
Risk factor study of pododermatitis in rabbits

using additive Bayesian networks

Master Thesis in Biostatistics (STA495)

by

Andrea Meier

12-724-373

supervised by

Prof. Dr. Reinhard Furrer

Dr. Sonja Hartnack, Section of Epidemiology UZH

Zurich, March 2017





Acknowledgement

I would like to thank to my thesis supervisors Prof. Dr. Reinhard Furrer, Department
of Mathematics and Dr. Sonja Hartnack, Section of Epidemiology from the University
of Zurich. The door was always open whenever I ran into problems or had a question
about my research or writing. The nicely balanced mix between steering the project in
a good direction and allowing me to do my work in an own manner made the process of
accomplishing this thesis a very pleasant and enjoyable one.

I would also like to thank to Sabrina Ruchti and Dr. Sabine G. Gebhardt-Henrich from
the Animal Welfare Division of the Veterinary Public Health Institute of the University of
Bern for sharing their research and data with us. This cooperation gave me the possibility
to have access to a very interesting and relevant research question with an elaborated and
profound data basis.

This collaboration between three Institutes and two Universities had only become
possible thanks to Dr. Sonja Hartnack and the plain cooperation of all the involved
persons.

I would also like to acknowledge to Gilles Kratzer, Doctoral student in Epidemiology
and Biostatistics at the University of Zurich, for sharing his science with me. With his
knowledge and his own research about the technique of additive Bayesian networks and his
changes and additions in the implementation of the R package abn he was an important
contact person with very helpful and interesting advises. I’m very grateful for his valuable
comments on this thesis.

Finally, I must express my very profound gratitude to my fellow students, my parents
and my boyfriend for providing me with tireless support, great collaboration and continu-
ous encouragement throughout my years of study and through the process of researching
and writing this thesis. This accomplishment would not have been possible without you.

Thank you.

Andrea Meier





Contents

1 Introduction 1

2 Study and Data Description 3

3 Methods 11
3.1 Additive Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 ABN: a more statistical approach . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Analysis and Results 19
4.1 Additive Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Regression approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Technical Remarks on the R Package abn 29
5.1 Peculiar posterior densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Error with random effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Interpretational difficulties and lack of documentation . . . . . . . . . . . . 32

6 Conclusion and Discussion 33

Bibliography 37

A Appendix 39





Chapter 1

Introduction

In commercial rabbit production pododermatitis is a common and severe disease with a
relevant implication for the affected animals. Pododermatitis, also called foot pad lesion,
is a chronic skin disease that mainly appears on the plantar surface of the rabbits hind
pad, but it can also be present on the front legs. Pododermatitis leads through several
stages and normally starts with hair loss and callus formation and ends with open wounds
and ulcers. Foot pad lesions are associated with pain [Rommers and de Jong, 2009], imply
impaired animal welfare and are a cause for the culling of reproductive female rabbits on
commercial farms. Pododermatitis is a multifactorial disease and different factors have to
be considered to have an effect on the occurrence of the lesions.

The project was conducted within the framework of the testing and authorization
procedure for housing systems and equipment, in particular for pens and floors for group
housed rabbit. Cage systems with wire mesh floors are dominating in European rabbit
housing. In Switzerland group housing of breeding rabbits in pens with slatted plastic
floors and straw bedding offers an alternative and better fulfills the animals’ behavioral
needs. However, foot pad lesions also occur in these husbandry systems. Until today there
is a lack of comprehensive data on foot pad lesions in group housed breeding rabbits in
Switzerland. The identification of possible risk factors and information on severity and
prevalence is important in view of developing preventive measures.

The aim of this thesis was to identify possible risk factors of pododermatitis in group
housed breeding rabbits in Switzerland.

To achieve this goal the technique of additive Bayesian networks (ABN) was used. The
advantage of Bayesian network analysis is that it not only identifies statistically associated
variables but also distinguishes between direct and indirect dependencies between the
variables. Additionally Bayesian network analysis is appropriate to complex and messy
data and can handle multiple dependent variables quite well. The results of the additive
Bayesian network analysis were compared to the results of an analysis with random forest
and generalized linear regression. As additive Bayesian network analysis is a rather new
methodology in epidemiological research this thesis aimed to establish this technique and
find out potential difficulties when working with real-life data.
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Chapter 2

Study and Data Description

This master thesis was done in collaboration with the Animal Welfare Division from the
Veterinary Public Health Institute of the University of Bern. Data used for this thesis
were collected between June and September 2016. The animal experiment authorization
number was BE8/14.

The study included 17 out of 18 existing commercial rabbit farms with group hous-
ing of female rabbits from the production group “KaniSwiss” (www.kani-swiss.ch) in
Switzerland. The population of female rabbits from these 17 farms was estimated as 3500
animals of which a third were assessed. Thus the data set used for this analysis comprises
a total number of 1090 animals which are kept together in pens of six to ten animals.
During the visits of the farms data specific to the single animal to the particulate farm
were assessed resulting in a hierarchical structure of our data. Whereas variables on farm
level have the same value for several animals, variables on animal level are specific for
each individual and however can be assigned to a group, respectively to a farm in our
case.

For each assessed animal the pododermatitis score, some information about the general
condition of the animal and additional factors potentially associated with pododermatitis
were examined. Figure 2.1 shows the number of assessed animals per farm. The number
differs between 25 and 126.
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Figure 2.1: Number of recorded animals per farm.
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Table 2.1: Overview about variables included into the analysis, where all variables until
Moist were on animal level and after Moist on farm level. The color indicates the used
distribution in the analysis, where dark blue stands for Poisson, light blue for Gaussian
and grey for Binomial. For the binary variables the basis category is emphasized by the
wavy line.

Variable Details
PDmeanmiddle Mean of the pododermatitis scores from the middle spot
PDworst Worst pododermatitis score of all measured spots
Weight Body weight of the animal in kilograms
Age Age of the animal in months
Claws Condition of claws,

::::::::
normal or too long

Clean Cleanliness of paws,
::::::
clean or dirty

Moist Moisture of paws,
:::
dry or moist

Holes Average number of holes found in one pen
Gnaw Average percentage of slats in one pen, where more than a third of

the slat-area is gnawed
Wet Average sum of normalized wet areas on litter and nest roofs in one

pen in square centimeter
WaterSpillLitt Water spilling on litter,

::
no or yes

RH Average relative humidity in barn over one day in percentage
Temp Average temperature in barn over one day in degree Celsius
Experience Experience of the farm manager in years
Mortality Percentage of dead and culled animals in one year
LittChanInt Time interval of total replacement of litter material in days
TotalNoRabbit Total number of rabbits on the farm

Per farm between two and five pens were chosen in a stratified way regarding their
position in the barn and taken as representative for the farm. For each assessed pen
data about the condition of the slats and the litter were collected. For the analysis these
exemplary values were averaged, so resulting in one value per farm.

Together with the farmer a questionnaire was filled out to determine further animal
and farm management based parameters potentially associated with pododermatitis.

Out of all collected variables, the most meaningful for pododermatitis were chosen
based on existing literature and expert opinion. Table 2.1 gives an overview about the
variables, which were included into the analysis. Table 2.2 and 2.3 show the descriptive
statistics about all these variables.

The pododermatitis score for the hind paw was assessed with a tagged visual-analogue
scale adapted to the scale by Drescher and Schlender-Böbbis [1996]. Based on 6 stages
of the disease, which are described by images and medical properties, a cross was made
on a continuous scale from 1 to 6. This cross was than transformed to a score from 0
to 10, measured in centimeters whereas the whole scale was exactly 10 cm. Figure 2.2
shows the 6 stages as well as the transformation scale. The heel and the middle part of
the hind paw were assessed separately, so for each animal four pododermatitis scores of
the hind paws were assessed. For the analysis we either took the worst pododermatitis
score of each animal (PDworst) or the mean score of the two values from the middle part
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Figure 2.2: Tagged visual-analogue scale adapted from Drescher and Schlender-Böbbis
[1996]

(PDmeanmiddle). We decided so because the correlation between the left and the right
score from the middle was bigger than between the scores from the heel, see Figure 2.3a.
Additionally we found a higher dispersion in the scores from the middle, see Figure 2.3b.
This may be due to the fact that the heel almost always has some thickened skin and is
hairless due to normal attrition and not specifically due to pododermatitis.

Figure 2.4 visualizes the occurrence of the mean scores of the two pododermatitis
values from the middle part. A high occurrence of PDmeanmiddle values equal to zero
was detected. This excess of zeros is not expected by a normal distribution. However,
the amount of zeros could be traced back to a property of disease determination. If
determining a disease first of all the investigator had to decide whether the disease is
present or not. If the disease was present the severity and magnitude can be defined.
This was done with the tagged visual-analogue scale and this led to a nicely dispersed
variable. If the disease was not present, the value was just equal to zero. When first of
all a binary decision has to be made this leads automatically to such an artifact. It would
be interesting to work with a zero inflated model or a hurdle model, which could take
into account such a superset of zeros, unfortunately ABN had not yet the possibilities to
do so. Another possibility to handle such a distribution would be to simple divide the
scores in two groups, a group where the disease was present and one where it was not, and
then use a Binomial distribution to model it. However, such an approach would lead to
a big loss of information. Therefore, the variable PDmeanmiddle was treated as a normal
continuous Gaussian variable.

