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Abstract

The purpose of this master’s thesis is the implementation of a scale space multiresolution analysis
procedure in R. Based on the MRBSiZer method by Holmström et al. (2011), the R-package mrbsizeR

was created. MRBSiZer is a method to capture scale-dependent features in a random signal. It is based
on scale space smoothing and has its focus on the analysis of images or spatial field defined on a regular
grid. In contrast to common scale space procedures, differences of smooths at neighboring scales are
used to separate features into distinct scale categories. A random signal can then be represented
as a sum of such differences where each difference represents features relevant at a particular scale.
Bayesian credibility analysis is used to infer which features found are “really there” and which are artifacts
of random variation. Signal-independent and signal-dependent methods for finding useful smoothing
parameters are presented. Even though these methods provide good smoothing level estimates, user
fine tuning is inevitable.

To demonstrate the use of mrbsizeR, a vignette accompanying the R-package was created. The
vignette consists of three examples which illustrate the method. NARCCAP data (Mearns et al., 2014)
is used for a detailed explanation of the single components and functions of mrbsizeR. The second
example ensures the concordance of mrbsizeR with an existing Matlab implementation and in the third
example, the application of mrbsizeR on spherical data is demonstrated.

The R-package mrbsizeR is an implementation of MRBSiZer which includes the functionality of its
Matlab equivalent plus some additions. The results of this thesis extend the portfolio of scale space
analysis methods in R. Possibilities for further research exist, for example the implementation of certain
functions in C or further development on methods for finding useful smoothing levels.

Keywords mrbsizeR, MRBSiZer, SiZer, statistical scale space analysis, scale space smoothing,
image analysis, analysis of spatial fields
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1. Introduction

In the analysis of random signals, multi-scale representations are a helpful tool for understanding the
structure and the different components of a signal. Such representations are usually generated by
smoothing on different levels, where each smooth provides information relevant on a particular scale.
Applied to spatial fields or images, this makes it possible to extract scale-dependent details that can
be hard to spot when observing the random signal as a whole. The R-package mrbsizeR implements
a scale space multiresolution analysis procedure based on the MRBSiZer method developed by Holm-
ström et al. (2011), making the methodology available for a wider audience. The name of the package
is an abbreviation for MultiResolution Bayesian SIgnificant ZEro Crossings of Derivatives in R. It con-
sists of a Bayesian scale space analysis method to (1) capture scale-dependent features in random
signals and (2) to infer which of the captured features are credibly there and which are just artifacts of
random variation. Where usual scale space procedures use a wide range of different smoothing levels
for finding scale-dependent features, mrbsizeR employs differences of smooths at neighboring scales.
The random signal can then be represented as a sum of these differences, where each difference of
smooths represents features relevant on a particular scale. Such a representation is useful in the anal-
ysis of images and especially in the analysis of spatial fields, see for example Heersink (2013), where a
similar approach was used for the analysis of earthwork compaction roller measurement values.

1.1. Outline

This thesis is structured as follows: The second chapter Theory and Methods gives an overview about
the theory behind mrbsizeR. This includes the Bayesian model used (Section 2.2), the selection of
useful smoothing levels (Section 2.4) as well as information to the credibility analysis methods used
(Section 2.5). The application of mrbsizeR to real-world data is the focus of Chapter 3, Application of
mrbsizeR. The application is documented in the vignette of mrbsizeR, a long-format guide created for
the R-package with the goal to be a standalone introduction to the method for potential users. Chapter 4
provides a conclusion, summarizes the limitations of mrbsizeR and lists possibilities for future research.

1.2. Notation

The notation used for this thesis is inspired by Holmström et al. (2011). Scalar parameters, e.g. λi, are
represented by lowercase letters. Vectors, e.g. x = [x1, . . . , xN ], are printed in boldface and matrices,
e.g. Sλ, are printed as uppercase letters in boldface.
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1. Introduction

1.3. Software and Hardware

mrbsizeR was developed in R (Version 3.3.1, 2016-06-21), a statistical software that is freely available
at https://www.r-project.org/. Additional to the base packages, spam, fields, maps, devtools,
roxygen2, rmarkdown and knitr have been used for analyses and the compilation of the report, see
also Figure 1.1. The author’s computing environment had the following specifications: Windows 10 Pro,
Version 1607, 2.0 GHz Intel Core i7-3537U, 4 GB 1600 MHz DDR3.

sessionInfo()

## R version 3.3.1 (2016-06-21)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows 10 x64 (build 14393)

##

## locale:

## [1] LC_COLLATE=German_Switzerland.1252 LC_CTYPE=German_Switzerland.1252

## [3] LC_MONETARY=German_Switzerland.1252 LC_NUMERIC=C

## [5] LC_TIME=German_Switzerland.1252

##

## attached base packages:

## [1] grid stats graphics grDevices utils datasets methods

## [8] base

##

## other attached packages:

## [1] devtools_1.12.0 fields_8.10 spam_1.4-0 mrbsizeR_1.0.1

## [5] maps_3.1.1 knitr_1.15.1

##

## loaded via a namespace (and not attached):

## [1] magrittr_1.5 tools_3.3.1 withr_1.0.2 memoise_1.0.0 stringi_1.1.2

## [6] highr_0.6 digest_0.6.12 stringr_1.1.0 evaluate_0.10

Figure 1.1.: Information about the R-version, R-packages and OS used for creating mrbsizeR and this
report.
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2. Theory and Methods

This chapter provides an introduction and an overview of the methods and the theory used in mrbsizeR. It
is divided in five sections. Section 2.1 puts mrbsizeR in context with scale space analysis and SiZer. Sec-
tions 2.2–2.5 discuss the theory behind mrbsizeR. For more information, see Holmström et al. (2011),
Pasanen et al. (2013) and Erästö and Holmström (2005). An extensive review of different statistical
scale space methods is available in Holmström and Pasanen (2016). Examples on how to use mrbsizeR

can be found in the vignette in Chapter 3.

2.1. From Scale Space Analysis to mrbsizeR

The concept of scale space was introduced by Lindeberg (1994) as a tool for analyzing structures at
different scales. As an example, Lindeberg mentions the concept of a branch of a tree: This concept
makes only sense at a scale from centimeters to a few meters. It is meaningless on much smaller or
larger scales, say, nanometers or kilometers. On a nanometer scale, one could describe the molecules
that form the branch and on a kilometer scale, it would be possible to describe the forest in which the
tree grows. This example highlights that, when observed on different scales, distinct features of an
object can be discovered. Such a multi-scale representation can be of use in the image analysis and
specifically in the analysis of real-world measurements. When analyzing collected data, one usually has
only little knowledge about the scale-different features contained in the measurements. They might be
hidden under some measurement noise or they could simply be unknown. Using the concept of scale
space, it can be possible to reconstruct them.

For finding scale-different features in an object, scale space methods usually smooth the object on a
wide range of smoothing levels. With an increasing amount of smoothing, small-scale details get lost
but larger-scale details appear. In mrbsizeR, a similar approach is used. The difference is that, instead
of a wide range, only a few, in some sense optimal, smoothing levels are used. Differences of the
resulting smooths at neighboring scales are used for the subsequent mrbsizeR analysis. This separates
the features into distinct scale categories more aggressively than usual scale space methods do.

SiZer, an abbreviation for Significant Zero crossings of derivatives, was introduced by Chaudhuri and
Marron in 1999 (Chaudhuri and Marron, 1999) based on scale space ideas. Originally developed for
smooths of curves and time series, it is a method that helps to assess which features of the smooth
are “really there” and which are just sampling artifacts. In the original approach, the derivative of the
smooth is investigated for significant increases and decreases over a wide range of smoothing levels.
The result is the SiZer map, a graphical device that displays the significance of features with respect to
both location and scale. A Bayesian version of SiZer for the analysis of images and spatial fields (Erästö
and Holmström, 2005; Holmström and Pasanen, 2012) is used in mrbsizeR. The SiZer map can then be
drawn for every difference of smooths and shows significance only with respect to the location.

The single steps of the scale space multiresolution procedure mrbsizeR are summarized in Figure 2.1.
As the method focuses on the analysis of noisy images and random fields, a Bayesian model is used
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2. Theory and Methods

Bayesian signal
reconstruction

Sampling from the
posterior distribution

Selection of useful
smoothing levels

Forming of scale-
dependent detail

components
Credibility analysis

Figure 2.1.: Single steps of a mrbsizeR analysis.

to extract the underlying signal from its noisy observation. Then, samples from the resulting posterior
distribution are drawn. After the selection of useful smoothing levels, either with or without taking the
underlying signal into account, differences of smooths at neighboring scales can be created. As those
scale-dependent detail components are random samples, a credibility analysis is inevitable for being
able to tell which of the features found are “really there”. Detailed information to the single steps can be
found in Sections 2.2–2.5.

2.2. The Bayesian Model

Collecting data usually leads to observations that are, in some sense, blurred. Due to measurement
inaccuracies from the data-collecting device it is often not possible to make observations without having
at least a small amount of noise in the data. Using a Bayesian model, mrbsizeR reconstructs the original
signal using prior knowledge about the inaccuracy of the measurements. The Bayesian model used
assumes that

y = x+ ε,

where y is the observed noisy random signal, x is the true underlying signal and ε = [ε1, . . . , εn]T ∼
N (0, σ2I) is the noise. For σ2, an Inv-χ2(ν0, σ

2
0) prior with density

1

Γ
(
ν0
2

) (ν0σ2
0

2

) ν0
2

(σ2)−( ν02 +1) exp

(
−ν0σ

2
0

2σ2

)
(2.1)

is used. The prior for the underlying signal x is of the form

p(x|λ0, σ2) ∝
(
λ0
σ2

)(n−1)/2

exp

(
− λ0

2σ2
xTQx

)
, (2.2)

where Q is a precision matrix and defined in equation (2.6) (Holmström et al., 2011). Combining priors
(2.1) and (2.2) results in a N -Inv-χ2 prior distribution, see equation (A.1) in Appendix A.1. After combin-
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2. Theory and Methods

ing this prior with the likelihood p(y|x, σ2) it is possible to write down the full posterior density p(x, σ2|y).
For being able to generate samples x̂ from the underlying signal x, the marginal posterior density p(x|y)

needs to be derived. This is possible by integrating σ2 out of the full posterior. p(x|y) then follows a
multivariate t-distribution tν(µ,Σ) from which samples can be generated. A detailed derivation of p(x|y)

can be found in Appendix A.1.

2.3. The Sum of Differences of Smooths

Let the underlying signal x be represented as an n-dimensional random vector. Sλ is a smoother,
represented as an n× n-matrix. λ ≥ 0 is the corresponding smoothing parameter and defines the level
of smoothing. A small λ corresponds to little smoothing, a large λ to heavy smoothing.

It is now possible to define a set of smoothing parameters,

0 = λ1 < λ2 < · · · < λL−1 < λL =∞. (2.3)

Sλ1 = S0 corresponds to the so-called identity mapping where S0x = x. The smooth SλLx = S∞x

represents the mean of x. With (2.3), it is now possible to represent x as

x =

L−1∑
i=1

(Sλi − Sλi+1
)x+ SλLx ≡

L−1∑
i=1

zi + zL, (2.4)

the sum of differences of smooths at neighboring scales zi. Decomposition (2.4) can then be seen as
some kind of multiresolution analysis of x, where each component zi represents details of x relevant
at scale λi. As the true underlying signal x is not available, samples x̂ are used instead. Therefore, a
posterior credibility analysis has to be done in order to find out which of the features found in x̂ are “really
there” and which are only artifacts of random variation. Details about this are presented in Section 2.5.

2.4. The Selection of Smoothing Levels

For being able to apply transformation (2.4) to the samples x̂, the set of smoothing levels (2.3) has to
be known. In comparison to common scale space methods, where a wide range of smoothing levels is
used, mrbsizeR only requires a few of them. The crucial question is how to choose the smoothing levels
such that the scale-dependent features in x̂ are captured in an optimal manner.

The smoother used in mrbsizeR is a roughness penalty smoother

Sλ = (I + λQ)−1 (2.5)

that minimizes the penalized loss defined by Q,

Sλx = argmin
u

{
‖x− u‖2 + λuTQu

}
.

