS p-value rank

Endemic 5.7695 4.3010 <0.0001 4 15.6201 7.6578 <0.0001 7
End + AR 6.0994 6.0061 1.00 7 11.9177 11.9104 0.90 2
First order 5.8722 5.7266 1.00 6 11.8133 11.5659 0.48 1

Power 5.7418 5.6111 1.00 1 12.6563 10.5606 0.041 3
PL + pop 5.7836 5.6658 1.00 5 12.8786 10.5789 0.032 6

PL + dens 5.7464 5.6169 1.00 2 12.6834 10.5601 0.039 4
PL + urb 5.7534 5.6261 1.00 3 12.7298 10.5587 0.037 5

Table 18: Multivariate Dawid-Sebastiani score, determinant sharpness, p-value, and rank
for 2017 predictions by each model at each data aggregation level.
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Endemic End + AR First order Power PL + pop PL + dens PL + urb
Weekly 2.5498 2.8437 2.7224 2.6820 2.6974 2.6837 2.6857

Regional 2.5498 2.5350 2.5531 2.5952 2.6111 2.5967 2.5986
Univariate 5.0995 5.6875 5.6048 5.6683 5.7011 5.6713 5.6751

Table 19: Mean weekly and regional multivariate Dawid-Sebastiani scores followed by
univariate Dawid-Sebastiani scores for 2017 predictions.
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Figure 33: Time series of observed and mean predicted counts (left), fan box plots for
final count predictions (right), and plotted weekly mDSS scores for models predicting the
2017 epidemic season.
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Figure 34: 2017 prediction fan plots for selected models: autoregressive, first
order, power, and population models.
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5.2 Effect of changes in conditioning week

Overestimation, as seen in the time series of counts in 2017, is also sometimes observed
when the conditioning week is changed. Figure 35 shows the effect changing conditioning
week has on predictions of the 2008 epidemic season. The black “week 0” time series plots
the original prediction conditioning on the last week of 2007. The rest of the predictions
condition on weeks 1-6 of 2008. Changing conditioning week has no effect on the endemic
model prediction (not shown) and only a relatively small effect on the prediction from
the autoregressive model. Conditioning on week 1 or 2 barely changes the autoregressive
model prediction at all and the maximum change (434 counts) in the weekly predictions
is a result of conditioning on week 5. For the models with a neighborhood component,
conditioning on week 4 causes the biggest change in predictions, with peak differences
of 1139, 1808, and 1935 counts for the first order, power, and population models. The
density and urbanicity model yield similar results to the power and population models.

Changes in conditioning week can also cause predicted counts to decrease. The di-
rection of the change is dependent on whether the conditioning week has higher or lower
counts than expected at that particular time. As evident in Figure 35, conditioning on
week 1 of 2008 causes the power and population models to predict slightly less than when
conditioning on week 0.

As earlier in this section, the results vary by year. In 2011, conditioning on one of the
first six weeks of the year results in predictions larger than or equal to those based on
the last week of 2010 (Figure 42). The predictions are successively larger until week 5 or
6, when the predictions decrease, but not yet to the level of the original prediction. The
increases are greatest for the power models.

In 2012 and 2014 the predictions based on weeks 1 through 6 are, however, always
smaller than the original prediction and each prediction is smaller than the last (Figures 43
and 45). In 2012 the predicted peak of the autoregressive model is always larger than the
observed peak, but for the other models the peak sinks below the observed. The 2014
season was extremely low, so even with changes in the conditioning week, no model’s
predicted peak sinks to the level of the observed peak.

For 2013, 2015, and 2016, predictions from the new conditioning weeks can fall above
or below the observed counts (Figures 44, 46, and 47). The long-term predictions based
on week 1 are smaller or similar to the observed for 2013 and 2015, but the predictions
rise with conditioning week, surpassing the observed. The opposite is observed in 2016, in
which the predictions conditioning on week 1 are larger than the observed and predictions
conditioning on the following weeks decrease and fall below the observed.

In 2017 the results are model-dependent (Figure 44). The autoregressive predictions
increase until conditioning on week 6. The first order, power, and population model
predictions for conditioning weeks 1 through 6 all successively decrease and all fall below
their original predictions. The scale of the changes reflects the scale of overestimation in
this year.