Figure 2.5 visualizes the occurrence of the worst pododermatitis scores. There was no
occurrence of too many zeros but there were a lot of values around 4 and the distribution
is a bit skewed to the right. Additionally there was a gap of values greater than 5 and
smaller than 6.5. We had only little explanation what could cause this artifacts. Perhaps
the chance of having a lesion with a higher score when having already a lesion which is
above 5 is very high and accordingly the chance of having a more severe lesion if all other
lesions are around or below 4 is very low. Or maybe this represents a weakness of the
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Figure 2.3: Correlation and dispersion of the pododermatitis scores, where PDHRM =
pododermatitis hind paw right middle, PDHRH = pododermatitis hind paw right heel,
PDHLM = pododermatitis hind paw left middle and PDHLH = pododermatitis hind paw
left heel.
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Figure 2.4: Occurrence and distribution of the mean scores of pododermatitis from the
middle part of the hind paws.
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Figure 2.5: Occurrence and distribution of the worst pododermatitis scores.
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Figure 2.6: Dispersion of Age on the distinct farms. The values above the boxes indicate
the number of animals where Age was recorded. The number below the boxes show the
proportion of the number of animals with recorded Age to the total number of recorded
animals per farm.

tagged visual-analogue scale where the area between 5 and 6.5 only covers a few disease
stages, whereas at the area at 4 an important and common breaking point is present.
As mentioned, these are only possible presumptions, the exact reason was unclear to us.
Nevertheless, the variable PDworst was also handled as a continuous Gaussian variable in
all further analysis.

The variable Age unfortunately included a lot of missing values, because some farmers
do not record the age of their animals. However, as the age often interacts as a very
important confounder regarding some diseases, we decided to split up the analysis into
two parts, one with and one without the variable Age. When including Age, our data
set was reduced to 661 animals. Additionally this led to a decrease in the number of
included farms. The data set with Age included only animals coming from 11 distinct
farms. Figure 2.6 illustrates the dispersion and the availability of the data about the
age of the animals. In this figure we see that the age distribution of the animals is quite
divers. Farm 12 has no animals older than 10 months, many farms have the upper quartile
below or around 20 months and only some farms keep quite old rabbits. Fortunately we
can conclude that missing respectively existing age values are completely at random and
have no connection at all to the age value itself or the pododermatitis score. Farmers
have animals of different age classes and a farmer normally records the age of all or none
animal. Missing values from farmers which normally record the age, see percentage values
below the bars in Figure 2.6, are due to undiscoverable identification cards or lost ear
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tags. The only exception is farmer 8, which only knew the age of five young animals (20%
of his recorded animals). Nevertheless, a missing completely at random can be assumed
for the variable Age and hence a complete case analysis can be savely conducted.

The variable Weight included the body weight of each individual animal. Accordingly
to Table 2.2 the average body weight of all rabbits was 4.9 kg. For each animal it was
also recorded whether the claws appeared unusually long (Claws) and whether the paws
were clean (Clean) and moist (Moist).

Moisture level of the litter is considered as one possible cause of pododermatitis [Bigler
and Oester, 2003] and therefore it was noted whether waste water from the drinker was
spilling on the litter (WaterSpillLitt) and how many and how large wet areas exist in one
pen (Wet). A glimpse at the Table 2.2 shows the big variation of existing wet areas among
the distinct farms. Another possible cause could be physical damage of the foot pads by
rough or damaged parts of the plastic slats [Andrist et al., 2013]. Therefore, it was noted
whether traces of gnawing marks or even holes of the slats were present (Gnaw, Holes).
Also these variables show a rather big range of values, where many farms had no holes
at all in their slats one farm had on average 4 holes in one pen. Accordingly there was
a farm where on average 76% of all existing slats in one pen where gnawed in more than
a third of the slat-area. The mean value of Gnaw is 29%, indication that out of 10 slats
in one pen three slats were gnawed in more than a third of the slat-area. These were
the pen specific variables which are measured in the two to five exemplary pens and then
averaged to one value for all animals from a certain farm.

The relative humidity and the temperature within the barn were recorded during the
farm visit and thus the day differs for each farm. Comparison of the temperature and the
relative humidity between the farms has to be handled with caution. When looking at
the Table 2.2 the values of RH vary between 47 an 84% humidity and the temperatures
within the barns between 16 and 25 degree Celsius. The variables Experience, Mortality,
LittChanInt and TotalNoRabbit were assessed with the help of the questionnaire, which
was filled out together with the farmers. There existed farmers with very few experience,
the least experienced farmer was keeping rabbits only since 6 months. On the other hand
side there was a farmer with 30 years of experience. The variable Mortality represents the
turnover of rabbits in one year. Where some farmers replaced less than half of their rabbits
annually, other farmers replaced every animal even more than once a year, speaking in
means of a farm. According to the litter change interval, the litter is replaced in average
after six weeks, whereby this also differed between one and fifteen weeks. The total
number of animals of a farm differed between 88 and 618 animals, this number included
beside the reproductive female rabbits also younger female rabbits that are raised until
they reach sexual maturity to replace animals that died or got culled.

Due to big differences in the accuracy and the diligence of the answers and information
of one farmer compared with the others we decided to exclude this certain farm. This
concerns farm number 6 in our data set and accordingly 27 animals. These observations
are not taken into account in other figures and tables except Figure 2.1.
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Table 2.2: Descriptive statistics of continuous and count data (Experience, LittChanInt and
TotalNoRabbit), where n denotes the amount of existing values and #NA the amount
of missing values. These two columns always add up to the total of 1063 animals. Min
and Max show the minimal resp. maximal value of the variable. q1 and q3 give the
upper limit of the first resp. third quantile. x̃ display the median, x̄ the mean and s the
standard error of the variable.

Variable n #NA Min q1 x̃ x̄ q3 Max s
PDmeanmiddle 1048 15 0.00 3.00 3.95 3.72 4.60 8.50 1.75
PDworst 1057 6 0.00 4.00 4.40 4.73 5.10 8.50 1.26
Weight 1062 1 2.74 4.55 4.92 4.91 5.30 6.69 0.57
Age 661 402 4.00 8.00 12.00 13.54 18.00 43.00 7.04
Holes 1063 0 0.00 0.00 0.00 0.64 0.40 4.00 1.26
Gnaw 1063 0 0.00 0.10 0.20 0.29 0.46 0.76 0.26
Wet 1063 0 41.63 247.39 762.36 840.13 876.71 2241.81 690.55
RH 1063 0 47.34 67.27 73.76 72.06 77.65 84.40 7.44
Temp 1063 0 16.28 19.72 21.28 21.08 22.11 24.55 1.88
Experience 1063 0 0.50 6.00 7.00 10.33 13.00 30.00 8.00
Mortality 1063 0 11.00 48.03 93.75 84.00 118.50 180.00 45.73
LittChanInt 1063 0 7.00 28.00 40.00 39.96 42.00 105.00 21.73
TotalNoRabbit 1063 0 88.00 160.00 285.00 322.85 460.00 618.00 166.44

Table 2.3: Descriptive statistics of categorical data, where n denotes the absolute and %
the relative amount of animals in each level.

Variable Levels n %
Claws normal 625 59.1

too long 433 40.9
all 1058 100.0

WaterSpillLitt no 694 65.3
yes 369 34.7
all 1063 100.0

Clean clean 721 67.9
dirty 341 32.1
all 1062 100.0

Moist dry 603 56.8
moist 459 43.2
all 1062 100.0
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Chapter 3

Methods

3.1 Additive Bayesian networks

The focus of the analysis was on the work with additive Bayesian networks. Additive
Bayesian networks (ABN) are a special type of Bayesian networks. A Bayesian network is a
graphical model, where the graph expresses the conditional dependence structure between
random variables. The random variables are represented by the nodes, the conditional
dependencies by the edges. The edges are determined and drawn in a directed manner.
However, when interpreting the edges and speaking about conditional dependencies one
have to be aware of interpreting the direction as it can be misleading. The resulting graph
is also called directed acyclic graph (DAG), which indicates that no loops are allowed in
ABN. Figure 3.1 gives an example of such a simple DAG.

X1

X3

X2

X4

Figure 3.1: Example of a simple DAG.

The aim of Bayesian network analysis is to perform a model search on the given data
to identify the optimal model, which represents the conditional dependencies in the data
best. Hence a first advantage is that there is no need to define by an expert opinion
how the model should look like, but the model structure is defined by the analysis itself.
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Another advantage is that Bayesian network analysis is a multivariate technique without
a dimension reduction. Bayesian network analysis is well suited to complex and messy
data and can handle many dependent variables.

ABN is a special type of Bayesian network and involves two steps. First the best
Bayesian network is searched by scoring all possible networks. Secondly the parameter
estimation of the conditional dependencies are estimated with a generalized linear model
(GLM). Thus, the model parameters of ABN are not just conditional probabilities but the
additive components from generalized regression. The method of ABN is an analogous
to a multivariate GLM. This is distinct to the usual multivariable GLM where only one
response variable can be handled.

