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Abstract

The purpose of this master thesis is to use the parametric bootstrap resampling method for doing statistical

model inference on transformation models. Based on previous research completed by Hothorn et al. in 2015

(Hothorn, T., Möst, L., and Bühlmann, P. (2015). Most Likely Transformations. arXiv:1508.06749. Technical

report, v2. URL http://arxiv.org/abs/1508.06749), this project utilizes the implementation of maximum

likelihood-based estimation for transformation models. The framework of conditional transformation models

as well as the bootstrap resampling method is profoundly explained within this thesis.

To practically illustrate the use of these approaches, the in R publicly available data set from the German

Breast Cancer Study Group-2 (GBSG2) trials was used. A conditional transformation model estimates the

conditional distribution of the response variable Y defined from the GBSG2 data set. Consequently, the para-

metric bootstrap resampling method can be applied to draw B new response variables Y?
1 , . . . , Y?

B from the

conditional distribution function. This procedure resulted in B new conditional transformation models, which

were subsequently used for the parametric bootstrap inference. We used log-likelihood ratio statistics as a

likelihood based measurement for comparing the bootstrap generated model to the original transformation

model. The statistical inference of the bootstrap generated transformation models was carried out in two

ways: first, on the model parameters and the distribution thereof; and second, on the data specific prediction

functions, e.g. the density function, the empirical cumulative distribution function, the survivor function, etc.

Furthermore, this research has shown that the degrees of freedom of the Chi-squared distributed log-likelihood

ratio statistics are not defined as they are expected to be. Regarding the not as expected log-likelihood ratio

statistics distribution, this thesis does not definitively provide a solution, however, simulations have been in-

cluded to prove the presumption that a correction of the degrees of freedom in instances of multiply occurring

model coefficients is essential. In conclusion, the results of this thesis advance the understanding of graphical

model inference of the model parameters of a conditional transformation model as well as the inference of the

conditional transformation model itself.

Keywords Unconditional transformation model, conditional transformation model, distribution regression,

parametric bootstrap, graphical model inference, likelihood ratio test statistic, degrees of freedom
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1. Introduction

In the context of frequently used regression models the estimation of the conditional mean of the response

variable Y is usually in focus. Whenever a distribution is too challenging to analyse, one might tend to sim-

plify the distribution by only concentrating on the mean as the sole comprehensible real number value that

describes the centre of the distribution. One often forgets that the mean as a characteristic of a distribution

hides other important characteristics such as: variance, skewness and kurtosis. In contrast, the model class

of transformation models, which is widely utilized in this thesis, is advantageous in that the higher moments

of the conditional distribution are allowed to depend on the explanatory variables. In the framework of trans-

formation models, the whole conditional distribution of the response variable Y is estimated with the help of

a strictly monotone increasing transformation function h(y). The paper Most Likely Transformation, authored

by Hothorn et al. in 2015, has revolutionized the state of research of transformation models. For the first time,

a full likelihood procedure was introduced for estimating the transformation function along with the model pa-

rameters. The combination of such transformation models with the parametric bootstrap resampling method

is the main theme of this thesis. By applying the parametric bootstrap to the concept of transformation mod-

els, it is possible to obtain additional response variables. Based on these additional responses, additional

transformation models are estimated and subsequently used for (graphical) model inference, the so-called

Parametric Bootstrap Inference for Transformation Models.

1.1. Outline

In a nutshell, the thesis is structured as follows: The second chapter Theory and Methods (cf. Chapter 2)

gives an overview, as the name suggests, of the theories and methods used in this thesis. This includes an in-

troduction to the concept of transformation models (cf. Section 2.2) as well as an introduction to the bootstrap

resampling methods (cf. Section 2.4). The implementation, application and evaluation of the combination of

these two concepts are the focus of the third chapter Modelling and Analysis (cf. Chapter 3). Afterwards, a

graphical parameter and model inference is explained in Sections 3.2 and 3.3, respectively. The fourth chap-

ter - Discussion (cf. Chapter 4) - provides the conclusion, summarises the limitations of this body of work, in

addition to avenues for future research.

This thesis forms part of the Master Program in Biostatistics at the University of Zurich. For the sake of

brevity, long and detailed equations and proofs have been intentionally excluded. A reader that seeks details

will find further information by following the in-text references.



1. Introduction

1.2. Notation

The notation used for this thesis is inspired by Efron (1979) and Hothorn et al. (2015). Vectorial parameters

ϑ are printed in boldface to make it easier to distinguish them from scalar parameters ϑ. A hat on a letter

indicates an estimate, such as ϑ̂ (respectively ϑ̂). As in Held and Bové (2013), independent univariate ran-

dom variables Yi from a certain distribution contribute to a random sample Y1:N = (Y1, . . . , YN), whereas n

independent multivariate random variables Y i = (Yi1, . . . , Yik)
T ∈ Rk are denoted as Y1:n = (Y1, . . . , Y N) ∈

Rk×n. A superscript “?” indicates a bootstrap random variable, e.g. Y?
i indicates a bootstrap random variable

from data set Y .

fY(y) describes the density (or probability mass) function, FY(y) the empirical cumulative distribution func-

tion, SY(y) the survivor function and λY(y) the hazard function of Y i. The notation yi
iid∼ F for i = 1, 2, . . . , n

indicates an independent and identically distributed sample of size n drawn from the distribution F. The

conditional distribution function of Y given X = x is denoted as FY|X(y|x) or F(Y ≤ y|X = x).

1.3. Software

All analyses were performed in the R system of statistical software (R version 3.3.0 (2016-05-03)), which is

freely available at http://www.r-project.org/. The following Base packages grid, stats, graphics,

grDevices, utils, datasets, methods, base and other packages xtable, beanplot, Hmisc, ggplot2,

Formula, lattice, SDMTools, colorspace, MASS, survival, sltm, mlt, basefun, variables, knitr were

used for the analyses and for the compilation of this report. The computing environment on the author’s

personal computer had the following specifications: OS X Yosemite, Version 10.10.5 (Operating system), 1.7

GHz Intel Core i7 (Processor) and 8 GB 1600 MHz DDR3 (Memory).

Muriel Lynnea Buri, muriellynnea.buri@uzh.ch 2
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2. Theory and Methods

This chapter provides an introduction to the theory and an overview of the methods used in this thesis. Overall,

it is divided into five subsections. Section 2.1 puts the transformation models in context of other (well known)

regression models; whereas the concept of transformation models for unconditional cases is introduced in

Section 2.2. In Section 2.3, conditional transformation models along with their application in R are discussed.

Section 2.4 highlights an overview of the bootstrap resampling method, followed by a brief introduction to the

data set utilized (cf. Section 2.5).

2.1. From Normal Linear Regression Models to Transformation

Models

Beginning with the normal linear regression model (NLRM) as shown in the transformation model (cf. Figure

2.1) below, each type of the regression model will be elaborated upon in a clockwise manner.

Figure 2.1.: From Normal Linear Regression to Conditional Transformation Models

It is known that most regression models are used to estimate the conditional mean of a response variable

Y. In the setup of the normal linear regression model (NLRM) let Y denote a continuous normal distributed



2. Theory and Methods

response variable and k denote independent covariates X1:k. The latter is used as model inputs to estimate

the conditional mean of the response variable Y. xik whereby, the i-th observation (i = 1, 2, . . . , n) of the k-th

covariate, yi is the i-th observation of the response variable, respectively. The functional form of the NLRM

for the i-th response is known as:

yi = β0 + β1xi1 + β2xi2 + β3xi3 + · · ·+ βkxik + εi, i = 1, . . . n

= xi.β + εi = X iβ + εi ⇒ Y |X = X ∼ N(Xβ, σ2)
(2.1)

Equation 2.1 also depicts the vector form where X ∈ Rn×k is the so-called design matrix, β ∈ Rk the

parameter vector and εi the error term with variance σ2. The errors ε1, ε2, . . . , εN are independent and

identically distributed (i.i.d) with E(εi) = 0 and Var(εi) = σ2, i.e. εi ∼ N(0, σ2). The property of constant

variance σ2 across all the error terms εi is referred to as homoscedasticity (Fahrmeir et al., 2007). This

implies that the error terms are independent across the covariates.

In the case of normally distributed errors, we get as a result of the NLRM, an estimator for the conditional

expected value of Y given the covariates X1:k: Ê(y|X) = Ê(y|x1, x2, . . . , xk). Ê(y|X) is also known as the

conditional mean of Y given the covariates X. The normal linear regression model is parametric in the sense

that we assume Y |X = X to be normally distributed. The model has (k + 1) parameters: β1, β2, . . . , βk, σ2

and the regression coefficients are perceived to be dependent on the variable xi to which they belong to. The

conditional mean E(Y |X = X) increases by βi when xi increases by one unit. Therefore, βi depends on both,

the scale of xi and the possible transformation of xi. Nevertheless, the explanatory variables in the NLRM

only have an impact on the mean of the response variable Y, but not on the variance σ2. Since the covariates

of the model only influence the conditional mean of the response variable Y but not the higher moments of the

distribution function, it can be inferred to also applicable to both the generalised linear model (GLM) and the

generalised additive model (GAM). The higher moments of the distribution function are assumed to be fixed.

Due to these similar characteristics, the three models - NLRM, GLM, GAM - are depicted in Figure 2.1 with

the same colour. As the name suggests, the GLMs can be interpreted as a generalization of the NLRM and

also incorporates more general types of distributions for the response variable Y, i.e. distributions from the

exponential family (Fahrmeir et al., 2007, p. 301). GAMs can be considered as a concept that incorporates

nonlinear forms of the predictors. The linear form ∑n
i=1 βiXi gets replaced by a sum of smooth functions

∑n
i=1 βi f (Xi). GAMs were originally developed by Hastie and Tibshirani (1986).

The model class of generalised additive models for location, scale and shape (GAMLSS) was introduced

by Stasinopoulos and Rigby in 2007. This was one of the first attempts to illustrate how the explanatory

variables influence higher moments of the distribution function. GAMLSS are statistical (regression) models

where the location, scale, skewness and kurtosis parameters for the distribution of the response variable Y

can be modelled explicitly as a function of the explanatory variables, i.e. covariates.

All of the above mentioned regression models assumed a parametric distribution for the response variable

and were considered to “require the definition of a parametric distribution for the response variable” (Möst,

2014). Applied to Figure 2.1 and hence figuratively explained, all the regression models aligned on the right

side of the circle assume a parametric distribution for the response variable. In contrast, the approach of

the quantile regression (Koenker, 2005) which according to Möst (2014) is a popular approach that does

not make any assumptions about the parametric distribution function of the response variable. The quantile

regression therefore models the conditional quantile functions of Y given the explanatory variables X. As

a consequence of the fact that we fit separate models for a grid of probabilities τ to estimate the whole
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conditional quantile function, the logical monotonicity of the conditional quantiles is not considered explicitly,

and therefore quantile crossing is a familiar problem associated with quantile regression (Möst, 2014; Hothorn

et al., 2014). The disadvantage of quantile crossing then, is its ability to lead to an invalid distribution for

the response, consequently, there is an obvious transition to the conditional transformation models (CTMs)

bearing in mind that the conditional quantile function is the inverse of the conditional distribution function and

vice versa. The CTMs blend the favourable properties of the GAMLSS and the quantile regression: The

conditional distribution function of the response variable is modelled directly and therefore the mean and all

higher moments are influenced by the explanatory variables X. Another potential problem of quantile crossing

is in the framework of CTMs losing its usefulness, as all conditional quantiles are estimated simultaneously

with the conditional distribution function. A more detailed introduction to the framework of transformation

models is elaborated upon in the next section.

2.2. The Concept of Transformation Models

In general, transformation models are useful mainly because the whole conditional distribution function of

Y is modelled directly and influenced by the explanatory variables X. Indeed, the class of transformation

models is rich, has been thoroughly researched and has a close connection with the conditional distribution

function. Nonetheless, a brief introduction to the general class of linear transformation models followed by an

in depth discussion of the linear transformation model is given in Section 2.3.1. Later, the general conditional

transformation model will be discussed in Section 2.3.3.

Möst (2014) points out that the origin of transformation models is given by the parametric response trans-

formation suggested by Box and Cox (1964). The authors presented a family of transformations for a non-

negative response variable Y depending on a parameter λ. The Box-Cox-Transformation is scaled to be

continuous at λ = 0:

hY(y|λ) =


yλ−1

λ , λ 6= 0

log(y), λ = 0
⇒ hY(y|λ) = x̃T β + ε

After the transformation hY(y|λ) a normal, homoscedastic, linear model is valid:

hY(y|λ)− x̃T β = ε ∼ N(0, σ2)

P(Y ≤ y|x) = F(y|x) = Φ
(

hY(y|λ)− x̃T β

σ

)
The linear transformation models are an extension of the parametric Box-Cox transformation models. In

the framework of simple linear transformation models the response transformation h(y) = −xT β + ε is not

specified. However, the strictly increasing transformation h(y) is dependent on linear covariate effects and

the distribution function F of the random error term ε is completely specified:

h(y) + xT β = ε ∼ F.