Q is a positive semidefinite matrix and has the property that xTQx measures the “roughness” of x.
Furthermore, Q = CTC, where C is the Laplacian matrix, also known as discrete Laplace operator.

Thimo Schuster 6



2. Theory and Methods

Q is defined by

xTQx =
∑
t

(∑
s∼t

xs − 4xt

)2

(2.6)

where s and t are two grid locations and s ∼ t describes that they are neighbors. The inner summation
of (2.6) is over all unordered pairs of neighboring locations. The resulting smoother (2.5) is used in
all applications that involve data on a regular grid. For data on a sphere, see Section 2.6. Extensive
information about Sλ can be found in the appendix of Holmström et al. (2011).

Using the eigendecomposition

Q =

n∑
j=1

γjvjv
T
j

it is possible to rewrite a smooth of x as

Sλx =

n∑
j=1

(1 + λγj)
−1(vTj x)vj , (2.7)

where 0 ≤ γ1, · · · ≤ γn are the eigenvalues and v1, . . . ,vn the corresponding orthonormal eigenvectors
of Q. A detailed derivation of (2.7) can be found in Appendix A.2.

Holmström et al. (2011) showed that it is possible to express a difference of smooths zi as

zi =

n∑
j=1

α
(i)
j (vTj x)vj

with

α
(i)
j =

0, 1 ≤ j ≤ n0,
(1 + λiγj)

−1 − (1 + λi+1γj)
−1, n0 < j ≤ n,

for i = 1, . . . , L− 2,

α
(L−1)
j =

0, 1 ≤ j ≤ n0,
(1 + λL−1γj)

−1, n0 < j ≤ n,

for i = L− 1, and

α
(L)
j =

1, 1 ≤ j ≤ n0,
0, n0 < j ≤ n,

for i = L, using the eigenvalues γj and the corresponding eigenvectors vj of Q. The L sequences
αi = [α

(i)
j ]nj=1, i = 1, . . . , L (hereinafter referred to as “tapering functions”) can now be used for finding

appropriate smoothing parameters λi. The idea is to choose the set of smoothing parameters (2.3) in a
way that the corresponding tapering functions αi are approximately disjoint (Holmström et al., 2011). If
transformation (2.4) is then applied to the data, each difference of smooths will show details relevant at
other scales.
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Figure 2.2.: Plot of the signal-independent tapering functions for the smoothing parameter
sequence [λ1, . . . , λ5] = [0, 1, 100, 100000,∞] on a 150-by-100 object.

Figure 2.2 is an exemplary plot of five tapering functions for a 150-by-100 object. The x-axis shows
the index of the smoothing operator eigenvalues, where an index of 1 corresponds to the smallest
eigenvalue. Tapering functions of small λ’s involve large γ’s, whereas large λ’s involve small γ’s. The
tapering functions are approximately disjoint and will, when used for the mrbsizeR analysis, result in
meaningful differences of smooths. Still, these tapering functions are solely dependent on the smoother
and the size of the object used. If the analysis object is also taken into account, better estimates of
useful smoothing levels can be achieved. One option for doing this is to draw signal-dependent tapering
functions and do again some visual inspection of the disjointedness. Unfortunately, signal-dependent
tapering functions are usually very irregular and visual inspection is difficult (Holmström et al., 2011).
The approach taken in mrbsizeR is to draw moving averages of the absolute values of these signal-
dependent tapering functions to facilitate the visual inspection. An example can be found in the vignette
in Chapter 3.

A more formal approach is the optimization of a suitable objective function G

G(λ2, λ3) =
∑

i,j=1,2,3|i<j

|α̃Ti α̃j |
‖α̃i‖‖α̃j‖

, (2.8)

with respect to the λ’s. Objective function (2.8) optimizes over two smoothing parameters and the result
is the smoothing parameter sequence [0, λ2, λ3,∞]. An extension to three smoothing parameters and
the λ-sequence [0, λ2, λ3, λ4,∞] is straightforward and also implemented in mrbsizeR. The optimization
would theoretically also be possible in higher dimensions but this would cause additional complexity
due to the non-linear optimization of G. Furthermore, for most applications, a smoothing parameter
sequence [0, λ2, λ3, λ4,∞] is sufficient.

All λ-estimation-methods proposed have one thing in common: User interaction can help to improve
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2. Theory and Methods

the results. The λ-estimates provided are usually a very good starting point for finding scale-different
details. Still, with small adjustments or the addition of another smoothing level it can be possible to high-
light some scale-dependent details even better. The NARCCAP data example in the vignette (Chapter 3)
gives an idea of what is meant. The smoothing level parameters provided by the visual inspection of
the tapering functions and the optimization of G are slightly modified before being used for the mrbsizeR

analysis.

2.5. The Posterior Credibility Analysis

As only a noisy observation y of the underlying signal x is available, the reconstructed signal p(x|y) = x̂

is used for analysis. x̂ is a random sample and one can generally not be sure about the validity of the
results obtained. It is therefore vital to do a credibility analysis. Consider a mrbsizeR analysis where
the smoothing levels were selected and the differences of smooths zi are created. To infer which of
the details found in the zi’s are really there and which are just artifacts of random variation, a posterior
credibility analysis is necessary. mrbsizeR offers three different methods, illustrated next.

2.5.1. Pointwise Maps

Credibility analysis with pointwise (PW) maps is done for each location of every detail component zi sep-
arately. The index set I of an array [zs]s∈I (for simplification, the index i is left out from the components
zs) is split into three disjoint subsets (Erästö and Holmström, 2005; Holmström et al., 2011):

Ib = {s|P (zs > 0|y) ≥ α},

Ir = {s|P (zs < 0|y) ≥ α},

Ig = I\(Ib ∪ Ir). (2.9)

α is the credibility level and 0.95 is a typical choice. The allocation to the subsets (2.9) is done for each
location independently over all samples. A location is therefore colored blue if s ∈ Ib, red if s ∈ Ir and
gray if s ∈ Ig. Blue, red and gray are the default colors chosen and could also be replaced by any other
color.

As each location is treated independently, pointwise maps do often exhibit very small islands of cred-
ibility. This can make it hard to draw conclusions from them. The simultaneous approaches explained
in Sections 2.5.2 and 2.5.3 flag locations as credible more conservatively than PW maps, but maximize
the connectedness of credible locations.

2.5.2. Highest Pointwise Probability Maps

Instead of using pointwise inference, highest pointwise probability (HPW) maps employ simultanous
inference over all locations. In simultaneous maps, the index-subsets Jb, Jr and Jg = I\Jb ∪ Jr are
used. The set I is decomposed into the J ’s so that

P (zs > 0 for s ∈ Jb and zs < 0 for s ∈ Jr|y) ≥ α. (2.10)

As not all of the indices in sets Ib and Ir are also flagged credible in simultaneous maps, Jb ⊂ Ib, Jr ⊂ Ir
and Jg ⊃ Ig. Simultaneous approaches therefore exhibit more non-credible areas than pointwise maps,

Thimo Schuster 9



2. Theory and Methods

but do on the other hand show a better connectedness of credible locations (Erästö and Holmström,
2005).

The HPW algorithm selects location in descending order with respect to their associated marginal
posterior probabilities for as long as their joint probability is at least α (Pasanen et al., 2013). Let S be a
set and |S| its number of elements. N = |Ib|+ |Ir| is the number of locations flagged as credible using
PW maps. The events (zs > 0|y)|s ∈ Ib and (zs < 0|y)|s ∈ Ir are denoted with Es. For the permutations
s1, . . . , sN of the locations s in Ib ∪ Ir

P (Es1) ≥ P (Es2) ≥ · · · ≥ P (EsN ) ≥ α

is valid.

k = max{l|P (Es1& . . .&Esl) ≥ α}

is the maximum number of events Es such that the joint probability is at least α. If l ∈ {1, . . . , k}, sl
is credible and colored blue if sl ∈ Ib or red if sl ∈ Ir. The rest of the locations s is non-credible and
colored gray.

2.5.3. Simultaneous Credible Intervals

Another possibility for simultaneous inference over all locations are simultaneous credible intervals (CI).
Let ∆ > 0 satisfy

P

(
max
s∈I

∣∣∣∣zs − E(zs|y)

Std(zs|y)

∣∣∣∣ ≤ ∆|y
)

= α.

where E(zs|y) is the posterior mean and Std(zs|y) is the posterior standard deviation of zs. The subsets
Jb, Jr and Jg are defined as

Jb = {s|E(zs|y)−∆Std(zs|y) > 0}
Jr = {s|E(zs|y) + ∆Std(zs|y) < 0}
Jg = I\Jb ∪ Jr.

Then (2.10) is satisfied. Simultaneous credible intervals flag locations as credible more conservative
than HPW maps, which strive to maximize the number of credible locations (Erästö and Holmström,
2005).

2.6. mrbsizeR for Spherical Data

mrbsizeR can also be used to analyze data defined on a sphere. The main difference to the non-
spherical version is that no Bayesian signal reconstruction is provided. Instead, samples for the scale
space multiresolution analysis need to be available in advance. When analyzing spherical data, smooth-
ing must be carried out in a way that takes into account the fact that the data is not defined on a rectan-
gular grid but on a sphere. A smoother based on an analog of (2.6) is used in mrbsizeR. Details can be
found in the appendix of Holmström et al. (2011).

Thimo Schuster 10



3. Application of mrbsizeR

To simplify the usage of mrbsizeR to potential users, a vignette accompanying the package has been
created. A vignette is a long-format guide of an R-package with the goal to provide important information
and usability examples to users. Many existing R-packages have vignettes, and using browseVignettes()

one can get an overview of all vignettes that are installed.
The vignette of mrbsizeR consists of three examples. For the first example, data from the North

American Regional Climate Change Assessment Program (NARCCAP) was analyzed (Mearns et al.,
2014). The example gives detailed instructions on how to use mrbsizeR. Furthermore, background
information about the mrbsizeR method and some theory is provided. The second example analyzes
the photograph of a sketch pad. This photograph has already been used in Holmström et al. (2011),
where the original Matlab implementation of MRBSiZer is presented. The main purpose of the sketch
pad example is to show the concordance of the R implementation with its Matlab equivalent. Lastly,
surface air temperature data from the Community Climate System Model 4.0 (Gent et al., 2011) is
analyzed to show how mrbsizeR can be used for measurements defined on a sphere.

As the vignette is a standalone document accompanying the R-package, it must be understandable
independent of this thesis. An overlap of the content, especially with Chapter 2, is therefore inevitable.
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1 Introduction

mrbsizeR is an R package based on the MRBSiZer method by Holmström et al. (2011). The name is an
abbreviation for MultiResolution Bayesian SIgnificant ZEro crossings of derivatives in R and the method
extends the portfolio of Bayesian SiZer methods for images and spatial fields, originally introduced by Erästö
and Holmström (2005).

In the analysis of spatial fields or images (i.e. an object), scale space methods are often useful. When observed
on different scales, distinct features of the object can be detected. Imagine the concept of a branch of a tree
(Lindeberg, 1994): This concept makes sense on a scale from a few centimeters to a few meters. On a much
smaller scale, one could describe the molecules that form the branch and on a much larger scale, it would be
possible to describe the forest the tree grows in. The goal in scale space analysis is therefore to represent an
object on different scales, and this is done by dividing it into a family of smooths. The smooths are made on
different smoothing levels and each smooth provides information relevant at a particular scale, which makes
it possible to extract scale-dependent features from the object.

Significant Zero Crossings of Derivatives (SiZer) is a method based on scale space ideas and has originally
been developed for smooths of curves and time series. The goal is to find out whether a certain feature of the
curve is “really there” or if it is just a sampling artifact. For curves and time series this is usually done by
investigating the significance of the increases and decreases of the derivatives. Within the last years, this
concept has been extended to various directions.
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In contrast to usual scale space procedures, where a wide range of smooths is used, mrbsizeR employs
differences of smooths at neighboring scales. This attempts to separate the features into distinct scale
categories more aggressively. In a next step, the resulting differences are investigated with a Bayesian version
of SiZer to see which of the features found are “really there” and which are only artifacts of sampling.