The long-term predictions are conditional on conditioning week Y·,t−1 and so the
dependence of the predictions on the values of the conditioning week is apparent. However,
as seen in Figures 35 and 42 - 48, the conditioning value can have a very large effect on
the resulting predictions. Single week changes in conditioning week sometimes lead to
vastly different predictions due to differences between the observed and the expected for
each week. When predicting on week three of 2008 (when counts start to approach peak
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Figure 35: Time series of 2008 influenza season long-term predictions based on vari-
ous conditioning weeks using the autoregressive (top-left), first order (top-right), power
(bottom-left) and population (bottom-right) models.

height), for example, instead of week 52 of the previous year, final count predictions for
all models increased, but excessively so for power models specifically.

6 Conclusion

In this analysis, long-term predictions were made using the analytical method outlined
in Held et al. (2017). While spatial components have been shown to lead to better fit,
their effects on out-of-sample predictions were little explored. Using proper scoring rule
methods, performance of various spatio-temporal model configurations were compared to
a model without spatial components and to models with simplistic spatial assumptions.
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The proposed long-term prediction method within the HHH4 framework was shown to be
an easy-to-implement alternative to simulation for obtaining probabilistic predictions of
infection incidence in time and space.

For 2008, power law models outperform baseline models when making predictions at
the finest data granularity, for the epidemic curve, and in space. Comparing performance
between the power law models, and to some extent comparing the results in general,
however, was difficult. Some way of deciding whether differences in score are actually
relevant could be helpful. In the case of 2008, the novel application of the multivariate
Dawid-Sebastiani score to data “slices” corroborated the positive results, yielding the
same model rankings as the score applied to the complete raw data and indicating that
all power models outperformed the baseline models.

Predictions for the 2008 epidemic season were based only on seven previous epidemic
seasons so similar analyses were run on an updated data set with more recent years.
Across the years, the power models generally outperform the baseline models at at least 2
of the 4 aggregation levels per year, however, they never perform better at all aggregations
in any given year. Only at the final count level do the baseline models outperform the
power models more often. The results from one year to the next were quite different.
There were no obvious patterns between characteristics of the epidemic season in relation
to seasons trained on, e.g., peak timing and peak height, and aggregation levels at which
power models performed better.

The extended analysis revealed two problems. First, incomplete reporting became
even more evident, as even counts from as early as 2001 were updated since data retrieval
in 2008. Reporting seems to have improved since the law was enacted in 2000, but regions
with zero counts for entire epidemic seasons still exist in the more recent years. Underre-
porting can occur at the community level, in which not all infected individuals seek care,
or the healthcare-level, in which there is a failure to adequately report cases. Methods
to deal with underreporting, such as multiplication factors, are often disease-, country-,
and age-specific (Gibbons et al., 2014). Within this dataset, rates of underreporting may
even be county-specific. Ongoing work, including inclusion of additional lags (Bracher
and Held, 2017), may help address difficulties due to underreporting.

Second, the inflexibility of the model regarding epidemic offset and peak time is evi-
dent: all models consistently predict season peaks at week 8 or 9 even though the peak
week varies from week 6 to week 11 and only two of the peaks from the 2011 through 2017
epidemic seasons occur within a week of the predicted peak. This inflexibility concerning
peak time combined with dependence of predictions on characteristics of the conditioning
week can lead all models considering space (including the baseline first order model) to
grossly overestimate the epidemic curve, as observed in 2017. Greater flexibility concern-
ing season offset and peak time could reduce the chance of excessively large predictions
such as found in 2017 by allowing the model to register that the high conditioning values
are a result of an early season, as opposed to early extremely high values indicative of
very large peak values. The models considered here only accounted for incidence from
the immediately preceding week. Additional lags in the model may also prevent excessive
peak counts.