The conditional distribution function for the linear transformation model is therefore defined as follows:

P(Y ≤ y|X = x) = P(h(Y) ≤ h(y))

= F
(
h(y) + xT β

)
.
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The response distribution F
(
h(y) + xT β

)
includes a linear shift due to the explanatory variables, hence only

the conditional mean of the transformed response is influenced (Möst, 2014). The model complexity of the

linear transformation model is restricted as the model is linear in x and does not allow for interaction terms

between the response and the explanatory variables. The class of linear transformation models includes the

proportional hazards model and the proportional odds model as special cases, consequently the transforma-

tion function h(y) is sometimes also called the baseline function.

2.2.1. The Likelihood Function of the Transformation Function h

The content of this section is spurred by the Sections 2 and 3 of the paper Most Likely Transformations,

authored by Hothorn et al. in 2015. As a result, the definitions, notations and corollaries are adopted from

this publication and appropriately cited. In order to elaborate on the technical derivations of this paper and to

gain a better understanding, a flowchart has been created in the appendix (cf. Appendix A.1, Figure A.1). The

latter represents the main steps required to estimate a transformation model in a full likelihood framework.

Hothorn et al. (2015) posit that many authors have studied different approaches to estimate the transforma-

tion functions, however, a full likelihood estimation procedure is still lacking. Hothorn et al. (2015) therefore

sought to address this issue by introducing a strictly monotone transformation of some absolute continuous

random variable. Whereby, “the likelihood function of the transformed variable can then be characterised by

this transformation function. The parameters of appropriate parameterisations of the transformation function,

and thus the parameters of the conditional distribution function we are interested in, can then be estimated

by maximum likelihood under simple linear constraints allowing classical asymptotic likelihood inference [. . . ]”

(Hothorn et al., 2015, Chapter 1. Introduction).

Let (Ω,A, P) denote a probability space, for which Ω is the sample space, the set of all possible outcomes.

A is the set of events and P the assignment of probabilities to the events, respectively. The function P can

be understood as a function from the events to probabilities. Let (Ξ,C) describe a measureable space with

at least ordered sample space Ξ. The motivation for setting up the transformation model is our interest in

inferring about the distribution PY of a random variable Y, i.e. the probability space (Ξ,C, PY) defined by

the A− C measureable function Y : Ω → Ξ. For the sake of notational simplicity, we here only present the

results for the unconditional and ordered cases are presented. The distribution PY = fY � µ is dominated

by some measure µ and characterised by its density function fY, distribution function FY(y), quantile function

F−1
Y (p), hazard function λY(y), or cumulative hazard function ΛY(y). As in Hothorn et al. (2015), we assume

strict monotonicity of FY, i.e. FY(y1) < FY(y2) ∀y1 < y2 ∈ Ξ, with the aim of obtaining an estimate F̂Y,N

of the distribution function FY from a random sample Y1, . . . , YN
iid∼ PY. The path to achieving this goal

is not straightforward, and requires further investigation. Hereafter, we show that it is always possible to

write the potentially complex distribution function FY as a composition of a much simpler a priori specified

distribution function FZ and a strictly monotone transformation function h. The estimation of FY is then reduced

to obtaining an estimate ĥ. Since these definitions are technically and conceptually attractive, it is further

elaborated upon in the subsequent paragraph.

Let (R,B) denote the Euclidian space with Borel σ-algebra and Z : Ω → R a A −B measureable

function such that the measure PZ = fZ � µL is absolute continuous (µL denotes the Lebesgue measure)

in the probability space (R,B, PZ). The corresponding distribution and quantile function are FZ and F−1
Z ,

respectively. In addition, we assume fZ(z) : R → (0, ∞) and the existence of the first two derivatives of
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fZ(z) with respect to z and FZ(z) : (−∞, ∞) → [0, 1]. By definition, all parameters for FZ have to be known

and possible choices for FZ include:

• the standard normal distribution: FZ(z) = Φ(z)

• the standard logistic (SL) distribution: FZ(z) = FSL(z) = (1 + exp(−z))−1

• the minimum extreme value (MEV) distribution: FZ(z) = FMEV(z) = 1− exp(− exp(z))

Our final goal is to obtain F̂Y,N of the distribution function FY. But first, we show that there always exists a

unique and strictly monotone transformation g, such that the unknown and potentially complex distribution

PY can be generated from the simple and known distribution PZ via PY = Pg◦Z. Due to the existence and

uniqueness of g, it is defined as corollary (seen in Hothorn et al. (2015)):

Corollary 1. For all random variables Y and Z, there exists a unique strictly monotone increasing transfor-

mation g such that PY = Pg◦Z.

Proof. Let g = F−1
Y ◦ FZ and Z ∼ PZ. Then U := FZ(Z) ∼ U[0, 1] and Y = F−1

Y (U) ∼ PY by the probability

integral transform. Let h : Ξ→ R such that FY(y) = FZ(h(y)). From

FY(y) = (FZ ◦ F−1
Z ◦ FY)(y) = FZ(F−1

Z (FY(y))) = FZ
(

F−1
Z
(

FZ(h(y))
))
⇐⇒ h = F−1

Z ◦ FY

the uniqueness of h and therefore g is given. Corollary 1 also covers the discrete case.

The quantile function F−1
Z and the distribution function FY exist by assumption and are both strictly mono-

tone and right-continuous. Therefore, h and g are both strictly monotone and right-continuous.

The following corollaries are also taken over from Hothorn et al. (2015).

Corollary 2. For µ = µL, we have g = h−1 and h′(y) = fZ((F−1
Z ◦ FY)(y))−1 fY(y).

This result for absolute continuous random variables Y can be found in many textbooks (for example in

Lindsey, 1996).

Corollary 3. For the counting measure µ = µC, h = F−1
Z ◦ FY is a right-continuous step-function because FY

is a right-continuous step-function with steps at y ∈ Ξ.

Example The classical textbook example for transformations of random variables is Y = Z2 ∼ χ2
1 from

Z ∼ N(0, 1), i.e. using the non-monotone transformation z2:

fZ(z) =
√

2π exp
(
− z2

2

)
fY(y) =

√
2π exp

(
− y

2

)
= fY(z2)

Alternatively, we can write Z = h(Y) and Y = g(Z) with h = Φ−1 ◦ Fχ2
1

and g = h−1 = F−1
χ2

1
◦ Φ. The

functions g and h are unique and strictly monotone transformations switching between the standard normal

and the χ2
1 distribution. The χ2

1 distribution can be generated from the standard normal by the transformation

g = F−1
χ2

1
◦Φ and the back-transformation is h = Φ−1 ◦ Fχ2

1
.

The next steps are:

• characterisation of the distribution FY by the corresponding transformation function h,
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• setting-up the corresponding likelihood L(h) of such a transformation function h and

• estimating the transformation function based on this likelihood.

To demonstrate this idea, let H = {h : Ξ → R|C−B measureable, h(y1) < h(y2) ∀y1 < y2 ∈ Ξ} denote

the space of all strictly monotone transformation functions. Once the transformation function h is established,

FY can be evaluated as FY(y|h) = FZ(h(y)) ∀y ∈ Ξ. This indicates that g does not necessarily follow,

consequently it is essential to study the transformation h. Further, due to the different types of response

variables Y, we have different definitions for the density function:

• for absolute continuous variables Y (µ = µL):

∂FY(y|h)
∂y

=
∂FZ(h(y))

∂y
⇐⇒ fY(y|h) = fZ(h(y))h′(y)

• for discrete responses Y (µ = µC) with finite sample space Ξ = {y1, . . . , yK}:

fY(yk|h) =


FZ(h(yk)) k = 1

FZ(h(yk))− FZ(h(yk−1)) k = 2, . . . , K− 1

1− FZ(h(yk−1)) k = K

• for countably infinite sample spaces Ξ = {y1, y2, y3, . . . }

fY(yk|h) =


FZ(h(yk)) k = 1

FZ(h(yk))− FZ(h(yk−1)) k > 1.

With the conventions FZ(h(y0)) := FZ(h(−∞)) := 0 and FZ(h(yK)) := FZ(h(∞)) := 1 only the more

compact notation fY(yk|h) = FZ(h(yk))− FZ(h(yk−1)) will be used.

As Lindsey (1996) defined and Hothorn et al. (2015) reiterated, for a given transformation function h, the

likelihood contribution of a datum C = (
¯
y, ȳ] ∈ C is determined in terms of the distribution function:

L(h|Y ∈ C) :=
∫

C
fY(y|h)dµ(y) = FZ(h(ȳ))− FZ(h(

¯
y)).

The aforementioned definition particularly applies to most practically interesting scenarios, oftentimes allowing

for discrete and (conceptually) continuous, as well as censored or truncated observations of C.

Hothorn et al. (2015) has summarised the likelihood contribution of an “exact continuous” or left, right or

interval-censored continuous or discrete observation (
¯
y, ȳ] as follows:

L(h|Y ∈ (
¯
y, ȳ]) =



fZ(h(y))h′(y) y = (
¯
y + ȳ)/2 ∈ Ξ “exact continuous”

1− FZ(h(
¯
y)) y ∈ (

¯
y, ∞) ∩ Ξ “right-censored”

FZ(h(ȳ)) y ∈ (−∞, ȳ] ∩ Ξ “left-censored”

FZ(h(ȳ))− FZ(h(
¯
y)) y ∈ (

¯
y, ȳ] ∩ Ξ “interval-censored”,

under the assumption of random censoring. Klein and Moeschberger (2003) (p. 69) attribute accidental

deaths or the migration of human populations as typical examples, whereby the random censoring times may
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be thought to be independent of the main event time of interest. Klein and Moeschberger (2003) further high-

light the fact that the likelihood is more complex under dependent censoring. This body of work unfortunately

does not elaborate on this idea.

In the case of truncated observations in the interval (yl , yr] ⊂ Ξ, Hothorn et al. (2015) define the above

likelihood contribution differently in terms of the distribution function conditional on the truncation

FY(y|Y ∈ (yl , yr]) = FZ(h(y)|Y ∈ (yl , yr]) =
FZ(h(y))

FZ(h(yr))− FZ(h(yl))
∀y ∈ (yl , yr]

and thus the likelihood contribution changes to (Klein and Moeschberger, 2003)

L(h|Y ∈ (
¯
y, ȳ])

FZ(h(yr))− FZ(h(yl))
=
L(h|Y ∈ (

¯
y, ȳ])

L(h|Y ∈ (yl , yr])
when yl <

¯
y < ȳ ≤ yr.

Lindsey (1999) emphasizes the importance of the fact, that the likelihood is always defined in terms of a

distribution function. Therefore, it makes sense to directly model the distribution function of interest after it.

Hothorn et al. (2015) state that the ability to uniquely characterise this distribution function by the transforma-

tion function h, gives rise to the following definition of the most likely transformation estimator ĥN .

Definition 1 (Most likely transformation).

Let C1, . . . , CN denote an independent sample of possibly censored or truncated observations from PY. The

estimator

ĥN := arg max
h̃∈H

N

∑
i=1

log(L(h̃|Y ∈ Ci))

is called the most likely transformation (MLT).

Example For absolute continuous Y the likelihood and log-likelihood for h are approximated by the density

and log-density evaluated at y = (
¯
y + ȳ)/2, respectively:

L(h|Y ∈ (
¯
y, ȳ]) ≈ fZ(h(y))h′(y)

log(L(h|Y ∈ (
¯
y, ȳ])) ≈ log( fZ(h(y))) + log(h′(y)).

Strict monotonicity of the transformation function h is required, otherwise the likelihood is not defined. The

term log(h′(y)) is not a penalty term but the likelihood favours transformation functions with large positive

derivative at the observations. If we assume Y ∼ N(α, σ2) and for the choice FZ ∼ N(0, 1) with FZ = Φ and

fZ = φ, then h can be restricted to linear functions h(y) = (y− α)σ−1. The likelihood reduces to

L(h|Y ∈ (
¯
y, ȳ]) ≈ fZ(h(y))h′(y) = φ((y− α)σ−1)︸ ︷︷ ︸

fZ(h(y))

σ−1︸︷︷︸
h′(y)

= φα,σ2(y)

= fY(y|α, σ2).

Along with this example Hothorn et al. (2015) have emphasized that it is only within this simple location-

scale family, that the most likely transformation is characterised by the parameters of the normal distribution

of Y. Consequently, for other choices of FZ, the most likely transformation is non-linear. Nevertheless, the

distribution function FY = FZ(h(y)) is invariant with respect to FZ because we can always write h as F−1
Z ◦
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FY. In other words, with FZ 6= Φ normal responses Y can still be modelled, but only with a non-linear

transformation function h.