For data on a regular grid, one can summarize the analysis procedure in three steps:

1. Bayesian signal reconstruction

2. Forming of scale-dependent details using differences of smooths at neighboring scales

3. Posterior credibility analysis of the differences of smooths

For spherical data, no Bayesian signal reconstruction is implemented. The analysis procedure for this type of
data therefore consists of the forming of scale-dependent details and the subsequent credibility analysis. The
single steps and their application in mrbsizeR are explained by the following three examples. For further
theory and algorithm details, see Holmström et al. (2011) and Schuster (2017). An extensive review of
different statistical scale space methods including their applications is available in Holmström and Pasanen
(2016).

2 Example: Data On A Regular Grid

For the first example, data from the North American Regional Climate Change Assessment Program
(NARCCAP) is analyzed. NARCCAP is an international program producing climate change simulations
for Canada, the United States and northern Mexico. The data used for this example is based on the MM5I
regional model (Mearns et al., 2007, updated 2014) and is a simulation of the surface air temperature
during summer 1995 (Mearns et al., 2007, updated 2014), see also http://www2.mmm.ucar.edu/mm5/ and
http://www.narccap.ucar.edu/index.html. The simulation was carried out on a 120-by-98 regular grid,
therefore 11’760 data points are available in total. The data set is not part of the mrbsizeR package.

# Structure of the dataset
str(tas.su.1995.MM5I)

## List of 3
## $ lon: num [1:120, 1:98] 241 241 242 242 242 ...
## $ lat: num [1:120, 1:98] 23 23.1 23.2 23.3 23.5 ...
## $ su : num [1:120, 1:98] 21.8 21.7 21.7 21.7 21.7 ...

The variables lon and lat describe the longitude and latitude of each simulated surface air temperature in
summer 1995 in degrees Celsius (su). The data covers the United States, the southern part of Canada and
the northern part of Mexico.

As the output of the mrbsizeR analysis are plots on a rectangular grid, it makes sense to display Figure
1 also like this (compare Figure 2). By combining Figures 1 and 2, it is still possible to recognize all the
important features such as coastlines, the Baja California or the Great Lakes.
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Surface Air Temperature 1995 (MM5I)

Figure 1: Simulated surface air temperature in summer 1995 for the United States, the southern part of
Canada and the northern part of Mexico. The unit of the temperature is degrees Celsius.

Surface Air Temperature 1995 (MM5I)

Figure 2: Simulated surface air temperature in summer 1995 for the United States, the southern part of
Canada and the northern part of Mexico on a rectangular grid. Red describes warmer areas, colder areas are
colored blue.
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2.1 Bayesian Signal Reconstruction

The first step of the mrbsizeR analysis is the Bayesian signal reconstruction. The dataset is assumed to be a
random signal which might be noisy. In order to account for this uncertainty in the data, a Bayesian model
is used to reconstruct the original signal. The model used is

y = x+ ε,

where y is the observed random signal (compare Figures 1 and 2), x is the unobserved underlying original
signal and ε is the noise. A N -Inv-χ2 prior distribution is assumed. In mrbsizeR, not the full posterior
p(x, σ2|y) is of interest, but the marginal posterior p(x|y). This marginal posterior follows a multivariate
t-distribution tν and sampling from it results in samples from the reconstructed original signal x.

Depending on how much is known about the noise in y, the prior distribution parameters can be adjusted.
For the example of the surface air temperature, the parameters λ0 = 0.2, ν0 = 15 and σ2

0 = 362 were used.
This prior has little influence on the posterior as no information about possible noise on y is available. Using
the function rmvtDCT(), samples from a tν-distribution can be generated. The sampling algorithm uses a
discrete cosine transform (DCT) to speed up computations. For further information on the distributions and
the sampling algorithm, see Holmström et al. (2011) and Schuster (2017).

# Sampling from a multivariate t-distribution
tas.post.samp <- rmvtDCT(object = tas.su.1995.MM5I$su,

lambda = 0.2, sigma = 36, nu0 = 15, ns = 1000)

1000 samples of the posterior distribution of the surface air temperature in Canada, Mexico and the United
States were generated. These samples now form the reconstructed signal x and are used for further analysis.

2.2 Forming of scale-dependent detail components

Now that the original signal has been reconstructed, one can start forming scale-depending detail components.
For being able to create differences of smooths at neighboring scales z1, . . . ,zL, a set of appropriate smoothing
levels λ1, . . . , λL needs to be known. In contrast to other scale space methods, where a wide range of
smoothing levels is used, mrbsizeR only requires a few of them. The goal is to separate the features of the
object (here: the surface air temperature data) into scale-distinct categories. If too many smoothing levels
are chosen, this will result in categories that do not feature relevant detail components. If, on the other
hand, too few smoothing levels are chosen, detail components on different scales might mix up and are not
recognizable anymore. It is therefore not only crucial to determine which smoothing levels are useful, but
also the number of smoothing levels that should be used.

All methods proposed for the selection of smoothing levels have one thing in common: They offer a good
starting point for finding useful smoothing levels - but to make sure that all detail components are captured
optimally, user interaction is usually inevitable. Typically, a few iterations are necessary until satisfying
smoothing levels are found.
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The first method for the smoothing level selection depends on the smoother implemented in mrbsizeR and
the dimension of the object analyzed only. By plotting so-called tapering functions of the eigenvalues of Q, a
precision matrix used in the smoother of mrbsizeR, and the smoothing levels λi, it is possible to determine
which λ’s could be useful. The eigenvalues and the smoothing parameters are related as follows:

• Small λ’s involve large eigenvalues of Q.
• Large λ’s involve small eigenvalues of Q.

The idea is to plot the tapering functions for different ranges of λ so that the functions are approximately
disjoint. When using these λ-ranges for calculating the differences of smooths, this will result in orthogonal
detail components. For detailed information about the smoother used and the properties of the tapering
functions, see Holmström et al. (2011) and Schuster (2017).

The surface air temperature data was simulated on a 120-by-98 grid, and this information has to be passed
to the plotting function TaperingPlot(). The vector lambdaSmoother contains the smoothing levels that
should be used for drawing the tapering functions.

# Plot of signal-independent tapering functions
TaperingPlot(lambdaSmoother = c(1, 100, 10000), mm = 120, nn = 98)

Figure 3: Signal-independent tapering functions for a 120-by-98 object with the smoothing level (λ) ranges
0–1, 1–100, 100–10000, 10000–∞ and ∞. The tapering functions are approximately disjoint.

The corresponding tapering functions are shown in Figure 3. The smoothing levels 0 and ∞ are added to
the set of smoothing levels, as both of them have a special meaning. Whereas a smoother with λ = 0 is
the so-called identity smoother (S0x = x), smoothing with λL = ∞ results in the global mean. The five
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tapering functions in Figure 3 are approximately disjoint and a good starting point when trying to find useful
smoothing levels.

An even better starting point can be attained if the underlying signal x is also taken into account.
TaperingPlot() allows to draw signal-dependent tapering functions using the (optional) argument Xmu. As
the original signal x is unknown, it is replaced by its posterior mean.

# Plot of signal-dependent tapering functions
TaperingPlot(lambdaSmoother = c(1, 100, 10000),

mm = 120, nn = 98, Xmu = tas.post.samp$mu)

Figure 4: Moving average of the absolute values of signal-dependent tapering functions for the surface air
temperature data with the smoothing level (λ) ranges 0–1, 1–100, 100–10000, 10000–∞ and ∞.

As signal-dependent tapering functions have values that vary wildly, visual inspection of these functions is
difficult. TaperingPlot() therefore uses moving averages on the absolute values of these tapering functions
to facilitate visual inspection. Figure 4 shows that the disjointedness of the smoothed tapering functions is
not as pronounced as in Figure 3, but can still be observed.

A more formal approach is the numerical optimization of a suitable objective function with respect to the
smoothing parameters. With MinLambda() it is possible to conduct this optimization for 2 or 3 λ’s. The
resulting smoothing levels are, in terms of disjointedness of the signal-dependent tapering functions, optimal.
Still, it is often necessary to adjust the smoothing levels manually. For being able to extract also the
smallest-scale details it can for instance be useful to include an additional, small λ. Furthermore, the number
of “optimal” smoothing levels found with MinLambda() is limited. When optimizing over 3 λ’s, one ends
up with a sequence of 5 smoothing levels in total (3 optimized λ’s, λ0 = 0, λL =∞). In cases where more
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smoothing levels are necessary, i.e. where the object contains details relevant on more distinct scales, it is
necessary to add smoothing levels manually. However, five smoothing levels turned out to be sufficient in
many cases.

# Minimization of objective function with respect to the smoothing parameters
tas.min.lambda.out <- MinLambda(Xmu = tas.post.samp$mu, mm = 120, nn = 98,

nGrid = 45, nLambda = 3, sphere = FALSE,
lambda=10^seq(-12, 10, len = 45))

Most of the arguments of MinLambda() are already known from TaperingPlot(). In addition to this, it
is necessary to specify nGrid (size of the grid the optimization should be carried out on, nGrid-by-nGrid),
nLambda (either 2 or 3, number of λ’s to be optimized) and sphere (logical; is the analysis on spherical
data?). The optimal λ values evaluated for the surface air temperature data are 3.16e-11, 1e+02 and 1e+04.

# Minimal smoothing parameter values
tas.min.lambda.out$lambda[tas.min.lambda.out$minind]

## [1] 3.162278e-11 1.000000e+02 1.000000e+04

The minimization result can also be shown visually. For each optimized pair of λ’s, a plot is drawn. Figure 5
shows the optimization for the surface air temperature example. The optimized λ’s have the indices λ2, λ3

and λ4, because λ1 = 0 and λ5 =∞.

# Plot of the minimization result
plot(x = tas.min.lambda.out)

Figure 5: Minimization of the objective function for three smoothing levels λ. The minimum is indicated by
a white point.
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The smoothing levels found with the different methods can now be used as a starting point for finding scale-
dependent details in the analyzed object. Usually, a few iterations with some smoothing level adjustments
are necessary until the results found are satisfying. For the surface air temperature example, the smoothing
level sequence [λ1, λ2, λ3, λ4, λ5] = [0, 0.1, 90, 16′000,∞] turned out to be useful. Using mrbsizeRgrid(),
differences of smooths at neighboring scales are created. For the surface air temperature example, the samples
generated with rmvtDCT() are used as input. If other samples are already available and no Bayesian signal
reconstruction is needed, it is important to store them as a matrix where each column vector represents one
sample.

# Creation of differences of smooths at neighboring scales
tas.mrb.out <- mrbsizeRgrid(posteriorFile = tas.post.samp$sample, mm = 120, nn = 98,

lambdaSmoother = c(0.1, 90, 15000), prob = 0.95)

The resulting object tas.mrb.out is a list containing three sublists. smMean contains the mean of each
difference of smooths zi over all ns = 1000 samples from the posterior p(x|y). The lists hpout and ciout
are relevant for the posterior credibility analysis, which is discussed in detail in the next subsection.

The smMean-plots for the surface air temperature example are displayed in Figure 6. With increasing
smoothing level λ, the features are getting larger. The first component z1 shows the smallest scale details of
x. The contours of areas where a rapid change from warmer to colder temperature can be observed are clearly
visible. In z2, larger-scale details are identifiable. The Great Lakes seem to be colder than the surrounding
regions and the areas surrounding the Gulf of California are clearly warmer than the Gulf itself. z3 shows
that the Gulf of California is the hottest region in Northern America. Furthermore, the Rocky Mountains are
identifiable as a cool, longish band across the map. The next difference of smooths z4 shows a north-south
temperature gradient, and z5 is the mean across the whole map.

# Posterior mean of the different detail components
plot(x = tas.mrb.out$smMean, color.pallet = fields::tim.colors(), turnOut = FALSE,

aspRatio = 98/120)
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Figure 6: Decomposition of Figure 2 into differences of smooths at neighboring scales. The details z1, . . . ,z5
are summarized by their posterior means. Warmer areas are colored red, colder areas are colored blue.

