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Abstract

The purpose of this master thesis is to use the parametric bootstrap resampling method for doing statistical
model inference on transformation models. Based on previous research completed by [Hothorn et al.|in 2015
(Hothorn, T., Mést, L., and Bihlmann, P. (2015). Most Likely Transformations. arXiv:1508.06749. Technical
report, v2. URL http://arxiv.org/abs/1508.06749), this project utilizes the implementation of maximum
likelihood-based estimation for transformation models. The framework of conditional transformation models
as well as the bootstrap resampling method is profoundly explained within this thesis.

To practically illustrate the use of these approaches, the in R publicly available data set from the German
Breast Cancer Study Group-2 (GBSG2) trials was used. A conditional transformation model estimates the
conditional distribution of the response variable Y defined from the GBSG2 data set. Consequently, the para-
metric bootstrap resampling method can be applied to draw B new response variables Y7, ..., Yz from the
conditional distribution function. This procedure resulted in B new conditional transformation models, which
were subsequently used for the parametric bootstrap inference. We used log-likelihood ratio statistics as a
likelihood based measurement for comparing the bootstrap generated model to the original transformation
model. The statistical inference of the bootstrap generated transformation models was carried out in two
ways: first, on the model parameters and the distribution thereof; and second, on the data specific prediction
functions, e.g. the density function, the empirical cumulative distribution function, the survivor function, etc.
Furthermore, this research has shown that the degrees of freedom of the Chi-squared distributed log-likelihood
ratio statistics are not defined as they are expected to be. Regarding the not as expected log-likelihood ratio
statistics distribution, this thesis does not definitively provide a solution, however, simulations have been in-
cluded to prove the presumption that a correction of the degrees of freedom in instances of multiply occurring
model coefficients is essential. In conclusion, the results of this thesis advance the understanding of graphical
model inference of the model parameters of a conditional transformation model as well as the inference of the

conditional transformation model itself.
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1. Introduction

In the context of frequently used regression models the estimation of the conditional mean of the response
variable Y is usually in focus. Whenever a distribution is too challenging to analyse, one might tend to sim-
plify the distribution by only concentrating on the mean as the sole comprehensible real number value that
describes the centre of the distribution. One often forgets that the mean as a characteristic of a distribution
hides other important characteristics such as: variance, skewness and kurtosis. In contrast, the model class
of transformation models, which is widely utilized in this thesis, is advantageous in that the higher moments
of the conditional distribution are allowed to depend on the explanatory variables. In the framework of trans-
formation models, the whole conditional distribution of the response variable Y is estimated with the help of
a strictly monotone increasing transformation function i (y). The paper Most Likely Transformation, authored
by Hothorn et al|in|2015| has revolutionized the state of research of transformation models. For the first time,
a full likelihood procedure was introduced for estimating the transformation function along with the model pa-
rameters. The combination of such transformation models with the parametric bootstrap resampling method
is the main theme of this thesis. By applying the parametric bootstrap to the concept of transformation mod-
els, it is possible to obtain additional response variables. Based on these additional responses, additional
transformation models are estimated and subsequently used for (graphical) model inference, the so-called

Parametric Bootstrap Inference for Transformation Models.

1.1. Outline

In a nutshell, the thesis is structured as follows: The second chapter Theory and Methods (cf. Chapter [2)
gives an overview, as the name suggests, of the theories and methods used in this thesis. This includes an in-
troduction to the concept of transformation models (cf. Section|2.2) as well as an introduction to the bootstrap
resampling methods (cf. Section[2.4). The implementation, application and evaluation of the combination of
these two concepts are the focus of the third chapter Modelling and Analysis (cf. Chapter [3). Afterwards, a
graphical parameter and model inference is explained in Sections[3.2]and [3.3] respectively. The fourth chap-
ter - Discussion (cf. Chapter[4) - provides the conclusion, summarises the limitations of this body of work, in
addition to avenues for future research.

This thesis forms part of the Master Program in Biostatistics at the University of Zurich. For the sake of
brevity, long and detailed equations and proofs have been intentionally excluded. A reader that seeks details

will find further information by following the in-text references.



1. Introduction

1.2. Notation

The notation used for this thesis is inspired by [Efron| (1979) and |[Hothorn et al.|(2015). Vectorial parameters
¥ are printed in boldface to make it easier to distinguish them from scalar parameters ¢. A hat on a letter
indicates an estimate, such as @ (respectively 8). As in Held and Bové| (2013), independent univariate ran-
dom variables Y; from a certain distribution contribute to a random sample Yi.ny = (Y3,...,Yn), Whereas n
independent multivariate random variables Y; = (Yi,..., Y#)T € R¥ are denoted as Y., = (Y1,...,YN) €
Rkx7 A superscript “*” indicates a bootstrap random variable, e.g. Y;* indicates a bootstrap random variable
from data set Y.

fy(y) describes the density (or probability mass) function, Fy(y) the empirical cumulative distribution func-
tion, Sy (y) the survivor function and Ay (y) the hazard function of Y;. The notation y; < Ffori= 1,2,...,n
indicates an independent and identically distributed sample of size n drawn from the distribution F. The

conditional distribution function of Y given X = x is denoted as Fy|x(y[x) or F(Y < y|X = x).

1.3. Software

All analyses were performed in the R system of statistical software (R version 3.3.0 (2016-05-03)), which is
freely available at http://www.r-project.org/. The following Base packages grid, stats, graphics,
grDevices, utils, datasets, methods, base and other packages xtable, beanplot, Hmisc, ggplot2,
Formula, lattice, SDMTools, colorspace, MASS, survival, sltm, mlt, basefun, variables, knitr were
used for the analyses and for the compilation of this report. The computing environment on the author’s
personal computer had the following specifications: OS X Yosemite, Version 10.10.5 (Operating system), 1.7
GHz Intel Core i7 (Processor) and 8 GB 1600 MHz DDR3 (Memory).

Muriel Lynnea Buri, muriellynnea.buri@uzh.ch 2
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2. Theory and Methods

This chapter provides an introduction to the theory and an overview of the methods used in this thesis. Overall,
it is divided into five subsections. Section[2.1] puts the transformation models in context of other (well known)
regression models; whereas the concept of transformation models for unconditional cases is introduced in
Section In Section[2.3] conditional transformation models along with their application in R are discussed.
Section highlights an overview of the bootstrap resampling method, followed by a brief introduction to the
data set utilized (cf. Section[2.5).

2.1. From Normal Linear Regression Models to Transformation
Models

Beginning with the normal linear regression model (NLRM) as shown in the transformation model (cf. Figure

below, each type of the regression model will be elaborated upon in a clockwise manner.

Normal Linear

Regression
Model (NLRM)
Conditional Ge:;r::fed
Transformation Regression
Model (CTM) Model (GLM)

Generalised
Additive Model
(GAM)

Linear MOdeIS

Transformation
Model

The
Generalised
Additive Model
for Location,
Scale and
Shape
(GAMLSS)

Quantile

regression

Figure 2.1.: From Normal Linear Regression to Conditional Transformation Models

It is known that most regression models are used to estimate the conditional mean of a response variable

Y. In the setup of the normal linear regression model (NLRM) let Y denote a continuous normal distributed



2. Theory and Methods

response variable and k denote independent covariates X1.,. The latter is used as model inputs to estimate
the conditional mean of the response variable Y. x;. whereby, the i-th observation (i = 1,2,...,n) of the k-th
covariate, y; is the i-th observation of the response variable, respectively. The functional form of the NLRM

for the i-th response is known as:

Yi=PBo+ Pixan + Pexip+ Baxiz+ -+ Prxi te€,i=1,...n

(2.1)
=xif+e=Xp+e = Y|X=X~NXB,?)

Equation also depicts the vector form where X € R"™*k is the so-called design matrix, B € R* the
parameter vector and €; the error term with variance ¢2. The errors €1, €y,...,en are independent and
identically distributed (i.i.d) with E(e;) = 0 and Var(e;) = 02, i.e. ; ~ N(0,0?). The property of constant

variance 2

across all the error terms ¢; is referred to as homoscedasticity (Fahrmeir et al., |)2007). This
implies that the error terms are independent across the covariates.

In the case of normally distributed errors, we get as a result of the NLRM, an estimator for the conditional
expected value of Y given the covariates Xq.: E(y|X) = E(y|x1, x2, ..., x). E(y|X) is also known as the
conditional mean of Y given the covariates X. The normal linear regression model is parametric in the sense
that we assume Y|X = X to be normally distributed. The model has (k + 1) parameters: 1, B2, ..., Br, 0
and the regression coefficients are perceived to be dependent on the variable x; to which they belong to. The
conditional mean E(Y|X = X) increases by ; when x; increases by one unit. Therefore, ; depends on both,
the scale of x; and the possible transformation of x;. Nevertheless, the explanatory variables in the NLRM
only have an impact on the mean of the response variable Y, but not on the variance 2. Since the covariates
of the model only influence the conditional mean of the response variable Y but not the higher moments of the
distribution function, it can be inferred to also applicable to both the generalised linear model (GLM) and the
generalised additive model (GAM). The higher moments of the distribution function are assumed to be fixed.
Due to these similar characteristics, the three models - NLRM, GLM, GAM - are depicted in Figure [2.1] with
the same colour. As the name suggests, the GLMs can be interpreted as a generalization of the NLRM and
also incorporates more general types of distributions for the response variable Y, i.e. distributions from the
exponential family (Fahrmeir et al., 2007, p. 301). GAMs can be considered as a concept that incorporates
nonlinear forms of the predictors. The linear form )" ; B;X; gets replaced by a sum of smooth functions

" 1 Bif (Xi). GAMs were originally developed by Hastie and Tibshirani| (1986).

The model class of generalised additive models for location, scale and shape (GAMLSS) was introduced
by |Stasinopoulos and Rigby| in 2007. This was one of the first attempts to illustrate how the explanatory
variables influence higher moments of the distribution function. GAMLSS are statistical (regression) models
where the location, scale, skewness and kurtosis parameters for the distribution of the response variable Y
can be modelled explicitly as a function of the explanatory variables, i.e. covariates.

All of the above mentioned regression models assumed a parametric distribution for the response variable
and were considered to “require the definition of a parametric distribution for the response variable” (Most,
2014). Applied to Figure 2.1]and hence figuratively explained, all the regression models aligned on the right
side of the circle assume a parametric distribution for the response variable. In contrast, the approach of
the quantile regression (Koenker, 2005) which according to [Most (2014) is a popular approach that does
not make any assumptions about the parametric distribution function of the response variable. The quantile
regression therefore models the conditional quantile functions of Y given the explanatory variables X. As

a consequence of the fact that we fit separate models for a grid of probabilities T to estimate the whole

Muriel Lynnea Buri, muriellynnea.buri@uzh.ch 4



2. Theory and Methods

conditional quantile function, the logical monotonicity of the conditional quantiles is not considered explicitly,
and therefore quantile crossing is a familiar problem associated with quantile regression (Most, 2014}, |Hothorn
et al, |2014). The disadvantage of quantile crossing then, is its ability to lead to an invalid distribution for
the response, consequently, there is an obvious transition to the conditional transformation models (CTMs)
bearing in mind that the conditional quantile function is the inverse of the conditional distribution function and
vice versa. The CTMs blend the favourable properties of the GAMLSS and the quantile regression: The
conditional distribution function of the response variable is modelled directly and therefore the mean and all
higher moments are influenced by the explanatory variables X. Another potential problem of quantile crossing
is in the framework of CTMs losing its usefulness, as all conditional quantiles are estimated simultaneously
with the conditional distribution function. A more detailed introduction to the framework of transformation

models is elaborated upon in the next section.

2.2. The Concept of Transformation Models

In general, transformation models are useful mainly because the whole conditional distribution function of
Y is modelled directly and influenced by the explanatory variables X. Indeed, the class of transformation
models is rich, has been thoroughly researched and has a close connection with the conditional distribution
function. Nonetheless, a brief introduction to the general class of linear transformation models followed by an
in depth discussion of the linear transformation model is given in Section Later, the general conditional
transformation model will be discussed in Section[2.3.3]

Most (2014) points out that the origin of transformation models is given by the parametric response trans-
formation suggested by Box and Cox| (1964). The authors presented a family of transformations for a non-
negative response variable Y depending on a parameter A. The Box-Cox-Transformation is scaled to be

continuous at A = 0:

L A£0
hy(yA) =< = hy(y|A) =3B +e
log(y), A=0

After the transformation 1y (y|A) a normal, homoscedastic, linear model is valid:
hy(y|A) = %Tp =€ ~ N(0,0%)
P < 4f) = Fl) = o =)
The linear transformation models are an extension of the parametric Box-Cox transformation models. In
the framework of simple linear transformation models the response transformation h(y) = —x' + € is not

specified. However, the strictly increasing transformation %(y) is dependent on linear covariate effects and

the distribution function F of the random error term € is completely specified:
h(y)+x"B=e~F.
The conditional distribution function for the linear transformation model is therefore defined as follows:

P(Y < y|X = x) = P(h(Y) < h(y))

~ F(h(y) + 7).

Muriel Lynnea Buri, muriellynnea.buri@uzh.ch 5



2. Theory and Methods

The response distribution F(h(y) + xTﬁ) includes a linear shift due to the explanatory variables, hence only
the conditional mean of the transformed response is influenced (Most, [2014). The model complexity of the
linear transformation model is restricted as the model is linear in x and does not allow for interaction terms
between the response and the explanatory variables. The class of linear transformation models includes the
proportional hazards model and the proportional odds model as special cases, consequently the transforma-

tion function /() is sometimes also called the baseline function.