Henceforth, we do not assume any specific form of the transformation function but parameterise h in terms

of a basis function. Consequently, this parameterisation, a corresponding family of distributions, a maximum

likelihood estimator and a large class of models for unconditional and conditional distributions will be intro-

duced in the subsequent paragraphs below.

2.2.2. Maximum Likelihood Transformation Models

A basis function a : Ξ→ RP parametrises the transformation function h(y) = a(y)>ϑ, ϑ ∈ RP in such a way

that h(y) is a linear function of the basis-transformed argument y and the parameter vector ϑ. The choice of

the basis function a is in close connection with the Bernstein polynomials, which are introduced and discussed

in Section 2.2.3 of this thesis. The exact likelihood L only requires evaluation of h, however, the approximation

for “exact” observations of absolute continuous random variables makes the evaluation of the first derivative

of h(y) with respect to y necessary. The derivative with respect to y is given by h′(y) = a′(y)>ϑ and we

assume that a′ is available. In the style of Hothorn et al. (2015), we subsequently use the notation h = a>ϑ

and h′ = a′>ϑ for the transformation function and its first derivative omitting the argument y. We assume that

h and h′ are bounded away from −∞ and ∞.

For a specific choice of FZ and a, the transformation family of distributions consists of all distributions PY

whose distribution function FY is given as the composition FZ ◦ a>ϑ; Hothorn et al. (2015) refer to this as a

Transformation family.

Definition 2 (Transformation family).

The distribution family

PY,Θ = {FZ ◦ a>ϑ|ϑ ∈ Θ}

with parameter space Θ = {ϑ ∈ RP|a>ϑ ∈ H} is called transformation family of distributions PY,ϑ with

transformation functions a>ϑ ∈ H, µ-densities fY(y|ϑ), y ∈ Ξ, and error distribution function FZ.

Hothorn et al. (2015) also hypothesize that the classical definition of a transformation family relies on the

idea of invariant distributions, i.e. only the parameters of a distribution are changed by a transformation func-

tion but not the distribution itself. Throughout this thesis, the transformation functions that do change the

shape of the distribution are explicitly allowed. The transformation function a>ϑ is, at least in principle, flexi-

ble enough to generate any distribution function FY = FZ ◦ a>ϑ from the distribution function FZ. As a result,

the term “error distribution” function for FZ as seen in Fraser (1968) is introduced. To estimate F̂Y,N of the

unknown distribution function FY has been our original goal. By redefining FY to FZ(h(y)) with a known FZ,

the problem reduces to estimating the unknown transformation function h with the parameter vector ϑ. But

thanks to the known likelihood function L(a>ϑ|Y ∈ (
¯
y, ȳ]), it reduces further and it remains a maximisation

of the likelihood function such that the estimator of ϑ can be defined as the maximum likelihood estimator.

Definition 3 (Maximum likelihood estimator).

ϑ̂N := arg max
ϑ∈Θ

N

∑
i=1

log(L(a>ϑ|Y ∈ Ci))
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As a result of defining the maximum likelihood estimator ϑ̂N , the plug-in estimators of the most likely trans-

formation function along with the corresponding estimator of our target distribution FY should be defined:

• Plug-in estimators of most likely transformation function: ĥN := a>ϑ̂N

• Estimator of our target distribution FY: F̂Y,N := FZ ◦ ĥN

Since the original aim of characterising the distribution FY by the corresponding transformation function h

is still intact, an estimate F̂Y,N of the distribution function FY will be elucidated from the random sample

Y1, . . . , YN
iid∼ PY. Thanks to the above definitions, the estimation of the target distribution F̂Y,N is now

embedded in the maximum likelihood framework. Hence, only the regularity conditions (cf. Definition 4.1, p.

80, Held and Bové, 2013) remain to be shown in order to benefit from the well-established asymptotic theory.

In such instances, the asymptotic analysis benefits from the standard results extracted from the asymptotic

behaviour of maximum likelihood estimators. Therefore, it is possible to derive the score function and Fisher

information function depending on the different characteristics of the response variable Y. Building upon this

idea, the standard likelihood inference on the model parameters ϑ can be performed.

Further, Hothorn et al. (2015) discuss three additional theorems which are omitted here. These theorems

point out the conditions on the densities of the error function fY and on the basis function a to ensure con-

sistency and asymptotic normality of the sequence of maximum likelihood estimators ϑ̂N . Additionally, an

estimator of the asymptotic covariance matrix of ϑ̂N is given in Hothorn et al. (2015).

For now, we complete this theoretical introduction by formally defining the class of transformation models

according to Hothorn et al. (2015).

Definition 4 (Transformation model).

The triple (FZ, a, ϑ) is called transformation model.

The transformation model (FZ, a, ϑ) fully defines the distribution of Y via FY = FZ ◦ a>ϑ and thus the

corresponding likelihood L(a>ϑ|Y ∈ (
¯
y, ȳ]). Our definition of transformation models as (FZ, a, ϑ) is strongly

tied to the idea of structural inference. Fraser (1968) described a measurement model PY for Y by an error

distribution PZ and a structural equation Y = g ◦ Z where g is a linear function.

Hothorn et al. (2015) define such a transformation family or model as “parametric” when FZ and the basis

function a correspond to a distribution FY and its parameters are directly linked to the model coefficients

ϑ. A semi-parametric transformation model only partially specifies parameters of FY through ϑ, and a non-

parametric model is characterised by the invariance of F̂Y,N with respect to FZ (Hothorn et al., 2015).

A flowchart that summarises these concepts that allow for the estimation of a transformation model in a full

likelihood framework can be found in the appendix (cf. Appendix A.1, Figure A.1). As a side note, there also

exists a fully Bayesian treatment of transformation models despite being excluded from this thesis.

2.2.3. The Bernstein Polynomials

In the context of estimating a transformation model in a full likelihood framework the Bernstein polynomials

(for an overview see Farouki (2012)) are important regarding the choice of the basis function a : Ξ → RP

for the parametrisation of the transformation function h(y) = a(y)>ϑ. In case of order M (P = M + 1) the
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Bernstein polynomial is defined on the interval [
¯
y, ȳ] as:

h(y) = aBs,M(y)>ϑ =
M

∑
m=0

ϑm fBe(m+1,M−m+1)(ỹ)/(M + 1)

h′(y) = a′Bs,M(y)>ϑ =
M−1

∑
m=0

(ϑm+1 − ϑm) fBe(m+1,M−m)(ỹ)

×M/((M + 1)(ȳ−
¯
y)),

where ỹ coupled with fBe(m,M) is ỹ = (y−
¯
y)/(ȳ−

¯
y) ∈ [0, 1] and the density of the Beta distribution, re-

spectively. An important assumption regarding the Bernstein polynomial is its monotonicity due to the linear

constraints on the parameters ϑm ≤ ϑm+1 for all m = 0, . . . , M. This monotonicity is especially important in

the context of transformation models as the transformation function needs to be strictly monotone increasing.

Obviously, it is convenient to choose a Bernstein polynomial as the basis function aBs,M to parametrise the

transformation function h(y) = aBs,M(y)>ϑ so that one can ensure a strict monotone increasing transforma-

tion function h.

The question that arises therefore, is to what degree is the Bernstein polynomial optimal? In the vignette

of the mlt package (Hothorn, 2016b, p. 10), it is stated that neither extremes, - a too small nor a too high

degree - should be chosen. On the one hand, aBs,1 would only allow linear transformation functions of the

distribution function FZ to occur, consequently, FY is restricted to the distribution family of FZ, but on the other

hand, a model with basis function aBs,N−1 has one parameter for each observation, meaning the model is

overfitted. In applications, it seems best to test the effects of the degree of Bernstein polynomial depending

on the Akaike information criterion (AIC) of the model. The degree of Bernstein polynomial which leads to the

smallest AIC is the one to be chosen for the model. However, there is the difficulty for some transformation

models to define the right degree of freedom (cf. Section 3.1.2 for details), consequently for some models the

AIC is doubted being correctly defined.

2.3. The Conditional Transformation Model (CTM)

In this section, the concept of conditional transformation models will be introduced. This will be achieved by

highlighting the special cases of this model class, and giving an example of how the normal linear regression

model (NLRM) is estimated within the framework of conditional linear transformation models with a linear shift.

The class of conditional transformation models includes transformation models with transformation func-

tions that depend on the explanatory variables X ∈ χ. Those transformation functions are usually of the form

h(·|x) : Ξ → R. The corresponding distribution function FY|X=x can be written as FY|X=x(y) = FZ(h(y|x)).
Like in the unconditional case introduced in Corollary 1 (cf. Section 2.2.1), there also exists a strictly monotone

transformation function for the conditional case h(·|x) = F−1
Z ◦ FY|X=x such that FY|X=x(y) = FZ(h(y|x)).

2.3.1. The Linear Transformation Model

A linear transformation model with a linear shift is the simplest form of a regression model in the class of

conditional transformation models. The conditional distribution function is:

P(Y ≤ y|X = x) = FZ(h(y|x)) = FZ(hY(y)− x̃>β)

= FZ(c(y, x)>ϑ) = FZ(a(y)>ϑ1 − x̃>β).
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In other words, the conditional transformation function is parametrised as h(y|x) = c(y, x)>ϑ and no longer

h(y) = a>ϑ. As a result, the basis function b : χ → RQ for the explanatory variables is introduced.

As suggested in Hothorn et al. (2015), the joint basis for both y and x is called c : Ξ × χ → Rd(P,Q),

and its dimension d(P, Q) depends on the way the two basis functions a and b are combined (for example

c = (a>, b>)> ∈ RP+Q or c = (a> ⊗ b>)> ∈ RPQ).

The simple transformation function h(y|x) = hY(y)+ hx(x) where the explanatory variables only contribute

a shift hx(x) to the conditional transformation function is an important special case. Hothorn et al. (2015) state

that this shift is often assumed to be linear in x, so the function m(x) = b(x)>β = x̃>β will be used to denote

linear shifts. b(x) = x̃ is to be understood as one row of the design matrix without intercept. The conditional

transformation function c(y, x)>ϑ = a(y)>ϑ1 + b(x)>ϑ2 is split into the two terms hY(y) = a(y)>ϑ1 and

hx(x) = b(x)>ϑ2 = m(x) = −x̃>β, whereas the conditional distribution function is

P(Y ≤ y|X = x) = FZ(h(y|x)) = FZ(hY(y) + hx(x)) = FZ(c(y, x)>ϑ)

= FZ(a(y)>ϑ1 + b(x)>ϑ2)

= FZ(a(y)>ϑ1 − x̃>β)

The three theorems, which were previously mentioned in Section 2.2.2 and are discussed in Hothorn et al.

(2015) are also applicable here. Consequently, the performance of standard likelihood inference on the model

parameters ϑ = (ϑ1, ϑ2)
> of the conditional transformation model is also possible.

For a better understanding of the concept, we examine the normal linear regression model (NLRM) from the

perspective of linear transformation models.

The linear regression model reviewed from the linear transformation model perspective

We rewrite the classical normal linear model Y = Xβ + ε, Y ∼ N(Xβ, σ2) in the context of conditional

transformation models: Y ∼ N(α + m(x), σ2) with conditional distribution function

FY|X=x(y) = Φ
(

y− α−m(x)
σ

)
= Φ(h(y|x))

and transformation function

h(y|x) = hY(y) + hx(x) = y/σ− α/σ︸ ︷︷ ︸
hY(y)

−m(x)/σ︸ ︷︷ ︸
hx(x)

= c(y, x)>ϑ = a(y)>ϑ1︸ ︷︷ ︸
hY(y)

+ b(x)>ϑ2︸ ︷︷ ︸
hx(x)

= (y, 1)︸ ︷︷ ︸
a(y)>

· (σ−1,−σ−1α)>︸ ︷︷ ︸
ϑ1

+ (x̃)︸︷︷︸
b(x)>

· (−σ−1β>)>︸ ︷︷ ︸
ϑ2

,

where a(y), b(x) and ϑ = (ϑ1, ϑ2)
> are the basis functions and parameters, respectively. Nonetheless,

there is the constraint σ > 0. In a more compact notation, one can write: (Φ, (y, 1, x̃>)>, ϑ).

Hothorn et al. (2015) note that this model is parametric even though the parameters are the inverse standard

deviation and the inverse negative coefficient of variation as opposed to the mean and variance of the original

normal distribution.
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2.3.2. Specifying a Linear Transformation Model in R

This following section contains an applied example in contrast to the before introduced technical steps on

how to fit a transformation model and will be based on the vignette document of the mlt package (Hothorn,

2016b). The example is in the context of survival analysis and highlights all the important functions that are

needed to fit a linear transformation model in the software environment R.