2.3 Posterior Credibility Analysis

As the detail components zi are random samples from the posterior distribution p(x|y), a credibility analysis
has to be done. The goal is to infer which details are truly there and which are only artifacts of random
variation. Three different methods for posterior credibility analysis are implemented in mrbsizeR:

• Pointwise Maps (PW): Each location / pixel is tested separately for credibility.
• Highest Pointwise Probability Maps (HPW): The inference is done jointly over all locations.

In comparison to PW maps, this results in more non-credible areas. The advantage of HPW maps
is that the credible areas are better connected than in PW maps. Small credibility islands with low
expressiveness do appear less frequently and simplify the interpretation of the results.
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• Simultaneous Credible Intervals (CI): Inference is also done jointly over all locations. Here,
simultaneous credible intervals centered on the posterior means are calculated. CI maps flag locations
as credible more conservatively than PW or HPW maps.

For more detailed information about the three methods, see Holmström et al. (2011) and Schuster (2017).
By default, credible regions of all three methods are calculated when executing mrbsizeRgrid(). The
corresponding lists in the output of mrbsizeRgrid() are hpout and ciout.

# Plot of pointwise (PW) maps
plot(x = tas.mrb.out$hpout, plot_which = "PW", aspRatio = 98/120,

color = c("dodgerblue3", "gainsboro", "firebrick1"), turnOut = FALSE)

Figure 7: Pointwise (PW) maps for the surface air temperature example. Credibly warmer areas are colored
red, credibly colder areas blue. Areas without credibility are gray.
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The pointwise credibility maps in Figure 7 do show little credibility for the difference of smooths z1. In z2,
the Gulf of California is credibly colder than Baja California and the Mexican mainland on the eastern side
of the Gulf. In z3, nearly everything is credible. This confirms that the Rocky Mountains are really colder
and that the whole area of the Gulf of California is credibly warmer than surrounding regions. With z4, it
gets clear that the northern part of the map is credibly colder than the southern part. z5 simply shows that
the whole global mean is credible.

# Plot of highest pointwise probability (HPW) maps
plot(x = tas.mrb.out$hpout, plotWhich = "HPW", aspRatio = 98/120,

color = c("dodgerblue3", "gainsboro", "firebrick1"), turnOut = FALSE)

Figure 8: Highest pointwise probability (HPW) maps for the surface air temperature example. Credibly
warmer areas are colored red, credibly colder areas blue. Areas without credibility are gray.
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The HPW maps in Figure 8 exhibit less credibility than the PW maps, especially for small-scale details.
However, the interpretation of the results stays the same. Due to the joint inference over all locations, small
islands of credibility are less frequent.

# Plot of simultaneous credible interval (CI) maps
plot(x = tas.mrb.out$ciout, color = c("dodgerblue3", "gainsboro", "firebrick1"),

turnOut = FALSE, aspRatio = 98/120)

Figure 9: Simultaneous credible interval maps for the surface air temperature example. Credibly warmer
areas are colored red, credibly colder areas blue. Areas without credibility are gray.

Detail component z1 of the simultaneous credible interval maps in Figure 9 does not exhibit any credibility.
CI maps are generally the most conservative credibility analysis method. It therefore is not surprising that in
details z2 and z3 more gray areas can be observed than in the PW or HPW maps (compare Figures 7 and 8).
Still, especially for the larger-scale details, the interpretation of the results does not change.
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3 Example: Comparison to Matlab software

The mrbsizeR methodology was first implemented in the Matlab program MRBSiZer (Holmström and
Pasanen, 2011), which is available at http://cc.oulu.fi/~lpasanen/MRBSiZer/. In order to ensure that
the results obtained with R and Matlab are concordant, the sketch pad example from the original paper
(Holmström et al., 2011) is reconstructed (compare Figure 10. The digital image is of the size 284-by-400
and the prior parameters λ0, σ2

0 and ν0 had the values 0.2, 8.92 and 10, respectively. The set of smoothing
levels used in the multiresolution analysis was [0, 1, 30, 6× 105,∞]. 3000 samples of the posterior p(x|y) were
generated.

Figure 10: Original sketch pad image.

The detail components zi are shown in Figure 11. As the output of mrbsizeRgrid() is based on random
samples, small differences between two executions are inevitable. When compared to the Matlab figures in
Holmström et al. (2011), no big differences can be detected. More differences can be found in the HPW maps,
especially in detail component z3 (compare Figure 12). It seems that in the R implementation, a slightly
larger part of the component was flagged as credible. Nevertheless, the detail components look very similar to
their Matlab pendants and the interpretation of the results stays the same. The differences can be explained
by random sampling and one can be confident that concordance across the systems holds.
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Figure 11: Posterior mean of detail components zi from the sketch pad example.
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Figure 12: Highest pointwise probabilities maps of detail components zi from the sketch pad example.
Credibly darker areas are red, credibly brighter areas are blue.
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4 Example: Data On A Sphere

The third example in this vignette demonstrates how mrbsizeR can be used to analyze spherical data. In
contrast to the analysis of data on a grid, no Bayesian signal reconstruction is implemented. To form
scale-dependent details, data samples need to be available beforehand. The analysis procedure for spherical
data can therefore be summarized in two steps:

1. Forming of scale-dependent details using differences of smooths at neighboring scales

2. Posterior credibility analysis of the differences of smooths

Data from the Community Climate System Model 4.0 (CCSM4, see http://www.cesm.ucar.edu/models/
ccsm4.0/ccsm/) is used to illustrate mrbsizeR on spherical data. CCSM4 is a climate model simulating the
earth’s climate system, see Gent et al. (2011). For this analysis, the simulated surface air temperature in
June of the years 1870–2100 was considered. Instead of using the surface air temperature itself, its deviation
to the yearly mean has been used. This detrends the data and makes the simulations of 231 consecutive years
comparable. The resulting data set consisting of 231 observations is then used as samples for the mrbsizeR
analysis. The data is not part of the mrbsizeR package.

Figure 13 summarizes the samples by their mean. It is clearly visible that the temperature is higher in areas
around the equator and gets lower closer to the Polar Regions. The unit of the surface air temperature
deviation is degrees Kelvin.

Deviation of Mean from Surface Air Temperature (CCSM4)

−60

−40

−20

0

20

Figure 13: Deviation from mean of simulated air temperature measurements (CCSM4) for the years
1870–2100 in degrees Kelvin. The deviations are summarized by their mean.
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For conducting scale space multiresolution analysis with mrbsizeR, useful smoothing parameters need to
be evaluated first. As explained in the NARCCAP data example, MinLambda() offers the possibility to find
useful smoothing parameters numerically. The function call for spherical data is nearly identical to the call
for non-spherical data, the only difference is the argument sphere which has to be TRUE.

# Minimization of objective function with respect to the smoothing parameters
# for spherical data
spherical.min.lambda.out <- MinLambda(Xmu = dat.ccsm4.mu, mm = 144, nn = 72,

nGrid = 35, nLambda = 2, sphere = TRUE)

Once useful smoothing levels have been selected, differences of smooths at neighboring scales can be created
using the function mrbsizeRsphere().

# Creation of differences of smooths at neighboring scales for spherical data
spherical.mrb.out <- mrbsizeRsphere(posteriorFile = dat.ccsm4, mm = 144, nn = 72,

prob = 0.95, lambdaSmoother = c(0.0026))

For creating the differences of smooths at neighboring scales in Figure 14, the smoothing level sequence
[λ1, . . . , λ3] = [0, 0.0026,∞] was used. Only one smoothing level was added to the default sequence [0,∞].
This is enough to capture features at all different scales. Whereas z1 shows small-scale details like colder
regions in Tibet or Chile, z2 reveals a large red-colored area around the equator and large blue-colored areas
at the Polar Regions. z3 shows the global mean.

# Posterior mean of the different detail components for spherical data
plot(x = spherical.mrb.out$smMean, lon = dat.ccsm4$lon, lat = dat.ccsm4$lat,

color.pallet = fields::tim.colors())
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Figure 14: Decomposition of Figure 13 into differences of smooths at neighboring scales. The details
z1, . . . ,z3 are summarized by their posterior means. Areas with larger data values are colored red, areas
with smaller values are colored blue.

The posterior credibility analysis of detail component z1 using highest pointwise probability (HPW) maps
(compare Figure 15) reveals that regions like Chile or the eastern part of South Africa are credibly colder than
surrounding areas. The large-scale components in z2 are mostly credible and hence “really there”. The global
mean in z3 is not credible in this example. The reason is the data used: Instead of considering the yearly
surface air temperature, its deviations to the yearly mean are considered. z3 is therefore not the average
surface air temperature, but the average mean deviation, which always equals 0.

# Plot of highest pointwise probability (HPW) maps for spherical data
plot(x = spherical.mrb.out$hpout, lon = dat.ccsm4$lon, lat = dat.ccsm4$lat,

plotWhich = "HPW", color = c("dodgerblue3", "gainsboro", "firebrick1"))
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Figure 15: Highest pointwise probability maps. Areas with credibly larger data values are colored red, areas
with credibly smaller values are blue. Areas without credibility are gray.
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5 What If Not Enough Computing Power Is Available?

Especially for analyses with a large analysis object and/or many samples, an mrbsizeR analysis is resource-
intensive. For cases where due to computational reasons not enough samples can be generated, the additional
argument smoothOut has been added to mrbsizeRgrid() and mrbsizeRsphere(). If smoothOut = TRUE,
the output list will also contain a sublist smoothSamples, which includes the differences of smooths for all
samples. This makes it possible to manually increase the number of samples and get HPW maps and CI
maps with a higher confidence. An example is provided in the following code chunk.

# Generate samples from posterior distribution
tas.post.samp <- rmvtDCT(object = tas.su.1995.MM5I$su,

lambda = 0.2, sigma = 36, nu0 = 15, ns = 1000)

# Do mrbsizeR analysis and output the differences of smooths for all samples
tas.mrb.out.1 <- mrbsizeRgrid(posteriorFile = tas.post.samp$sample, mm = 120,

nn = 98, lambdaSmoother = c(0.1, 90, 15000),
prob = 0.95, smoothOut = TRUE)

# Do the same procedure again
tas.post.samp <- rmvtDCT(object = tas.su.1995.MM5I$su,

lambda = 0.2, sigma = 36, nu0 = 15, ns = 1000)

tas.mrb.out.2 <- mrbsizeRgrid(posteriorFile = tas.post.samp$sample, mm = 120,
nn = 98, lambdaSmoother = c(0.1, 90, 15000),
prob = 0.95, smoothOut = TRUE)

# Combine all differences-of-smooths-samples and call CImap manually
smoothSamples <- list(); ciout <- list()

for(i in 1:length(tas.mrb.out.1$smoothSamples)) {
smoothSamples <- cbind(tas.mrb.out.1$smoothSamples[[i]],

tas.mrb.out.2$smoothSamples[[i]])
ciout[[i]] <- CImap(smoothVec = smoothSamples, mm = 120, nn = 98, prob = 0.95)

}

# Set the class correctly for visualizing the output.
# Titles need to be defined in this case!
# Class name CI maps: "CImapGrid" or "CImapSphere"
# Class name PW / HPW maps: "HPWmapGrid" or "HPWmapSphere"
class(ciout) <- "CImapGrid"
plot(ciout, title = c("Diff_1", "Diff_2", "Diff_3", "Diff_4", "Diff_5"))
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4. Discussion

mrbsizeR is an R-package that implements the MRBSiZer method by Holmström et al. (2011) in R. It
offers all the functionalities of the original Matlab implementation plus some extensions. A comparison
between the Matlab and the R implementation shows that concordance is given (Chapter 3). The scale
space multiresolution analysis method can be summarized in three steps. The first step is a Bayesian
signal synthesis to reconstruct the original signal out of a noisy observation. In a second step, differences
of smooths at neighboring scales are used to form scale-dependent signal components. The posterior
credibility analysis of the features found in the scale-dependent signal components is the third step.
The analysis is not only possible for data defined on a regular grid but also for spherical data. An
important feature of mrbsizeR are the methods for identifying useful smoothing levels. Without useful
smoothing levels, no meaningful differences of smooths can be created. Methods for signal-independent
and signal-dependent smoothing level selection are implemented in mrbsizeR. All these methods deliver
useful smoothing levels, but for the best results, user fine tuning is usually inevitable.