2.2.1. The Likelihood Function of the Transformation Function

The content of this section is spurred by the Sections 2 and 3 of the paper Most Likely Transformations,
authored by [Hothorn et al| in|2015 As a result, the definitions, notations and corollaries are adopted from
this publication and appropriately cited. In order to elaborate on the technical derivations of this paper and to
gain a better understanding, a flowchart has been created in the appendix (cf. Appendix[A.1] Figure[A.). The
latter represents the main steps required to estimate a transformation model in a full likelihood framework.

Hothorn et al|(2015) posit that many authors have studied different approaches to estimate the transforma-
tion functions, however, a full likelihood estimation procedure is still lacking. [Hothorn et al.| (2015) therefore
sought to address this issue by introducing a strictly monotone transformation of some absolute continuous
random variable. Whereby, “the likelihood function of the transformed variable can then be characterised by
this transformation function. The parameters of appropriate parameterisations of the transformation function,
and thus the parameters of the conditional distribution function we are interested in, can then be estimated
by maximum likelihood under simple linear constraints allowing classical asymptotic likelihood inference [...]”
(Hothorn et al.,|2015, Chapter 1. Introduction).

Let (Q), 2, IP) denote a probability space, for which Q) is the sample space, the set of all possible outcomes.
2l is the set of events and IP the assignment of probabilities to the events, respectively. The function IP can
be understood as a function from the events to probabilities. Let (£, €) describe a measureable space with
at least ordered sample space Z. The motivation for setting up the transformation model is our interest in
inferring about the distribution Py of a random variable Y, i.e. the probability space (E, ¢, Py) defined by
the 2l — € measureable function Y : Q) — E. For the sake of notational simplicity, we here only present the
results for the unconditional and ordered cases are presented. The distribution Py = fy © u is dominated
by some measure u and characterised by its density function fy, distribution function Fy(y), quantile function
F, ! (p), hazard function Ay (y), or cumulative hazard function Ay (y). As in Hothorn et al, (2015), we assume
strict monotonicity of Fy, i.e. Fy(y1) < Fy(y2) Vy1 < ya € E, with the aim of obtaining an estimate Fy
of the distribution function Fy from a random sample Yi,...,Yn < IPy. The path to achieving this goal
is not straightforward, and requires further investigation. Hereafter, we show that it is always possible to
write the potentially complex distribution function Fy as a composition of a much simpler a priori specified
distribution function F7 and a strictly monotone transformation function i. The estimation of Fy is then reduced
to obtaining an estimate /. Since these definitions are technically and conceptually attractive, it is further
elaborated upon in the subsequent paragraph.

Let (R,B) denote the Euclidian space with Borel o-algebra and Z : 3 — R a 2 — B measureable
function such that the measure Pz = f7 © y is absolute continuous (y; denotes the Lebesgue measure)
in the probability space (IR,B,IPz). The corresponding distribution and quantile function are F; and Fz_l,

respectively. In addition, we assume fz(z) : R — (0,00) and the existence of the first two derivatives of
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fz(z) with respect to z and Fz(z) : (—oco,00) — [0, 1]. By definition, all parameters for F; have to be known

and possible choices for F7 include:

e the standard normal distribution: Fz(z) = ®(z)
e the standard logistic (SL) distribution: Fz(z) = Fsr(z) = (1 +exp(—z)) !
e the minimum extreme value (MEV) distribution: Fz(z) = Fygy(z) = 1 — exp(—exp(z))

Our final goal is to obtain ﬁy’N of the distribution function Fy. But first, we show that there always exists a
unique and strictly monotone transformation g, such that the unknown and potentially complex distribution
Py can be generated from the simple and known distribution I’z via Py = IP¢.7z. Due to the existence and

uniqueness of g, it is defined as corollary (seen in|Hothorn et al{(2015)):

Corollary 1. For all random variables Y and Z, there exists a unique strictly monotone increasing transfor-

mation g such that Py = Pgo7.
Proof. Letg = F, ' oFzand Z ~ Pz. Then U := Fz(Z) ~ U[0,1] and Y = F, ! (U) ~ Py by the probability
integral transform. Let & : & — R such that Fy(y) = Fz(h(y)). From

Fy(y) = (Fz0F; ' o Fy)(y) = Fz(F; ' (Fr(y))) = Fz(F; ' (Fz(h(y)))) <= h=F;'oFy

the uniqueness of I and therefore g is given. Corollaryalso covers the discrete case.
The quantile function Fgl and the distribution function Fy exist by assumption and are both strictly mono-

tone and right-continuous. Therefore, i and g are both strictly monotone and right-continuous. O
The following corollaries are also taken over from|[Hothorn et al|(2015).
Corollary 2. Fory = yr, we haveg = h=' and ' (y) = fz((F;* o Fy)(y)) " fr ().

This result for absolute continuous random variables Y can be found in many textbooks (for example in
Lindseyl, [1996).

Corollary 3. For the counting measure yp = jic,h = F, loF isa right-continuous step-function because Fy

is a right-continuous step-function with steps aty € &.

Example The classical textbook example for transformations of random variables is Y = Z2 ~ X2 from

Z ~N(0,1), i.e. using the non-monotone transformation z2:

20) = Varew (- 5)
Frty) = Varep (= 1) = ()

Alternatively, we can write Z = h(Y) and Y = ¢(Z) with h = &~ 1o Fy and g = 1= FX? o®. The
functions g and & are unique and strictly monotone transformations switching between the standard normal
and the X% distribution. The X% distribution can be generated from the standard normal by the transformation
g= Fx_%l o ® and the back-transformationis h = ®~ 1 o Fx%-

The next steps are:

e characterisation of the distribution Fy by the corresponding transformation function #,
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e setting-up the corresponding likelihood £ (k) of such a transformation function i and

e estimating the transformation function based on this likelihood.

To demonstrate this idea, let H = {h : & — R|€ — B measureable, h(y1) < h(y2) Yy1 < y2 € E} denote
the space of all strictly monotone transformation functions. Once the transformation function / is established,
Fy can be evaluated as Fy(y|h) = Fz(h(y))Vy € E. This indicates that ¢ does not necessarily follow,
consequently it is essential to study the transformation /. Further, due to the different types of response
variables Y, we have different definitions for the density function:

o for absolute continuous variables Y (1 = uy):

oFy(y|h) _ 9Fz(h(y))
oy dy

= fr(ylh) = fz(h(y))H (y)
o for discrete responses Y (i = ) with finite sample space & = {y1, ...,y }:

Fz(h(yk)) k=1
fr(elh) = ¢ Fz(h(yi)) — Fz(h(ye—q)) k=2,...,K—1

1— Ez(h(yx1)) k=K

e for countably infinite sample spaces E = {y1,y2,V3, ...}

Fz(h(yx)) k=1

Fz(h(yx)) — Fz(h(yx-1)) k> 1.

fr(elh) =

With the conventions Fz(h(yo)) := Fz(h(—o0)) := 0 and Fz(h(yk)) := Fz(h(c0)) := 1 only the more
compact notation fy (yx|h) = Fz(h(yx)) — Fz(h(yx_1)) will be used.

As [Lindsey| (1996) defined and |Hothorn et al| (2015) reiterated, for a given transformation function k, the
likelihood contribution of a datum C = (3_/, 7] € € is determined in terms of the distribution function:

LY € ©) 1= [ fe(yidn(y) = Ez(h(9)) — Fz(h(y).

The aforementioned definition particularly applies to most practically interesting scenarios, oftentimes allowing
for discrete and (conceptually) continuous, as well as censored or truncated observations of C.

Hothorn et al| (2015) has summarised the likelihood contribution of an “exact continuous” or left, right or
interval-censored continuous or discrete observation (}_/, 7] as follows:

fz(h(y))H (y) y=(y+7)/2€E “exact continuous”

1—Fz(h(y)) y € (y,00)NE “right-censored”
L(hY € (y,79]) = i i

Fz(h(7)) y € (—oo,7|NE “left-censored”

Fz(h(7)) — Fz(h(y)) vy € (y,g]/NE ‘interval-censored”,

under the assumption of random censoring. |Klein and Moeschberger (2003) (p. 69) attribute accidental

deaths or the migration of human populations as typical examples, whereby the random censoring times may
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be thought to be independent of the main event time of interest. |Klein and Moeschberger (2003) further high-
light the fact that the likelihood is more complex under dependent censoring. This body of work unfortunately
does not elaborate on this idea.

In the case of truncated observations in the interval (y;,y,] C &, Hothorn et al|(2015) define the above

likelihood contribution differently in terms of the distribution function conditional on the truncation

BOIY € ) = E2 )Y € ) = D vy e ()

and thus the likelihood contribution changes to (Klein and Moeschberger, [2003)

LY e(ws)  LHYE ()
E,(h(y) — 2 (h(y))  L(HY € (y1,y/])

Lindsey| (1999) emphasizes the importance of the fact, that the likelihood is always defined in terms of a

wheny, <y <7 < yr.

distribution function. Therefore, it makes sense to directly model the distribution function of interest after it.
Hothorn et al.| (2015) state that the ability to uniquely characterise this distribution function by the transforma-

tion function £, gives rise to the following definition of the most likely transformation estimator hin.

Definition 1 (Most likely transformation).

Let Cq,...,Cy denote an independent sample of possibly censored or truncated observations from Py. The

estimator
~ N T
hy := arg max Zlog(ﬁ(le €C))
heH  i=1

is called the most likely transformation (MLT).

Example For absolute continuous Y the likelihood and log-likelihood for i are approximated by the density

and log-density evaluated at y = (y + 1) /2, respectively:

LMY € (y.9]) = fz(h(y)H'(y)
log(L(hY € (y,9])) ~ log(fz(h(y)))+log(H' (y))-

Strict monotonicity of the transformation function / is required, otherwise the likelihood is not defined. The
term log (K (y)) is not a penalty term but the likelihood favours transformation functions with large positive
derivative at the observations. If we assume Y ~ N(«, 02) and for the choice Fz ~ N(0,1) with F; = ® and

fz = ¢, then h can be restricted to linear functions h(y) = (y — «)o 1. The likelihood reduces to

L(KY € (y,7]) = fz(h(y)H' (y) = &y—j)a_*lg(j,
fz(ny) M)
= ¢p02(Y)
= fr(yla, o).

Along with this example [Hothorn et al.| (2015) have emphasized that it is only within this simple location-
scale family, that the most likely transformation is characterised by the parameters of the normal distribution
of Y. Consequently, for other choices of Fz, the most likely transformation is non-linear. Nevertheless, the

distribution function Fy = Fz(h(y)) is invariant with respect to F; because we can always write & as Fil o
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Fy. In other words, with F; # & normal responses Y can still be modelled, but only with a non-linear
transformation function 4.

Henceforth, we do not assume any specific form of the transformation function but parameterise  in terms
of a basis function. Consequently, this parameterisation, a corresponding family of distributions, a maximum
likelihood estimator and a large class of models for unconditional and conditional distributions will be intro-

duced in the subsequent paragraphs below.

2.2.2. Maximum Likelihood Transformation Models

A basis function a : £ — R” parametrises the transformation function i(y) = a(y) ' ¢, 8 € R” in such a way
that /1(y) is a linear function of the basis-transformed argument i and the parameter vector #. The choice of
the basis function a is in close connection with the Bernstein polynomials, which are introduced and discussed
in Section[2.2.3]of this thesis. The exact likelihood £ only requires evaluation of i1, however, the approximation
for “exact” observations of absolute continuous random variables makes the evaluation of the first derivative
of h(y) with respect to y necessary. The derivative with respect to v is given by h'(y) = a’(y) "¢ and we
assume that a’ is available. In the style of Hothorn et al. (2015), we subsequently use the notation & = a ' ¢
and i/ = a'" ¢ for the transformation function and its first derivative omitting the argument y. We assume that
h and ' are bounded away from —oo and oc.

For a specific choice of Fz and a, the transformation family of distributions consists of all distributions Py
whose distribution function Fy is given as the composition Fz o a ' ¢; Hothorn et al| (2015) refer to this as a

Transformation family.

Definition 2 (Transformation family).

The distribution family
]Py@ = {FZ o aTlﬂl’ S @}

with parameter space ® = {¢ € RP|a"¢ € H} is called transformation family of distributions Py 4 with

transformation functions a' ¢ € H, u-densities fy(y|®), y € &, and error distribution function F.

Hothorn et al| (2015) also hypothesize that the classical definition of a transformation family relies on the
idea of invariant distributions, i.e. only the parameters of a distribution are changed by a transformation func-
tion but not the distribution itself. Throughout this thesis, the transformation functions that do change the
shape of the distribution are explicitly allowed. The transformation function a ' # is, at least in principle, flexi-
ble enough to generate any distribution function Fy = F; o a | # from the distribution function F. As a result,
the term “error distribution” function for Fz as seen in |Fraser| (1968) is introduced. To estimate If*y,N of the
unknown distribution function Fy has been our original goal. By redefining Fy to Fz(h(y)) with a known Fz,
the problem reduces to estimating the unknown transformation function i with the parameter vector ¢. But
thanks to the known likelihood function L(a'#|Y € (y,9]), it reduces further and it remains a maximisation

of the likelihood function such that the estimator of ¢ can be defined as the maximum likelihood estimator.

Definition 3 (Maximum likelihood estimator).