Searching for an optimal network is referred in the literature to structure learning
or structure discovery [Friedman and Koller, 2003]. Due to the super exponential search
space in order to the number of nodes this searching process is not an easy task and several
possible methods exists. For this thesis the established globally optimal search approach
by Koivisto and Sood [2004] was used, which is implemented in the used R package abn.
It performs an exhaustive search based on some node ordering. This approach identifies
a DAG whose goodness of fit is equal to the best possible goodness of fit of any DAG. As
a goodness of fit measure the marginal likelihood is used. This is the standard goodness
of fit measure in Bayesian modelling [MacKay, 1992] and includes an implicit penalty for
model complexity.

As ABN is a Bayesian approach, prior distributions must be defined. For this analysis
a uniform structural prior was used, which means that all DAG structures were equally
supported in the absence of any data. Also for the model parameters uninformative priors
were used. The current implementation of the used R package abn only supports Gaussian,
Binomial and Poisson distributed variables. This implies a recoding of multicategorical
variables into Binomial variables.

After finding an optimal DAG, the quality of this model needs to be checked. To do
so one have to look at each and every marginal posterior density. The marginal posterior
density specifies the model parameter for each existing edge in the model. This check
examines whether the data really contain sufficient information to accurately estimate all
model parameters. This is approved if the density is nicely bell shaped and hence has
a clear defined maximum and if the area under the curve integrates to 1, as this is a
prerequisite for a density. The mode, e.g. the X-value at which the probability density
function takes its maximum value, of the respective marginal posterior density specifies
the parameter estimate. Based on the marginal posterior densities a credible interval
can also be specified for each parameter. A 95% credible integral is defined by two real
numbers l and u that fulfill ∫ u

l

f(θ|x)dθ = 0.95.

A credible interval is similar to a confidence interval of a frequentist setting, but the
interpretation is much easier. Bayesian credible intervals allow the statement that the
unknown parameter lies in a certain credible interval with probability 0.95. If zero is not
included in the credible interval, we know with 95% probability that our parameter is
not zero and thus not meaningless. The concept of parameter significance can be based
on this. If the credible interval of a parameter includes zero, a parameter is set to be
non-significant. If zero is not included, a parameter can be seen as significant.
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The interpretation of the model parameters is based on the regression coefficient in-
terpretation from a GLM. Thus, comparing different model parameters is tricky as the
assumption of the error distribution does not coincide. Additionally the interpretation
and the scale of the model parameters differ depending if a node is set to be Gaussian,
Binomial or Poisson distributed.

The parameter of an arc pointing to a Binomial node is covered by a logit transfor-
mation and an appropriate back transformation is needed to speak about the regression
coefficient. This is analogous to the logistic regression. The crude coefficients are log odds
and can be interpreted as log odds ratios for state 1 of the binomial variable relative to
state 0, respectively basis category. When exponentiating them this results in odds ratios.
For continuous or count variables, the odds ratios are in respect of a 1-unit increase.

Parameters of an arc pointing to a Poisson node need no additional transformation
but are already on the parameter scale of the GLM.

A model parameter of an arc pointing to a Gaussian node represent the correlation
coefficient or the regression coefficient depending whether the centre option in the fitabn
function is set to TRUE (default) or FALSE. If the centre option is set to TRUE the correlation
coefficient is printed, if it is set to FALSE, the output is the regression coefficient. Assuming
a simple regression model

Yi = α + βXi + εi,

the correlation coefficient between Xi and Yi is related to the regression coefficient β as
follows:

β = CORR(Yi, Xi)
SD(Yi)

SD(Xi)
,

where SD represents the standard deviation. If the option of fitabn is set to centre=TRUE

observations in each Gaussian node are first standardized to mean zero and standard
deviation one. This leads to a canceling of the standard deviation fraction and hence to
the output of the correlation coefficient which is equal in this case to the standardized
regression coefficient. All results in this thesis are calculated with the default option of
centre=TRUE.

Additionally to the model parameters of the conditional probabilities displayed in the
DAGs, a model parameter of the intercept is also estimated for each node. Furthermore,
for Gaussian nodes a precision parameter exist, which is defined as the inverse of the
variance. These parameters are not of big interest because they only denote a background
constant.

When an optimal DAG with well-established posterior densities has been determined,
the edges must be filtered for robust results to adjust for over fitting. Over fitting is an
always present and critical issue in model comparison, also in ABN. To address this prob-
lem the technique of parametric bootstrapping was used. With the help of Markov chain
Monte Carlo (MCMC) simulations 10’000 data sets of identical size as the original data
set were generated. On each simulated data set the searching approach by Koivisto and
Sood [2004] was performed. Based on this process the frequency and thus the robustness
of an arc can be determined. Arcs present in less than 50% of the simulated DAGs were
considered not to be robust and pruned out. The threshold of 50% is justified by a simple
majority consensus. This process results in a single and robust graph which represents
the multivariate GLM.
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The method of ABN offers also the possibility to add a random effect to the model.
A random effect is needed to depict a potential hierarchy in the data. It is important and
interesting to include such a hierarchy in the analysis, because it allows to differentiate
between variability that occurs within a certain group or across the groups. Adding a
grouping variable to the model and specifying nodes which should be adjusted for this
grouping variable changes the analogy of ABN to a GLM to an analogy to a GLMM
(generalized linear mixed model). This means that for the defined nodes a mixed model
is used. Mixed models adjust for potential within group correlation and thus support the
control for unobserved heterogeneity which is correlated with independent variables, in
our case for potential unrecorded differences between the farms.

Generally in Bayesian network analysis, the concept of the Markov blanket is very
common and usefull. The Markov blanket is a set of nodes that shield a specific target node
from the rest of the network. Given the Markov blanket of A (Mb(A)), A is conditionally
independent with other nodes B from the network [Pearl et al., 1989].

P (A|Mb(A), B) = P (A|Mb(A)).

Thus the knowledge of the nodes in the Markov blanket of a node A is the only knowledge
needed to predict the behavior of the node A. In Bayesian networks, including ABNs, the
Markov blanket of a node A composes of A’s parents, its children, and its children other
parents.

3.2 ABN: a more statistical approach

The two steps of model learning in additive Bayesian networks are divided into structure
learning and parameter learning. Structure learning comprises specifying the DAG struc-
ture, parameter learning comprises specifying the local probability distributions. Con-
structing an additive Bayesian network model A with a data set D, we have:

P (A|D) = P (βA, S|D)︸ ︷︷ ︸
model learning

= P (βA|S,D)︸ ︷︷ ︸
parameter learning

· P (S|D)︸ ︷︷ ︸
structure learning

,

where S denotes the structure of the DAG and βA the model parameters.
When performing the structural learning step, the aim is to look for a network structure

that represents the data set sufficiently well without being too complex. Score-based
learning methods assign a score to each network structure. The score reflects how likely a
structure is when comparing it to the data set at hand. Looking for the model structure
with the highest score can be considered as a search problem and is the main task of
score-based learning methods. To approach this search problem a score function and a
search procedure are needed.

A suitable score function should allow a balance between the accuracy and the
complexity of the structure and it should be decomposable into the sum of local scores.
The marginal likelihood is a classical Bayesian approach for measuring the fitness of a
network structure. The marginal likelihood is given by:

P (D|S) =

∫
βA

P (D|S, βA) · π(βA|S)dβA, (3.1)
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where π(βA|S) is the prior probability distribution over the parameters, conditioned on S.
The marginal likelihood can be interpreted as the probability of the data D for a given
model structure S or more precise as the probability that the data D could be generated
if the parameters for S were selected randomly according to the parameter prior π(βA|S).

As a result of the decomposability property of the score function, the total network
score can be written as

P (D|S) =
n∏
j=1

P (Dj|S), (3.2)

where j denotes the number of nodes in the data D.
Martha Pittavino showed in her thesis [Pittavino, 2016] that simplifications of the

integral given by Equation 3.1 for standard Bayesian networks [Cooper and Herskovits,
1992, Heckerman et al., 1995] can be also obtained for an ABN model. This allows the
computation of the complex integral with the help of numerical Laplace approximation
technique.

To find the highest-scoring Bayesian network structure in the set of all possible network
structures a search procedure must be defined. Beside heuristic search strategies that
move around in the search space by iteratively performing small changes to the current
structure, order based searches are introduced by Friedman and Koller [2003]. The order
references simply to a list of the nodes, say as indexes from 1 to n. A given DAG structure
is consistent with an ordering if and only if the parents of each node precede their child
node in this list. This results in groups of DAG structures, groups of structures consistent
with one particular ordering. This clever decomposition of the space of possible graph

structures reduces the model search space from n!2(n
2) to only n!. This represents a big

decrease but still it is only computationally feasible for problems smaller than 20 nodes.
Two different approaches for searching across orders instead of DAGs have been proposed.
The first method was proposed by Friedman and Koller [2003]. A search algorithm samples
randomly across the landscape of orders and collects information about the degree of
statistical support for the structural features. The results are the posterior probabilities
for each arc. Later an exact algorithm which considers every order was proposed by
Koivisto and Sood [2004]. Exact algorithms are designed in a way that they will find an
optimal structure in a finite amount of time. In contrast, heuristics have no guarantee to
find an optimal structure. Koivisto and Sood [2004] improved the algorithm by integrating
a summation over orders to the algorithm. The evaluation of the sum over orders is done
by a dynamic propagation algorithm. Each node recieves a value from the summed up
values of its parents, where each value was multiplied by a quantity that depends on the
associated path. Hence, computations over different paths can be merged together. The
mapping of these different path subsets is done by a so called Möbius transform. This
advantage of merging overlapping parts reduces the running time even more and thus
allows the exact calculations. The major advantage of this approach is that it explores
all possible structures, running “only” in exponential time with respect to the number of
nodes in the network. This approach is implemented in the mostprobable function of the
R package abn.