Holmström et al. (2011) made a comparison of MRBSiZer with wavelets and showed that the two
methods are competitive. Advantages of MRBSiZer over comparable methods are the flexibility in sta-
tistical modeling (other prior distributions could easily be implemented) and the visualization methods
for inferences on image differences (Holmström and Pasanen, 2012), which have a simple but compre-
hensive interpretation.

4.1. Limitations

In reality, it is not always possible to collect data on a regular grid. Measuring the population of all districts
of the Canton of Zurich will for example result in an irregular grid where the distance between a location
and its neighbors is not fixed and varies depending on the size and the shape of the districts. mrbsizeR
has its focus on data defined on a regular grid and it is not possible to analyze unstructured grids. If
the analyzed object is defined on a regular grid but features missing values, small-scale details can get
lost in the analysis. Nevertheless, using mean imputation, it is possible to recover the most important
features. Experiments to the analysis of data featuring missing values can be found in Appendix A.3.

Another restriction of mrbsizeR is the limited amount of smoothing parameters λ that can be opti-
mized when taking the underlying signal x into account. Although it would theoretically be possible to
optimize over more than three λ’s, this gets computationally expensive due to the increasing number of
dimensions. However, combined with λ0 = 0 and λL =∞, mrbsizeR allows for an optimized smoothing
parameter sequence of 5 λ’s. It is generally recommended to keep the number of smoothing levels
small, and 5 λ’s turned out to be enough for many applications. When using too many λ’s, some detail
components zi will describe similar structures in the object and other meaningful structures might be
completely missed.
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4. Discussion

4.2. Outlook

The MRBSiZer method has successfully been implement in the R-package mrbsizeR. Even though some
extensions of the original MRBSiZer Matlab implementation and further investigations on the R program
have been made, several other ideas could be further investigated.

Especially the sampling of several hundreds or thousands of tν-distribution-samples and the subse-
quent analysis of the differences of smooths (Sections 2.3–2.5) is resource-intensive. On the author’s
computer (Section 1.3), the mrbsizeR analysis of the NARCCAP data example in the vignette (Chap-
ter 3) with the function mrbsizeRgrid() using ns = 1000 samples took 2.5 minutes. A C implementation
of computational intensive parts could improve the performance and reduce the execution time. Espe-
cially with large analysis objects, it is not always possible to generate the desired amount of samples
due to RAM limitations. Even though the vignette presents a workaround for this issue, an automated
solution for memory-intensive analyses would be an improvement of mrbsizeR.

Further, some research concerning an optimal choice of the smoothing levels λi could be made. All
methods implemented in mrbsizeR require some user interaction for receiving the best results. This
fine tuning can be time-consuming and maybe other, more autonomous approaches exist. Moreover,
the numerical optimization of useful smoothing levels (see equation (2.8)) could be implemented in a
more efficient way. At the moment, the optimization is carried out on the whole grid that is passed to the
optimization algorithm. As the objective function is convex, this could be implemented more efficiently. If
the optimization algorithm would stop when the objective function values start increasing, minimization
would be less resource intensive and faster.

Thimo Schuster 34



Bibliography

Chaudhuri, P. and Marron, J. (1999). Sizer for exploration of structures in curves. Journal of the American
Statistical Association, 94, 807–823. 4
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A. Appendix

A.1. Derivation of Marginal Posterior Density p(x|y)

Appendix A.1 provides a detailed explanation on how the marginal posterior denisty p(x|y) introduced
in Section 2.2 is derived, see also Erästö and Holmström (2005).

For σ2, an Inv-χ2(ν0, σ
2
0) prior was used. The prior of the (not observed) object x is of the form

p(x|λ0, σ2) ∝
(
λ0
σ2

)(n−1)/2

exp

(
− λ0

2σ2
xTQx

)
and the parameters ν0, σ2

0 and λ0 can be used to reflect prior knowledge about σ2 and x. Combining
the two priors results in a N -Inv-χ2 prior distribution of the form

p(x, σ2) ∝
(
λ0
σ2

)(n−1)/2

exp

(
− λ0

2σ2
xTQx

)
1

Γ
(
ν0
2

) (ν0σ2
0

2

) ν0
2

(σ2)−( ν02 +1) exp

(
−ν0σ

2
0

2σ2

)
which, when the hyperparameters are neglected, simplifies to

p(x, σ2) ∝
(
λ0
σ2

)(n−1)/2

(σ2)−( ν02 +1) exp

(
− λ0

2σ2

(
xTQx− ν0σ

2
0

λ0

))
. (A.1)

According to the Bayesian model used in mrbsizeR (Section 2.2), it is assumed that y|x, σ2 ∼
N (x, Iσ2), where I is the n × n identity matrix. The likelihood of the observed object y is therefore
given by

p(y|x, σ2) ∝
n∏
i=1

σ−1 exp

(
− 1

2σ2
(yi − xi)2

)

∝ σ−n exp

(
− 1

2σ2
‖y − x‖2

)
. (A.2)

For the following steps, λ0 is assumed to be fixed. With (A.1) and (A.2), it is possible to write down
the full posterior density, which then simplifies to

p(x, σ2|y) ∝ p(σ2)p(x|σ2)p(y|x, σ2)

∝ (σ2)−(
2n+ν0+1

2 ) exp

(
− 1

2σ2
(λ0x

TQx+ ‖y − x‖2 + ν0σ02)

)
. (A.3)

For finding the marginal posterior density p(x|y), σ2 needs to be integrated out of (A.3). According to
Erästö and Holmström (2005), the resulting marginal posterior is

p(x|y) ∝
(
λ0x

TQx+ ‖y − x‖2 + ν0σ
2
0

)−( 2n+ν0−1
2 )
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and follows a multivariate t-distribution tν(µ,Σ). For being able to sample from this distribution, the
parameters µ and Σ have to be known. They can be found by completing the square for (λ0x

TQx +

‖y − x‖2 + ν0σ
2
0). With Sλ0

= (I + λ0Q)−1 ∀ (λ0 ≥ 0),

λ0x
TQx+ ‖y − x‖2 + ν0σ

2
0

= λ0x
TQx+ yTy − 2xTy + xTx+ ν0σ

2
0

= xT (I + λ0Q)x+ yTy − 2xTy + ν0σ
2
0

= xTS−1λ0
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2
0
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x− 2xTS−1λ0

Sλ0
y + yTSλ0

S−1λ0
Sλ0

y − yTSλ0
S−1λ0

Sλ0
y + yTy + ν0σ

2
0

= (x− Sλ0y)TS−1λ0
(x− Sλ0y)− yTSλ0y + yTy + ν0σ

2
0

=
1

−yTSλ0y + yTy + ν0σ2
0

(x− Sλ0y)
T
S−1λ0

(x− Sλ0y) + 1. (A.4)

The relevant part of the tν density function is of the form 1 + 1
ν (x − µ)TΣ−1(x − µ). Equation (A.4)

already looks quite similar, but it is necessary to add an additional parameter ν. This results in

= 1 + (x− Sλ0
y)
T
S−1λ0

(
ν

yTy − yTSλ0
y + ν0σ2

0

)
(x− Sλ0

y)

and the parameters of tν(µ,Σ) are

µ = Sλ0
y

Σ = Sλ0

(
yTy − yTµ+ ν0σ

2
0

ν

)
ν = ν0 + n− 1.
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A.2. The Roughness Penalty Smoother Sλ

The operator

Sλ = (I + λQ)
−1

is a roughness penalty smoother that minimizes the penalized loss defined by Q,

Sλx = argmin
u

{
‖x− u‖2 + λuTQu

}
. (A.5)

For deriving this, the argmin argument of (A.5) needs further investigation. The derivative of this expres-
sion with respect to u

d

du

(
(x− u)T (x− u) + λuTQu

)
=

d

du

(
xTx− 2xTu+ uTu+ λuTQu

)
= −2x+ 2u+ 2λQu

has to be set to zero:

− 2x+ 2u+ 2λQu = 0

⇔ −x+ u+ λQu = 0

⇔ u+ λQu = x

⇔ (I + λQ)u = x

⇔ (I + λQ)−1(I + λQ)u = (I + λQ)−1x

⇔ u = Sλx.

Based on the eigenvalue/eigenvector decompostion of Q =

n∑
j=1

γjvjv
T
j , we have

I + λQ =

n∑
j=1

vjv
T
j + λ

n∑
j=1

γjvjv
T
j =

n∑
j=1

(1 + λγj)vjv
T
j

⇔ u = Sλx =

n∑
j=1

(1 + λγj)
−1(vTj x)vj , (A.6)

and (A.6) is equal to Sλx in equation (2.7).
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A.3. Data Sets With Missing Values

To investigate the performance of mrbsizeR on objects that feature missing values, an artificial image
with details on different scales is analyzed. Figure A.1 shows the image that originally has been used in
Holmström et al. (2011) to illustrate the MRBSiZer method.

Figure A.1.: Artificial image with details on different scales.

The mrbsizeR analysis results of Figure A.1 using the smoothing parameter sequence
[0, 0.0001, 80, 320′000,∞], 500 samples and the parameters λ = 1, σ0 = 19.6, ν0 = 50 are visible in
Figures A.2 and A.3. Especially the larger-scale features found are mostly credible. For finding out how
mrbsizeR performs on objects featuring missing data, a part of the pixels in Figure A.1 was removed and
mean imputation was used to replace the missing values. A mrbsizeR analysis has then been carried
out and the resulting HPW-maps with 10% and 20% missing values are shown in Figures A.4 and A.5,
respectively. The corresponding differences of smooths are omitted. With increasing number of missing
values, the credible areas found in Figures A.4 and A.5 get smaller. Especially small-scale details are
lost, see for example detail component z2. Nevertheless, even with 20% missing values, the results us-
ing mean imputation are still meaningful and apart from the smallest-scale details, all relevant features
are found. This emphasizes that, when the values are missing at random, simple methods like mean
imputation are sufficient for generating meaningful differences of smooths and credibility maps.
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Figure A.2.: Decomposition of Figure A.1 into differences of smooths at neighboring scales. The details
z1, . . . ,z4 are summarized by their posterior means.
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Figure A.3.: Highest pointwise probability (HPW) maps for Figure A.1. Credibly brighter areas are col-
ored blue, credibly darker areas red. Areas without credibilty are gray.
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Figure A.4.: HPW maps for the image in Figure A.1 with 10% missing values, replaced by mean impu-
tation. Credibly brighter areas are colored blue, credibly darker areas red. Areas without
credibilty are gray.
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Figure A.5.: HPW maps for the image in Figure A.1 with 20% missing values, replaced by mean impu-
tation. Credibly brighter areas are colored blue, credibly darker areas red. Areas without
credibilty are gray.
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A.4. Manual of mrbsizeR Package

Appendix A.4 contains the manual of mrbsizeR. The manual is a collection of all object documentations
in the package. This includes a description of each object, the arguments, the output values and some
examples. In contrast to the vignette in Chapter 3, a manual doesn’t help finding the object one needs
to solve a problem. It is helpful if the relevant object is already known: In this case it can be used as a
reference manual which includes all relevant details for each object.

Thimo Schuster 44



Package ‘mrbsizeR’
April 2, 2017

Type Package

Title Scale Space Multiresolution Analysis of Random Signals

Version 1.0.1

Author Thimo Schuster [cre, aut],
Leena Pasanen [ctb],
Reinhard Furrer [ctb]

Maintainer Thimo Schuster <thimo.schuster@gmail.com>

Description A method for the multiresolution analysis of spatial fields and images to capture scale-
dependent features. mrbsizeR is based on scale space smoothing and uses differ-
ences of smooths at neighbouring scales for finding features on different scales. To in-
fer which of the captured features are credible, Bayesian analysis is used.
The scale space multiresolution analysis has three steps: (1) Bayesian signal reconstruc-
tion. (2) Using differences of smooths, scale-dependent features of the reconstructed sig-
nal can be found. (3) Posterior credibility analysis of the differences of smooths cre-
ated. The method has first been proposed by Holmstrom, Pasanen, Fur-
rer, Sain (2011) <DOI:10.1016/j.csda.2011.04.011>.