N
Iy = argmaleog(E(uTtﬂY €())
9€®@ =1
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As a result of defining the maximum likelihood estimator @, the plug-in estimators of the most likely trans-

formation function along with the corresponding estimator of our target distribution Fy should be defined:
e Plug-in estimators of most likely transformation function: fiy := a' dy
e Estimator of our target distribution Fy: ﬁy/N =Fyo0 sz

Since the original aim of characterising the distribution Fy by the corresponding transformation function h
is still intact, an estimate ﬁy/N of the distribution function Fy will be elucidated from the random sample
Yq,..., YN B Py. Thanks to the above definitions, the estimation of the target distribution PY,N is now
embedded in the maximum likelihood framework. Hence, only the regularity conditions (cf. Definition 4.1, p.
80, |Held and Bové, [2013) remain to be shown in order to benefit from the well-established asymptotic theory.
In such instances, the asymptotic analysis benefits from the standard results extracted from the asymptotic
behaviour of maximum likelihood estimators. Therefore, it is possible to derive the score function and Fisher
information function depending on the different characteristics of the response variable Y. Building upon this
idea, the standard likelihood inference on the model parameters & can be performed.

Further, |[Hothorn et al.| (2015) discuss three additional theorems which are omitted here. These theorems
point out the conditions on the densities of the error function fy and on the basis function a to ensure con-
sistency and asymptotic normality of the sequence of maximum likelihood estimators #. Additionally, an
estimator of the asymptotic covariance matrix of d is given in|Hothorn et al(2015).

For now, we complete this theoretical introduction by formally defining the class of transformation models
according to|Hothorn et al.| (2015).

Definition 4 (Transformation model).

The triple (Fz, a,9) is called transformation model.

The transformation model (Fz, a,®) fully defines the distribution of Y via Fy = Fzoa'# and thus the
corresponding likelihood £(a'#|Y € (y,9])- Our definition of transformation models as (Fz, a, #) is strongly
tied to the idea of structural inference. |Fraser| (1968) described a measurement model Py for Y by an error
distribution I’z and a structural equation Y = g o Z where g is a linear function.

Hothorn et al|(2015) define such a transformation family or model as “parametric” when Fz and the basis
function a correspond to a distribution F, and its parameters are directly linked to the model coefficients
9. A semi-parametric transformation model only partially specifies parameters of Fy through ¢, and a non-
parametric model is characterised by the invariance of ﬁy,N with respect to Fz (Hothorn et al.,|2015).

A flowchart that summarises these concepts that allow for the estimation of a transformation model in a full
likelihood framework can be found in the appendix (cf. Appendix[A.1] Figure[A.). As a side note, there also

exists a fully Bayesian treatment of transformation models despite being excluded from this thesis.

2.2.3. The Bernstein Polynomials

In the context of estimating a transformation model in a full likelihood framework the Bernstein polynomials
(for an overview see [Farouki (2012)) are important regarding the choice of the basis function a : & — R’

for the parametrisation of the transformation function (y) = a(y)'d. In case of order M (P = M + 1) the
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Bernstein polynomial is defined on the interval [y, 7] as:

M
h(y) = assm(y) 8 =Y O foemitm—msn) @)/ (M+1)

m=0
1 T =
h (y) = ués,M (y) = 2 (19111+1 - ﬂm)fBe(m—o—l,M—m) (]7)

m=0

X M/(M+1)(7—-y)),

where 7 coupled with fge(, a1y i8 7 = (y —y)/ (7 —y) € [0,1] and the density of the Beta distribution, re-
spectively. An important assumption regarding the Bernstein polynomial is its monotonicity due to the linear
constraints on the parameters 9, < 9,41 forallm = 0,..., M. This monotonicity is especially important in
the context of transformation models as the transformation function needs to be strictly monotone increasing.
Obviously, it is convenient to choose a Bernstein polynomial as the basis function ags )1 to parametrise the
transformation function h(y) = ags p(y) ' @ so that one can ensure a strict monotone increasing transforma-
tion function .

The question that arises therefore, is to what degree is the Bernstein polynomial optimal? In the vignette
of the m1t package (Hothornl 2016b} p. 10), it is stated that neither extremes, - a too small nor a too high
degree - should be chosen. On the one hand, ags; would only allow linear transformation functions of the
distribution function Fz to occur, consequently, Fy is restricted to the distribution family of Fz, but on the other
hand, a model with basis function ags y—1 has one parameter for each observation, meaning the model is
overfitted. In applications, it seems best to test the effects of the degree of Bernstein polynomial depending
on the Akaike information criterion (AIC) of the model. The degree of Bernstein polynomial which leads to the
smallest AIC is the one to be chosen for the model. However, there is the difficulty for some transformation
models to define the right degree of freedom (cf. Section [3.1.2)for details), consequently for some models the
AIC is doubted being correctly defined.

2.3. The Conditional Transformation Model (CTM)

In this section, the concept of conditional transformation models will be introduced. This will be achieved by
highlighting the special cases of this model class, and giving an example of how the normal linear regression
model (NLRM) is estimated within the framework of conditional linear transformation models with a linear shift.

The class of conditional transformation models includes transformation models with transformation func-
tions that depend on the explanatory variables X € X. Those transformation functions are usually of the form
h(-|x) : E — RR. The corresponding distribution function Fy x_, can be written as Fy|x_.(y) = Fz(h(y[x)).
Like in the unconditional case introduced in Corollary 1 (cf. Section[2.2.1), there also exists a strictly monotone

transformation function for the conditional case h(-|x) = Fgl o Fy|x—y such that Fy|x_(y) = Fz(h(y|x)).

2.3.1. The Linear Transformation Model

A linear transformation model with a linear shift is the simplest form of a regression model in the class of

conditional transformation models. The conditional distribution function is:

P(Y < y|X = x) = Fz(h(y|x)) = Fz(hy(y) — %' B)
= Fz(c(y,x)'9) = Fz(a(y) 81 — %' B).
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In other words, the conditional transformation function is parametrised as h(y|x) = c(y, x) "¢ and no longer
h(y) = a'd. As a result, the basis function b : X — R for the explanatory variables is introduced.
As suggested in |Hothorn et al| (2015), the joint basis for both ¥ and x is called ¢ : & x X — RA(PQ),
and its dimension d(P, Q) depends on the way the two basis functions a and b are combined (for example
c=(a",b")T e RPFRorc=(a’ ®@b")T € RPQ).

The simple transformation function i (y|x) = hy(y) + hx(x) where the explanatory variables only contribute
a shift 1 (x) to the conditional transformation function is an important special case. |Hothorn et al.| (2015) state
that this shift is often assumed to be linear in x, so the function m(x) = b(x) " B = & B will be used to denote
linear shifts. b(x) = % is to be understood as one row of the design matrix without intercept. The conditional
transformation function ¢(y,x) "¢ = a(y) "¢1 + b(x) " 9, is split into the two terms hy(y) = a(y) ' ¢ and

hy(x) = b(x) "8, = m(x) = —% " B, whereas the conditional distribution function is

P(Y <y|X = x) = Fz(h(y|x)) = Fz(hy(y) + he(x)) = Fz(c(y,x) ' 9)
= Fz(a(y) "1+ b(x) " 82)
—F,

()
(a(y) " —x'B)

The three theorems, which were previously mentioned in Section and are discussed in [Hothorn et al.
(2015) are also applicable here. Consequently, the performance of standard likelihood inference on the model
parameters ¢ = (¢;,9,) | of the conditional transformation model is also possible.

For a better understanding of the concept, we examine the normal linear regression model (NLRM) from the

perspective of linear transformation models.

The linear regression model reviewed from the linear transformation model perspective
We rewrite the classical normal linear model Y = X8 +¢, Y ~ N(Xp,0?) in the context of conditional

transformation models: Y ~ N(« + m(x), o) with conditional distribution function

— o —m(x)

Frxely) =@ (L) — oyl

and transformation function

h(ylx) = hy(y) + hx(x) =y/0 —a/oc—m(x)/c
e hel®)
vy x(X

= c(y,x)Tﬂ = a(y)Tﬂl + b(x)Tﬂz
——

where a(y), b(x) and @ = (#1,8,2) " are the basis functions and parameters, respectively. Nonetheless,
there is the constraint ¢ > 0. In a more compact notation, one can write: (®, (y,1,%")T,9).

Hothorn et al|(2015) note that this model is parametric even though the parameters are the inverse standard
deviation and the inverse negative coefficient of variation as opposed to the mean and variance of the original

normal distribution.
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2.3.2. Specifying a Linear Transformation Model in R

This following section contains an applied example in contrast to the before introduced technical steps on
how to fit a transformation model and will be based on the vignette document of the m1t package (Hothorn|
2016b). The example is in the context of survival analysis and highlights all the important functions that are
needed to fit a linear transformation model in the software environment R.

Data from the German Breast Cancer Study Group-2 (GBSG2) trial is used to explain this concept in
more detail in Section The focus in this section therefore, is to demonstrate the R implementation of
the model. In so doing, an estimation of the recurrence-free survival time (positive absolutely continuous
response variable) of the GBSG2 trial conditional on all covariates given in the data set will be realised.

The GBSG2 data set will be loaded from the TH.data package (Hothorn, [2015). The definition of a formula
for the covariables of the model is necessary because the as.basis() method of the basefun package
(Hothorn, |2016a) needs a formula (or factor) as its argument. The as.basis () function returns a function
itself for the evaluation of the basis functions with corresponding model .matrix and has two arguments:
(1) remove_intercept removes the intercept after appropriate contrasts were computed and (2) negative

multiplies the model matrix with —1.

data("GBSG2", package = "TH.data")

xvar <- names (GBSG2)

xvar <- xvar[!(xvar %in}% c("time", "cens"))]

mlt_covariates <- as.formula(paste("™", xvar, collapse = "+"))
basis_x <- as.basis(mlt_covariates, data = GBSG2,

remove_intercept = TRUE)

GBSG2$y <- with(GBSG2, Surv(time, cens))
y_var <- numeric_var("y", support = c(0, max(GBSG2$time) + 0.1))

basis_y <- Bernstein_basis(y_var, order = 10, ui = "increasing")
ctm_coxph_mod <- ctm(basis_y, shifting = basis_x, todistr = "MinExtrVal")

mlt_coxph_mod <- mlt(ctm_coxph_mod, data = GBSG2, scale = TRUE, checkGrad = FALSE)

R-Code 2.1: Explaining in a step-by-step manner how the conditional transformation model (Fz, (ags10(y) ',
b(x)") T, dy) is estimated by using the framework specific functions of the basefun (Hothorn, 2016a),
variables (Hothorn|2016¢c) and m1t (Hothorn,|2016b) packages in R

numeric_var() from variables package (Hothorn, 2016c) saves a formal description of a discrete nu-
meric variables with integer-valued support argument which is later passed to the Bernstein basis()
function from basefun package (Hothornl [2016a). A Bernstein polynomial (cf. Section for a more
detailed overview see [Faroukil (2012)) is used as a parametrisation of the continuous response. The asso-
ciated Bernstein basis() function implemented in the basefun package (Hothornl [2016a) returns such a
function for the evaluation of the basis functions with corresponding model .matrix and predict methods.
As the name suggests, the argument order defines the order of the polynomial (here: 10) and the argument

ui is a character describing the possible constraints (here: “increasing”) on the Bernstein polynomial. As
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explained in Section [2.2.3| of this thesis, neither a too small nor a too high order for the Bernstein polynomial
should be chosen. After having defined the basis functions for the response (basis_y) as well as for the
explanatory variables (basis_x), we are ready to specify the conditional transformation model by using the
ctm() function from m1t package (Hothorn, 2016b). The conditional transformation model (Fz, (ags10(y) ',
b(x)")T, #y) is now fully defined by the parametrisation /(y|x) and Fz. The latter is specified using the
todistr argument. The transformation function i (y|x) therefore depends on the settings for the arguments
interacting and shifting. The shift term is positive by default. The response argument (first argument of
ctm() function) requires the Bernstein polynomial of the response variable as input (here: basis_y). basis_x
is the right hand side of the model formula and defines the basis function for the shift term in the classical for-
mula language. Note that the actual observations are not referenced during the specification of the model. As
a result, the model estimation follows by applying the m1t () function from m1t package (Hothorn, |2016b) to
the ctm_coxph_mod object of class ctm. The resulting object m1t_coxph_mod is from the m1t class. It contains

the following objects itself specified by the m1t_coxph_mod environment:

e bounds e feval e model e scale
e call e fn.reduction e offset e score
e coef e gradient e optimfct e theta
e convergence e hessian e par e todistr
e cpar e iter e parm e trace
e data e loglik e quiet e value
o df e message e response e weights

Moreover, the following methods are available for objects of class m1t:

e bounds e Gradient e plot e summary

e coef e Hessian e predict e variable.names
e coef<- e loglLik e print e vcov

e confband e mkgrid e simulate e weights
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The result of applying the function coef () to the m1t_coxph_mod object returns the original model parameter
vector dy (cf. R-Code[2.2).

coef (mlt_coxph_mod)

it Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y)
## -7.6072969832 -1.0350803074 -1.0350803074 -1.0350803074 -0.9545167564
#i# Bs6(y) Bs7(y) Bs8(y) Bs9(y) Bs10(y)

## -0.3439678514 -0.3439678514 -0.3439678514 -0.1845162887 0.2937487631
## Bs11(y) horThyes age menostatPost tsize
## 0.2937487631 -0.3490523654 -0.0099262360 0.2676696591 0.0077713879
## tgrade.L tgrade.Q pnodes progrec estrec
## 0.5600910540 -0.2018493613 0.0487467451 -0.0022101686 0.0001833764

R-Code 2.2: Model parameter vector @y of original transformation model (Fz, (ags10(y) ", b(x)T) T, dn)

presented as original R-Code output

The output of R-Code[2.2]can be distinguished between model parameters that correspond to the Bernstein
polynomial (beginning with Bs) and model parameters that correspond to the model covariables (horTHyes,
age, ..., estrec). We have set the order of the Bernstein polynomial to M = 10 hence we get M + 1 =
11 coefficients that correspond to the Bernstein polynomial including the intercept of the Bernstein poly-
nomial. Note that some Bernstein polynomial coefficients are equal to others (Bs2(y)=Bs3(y)=Bs4(y),
Bs6(y)=Bs7(y)=Bs8(y), Bs10(y)=Bs11(y). We will refer back to that characteristic and analyse the conse-
quences of it in Section

2.3.3. Conditional Transformation Models with Multiple Basis Functions

The conditional transformation model with multiple basis functions can be interpreted as an extension of the
linear transformation model. Since the transformation function i (y|x) depends simultaneously on y and X,
the model complexity of conditional transformation model is higher.