The differences in scores for the various gravity models were difficult to interpret,
however, estimated weights for these models were found to be similar, suggesting that the
differences in scores may not be of great importance. The proposed gravity models should
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be applied to different data sets to explore their properties further. Additionally, there
may be ways to improve the urbanicity measure for use in southern Germany. We mention
how population fraction does not adequately distinguish between the urban character of
Fürth and Kelheim, however, urbanicity might also underestimate the urban character of
Fürth, which is now considered a part of the Nuremberg metropolitan area. The urban
character of Nuremberg may need to be considered when measuring urbanicity of Fürth, as
well as Erlangen and Schwabach. Goodall et al. (1998) discuss how measuring urbanicity
can be adapted for such large metropolitan areas. Inclusion of other easy-to-obtain data
on social structure, however, may result in larger improvements against the power law
model alone.
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7 Appendix

7.1 Fitting the models

The following code was used for fitting the models using the fluBYBW data. It draws
largely from the code of Michaela Paul and Sebastian Meyer, found in Paul and Held
(2011) and Meyer and Held (2014). The first lines set up the basic formulas for the
endemic, epidemic, and neighborhood components. This includes random effects for the
different regions and seasonality represented by the harmonic waves with frequency 2π/52.
The start values are taken by the model fits of Paul and Held (2011).

### basic formulas for the most complex model used in Held & Paul (2012)

f.S0 <- ~ -1 + ri(type="iid", corr="all")

f.S1 <- addSeason2formula(f = f.S0, S=1, period=52)

f.end.S3 <- addSeason2formula(

f = ~ -1 + ri(type="iid", corr="all") + I((t-208)/100),

S=3, period=52)

## start values for fixed and variance parameters taken from Paul's

## model fit (normalized first-order weights)

START <- list(fixed = c(0.8, 1.7, -2.4, # ar

0.8, 2.1, -3.1, # ne

0.5, 2.1, 2.2, 0.4, -0.6, 0.1, -0.1, 0.3,# endemic

0.1), # -log(overdisp)

sd.corr = c(-1, 0, -0.3, 0, 0.1, 0.6))

START$random <- {
set.seed(1)

rnorm(3*ncol(fluBYBW), sd=rep(exp(START$sd.corr[1:3]), each=ncol(fluBYBW)))

}
init.logd <- log(1.6) # as found by Brockmann et al (2006)

start.fixed.pl <- append(START$fixed, init.logd, after=length(START$fixed)-1)

This next section defines the models. First, a general control object is created which
defines the formulas to be used for each model component, the type of model to fit
(here, negative-binomial with a universal overdispersion parameter), and the data to use
for fitting. The other parts help to ensure convergence. Following this, each individual
model is specified. At the end, all models are fit together in parallel.

## basic control object

CONTROL <- list(ar = list(f=f.S1),

ne = list(f=f.S1),

end = list(f=f.end.S3, offset=population(fluBYBW)),
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family = "NegBin1",

subset = which(year(fluBYBW) %in% 2001:2007)[-1],

optimizer = list(stop = list(tol = 1e-05, niter = 100),

regression = list(method = "nlminb"),

variance = list(method = "Nelder-Mead")),

start = START, verbose = FALSE )

### control objects for the models: norm/raw x first-order/power-law

controls <- list(

# normalized first order model

norm1 = modifyList(CONTROL,list(

ne = list(normalize=TRUE)

)),

# normalized power law model

normPL = modifyList(CONTROL, list(

ne=list(weights = W_powerlaw(maxlag=MAXLAG, normalize=TRUE, log=TRUE

, initial=init.logd)) ,

start = list(fixed=start.fixed.pl)

))

)

# power law + population model

controls$PL.nePop <- modifyList(controls$normPL, list(

ne = list(f=update(controls$normPL$ne$f, ~ . + log(pop))),

data = list(t=epoch(fluBYBW)-1, pop=population(fluBYBW))

, start = list(fixed=append(controls$normPL$start$fixed, 1, after=5))

))

# power law + density model

controls$PL.neDens <- modifyList(controls$normPL, list(

ne = list(f=update(controls$normPL$ne$f, ~ . + log(PopDens))),

data = list(t=epoch(fluBYBW)-1,

PopDens= population(fluBYBW)/do.call(rbind,

replicate(416, t(as.matrix(fluBYBW@map@data$Gebietsflaeche)),

simplify=FALSE)))

, start = list(fixed=append(controls$normPL$start$fixed, 1, after=5))

))

# power law + urbanicity model

controls$PL.neUrb <- modifyList(controls$normPL, list(

ne = list(f=update(controls$normPL$ne$f, ~ . + log(Urb))),

data = list(t=epoch(fluBYBW)-1,

Urb=do.call(rbind,

replicate(416, t(as.matrix(fluBYBW@map@data$max)),

simplify=FALSE)))