License GPL-2

URL http://cc.oulu.fi/~lpasanen/MRBSiZer/

LazyData TRUE

Depends R (>= 3.0.0), maps(>= 3.1.1)

Imports fields (>= 8.10), stats (>= 3.0.0), grDevices(>= 3.0.0),
graphics(>= 3.0.0), methods(>= 3.0.0)

RoxygenNote 6.0.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation no

R topics documented:
CImap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
dctMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
dftMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
eigenLaplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
eigenQsphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
fftshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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2 CImap

HPWmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ifftshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
MinLambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
mrbsizeR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
mrbsizeRgrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
mrbsizeRsphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
plot.CImapGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
plot.CImapSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
plot.HPWmapGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
plot.HPWmapSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
plot.minLambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
plot.smMeanGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
plot.smMeanSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
rmvtDCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
TaperingPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
tridiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
turnmat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Index 26

CImap Computation of simultaneous credible intervals.

Description

Simultaneous credible intervals for all differences of smooths at neighboring scales zi are computed.

Usage

CImap(smoothVec, mm, nn, prob = 0.95)

Arguments

smoothVec Differences of smooths at neighboring scales.

mm Number of rows of the original input object.

nn Number of columns of the original input object.

prob Credibility level for the posterior credibility analysis. By default prob = 0.95.

Details

CImap is an internal function of mrbsizeRgrid and is usually not used independently. The output
can be analyzed with the plotting function plot.CImapGrid.

Value

An array with simultaneous credible intervals VmapCI and the dimensions of the original input
object, mm and nn.
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Examples

# Artificial sample data: 10 observations (5-by-2 object), 10 samples
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData [4:6, ] <- sampleData [4:6, ] + 5

# Calculation of the simultaneous credible intervals
CImap(smoothVec = sampleData , mm = 5, nn = 2, prob = 0.95)

dctMatrix Create a n-by-n discrete cosine transform matrix.

Description

The discrete cosine transform (DCT) matrix for a given dimension n is calculated.

Usage

dctMatrix(n)

Arguments

n Dimension for the DCT matrix.

Details

The function can be used for 1D- or 2D-DCT transforms of data.

• 1D: Let Q be a m-by-n matrix with some data. D is a m-by-m DCT matrix created by
dctMatrix(m). Then D %*% Q returns the discrete cosine transform of the columns of Q.
t(D) %*% Q returns the inverse DCT of the columns of Q. As D is orthogonal, solve(D) = t(D).

• 2D: Let Q be a m-by-n matrix with some data. D_m is a m-by-m DCT matrix created by
dctMatrix(m), D_n a n-by-n DCT matrix created by dctMatrix(n). D_m %*% Q %*% t(D_n)
computes the 2D-DCT of Q. The inverse 2D-DCT of Q can be computed via
t(D_mm) %*% DCT_Q %*% D_n. D_m transforms along columns, D_n along rows. Since D is
orthogonal, solve(D) = t(D).

It can be faster to use dctMatrix than using a direct transformation, especially when calculating
several DCT’s.

Value

The n-by-n DCT matrix.

Examples

D <- dctMatrix(5)
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dftMatrix Create a n-by-n discrete Fourier transform matrix.

Description

The discrete Fourier transform (DFT) matrix for a given dimension n is calculated.

Usage

dftMatrix(n)

Arguments

n Dimension for the DFT matrix.

Details

The DFT matrix can be used for computing the discrete Fourier transform of a matrix or vector.
dftMatrix(n) %*% testMatrix is the same as apply(testMatrix, MARGIN = 2, FUN = fft).

Value

The n-by-n DFT matrix.

Examples

set.seed(987)
testMatrix <- matrix(sample(1:10, size = 25, replace = TRUE), nrow = 5)
D <- dftMatrix(5)

# Discrete Fourier transform with matrix multiplication:
D %*% testMatrix

# Discrete Fourier transform with function fft:
apply(testMatrix, MARGIN = 2, FUN = fft)

eigenLaplace Generate eigenvalues of discrete Laplace matrix.

Description

The eigenvalues of a discrete Laplace matrix with dimension (mm, nn) are calculated.

Usage

eigenLaplace(mm, nn)

Arguments

mm Number of rows of the discrete Laplace matrix.
nn Number of columns of the discrete Laplace matrix.

A. Appendix

Thimo Schuster 48



eigenQsphere 5

Value

A row vector containing the eigenvalues of the discrete laplace matrix.

Examples

eigval <- eigenLaplace(5, 5)

eigenQsphere Generate eigenvalues of precision matrix Q on the surface of a sphere.

Description

The eigenvalues of the precision matrix Q with dimension (mm, nn) and polar angle limits phimin,
phimax are calculated.

Usage

eigenQsphere(phimin, phimax, mm, nn)

Arguments

phimin Polar angle minimum.

phimax Polar angle maximum.

mm Number of rows of precision matrix Q.

nn Number of columns of precision matrix Q.

Details

The corresponding function for data on a grid is eigenLaplace.

Value

A list containing 2 elements:

• eigval Row vector containing the eigenvalues of Q.

• eigvec Matrix containing the eigenvectors of Q as columns.

Examples

eig_out <- eigenQsphere(phimin = 180/10, phimax = 180 - 180/10, mm = 10, nn = 20)
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fftshift Swap the quadrants or halves of a 2d matrix.

Description

fftshift is an R equivalent to the Matlab function fftshift applied on matrices. For more
information about fftshift see the Matlab documentation.

Usage

fftshift(inputMatrix, dimension = -1)

Arguments

inputMatrix Matrix to be swapped.

dimension Which swap should be performed?

• 1: swap halves along the rows.
• 2: swap halves along the columns.
• -1: swap first quadrant with third and second quadrant with fourth.

Details

It is possible to swap the halves or the quadrants of the input matrix. Halves can be swapped
along the rows (dimension = 1) or along the columns (dimension = 2). When swapping the
quadrants, fftshift swaps the first quadrant with the third and the second quadrant with the fourth
(dimension = -1).

Value

Swapped matrix.

Examples

set.seed(987)
sampleMat <- matrix(sample(1:10, size = 25, replace = TRUE), nrow = 5)

# Swap halves along the rows:
fftshift(sampleMat, dimension = 1)

# Swap halves along the columns:
fftshift(sampleMat, dimension = 2)

# Swap first quadrant with third and second quadrant with fourth:
fftshift(sampleMat, dimension = -1)
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HPWmap Computation of pointwise and highest pointwise probabilities.

Description

Pointwise (PW) probabilities and highest pointwise (HPW) probabilities of all differences of smooths
at neighboring scales are computed.

Usage

HPWmap(smoothVec, mm, nn, prob = 0.95)

Arguments

smoothVec Differences of smooths at neighboring scales.

mm Number of rows of the original input image.

nn Number of columns of the original input image.

prob Credibility level for the posterior credibility analysis

Details

HPWmap is an internal function of mrbsizeRgrid and is usually not used independently. The output
can be analyzed with the plotting function plot.HPWmapGrid.

Value

List with two arrays:

• pw: Pointwise probabilities (VmapPW) including the dimensions of the original input image, mm
and nn.

• hpw: Highest pointwise probabilities (VmapHPW) including the dimensions of the original input
image, mm and nn.

Examples

# Artificial sample data: 10 observations (5-by-2 object), 10 samples
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, ] <- sampleData[4:6, ] + 5

# Calculation of the simultaneous credible intervals
HPWmap(smoothVec = sampleData, mm = 5, nn = 2, prob = 0.95)
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ifftshift Inverse FFT shift of a 2d matrix.

Description

ifftshift is an R equivalent to the Matlab function ifftshift applied on matrices. For more
information about ifftshift see the Matlab documentation.

Usage

ifftshift(inputMatrix, dimension = -1)

Arguments

inputMatrix Matrix to be swapped.

dimension Which swap should be performed?

• 1: swap halves along the rows.

• 2: swap halves along the columns.

• -1: swap first quadrant with third and second quadrant with fourth.

Details

ifftshift is the inverse function to fftshift. For more information see the details of fftshift

Value

Swapped matrix.

Examples

set.seed(987)
sampleMat <- matrix(sample(1:10, size = 25, replace = TRUE), nrow = 5)

# Swap halves along the rows:
ifftshift(sampleMat, dimension = 1)

# Swap halves along the columns:
ifftshift(sampleMat, dimension = 2)

# Swap first quadrant with third and second quadrant with fourth:
ifftshift(sampleMat, dimension = -1)
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MinLambda Numerical optimization for finding appropriate smoothing levels.

Description

Numerical optimization of an objective functionG is carried out to find appropriate signal-dependent
smoothing levels (λ’s). This is easier than visual inspection via the signal-dependent tapering func-
tion in TaperingPlot.

Usage

MinLambda(Xmu, mm, nn, nGrid, nLambda = 2, lambda, sphere = FALSE)

Arguments

Xmu Posterior mean of the input object as a vector.

mm Number of rows of the original input object.

nn Number of columns of the original input object.

nGrid Size of grid where objective function is evaluated (nGrid-by-nGrid).

nLambda Number of lambdas to minimize over. Possible arguments: 2 (default) or 3.

lambda λ-sequence which is used for optimization. If nothing is provided,
lambda <- 10^seq(-3, 10, len = nGrid) is used for data on a grid and
lambda <- 10^seq(-6, 1, len = nGrid) is used for spherical data.

sphere TRUE or FALSE: Is the input object defined on a sphere?

Details

As signal-dependent tapering functions are quiet irregular, it is hard to find appropriate smoothing
values only by visual inspection of the tapering function plot. A more formal approach is the
numerical optimization of an objective function.

Optimization can be carried out with 2 or 3 smoothing parameters. As the smoothing parameters 0
and ∞ are always added, this results in a mrbsizeR analysis with 4 or 5 smoothing parameters.

Sometimes, not all features of the input object can be extracted using the smoothing levels proposed
by MinLambda. It might then be necessary to include additional smoothing levels.

plot.minLambda creates a plot of the objective function G on a grid. The minimum is indicated
with a white point. The minimum values of the λ’s can be extracted from the output of MinLambda,
see examples.

Value

A list with 3 objects:

G Value of objective function G.

lambda Evaluated smoothing parameters λ.

minind Index of minimal λ’s. lambda[minind] gives the minimal values.
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Examples

# Artificial sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, 6:8] <- sampleData[4:6, 6:8] + 5

# Minimization of two lambdas on a 20-by-20-grid
minlamOut <- MinLambda(Xmu = c(sampleData), mm = 10, nn = 10,

nGrid = 20, nLambda = 2)

# Minimal lambda values
minlamOut$lambda[minlamOut$minind]

mrbsizeR mrbsizeR: Scale space multiresolution analysis in R.

Description

mrbsizeR contains a method for the scale space multiresolution analysis of spatial fields and images
to capture scale-dependent features. The name is an abbreviation for MultiResolution Bayesian
SIgnificant ZEro crossings of derivatives in R and the method combines the concept of statistical
scale space analysis with a Bayesian SiZer method.

Details

The mrbsizeR analysis can be applied to data on a regular grid and to spherical data. For data on a
grid, the scale space multiresolution analysis has three steps:

1. Bayesian signal reconstruction.

2. Using differences of smooths, scale-dependent features of the reconstructed signal are found.

3. Posterior credibility analysis of the differences of smooths created.

In a first step, Bayesian signal reconstruction is used to extract an underlying signal from a po-
tentially noisy observation. Samples of the resulting posterior can be generated and used for the
analysis. For finding features on different scales, differences of smooths at neighboring scales are
used. This is an important distinction to other scale space methods (which usually use a wide range
of smoothing levels without taking differences) and tries to separate the features into distinct scale
categories more aggressively. After a successful extraction of the scale-different features, posterior
credibility analysis is necessary to assess whether the features found are “really there” or if they are
artifacts of random sampling.

For spherical data, no Bayesian signal reconstruction is implemented in mrbsizer. Data samples
therefore need to be available beforehand. The analysis procedure can therefore be summarized in
two steps:

1. Using differences of smooths, scale-dependent features of the reconstructed signal are found.

2. Posterior credibility analysis of the differences of smooths created.

This method has first been proposed by Holmstrom, Pasanen, Furrer, Sain (2011), see also
http://cc.oulu.fi/~lpasanen/MRBSiZer/.