After knowing the structure of a model, the aim is to estimate the parameters of the
model. The model comprises of a set of conditionally independent generalized linear re-
gressions. The model parameters are the regression coefficients based on the conditional
expectation of the value of a certain node given its parents. The parameters are learned

Andrea Meier, andrea.meier2@uzh.ch 15 April 10, 2017

andrea.meier2@uzh.ch


Master Thesis in Biostatistics University of Zurich

using the principle of maximum likelihood [Held and Sabanés Bové, 2014]. These calcu-
lations also require numerical integration as used for the evaluation of the score function.
Two numerical techniques are available in the fitabn function of the R package abn,
standard Laplace approximation or an integrated nested Laplace approximation (INLA).

3.3 Random forest

An additional analysis was made with the technique of random forest to compare the
results of the analysis with ABN.

A random forest consists of many independent tree models. In a tree model the aim
is to introduce branching points in order to reduce the variance in the underlying data.
By combining the results of these many independent tree models it is possible to reduce
the variation of the prediction leading to a high accuracy given that the tree models are
not biased.

Random forests can be used for regression or classification. Classification trees are
used if the outcome is binary or discrete. Regression trees are used if the outcome is
continuous. On every branching point, a split rule tries to reduce the variance regarding
the outcome variable in the sample. In Figure 3.2 the blue circles denote the branching
points.

Random forest uses two principles to get independent tree models. The first one is
bootstrapping, which denotes the idea to use different versions of the training data for
every tree. The second one includes a sampling of the variables on each split at random and
then choosing the best variable out of this sample. Figure 3.2 visualizes the bootstrapping
process as well as the sampling of variables on each split.

Figure 3.2: Outline of a random forest. Source: Lecture notes ‘Introduction to the Ran-
dom Forest Method’, Professor B. Sick, ZHAW.
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By combining the results of all the independent tree models the technique of random
forest corrects for the over fitting problem, which is known for tree models. Furthermore,
random forest has the advantages that it has no assumption about a certain distribution
of the variables, it can handle interactions very well and it is not sensitive to a big amount
of predictors [Breiman, 2001].

Due to the included bootstrapping mechanism each random forest provides an out-of-
bag estimate for the explained variance and the error rate, so no additional cross validation
is needed anymore. The measure of explained variance shows how well out-of-bag predic-
tions explain the variance of training data sets.

As mentioned every split in a tree tries to minimize the variance from the sample before
the split. Depending on the chosen variable at a split this reduction in variance differs.
A variable importance plot indicates which variables are most important in variance re-
duction. For a regression tree, as it is the case in this analysis, the variable importance is
defined by the average increase in the squared out-of-bag residuals when the variable is
permuted. This means that one feature after the other is randomly permuted between the
different observations and than the decrease of the out-of-bag classification of this manip-
ulated observations is determined. A large decrease in classification accuracy indicates a
large importance of the permuted feature.

3.4 Software

All analyses were performed in the R programming language [R Development Core Team,
2006]. The ABN part was performed with the R package abn [Lewis, 2016] [Kratzer
et al.]. The MCMC simulations were realized with JAGS (Just Another Gibbs Sampler)
[Plummer, 2003]. The random forest was performed with the function randomForest from
the R package randomForest [Liaw and Wiener, 2002] [original by L. Breiman et al., 2015].
The simple GLM was performed with the function glm from the R package stats and
the GLMM with the function lmer from the R package lme4 [Bates et al., 2016] [Bates
et al., 2015].
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Chapter 4

Analysis and Results

4.1 Additive Bayesian networks

As mentioned in Chapter 2, the analysis was performed for the worst pododermatitis
score as well as the mean of the pododermatitis scores from the middle part of the hind
paws. Additionally, we performed an analysis with the variable Age and one without Age,
because including Age leads to a big reduction of the data set due to the missing values.
This results in four different variants of our data set.

For all four variants first of all the optimal limit of allowed parents must be determined.
To allow generally as many parents as variables are available in the data set is not really
effective because the searching space increases super exponentially with every additional
node. Instead, one starts with a low number of allowed parents and increases this number
until the graph is saturated and allowing more edges does not increase the fit, e.g. the
marginal likelihood, anymore. Figure 4.1 shows the result of such a searching process,
where the saturated maximum was reached at 11 allowed parents. For the two data sets
without Age the optimal limit of allowed parents is 11, for the two data sets with Age it
is 12.

Figure 4.1: Comparison of goodness of fit with increasing number of parents.
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Figure 4.2: Final DAG of the analysis with the mean score of pododermatitis at the middle
part, excluding age, n = 1042. The Markov blanket of PDmeanmiddle is emphasized in
red. The shape of the nodes visualizes the chosen distribution, where a circle stands
for the Gaussian distribution, a square for the Binomial and an ellipse for the Poisson
distribution.

When reaching the maximum of the marginal likelihood we have the optimal model
meaning this model represents the structure of the given data best. Nevertheless, we
have to check the quality of this model by looking at each marginal posterior density. As
described in Section 5.1 a bell shaped density with a clear defined maximum is not always
the case and the options to deal with such irregularities are very limited. The only helpful
solution is to exclude a variable if the marginal posterior densities look irregular. After
having some problems with the first selection of variables, we were able to find a selection of
meaningful variables, which is presented in this thesis, with well defined posterior density.
The only additional irregularity we had to take care of was the upcoming problem with
the variable WaterSpillLitt when including Age into the model. Section 5.1 approaches this
problem further. In all further analysis with ABN of the data set with Age is excluding
the variable WaterSpillLitt.

If all posterior densities are well shaped and integrate to one, we can definitely speak
about an optimal model. The only remaining issue is now the issue of over fitting. So
based on the optimal model we performed a bootstrap simulation and created 10’000 new
data sets with the same number of observations and searched again for the optimal models
of these generated data sets. At the end we discovered the support of all arcs and removed
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Figure 4.3: Final DAG of the analysis with the worst pododermatitis score, excluding age,
n = 1051. The Markov blanket of PDworst is emphasized in red. The shape of the nodes
visualizes the chosen distribution, where a circle stands for the Gaussian distribution, a
square for the Binomial and an ellipse for the Poisson distribution.

these arcs which were only supported in less than 5’000 cases.

Figures 4.2 to 4.5 show the final and robust versions of the DAGs for all four variants
of the data set. The shape of the nodes visualizes the chosen distribution, where a
circle stands for the Gaussian distribution, a square for the Binomial and an ellipse for
the Poisson distribution. In the graphs the Markov blanket of our target variables, the
pododermatitis score, is colored in red. The Markov blanket of PDmeanmiddle or PDworst
composes of their parents, their children and their children other parents. The knowledge
of the nodes in the Markov blanket of PDmeanmiddle or PDworst is the only knowledge
needed to predict their behavior, because they are conditionally independent from the
rest of the network.

Figure 4.2 is the DAG of the analysis with the mean score of pododermatitis at the
middle part of the hind paws, excluding the variable Age and thus including 1042 animals.
This DAG contains 49 arcs. Two arcs were deleted after the bootstrapping process due to
missing support in more than 5’000 bootstrapping samples. The deleted arcs where from
Claws to LittChanInt and from WaterSpillLitt to Claws. In this figure the Markov blanket
of the pododermatitis score is quite simple, as it only has two parents, Weight and Claws.

Figure 4.3 is the DAG of the analysis with the worst pododermatitis score, again
excluding the variable Age and therefore including 1051 animals. This DAG includes 47
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Figure 4.4: Final DAG of the analysis with the mean score of pododermatitis at the
middle part, including age, excluding WaterSpillLitt, n = 649. The Markov blanket
of PDmeanmiddle is emphasized in red. The shape of the nodes visualizes the chosen
distribution, where a circle stands for the Gaussian distribution, a square for the Binomial
and an ellipse for the Poisson distribution.

arcs. Also two arcs were deleted after the bootstrapping process. In this DAG it concerned
again the arc from Claws to LittChanInt and additionally the arc from Wet to RH. The
Markov blanket in this figure is even more simple, as the pododermatitis score is only
connected to Temp.

Figure 4.4 and Figure 4.5 show the DAGs of the analyses with the mean score of
pododermatitis at the middle part respectively with the worst pododermatitis score when
including the variable Age. This results in almost a bisection of the data set, namely to 649
respectively 652 individuals. This implies also the exclusion of the variable WaterSpillLitt.
In both cases one arc has to be trimmed after the bootstrapping process and this affected
in both cases the arc from Claws to Age. The final DAG with PDmeanmiddle has 45
arcs. The final DAG with PDworst has 43 arcs. The Markov blanket in the analysis with
PDmeanmiddle looks more complicated. The variable of interest is much more connected
to the rest of the network and also has some children that were not present in the analysis
without Age. For the analysis with PDworst there are again no children of PDworst but
three parents Temp, LittChanInt and TotalNoRabbit.