, start = list(fixed=append(controls$normPL$start$fixed, 1, after=5))

))

# endemic model
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controls$endemic <- modifyList(CONTROL, list(

ar = NULL, ne = NULL

, start = list(fixed=START$fixed[-(1:6)],

random=matrix(START$random,ncol=3)[,3],

sd.corr=START$sd.corr[3])

))

# endemic+autoregressive model

controls$noNE <- modifyList(CONTROL, list(

ne = NULL

, start = list(fixed=START$fixed[-(4:6)],

random=c(matrix(START$random,ncol=3)[,c(1,3)]),

sd.corr=START$sd.corr[c(1,3,5)])

))

### Do all the fits in parallel

fit <- function (control) hhh4(fluBYBW, control)

flufits.RE <- mclapply(controls, fit, mc.preschedule=FALSE, mc.cores=4)
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7.2 Incidence maps for each year from 2001-2017

2001/1 − 2001/52

0.00 2.25 6.25 9.00 12.25 16.00 20.25 25.00 30.25 36.00 42.25 49.00

2002/1 − 2002/52

0 1 4 9 16 25 36 49 64

2003/1 − 2003/52

0 4 9 16 25 36 49 64 81 100 121 144 169 196 225

2004/1 − 2004/52

0.00 4.00 9.00 12.25 16.00 20.25 25.00 30.25 36.00 42.25 49.00 56.25

2005/1 − 2005/52

04 16 36 64 100 144 196 256 324

2006/1 − 2006/52

0 4 9 16 25 36 49 64 81 100 121 144

Figure 36: Total incidence per county per year (2001-2006)
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2007/1 − 2007/52

0 16 36 64 100 144 196 256 324 400 484 0 16 36 64 100 144 196 256 324 400 484 576

2009/1 − 2009/52
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2010/1 − 2010/52

0 25 100 225 400 625 900 1225
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0 25 100 225 400 625 900 1225

2012

0 1636 64 100 144 196 256 324 400 484 576 676 784

Figure 37: Total incidence per county per year (2007-2012)
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2013

0 25 100 225 400 625 900 1225

2014

0 16 36 64 100 144 196 256 324 400

2015

0 100 225 400 625 900 1225 1600

2016

0 16 36 64 100 144 196 256 324 400 484 576

2017

0 100 225 400 625 900 1225 1600

Figure 38: Total incidence per county per year (2013-2017)
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7.3 Fanplots for models predicting 2008 incidence
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Figure 39: Prediction fan plots for baseline models: endemic, autoregressive, and first order models.
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Figure 40: Prediction fan plots for power models: power, population, density, and urbanicity models.

71



72



7.4 Maps of predicted incidence in 2008 for each model

2008 observations

0 16 36 64 100 144 196 256 324 400 484 576

2008 predictions: Endemic
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2008 predictions: Autoregressive

0 16 36 64 100 144 196 256 324 400

2008 predictions: First order
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2008 predictions: Power law
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2008 predictions: PL + density
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Figure 41: Observed counts (top left) and predicted counts by model for 2008
epidemic season.
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7.5 Long-term predictions based on various conditioning weeks for selected
models.
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Figure 42: 2011 long-term predictions based on various conditioning weeks for selected models.
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Figure 43: 2012 long-term predictions based on various conditioning weeks for selected models.
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Figure 44: 2013 long-term predictions based on various conditioning weeks for selected models.
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Figure 45: 2014 long-term predictions based on various conditioning weeks for selected models.
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Figure 46: 2015 long-term predictions based on various conditioning weeks for selected models.
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Figure 47: 2016 long-term predictions based on various conditioning weeks for selected models.
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Figure 48: 2017 long-term predictions based on various conditioning weeks for selected models.
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7.6 Additional tables

2011
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Weekly 1.6696 1.6677 1.6271 1.5941 1.5708 1.5384 1.5913
Regional 1.6696 1.5135 1.5102 1.5419 1.5233 1.4796 1.5391

Univariate 3.3392 3.3355 3.3925 3.4297 3.3798 3.3163 3.4241

2012
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Weekly 2.7323 3.0511 3.4802 3.0936 3.0723 4.0871 3.1218
Regional 2.7323 2.8909 3.3946 3.0513 3.0343 4.0475 3.0819