Major Functions
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• TaperingPlot Graphical estimation of useful smoothing levels. Can be used signal-independent
and signal-dependent.

• MinLambda Numerical estimation of useful smoothing levels. Takes the underlying signal into
account. plot.minLambda can be used for plotting the result.

• rmvtDCT Creates samples on a regular grid from a multivariate tν-distribution using a discrete
cosine transform (DCT).

• mrbsizeRgrid Interface of the mrbsizeR method for data on a regular grid. Differences of
smooths at neighboring scales are created and posterior credibility analysis is conducted. The
results can be visualized using plot.smMeanGrid,plot.HPWmapGrid and plot.CImapGrid.

• mrbsizeRsphere Interface of the mrbsizeR method for data on a sphere. Differences of
smooths at neighboring scales are created and posterior credibility analysis is conducted. The
results can be visualized using plot.smMeanSphere,plot.HPWmapSphere and
plot.CImapSphere. For data on a sphere, no Bayesian signal reconstruction is implemented.
Samples have to be provided instead.

Getting Started
The vignette for this package offers an extensive overview of the functionality and the usage of
mrbsizeR.

References

• Holmstrom, L. and Pasanen, L. (2011). MRBSiZer. http://cc.oulu.fi/~lpasanen/MRBSiZer/.
Accessed: 2017-03-04.

• Holmstrom, L., Pasanen, L., Furrer, R., and Sain, S. R. (2011). Scale space multiresolu-
tion analysis of random signals. Computational Statistics and Data Analysis, 55, 2840-2855.
<DOI:10.1016/j.csda.2011.04.011>.

• Holmstrom, L. and Pasanen, L. (2016). Statistical scale space methods. International Statisti-
cal Review. <DOI:10.1111/insr.12155>.

DISCLAIMER: The author can not guarantee the correctness of any function or program in this
package.

Examples

# Artificial sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, 6:8] <- sampleData[4:6, 6:8] + 5

# Generate samples from multivariate t-distribution
tSamp <- rmvtDCT(object = sampleData, lambda = 0.2, sigma = 6, nu0 = 15,

ns = 1000)

# mrbsizeRgrid analysis
mrbOut <- mrbsizeRgrid(posteriorFile = tSamp$sample, mm = 10, nn = 10,

lambdaSmoother = c(1, 1000), prob = 0.95)

# Posterior mean of the differences of smooths
plot(x = mrbOut$smMean, turn_out = TRUE)

# Credibility analysis using simultaneous credible intervals
plot(x = mrbOut$ciout, turn_out = TRUE)
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mrbsizeRgrid Multiresolution analysis of random signals.

Description

mrbsizeRgrid is the interface of the scale space multiresolution method for data on a regular
grid. Here, the differences of smooths as well as the posterior credibility analysis are computed.
The output can be analyzed with the plotting functions plot.smMeanGrid, plot.CImapGrid and
plot.HPWmapGrid.

Usage

mrbsizeRgrid(posteriorFile, mm, nn, lambdaSmoother, prob = 0.95,
smoothOut = FALSE)

Arguments

posteriorFile Matrix with posterior samples as column vectors.

mm Number of rows of the original object.

nn Number of columns of the original object.

lambdaSmoother Vector consisting of the smoothing levels to be used.

prob Credibility level for the posterior credibility analysis.

smoothOut Should the differences of smooths at neighboring scales be returned as output
(FALSE by default)?

Details

mrbsizeRgrid conducts two steps of the scale space multiresolution analysis:

1. Extraction of scale-dependent features from the reconstructed signal. This is done by smooth-
ing at different smoothing levels and taking the difference of smooths at neighboring scales.

2. Posterior credibility analysis of the differences of smooths created. Three different methods
are applied: Pointwise probabilities (see HPWmap), highest pointwise probabilities (see HPWmap)
and simultaneous credible intervals (see CImap).

The signal can be reconstructed using the build-in multivariate t-distribution sampling rmvtDCT. It is
also possible to provide samples generated with other methods, see the parameter posteriorFile
and the examples.

For further information and examples, see the vignette.

Value

A list containing the following sublists:

smMean Posterior mean of all differences of smooths created.

hpout Pointwise (PW) and highest pointwise (HPW) probabilities of all differences of smooths
created.

ciout Simultaneous credible intervals (CI) of all differences of smooths created.

smoothSamples Samples of differences of smooths at neighboring scales, as column vectors.
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Examples

# Artificial sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, 6:8] <- sampleData[4:6, 6:8] + 5

# Generate samples from multivariate t-distribution
tSamp <- rmvtDCT(object = sampleData, lambda = 0.2, sigma = 6, nu0 = 15,

ns = 1000)

# mrbsizeRgrid analysis
mrbOut <- mrbsizeRgrid(posteriorFile = tSamp$sample, mm = 10, nn = 10,

lambdaSmoother = c(1, 1000), prob = 0.95)

mrbsizeRsphere Multiresolution analysis of random signals for spherical data.

Description

mrbsizeRSphere is the interface of the scale space multiresolution method for spherical data.
Here, the differences of smooths as well as the posterior credibility analysis are computed. The
output can be analyzed with the plotting functions plot.smMeanSphere, plot.CImapSphere and
plot.HPWmapSphere.

Usage

mrbsizeRsphere(posteriorFile, mm, nn, lambdaSmoother, prob = 0.95,
smoothOut = FALSE)

Arguments

posteriorFile Matrix with posterior samples as column vectors.

mm Number of rows of the original object.

nn Number of columns of the original object.

lambdaSmoother Vector consisting of the smoothing levels to be used.

prob Credibility level for the posterior credibility analysis.

smoothOut Should the differences of smooths at neighboring scales be returned as output
(FALSE by default)?

Details

In contrast to mrbsizeRgrid, mrbsizeRsphere does not conduct Bayesian signal reconstruction via
sampling from a posterior distribution. Samples of the posterior distribution have to be provided
instead.

For further information and examples, see mrbsizeRgrid and the vignette.

A. Appendix

Thimo Schuster 57



14 plot.CImapGrid

Value

A list containing the following sublists:

smMean Posterior mean of all differences of smooths created.

hpout Pointwise (PW) and highest pointwise (HPW) probabilities of all differences of smooths
created.

ciout Simultaneous credible intervals (CI) of all differences of smooths created.

smoothSamples Samples of differences of smooths at neighboring scales, as column vectors.

Examples

# Artificial spherical sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(2000), nrow = 200)
sampleData[50:65, ] <- sampleData[50:65, ] + 5

# mrbsizeRsphere analysis
mrbOut <- mrbsizeRsphere(posteriorFile = sampleData, mm = 10, nn = 20,

lambdaSmoother = c(1, 1000), prob = 0.95)

plot.CImapGrid Plot of simultaneous credible intervals.

Description

Maps with simultaneous credible intervals for all differences of smooths at neighboring scales zi
are plotted.

Usage

## S3 method for class 'CImapGrid'
plot(x, color = c("firebrick1", "gainsboro",

"dodgerblue3"), turnOut = TRUE, title, aspRatio = 1, ...)

Arguments

x List containing the simultaneous credible intervals for all differences of smooths.

color Vector of length 3 containing the colors to be used in the credibility maps. The
first color represents the credibly negative pixels, the second color the pixels
that are not credibly different from zero and the third color the credibly positive
pixels.

turnOut Logical. Should the output images be turned 90 degrees counter-clockwise?

title Vector containing one string per plot. The required number of titles is equal to
length(mrbOut$ciout). If no title is passed, defaults are used.

aspRatio Adjust the aspect ratio of the plots. The default aspRatio = 1 produces square
plots.

... Further graphical parameters can be passed.
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Details

The default colors of the maps have the following meaning:

• Blue: Credibly positive pixels.

• Red: Credibly negative pixels.

• Grey: Pixels that are not credibly different from zero.

x corresponds to the ciout-part of the output of mrbsizeRgrid.

Value

Plots of simultaneous credible intervals for all differences of smooths are created.

Examples

# Artificial sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, 6:8] <- sampleData[4:6, 6:8] + 5

# Generate samples from multivariate t-distribution
tSamp <- rmvtDCT(object = sampleData, lambda = 0.2, sigma = 6, nu0 = 15,

ns = 1000)

# mrbsizeRgrid analysis
mrbOut <- mrbsizeRgrid(posteriorFile = tSamp$sample, mm = 10, nn = 10,

lambdaSmoother = c(1, 1000), prob = 0.95)

# Posterior mean of the differences of smooths
plot(x = mrbOut$smMean, turnOut = TRUE)

# Credibility analysis using simultaneous credible intervals
plot(x = mrbOut$ciout, turnOut = TRUE)

plot.CImapSphere Plotting of simultaneous credible intervals on a sphere.

Description

Maps with simultaneous credible intervals for all differences of smooths at neighboring scales zi
are plotted. Continental lines are added.

Usage

## S3 method for class 'CImapSphere'
plot(x, lon, lat, color = c("firebrick1", "gainsboro",

"dodgerblue3"), turnOut = FALSE, title, ...)
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16 plot.CImapSphere

Arguments

x List containing the simultaneous credible intervals of all differences of smooths.

lon Vector containing the longitudes of the data points.

lat Vector containing the latitudes of the data points.

color Vector of length 3 containing the colors to be used in the credibility maps. The
first color represents the credibly negative pixels, the second color the pixels
that are not credibly different from zero and the third color the credibly positive
pixels.

turnOut Logical. Should the output images be turned 90 degrees counter-clockwise?

title Vector containing one string per plot. The required number of titles is equal to
length(mrbOut$ciout). If no title is passed, defaults are used.

... Further graphical parameters can be passed.

Details

The default colors of the maps have the following meaning:

• Blue: Credibly positive pixels.

• Red: Credibly negative pixels.

• Grey: Pixels that are not credibly different from zero.

x corresponds to the ciout-part of the output of mrbsizeRsphere.

Value

Plots of simultaneous credible intervals for all differences of smooths are created.

Examples

# Artificial spherical sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(2000), nrow = 200)
sampleData[50:65, ] <- sampleData[50:65, ] + 5
lon <- seq(-180, 180, length.out = 20)
lat <- seq(-90, 90, length.out = 10)

# mrbsizeRsphere analysis
mrbOut <- mrbsizeRsphere(posteriorFile = sampleData, mm = 20, nn = 10,

lambdaSmoother = c(0.1, 1), prob = 0.95)

# Posterior mean of the differences of smooths
plot(x = mrbOut$smMean, lon = lon, lat = lat,

color = fields::tim.colors())

# Credibility analysis using simultaneous credible intervals
plot(x = mrbOut$ciout, lon = lon, lat = lat)
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plot.HPWmapGrid Plotting of pointwise and highest pointwise probabilities.

Description

Maps with pointwise (PW) probabilities and/or highest pointwise (HPW) probabilities of all differ-
ences of smooths at neighboring scales are plotted.

Usage

## S3 method for class 'HPWmapGrid'
plot(x, plotWhich = "Both", color = c("firebrick1",

"gainsboro", "dodgerblue3"), turnOut = TRUE, title, aspRatio = 1, ...)

Arguments

x List containing the pointwise (PW) and highest pointwise (HPW) probabilities
of all differences of smooths.

plotWhich Which probabilities shall be plotted? HPW, PW or Both?

color Vector of length 3 containing the colors to be used in the credibility maps. The
first color represents the credibly negative pixels, the second color the pixels
that are not credibly different from zero and the third color the credibly positive
pixels.

turnOut Logical. Should the output images be turned 90 degrees counter-clockwise?

title Vector containing one string per plot. The required number of titles is equal to
length(mrbOut$hpout). If no title is passed, defaults are used.

aspRatio Adjust the aspect ratio of the plots. The default aspRatio = 1 produces square
plots.

... Further graphical parameters can be passed.

Details

The default colors of the maps have the following meaning:

• Blue: Credibly positive pixels.

• Red: Credibly negative pixels.

• Grey: Pixels that are not credibly different from zero.

x corresponds to the hpout-part of the output of mrbsizeRgrid.