Data from the German Breast Cancer Study Group-2 (GBSG2) trial is used to explain this concept in

more detail in Section 2.5.1. The focus in this section therefore, is to demonstrate the R implementation of

the model. In so doing, an estimation of the recurrence-free survival time (positive absolutely continuous

response variable) of the GBSG2 trial conditional on all covariates given in the data set will be realised.

The GBSG2 data set will be loaded from the TH.data package (Hothorn, 2015). The definition of a formula

for the covariables of the model is necessary because the as.basis() method of the basefun package

(Hothorn, 2016a) needs a formula (or factor) as its argument. The as.basis() function returns a function

itself for the evaluation of the basis functions with corresponding model.matrix and has two arguments:

(1) remove intercept removes the intercept after appropriate contrasts were computed and (2) negative

multiplies the model matrix with −1.

# Load data

data("GBSG2", package = "TH.data")

# Define covariables

xvar <- names(GBSG2)

xvar <- xvar[!(xvar %in% c("time", "cens"))]

mlt_covariates <- as.formula(paste("~", xvar, collapse = "+"))

basis_x <- as.basis(mlt_covariates, data = GBSG2,

remove_intercept = TRUE)

# Define survival object

GBSG2$y <- with(GBSG2, Surv(time, cens))

y_var <- numeric_var("y", support = c(0, max(GBSG2$time) + 0.1))

basis_y <- Bernstein_basis(y_var, order = 10, ui = "increasing")

# Model specification

ctm_coxph_mod <- ctm(basis_y, shifting = basis_x, todistr = "MinExtrVal")

# Model estimation

mlt_coxph_mod <- mlt(ctm_coxph_mod, data = GBSG2, scale = TRUE, checkGrad = FALSE)

R-Code 2.1: Explaining in a step-by-step manner how the conditional transformation model (FZ, (aBs,10(y)>,

b(x)>)>, ϑ̂N) is estimated by using the framework specific functions of the basefun (Hothorn, 2016a),

variables (Hothorn, 2016c) and mlt (Hothorn, 2016b) packages in R

numeric var() from variables package (Hothorn, 2016c) saves a formal description of a discrete nu-

meric variables with integer-valued support argument which is later passed to the Bernstein basis()

function from basefun package (Hothorn, 2016a). A Bernstein polynomial (cf. Section 2.2.3, for a more

detailed overview see Farouki (2012)) is used as a parametrisation of the continuous response. The asso-

ciated Bernstein basis() function implemented in the basefun package (Hothorn, 2016a) returns such a

function for the evaluation of the basis functions with corresponding model.matrix and predict methods.

As the name suggests, the argument order defines the order of the polynomial (here: 10) and the argument

ui is a character describing the possible constraints (here: “increasing”) on the Bernstein polynomial. As
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explained in Section 2.2.3 of this thesis, neither a too small nor a too high order for the Bernstein polynomial

should be chosen. After having defined the basis functions for the response (basis y) as well as for the

explanatory variables (basis x), we are ready to specify the conditional transformation model by using the

ctm() function from mlt package (Hothorn, 2016b). The conditional transformation model (FZ, (aBs,10(y)>,

b(x)>)>, ϑ̂N) is now fully defined by the parametrisation h(y|x) and FZ. The latter is specified using the

todistr argument. The transformation function h(y|x) therefore depends on the settings for the arguments

interacting and shifting. The shift term is positive by default. The response argument (first argument of

ctm() function) requires the Bernstein polynomial of the response variable as input (here: basis y). basis x

is the right hand side of the model formula and defines the basis function for the shift term in the classical for-

mula language. Note that the actual observations are not referenced during the specification of the model. As

a result, the model estimation follows by applying the mlt() function from mlt package (Hothorn, 2016b) to

the ctm coxph mod object of class ctm. The resulting object mlt coxph mod is from the mlt class. It contains

the following objects itself specified by the mlt coxph mod environment:

• bounds

• call

• coef

• convergence

• cpar

• data

• df

• feval

• fn.reduction

• gradient

• hessian

• iter

• loglik

• message

• model

• offset

• optimfct

• par

• parm

• quiet

• response

• scale

• score

• theta

• todistr

• trace

• value

• weights.

Moreover, the following methods are available for objects of class mlt:

• bounds

• coef

• coef<-

• confband

• Gradient

• Hessian

• logLik

• mkgrid

• plot

• predict

• print

• simulate

• summary

• variable.names

• vcov

• weights.
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The result of applying the function coef() to the mlt coxph mod object returns the original model parameter

vector ϑ̂N (cf. R-Code 2.2).

coef(mlt_coxph_mod)

## Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y)

## -7.6072969832 -1.0350803074 -1.0350803074 -1.0350803074 -0.9545167564

## Bs6(y) Bs7(y) Bs8(y) Bs9(y) Bs10(y)

## -0.3439678514 -0.3439678514 -0.3439678514 -0.1845162887 0.2937487631

## Bs11(y) horThyes age menostatPost tsize

## 0.2937487631 -0.3490523654 -0.0099262360 0.2676696591 0.0077713879

## tgrade.L tgrade.Q pnodes progrec estrec

## 0.5600910540 -0.2018493613 0.0487467451 -0.0022101686 0.0001833764

R-Code 2.2: Model parameter vector ϑ̂N of original transformation model (FZ, (aBs,10(y)>, b(x)>)>, ϑ̂N)

presented as original R-Code output

The output of R-Code 2.2 can be distinguished between model parameters that correspond to the Bernstein

polynomial (beginning with Bs) and model parameters that correspond to the model covariables (horTHyes,

age, ..., estrec). We have set the order of the Bernstein polynomial to M = 10 hence we get M + 1 =

11 coefficients that correspond to the Bernstein polynomial including the intercept of the Bernstein poly-

nomial. Note that some Bernstein polynomial coefficients are equal to others (Bs2(y)=Bs3(y)=Bs4(y),

Bs6(y)=Bs7(y)=Bs8(y), Bs10(y)=Bs11(y). We will refer back to that characteristic and analyse the conse-

quences of it in Section 3.1.2.

2.3.3. Conditional Transformation Models with Multiple Basis Functions

The conditional transformation model with multiple basis functions can be interpreted as an extension of the

linear transformation model. Since the transformation function h(y|x) depends simultaneously on y and X,

the model complexity of conditional transformation model is higher.

Hothorn et al. (2014) define the transformation function h(y|x) as an additive decomposition of J partial

transformation functions. Models of this class (·, c, ϑ) are called conditional transformation models (CTMs)

and can be written in the following way:

P(Y ≤ y|X = X) = P
(
h(Y|X) ≤ h(y|x)

)
= F

(
h(y|x)

)
= F

( J

∑
j=1

hj(y|x)
)

The functions hj(y|x) : R → R have to be monotonically increasing in y. The additive decomposition of the

partial transformation functions hj(y|x) can be understood as a parametrisation of multiple basis functions

aj(y), bj(x), j = 1, . . . J via the joint basis

c = (a>1 ⊗ b>1 , . . . , a>J ⊗ b>J )
>

Hothorn et al. (2014) proposed a boosting algorithm for the estimation of transformation functions h for exact

continuous responses Y. As mentioned in Hothorn et al. (2015), in the likelihood framework conditional trans-

formation models can be fitted under arbitrary schemes of censoring and truncation and classical likelihood
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inference for the model parameters ϑ becomes feasible. In contrast to the boosting algorithm, in the likelihood

framework the number of model terms J and their complexity is limited because the likelihood does not contain

any penalty terms inducing smoothness in the x-direction (Hothorn et al., 2015). A more detailed overview of

the class of conditional transformation models can be found in Möst (2014).

The ability to display complex relationships between the explanatory variables and the response is a great

benefit of the CTMs. In addition, we have the advantage of CTMs in that, all parameters of the distribution

function FY respective to FZ may depend on the explanatory variables X ∈ χ. The disadvantage of CTMs

however, is the challenging model interpretation because of the high flexibility of the models. Möst (2014)

also points out that the lack of orthogonality of the model components in CTMs constricts insights into model

structure due to the fact that the model components are not separable.

2.4. The Bootstrap Resampling Method

The bootstrap resampling method was first mentioned by Efron (1979). He posits that this method is an

appropriate “technique for making certain kinds of statistical inferences” (Efron and Tibshirani, 1993). Within

the last decade, due to the increased efficiency of computing power and reduced cost, the method has

become popular. Within this study, the differences between the parametric and the non-parametric bootstrap

methods are elucidated and the assumptions about independent and identically distributed (iid) observations

are valid for both cases. If these assumptions are not fulfilled, the bootstrap is misleading.

Throughout this thesis, the focus will be set on the parametric bootstrap approach (cf. Section 2.4.2),

nevertheless, for the sake of completeness, we also introduce the non-parametric bootstrap procedure (cf.

Section 2.4.1).

2.4.1. The Non-Parametric Bootstrap

The basic idea of the non-parametric bootstrap approach is to create additional data from the given observa-

tions. We normally compute an estimator ϑ̂N = g(Y1, . . . YN) from the realisations Y1, . . . YN
iid∼ F (cf. Table

2.1). ϑ̂N is a known function g of the data Y1, . . . YN and with the help of the central limit theorem it is pos-

sible to estimate the asymptotic variance. Consequently, we obtain the asymptotic distribution of ϑ̂N . In the

framework of non-parametric bootstrap resampling technique with replacement, we draw many new data sets

Y?
i = (Y?

1 , . . . , Y?
N)

iid∼ F̂N from the empirical distribution. On each of the original observed values y1, . . . , yN

we assign a probability of 1/N by the empirical distribution function. In other words, we draw a random sam-

ple of size n with replacement from the given observations. Based on these newly obtained observations

Y?
1 , . . . , Y?

N the estimator ϑ̂
?
N can be computed. This process is repeated several times in order to obtain the

approximate distribution of the simulated estimators ϑ̂
?
N . Table 2.1 shows the outline of the non-parametric

bootstrap and serves as a means to better understand the concept.
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Real world
non-parametric

bootstrap world

distribution function F F̂N

data Y1, . . . , YN
iid∼ F Y?

1 , . . . , Y?
N

iid∼ F̂N

parameter ϑ = g(F) ϑ̂N = g(F̂N)

estimator ϑ̂N = g(Y1, . . . , YN) ϑ̂
?
N = g(Y?

1 , . . . , Y?
N)

Table 2.1.: Comparison of the real world (observed) and the world of the non-

parametric bootstrap (Source: Own representation based on Geyer (2015))

The resulting distribution F̂N is a step function (cf. Figure 2.2) since only the weight 1/N can be drawn from

the observations. That is to say, staying at the realisations generates no new numbers.

Figure 2.2.: Comparison between the non-parametric and parametric bootstrap: The resulting

distribution F̂N of the non-parametric bootstrap is a step function (blue), whereas the resulting

distribution Fϑ̂N
of the parametric bootstrap is a smooth function (red).

2.4.2. The Parametric Bootstrap

The theory of the parametric bootstrap is similar to that of the non-parametric bootstrap. In contrast to the

non-parametric bootstrap, the samples are now drawn from the estimated parametric distribution Fϑ̂N
instead

of the empirical distribution F̂N . Efron and Tibshirani (1993) explain the parametric bootstrap approach as

follows: Instead of estimating F by the empirical distribution function F̂N , Fϑ̂N
is estimated from a parametric

model of the data. The ideal bootstrap estimate ϑ̂
?
N is then approximated by bootstrap sampling. Instead of

sampling with replacement from the available data as in the non-parametric case, the bootstrap samples of

size n are drawn from the estimated parametric distribution Fϑ̂N
of the population: X?

i = (Y?
1 , . . . , Y?

N)
iid∼ Fϑ̂N

.
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Real world
parametric bootstrap

world

distribution function F Fϑ̂N

data Y1, . . . , YN
iid∼ F Y?

1 , . . . , Y?
N

iid∼ Fϑ̂N

parameter ϑ = g(F) ϑ̂N = g(Fϑ̂N
)

estimator ϑ̂N = g(Y1, . . . , YN) ϑ̂
?
N = g(Y?

1 , . . . , Y?
N)

Table 2.2.: Comparison of the real world (observed) and the world of the parametric

bootstrap (Source: Own representation based on Geyer (2015))

Table 2.2 shows the outline of the parametric bootstrap and serves as a support for a better understanding

of the concept. The resulting distribution Fϑ̂N
is a smooth function (cf. Figure 2.2) as the bootstrap samples

are drawn from the whole distribution function Fϑ̂N
in contrast to the empirical distribution function F̂N in the

non-parametric bootstrap (cf. Section 2.4.1, Figure 2.2).