Univariate 5.4647 6.1022 7.0718 6.3460 6.3144 8.4918 6.4131

2013
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Weekly 1.7369 1.9205 1.7555 1.6945 1.6817 1.6953 1.6928
Regional 1.7369 1.7711 1.6481 1.5940 1.5849 1.5946 1.5928

Univariate 3.4738 3.8410 3.5795 3.4564 3.4300 3.4575 3.4517

2014
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Weekly 1.8466 1.8458 1.4169 1.1623 1.1614 1.1646 1.1624
Regional 1.8466 1.6496 1.3315 1.1691 1.1716 1.1713 1.1721

Univariate 3.6932 3.6916 2.9547 2.4934 2.4874 2.4978 2.4934

2015
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Weekly 3.6607 4.3675 4.6005 5.0029 4.8855 4.9910 4.9591
Regional 3.6607 4.0271 4.3684 4.6833 4.5665 4.6714 4.6399

Univariate 7.3214 8.7350 9.1391 10.3854 10.1553 10.3625 10.2997

2016
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Weekly 2.0276 2.2017 1.9490 1.7466 1.7389 1.7472 1.7464
Regional 2.0276 2.0000 1.8329 1.6348 1.6263 1.6358 1.6354

Univariate 4.0551 4.4034 3.9780 3.5696 3.5522 3.5709 3.5694

2017
Endemic End + AR First order Power PL + pop PL + dens PL + urb

Weekly 2.5498 2.8437 2.7224 2.6820 2.6974 2.6837 2.6857
Regional 2.5498 2.5350 2.5531 2.5952 2.6111 2.5967 2.5986

Univariate 5.0995 5.6875 5.6048 5.6683 5.7011 5.6713 5.6751

Table 20: Mean weekly and mean regional mDSS and mean univariate DSS for the epi-
demic seasons of 2011 to 2017.
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Space-time rank Time rank Space rank Final rank
2011

Endemic 3.3392 3 24.9225 7 10.4206 7 27.3248 7
End + AR 3.3355 2 16.9487 6 9.5367 6 17.9952 1
First order 3.3925 5 15.5331 5 9.4539 5 18.3721 3

Power 3.4297 7 14.2307 1 9.3566 2 18.7633 6
PL + pop 3.3798 4 14.6004 3 9.3217 1 18.6406 4
PL + dens 3.3163 1 14.6592 4 9.4207 4 18.2077 2
PL + urb 3.4241 6 14.4436 2 9.3661 3 18.6957 5

2012

Space-time rank Time rank Space rank Final rank

Endemic 5.4647 1 23.0400 4 9.8966 7 125.1489 7
End + AR 6.1022 2 26.0770 5 9.5720 6 20.6697 6
First order 7.0718 6 35.1202 6 8.5685 3 19.0442 2

Power 6.3460 4 21.8731 1 8.6060 4 19.1189 4
PL + pop 6.3144 3 22.3579 2 8.5551 1 19.2009 5
PL + dens 8.4918 7 43.0619 7 9.0187 5 15.0844 1
PL + urb 6.4131 5 22.4614 3 8.5586 2 19.0972 3

2013

Endemic 3.4738 5 10.4043 1 10.3472 2 17.8281 6
End + AR 3.8410 7 11.6970 7 10.2053 1 18.5024 7
First order 3.5795 6 11.4783 6 10.5375 3 17.5361 5

Power 3.4564 3 11.1969 5 11.1192 6 17.3324 4
PL + pop 3.4300 1 11.1730 2 10.8829 4 17.2820 1
PL + dens 3.4575 4 11.1933 4 11.1224 7 17.3223 3
PL + urb 3.4517 2 11.1879 3 11.0803 5 17.3044 2

2014

Space-time rank Time rank Space rank Final rank

Endemic 3.6932 7 23.5667 7 12.1411 7 211.6217 7
End + AR 3.6916 6 18.5190 6 10.3878 6 23.3989 1
First order 2.9547 5 17.0628 5 9.4207 5 26.9003 6