In the final DAGs every arc is labelled with a value. These values correspond to the
mode of the respective marginal posterior density and therefore represent the model pa-
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Figure 4.5: Final DAG of the analysis with the worst pododermatitis score, including
age, excluding WaterSpillLitt, n = 652. The Markov blanket of PDworst is emphasized
in red. The shape of the nodes visualizes the chosen distribution, where a circle stands
for the Gaussian distribution, a square for the Binomial and an ellipse for the Poisson
distribution.

rameter estimates. Depending from the distribution of the node an arc is pointing to the
values should be interpreted differently, see Section 3.1. Focusing on the values on the arcs
pointing to PDmeanmiddle from Figure 4.2, as PDmeanmiddle is set be a Gaussian node
they can be interpreted as standardized regression coefficients or correlation coefficients
between Weight and PDmeanmiddle respectively Claws and PDmeanmiddle. Both values
are positive and denote thus a positive correlation. Heavier body weight is associated with
higher pododermatitis scores and too long claws are also associated with higher pododer-
matitis scores. Whereas the correlation between Claws and PDmeanmiddle is almost three
times stronger than the correlation between Weight and PDmeanmiddle. Figure 4.4 shows
a more complex situation. Again focusing on the node PDmeanmiddle two arcs are ending
and three arcs are leaving. Two of the three leaving arcs are also pointing to Gaussian
nodes, one arc points to Claws, e.g. a Binomial node. Consequently, all four values from
arcs to a Gaussian node can be compared, they all denote a standardized regression coef-
ficient, respectively the correlation. The correlation from TotalNoRabbit to PDmeanmiddle
is negative. Therefore, we associate heavier pododermatitis scores with smaller farms,
although we see that this correlation is really small and minor. The correlations of Temp,
Mortality and Age do not vary greatly in size and can be considered as equally strong.
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The parameter of PDmeanmiddle to Claws has to be transformed before comparing it to
the others. Taking the inverse logit of 0.32 this results in 0.58. This value denotes now
also a regression coefficient and can be compared to the others. The coefficient between
Claws and PDmeanmiddle is stronger than the other coefficients related to PDmeanmiddle
and about the same size as the coefficient from PDmeanmiddle to Claws in Figure 4.2.

None of the credible levels of the parameter estimates include zero, see Table A.1 to
A.4 in the appendix for the exact values. This means that all parameters are significant.
This is not guaranteed to happen, as this criteria was not part of the model selection
process. All parameters in the model were only justified by the use of maximum likelihood
and bootstrapping. The estimates of the intercepts and the precision parameters are not
included into these tables in the appendix, as they only denote some background constants.

Another idea to analyse the results of ABN after the bootstrapping is to look at the
exact number of retrieval for each arc in the 10’000 bootstrap samples. The number of
retrieved arcs evaluates the robustness and strength of the arcs independently from the
parameter estimation. In the next release of the R package abn there will be an additional
option which allows to visualize this information.

As mentioned in Section 2 the data contain a hierarchical structure with two levels,
the level of the individual animals and the level of the farms. Specifying this data struc-
ture in the function of abn unfortunately leads to meaningless or no results. A detailed
documentation of the errors, crashes and odd findings resulting by using ABN with a
nesting factor is written in Section 5.2. As the R package abn is still in development,
these findings are nevertheless useful and helpful to implement a more robust and better
usable version of the R package abn.

4.2 Random forest

All four variants of the data set were performed in an analysis with random forest. The
aim of such an analysis is to find a tree model which is able to predict the outcome variable,
in our case the pododermatitis score, as good as possible with the help of the existing
explanatory variables. The pododermatitis score is handled as a continuous outcome, so
the random forest was performed for regression. Additionally to the known variables, we
added randomly distributed variables, one Gaussian (randomG), one Poisson (randomP)
and one Binomal (randomB) random variable. These random variable help to compare the
results and judge them in a relative manner. The parameters for the random variables
were selected accordingly to the means of the parameters of the real variables. The
success probability for the Binomial random variable was determined by the mean of the
four success probabilites from the real binary variables, see Table 2.3, resulting in a value
of 0.623. The rate parameter (λ) for the Poisson random variables was determined by the
mean of the three means from the real count variables, see Table 2.2, resulting in a value
of 124. The standard deviation for the Gaussian random variable was determined by the
squared mean of the standard errors from the real continuous variables, see Table 2.2,
resulting in a value of 5741.699. The mean of the random Gaussian variable is set to be

Andrea Meier, andrea.meier2@uzh.ch 24 April 10, 2017

andrea.meier2@uzh.ch


Master Thesis in Biostatistics University of Zurich

zero. The formula for the random forest was formulated as follows:

PD ∼ (Age) + Weight + Claws + Clean + Moist + Wet + Gnaw + Holes+

RH + Temp + Mortality + Experience + WaterSpillLitt + LittChanInt+

TotalNoRabbit + Farm + randomG + randomP + randomB .

(4.1)

The most interesting results from this analysis with random forest is the percentage of
explained variance and the variable importance plot. In Table 4.1 the mean of the squared
residuals and the percentage of explained variance is displayed for all four random forests.
The mean of the squared residuals denote the deviance of the regressed pododermatitis
score of a certain group to the actual pododermatitis scores which end up in this partic-
ular group. This measure describes the inaccuracy of a model, where higher values are
associated with less accure models. Whereas, higher values of the percentage of explained
variance are associated with a better model that is able to explain more variance of the
outcome variable. It is important to note that these numbers change slightly for every
new run of a random forest. So for the interpretation a bouncing of these numbers around
the written values should be taken into account. The means of the squared residuals are
more or less equal for all four models and do not represent a very good accuracy of our
models. The percentage of explained variance differ between the models. Generally, we
can say that the models with PDmeanmiddle perform better than the models with PDworst
and that the models with Age perform better than the models without Age. The best
model is thus the model with PDmeanmiddle and Age with almost 40% variance explained.
Nevertheless this result is not very convincing as it is still less than 50% which coincide
with explaining half of the variance. This indicates that important variables which could
explain the variance of the pododermatitis score are missing in this model.

Judging the variable importance plots, see Figure 4.6, Weight and Age seem to be
the most important variables. However, the supplementary random variable randomG
is almost always nearly as important as Weight and/or Age. Additionally the random
variable randomP is always in a higher position than the other count variables (Experience,
LittChanInt, TotalNoRabbit). randomB is at a rather low position in the importance plots.
Some real binary variables, like Claws and Moist are in higher positions, but when looking
at the corresponding x-values, the differences are negligible and all of these lower variables
have to be considered as not important. These results indicates again that the model is
not really above the threshold of predicting our target variable better than just by random.
The only exception would be the variables Weight and Age.

Table 4.1: Mean of squared residuals and percentage of explained variance for the random
forests, where Forest 1 denotes the analysis with PDmeanmiddle and without Age, Forest 2
the analysis with PDworst and without Age, Forest 3 the analysis with PDmeanmiddle and
Age and Forest 4 the analysis with PDworst and Age.

Forest 1 Forest 2 Forest 3 Forest 4
Mean of squared residuals 2.6 1.5 2.0 1.5
% variance explained 14.2 3.1 37.4 8.7
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(a) Analysis PDmeanmiddle without Age,
n = 1042

(b) Analysis PDworst without Age,
n = 1051

(c) Analysis PDmeanmiddle with Age,
n = 649

(d) Analysis PDworst with Age,
n = 652

Figure 4.6: Variable importance plots of the four random forests, where IncNodePurity
denotes the total increase in node purities from splitting on the variable.

4.3 Regression approach

When running a simple GLM with the same Formula 4.1 on our four data sets, except
the random variables, the variables indicated in Table 4.2 were denoted as significant on a
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Table 4.2: Significant variables on a 95% significance level and the decrease of the deviance
(null deviance − residual deviance) when performing a GLM, where Model 1 denotes the
analysis with PDmeanmiddle and without Age, Model 2 the analysis with PDworst and
without Age, Model 3 the analysis with PDmeanmiddle and Age and Model 4 the analysis
with PDworst and Age.

Coefficients Estimate Std. Error P-value Decrease of
deviance

Model 1 Weight 0.464 0.096 <0.001 348.4
Claws 0.845 0.113 <0.001
WaterSpillLitt 0.420 0.176 0.017
Temp 0.104 0.042 0.014

Model 2 Claws 0.254 0.084 0.003 69.5
Temp 0.122 0.032 <0.001

Model 3 Age 0.070 0.012 <0.001 428.6
Weight 0.332 0.123 0.007
Claws 0.607 0.150 <0.001
Temp 0.323 0.072 <0.001
Mortality 0.008 0.003 0.026

Model 4 Claws 0.308 0.116 0.008 108.81
RH 0.029 0.011 0.010
Temp 0.336 0.056 <0.001
Mortality 0.008 0.003 0.002

95% significance level. Claws and Temp are in every model significant. Weight seems only
to be important for the models with PDmeanmiddle. A look at the decrease of deviance,
which is calculated by subtracting the residual deviance from the null deviance, confirms
the observation that PDmeanmiddle is better explainable than PDworst by our models.
Again, the models including Age perform better than the ones without Age.

Changing the GLM setting to a GLMM setting and including a random effect for all
variables measured on animal level, the results look a bit different. The formula used for
the GLMM setting looks as follows:

PD ∼ (Age) + Weight + Claws + Clean + Moist + Wet + Gnaw + Holes+

RH + Temp + Mortality + Experience + WaterSpillLitt + LittChanInt+

TotalNoRabbit + (1 + (Age) + Weight + Claws + Clean + Moist|Farm) .