Hothorn et al.| (2014) define the transformation function k(y|x) as an additive decomposition of | partial
transformation functions. Models of this class (-, ¢, #) are called conditional transformation models (CTMs)

and can be written in the following way:

P(Y < y|X = X) = P(h(Y|X) < h(ylx))

J
= F(h(y|x)) = F( ;h/(ylx))

]

The functions ;(y|x) : R — R have to be monotonically increasing in y. The additive decomposition of the
partial transformation functions hj(y|x) can be understood as a parametrisation of multiple basis functions
ai(y),bj(x),j =1,...] via the joint basis

c= (u1T®bT,...,u]T®b]T)T

Hothorn et al|(2014) proposed a boosting algorithm for the estimation of transformation functions h for exact
continuous responses Y. As mentioned in|Hothorn et al|(2015), in the likelihood framework conditional trans-

formation models can be fitted under arbitrary schemes of censoring and truncation and classical likelihood
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inference for the model parameters @ becomes feasible. In contrast to the boosting algorithm, in the likelihood
framework the number of model terms | and their complexity is limited because the likelihood does not contain
any penalty terms inducing smoothness in the x-direction (Hothorn et al., 2015). A more detailed overview of
the class of conditional transformation models can be found in|Most| (2014).

The ability to display complex relationships between the explanatory variables and the response is a great
benefit of the CTMs. In addition, we have the advantage of CTMs in that, all parameters of the distribution
function Fy respective to Fz; may depend on the explanatory variables X € X. The disadvantage of CTMs
however, is the challenging model interpretation because of the high flexibility of the models. Most| (2014)
also points out that the lack of orthogonality of the model components in CTMs constricts insights into model

structure due to the fact that the model components are not separable.

2.4. The Bootstrap Resampling Method

The bootstrap resampling method was first mentioned by |[Efron| (1979). He posits that this method is an
appropriate “technique for making certain kinds of statistical inferences” (Efron and Tibshirani, [1993). Within
the last decade, due to the increased efficiency of computing power and reduced cost, the method has
become popular. Within this study, the differences between the parametric and the non-parametric bootstrap
methods are elucidated and the assumptions about independent and identically distributed (iid) observations
are valid for both cases. If these assumptions are not fulfilled, the bootstrap is misleading.

Throughout this thesis, the focus will be set on the parametric bootstrap approach (cf. Section [2.4.2),
nevertheless, for the sake of completeness, we also introduce the non-parametric bootstrap procedure (cf.
Section|2.4.1).

2.4.1. The Non-Parametric Bootstrap

The basic idea of the non-parametric bootstrap approach is to create additional data from the given observa-
tions. We normally compute an estimator &y = g(Y1,...Yy) from the realisations Y1, ... Yy CF (cf. Table
. @N is a known function g of the data Y7, ... Yy and with the help of the central limit theorem it is pos-
sible to estimate the asymptotic variance. Consequently, we obtain the asymptotic distribution of dy. In the
framework of non-parametric bootstrap resampling technique with replacement, we draw many new data sets
Y= (Yf,...,Y%) " En from the empirical distribution. On each of the original observed values vy, . .., yn
we assign a probability of 1/N by the empirical distribution function. In other words, we draw a random sam-
ple of size n with replacement from the given observations. Based on these newly obtained observations
YT, ..., Y} the estimator 19?\, can be computed. This process is repeated several times in order to obtain the
approximate distribution of the simulated estimators @f\,. Table shows the outline of the non-parametric

bootstrap and serves as a means to better understand the concept.
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non-parametric
Real world

bootstrap world

distribution function F Exn
id i .

data Yi,..., YN~ F Y¥,.. Y5~ Ey
parameter 0 = g(F) dn = g(En)
estimator On=2g(Y1,...,YN) &y =g(Yf,...,Y5)

Table 2.1.: Comparison of the real world (observed) and the world of the non-

parametric bootstrap (Source: Own representation based on|Geyer| (2015))

The resulting distribution F is a step function (cf. Figure since only the weight 1/N can be drawn from
the observations. That is to say, staying at the realisations generates no new numbers.

Comparison between the Non-Parametric and Parametric Bootstrap

1.0 A =
= non-parametric (Fy)

0.8 4 — parametric (Fj,)
0.6 1
N
“ 04

0.2

0.0-—""-I III IIIIII|II III :

26 28 30 32 34
X

Figure 2.2.: Comparison between the non-parametric and parametric bootstrap: The resulting
distribution Fy of the non-parametric bootstrap is a step function (blue), whereas the resulting

distribution F@N of the parametric bootstrap is a smooth function (red).

2.4.2. The Parametric Bootstrap

The theory of the parametric bootstrap is similar to that of the non-parametric bootstrap. In contrast to the
non-parametric bootstrap, the samples are now drawn from the estimated parametric distribution F@N instead
of the empirical distribution Fy. |Efron and Tibshirani| (1993) explain the parametric bootstrap approach as
follows: Instead of estimating F by the empirical distribution function £, F@N is estimated from a parametric
model of the data. The ideal bootstrap estimate @?\] is then approximated by bootstrap sampling. Instead of
sampling with replacement from the available data as in the non-parametric case, the bootstrap samples of

size n are drawn from the estimated parametric distribution F@N of the population: X* = (Y7,..., YY) < F@N.
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parametric bootstrap
Real world
world
distribution function F F@N
data Y, YN S F YE YRR E,
parameter 0 = g(F) Oy = g(F;)
estimator On=2g(Y1,...,YN) &y =g(Yf,...,Y5)

Table 2.2.: Comparison of the real world (observed) and the world of the parametric

bootstrap (Source: Own representation based on|Geyer|(2015))

Table [2.2] shows the outline of the parametric bootstrap and serves as a support for a better understanding
of the concept. The resulting distribution F@N is a smooth function (cf. Figure as the bootstrap samples
are drawn from the whole distribution function F@N in contrast to the empirical distribution function Fy in the
non-parametric bootstrap (cf. Section[2.4.] Figure [2.2).

For the sake of completeness, caution must be exercised whenever the underlying parametric model is
wrong, as the application of the parametric bootstrap resampling will then also lead to wrong results. The
bootstrap method should therefore not be used in such instances. |Chernick and LaBudde| (2014) suggest
the need to compare both the non-parametric and the parametric bootstrap in order to review the parametric
assumptions. In their opinion, the parametric bootstrap is especially essential when the parametric distribution
is difficult to derive or as|Good (2001) argues, the parametric bootstrap provides more accurate answers than

textbook formulas.

2.5. The Data Set

The focus of this thesis is on different model approaches as well as the subsequent inference of these models.
In other words, the data set used to estimate such models is not of primary interest as we do not want to
analyse something in relation to the data more over we want to make inference about the fitted models.
Nevertheless, for the future model interpretation and understanding it helps to have a background knowledge

of the used data set.

2.5.1. German Breast Cancer Study Group-2 (GBSG2) Trials

The German Breast Cancer Study Group-2 (GBSG2) Trial data set contains 686 (female) patients. Only
patients not older than 65 years, who have tested positive for regional lymph nodes but lack distant metastases
were included in the study. The data set was collected between July 1984 and December 1989 and is publicly
available in R, where it can be downloaded through the TH.data package (Hothornl 2015) and the command
data("GBSG2", package = "TH.data") . The following continuous and factor variables are included in the

data set:
e hormonal therapy (factor, 2 levels: yes, no)

e age of the patients in years (numerical)
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e menopausal status (factor, 2 levels: premenopausal, postmenopausal)
e tumour size in mm (numerical)

e tumour grade (ordered factor, 3 levels: | < Il < )

e number of positive nodes (numerical)

e progesterone receptor in fmol (numerical)

e estrogen receptor in fmol (numerical)

¢ time in days describing the recurrence free survival (RFS) time (numerical)

censoring indicator (factor, 2 levels: 0 censored, 1 event)

The survival or recurrence-free survival (RFS) time is the primary outcome variable. Out of 686 women, 246
received hormonal therapy whereas the control group of 440 women did not receive hormonal therapy. As
stated in|Sauerbrei et al| (1999), after a median follow-up time of nearly 5 years, 299 events for RFS and 171
deaths were observed. The statistical analysis is performed by fitting a Cox proportional hazards model with

explicitly specified log cumulative baseline hazard function.
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This chapter combines the two previously introduced concepts - the transformation model and the parametric
bootstrap resampling method - with the aim being to implement, apply and evaluate the simulation-based infer-
ence for the transformation model. There are a plethora of reasons for doing so. First, the developed concept
is applicable to all sizes of data sets due to the absence of any assumptions about the asymptotic behaviour
of the estimators. As there are no asymptotic assumptions to be made, no data sets are considered to be too
small for this approach. Second, the setting of a type | error rate «, - the probability of rejecting the null hypoth-
esis given that it is true, - is not needed because the concept concentrates on graphical interpretation of the in-
ference plots.

Third, the model-based parametric boot-

Survivor function with 95% pointwise confidence interval including strap analogue of the pointwise confi-
a poor example of a non-monotonically decreasing survivor function

dence interval only contains valid func-
tions, e.g. all the model-based survivor
functions in the inference plot are mono-
tonically decreasing. This feature stands

in contrast to the conventional pointwise

Probability

confidence intervals that may also in-

= original survivor function

0.2 - - . ,
— — upper and lower end of 95 % pointwise confidence interval clude not strictly monotone decreasing
____anon-monotonically decreasing function within functions. The survivor function coloured

0.0 1 the 95 % pointwise confidence interval :

0 500 1000 1500 2000 2500 in blue in Figure[3.1]demonstrates a poor

Survival time [days] example where the function is theoreti-

. . o N i
Figure 3.1.: Survivor function with 95 % pointwise confidence in- cally included in the 95 % pointwise con
fidence interval but is not a valid survivor

terval including a poor example of a non-monotonically decreas-

ing survivor function function in itself since it is not monoton-

ically decreasing. Lastly, the resulting

simulation-based inference plots (shown and explained into more detail later) are easily accessible and have
a straightforward interpretation.

The sections of this chapter are structured as follows: The implementation in R will serve as the basis
for the subsequent inferences. We shall begin by explaining the effect of combining the parametric resam-
pling method and the framework of transformation models (cf. Section[3.7). Following this, the subsequent
statistical inference will be performed on the model parameters (cf. Section as well as the data spe-
cific prediction functions, e.g. the density function, the empirical cumulative distribution function, the survivor

function, etc. (cf. Section[3.3).
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3.1. Parametric Bootstrap Resampling Method Applied to Conditional

Transformation Models

3.1.1. Implementation

A conditional transformation model (Fz, c(y, x), #) fully defines the distribution of the response variable Y
conditional on on the covariables X via Fy = Fz(c(y,x) " #). The corresponding likelihood £(c(y,x) " 8]Y €
(g,]]]) can directly be interpreted from the definition of the model, as introduced in Section ﬁ These
characteristics enable the approach of applying the parametric bootstrap resampling method to transformation
models.

Thanks to the knowledge of the conditional distribution function Fy = Fz (c(y,x)Tﬂ), it is possible to draw
new response variables Y7, ..., Y which are conditional on the given explanatory variables by applying the
parametric bootstrap resampling method (cf. Section [2.4.2). With the information obtained, new transfor-
mation models are estimated and the newly obtained estimators are used for the subsequent model and
parameter inference.

The following enumeration systematically explains in pseudo code how B new transformation models are

generated by using the parametric bootstrap resampling method.

(1) Let (Fz c(y,x),dy) denote the transformation model fitted to the original data set x;.y =
(x1,...,xn) with response y. F defines the corresponding distribution function; c(y, x) is
the joint basis that is used to transform Y conditional on X; #y is the maximum likelihood
estimator for a specific parametrisation of the transformation function. How to fit such a trans-
formation model in R was explained with the help of R-Code [2.1]in Section Furthermore,
(Fz,c(y,x),8N) fully defines the distribution of the original response variable via Fyjx—x =
Fz(c(y,x) "8x) and the corresponding likelihood £(c(y, x) " dn|Y € (v, 7]).

(2) Generate B parametric bootstrap samples Y7, ..., Yp:

for (b in c(1:B)){ % B = number of bootstrap samples to be generated

e Generate N random variables Uj.y from UJ[0, 1], where N is the number of rows of

the original data set.
e Useuq,...,uy andthe parametric bootstrap resampling method to obtain additional
response variables y;b, e, y}“\],b
— Following from (Fz, ¢(y, x), 8), it is known:
Y ~ Fy = Fz(c(y,x)Tdn) & Fy(y) = Fz(c(y,x) "8x) € [0,1]
- Y~ F;l(ui|xi) while keeping x; fix for a given u;, i =1,... N

% This approach is also known as probability integral transformation.