Value

Plots of pointwise and/or highest pointwise probabilities for all differences of smooths are created.
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Examples

# Artificial sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, 6:8] <- sampleData[4:6, 6:8] + 5

# Generate samples from multivariate t-distribution
tSamp <- rmvtDCT(object = sampleData, lambda = 0.2, sigma = 6, nu0 = 15,

ns = 1000)

# mrbsizeRgrid analysis
mrbOut <- mrbsizeRgrid(posteriorFile = tSamp$sample, mm = 10, nn = 10,

lambdaSmoother = c(1, 1000), prob = 0.95)

# Posterior mean of the differences of smooths
plot(x = mrbOut$smMean, turnOut = TRUE)

# Credibility analysis using pointwise (PW) maps
plot(x = mrbOut$hpout, plotWhich = "PW", turnOut = TRUE)

# Credibility analysis using highest pointwise probability (HPW) maps
plot(x = mrbOut$hpout, plotWhich = "HPW", turnOut = TRUE)

plot.HPWmapSphere Plotting of pointwise and highest pointwise probabilities on a sphere.

Description

Maps with pointwise (PW) probabilities and/or highest pointwise (HPW) probabilities of all differ-
ences of smooths at neighboring scales are plotted. Continental lines are added.

Usage

## S3 method for class 'HPWmapSphere'
plot(x, lon, lat, plotWhich = "Both",

color = c("firebrick1", "gainsboro", "dodgerblue3"), turnOut = FALSE,
title, ...)

Arguments

x List containing the pointwise (PW) and highest pointwise (HPW) probabilities
of all differences of smooths.

lon Vector containing the longitudes of the data points.

lat Vector containing the latitudes of the data points.

plotWhich Which probabilities shall be plotted? HPW, PW or Both?

color Vector of length 3 containing the colors to be used in the credibility maps. The
first color represents the credibly negative pixels, the second color the pixels
that are not credibly different from zero and the third color the credibly positive
pixels.

turnOut Logical. Should the output images be turned 90 degrees counter-clockwise?

A. Appendix

Thimo Schuster 62



plot.minLambda 19

title Vector containing one string per plot. The required number of titles is equal to
length(mrbOut$hpout). If no title is passed, defaults are used.

... Further graphical parameters can be passed.

Details

The default colors of the maps have the following meaning:

• Blue: Credibly positive pixels.

• Red: Credibly negative pixels.

• Grey: Pixels that are not credibly different from zero.

x corresponds to the hpout-part of the output of mrbsizeRsphere.

Value

Plots of pointwise and/or highest pointwise probabilities for all differences of smooths are created.

Examples

# Artificial spherical sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(2000), nrow = 200)
sampleData[50:65, ] <- sampleData[50:65, ] + 5
lon <- seq(-180, 180, length.out = 20)
lat <- seq(-90, 90, length.out = 10)

# mrbsizeRsphere analysis
mrbOut <- mrbsizeRsphere(posteriorFile = sampleData, mm = 20, nn = 10,

lambdaSmoother = c(0.1, 1), prob = 0.95)

# Posterior mean of the differences of smooths
plot(x = mrbOut$smMean, lon = lon, lat = lat,

color = fields::tim.colors())

# Credibility analysis using pointwise (PW) maps
plot(x = mrbOut$hpout, lon = lon, lat = lat, plotWhich = "PW")

# Credibility analysis using highest pointwise probability (HPW) maps
plot(x = mrbOut$hpout, lon = lon, lat = lat, plotWhich = "HPW")

plot.minLambda Plot of objective function for finding appropriate smoothing parame-
ters.

Description

The objective function G is plotted on a grid. The minimum is indicated with a white point.

Usage

## S3 method for class 'minLambda'
plot(x, ...)
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Arguments

x Output of function MinLambda.

... Further graphical parameters can be passed.

Details

When minimizing over 2 λ’s, one plot is generated: (λ2 vs λ3). With 3 λ’s, 3 plots are generated:
λ2 vs. λ3, λ2 vs. λ4 and λ3 vs. λ4.

Value

Plot of G on a grid.

Examples

set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, 6:8] <- sampleData[4:6, 6:8] + 5

# Minimization of two lambdas on a 20-by-20-grid
minLamOut <- MinLambda(Xmu = c(sampleData), mm = 10, nn = 10,

nGrid = 20, nLambda = 3)

# Plot of the objective function
plot(x = minLamOut)

plot.smMeanGrid Plotting of scale-dependent features.

Description

Scale-dependent features are plotted using differences of smooths at neighboring scales. The fea-
tures are summarized by their posterior mean.

Usage

## S3 method for class 'smMeanGrid'
plot(x, color.pallet = fields::tim.colors(),

turnOut = TRUE, title, aspRatio = 1, ...)

Arguments

x List containing the posterior mean of all differences of smooths.

color.pallet The color pallet to be used for plotting scale-dependent features.

turnOut Logical. Should the output images be turned 90 degrees counter-clockwise?

title Vector containing one string per plot. The required number of titles is equal to
length(mrbOut$smMean). If no title is passed, defaults are used.

aspRatio Adjust the aspect ratio of the plots. The default aspRatio = 1 produces square
plots.

... Further graphical parameters can be passed.
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Details

x corresponds to the smmean-part of the output of mrbsizeRgrid.

Value

Plots of the differences of smooths are created.

Examples

# Artificial sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, 6:8] <- sampleData[4:6, 6:8] + 5

# Generate samples from multivariate t-distribution
tSamp <- rmvtDCT(object = sampleData, lambda = 0.2, sigma = 6, nu0 = 15,

ns = 1000)

# mrbsizeRgrid analysis
mrbOut <- mrbsizeRgrid(posteriorFile = tSamp$sample, mm = 10, nn = 10,

lambdaSmoother = c(1, 1000), prob = 0.95)

# Posterior mean of the differences of smooths
plot(x = mrbOut$smMean, turnOut = TRUE)

plot.smMeanSphere Plotting of scale-dependent features on a sphere.

Description

Scale-dependent features are plotted using differences of smooths at neighboring scales. The fea-
tures are summarized by their posterior mean. Continental lines are added to the plots.

Usage

## S3 method for class 'smMeanSphere'
plot(x, lon, lat, color.pallet = fields::tim.colors(),

turnOut = TRUE, title, ...)

Arguments

x List containing the posterior mean of all differences of smooths.

lon Vector containing the longitudes of the data points.

lat Vector containing the latitudes of the data points.

color.pallet The color pallet to be used for plotting scale-dependent features.

turnOut Logical. Should the output images be turned 90 degrees counter-clockwise?

title Vector containing one string per plot. The required number of titles is equal to
length(mrbOut$smMean). If no title is passed, defaults are used.

... Further graphical parameters can be passed.
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Details

x corresponds to the smmean-part of the output of mrbsizeRsphere.

Value

Plots of the differences of smooths are created.

Examples

# Artificial spherical sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(2000), nrow = 200)
sampleData[50:65, ] <- sampleData[50:65, ] + 5
lon <- seq(-180, 180, length.out = 20)
lat <- seq(-90, 90, length.out = 10)

# mrbsizeRsphere analysis
mrbOut <- mrbsizeRsphere(posteriorFile = sampleData, mm = 20, nn = 10,

lambdaSmoother = c(0.1, 1), prob = 0.95)

# Posterior mean of the differences of smooths
plot(x = mrbOut$smMean, lon = lon, lat = lat,

color = fields::tim.colors(), turnOut = FALSE)

rmvtDCT Sampling from marginal posterior multivariate t-distribution.

Description

Samples from a marginal posterior multivariate t-distribution with normal-inverse-chi-squared-prior
are generated.

Usage

rmvtDCT(object, lambda, sigma, nu0, ns)

Arguments

object Observed object, as matrix.

lambda Scaling parameter (λ) of the normal-inverse-chi-squared-prior.

sigma Square root of the σ2
0 parameter of the normal-inverse-chi-squared-prior.

nu0 Degrees of freedom (ν0) of the normal-inverse-chi-square-prior.

ns Number of samples that should be generated.

Details

An eigenvalue decomposition is used for sampling. To speed up computations, a 2D discrete cosine
transform (DCT) has been implemented, see dctMatrix. The output is a list containing

1. Samples of the marginal posterior of the input as column vectors.

2. The mean of the marginal posterior of the input as a vector.
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Value

A list containing the following elements:

sample Samples of the marginal posterior of the input.

mu Mean of the marginal posterior of the input.

Examples

# Artificial sample data
set.seed(987)
sampleData <- matrix(stats::rnorm(100), nrow = 10)
sampleData[4:6, 6:8] <- sampleData[4:6, 6:8] + 5

# Sampling from a multivariate t-distribution
t_dist_samp <- rmvtDCT(object = sampleData, lambda = 1, sigma = 10,

nu0 = 50, ns = 1000)

TaperingPlot Plot of tapering functions.

Description

Tapering functions corresponding to the smoothing levels in lambdaSmoother are drawn. This plot
helps to assess if the chosen smoothing levels are appropriate.

Usage

TaperingPlot(lambdaSmoother, mm, nn, Xmu, ...)

Arguments

lambdaSmoother Vector consisting of the smoothing levels to be used.
mm Number of rows of the original input object.
nn Number of columns of the original input object.
Xmu If availabe, posterior mean of the input object.
... Further graphical parameters can be passed.

Details

The tapering functions of the smoothing levels chosen should be generally approximately disjoint.
This will produce features which are somewhat orthogonal. With orthogonal features, it is likely
that each difference of smooths corresponds to a different pattern in the input image.

Sometimes, not all patterns of the input image can be extracted using smoothing levels whose
tapering functions are disjoint. It might then be necessary to include additional smoothing levels,
and the disjointedness might not be satisfied anymore. The selection of appropriate smoothing
levels with this method therefore requires some user interaction. Still, choosing disjoint tapering
functions for finding appropriate smoothing levels is a good starting point.

Better results could be obtained if the structure of the posterior mean of the input is also taken into
account. If the posterior mean is available, it can be added with the argument Xmu and moving
averages of the absolute values of the signal-dependent tapering functions are drawn. MinLambda
offers a more formal approach of optimizing the disjointedness of the tapering functions and can
help finding appropriate smoothing levels when the input signal is taken into account.
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Value

Plots of the tapering functions for all differences of smooths at neighboring scales are created.

Examples

# Signal-independent tapering function plot for a 30-by-10 object with
# the smoothing parameter sequence [0, 1, 10, 1000, inf]:

TaperingPlot(lambdaSmoother = c(1, 10, 1000), mm = 30, nn = 10)

# Signal-dependent tapering function plot for a 30-by-10 object with
# the smoothing parameter sequence [0, 1, 10, 1000, inf]:

set.seed(987)
xmuExample <- c(stats::rnorm(300))
TaperingPlot(lambdaSmoother = c(1, 10, 1000), mm = 30, nn = 10,

Xmu = xmuExample)

tridiag Generate a tridiagonal matrix.

Description

Generate a tridiagonal matrix with upperDiag as superdiagonal, lowerDiag as subdiagonal and
mainDiag as diagonal.

Usage

tridiag(mainDiag, upperDiag, lowerDiag)

Arguments

mainDiag Diagonal of tridiagonal matrix.

upperDiag Superdiagonal of tridiagonal matrix. Must have length length(mainDiag) - 1.

lowerDiag Subdiagonal of tridiagonal matrix. Must have length length(mainDiag) - 1.

Value

Tridiagonal matrix.

Examples

set.seed(987)
mainDiag <- sample(100:110, size = 6, replace = TRUE)
upperDiag <- sample(10:20, size = 5, replace = TRUE)
lowerDiag <- sample(1:10, size = 5, replace = TRUE)

tridiag(mainDiag, upperDiag, lowerDiag)
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turnmat Turn matrix 90 degrees counter-clockwise.

Description

Help function to turn matrix 90 degrees counter-clockwise. turnmat is used as an internal function
in some of the plotting functions. Depending on how the data is stored, it can be necessary to turn
the matrices 90 degrees counter-clockwise for being able to plot them correctly.

Usage

turnmat(x)

Arguments

x Matrix to be turned.

Value

Matrix x, turned by 90 degrees counter-clockwise.

Examples

set.seed(987)
sampleMat <- matrix(stats::rnorm(100), nrow = 10)
sampleMatTurn <- turnmat(x = sampleMat)
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