(4.2)

According to this formula a random effect for the intercept, for Age, if Age is included
into the analysis, Weight, Claws, Clean and Moist is allowed. A random effect allows to
differentiate between variability that occurs within a certain group or across the groups.
This adjusts for potential within group correlation.

The significant variables of the mixed Model 1 are Weight, Claws, Experience,
LittChanInt and TotalNoRabbit. For Model 2 with PDworst as the outcome variable the
significance level of 95% is reached by Weight, Claws and RH. Model 3 has Age, Weight,
Claws, Holes and RH as significant variables, whereas Model 4 only has Temp. Additionally
to the significant variables and its estimate, the variance decomposition of the GLMM
is important. This indicates how much variance can be explained by group differences
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Table 4.3: Variance decomposition of the random effects from the mixed models, where
Model 1 denotes the analysis with PDmeanmiddle and without Age, Model 2 the analysis
with PDworst and without Age, Model 3 the analysis with PDmeanmiddle and Age and
Model 4 the analysis with PDworst and Age.

Groups Variables Model 1 Model 2 Model 3 Model 4
Farm Intercept 0.283 0.160 0.752 0.433

Age - - 0.377 0.229
Weight 0.020 0.013 0.009 0.009
Claws 0.025 0.025 0.057 0.112
Clean 0.033 0.027 0.085 0.055
Moist 0.033 0.037 0.080 0.046

Residual 0.816 0.900 0.661 0.812

and how much variance remains across the groups respectively farms. Table 4.3 gives
an overview about this variance decomposition. We can see that the residual variance
remains the biggest part of the total variance, meaning that this is the variance across
the groups, so not explained by differences between the farms. In the second place is
the intercept of the random effect, this number indicates the variability which can be
explained by differences between the farms. The variance explained by allowing a random
slope for Age should not be neglected because this could be an indication of the different
distributions of this variable on the distinct farms, see Figure 2.6. An interaction between
the appearance of pododermatitis and these different age distributions is easy to imagine.
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Chapter 5

Technical Remarks on the R Package
abn

5.1 Peculiar posterior densities

After doing the first analysis with our most interesting variables we detected some strange
marginal posterior densities. Strange means in this context, that these densities have
no bell shape and consequently no well defined maximum. Additionally these densities
are very wide, meaning the values of the x-axis cover a big area and the y-values are
accordingly low. This indicates as well, that there is no explicit and precise maximum.
One can find some examples in Figure 5.1. Figure 5.1d shows an example where the
density has even negative y-values. This is not valid for a density function and makes all
following calculations impossible.

Estimating marginal posterior densities for individual parameters, can run into trouble
as this presupposes that the data contains sufficient information to accurately estimate
the density for every individual parameter in the model. This is a strong requirement
and more demanding than just being able to estimate an overall network structure and
its goodness of fit metric. So generally this feature indicates that our data does not
contain enough information to estimate these marginal posterior densities. Trying to find
some more detailed explanations we found several aspects. First of all these peculiarities
exclusively concern Binomial variables. Mostly the problems arise from complete or partial
data separation. The risk of having such a data separation increases when having a lot
of Binomial variables in the model and when having very unbalanced Binomial variables.
Another aspect is the constellation of parents and children that a certain (Binomial) node
has. The best example for this manner is the node WaterSpillLitt in the analyses with
and without Age. When comparing the settings of the analyses without and with Age
for the worst and the mean of the middle pododermatitis scores, the only difference is
that Age is included in the analysis and that based on this a lot of observations had to
be excluded due to missing values in Age. The resulting DAG differs and the marginal
posterior densities from WaterSpillLitt are messy when including Age. In both cases (worst
and mean of the middle part pododermatitis score) WaterSpillLitt is having more parents
in the analysis with Age (6 parents) than without Age (4 parents). And in both cases some
parents are becoming children and some children are becoming parents when including
Age (e.g. Clean and Experience or Temp). This example from the analysis with the mean of
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(a) Regular posterior density
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(b) Irregular posterior density
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(c) Irregular posterior density
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(d) Irregular posterior density

Figure 5.1: Peculiar marginal posterior densities compared to a bell shaped and well
defined marginal posterior density.

the pododermatitis scores from the middle part is visualized in the appendix. Figure A.1
shows the DAG from the analysis without Age and Figure A.2 with Age. These figures
also visualize that the Markov blanket of WaterSpillLitt increases when adding the node
Age. Where all posterior densities of WaterSpillLitt in the analysis without Age looked like
regular densities (see Example 5.1a), Figure A.3 shows how the densities look like after
including Age. What exactly causes the destruction of all marginal posterior densities of
WaterSpillLitt is still unclear, but should be closely related to these facts.

However, the only encountered solution to such irregular densities is to exclude the
concerning nodes. The bootstrapping process is not possible or completely misleading on
the basis of such densities.

5.2 Error with random effects

When trying to run the ABN analysis with a random effect for Farm, we run into several
problems.
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A first problem occurred when trying to run a simple model allowing a random effect
for Farm on the variable Weight on a computer with Windows as operating system. Shortly
after starting the buildscorecache function the following error message is displayed and
the calculations get aborted.

Error in try(res.c <-.Call("fit_single_node",data.df,as.integer(child),:

oops - got an NAN! in g_rv_g_inner_gaus-----

Error: object 'error.modes' not found

Luckily when running the same simple model on a computer with operating system Linux
or Apple OS X there are no error messages and the calculations result in a meaningful
outcome.

Based on the same data as used for the analysis without a random effect and presented
in Section 4.1 we specified the model for the analysis with ABN and a random effect similar
as in Equation 4.2. For both data sets without Age, e.g. once with PDmeanmiddle and once
with PDworst, it was possible to start the calculations with the function buildscorecache.
There are five variables (Weight, Claws, Clean, Moist and PDmeanmiddle or PDworst) for
which a mixed model should be used to adjust for within group correlation. During the
calculations you get a feedback on which node the function is running. Unfortunately
the running time of this function took almost two weeks only for one node. This means
that the running time of these two model is estimated to more than two months. This
makes the selection process for the optimal number of allowed parents as well as the
bootstrapping process almost unfeasible. Unhappily it definitely burst the possibilities
during this thesis. Additionally to the super long running time the function returned
constantly the two error messages below. Unfortunately we could not really figure out the
reasons and the meaning of these warnings and errors and neither a solution.

ERROR: ABNORMAL_TERMINATION_IN_LNSRCH at node 2

Zero finding warning: internal--- epsilon status = iteration is not \\

making progress towards solution

For both data sets with Age, again once with PDmeanmiddle and once with PDworst,
the problems were even more dire. Shortly after starting the buildscorecache function,
R crashes and displays the following message

Abortion of R session: Fatal error.

A reboot of the R session is the only left solution. We have some obvious differences, like
having here six variables for which a mixed model should be used, allowing 12 parents
instead of 11 and having only half as much observations as in the case without Age. But
as defining only five variables for which a mixed model should be used, allowing only 11
parents and duplicating the data set, did not change anything on the fact that the fatal
error occurs shortly after starting the function, we failed to find a proper explanation.
The only left possible explanation is that the reason can be located to a special data
constellation which occurs in the data set with Age but not without Age.
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5.3 Interpretational difficulties and lack of documen-

tation

When reading through literature and documentations of ABN [Kratzer et al.] [Pittavino,
2016] [Lewis and Ward, 2013], a lot of interesting textes are available and I got a big
knowledge about using and understanding the technique of ABN. Nevertheless, I had to
realize that there remains a gap between the mathematical and statistical understanding
of the method and the interpretational understanding of some results, more precisely the
interpretation of the model parameters. It would be very nice if these model parameters
could be directly transferred to more common techniques used in statistical analyses.
However, therefore a detailed documentation about these model parameters would be
necessary.

As reflected also in Section 3.2, the method of ABN is described clearly and additional
information can be looked up in several referenced literature until the step of parameter
learning and its results. I was not successful in finding a detailed answer what the outcome,
e.g. the fitted values from the fitabn function denote and how they are derived. In
the documentations and publications about ABN this part is mostly missing or very
reduced. When interpreting the outputted values the authors simply write about odds
ratios [Kratzer et al.] [Pittavino et al., 2016] [Lewis and McCormick, 2012]. Mostly they
only work with Binomial nodes and hence there is no need to distinguish if a Binomial,
Gaussian or Poisson distribution was assumed for the parent node or the child node. Only
in Lewis and Ward [2013] they write about marginal mean posterior effects when having
an arc to a Gaussian node. Unfortunately I could not find any justification, which would
explain exactly how these estimates are calculated, if additional transformations to the
outputted results from the function fitabn were applied or not and why they denote
exactly odds ratios and mean effects.

On the other hand side, Gilles Kratzer was able to show that the interpretation pre-
sented in Section 3.1 is needed to get the right context between the parameters estimated
from ABN and established coefficients, e.g. the regression coefficients. His results which
are unpublished at this time are based on simulated data, where the true parameters are
well known. Although citing a yet unpublished ABN tutorial written by Gilles Kratzer
et al. with the appropriate results I decided to apply this interpretation of the parameter
estimates, because I got insights into a reasonable, traceable and argumentative pathway,
which explains the proposed interpretation.