}

(3) Executing the for-loop B times, the results are B new data sets each consisting of the orig-
inal explanatory variables x1.y = (x1,...,xyN) and the newly generated bootstrap samples

Yip - YNy b =1,..., B as the response variables.

(4) The last step of the procedure is to fit B transformation models to the B newly generated data

sets. It is executed by another for-loop:
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for (b in c(1:B)){ % B = number of bootstrap samples / generated data sets
o Yj, ~ Fy: = Fzoc(y,x) ' 9;,i=1,... N = Transformation model (Fz, c(y, x), 8})

}

= The goal of generating B parametric bootstrap simulation-based transformation models
(Fz,c(y,x),f?;) withb =1,..., Bis fulfilled.

The implementation and execution of this pseudo code explicitly defines the B different bootstrap model
parameter vectors 9%, . .., Ag in addition to the original model parameter vector ¢y

The R-Code [3.1]explains how to implement the parametric bootstrap resampling method to generate B new
transformation models in the R software environment. The information of the original transformation model
(Fz,c(y,x), ) is saved in the variable m1t_coxph mod. The second for-loop (see pseudo code Section
(2) above) which we use to generate the B parametric bootstrap samples Y7, ..., Y} is here in the R-Code
shortened on account of the function simulate. The simulate () function (R Development Core Team),2009)
simulates responses from the distribution corresponding to a fitted model object (here: m1t_coxph_mod). The

argument nsim equals the number of response vectors to be simulated (here: nsim = n_sim = B = 1000).

GBSG2_sim <- GBSG2
y_sim <- simulate(mlt_coxph_mod, nsim = n_sim, seed = 880906)
mlt_coxph_mod_summary <- vector("list", n_sim)
for (i in 1:n_sim){
GBSG2_sim$y <- y_sim[[i]]
mlt_coxph_mod_summary[[i]] <- mlt(ctm_coxph_mod, data = GBSG2_sim,

scale = TRUE, checkGrad = FALSE)

setwd(path_saved_R_objects)
save (mlt_coxph_mod_summary,

file = paste("mlt_coxph_mod_summary_", n_sim, ".RData", sep=""))

R-Code 3.1: How to apply the parametric bootstrap resampling method for the esti-

mation of B transformation models in R

The for-loop in the R-Code can be linked to the for-loop mentioned in the pseudo code Section
(4) above. Here, the fitted B transformation models obtained from the B newly generated data sets are R
internally saved in the list object named m1t_coxph mod_summary and R externally as a Rdata file. The latter

prevents us from being forced to run the for-loop again and again.

3.1.2. Likelihood Based Inference Measures

The subsequent parametric bootstrap inference is based on a likelihood approach. This is possible since all

model parameter vectors @y, 87,93, . .., &% are maximum likelihood estimators for a specific parametrisation
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of the transformation function (cf. Section[2.2.7). The generic 1ogLik () function from the stats package in
R can be used to extract the log-likelihood value from a R object of class m1t. It is important to note that the
log-likelihood (&) given a parameter vector & is bounded by —co and 0 (—co < I(#) < 0). The likelihood
L(®) given a parameter vector # is also bounded by both the 0 and 1 (0 < £(#) < 1) and the evaluated
log-likelihood function of the maximum likelihood estimated parameter vector &y is equal to 0. The relative
log-likelihood quantifies the relative probabilities of other parameter vectors, e.g. #7, in comparison to the
maximum likelihood estimated parameter vector #y. In the context used here, the relative log-likelihood is

defined as: N N
Y log(L(a"85]Y}) — Y log(L(a"dn|Y})forb=1,...,B
i=1 i=1

to calculate the relative log-likelihood for each of the B bootstrap generated transformation models. Adapted

from the definition of |[Held and Bove| (2013) (Chapter 2.1.2), the relative log-likelihood can also be written as:
Definition 5 (Relative (Log-)Likelihood).

e Relative Likelihood: L(8) = L(8})/L(®n),b=1,...,B

e Relative Log-Likelihood: I(#) = log(£(9)) = 1(8;) —1(dn),b=1,...,B

Additionally, let —2(I(8}) — I(8n)) = —2I(#) € Ry denote the log-likelihood ratio statistic (LLRS). In
general, the LLRS is the test statistic of the likelihood ratio test to compare the goodness of fit between two
nested models. It is shown in Chapter 5.4.4 of Held and Bove| (2013) that the LLRS asymptotically follows
a Chi-squared distribution with k degrees of freedom where k is equal to the difference in the number of

parameters between the two nested models:
a
—2(lan — o) ~ AZ.

The alternative model (the more complex model) can be transformed into the null model (the simpler model)
by imposing a set of constraints on the parameters. The more complex model will always fit the data at least as
well as the null model hence the alternative model has a greater or equal log-likelihood than the null model with
less parameters. However, this likelihood ratio test is not applicable to our case since the bootstrap generated
models (Fz, c(y, x), 8} )p—1,..p and the original model (Fz, c(y, x), &) are not hierarchically nested models.
In other words, all the investigated models imply the same covariates and therefore the dimensionality of the

parameter vectors is the same. Nevertheless, the LLRS can be calculated as follows:
A A 7A@
—2(I(85) — 1(dn)) = —20(8) ~ X3, (3.1)

but cannot be interpreted as in the sense of the likelihood ratio test. Here, the degree of freedom p of the
Chi-squared distribution is expected to be equal to the dimension of the parameter vectors #;; and In.

The distribution of the computed LLRS for the investigated models is visualized in the histogram of Figure
The two plots shown differ in the number of drawn bootstrap samples: By = 1000 (left panel) and B, =
2000 (right panel). This is done to minimize a potential approximation error.
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probability density

histogram of the
log-likelihood ratio statistics
(B = 2000 bootstrap models)

histogram of the
log-likelihood ratio statistics
(B = 1000 bootstrap models)

0.10 1 —  Ghi-squared distribution (df = 20) 0.10 1 — Ghi-squared distribution (df = 20)
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Figure 3.2.: Histogram of the By = 1000 (left panel) and B, = 2000 (right panel) log-likelihood ratio

statistics in comparison to the probability density functions of the Chi-squared distribution with

degree of freedom = 20 (red line).

(Detailed) Name of MLT Model Coefficient Coefficient value
The LLRS is by definition always positive (1) Bernstein polynomial coefficient 1 -7.6073
hence the x-axes of both hlstograms in Flgure (2) Bernstein polynomial coefficient 2 -1.0351
@] onIy dISplay pOSItIVG numbers. The orlglnal (3) Bernstein polynomial coefficient 3 -1.0351
as well as the bootstrap generated models are (3) Bernstein polynomial coefficient 4 10351
characterised by a parameter vector of dimen- , ) n
(5) Bernstein polynomial coefficient 5 -0.9545
sion 20, ie. Oy, 97,85,...,85 € R?, conse- _ , N
(6) Bernstein polynomial coefficient 6 -0.344
quently the LLRS should asymptotically follow a . . .
(7) Bernstein polynomial coefficient 7 -0.344
Chi-squared distribution with a degree of free-
(8) Bernstein polynomial coefficient 8 -0.344
dom (df) equal to 20 (X3 = X3y, cf. Equation
(9) Bernstein polynomial coefficient 9 -0.1845
3.1). However, by looking at Figure [3.2] it is ob-
y 9 9 (10) Bernstein polynomial coefficient 10 0.2937
vious that the expected Chi-squared distribution
(11) Bernstein polynomial coefficient 11 0.2937
with df = 20 (red line) does not fit the distribution
(12) hormonal therapy: yes -0.3491
of the LLRS (visualized as histograms). Under
) ) ) (13) age [years] -0.0099
those circumstances, we believe that the devi-
. - . . (14) menopausal status: post 0.2677
ation of the probability density function and the
. . . . . (15) tumour size [mm] 0.0078
histogram can be described in connection with
. . . . (16) tumour grade: Il 0.5601
the multiply occurring Bernstein polynomial coef-
. . (17) tumour grade: Il -0.2018
ficients (cf. Section and[2.3.2).
L. (18) # positive nodes 0.0487
Table represents the coefficients of the
N L (19) progesterone receptor [fmol] -0.0022
model parameter vector &y of the original trans-
(20) estrogen receptor [fmol] 2e-04

formation model (Fz, c(y, x), #n). All duplicated
coefficients are highlighted in boldface. There
are 3 (—1.0351, —0.344, 0.2937) coefficients that

are not uniquely estimated among the Bernstein

Table 3.1.: Rounded coefficients (4 digits) of the model

parameter vector @N of the original transformation model

(Fz, c(y, x), By) presented in table format
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polynomial coefficients. Consequently, there is the assumption that the existence of such multiply occurring
coefficients restricts the parameter space ® = {# € RP|a'® € H} and a subsequent correction for the
degree of freedom of the Chi-squared distributed LLRS seems essential.

The subsequent Figure also supports this presumption regarding the essential correction for the de-
grees of freedom of the Chi-squared distribution. Figure [3.3] visualizes the relative frequency of the LLRS
in histograms. Additionally, there are several probability density functions of Chi-squared distributions with
different degrees of freedom added to the plots. And again, to minimize potential approximation errors, the
amount of bootstrap samples were increased from By = 1000 to B, = 2000 (cf. Figure [3:3] from left to right
panel). However, the relative frequency displayed by the histograms in Figure [3:3 does not seem to differ

much between 1000 and 2000 bootstrap samples.

histogram of the histogram of the
log-likelihood ratio statistics log-likelihood ratio statistics
(B = 1000 bootstrap models) (B = 2000 bootstrap models)
== Chi-squared distribution (df = 20) == Chi-squared distribution (df = 20)
0129 - - . Chi-squared distribution (df = 17) 0129 - - . Chi-squared distribution (df = 17)
Chi-squared distribution (df = 15) Chi-squared distribution (df = 15)
, 010 1 == Chi-squared distribution (df = 12) , 010 1 == Chi-squared distribution (df = 12)
'1"2 @ ~\
o 0.08 & 0.08 /
=] =]
= =
5 0.06 5 0.06 N
L] ]
8 2 '
5 0.04 1 5 0.04
0.02 0.02
0.00 - 0.00 -
T T T T T T T T T T T T
0 10 20. 30 40 50 0 10 20. 30 40 50
-2(1_b(,) - 1_b(Hn)) -2(1_b(H,) -1_b(Hn))

Figure 3.3.: Histogram of the B; = 1000 and B, = 2000 log-likelihood ratio statistics in comparison
to several probability density functions of the Chi-squared distribution with different degrees of

freedom

The following bullet points justify the possible corrections of the degrees of freedom of the Chi-squared
distributed probability density functions of Figure [3.3] All the investigated corrections have a negative sign so
that the degree of freedom becomes smaller after correction. This is due to the assumption that the multiply
occurring Bernstein polynomial coefficients restrict the parameter space, consequently, the “corrected” degree

of freedom of the Chi-squared distribution of the LLRS has to be reduced.

e Chi-squared distribution with df=20: The (original) model parameter vector 35 € R?® has dimension 20
hence the distribution of the LLRS is - according to Equation - expected to be X%O. The probability

density function of the Chi-squared distribution with df=20 can somewhat be understood as the baseline.

e Chi-squared distribution with df=17: The probability density function of the Chi-squared distribution with
df=17 was corrected by —3 compared to the baseline. The correction of —3 stems from the 3 multiply
occurring Bernstein polynomial coefficients (—1.0351, —0.344, 0.2937, cf. Table .
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° The probability density function of the Chi-squared distribution with
df=15 was corrected by —5 compared to the baseline. The correction of —5 stems from the amount of
repeated Bernstein polynomial coefficients (Bs3(y), Bs4(y), Bs7(y), Bs8(y), Bs11(y), cf. Table[3.1).

e Chi-squared distribution with df=12: The probability density function of the Chi-squared distribution with
df=12 was corrected by —8 compared to the baseline. The correction of —8 stems from reducing all
the multiply occurring Bernstein polynomial coefficients (Bs2(y), Bs3(y), Bs4(y), Bs6(y), Bs7(y),
Bs8(y), Bs10(y), Bs11(y), cf. Table[3.1).

Considering Figure [3.3] the probability density function of the Chi-squared distribution with df=17 (drawn in
blue) corresponds best to the relative frequency of the LLRS visualized in the histogram. However, this does
not give evidence that the suggested correction of subtracting the amount of multiply occurring Bernstein
polynomial coefficients is correct.

To investigate further the possible corrections of the degrees of freedom, the original model (Fz, c¢(y, x),
#y) fitted to the GBSG2 data and the bootstrap generated models (Fz, c(y, x), #})p—1,.p Were again es-
timated for different orders of the Bernstein polynomial basis function a(y) = ags;(y) withi = 1,2,...,15.

Table [3.2) summarises parameter specific information of the refitted models.

amount of
amount of model amount of
order of model .
" parameters multiply
Bernstein total amount of . parameters |

model name AIC corresponding to ) occurring

polyno- parameters . corresponding

: Bernstein model
mial olynomial to model arameters
poly covariables P

MLT model 1 1 5425 11 2 9 0 0
MLT model 2 2 5299 12 3 9 0 0
MLT model 3 3 5242 13 4 9 1 1
MLT model 4 4 5201 14 5 9 2 1
MLT model 5 5 5180 15 6 9 1 1
MLT model 6 6 5168 16 7 9 3 1
MLT model 7 7 5162 17 8 9 3 3
MLT model 8 8 5159 18 9 9 3 2
MLT model 9 9 5158 19 10 9 4 2
MLT model 10 10 5158 20 1 9 5 3
MLT model 11 11 5160 21 12 9 4 2
MLT model 12 12 5161 22 13 9 5 4
MLT model 13 13 5163 23 14 9 7 5
MLT model 14 14 5165 24 15 9 6 4
MLT model 15 15 5167 25 16 9 7 5

Table 3.2.: Overview from the results of the simulation study where the original transformation model (Fz,
(a(y)", b(x)") T, dy) was refitted to the GBSG2 data by using different Bernstein polynomials as basis
function alei(y), i=1,2,...,15. The model names correspond to the order of the Bernstein polynomial used
as basis function for the specific model. For the boldface printed rows, we additionally show the histogram

of the LLRS as well as the probability density function of the Chi-squared distributions in the appendix (cf.
Appendix Figure .