Power 2.4934 2 13.3782 1 8.7764 3 23.6774 2
PL + pop 2.4874 1 13.4456 3 8.7468 1 24.3537 5
PL + dens 2.4978 4 13.4050 2 8.7779 4 23.7915 3
PL + urb 2.4934 3 13.4635 4 8.7756 2 24.0506 4

Table 21: Univariate Dawid-Sebastiani scores and ranks for each combination of model,
aggregation level, and year from 2011 to 2014.
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Space-time rank Time rank Space rank Final rank
2015

Space-time rank Time rank Space rank Final rank

Endemic 7.3214 1 14.4921 3 13.2583 3 15.3243 1
End + AR 8.7350 2 12.7117 1 10.7864 1 19.3663 3
First order 9.1391 3 13.5178 2 11.2525 2 19.1356 2

Power 10.3854 7 16.6709 4 17.3160 5 22.1436 4
PL + pop 10.1553 4 17.2113 7 17.3339 7 22.5425 7
PL + dens 10.3625 6 16.7483 5 17.3149 4 22.1753 5
PL + urb 10.2997 5 16.9074 6 17.3223 6 22.2956 6

2016

Endemic 4.0551 6 17.4369 7 11.0676 7 124.8898 7
End + AR 4.4034 7 14.4324 6 10.8434 6 19.8791 6
First order 3.9780 5 13.4617 5 9.5897 5 19.5793 5

Power 3.5696 3 11.9537 2 8.9672 2 18.2558 2
PL + pop 3.5522 1 11.9267 1 8.9415 1 18.1731 1
PL + dens 3.5709 4 11.9548 4 8.9685 4 18.2726 3
PL + urb 3.5694 2 11.9538 3 8.9674 3 18.2839 4

2017

Endemic 5.0995 1 32.3664 7 11.5390 1 31.2401 7
End + AR 5.6875 6 16.7076 6 12.1987 2 23.8355 2
First order 5.6048 2 15.7911 1 12.3464 3 23.6265 1

Power 5.6683 3 15.8920 2 12.9879 4 25.3125 3
PL + pop 5.7011 7 16.2045 5 13.1240 7 25.7572 6
PL + dens 5.6713 4 15.9217 3 13.0002 5 25.3669 4
PL + urb 5.6751 5 15.9753 4 13.0218 6 25.4596 5

Table 22: Univariate Dawid-Sebastiani scores and ranks for each combination of model,
aggregation level, and year from 2015 to 2017.
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Endemic Neighborhood
log index index inverse binary log index index inverse binary

Power
SK München 3.3281 3.3280 3.3281 3.3282 3.3280 3.3278 3.3284 3.3291
SK Stuttgart 2.2080 2.2081 2.2080 2.2079 2.2079 2.2083 2.2076 2.2074
SK Nürnberg 1.7266 1.7233 1.7289 1.7310 1.7324 1.7331 1.7320 1.7318
SK Mannheim 1.0185 1.0186 1.0190 1.0205 1.0227 1.0249 1.0203 1.0165
SK Augsburg 0.9585 0.9584 0.9584 0.9579 0.9577 0.9584 0.9572 0.9567

SK Fürth 0.2952 0.2994 0.2920 0.2885 0.2870 0.2854 0.2880 0.2888
SK Karlsruhe 0.6445 0.6435 0.6455 0.6470 0.6501 0.6504 0.6499 0.6497
SK Rosenheim 0.6461 0.6422 0.6481 0.6488 0.6423 0.6430 0.6434 0.6494
SK Regensburg 0.3242 0.3244 0.3238 0.3228 0.3224 0.3229 0.3221 0.3217
SK Schweinfurt 0.0169 0.0172 0.0163 0.0152 0.0146 0.0153 0.0140 0.0132

Power + population
SK München 3.3010 3.3002 3.3014 3.3016 3.3011 3.3009 3.3012 3.3013
SK Stuttgart 2.2214 2.2215 2.2213 2.2212 2.2212 2.2212 2.2212 2.2212
SK Nürnberg 1.7301 1.7262 1.7328 1.7355 1.7367 1.7367 1.7367 1.7365
SK Mannheim 1.0105 1.0090 1.0124 1.0158 1.0166 1.0168 1.0162 1.0155
SK Augsburg 0.9716 0.9715 0.9713 0.9707 0.9707 0.9707 0.9707 0.9707