For the sake of completeness, caution must be exercised whenever the underlying parametric model is

wrong, as the application of the parametric bootstrap resampling will then also lead to wrong results. The

bootstrap method should therefore not be used in such instances. Chernick and LaBudde (2014) suggest

the need to compare both the non-parametric and the parametric bootstrap in order to review the parametric

assumptions. In their opinion, the parametric bootstrap is especially essential when the parametric distribution

is difficult to derive or as Good (2001) argues, the parametric bootstrap provides more accurate answers than

textbook formulas.

2.5. The Data Set

The focus of this thesis is on different model approaches as well as the subsequent inference of these models.

In other words, the data set used to estimate such models is not of primary interest as we do not want to

analyse something in relation to the data more over we want to make inference about the fitted models.

Nevertheless, for the future model interpretation and understanding it helps to have a background knowledge

of the used data set.

2.5.1. German Breast Cancer Study Group-2 (GBSG2) Trials

The German Breast Cancer Study Group-2 (GBSG2) Trial data set contains 686 (female) patients. Only

patients not older than 65 years, who have tested positive for regional lymph nodes but lack distant metastases

were included in the study. The data set was collected between July 1984 and December 1989 and is publicly

available in R, where it can be downloaded through the TH.data package (Hothorn, 2015) and the command

data("GBSG2", package = "TH.data") . The following continuous and factor variables are included in the

data set:

• hormonal therapy (factor, 2 levels: yes, no)

• age of the patients in years (numerical)
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• menopausal status (factor, 2 levels: premenopausal, postmenopausal)

• tumour size in mm (numerical)

• tumour grade (ordered factor, 3 levels: I < II < III)

• number of positive nodes (numerical)

• progesterone receptor in fmol (numerical)

• estrogen receptor in fmol (numerical)

• time in days describing the recurrence free survival (RFS) time (numerical)

• censoring indicator (factor, 2 levels: 0 censored, 1 event)

The survival or recurrence-free survival (RFS) time is the primary outcome variable. Out of 686 women, 246

received hormonal therapy whereas the control group of 440 women did not receive hormonal therapy. As

stated in Sauerbrei et al. (1999), after a median follow-up time of nearly 5 years, 299 events for RFS and 171

deaths were observed. The statistical analysis is performed by fitting a Cox proportional hazards model with

explicitly specified log cumulative baseline hazard function.
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This chapter combines the two previously introduced concepts - the transformation model and the parametric

bootstrap resampling method - with the aim being to implement, apply and evaluate the simulation-based infer-

ence for the transformation model. There are a plethora of reasons for doing so. First, the developed concept

is applicable to all sizes of data sets due to the absence of any assumptions about the asymptotic behaviour

of the estimators. As there are no asymptotic assumptions to be made, no data sets are considered to be too

small for this approach. Second, the setting of a type I error rate α, - the probability of rejecting the null hypoth-

esis given that it is true, - is not needed because the concept concentrates on graphical interpretation of the in-

ference plots.

Figure 3.1.: Survivor function with 95 % pointwise confidence in-

terval including a poor example of a non-monotonically decreas-

ing survivor function

Third, the model-based parametric boot-

strap analogue of the pointwise confi-

dence interval only contains valid func-

tions, e.g. all the model-based survivor

functions in the inference plot are mono-

tonically decreasing. This feature stands

in contrast to the conventional pointwise

confidence intervals that may also in-

clude not strictly monotone decreasing

functions. The survivor function coloured

in blue in Figure 3.1 demonstrates a poor

example where the function is theoreti-

cally included in the 95 % pointwise con-

fidence interval but is not a valid survivor

function in itself since it is not monoton-

ically decreasing. Lastly, the resulting

simulation-based inference plots (shown and explained into more detail later) are easily accessible and have

a straightforward interpretation.

The sections of this chapter are structured as follows: The implementation in R will serve as the basis

for the subsequent inferences. We shall begin by explaining the effect of combining the parametric resam-

pling method and the framework of transformation models (cf. Section 3.1). Following this, the subsequent

statistical inference will be performed on the model parameters (cf. Section 3.2) as well as the data spe-

cific prediction functions, e.g. the density function, the empirical cumulative distribution function, the survivor

function, etc. (cf. Section 3.3).
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3.1. Parametric Bootstrap Resampling Method Applied to Conditional

Transformation Models

3.1.1. Implementation

A conditional transformation model (FZ, c(y, x), ϑ) fully defines the distribution of the response variable Y

conditional on on the covariables X via FY = FZ
(
c(y, x)>ϑ

)
. The corresponding likelihood L(c(y, x)>ϑ|Y ∈

(
¯
y, ȳ]) can directly be interpreted from the definition of the model, as introduced in Section 2.2. These

characteristics enable the approach of applying the parametric bootstrap resampling method to transformation

models.

Thanks to the knowledge of the conditional distribution function FY = FZ
(
c(y, x)>ϑ

)
, it is possible to draw

new response variables Y?
1 , . . . , Y?

B which are conditional on the given explanatory variables by applying the

parametric bootstrap resampling method (cf. Section 2.4.2). With the information obtained, new transfor-

mation models are estimated and the newly obtained estimators are used for the subsequent model and

parameter inference.

The following enumeration systematically explains in pseudo code how B new transformation models are

generated by using the parametric bootstrap resampling method.

(1) Let (FZ, c(y, x), ϑ̂N) denote the transformation model fitted to the original data set x1:N =

(x1, . . . , xN) with response y. FZ defines the corresponding distribution function; c(y, x) is

the joint basis that is used to transform Y conditional on X; ϑ̂N is the maximum likelihood

estimator for a specific parametrisation of the transformation function. How to fit such a trans-

formation model in R was explained with the help of R-Code 2.1 in Section 2.3.2. Furthermore,

(FZ, c(y, x), ϑ̂N) fully defines the distribution of the original response variable via FY|X=x =

FZ
(
c(y, x)>ϑ̂N

)
and the corresponding likelihood L(c(y, x)>ϑ̂N |Y ∈ (

¯
y, ȳ]).

(2) Generate B parametric bootstrap samples Y?
1 , . . . , Y?

B :

for (b in c(1:B)){ % B = number of bootstrap samples to be generated

• Generate N random variables U1:N from U[0, 1], where N is the number of rows of

the original data set.

• Use u1, . . . , uN and the parametric bootstrap resampling method to obtain additional

response variables y∗1,b, . . . , y∗N,b

– Following from (FZ, c(y, x), ϑ̂N), it is known:

Y ∼ FY = FZ
(
c(y, x)>ϑ̂N

)
⇔ FY(y) = FZ

(
c(y, x)>ϑ̂N

)
∈ [0, 1]

– Y∗i,b ∼ F−1
Y (ui|xi) while keeping xi fix for a given ui, i = 1, . . . N

% This approach is also known as probability integral transformation.

}

(3) Executing the for-loop B times, the results are B new data sets each consisting of the orig-

inal explanatory variables x1:N = (x1, . . . , xN) and the newly generated bootstrap samples

y1,b, . . . , yN,b, b = 1, . . . , B as the response variables.

(4) The last step of the procedure is to fit B transformation models to the B newly generated data

sets. It is executed by another for-loop:
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for (b in c(1:B)){ % B = number of bootstrap samples / generated data sets

• Y∗i,b ∼ FY∗b
= FZ ◦ c(y, x)>ϑ̂?

b , i = 1, . . . N⇒ Transformation model (FZ, c(y, x), ϑ̂?
b)

}

⇒ The goal of generating B parametric bootstrap simulation-based transformation models

(FZ, c(y, x), ϑ̂?
b) with b = 1, . . . , B is fulfilled.

The implementation and execution of this pseudo code explicitly defines the B different bootstrap model

parameter vectors ϑ̂?
1 , . . . , ϑ̂?

B in addition to the original model parameter vector ϑ̂N .

The R-Code 3.1 explains how to implement the parametric bootstrap resampling method to generate B new

transformation models in the R software environment. The information of the original transformation model

(FZ, c(y, x), ϑ̂N) is saved in the variable mlt coxph mod. The second for-loop (see pseudo code Section

(2) above) which we use to generate the B parametric bootstrap samples Y?
1 , . . . , Y?

B is here in the R-Code

shortened on account of the function simulate. The simulate() function (R Development Core Team, 2009)

simulates responses from the distribution corresponding to a fitted model object (here: mlt coxph mod). The

argument nsim equals the number of response vectors to be simulated (here: nsim = n sim = B = 1000).

# Define copy of GBSG2 data set for simulation

GBSG2_sim <- GBSG2

# Simulate "n_sim" responses from the distribution corresponding to a fitted model object.

y_sim <- simulate(mlt_coxph_mod, nsim = n_sim, seed = 880906)

# Prepare list to save parametric bootstrap results

mlt_coxph_mod_summary <- vector("list", n_sim)

# Refit model to the new simulated data sets

for (i in 1:n_sim){
# overwrite the original DEXfat_y with the simulated ones

GBSG2_sim$y <- y_sim[[i]]

# refit/-estimate model to the simulated responses

mlt_coxph_mod_summary[[i]] <- mlt(ctm_coxph_mod, data = GBSG2_sim,

scale = TRUE, checkGrad = FALSE)

}
# Save objects as dataset

setwd(path_saved_R_objects)

save(mlt_coxph_mod_summary,

file = paste("mlt_coxph_mod_summary_", n_sim, ".RData", sep=""))

R-Code 3.1: How to apply the parametric bootstrap resampling method for the esti-

mation of B transformation models in R

The for-loop in the R-Code 3.1 can be linked to the for-loop mentioned in the pseudo code Section

(4) above. Here, the fitted B transformation models obtained from the B newly generated data sets are R

internally saved in the list object named mlt coxph mod summary and R externally as a Rdata file. The latter

prevents us from being forced to run the for-loop again and again.

3.1.2. Likelihood Based Inference Measures

The subsequent parametric bootstrap inference is based on a likelihood approach. This is possible since all

model parameter vectors ϑ̂N , ϑ̂?
1 , ϑ̂?

2 , . . . , ϑ̂?
B are maximum likelihood estimators for a specific parametrisation
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of the transformation function (cf. Section 2.2.1). The generic logLik() function from the stats package in

R can be used to extract the log-likelihood value from a R object of class mlt. It is important to note that the

log-likelihood l(ϑ̂) given a parameter vector ϑ̂ is bounded by −∞ and 0 (−∞ < l(ϑ̂) < 0). The likelihood

L(ϑ̂) given a parameter vector ϑ̂ is also bounded by both the 0 and 1 (0 < L(ϑ̂) < 1) and the evaluated

log-likelihood function of the maximum likelihood estimated parameter vector ϑ̂N is equal to 0. The relative

log-likelihood quantifies the relative probabilities of other parameter vectors, e.g. ϑ̂?
b , in comparison to the

maximum likelihood estimated parameter vector ϑ̂N . In the context used here, the relative log-likelihood is

defined as:
N

∑
i=1

log(L(a>ϑ̂?
b |Y

?
i )−

N

∑
i=1

log(L(a>ϑ̂N |Y?
i ) for b = 1, . . . , B

to calculate the relative log-likelihood for each of the B bootstrap generated transformation models. Adapted

from the definition of Held and Bové (2013) (Chapter 2.1.2), the relative log-likelihood can also be written as:

Definition 5 (Relative (Log-)Likelihood).

• Relative Likelihood: L̃(ϑ̂) = L(ϑ̂?
b)/L(ϑ̂N), b = 1, . . . , B

• Relative Log-Likelihood: l̃(ϑ̂) = log(L̃(ϑ̂)) = l(ϑ̂?
b)− l(ϑ̂N), b = 1, . . . , B

Additionally, let −2
(
l(ϑ̂?

b) − l(ϑ̂N)
)
= −2l̃(ϑ̂) ∈ R+0 denote the log-likelihood ratio statistic (LLRS). In

general, the LLRS is the test statistic of the likelihood ratio test to compare the goodness of fit between two

nested models. It is shown in Chapter 5.4.4 of Held and Bové (2013) that the LLRS asymptotically follows

a Chi-squared distribution with k degrees of freedom where k is equal to the difference in the number of

parameters between the two nested models:

−2
(
lalt − l0

) a∼ χ2
k .

The alternative model (the more complex model) can be transformed into the null model (the simpler model)

by imposing a set of constraints on the parameters. The more complex model will always fit the data at least as

well as the null model hence the alternative model has a greater or equal log-likelihood than the null model with

less parameters. However, this likelihood ratio test is not applicable to our case since the bootstrap generated

models (FZ, c(y, x), ϑ̂?
b)b=1,...,B and the original model (FZ, c(y, x), ϑ̂N) are not hierarchically nested models.