The model names listed in the first column of Table are intentionally defined to correspond with the
order of the Bernstein polynomial ags;—1 2 . 15(y) used as the basis function a(y). If the order of the
polynomial is M, then the amount of model parameters that correspond to the Bernstein polynomial is M + 1

(cf. Table[3-2] columns 2 and 5). The amount of model parameters that correspond to the model covariables
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is equal to 9 for all listed models since each model includes all covariables from the fitted GBSG2 data set (cf.
Section[2.5.7). The last two columns of Table 3.2 are a bit more complex for the sake of an in depth analysis:
The determines how many parameters are duplicates of parameters
with smaller subscripts. The amount of multiply occurring model parameters is gained by applying a unique
command to the total amount of duplicated parameters. The amount of parameters that lead to the correction
corresponding to the green density function in Figure is not separately listed in Table but equals the
sum of the and amount of multiply occurring model parameters.

As previously mentioned in the caption of Table [3.2] there are additional histograms of the LLRS as well as
the probability density function of the Chi-squared distributions for the boldface printed rows of Table [3.2] to
be found in the appendix (cf. Appendix [A.2).

Now, to provide more evidence for the essentiality regarding the correction of the degrees of freedom of the
Chi-squared distributed LLRS, let us additionally introduce another simulation study. This additional simulation
study was based on randomly generated A/ (0, 1) distributed response variables Y. An unconditional trans-
formation model (F; = ®, ags, f?n) was fitted to the original data set, after which the parametric bootstrap

resampling method was applied. The setup of the simulation study varied depending on the three parameters

below:
p-ord =i = order of Bernstein polynomial n = # rows of data set n_sim = # Bootstrap samples
5 e 250 e 500
o7 e 500 ¢ 1000
e 10 ¢ 1000

© 2000

The combination of these parameters produced 24 additional simulated data sets. In summary, these
models (Fz = @, aggi—5 7 10 197,:250, 500, 1000, 2000) Particularly, those drawn with 500 bootstrap samples as
well as 1000 were fitted.

Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y) Bs6(y)

n = 250 -1.2259 -0.7501 -0.0701 0.3062 0.8068 1.2832

n = 500 -1.2871 -0.7545 -0.0577 0.1348 0.7311 1.2408

n = 1’000 -1.2872 -0.7112 -0.4598 0.4769 0.6868 1.2742

n = 2’000 -1.2667 | -0.7952 | -0.2047 | 0.2350 0.7768 1.3000

Table 3.3.: Parameter vectors of the unconditional transformation models (F; = @, aggps,
3,1:250/ 500, 1000, 2000)- The row names of the table correspond to the amount of rows of the data set used
to estimate the model.

Table displays the parameter vectors of the unconditional transformation models (F; = ®, aggs,
19,12250, 500, 1000, 2000) that were estimated during the simulation study. The order of the Bernstein polyno-
mial has been set to 5, consequently the parameter vector is of dimension 5+ 1 = 6. Since there are no
multiply occurring coefficients, the degrees of freedom of the Chi-squared distributed LLRS is adequately
estimated with df = 6 = 5+ 1. This can also be determined by looking at Figure in the Appendix
Figure additionally shows that 500 bootstrap generated samples (plots in top row of Figure are not
sufficient for an asymptotic behaviour of the distribution of the LLRS.
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Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y) Bs6(y) Bs7(y) Bs8(y)

n = 250 -1.287 -1.0159 -0.4563 | 0.0837 0.0837 0.5461 0.8942 1.2696

n = 500 -1.2869 -0.8503 -0.3063 -0.1741 0.0695 0.8215 0.8717 1.28

n = 1’000 -1.2782 -0.9136 -0.3471 -0.3471 0.2385 0.4354 0.9136 1.2719

n = 2’000 -1.279 -0.8658 -0.3379 -0.1901 0.1755 0.7022 0.8435 1.2752

Table 3.4.: Parameter vectors of the unconditional transformation models (F; = @, aggy,
19,1:250, 500, 1000, 2000)- The coefficients occurring multiple times within the same model (within the same row)
are highlighted in boldface. The row names of the table correspond to the amount of rows of the data set

used to estimate the model.

Table displays the parameter vectors of the unconditional transformation models (Fz; = ®, agg7,
3,1:250, 500, 1000, 2000) that were estimated during the simulation study. The order of the Bernstein polyno-
mial has been set to 7, therefore the parameter vector is of dimension 7 + 1 = 8, and the probability density
function of the Chi-squared distributed LLRS is expected to be with degrees of freedom df = 7 + 1 = 8. How-
ever, the two models (Fz = @, aps7, #,-250) and (Fz = ®, ags 7, B,—1000) have multiply occurring model
parameters that correspond to the Bernstein polynomial. Hence, the probability density function of the Chi-
squared distributed LLRS with degrees of freedom df = 7 4 1 = 8, no longer adequately fits the histogram of
the LLRS. This finding is also determined by looking at Figure [A.4]in the Appendix [A.3.2] Figure [A.4]further
indicates that the 500 bootstrap generated samples (plots in top row of Figure are not sufficient for an

asymptotic behaviour of the distribution of the LLRS.

Bsi(y) | Bs2(y) Bs3(y) | Bs4(y) | Bs5(y) | Bs6(y) | Bs7(y) | Bs8(y) | Bs9(y) | Bs1i0(y) Bs11(y)
n = 250 -1.2632 | -1.0292 | -0.8304 | -0.8304 | -0.1487 | 0.2152 | 0.2152 | 0.2231 | 1.0303 | 1.0303 1.2659
n = 500 -1.2896 | -1.0458 | -0.9468 | -0.4639 | -0.4639 | -0.4639 | 0.4849 | 0.4849 | 0.6803 | 0.9986 1.2674
n=1°000 | -1.2789 | -1.0296 | -0.8171 | -0.4068 | -0.4068 | -0.0442 | 0.4457 | 0.4457 | 0.7498 | 1.0563 1.2913
n =2°000 | -1.2864 | -1.0427 | -0.6742 | -0.6742 | -0.2004 | 0.1521 | 0.1521 | 0.4291 | 0.8946 | 1.031 1.273
Table 3.5.: Parameter vectors of the unconditional transformation models (F; = ®, agg10,

19,1:250,500,1000,2000). The coefficients occurring multiple times within the same model (within the same row)
are highlighted in boldface. The row names of the table correspond to the amount of rows of the data set

used to estimate the model.

Table displays the parameter vectors of the unconditional transformation models (Fz = ®, ags 10,
19,12250, 500, 1000, 2000) that were estimated during the simulation study. The order of the Bernstein polynomial
has been set to 10, consequently the parameter vector is of dimension 10 + 1 = 11 and the probability density
function of the Chi-squared distributed LLRS is expected to be with degrees of freedom df = 10 +1 = 11.
However, all of the models - (Fz = ®, agg 10, 31=250), (Fz = D, ags 10, ¥n=500), (Fz = P, ags,10, ¥u=1000)
and (Fz = ®, agg 10, 3,1:2000) - have multiply occurring model parameters that correspond to the Bernstein
polynomial; hence, the probability density function of the Chi-squared distributed LLRS with degrees of free-
dom df = 10 + 1 = 11 no longer adequately fits the histogram of the LLRS. This finding is also determined
by looking at Figure in the Appendix Figure additionally shows that 500 bootstrap generated
samples (plots in top row of Figure[A.5) are not sufficient for an asymptotic behaviour of the distribution of the
LLRS.
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3.1.2.1. Concluding remarks

The initial intention of this section was to briefly introduce the Likelihood Based Inference Measures, however,
after delving deeper into the different measures it became clear that it is essential to elaborate on this concept.
As a result, this research investigated further on the effect of restricting the degrees of freedom of the Chi-
squared distributed LLRS. Now, although a definitive solution for the latter was not attained, in summary, this
simulation study uncovered additional evidence to support the idea that the expected degrees of freedom of
the Chi-squared distributed LLRS are violated in instances where the original model parameters imply multiply
occurring coefficients. For this reason, the simulation study is considered to be expedient. Nontheless, this
finding also indicates that the LLRS might not be the best likelihood based measure for the application of the
parametric bootstrap inference of transformation models.

Thus, the focus of this thesis is shift back again to the parametric bootstrap inference of transformation
models. Due to the aforementioned finding, the subsequent graphical inference only uses the relative log-
likelihood (RLL) as a measure for defining the accuracy of the bootstrap estimated models in contrast to the
original transformation model.

The focus of the subsequent statistical inference of the bootstrap generated transformation models is carried
out in two ways: first, on the model parameters and the distribution thereof (cf. Section[3.2); and second, on
the data specific prediction functions (cf. Section [3.3). For the latter case, the fully specified distribution
function Fy of the response variables Y, Y7, ..., Y3 is used as a basis for making inference about additional
functions which can be derived from the distribution function, e.g. the density function, the survivor function,

etc.

3.2. Parametric Bootstrap Inference for Parameters of Transformation
Models

Let (Fz, c(y,x),dn) and (Fz, c(y, x), 8% )p=1,.. p be the transformation model of the original data set and the
bootstrap transformation models of the B data sets generated from the parametric bootstrap, respectively. The
model parameters 8y, 83, 9, . .., 8 are maximum likelihood estimators for a specific parametrisation of the
transformation function k. Consequently, the standard likelihood procedures are applicable to the subsequent
parameter inference. The bootstrap based model parameters #7%, A;, .. .,@g are asymptotically multivariate
normal distributed N, (dy,I(8y)~!) with mean ¢y and covariance matrix equal to the inverse observed
Fisher information. The subsequent simulation-based, i.e. bootstrap generated, parameter inference has an

advantage in that, it is unnecessary to make assumptions about the asymptotic distribution of its parameters.
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Parallel Coordinate Plot for the Parametric Bootstrap Inference of the Model Parameters
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generated transformation models. The coefficients of the original model #x serve as reference

and are represented with blue dots.

Figure [3:4] shows a parallel coordinate plot of the standardized coefficients of the B bootstrap gener-
ated conditional transformation models. The blue dots refer to the coefficients &y of the original model
(Fz,¢(y,x),8N). The parallel coordinate plot can be understood as showing the joint distribution of all p
coefficients of the B bootstrap generated models (@ib,...,l@;b)b:Lm,B connected with single grey lines.
Whenever the lines in the parallel coordinate plot between two coefficients (on the x-axis) are parallel, it can
be interpreted as coefficients that positively correlate with one another. In contrast, the crossing lines high-
light the negative correlation between the first few model coefficients in Figure[3.4] It is important to note that
the asymptotically multivariate normal distribution of the parameters (@{/b, e, @;,b)bzl,...,B around the original
maximum likelihood estimator #y is clearly visible in Figure The asymptotic normality of the maximum
likelihood estimator is one of the most important results of the likelihood theory, as thoroughly explained by
Held and Bove| (2013). The conventional likelihood framework is inapplicable to analyses where the underly-
ing data set only consists of a few observations. This is because the assumptions regarding the asymptotic
behaviour would not be fulfilled. On the contrary, the parametric bootstrap approach is also applicable to
analyses of small data sets, as this approach does not require any assumptions regarding the asymptotic
behaviour of the model parameters. In addition, there is no need to estimate the fisher information matrix as
by applying the parametric bootstrap inference to model parameters, the asymptotic behaviour of the model
parameters are in a sense finitely illustrated. Consequently, the plot summarizes this idea thereby requiring
no previous assumptions.

Figure [3.4] serves as a nice overview of the parameter inference, however, it is difficult to interpret. By
looking at Figure [3:4] it is impossible to distinguish between models that are similar to the original model
and others that are not. For this reason, we use the previously introduced measure of the relative log-
likelihood (RLL, cf. Section[3.7). We obtain B different values for the RLL based on the B estimated bootstrap

models. The empirical cumulative distribution function (ECDF) of these B RLLs is plotted in the left panel of
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Figure[3.5] The empirical cumulative distribution function included a cutoff line at probability 5 % that helped
distinguishing between the extreme models (£, (RLL) < 0.05) and those with F,(RLL) > 0.05. The models
with If"h(RLL) > 0.05 are characterised by a RLL value close to zero, i.e. they are similar to the original model.
The extreme models with ﬁh(RLL) < 0.05 are plotted in the right panel of Figure

The colour gradient for the right panel of Figure[3.5and the left panel of Figure[3.6is the same. The gradient
is based on ﬁb(RLL). The colouring starts just at the cutoff line at probability 5 % of the empirical cumulative
distribution function: The darker the colour, the smaller the RLL and therefore, the less similar the bootstrap
model is in comparison to the original transformation model. Based on this definition for the colour gradient,
we can infer that the lines drawn close to the coefficients of the original model are brighter in comparison to

the ones further away.