SK Fürth 0.2973 0.3030 0.2931 0.2885 0.2885 0.2887 0.2884 0.2883
SK Karlsruhe 0.6804 0.6791 0.6818 0.6840 0.6862 0.6862 0.6861 0.6860
SK Rosenheim 0.7172 0.7126 0.7189 0.7178 0.7128 0.7119 0.7139 0.7167
SK Regensburg 0.3117 0.3117 0.3114 0.3106 0.3109 0.3109 0.3109 0.3108
SK Schweinfurt 0.0193 0.0194 0.0190 0.0184 0.0179 0.0180 0.0179 0.0177

Power + density
SK München 3.2976 3.2974 3.2976 3.2975 3.2918 3.2914 3.2924 3.2936
SK Stuttgart 2.2067 2.2067 2.2068 2.2069 2.2047 2.2048 2.2048 2.2055
SK Nürnberg 1.7260 1.7219 1.7286 1.7315 1.7317 1.7317 1.7317 1.7320
SK Mannheim 1.0139 1.0140 1.0144 1.0159 1.0031 1.0063 1.0012 1.0006
SK Augsburg 0.9636 0.9634 0.9635 0.9631 0.9611 0.9612 0.9612 0.9615

SK Fürth 0.2677 0.2720 0.2645 0.2608 0.2613 0.2619 0.2606 0.2594
SK Karlsruhe 0.6478 0.6468 0.6488 0.6505 0.6523 0.6522 0.6525 0.6528
SK Rosenheim 0.5653 0.5604 0.5681 0.5696 0.5438 0.5412 0.5490 0.5624
SK Regensburg 0.3311 0.3312 0.3306 0.3297 0.3289 0.3287 0.3289 0.3291
SK Schweinfurt 0.0239 0.0242 0.0233 0.0222 0.0198 0.0201 0.0196 0.0193

Power + urbanicity
SK München 3.2721 3.2714 3.2723 3.2723 3.2624 3.2602 3.2645 3.2677
SK Stuttgart 2.2046 2.2044 2.2047 2.2048 2.2020 2.2016 2.2025 2.2037
SK Nürnberg 1.7231 1.7190 1.7260 1.7290 1.7292 1.7292 1.7292 1.7291
SK Mannheim 1.0092 1.0087 1.0101 1.0119 0.9883 0.9895 0.9889 0.9926
SK Augsburg 0.9662 0.9660 0.9661 0.9657 0.9636 0.9633 0.9639 0.9643

SK Fürth 0.2605 0.2651 0.2570 0.2530 0.2578 0.2592 0.2565 0.2547
SK Karlsruhe 0.6518 0.6506 0.6531 0.6552 0.6573 0.6569 0.6576 0.6579
SK Rosenheim 0.5795 0.5735 0.5827 0.5843 0.5621 0.5526 0.5720 0.5895
SK Regensburg 0.3307 0.3308 0.3303 0.3293 0.3282 0.3279 0.3284 0.3286
SK Schweinfurt 0.0244 0.0248 0.0238 0.0226 0.0189 0.0191 0.0189 0.0191

Table 25: Regional mDSS for 10 densest regions
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Endemic Neighborhood
log index index inverse binary log index index inverse binary

Power
LK Amberg-Sulzbach 0.5796 0.5796 0.5797 0.5800 0.5802 0.5805 0.5800 0.5800

LK Garmisch-Partenkirchen 0.1179 0.1169 0.1191 0.1213 0.1253 0.1257 0.1250 0.1245
LK Bayreuth 0.1731 0.1723 0.1735 0.1736 0.1729 0.1733 0.1734 0.1761

LK Rhön-Grabfeld 0.2137 0.2140 0.2134 0.2130 0.2134 0.2128 0.2140 0.2150
LK Regen 0.8664 0.8662 0.8665 0.8665 0.8667 0.8671 0.8665 0.8663

LK Freyung-Grafenau 1.7805 1.7952 1.7610 1.7257 1.6577 1.6546 1.6602 1.6655
SK Straubing 0.1005 0.1007 0.0997 0.0980 0.0965 0.0958 0.0974 0.0985

LK Neustadt/Aisch 0.5028 0.5027 0.5025 0.5019 0.5017 0.5023 0.5012 0.5005
LK Tirschenreuth 0.2523 0.2518 0.2531 0.2542 0.2569 0.2566 0.2574 0.2586