However, ABN is mainly about network structure discovery and probably should also
primarily be used for this task, at least at the moment until further knowledge about the
exact and detailed parameter interpretation is available.
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Chapter 6

Conclusion and Discussion

In summary, similar outcomes across all used methods and some more specific outcomes
which not clearly coincide with the other methods were found. Focusing first on the similar
outcomes, the worst pododermatitis score of an animal is harder to explain than the mean
score of the pododermatitis from the middle part of the hind paws. This conclusion is
supported by the results from the random forest as well as from the GLM and the GLMM,
where Model 2 always performs worse than Model 1 and Model 4 worse than Model 3,
where the performance is linked in this case to the percentage of explained variance for
the random forest and to the decrease in deviance for the regression models. This fact can
be explained by the understanding that one extreme value can be rather due to special
and specific circumstances, than a mean value which is more likely to be dependent on
the general conditions an animal lives in. Assessing housing conditions like moisture of
litter for a few pens per farm might have contributed to this. Special and animal-specific
circumstances are moreover often very difficult to record.

We also see, that including Age into our model increases its power, although the data
set is then very reduced. This conclusion is also supported by the results from the random
forest, the GLM and the GLMM, where Model 3 always perform better than Model 1 and
Model 4 better than Model 2. This fact supports the general understanding that with
increasing age the risk of having pododermatitis increases and age should consequently
always be considered as confounder to, e.g., body weight which normally increases with
age. For this reason Model 3 with PDmeanmiddle and including Age is preferred.

Age is more important for PDmeanmiddle than PDworst. This result is support by the
edges of the DAGs, the variable importance plot of the random forest and the significant
variables of the GLM respectively GLMM, where for Model 4 Age is never significant,
important or connected to PDworst. Indeed this is the case for Model 3, PDmeanmiddle is
connected to Age in the DAG, Age is the most important variable in the random forest and
it is significant for the GLM and the GLMM. This suggests that the worst pododermatitis
score is more likely to be affected by special happenings, whereas PDmeanmiddle represents
more the general condition of the animal and its disease.

The body weight of the animals also appears as very important variable albeit con-
founded with age. Likewise there is a stronger connection to PDmeanmiddle than to
PDworst. This positive association can be explained quite easily. Commercially breeding
female rabbit are actually always pregnant and/or lactating. Depending if the fertilization
of the female rabbits is done artificially or naturally with a male rabbit, the females are
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fertilized one respectively ten days after they gave birth. This leads to the fact that these
female rabbits are most of the time beyond the normal body weight.

To find out a bit more specifically which variables are additionally important ones for
the pododermatitis score, there is quite a big diversity between all the results. However,
the models are not straight forward comparable. Where ABN has the liberty to define the
model structure by itself, the models for the analysis with the random forest, the GLM
and the GLMM are predefined. Nevertheless, we can detect another pattern when looking
at the effect sizes of Claws. Claws seems also to be directly connected to PDmeanmiddle
but indirectly or generally said less strong to PDworst. This conclusion results from
looking at the effect sizes of the GLM and at the existing versus non-existing edges in
the DAGs. This connection between the pododermatitis score and Claws is additionally a
good example to remind that all these analysis are only about association but not about
causation. This means that although there is an association between longer claws and
higher pododermatitis scores and we have a certain effect size for it, we do not know if
pododermatitis influences the length of the claws or vice versa. Both directions would
have a biologically reasonable justification. Painful pododermatitis lesions could lead to
impaired movement of the animals and thus to longer claws or longer claws could lead to
an altered weight distribution which might favors pododermatitis.

We could not approve any connection between the condition of the slats (Holes and
Gnaw) and the moisture of the litter (Wet) to the severity of pododermatitis. These
variables were never directly connected to the pododermatitis score and mostly not even
a member of its Markov blanket. The only exception is in the final DAG of the analysis
with PDmeanmiddle and Age where Wet and Gnaw are parents of shared children from
PDmeanmiddle and thus in the Markov blanket of PDmeanmiddle. The analyses with the
random forest as well as with GLM or GLMM gave no hint of an important association
between these three variables and the pododermatitis score.

In case that there is a connection between TotalNoRabbit and the pododermatitis score,
this effect is very week and it is negative. This means that the more rabbits a farmer has,
the less pododermatitis they have. Also the link between Mortality and pododermatitis
has mostly a very week effect size. So these and more detailed and specific observations
seem to be a bit far-fetched and would need further investigations to conclude profound
and established results.

When looking a bit closer to the several results, unfortunately we realize that some
or many important variables which affect pododermatitis may be missing in our data
set. Looking at the DAGs the pododermatitis score is almost always at the border of
our network. This is not desired, the goal would be to have the target variable in the
middle of the network and accordingly exclude all variables which are at the border of
the network and do not influence the target variable. The only exception here is again
Model 3, where PDmeanmiddle is quite integrated in the network and only some variables
are not in its Markov blanket, hence not influencing the target variable. The results of
the random forests firmly support this conclusion. The percentage of explained variance
of our target variable is always very low, indicating that we are not successful at all in
explaining and predicting the pododermatitis score. Even the value of our best model,
Model 3, is below 50%. Also the high position of the randomly distributed variables in
the variable importance plots confirm this conclusion. Additionally the results from the
GLM and the GLMM do not provide a great fit of our model to the data.
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Coming back to the fact that our data contains a hierarchical structure and looking
at the results of the GLMM, it would be interesting to run an ABN with a grouping
variable for Farm. The GLMM shows that quite a substantial part of the variance could
be explained by not recorded differences between the farms. Also the variable importance
plot of the random forest show the variable Farm at third or fourth place, although always
behind a rather big gap. But this indicates as well that just the fact from which farm an
animal comes from, helped to explain the pododermatitis score.

Generally said this study gave rise to really interesting facts about pododermatitis. We
showed and explained the advantages and disadvantages of using the worst pododermatitis
score versus using a mean value. We could also establish profound results about the role
of the age and the body weight of the animals for the development of pododermatitis.
Additionally this analysis shows some other interesting traces and hints what could be
relevant for further studies in the area of pododermatitis. Currently the Animal Welfare
Division from the University of Bern is performing a longitudinal study, where some
animals, which are also included into this study, are observed and recorded monthly over
one year. This study will certainly give rise to some other interesting facts and results.

Additionally the work of this thesis serves as an example how additive Bayesian net-
works can be used and what advantages and disadvantages exists when working with
ABN. This thesis helped to detect some current weaknesses and problems of the R pack-
age abn as well as of the method of ABN in general. As the R package as well as the
method in general are still in research and development and the findings from this thesis
were directly delivered to the responsible persons, they help to have soon a more practical,
robust and comprehensible version of the R package abn. Hopefully all this will lead to a
more common use of ABN, as the advantages of this method should not be neglected.
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Table A.1: Boundaries of 95% credible interval for all parameters of the analysis with
PDmeanmiddle, excluding Age.

Parameter 2.5% 50% 97.5%
Weight |Mortality -0.221 -0.161 -0.102
Weight |PDmeanmiddle 0.124 0.184 0.243
Claws |Weight 0.410 0.554 0.702
Claws |PDmeanmiddle 0.347 0.493 0.643
Claws |Clean -0.926 -0.631 -0.340
Holes |Gnaw 0.321 0.378 0.434
Holes |RH 0.163 0.220 0.276
Gnaw |RH -0.343 -0.284 -0.226
Gnaw |Temp -0.460 -0.400 -0.341
Wet |RH 0.203 0.256 0.309
Wet |Mortality -0.500 -0.446 -0.393
WaterSpillLitt |Holes 4.821 5.778 6.866
WaterSpillLitt |Gnaw -2.124 -1.739 -1.387
WaterSpillLitt |RH 1.495 1.850 2.227
WaterSpillLitt |Temp -1.730 -1.414 -1.121
Temp |Weight -0.184 -0.134 -0.083
Temp |Wet 0.405 0.462 0.519
Temp |RH -0.536 -0.483 -0.431
Temp |Mortality 0.347 0.403 0.460
Experience |Claws -0.272 -0.231 -0.191
Experience |Holes 0.233 0.268 0.302
Experience |Gnaw 0.165 0.185 0.205
Experience |WaterSpillLitt -1.359 -1.277 -1.198
Experience |Temp 0.107 0.126 0.145
Experience |Mortality 0.068 0.090 0.112
Experience |Clean 0.141 0.184 0.227
Experience |Moist 0.064 0.105 0.145
LittChanInt |Weight -0.032 -0.022 -0.012
LittChanInt |Holes -0.362 -0.347 -0.333
LittChanInt |Gnaw 0.080 0.091 0.103
LittChanInt |Wet -0.158 -0.147 -0.136
LittChanInt |WaterSpillLitt 0.239 0.267 0.295
LittChanInt |Temp -0.135 -0.125 -0.115
LittChanInt |Experience 0.022 0.023 0.025
LittChanInt |Mortality -0.262 -0.250 -0.237
TotalNoRabbit |Claws -0.063 -0.055 -0.048
TotalNoRabbit |Holes 0.286 0.293 0.299
TotalNoRabbit |Gnaw -0.366 -0.361 -0.355
TotalNoRabbit |Wet -0.028 -0.022 -0.017
TotalNoRabbit |WaterSpillLitt -0.280 -0.268 -0.255
TotalNoRabbit |RH 0.181 0.186 0.191
TotalNoRabbit |Temp 0.111 0.116 0.122
TotalNoRabbit |Experience 0.028 0.028 0.029
TotalNoRabbit |Mortality -0.061 -0.055 -0.049
TotalNoRabbit |LittChanInt -0.004 -0.003 -0.003
TotalNoRabbit |Clean -0.048 -0.041 -0.033
Clean |WaterSpillLitt -1.044 -0.726 -0.417
Clean |Mortality 0.139 0.287 0.436
Clean |Moist 1.297 1.584 1.877
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Table A.2: Boundaries of 95% credible interval for all parameters of the analysis with
PDworst, excluding Age.