ECDF of the Relative Log-Likelihoods (RLLs) Parallel Coordi’(\ate Plot of the Coefficients:
Bootstrap Models (F,(RLL) < 0.05) vs Original Model
M e ittt 10 4 RLL = -14.69
w
o
o
o
0.8 - =
]
®
]
O
fis]
0.6 | E
g o
o 8
0.4 £
[
o
o
o
(5]
N
o
0.2 5
o
=
=
cutoff line at 0.05 2]
0.0 +—- e - -10 -{ ® standardized coefficients of original model
T T T T T T T T T T T T T
20 15 -10 5 0 g g’; g’ E 3 -g E‘ i E é 2 E g E‘
Relative Log-Likelihood (RLL) S L o 22 & k=] 2 <] s B
EZ = 88 5o <} 8 S s = E£T
5®© © o2 <N =] 5 2 2L 82
£ 5 o cm [} = o = o1 o5
£ @ 2 3 =1 3 ga Q
= E [} ° g e o S
£ £ a ag e
=1
= 2 H

Figure 3.5.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing
the B = 1000 bootstrap generated transformation models (Fz, c(y, x), 9} )1, p versus the original trans-
formation model (Fz, c(y,x),#y) of the original data set (left panel). The parallel coordinate plot of the

coefficients (right panel) only shows the extreme (ﬁb(RLL) < 0.05) bootstrap models.

Figure shows the model parameters of all the B bootstrap generated transformation models. The
bootstrap generated model with Fb (RLL) < 0.05 are plotted in the left panel, whereas the bootstrap generated
model with ﬁb(RLL) > 0.05 are plotted in the right panel. Here, we have B = 1000 bootstrap samples, hence,
the left plot shows 50 and the right plot shows 950 parallel coordinate lines.

Overall, it is striking that the plot in the right panel of Figure [3.6] still shows obvious deviation of the coeffi-
cients from the original model even though the extreme cases with £, (RLL) < 0.05 are removed. All the while,
it is important to bear in mind that depending on the RLL, the peaks of the right panel are not as extreme as

the ones visible in the left panel.
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Parallel Coordi’(\ate Plot of the Coefficients: Parallel Coordipate Plot of the Coefficients:
Bootstrap Models (F,(RLL) < 0.05) vs Original Model Bootstrap Models (F,(RLL) 2 0.05) vs Original Model
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Figure 3.6.: Parallel coordinate plot of the bootstrap model coefficients versus the original model distinguished
between F,(RLL) < 0.05 (left panel) and £, (RLL) > 0.05 (right panel)

3.3. Parametric Bootstrap Inference for Functions Obtained from the

Conditional Distribution Function of the Transformation Models

Let (Fz, ¢(y,x),8x) and (Fz, c(y, x), 8} )p—1,.. be the transformation model of the original data set and the
bootstrap transformation models of the B data sets generated from the parametric bootstrap, respectively.
Here, we shall compare the original conditional distribution function of the original responses Y to the condi-
tional distribution functions of the B bootstrap generated Y7, ..., Y. It can be recalled, that the underlying
model is a Cox proportional hazard model in perspective of a conditional transformation model. Consequently,
it can be viewed as a Cox proportional hazard model with an explicit specified log cumulative baseline hazard
function. The primary outcome variable Y is the survival or recurrence-free survival (RFS) time. In other
words, the analysis is based on a data set “for which the outcome variable of interest is time until an event oc-
curs” (Kleinbaum and Klein, [1996). The following list puts the distribution function Fy of the response variable
Y obtained from a conditional transformation model F» (c(y,x)ﬂ) into context with other important functions

of the framework of survival analysis:

Distribution function: Fy (y|x) = Fz(c(y, x)?)

Survivor function: Sy (y|x) =1 — Fy(y) =1 — Fz(c(y,x)9)

Density function: fy(y|x) = Sy (y|x)/dy = 9(1 — Fy(y|x))/(dy) = o(1 — Fz(c(y,x)®))/ (dy)

Hazard rate / function:
Ay (ylx) = fr(ylx)/ (1= Fy(ylx)) = (2(1-Flx) /ay) / (1 — Fy (y]x))

- (el (1 ket o)
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The function in focus for the subsequent analysis is the survivor function, also known as survival function.
Here, this function captures the probability of survival or recurrence-free survival beyond a specified time.
In the subsequent paragraphs, a description follows of how to obtain the survivor functions when given the
estimated transformation models (Fz, c(y, x), 8n), (Fz ¢(y,x),8;) with b = 1,...,B and the conditional
distribution functions of the response variables Yy, Y7, Y5, ..., Y along with the likelihood functions of the
models.

In order to predict the survivor function, a hypothetical observation, i.e. a hypothetical patient from the
GBSG2 data set (cf. Section[2.5.1), needs to be defined. Later, this hypothetical patient is used as baseline
for the estimated functions. In the appendix (cf. Appendix [A.4), there is the R-code that explains how this
hypothetical observation is obtained from the original data set in a step-by-step manner. The specification
differs for numerical and factorial covariates. Regarding the numerical covariates, the hypothetical observation
is set to be equal to the median. In terms of the factorial covariates, the hypothetical observation is set equal
to the mode, i.e. the factor level which occurs most often for the specific covariable of the original data set.
Although the covariates have been expressed in the most logical way, it is possible that the predicted function
is based on an observation that does not exactly exist in such a way that it appears in the original data set.
Nontheless, the hypothetical observation reflects an observation that would most likely be observable.

Moreover, the above introduced approach ensures that the estimated functions are not based on an outlier
as this would lead to instable predictions as seen in the right panel of Figure Figure also shows by
means of the survivor function, how the estimation of such a function depends on the baseline covariables.
Figure[3.7]illustrates the estimated survivor function based on the Cox proportional hazard model (blue plotted
step function) with a 95 % pointwise confidence interval (blue dashed lines). The grey lines are the bootstrap
generated survivor functions based on the Cox proportional hazard model which is fitted in the framework of
transformation models. All of the estimations done for the left panel are performed using the covariables of the
hypothetical patient as it was introduced before. However, the estimations done for the right panel of Figure
utilized covariables that are differently defined. We refer to these as the observation of a hypothetical
patient2. The 95 % pointwise confidence interval as well as the band generated from the bootstrap estimated
models is wider in the right panel than the one in the left panel. This is due to the fact, that the observations of
the hypothetical patient 2 are less probable, which reduces the probability of estimating the function correctly.

As a result, the estimation process includes higher variance.
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Figure 3.7.: Survivor functions (blue step functions) based on the Cox proportional hazard model including
the 95 % pointwise confidence interval (dashed blue lines) and the bootstrap generated survivor functions
based on the conditional transformation models (Fz, c(y, x), 87) with b = 1,..., B. The left and right panel
are different regarding the baseline variables used for the estimation of the functions. The left panel uses
the common hypothetical patient as its baseline variables whereas the right panel uses differently defined
baseline variables referred to as hypothetical patient 2.

y_grid <- mkgrid(basis_y, n = n_sim)$y
y_grid <- y_grid[y_grid > 0]

predict_survivor_mlt_coxph_summary <- lapply(mlt_coxph_mod_summary,
function(predict_survivor) {
predict(predict_survivor,

newdata = hypo_obs,

q = y-grid,
type = "survivor")
1)
setwd (path_saved_R_objects)
save (predict_survivor_mlt_coxph_summary,
file = paste("predict_survivor_mlt_coxph_summary_", n_sim, ".RData", sep=""))

predict_survivor_mlt_coxph_orig <- predict(mlt_coxph_mod,
newdata = hypo_obs,

q = y_grid, type = "survivor")

R-Code 3.2: How to calculate B survivor functions based on B generated transformation models as well as

the survivor function based on the original mit model

The R-codeexplains how to predict the survivor function based on the hypothetical observation hypo_obs.
First, we define a grid (here: y_grid). Further, the mkgrid () function from the variables package
2016¢) generates a grid of observations from the variable description basis_y. The argument n of func-
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tion mkgrid () defines the amount of data points for the grid. It is important to note that, the more data
points used, the smoother the subsequent predicted function. Here, the grid contains of as many data
points as B, i.e. n = n_sim = B = 1000. The prediction of the B survivor functions was obtained through
the 1apply () and predict () functions. The 1apply() returns a list of the same length as the list entries
of mlt_coxph_mod_summary, each element of which is the result of applying predict () to the corresponding
element of ml1t_coxph mod_summary with type="survivor” specification. The survivor function estimated
from the original model is obtained by applying the predict () function to the original model m1t_coxph mod
coupled with the specification of type=“survivor”.

The R-code can be generalised by changing the argument type of the predict () function to the follow-
ing selections: “distribution, “survivor”, “density”, “logdensity”, “hazard”’, “loghazard”, “cumhazard”,
“‘quantile”, “trafo”. All of the above mentioned functions can be estimated based on the mlt object in R. As
has been noted, the focus for the subsequent analysis lies on the survivor function, however, further informa-
tion on the graphical inference plots for the distribution (cf. Appendix[A.5.1), the density (cf. Appendix[A.5.2)
and the hazard function (cf. Appendix[A.5.3) can be found in the appendix.

The obtained survivor functions in R-Code are used as an example for the subsequent graphical in-
ference for functions obtained from the conditional distribution function of transformation models. Figure
shows the empirical cumulative distribution function (ECDF) of the B relative log-likelihoods (RLL) in the left
panel. As introduced before (cf. Section[3.2), the cutoff line at probability 5 % helps distinguishing between
the extreme models (F,(RLL) < 0.05) and those with £, (RLL) > 0.05. The models with £, (RLL) > 0.05 are
characterised by a RLL value close to zero, i.e. they are similar to the original model. The survivor function of
the extreme models with £, (RLL) < 0.05 are plotted in the right panel of Figure

ECDF of the Relative Log-Likelihoods (RLLs) Survivor Fctns: Bootstrap Models (ﬁ,(RLL) < 0.05) vs Original Model
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Figure 3.8.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing
the B = 1000 bootstrap generated transformation models (Fz, c(y, x), 87 )1 .. p versus the original transfor-
mation model (Fz, ¢(y, x), f?N) of the original data set (left panel). Estimated survivor functions of the extreme
(Fb(RLL) < 0.05) bootstrap models (right panel).
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The colour gradient for the right panel of Figure[3.8/and the left panel of Figure[3.9]is the same. The gradient
is based on ﬁb(RLL). The colouring starts just at the cutoff line at probability 5 % of the empirical cumulative
distribution function: The darker the colour, the smaller the RLL; hence the less similar the bootstrap model
is in comparison to the original transformation model. Based on this definition of the colour gradient, it makes
sense that the lines drawn close to the survivor function of the original model (black dotted line) are brighter

in comparison to the ones further away.

Survivor Fctns: Bootstrap Models (ﬁh(RLL) < 0.05) vs Original Model Survivor Fctns: Bootstrap Models (ﬁb(RLL) 2 0.05) vs Original Model
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Figure 3.9.: Survivor functions of the bootstrap generated models versus the original model distinguished
between £, (RLL) < 0.05 (left panel) and £, (RLL) > 0.05 (right panel)

Figure [3.9]shows the estimated survivor functions for all the B bootstrap generated transformation models.
The survivor functions of model with ﬁb(RLL) < 0.05 are plotted in the left panel, whereas the survivor
functions of model with ﬁb(RLL) > 0.05 are plotted in the right panel. Here, we have B = 1000 bootstrap
samples. Hence, the left plot contains 50 and the right plot contains 950 estimated survivor functions. The
estimated survivor function of the original model is added to both panels with a black dashed line so that it can
be compared to the bootstrap generated models. The grey survivor functions from the bootstrap generated
models (right panel) can be interpreted as a band around the survivor function. This band includes simulated
survivor functions based on the estimated survivor function from the original transformation model.

The underlying model that is used for the prediction of the survivor functions in Figure [3.8/and[3.9]is known
as the Cox proportional hazard model with explicitly specified log cumulative baseline hazard function that
has been fitted in the framework of the transformation models: 1 — Fz (i(y) — &9, ). The advantage of fitting
a proportional hazards model in the framework of transformation models in comparison to the conventional
framework of Cox proportional hazards model is the explicitly specified log cumulative hazard baseline h(y).
In other words, the framework of transformation models makes up for the disadvantage of the coxph models
which do not explicitly specify the log cumulative baseline hazard function h(y). However, the coefficients

obtained for the two estimated models are practically equivalent as can be seen in Table [3.6]
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3. Modelling and Analysis

coefficients of MLT fitted model coefficients of coxph fitted model
hormonal therapy: yes -0.349052 -0.346278
age [years] -0.009926 -0.009459
menopausal status: post 0.267670 0.258445
tumour size [mm] 0.007771 0.007796
tumour grade: Il 0.560091 0.551299
tumour grade: Il -0.201849 -0.201091
# positive nodes 0.048747 0.048789
progesterone receptor [fmol] -0.002210 -0.002217
estrogen receptor [fmol] 0.000183 0.000197

Table 3.6.: Model parameters (corresponding to the model covariates) of original transformation

model in comparison to the Cox proportional hazard model fitted with the function coxph () in R

Figure 3 10]illustrates a graphical representation of the comparison between (1) the survival curves gener-
ated from the coxph() and the survfit () function using the package survival (Therneau, 2015) and (2)
the survival curves generated from the m1t () and the predict () function using the package m1t (Hothorn,
2016Db).