LK Neustadt a.d.Waldnaab 1.9328 1.9326 1.9339 1.9357 1.9382 1.9407 1.9362 1.9335
Power + population

LK Amberg-Sulzbach 0.5661 0.5650 0.5666 0.5667 0.5659 0.5657 0.5661 0.5665
LK Garmisch-Partenkirchen 0.1403 0.1386 0.1422 0.1456 0.1482 0.1483 0.1481 0.1478

LK Bayreuth 0.2054 0.2047 0.2057 0.2056 0.2054 0.2050 0.2058 0.2069
LK Rhön-Grabfeld 0.2079 0.2084 0.2075 0.2070 0.2075 0.2074 0.2076 0.2079

LK Regen 0.8702 0.8692 0.8715 0.8736 0.8748 0.8749 0.8746 0.8741
LK Freyung-Grafenau 1.7719 1.7964 1.7450 1.7019 1.6606 1.6604 1.6607 1.6614

SK Straubing 0.1757 0.1757 0.1752 0.1742 0.1745 0.1745 0.1745 0.1742
LK Neustadt/Aisch 0.5069 0.5067 0.5068 0.5065 0.5068 0.5069 0.5068 0.5066
LK Tirschenreuth 0.1896 0.1887 0.1903 0.1914 0.1937 0.1935 0.1939 0.1943

LK Neustadt a.d.Waldnaab 1.9534 1.9524 1.9549 1.9569 1.9570 1.9571 1.9568 1.9563
Power + density

LK Amberg-Sulzbach 0.5904 0.5903 0.5904 0.5906 0.5905 0.5900 0.5910 0.5920
LK Garmisch-Partenkirchen 0.1211 0.1202 0.1224 0.1247 0.1272 0.1277 0.1269 0.1264

LK Bayreuth 0.1953 0.1946 0.1956 0.1955 0.1975 0.1949 0.2007 0.2071
LK Rhön-Grabfeld 0.2079 0.2082 0.2075 0.2070 0.2087 0.2079 0.2093 0.2098

LK Regen 0.8741 0.8739 0.8742 0.8744 0.8733 0.8733 0.8733 0.8736
LK Freyung-Grafenau 1.8336 1.8522 1.8109 1.7706 1.7205 1.7164 1.7236 1.7279

SK Straubing 0.0856 0.0857 0.0848 0.0829 0.0822 0.0807 0.0832 0.0838
LK Neustadt/Aisch 0.5042 0.5041 0.5041 0.5035 0.5007 0.5009 0.5006 0.5009
LK Tirschenreuth 0.2598 0.2593 0.2604 0.2614 0.2663 0.2650 0.2672 0.2684

LK Neustadt a.d.Waldnaab 1.9803 1.9803 1.9806 1.9823 1.9776 1.9788 1.9765 1.9762
Power + urbanicity

LK Amberg-Sulzbach 0.5927 0.5923 0.5929 0.5931 0.5915 0.5903 0.5925 0.5942
LK Garmisch-Partenkirchen 0.1220 0.1209 0.1235 0.1261 0.1273 0.1277 0.1270 0.1267

LK Bayreuth 0.2066 0.2062 0.2066 0.2063 0.2095 0.2059 0.2129 0.2189
LK Rhön-Grabfeld 0.2041 0.2045 0.2037 0.2032 0.2056 0.2047 0.2062 0.2066

LK Regen 0.8776 0.8773 0.8779 0.8783 0.8758 0.8759 0.8758 0.8761
LK Freyung-Grafenau 1.8083 1.8305 1.7820 1.7364 1.6896 1.6886 1.6901 1.6916

SK Straubing 0.0896 0.0896 0.0887 0.0866 0.0901 0.0879 0.0912 0.0910
LK Neustadt/Aisch 0.5052 0.5050 0.5050 0.5044 0.5006 0.5006 0.5009 0.5015
LK Tirschenreuth 0.2525 0.2519 0.2531 0.2541 0.2573 0.2557 0.2584 0.2598

LK Neustadt a.d.Waldnaab 2.0176 2.0181 2.0179 2.0191 2.0083 2.0095 2.0077 2.0082

Table 26: Regional mDSS for 10 least dense regions
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