In other words, all the investigated models imply the same covariates and therefore the dimensionality of the

parameter vectors is the same. Nevertheless, the LLRS can be calculated as follows:

− 2
(
l(ϑ̂?

b)− l(ϑ̂N)
)
= −2l̃(ϑ̂) a∼ χ2

p, (3.1)

but cannot be interpreted as in the sense of the likelihood ratio test. Here, the degree of freedom p of the

Chi-squared distribution is expected to be equal to the dimension of the parameter vectors ϑ?
b and ϑ̂N .

The distribution of the computed LLRS for the investigated models is visualized in the histogram of Figure

3.2. The two plots shown differ in the number of drawn bootstrap samples: B1 = 1000 (left panel) and B2 =

2000 (right panel). This is done to minimize a potential approximation error.
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Figure 3.2.: Histogram of the B1 = 1000 (left panel) and B2 = 2000 (right panel) log-likelihood ratio

statistics in comparison to the probability density functions of the Chi-squared distribution with

degree of freedom = 20 (red line).

(Detailed) Name of MLT Model Coefficient Coefficient value

(1) Bernstein polynomial coefficient 1 -7.6073

(2) Bernstein polynomial coefficient 2 -1.0351

(3) Bernstein polynomial coefficient 3 -1.0351

(4) Bernstein polynomial coefficient 4 -1.0351

(5) Bernstein polynomial coefficient 5 -0.9545

(6) Bernstein polynomial coefficient 6 -0.344

(7) Bernstein polynomial coefficient 7 -0.344

(8) Bernstein polynomial coefficient 8 -0.344

(9) Bernstein polynomial coefficient 9 -0.1845

(10) Bernstein polynomial coefficient 10 0.2937

(11) Bernstein polynomial coefficient 11 0.2937

(12) hormonal therapy: yes -0.3491

(13) age [years] -0.0099

(14) menopausal status: post 0.2677

(15) tumour size [mm] 0.0078

(16) tumour grade: II 0.5601

(17) tumour grade: III -0.2018

(18) # positive nodes 0.0487

(19) progesterone receptor [fmol] -0.0022

(20) estrogen receptor [fmol] 2e-04

Table 3.1.: Rounded coefficients (4 digits) of the model

parameter vector ϑ̂N of the original transformation model

(FZ, c(y, x), ϑ̂N) presented in table format

The LLRS is by definition always positive

hence the x-axes of both histograms in Figure

3.2 only display positive numbers. The original

as well as the bootstrap generated models are

characterised by a parameter vector of dimen-

sion 20, i.e. ϑ̂N , ϑ̂?
1 , ϑ̂?

2 , . . . , ϑ̂?
B ∈ R20, conse-

quently the LLRS should asymptotically follow a

Chi-squared distribution with a degree of free-

dom (df) equal to 20 (χ2
p = χ2

20, cf. Equation

3.1). However, by looking at Figure 3.2, it is ob-

vious that the expected Chi-squared distribution

with df = 20 (red line) does not fit the distribution

of the LLRS (visualized as histograms). Under

those circumstances, we believe that the devi-

ation of the probability density function and the

histogram can be described in connection with

the multiply occurring Bernstein polynomial coef-

ficients (cf. Section 2.2.3 and 2.3.2).

Table 3.1 represents the coefficients of the

model parameter vector ϑ̂N of the original trans-

formation model (FZ, c(y, x), ϑ̂N). All duplicated

coefficients are highlighted in boldface. There

are 3 (−1.0351, −0.344, 0.2937) coefficients that

are not uniquely estimated among the Bernstein
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polynomial coefficients. Consequently, there is the assumption that the existence of such multiply occurring

coefficients restricts the parameter space Θ = {ϑ ∈ RP|a>ϑ ∈ H} and a subsequent correction for the

degree of freedom of the Chi-squared distributed LLRS seems essential.

The subsequent Figure 3.3 also supports this presumption regarding the essential correction for the de-

grees of freedom of the Chi-squared distribution. Figure 3.3 visualizes the relative frequency of the LLRS

in histograms. Additionally, there are several probability density functions of Chi-squared distributions with

different degrees of freedom added to the plots. And again, to minimize potential approximation errors, the

amount of bootstrap samples were increased from B1 = 1000 to B2 = 2000 (cf. Figure 3.3, from left to right

panel). However, the relative frequency displayed by the histograms in Figure 3.3 does not seem to differ

much between 1000 and 2000 bootstrap samples.

Figure 3.3.: Histogram of the B1 = 1000 and B2 = 2000 log-likelihood ratio statistics in comparison

to several probability density functions of the Chi-squared distribution with different degrees of

freedom

The following bullet points justify the possible corrections of the degrees of freedom of the Chi-squared

distributed probability density functions of Figure 3.3. All the investigated corrections have a negative sign so

that the degree of freedom becomes smaller after correction. This is due to the assumption that the multiply

occurring Bernstein polynomial coefficients restrict the parameter space, consequently, the “corrected” degree

of freedom of the Chi-squared distribution of the LLRS has to be reduced.

• Chi-squared distribution with df=20: The (original) model parameter vector ϑ̂N ∈ R20 has dimension 20

hence the distribution of the LLRS is - according to Equation 3.1 - expected to be χ2
20. The probability

density function of the Chi-squared distribution with df=20 can somewhat be understood as the baseline.

• Chi-squared distribution with df=17: The probability density function of the Chi-squared distribution with

df=17 was corrected by −3 compared to the baseline. The correction of −3 stems from the 3 multiply

occurring Bernstein polynomial coefficients (−1.0351, −0.344, 0.2937, cf. Table 3.1).
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• Chi-squared distribution with df=15: The probability density function of the Chi-squared distribution with

df=15 was corrected by −5 compared to the baseline. The correction of −5 stems from the amount of

repeated Bernstein polynomial coefficients (Bs3(y), Bs4(y), Bs7(y), Bs8(y), Bs11(y), cf. Table 3.1).

• Chi-squared distribution with df=12: The probability density function of the Chi-squared distribution with

df=12 was corrected by −8 compared to the baseline. The correction of −8 stems from reducing all

the multiply occurring Bernstein polynomial coefficients (Bs2(y), Bs3(y), Bs4(y), Bs6(y), Bs7(y),

Bs8(y), Bs10(y), Bs11(y), cf. Table 3.1).

Considering Figure 3.3, the probability density function of the Chi-squared distribution with df=17 (drawn in

blue) corresponds best to the relative frequency of the LLRS visualized in the histogram. However, this does

not give evidence that the suggested correction of subtracting the amount of multiply occurring Bernstein

polynomial coefficients is correct.

To investigate further the possible corrections of the degrees of freedom, the original model (FZ, c(y, x),

ϑ̂N) fitted to the GBSG2 data and the bootstrap generated models (FZ, c(y, x), ϑ̂?
b)b=1,...,B were again es-

timated for different orders of the Bernstein polynomial basis function a(y) = aBs,i(y) with i = 1, 2, . . . , 15.

Table 3.2 summarises parameter specific information of the refitted models.

model name

order of
Bernstein
polyno-

mial

AIC
total amount of

parameters

amount of model
parameters

corresponding to
Bernstein

polynomial

amount of
model

parameters
corresponding

to model
covariables

total amount
of duplicated
parameters

amount of
multiply

occurring
model

parameters

MLT model 1 1 5425 11 2 9 0 0

MLT model 2 2 5299 12 3 9 0 0

MLT model 3 3 5242 13 4 9 1 1

MLT model 4 4 5201 14 5 9 2 1

MLT model 5 5 5180 15 6 9 1 1

MLT model 6 6 5168 16 7 9 3 1

MLT model 7 7 5162 17 8 9 3 3

MLT model 8 8 5159 18 9 9 3 2

MLT model 9 9 5158 19 10 9 4 2

MLT model 10 10 5158 20 11 9 5 3

MLT model 11 11 5160 21 12 9 4 2

MLT model 12 12 5161 22 13 9 5 4

MLT model 13 13 5163 23 14 9 7 5

MLT model 14 14 5165 24 15 9 6 4

MLT model 15 15 5167 25 16 9 7 5

Table 3.2.: Overview from the results of the simulation study where the original transformation model (FZ,

(a(y)>, b(x)>)>, ϑ̂N) was refitted to the GBSG2 data by using different Bernstein polynomials as basis

function aBs,i(y), i = 1, 2, . . . , 15. The model names correspond to the order of the Bernstein polynomial used

as basis function for the specific model. For the boldface printed rows, we additionally show the histogram

of the LLRS as well as the probability density function of the Chi-squared distributions in the appendix (cf.

Appendix A.2, Figure A.2).

The model names listed in the first column of Table 3.2 are intentionally defined to correspond with the

order of the Bernstein polynomial aBs,i=1, 2, ..., 15(y) used as the basis function a(y). If the order of the

polynomial is M, then the amount of model parameters that correspond to the Bernstein polynomial is M + 1

(cf. Table 3.2, columns 2 and 5). The amount of model parameters that correspond to the model covariables
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is equal to 9 for all listed models since each model includes all covariables from the fitted GBSG2 data set (cf.

Section 2.5.1). The last two columns of Table 3.2 are a bit more complex for the sake of an in depth analysis:

The total amount of duplicated parameters determines how many parameters are duplicates of parameters

with smaller subscripts. The amount of multiply occurring model parameters is gained by applying a unique

command to the total amount of duplicated parameters. The amount of parameters that lead to the correction

corresponding to the green density function in Figure 3.3 is not separately listed in Table 3.2 but equals the

sum of the total amount of duplicated parameters and amount of multiply occurring model parameters.

As previously mentioned in the caption of Table 3.2, there are additional histograms of the LLRS as well as

the probability density function of the Chi-squared distributions for the boldface printed rows of Table 3.2 to

be found in the appendix (cf. Appendix A.2).

Now, to provide more evidence for the essentiality regarding the correction of the degrees of freedom of the

Chi-squared distributed LLRS, let us additionally introduce another simulation study. This additional simulation

study was based on randomly generated N (0, 1) distributed response variables Y. An unconditional trans-

formation model (FZ = Φ, aBs,i, ϑ̂n) was fitted to the original data set, after which the parametric bootstrap

resampling method was applied. The setup of the simulation study varied depending on the three parameters

below:

p ord = i = order of Bernstein polynomial n = # rows of data set n sim = # Bootstrap samples

• 5 • 250 • 500

• 7 • 500 • 1000

• 10 • 1000

• 2000

The combination of these parameters produced 24 additional simulated data sets. In summary, these

models (FZ = Φ, aBs,i=5, 7, 10, ϑ̂n=250, 500, 1000, 2000) particularly, those drawn with 500 bootstrap samples as

well as 1000 were fitted.

Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y) Bs6(y)

n = 250 -1.2259 -0.7501 -0.0701 0.3062 0.8068 1.2832

n = 500 -1.2871 -0.7545 -0.0577 0.1348 0.7311 1.2408

n = 1’000 -1.2872 -0.7112 -0.4598 0.4769 0.6868 1.2742

n = 2’000 -1.2667 -0.7952 -0.2047 0.2350 0.7768 1.3000

Table 3.3.: Parameter vectors of the unconditional transformation models (FZ = Φ, aBs,5,

ϑ̂n=250, 500, 1000, 2000). The row names of the table correspond to the amount of rows of the data set used

to estimate the model.

Table 3.3 displays the parameter vectors of the unconditional transformation models (FZ = Φ, aBs,5,

ϑ̂n=250, 500, 1000, 2000) that were estimated during the simulation study. The order of the Bernstein polyno-

mial has been set to 5, consequently the parameter vector is of dimension 5 + 1 = 6. Since there are no

multiply occurring coefficients, the degrees of freedom of the Chi-squared distributed LLRS is adequately

estimated with df = 6 = 5 + 1. This can also be determined by looking at Figure A.3 in the Appendix A.3.1.

Figure A.3 additionally shows that 500 bootstrap generated samples (plots in top row of Figure A.3) are not

sufficient for an asymptotic behaviour of the distribution of the LLRS.
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Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y) Bs6(y) Bs7(y) Bs8(y)

n = 250 -1.287 -1.0159 -0.4563 0.0837 0.0837 0.5461 0.8942 1.2696

n = 500 -1.2869 -0.8503 -0.3063 -0.1741 0.0695 0.8215 0.8717 1.28

n = 1’000 -1.2782 -0.9136 -0.3471 -0.3471 0.2385 0.4354 0.9136 1.2719

n = 2’000 -1.279 -0.8658 -0.3379 -0.1901 0.1755 0.7022 0.8435 1.2752

Table 3.4.: Parameter vectors of the unconditional transformation models (FZ = Φ, aBs,7,

ϑ̂n=250, 500, 1000, 2000). The coefficients occurring multiple times within the same model (within the same row)

are highlighted in boldface. The row names of the table correspond to the amount of rows of the data set

used to estimate the model.