Survivor Fctns: Bootstrap Models (?h(RLL) < 0.05) vs Original Model Survivor Fctns: Bootstrap Models (ﬁb(RLL) 20.05) vs Original Model
1.0 1.0
0.8 1 0.8 1
EU'S 1 EU'S 1
o o
© ©
o o
<) . . <)
%04 RLL = -14.69 NN %041
1 =
0.2 —e- 0.2
RLL = -20.82
—— original transformation model —— original transformation model
0.0 4 — original classical coxph model with 95 %-ClI 0.0 4 — original classical coxph model with 95 %-ClI
T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Survival Time [days] Survival Time [days]

Figure 3.10.: Survivor functions of the bootstrap generated models in comparison to the original model. The
extreme models (£,(RLL) < 0.05) are shown in the left panel, the models with F,(RLL) > 0.05 in the right
panel. In addition the predicted survivor function of the Cox proportional hazard model (using coxph() and

survfit () in R) is added to the plot with its 95 % pointwise confidence intervals.

As can be seen in Figure [3:70] both the common Cox proportional hazards model (blue dashed lines) and
the Cox proportional hazards model fitted in the framework of transformation models with explicitly specified
log cumulative baseline hazard function, allow for heteroscedasticity, i.e. the variance of the confidence band
gets bigger with increasing survival time. In general, the pointwise confidence interval for the survivor function

(blue dashed lines) of the Cox proportional hazards model fits the band obtained from the bootstrap sample
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well. Nevertheless, a closer look reveals a higher variance for the conventional pointwise confidence interval
for the survivor function of the Cox proportional hazard model, compared to the variance of the bootstrap
generated “confidence band” at survival time equal to 2700 days. This is because the bootstrap generated
responses Y7,..., Y are not censored, therefore, their corresponding models do not include censoring,
whereas the Cox proportional hazard model is based on the original data set where some of the original
responses Y are censored. Censored observations occur when the information of an observation about their
survival time is incomplete. In other words, the Cox proportional hazard model with the explicitly specified log
cumulative baseline hazard function fitted in the framework of transformation models has “more” data than
actually available in the original data set. For this reason, it is obvious that the model fit is better and the

variance from the common Cox proportional hazard model is smaller.
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The parametric bootstrap inference for transformation models enables a graphically interpretable likelihood
based model inference. An advantage of this procedure is that it eliminates the need to make any assumptions
about the asymptotic behaviour which makes the procedure applicable to small data sets. Furthermore, there
is no need to make assumptions about the error independency since a parametric distribution is not required
for the error distribution (Davino et al} 2013) in the framework of transformation models. As mentioned in the
vignette of the m1t package (Hothorn,|[2016b) for the framework of transformation models, the inspection of the
parameter estimates is not essential as the models are better looked at by means of the estimated distribution,
density, survivor, quantile and hazard functions. This results from the characteristic of the framework of
transformation models that examines how covariates influence the entire conditional response distribution
(Koenker, 2005). In addition, the parametric bootstrap generated band for all kinds of functions that are
derived from the conditional distribution function often serves as a relatively easy interpretable inference.
The resulting plots of the procedure are also illustrative for persons who are not very familiar with statistical
inference. This is due to the fact that the descriptive colour shading is based on the log-likelihood functions of
the model and reflects the probability of the estimated functions.

In comparison to the conventional pointwise confidence interval for the survivor function of the conventional
Cox proportional hazard model, the band based on the parametric bootstrap generated functions only con-
sist of functions that are correctly defined for that specific case (cf. Figure for a poor example). More
specifically, the bootstrap generated band around the survivor function only contains monotonically decreas-
ing functions. Alternatively, the integral of each of the probability density functions that are contained in the
bootstrap generated band around the probability density function of the original model is always equal to one
and the probability density function itself is everywhere non-negative.

Regarding the finding about the not as expected log-likelihood ratio statistics distribution in cases of multiply
occurring model coefficients, this thesis does not definitively provide a solution. However, simulations have
been included to prove the presumption that a correction of the degrees of freedom in instances of multiply
occurring model coefficients is essential. In conclusion, the results of this thesis advance the understanding
of graphical model inference of the model parameters of a conditional transformation model as well as the

inference of the conditional transformation model itself.

4.1. Limitations

Throughout this thesis, we imply that the original transformation model (Fz, c(y, x), ) is a good model that
fits the underlying response variable Y, - the recurrence-free survival (RFS) time, well. However, it is crucial to
bear in mind that the procedure of applying the parametric bootstrap resampling method to a transformation
model is limited in cases where the underlying transformation model is not adequately established. In other

words, caution must be exercised whenever the underlying parametric model is wrong, as the application of



4. Discussion

the parametric bootstrap resampling will also lead to wrong results. To quote |Box| (1979), “All models are
wrong but some are useful.”, so to speak, the original model has to be considered useful.

Furthermore, the dependency on the original model itself could be looked at as a limitation of the procedure.
Some may criticise the fact that bootstrap samples are based on a single sample data set (here: GBSG2) for a
given population. A phenomenon which causes the replications to be limited to a finite number of replications

(“bootstrap resampling variability”, [Davino et all 2013).

4.2. Outlook

In summary, it can be said that this thesis forms a solid foundation for the application of the parametric
bootstrap resampling method to the framework of transformation models. Nevertheless, the research findings
presented in this thesis have created several new ideas that should be further explored. These findings are
addressed in the paragraph below.

Beanplot for the Parametric Bootstrap Inference of the Model Parameters
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Figure 4.1.: Beanplot of the standardized model coefficients. The estimated density of the distribution as well
as the mean of the bootstrap generated coefficients can directly be interpreted from the plot. The blue dots

represent the coefficients of the original model.

The parametric bootstrap inference for the parameters of transformation models (cf. Section can be
looked at as a starting point for a future implementation of a (visualized) Type-1-error hypothesis test. Figure
roughly exhibits this idea. The shown beanplots represent the standardized distribution of the bootstrap
generated model coefficients together with the original model coefficients visualized with a blue dot. The ticks
on each beanplot mark the 50 % quantile, i.e. the mean. The distributions of the model coefficients shown in
Figure[4.7]could be interpreted in the following way: The red dashed line represents the null hypothesis which
states that the i-th coefficient d; of the model is equal to zero. Hence, the coefficients close to the red dashes,
i.e. distributed around d; = 0, do not affect the response variable Y of the model as much as the coefficients

that are further away from the red dashes, i.e. distributed around 1§i # 0. This Type-1-error hypothesis test
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4. Discussion

might as well be useful for variable selection.

Now in comparing the computing time of the bootstrap resampling method to the most likely transformation
models in R is dependent on B: the more bootstrap samples B that are drawn, the more time-consuming
the computations for estimating the model gets. Especially the process of the maximization of the gradient
does take a while. For future research projects, the performance of the m1t () function could be improved by
outsourcing the maximization of the gradient into the programming languages C++ or Python in order to use
their speed as an advantage.

Further, future research projects can explore a specific parametric bootstrap based inference methodology
for transformation models which are estimated in a survival analysis framework. This approach should then
additionally be able to consider the issue of censored observations (cf. Section[3.3).

And lastly, the most obvious future research induced by this thesis, is the need to investigate the degrees of
freedom of the Chi-squared distributed LLRS. We dare to hypothesize that not using the Bernstein polynomial
as a basis function, reduces the doubled coefficients entries which then corrects the expected degree of
freedom of the Chi-squared distributed LLRS.
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A. Appendix

A.1. Flowchart: How to Estimate a Transformation Model in a

Step-by-Step Manner

The theory of transformation models was introduced in Section This flowchart summarises at a glance

main steps required to estimate a transformation model in a full likelihood framework.

{Experiment: Ya, 0 Yoy o ﬁy,NJ

[

Estimation of £y n:
Fy(y) = Fz(h(y))

. J

|

[ Define fy interms of f )

~

| Define L in terms of fy ]

[

Maximise log(£) wrt /1
log(L(h|Y € C;))
— Most likely transformation (MLT)

Parametrise h(vy)
h(y) = a(y)'8,8 € RY
— Fz(h(y)) = Fz(a(y)'9)
— Transformation family

|

Maximise log(L) wrt ¢
log(L(aTd|Y € C)))

— Maximum likelihood estimator

[

Final transformation model: (Fz, a, ¢)

—~I = Fyoa'®
— L(a"8]Y €C)

Figure A.1.: Flowchart illustrating the main steps required to

estimate a transformation model in a full likelihood framework



A. Appendix

A.2. Histogram of the Log-Likelihood Ratio Statistics Calculated from
the Original Transformation Model and the Bootstrap Generated

Models with Bernstein Polynomials of Different Order

We introduced the log-likelihood ratio statistic as a measure for doing likelihood based inference in Section
The following histograms visualize the log-likelihood ratio statistics from the original transformation
model (Fz, ¢(y, x), ®y) and the bootstrap generated models (Fz, ¢(y, x), 8} )p—1 ... p With Bernstein polyno-
mial of different order: (Fz, (ags=2,3,7,8,12,13(¥), b(x) )T, #n). The coloured lines are probability density

functions of the Chi-squared distribution with different degrees of freedom according to the summary of Table

in Section The colours red, blue, and green also correspond to the explaination given in
SectionB1.2
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A. Appendix

A.4. R-Code on How to Define the Hypothetical Observation

In Section [3.3] the hypothetical observation was introduced and explained. The following R-Code [A-7] shows

how the definition of such a hypothetical observation can be implemented in R.

FE oo o o e e o o e e o o o e e o o e e o o e e o o e e e o o e e o o e K ok K kK

# Define hypothetical obserwvation for prediction

GBSG2_covariates <- GBSG2[,xvar]

summary (GBSG2_covariates)

# Define sub data frames.

GBSG2_num_covariates <- GBSG2_covariates[,c("age", "tsize", "pnodes",
"progrec", "estrec")]

GBSG2_cat_covariates <- GBSG2_covariates[,c("horTh", "menostat", "tgrade")]

# Calculate median of all numerical covariates

hypo_obs_num_covariates <- data.frame(t(data.frame(apply(GBSG2_num_covariates,

2, median))))

hypo_obs_num_covariates <- round(hypo_obs_num_covariates, 0)

# Calculate median of all categorical covariates

hypo_obs_cat_covariates <- rep(NA, ncol(GBSG2_cat_covariates))

names (hypo_obs_cat_covariates) <- colnames(GBSG2_cat_covariates)

for( i in colnames(GBSG2_cat_covariates)){

hypo_obs_cat_covariates[i] <- names(sort(table(GBSG2_cat_covariates[,i]),

decreasing=TRUE) [1])

}

#

hypo_obs <- cbind(hypo_obs_num_covariates,

t(data.frame(hypo_obs_cat_covariates)))

hypo_obs <- hypo_obs[,xvar]

#

levels(hypo_obs$horTh) <- levels(GBSG2$horTh)

levels(hypo_obs$menostat) <- levels(GBSG2$menostat)

hypo_obs$tgrade <- ordered(hypo_obs$tgrade, levels=c("I", "II", "III"))

#

summary (hypo_obs)

R-Code A.1: Explaining in a step-by-step manner how the hypothetical observation,

i.e. hypothetical patient, is defined
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A. Appendix

A.5. Parametric Bootstrap Inference for Functions Obtained from the

Conditional Distribution Function of the Transformation Models

In Section the parametric bootstrap inference for functions obtained from the conditional distribution
function of the transformation model was introduced. It has been noted (cf. R-Code that depending
on the argument type of the predict () function the following functions can be predicted “distribution”,
“survivor”, “density”, “logdensity”, “hazard”’, “loghazard”, “cumhazard”, “quantile”, “trafo”. Here, we

concentrate on the distribution function (cf. Appendix|A.5.1), the density function (cf. Appendix|A.5.2) and the
hazard function (cf. Appendix[A.5.3).

Muriel Lynnea Buri, muriellynnea.buri@uzh.ch 52



A. Appendix

A.

ECDF

Probability

5.1. The Cumulative Distribution Function

ECDF of the Relative Log-Likelihoods (RLLs) Distribution: Bootstrap Models (F,(RLL) < 0.05) vs Original Model
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Figure A.6.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing
the B = 1000 bootstrap generated transformation models (Fz, c(y, x),f?ﬁ)b:l,___,B versus the original trans-
formation model (Fz, c(y, x), #x) of the original data set (left panel). Estimated distribution functions of the
extreme (£, (RLL) < 0.05) bootstrap models (right panel).

Distribution: Bootstrap Models (F,(RLL) < 0.05) vs Original Model Distribution: Bootstrap Models (F,(RLL) 2 0.05) vs Original Model
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Figure A.7.: Distribution functions of the bootstrap generated models versus the original model distinguished
between £, (RLL) < 0.05 (left panel) and £, (RLL) > 0.05 (right panel)
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A. Appendix

A.5.2. The Density Function

ECDF of the Relative Log-Likelihoods (RLLs)

ECDF
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Density function
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Figure A.8.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing

the B = 1000 bootstrap generated transformation models (Fz, ¢(y, x),fig)b:l,__,B versus the original transfor-

mation model (Fz, c¢(y, x), #y) of the original data set (left panel). Estimated probability density functions of

the extreme (£, (RLL) < 0.05) bootstrap models (right panel).
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Figure A.9.: Probability density functions of the bootstrap generated models versus the original model distin-
guished between Fb(RLL) < 0.05 (left panel) and Fb(RLL) > 0.05 (right panel)
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A.5.3. The Hazard Function

ECDF of the Relative Log-Likelihoods (RLLs)

ECDF
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Figure A.10.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing

the B = 1000 bootstrap generated transformation models (Fz, c¢(y, x),f?;)b:l,___,B versus the original transfor-

mation model (Fz, c(y, x), #x) of the original data set (left panel). Estimated hazard functions of the extreme

(E,(RLL) < 0.05) bootstrap models (right panel).
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Figure A.11.: Hazard functions of the bootstrap generated models versus the original model distinguished
between £, (RLL) < 0.05 (left panel) and £, (RLL) > 0.05 (right panel)
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