Parameter 2.5% 50% 97.5%
Claws |Weight 0.471 0.613 0.759
Claws |Clean -0.910 -0.622 -0.340
Holes |Gnaw 0.319 0.375 0.431
Holes |RH 0.161 0.217 0.273
Gnaw |RH -0.341 -0.282 -0.224
Gnaw |Temp -0.462 -0.403 -0.345
WaterSpillLitt |Holes 4.736 5.672 6.734
WaterSpillLitt |Gnaw -2.106 -1.726 -1.378
WaterSpillLitt |RH 1.481 1.834 2.207
WaterSpillLitt |Temp -1.746 -1.431 -1.137
Temp |Weight -0.236 -0.182 -0.128
Temp |Wet 0.230 0.285 0.339
Temp |RH -0.465 -0.410 -0.356
Temp |PDworst 0.085 0.138 0.192
Experience |Claws -0.273 -0.232 -0.192
Experience |Holes 0.231 0.265 0.300
Experience |Gnaw 0.165 0.185 0.205
Experience |WaterSpillLitt -1.353 -1.272 -1.193
Experience |Temp 0.108 0.128 0.147
Experience |Mortality 0.070 0.092 0.114
Experience |Clean 0.155 0.197 0.239
Experience |Moist 0.058 0.098 0.138
Mortality |Wet -0.618 -0.566 -0.514
Mortality |RH 0.302 0.357 0.411
Mortality |Temp 0.351 0.405 0.459
LittChanInt |Weight -0.032 -0.022 -0.012
LittChanInt |Holes -0.361 -0.346 -0.331
LittChanInt |Gnaw 0.080 0.092 0.103
LittChanInt |Wet -0.157 -0.146 -0.135
LittChanInt |WaterSpillLitt 0.239 0.267 0.295
LittChanInt |Temp -0.135 -0.125 -0.115
LittChanInt |Experience 0.022 0.023 0.025
LittChanInt |Mortality -0.262 -0.249 -0.237
TotalNoRabbit |Claws -0.065 -0.058 -0.050
TotalNoRabbit |Holes 0.285 0.292 0.298
TotalNoRabbit |Gnaw -0.364 -0.359 -0.353
TotalNoRabbit |Wet -0.027 -0.022 -0.016
TotalNoRabbit |WaterSpillLitt -0.281 -0.268 -0.255
TotalNoRabbit |RH 0.181 0.186 0.191
TotalNoRabbit |Temp 0.111 0.117 0.123
TotalNoRabbit |Experience 0.028 0.028 0.029
TotalNoRabbit |Mortality -0.060 -0.054 -0.048
TotalNoRabbit |LittChanInt -0.003 -0.003 -0.003
TotalNoRabbit |Clean -0.051 -0.043 -0.035
Clean |WaterSpillLitt -1.066 -0.750 -0.443
Clean |Mortality 0.142 0.288 0.435
Clean |Moist 1.275 1.559 1.848
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Table A.3: Boundaries of 95% credible interval for all parameters of the analysis with
PDmeanmiddle, including Age.

Parameter 2.5% 50% 97.5%
Weight |Age 0.373 0.442 0.511
Weight |Clean 0.212 0.362 0.513
Holes |RH -0.366 -0.291 -0.218
Gnaw |Claws -0.365 -0.274 -0.184
Gnaw |Experience 0.204 0.216 0.228
Wet |Age 0.136 0.211 0.287
RH |Weight -0.245 -0.171 -0.098
RH |Wet 0.236 0.309 0.383
Temp |Age -0.369 -0.301 -0.235
Temp |Holes -0.518 -0.446 -0.375
Temp |RH -0.441 -0.375 -0.309
Temp |Mortality -0.401 -0.329 -0.257
Temp |PDmeanmiddle 0.139 0.205 0.271
Temp |Clean -0.494 -0.355 -0.218
Experience |Holes -0.348 -0.311 -0.274
Experience |RH -0.385 -0.355 -0.325
Experience |Temp -0.306 -0.275 -0.243
Experience |Mortality -0.312 -0.275 -0.239
Mortality |Holes -0.450 -0.407 -0.365
Mortality |Wet -0.801 -0.758 -0.716
Mortality |RH 0.276 0.320 0.364
LittChanInt |Weight -0.069 -0.055 -0.042
LittChanInt |Holes -0.205 -0.185 -0.165
LittChanInt |Gnaw 0.126 0.148 0.170
LittChanInt |Wet -0.161 -0.141 -0.121
LittChanInt |RH -0.137 -0.117 -0.097
LittChanInt |Temp -0.206 -0.189 -0.172
LittChanInt |Experience -0.045 -0.038 -0.030
LittChanInt |Mortality -0.348 -0.324 -0.300
TotalNoRabbit |Age 0.027 0.033 0.039
TotalNoRabbit |Weight 0.026 0.031 0.036
TotalNoRabbit |Claws 0.025 0.036 0.046
TotalNoRabbit |Holes 0.083 0.091 0.099
TotalNoRabbit |Gnaw -0.212 -0.206 -0.199
TotalNoRabbit |Wet 0.073 0.084 0.094
TotalNoRabbit |RH 0.161 0.169 0.176
TotalNoRabbit |Temp 0.141 0.148 0.155
TotalNoRabbit |Mortality 0.073 0.085 0.096
TotalNoRabbit |LittChanInt -0.003 -0.003 -0.003
TotalNoRabbit |PDmeanmiddle -0.020 -0.015 -0.010
TotalNoRabbit |Moist -0.039 -0.029 -0.020
PDmeanmiddle |Age 0.149 0.232 0.314
PDmeanmiddle |Claws 0.152 0.316 0.481
PDmeanmiddle |Mortality 0.100 0.173 0.247
Moist |Clean 1.081 1.435 1.794
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Table A.4: Boundaries of 95% credible interval for all parameters of the analysis with
PDworst, including Age.

Parameter 2.5% 50% 97.5%
Weight |Age 0.373 0.442 0.511
Weight |Clean 0.217 0.367 0.516
Holes |RH -0.365 -0.291 -0.217
Gnaw |Claws -0.366 -0.276 -0.186
Gnaw |Experience 0.204 0.216 0.228
Wet |Age 0.137 0.212 0.287
RH |Weight -0.244 -0.170 -0.098
RH |Wet 0.235 0.308 0.381
Temp |Age -0.312 -0.248 -0.183
Temp |Holes -0.518 -0.445 -0.374
Temp |RH -0.443 -0.375 -0.309
Temp |Mortality -0.382 -0.310 -0.238
Temp |PDworst 0.107 0.171 0.235
Temp |Clean -0.472 -0.333 -0.196
Experience |Holes -0.348 -0.310 -0.274
Experience |RH -0.384 -0.354 -0.324
Experience |Temp -0.307 -0.275 -0.244
Experience |Mortality -0.312 -0.275 -0.239
Mortality |Holes -0.450 -0.406 -0.364
Mortality |Wet -0.799 -0.756 -0.714
Mortality |RH 0.274 0.318 0.363
LittChanInt |Weight -0.071 -0.057 -0.044
LittChanInt |Holes -0.206 -0.186 -0.166
LittChanInt |Gnaw 0.123 0.145 0.168
LittChanInt |Wet -0.159 -0.139 -0.119
LittChanInt |RH -0.140 -0.120 -0.100
LittChanInt |Temp -0.215 -0.198 -0.181
LittChanInt |Experience -0.045 -0.037 -0.030
LittChanInt |Mortality -0.352 -0.328 -0.304
LittChanInt |PDworst 0.019 0.032 0.045
TotalNoRabbit |Age 0.025 0.031 0.037
TotalNoRabbit |Weight 0.025 0.030 0.035
TotalNoRabbit |Claws 0.024 0.034 0.045
TotalNoRabbit |Holes 0.088 0.096 0.104
TotalNoRabbit |Gnaw -0.209 -0.202 -0.196
TotalNoRabbit |Wet 0.076 0.087 0.097
TotalNoRabbit |RH 0.163 0.171 0.179
TotalNoRabbit |Temp 0.146 0.153 0.160
TotalNoRabbit |Mortality 0.078 0.089 0.101
TotalNoRabbit |LittChanInt -0.003 -0.003 -0.003
TotalNoRabbit |PDworst -0.028 -0.023 -0.018
TotalNoRabbit |Moist -0.035 -0.025 -0.016
Moist |Clean 1.084 1.436 1.792
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Figure A.1: Optimal DAG from the analysis without Age, n = 1042. The Markov blanket
of the node WaterSpillLitt is indicated in red.
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Figure A.2: Optimal DAG from the analysis with Age, n = 649. The Markov blanket of
the node WaterSpillLitt is given in red.
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Figure A.3: Strange marginal posterior densities of WaterSpillLitt after inclusion of Age
into the model.
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