Table 3.4 displays the parameter vectors of the unconditional transformation models (FZ = Φ, aBs,7,

ϑ̂n=250, 500, 1000, 2000) that were estimated during the simulation study. The order of the Bernstein polyno-

mial has been set to 7, therefore the parameter vector is of dimension 7 + 1 = 8, and the probability density

function of the Chi-squared distributed LLRS is expected to be with degrees of freedom df = 7 + 1 = 8. How-

ever, the two models (FZ = Φ, aBs,7, ϑ̂n=250) and (FZ = Φ, aBs,7, ϑ̂n=1000) have multiply occurring model

parameters that correspond to the Bernstein polynomial. Hence, the probability density function of the Chi-

squared distributed LLRS with degrees of freedom df = 7 + 1 = 8, no longer adequately fits the histogram of

the LLRS. This finding is also determined by looking at Figure A.4 in the Appendix A.3.2. Figure A.4 further

indicates that the 500 bootstrap generated samples (plots in top row of Figure A.4) are not sufficient for an

asymptotic behaviour of the distribution of the LLRS.

Bs1(y) Bs2(y) Bs3(y) Bs4(y) Bs5(y) Bs6(y) Bs7(y) Bs8(y) Bs9(y) Bs10(y) Bs11(y)

n = 250 -1.2632 -1.0292 -0.8304 -0.8304 -0.1487 0.2152 0.2152 0.2231 1.0303 1.0303 1.2659

n = 500 -1.2896 -1.0458 -0.9468 -0.4639 -0.4639 -0.4639 0.4849 0.4849 0.6803 0.9986 1.2674

n = 1’000 -1.2789 -1.0296 -0.8171 -0.4068 -0.4068 -0.0442 0.4457 0.4457 0.7498 1.0563 1.2913

n = 2’000 -1.2864 -1.0427 -0.6742 -0.6742 -0.2004 0.1521 0.1521 0.4291 0.8946 1.031 1.273

Table 3.5.: Parameter vectors of the unconditional transformation models (FZ = Φ, aBs,10,

ϑ̂n=250,500,1000,2000). The coefficients occurring multiple times within the same model (within the same row)

are highlighted in boldface. The row names of the table correspond to the amount of rows of the data set

used to estimate the model.

Table 3.5 displays the parameter vectors of the unconditional transformation models (FZ = Φ, aBs,10,

ϑ̂n=250, 500, 1000, 2000) that were estimated during the simulation study. The order of the Bernstein polynomial

has been set to 10, consequently the parameter vector is of dimension 10+ 1 = 11 and the probability density

function of the Chi-squared distributed LLRS is expected to be with degrees of freedom df = 10 + 1 = 11.

However, all of the models - (FZ = Φ, aBs,10, ϑ̂n=250), (FZ = Φ, aBs,10, ϑ̂n=500), (FZ = Φ, aBs,10, ϑ̂n=1000)

and (FZ = Φ, aBs,10, ϑ̂n=2000) - have multiply occurring model parameters that correspond to the Bernstein

polynomial; hence, the probability density function of the Chi-squared distributed LLRS with degrees of free-

dom df = 10 + 1 = 11 no longer adequately fits the histogram of the LLRS. This finding is also determined

by looking at Figure A.5 in the Appendix A.3.3. Figure A.5 additionally shows that 500 bootstrap generated

samples (plots in top row of Figure A.5) are not sufficient for an asymptotic behaviour of the distribution of the

LLRS.

Muriel Lynnea Buri, muriellynnea.buri@uzh.ch 29



3. Modelling and Analysis

3.1.2.1. Concluding remarks

The initial intention of this section was to briefly introduce the Likelihood Based Inference Measures, however,

after delving deeper into the different measures it became clear that it is essential to elaborate on this concept.

As a result, this research investigated further on the effect of restricting the degrees of freedom of the Chi-

squared distributed LLRS. Now, although a definitive solution for the latter was not attained, in summary, this

simulation study uncovered additional evidence to support the idea that the expected degrees of freedom of

the Chi-squared distributed LLRS are violated in instances where the original model parameters imply multiply

occurring coefficients. For this reason, the simulation study is considered to be expedient. Nontheless, this

finding also indicates that the LLRS might not be the best likelihood based measure for the application of the

parametric bootstrap inference of transformation models.

Thus, the focus of this thesis is shift back again to the parametric bootstrap inference of transformation

models. Due to the aforementioned finding, the subsequent graphical inference only uses the relative log-

likelihood (RLL) as a measure for defining the accuracy of the bootstrap estimated models in contrast to the

original transformation model.

The focus of the subsequent statistical inference of the bootstrap generated transformation models is carried

out in two ways: first, on the model parameters and the distribution thereof (cf. Section 3.2); and second, on

the data specific prediction functions (cf. Section 3.3). For the latter case, the fully specified distribution

function FY of the response variables Y, Y?
1 , . . . , Y?

B is used as a basis for making inference about additional

functions which can be derived from the distribution function, e.g. the density function, the survivor function,

etc.

3.2. Parametric Bootstrap Inference for Parameters of Transformation

Models

Let (FZ, c(y, x), ϑ̂N) and (FZ, c(y, x), ϑ̂?
b)b=1,...,B be the transformation model of the original data set and the

bootstrap transformation models of the B data sets generated from the parametric bootstrap, respectively. The

model parameters ϑ̂N , ϑ̂?
1 , ϑ̂?

2 , . . . , ϑ̂?
B are maximum likelihood estimators for a specific parametrisation of the

transformation function h. Consequently, the standard likelihood procedures are applicable to the subsequent

parameter inference. The bootstrap based model parameters ϑ̂?
1 , ϑ̂?

2 , . . . , ϑ̂?
B are asymptotically multivariate

normal distributed Np(ϑ̂N , I(ϑ̂N)
−1) with mean ϑ̂N and covariance matrix equal to the inverse observed

Fisher information. The subsequent simulation-based, i.e. bootstrap generated, parameter inference has an

advantage in that, it is unnecessary to make assumptions about the asymptotic distribution of its parameters.
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Figure 3.4.: Parallel coordinate plot of the ϑ̂?
b=1,...,B model coefficients from the B = 1000 bootstrap

generated transformation models. The coefficients of the original model ϑ̂N serve as reference

and are represented with blue dots.

Figure 3.4 shows a parallel coordinate plot of the standardized coefficients of the B bootstrap gener-

ated conditional transformation models. The blue dots refer to the coefficients ϑ̂N of the original model

(FZ, c(y, x), ϑ̂N). The parallel coordinate plot can be understood as showing the joint distribution of all p

coefficients of the B bootstrap generated models (ϑ̂?
1,b, . . . , ϑ̂?

p,b)b=1,...,B connected with single grey lines.

Whenever the lines in the parallel coordinate plot between two coefficients (on the x-axis) are parallel, it can

be interpreted as coefficients that positively correlate with one another. In contrast, the crossing lines high-

light the negative correlation between the first few model coefficients in Figure 3.4. It is important to note that

the asymptotically multivariate normal distribution of the parameters (ϑ̂?
1,b, . . . , ϑ̂?

p,b)b=1,...,B around the original

maximum likelihood estimator ϑ̂N is clearly visible in Figure 3.4. The asymptotic normality of the maximum

likelihood estimator is one of the most important results of the likelihood theory, as thoroughly explained by

Held and Bové (2013). The conventional likelihood framework is inapplicable to analyses where the underly-

ing data set only consists of a few observations. This is because the assumptions regarding the asymptotic

behaviour would not be fulfilled. On the contrary, the parametric bootstrap approach is also applicable to

analyses of small data sets, as this approach does not require any assumptions regarding the asymptotic

behaviour of the model parameters. In addition, there is no need to estimate the fisher information matrix as

by applying the parametric bootstrap inference to model parameters, the asymptotic behaviour of the model

parameters are in a sense finitely illustrated. Consequently, the plot summarizes this idea thereby requiring

no previous assumptions.

Figure 3.4 serves as a nice overview of the parameter inference, however, it is difficult to interpret. By

looking at Figure 3.4, it is impossible to distinguish between models that are similar to the original model

and others that are not. For this reason, we use the previously introduced measure of the relative log-

likelihood (RLL, cf. Section 3.1). We obtain B different values for the RLL based on the B estimated bootstrap

models. The empirical cumulative distribution function (ECDF) of these B RLLs is plotted in the left panel of
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Figure 3.5. The empirical cumulative distribution function included a cutoff line at probability 5 % that helped

distinguishing between the extreme models (F̂b(RLL) < 0.05) and those with F̂b(RLL) ≥ 0.05. The models

with F̂b(RLL) ≥ 0.05 are characterised by a RLL value close to zero, i.e. they are similar to the original model.

The extreme models with F̂b(RLL) < 0.05 are plotted in the right panel of Figure 3.5.

The colour gradient for the right panel of Figure 3.5 and the left panel of Figure 3.6 is the same. The gradient

is based on F̂b(RLL). The colouring starts just at the cutoff line at probability 5 % of the empirical cumulative

distribution function: The darker the colour, the smaller the RLL and therefore, the less similar the bootstrap

model is in comparison to the original transformation model. Based on this definition for the colour gradient,

we can infer that the lines drawn close to the coefficients of the original model are brighter in comparison to

the ones further away.

Figure 3.5.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing

the B = 1000 bootstrap generated transformation models (FZ, c(y, x), ϑ̂?
b )b=1,...,B versus the original trans-

formation model (FZ, c(y, x), ϑ̂N) of the original data set (left panel). The parallel coordinate plot of the

coefficients (right panel) only shows the extreme (F̂b(RLL) < 0.05) bootstrap models.

Figure 3.6 shows the model parameters of all the B bootstrap generated transformation models. The

bootstrap generated model with F̂b(RLL) < 0.05 are plotted in the left panel, whereas the bootstrap generated

model with F̂b(RLL) ≥ 0.05 are plotted in the right panel. Here, we have B = 1000 bootstrap samples, hence,

the left plot shows 50 and the right plot shows 950 parallel coordinate lines.

Overall, it is striking that the plot in the right panel of Figure 3.6 still shows obvious deviation of the coeffi-

cients from the original model even though the extreme cases with F̂b(RLL) < 0.05 are removed. All the while,

it is important to bear in mind that depending on the RLL, the peaks of the right panel are not as extreme as

the ones visible in the left panel.
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Figure 3.6.: Parallel coordinate plot of the bootstrap model coefficients versus the original model distinguished

between F̂b(RLL) < 0.05 (left panel) and F̂b(RLL) ≥ 0.05 (right panel)

3.3. Parametric Bootstrap Inference for Functions Obtained from the

Conditional Distribution Function of the Transformation Models

Let (FZ, c(y, x), ϑ̂N) and (FZ, c(y, x), ϑ̂?
b)b=1,...,B be the transformation model of the original data set and the

bootstrap transformation models of the B data sets generated from the parametric bootstrap, respectively.

Here, we shall compare the original conditional distribution function of the original responses Y to the condi-

tional distribution functions of the B bootstrap generated Y?
1 , . . . , Y?

B . It can be recalled, that the underlying

model is a Cox proportional hazard model in perspective of a conditional transformation model. Consequently,

it can be viewed as a Cox proportional hazard model with an explicit specified log cumulative baseline hazard

function. The primary outcome variable Y is the survival or recurrence-free survival (RFS) time. In other

words, the analysis is based on a data set “for which the outcome variable of interest is time until an event oc-

curs” (Kleinbaum and Klein, 1996). The following list puts the distribution function FY of the response variable

Y obtained from a conditional transformation model FZ
(
c(y, x)ϑ

)
into context with other important functions

of the framework of survival analysis:

• Distribution function: FY(y|x) = FZ
(
c(y, x)ϑ

)
• Survivor function: SY(y|x) = 1− FY(y) = 1− FZ

(
c(y, x)ϑ

)
• Density function: fY(y|x) = ∂SY(y|x)/∂y = ∂

(
1− FY(y|x)

)
/
(
∂y
)
= ∂

(
1− FZ

(
c(y, x)ϑ

))
/
(
∂y
)

• Hazard rate / function:

λY(y|x) = fY(y|x)/
(
1− FY(y|x)

)
=
(

∂
(

1−FY(y|x)
)
/∂y
)
/
(
1− FY(y|x)

)
=

(
∂
(

1−FZ

(
c(y,x)ϑ

))
∂y

)
/
(

1− FZ
(
c(y, x)ϑ

))
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3. Modelling and Analysis

The function in focus for the subsequent analysis is the survivor function, also known as survival function.

Here, this function captures the probability of survival or recurrence-free survival beyond a specified time.

In the subsequent paragraphs, a description follows of how to obtain the survivor functions when given the

estimated transformation models (FZ, c(y, x), ϑ̂N), (FZ, c(y, x), ϑ̂?
b) with b = 1, . . . , B and the conditional

distribution functions of the response variables YN , Y?
1 , Y?

2 , . . . , Y?
B along with the likelihood functions of the

models.

In order to predict the survivor function, a hypothetical observation, i.e. a hypothetical patient from the

GBSG2 data set (cf. Section 2.5.1), needs to be defined. Later, this hypothetical patient is used as baseline

for the estimated functions. In the appendix (cf. Appendix A.4), there is the R-code that explains how this

hypothetical observation is obtained from the original data set in a step-by-step manner. The specification

differs for numerical and factorial covariates. Regarding the numerical covariates, the hypothetical observation

is set to be equal to the median. In terms of the factorial covariates, the hypothetical observation is set equal

to the mode, i.e. the factor level which occurs most often for the specific covariable of the original data set.

Although the covariates have been expressed in the most logical way, it is possible that the predicted function

is based on an observation that does not exactly exist in such a way that it appears in the original data set.

Nontheless, the hypothetical observation reflects an observation that would most likely be observable.

Moreover, the above introduced approach ensures that the estimated functions are not based on an outlier

as this would lead to instable predictions as seen in the right panel of Figure 3.7. Figure 3.7 also shows by

means of the survivor function, how the estimation of such a function depends on the baseline covariables.

Figure 3.7 illustrates the estimated survivor function based on the Cox proportional hazard model (blue plotted

step function) with a 95 % pointwise confidence interval (blue dashed lines). The grey lines are the bootstrap

generated survivor functions based on the Cox proportional hazard model which is fitted in the framework of

transformation models. All of the estimations done for the left panel are performed using the covariables of the

hypothetical patient as it was introduced before. However, the estimations done for the right panel of Figure

3.7 utilized covariables that are differently defined. We refer to these as the observation of a hypothetical

patient 2. The 95 % pointwise confidence interval as well as the band generated from the bootstrap estimated

models is wider in the right panel than the one in the left panel. This is due to the fact, that the observations of

the hypothetical patient 2 are less probable, which reduces the probability of estimating the function correctly.

As a result, the estimation process includes higher variance.
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Figure 3.7.: Survivor functions (blue step functions) based on the Cox proportional hazard model including

the 95 % pointwise confidence interval (dashed blue lines) and the bootstrap generated survivor functions

based on the conditional transformation models (FZ, c(y, x), ϑ̂?
b ) with b = 1, . . . , B. The left and right panel

are different regarding the baseline variables used for the estimation of the functions. The left panel uses

the common hypothetical patient as its baseline variables whereas the right panel uses differently defined

baseline variables referred to as hypothetical patient 2.

# Generate grid for Prediction

y_grid <- mkgrid(basis_y, n = n_sim)$y

y_grid <- y_grid[y_grid > 0] # delete the zeros

# Prediction of the £B£ survivor functions

predict_survivor_mlt_coxph_summary <- lapply(mlt_coxph_mod_summary,

function(predict_survivor) {
predict(predict_survivor,

newdata = hypo_obs,

q = y_grid,

type = "survivor")

})
# Save objects as dataset

setwd(path_saved_R_objects)

save(predict_survivor_mlt_coxph_summary,

file = paste("predict_survivor_mlt_coxph_summary_", n_sim, ".RData", sep=""))

# Prediction of the survivor function for original model

predict_survivor_mlt_coxph_orig <- predict(mlt_coxph_mod,

newdata = hypo_obs,

q = y_grid, type = "survivor")

R-Code 3.2: How to calculate B survivor functions based on B generated transformation models as well as

the survivor function based on the original mlt model

The R-code 3.2 explains how to predict the survivor function based on the hypothetical observation hypo obs.

First, we define a grid (here: y grid). Further, the mkgrid() function from the variables package (Hothorn,

2016c) generates a grid of observations from the variable description basis y. The argument n of func-
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tion mkgrid() defines the amount of data points for the grid. It is important to note that, the more data

points used, the smoother the subsequent predicted function. Here, the grid contains of as many data

points as B, i.e. n = n sim = B = 1000. The prediction of the B survivor functions was obtained through

the lapply() and predict() functions. The lapply() returns a list of the same length as the list entries

of mlt coxph mod summary, each element of which is the result of applying predict() to the corresponding

element of mlt coxph mod summary with type=“survivor” specification. The survivor function estimated

from the original model is obtained by applying the predict() function to the original model mlt coxph mod

coupled with the specification of type=“survivor”.

The R-code 3.2 can be generalised by changing the argument type of the predict() function to the follow-

ing selections: “distribution, “survivor”, “density”, “logdensity”, “hazard”, “loghazard”, “cumhazard”,

“quantile”, “trafo”. All of the above mentioned functions can be estimated based on the mlt object in R. As

has been noted, the focus for the subsequent analysis lies on the survivor function, however, further informa-

tion on the graphical inference plots for the distribution (cf. Appendix A.5.1), the density (cf. Appendix A.5.2)

and the hazard function (cf. Appendix A.5.3) can be found in the appendix.

The obtained survivor functions in R-Code 3.2 are used as an example for the subsequent graphical in-

ference for functions obtained from the conditional distribution function of transformation models. Figure 3.8

shows the empirical cumulative distribution function (ECDF) of the B relative log-likelihoods (RLL) in the left

panel. As introduced before (cf. Section 3.2), the cutoff line at probability 5 % helps distinguishing between

the extreme models (F̂b(RLL) < 0.05) and those with F̂b(RLL) ≥ 0.05. The models with F̂b(RLL) ≥ 0.05 are

characterised by a RLL value close to zero, i.e. they are similar to the original model. The survivor function of

the extreme models with F̂b(RLL) < 0.05 are plotted in the right panel of Figure 3.8.

Figure 3.8.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing

the B = 1000 bootstrap generated transformation models (FZ, c(y, x), ϑ̂?
b )b=1,...,B versus the original transfor-

mation model (FZ, c(y, x), ϑ̂N) of the original data set (left panel). Estimated survivor functions of the extreme

(F̂b(RLL) < 0.05) bootstrap models (right panel).
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The colour gradient for the right panel of Figure 3.8 and the left panel of Figure 3.9 is the same. The gradient

is based on F̂b(RLL). The colouring starts just at the cutoff line at probability 5 % of the empirical cumulative

distribution function: The darker the colour, the smaller the RLL; hence the less similar the bootstrap model

is in comparison to the original transformation model. Based on this definition of the colour gradient, it makes

sense that the lines drawn close to the survivor function of the original model (black dotted line) are brighter

in comparison to the ones further away.

Figure 3.9.: Survivor functions of the bootstrap generated models versus the original model distinguished

between F̂b(RLL) < 0.05 (left panel) and F̂b(RLL) ≥ 0.05 (right panel)

Figure 3.9 shows the estimated survivor functions for all the B bootstrap generated transformation models.

The survivor functions of model with F̂b(RLL) < 0.05 are plotted in the left panel, whereas the survivor

functions of model with F̂b(RLL) ≥ 0.05 are plotted in the right panel. Here, we have B = 1000 bootstrap

samples. Hence, the left plot contains 50 and the right plot contains 950 estimated survivor functions. The

estimated survivor function of the original model is added to both panels with a black dashed line so that it can

be compared to the bootstrap generated models. The grey survivor functions from the bootstrap generated

models (right panel) can be interpreted as a band around the survivor function. This band includes simulated

survivor functions based on the estimated survivor function from the original transformation model.

The underlying model that is used for the prediction of the survivor functions in Figure 3.8 and 3.9 is known

as the Cox proportional hazard model with explicitly specified log cumulative baseline hazard function that

has been fitted in the framework of the transformation models: 1− FZ
(
h(y)− x̃ϑ>2

)
. The advantage of fitting

a proportional hazards model in the framework of transformation models in comparison to the conventional

framework of Cox proportional hazards model is the explicitly specified log cumulative hazard baseline h(y).

In other words, the framework of transformation models makes up for the disadvantage of the coxph models

which do not explicitly specify the log cumulative baseline hazard function h(y). However, the coefficients

obtained for the two estimated models are practically equivalent as can be seen in Table 3.6.
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coefficients of MLT fitted model coefficients of coxph fitted model

hormonal therapy: yes -0.349052 -0.346278

age [years] -0.009926 -0.009459

menopausal status: post 0.267670 0.258445

tumour size [mm] 0.007771 0.007796

tumour grade: II 0.560091 0.551299

tumour grade: III -0.201849 -0.201091

# positive nodes 0.048747 0.048789

progesterone receptor [fmol] -0.002210 -0.002217

estrogen receptor [fmol] 0.000183 0.000197

Table 3.6.: Model parameters (corresponding to the model covariates) of original transformation

model in comparison to the Cox proportional hazard model fitted with the function coxph() in R

Figure 3.10 illustrates a graphical representation of the comparison between (1) the survival curves gener-

ated from the coxph() and the survfit() function using the package survival (Therneau, 2015) and (2)

the survival curves generated from the mlt() and the predict() function using the package mlt (Hothorn,

2016b).

Figure 3.10.: Survivor functions of the bootstrap generated models in comparison to the original model. The

extreme models (F̂b(RLL) < 0.05) are shown in the left panel, the models with F̂b(RLL) ≥ 0.05 in the right

panel. In addition the predicted survivor function of the Cox proportional hazard model (using coxph() and

survfit() in R) is added to the plot with its 95 % pointwise confidence intervals.

As can be seen in Figure 3.10, both the common Cox proportional hazards model (blue dashed lines) and

the Cox proportional hazards model fitted in the framework of transformation models with explicitly specified

log cumulative baseline hazard function, allow for heteroscedasticity, i.e. the variance of the confidence band

gets bigger with increasing survival time. In general, the pointwise confidence interval for the survivor function

(blue dashed lines) of the Cox proportional hazards model fits the band obtained from the bootstrap sample
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well. Nevertheless, a closer look reveals a higher variance for the conventional pointwise confidence interval

for the survivor function of the Cox proportional hazard model, compared to the variance of the bootstrap

generated “confidence band” at survival time equal to 2700 days. This is because the bootstrap generated

responses Y?
1 , . . . , Y?

B are not censored, therefore, their corresponding models do not include censoring,

whereas the Cox proportional hazard model is based on the original data set where some of the original

responses Y are censored. Censored observations occur when the information of an observation about their

survival time is incomplete. In other words, the Cox proportional hazard model with the explicitly specified log

cumulative baseline hazard function fitted in the framework of transformation models has “more” data than

actually available in the original data set. For this reason, it is obvious that the model fit is better and the

variance from the common Cox proportional hazard model is smaller.
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The parametric bootstrap inference for transformation models enables a graphically interpretable likelihood

based model inference. An advantage of this procedure is that it eliminates the need to make any assumptions

about the asymptotic behaviour which makes the procedure applicable to small data sets. Furthermore, there

is no need to make assumptions about the error independency since a parametric distribution is not required

for the error distribution (Davino et al., 2013) in the framework of transformation models. As mentioned in the

vignette of the mlt package (Hothorn, 2016b) for the framework of transformation models, the inspection of the

parameter estimates is not essential as the models are better looked at by means of the estimated distribution,

density, survivor, quantile and hazard functions. This results from the characteristic of the framework of

transformation models that examines how covariates influence the entire conditional response distribution

(Koenker, 2005). In addition, the parametric bootstrap generated band for all kinds of functions that are

derived from the conditional distribution function often serves as a relatively easy interpretable inference.

The resulting plots of the procedure are also illustrative for persons who are not very familiar with statistical

inference. This is due to the fact that the descriptive colour shading is based on the log-likelihood functions of

the model and reflects the probability of the estimated functions.

In comparison to the conventional pointwise confidence interval for the survivor function of the conventional

Cox proportional hazard model, the band based on the parametric bootstrap generated functions only con-

sist of functions that are correctly defined for that specific case (cf. Figure 3.1 for a poor example). More

specifically, the bootstrap generated band around the survivor function only contains monotonically decreas-

ing functions. Alternatively, the integral of each of the probability density functions that are contained in the

bootstrap generated band around the probability density function of the original model is always equal to one

and the probability density function itself is everywhere non-negative.

Regarding the finding about the not as expected log-likelihood ratio statistics distribution in cases of multiply

occurring model coefficients, this thesis does not definitively provide a solution. However, simulations have

been included to prove the presumption that a correction of the degrees of freedom in instances of multiply

occurring model coefficients is essential. In conclusion, the results of this thesis advance the understanding

of graphical model inference of the model parameters of a conditional transformation model as well as the

inference of the conditional transformation model itself.

4.1. Limitations

Throughout this thesis, we imply that the original transformation model (FZ, c(y, x), ϑ̂N) is a good model that

fits the underlying response variable Y, - the recurrence-free survival (RFS) time, well. However, it is crucial to

bear in mind that the procedure of applying the parametric bootstrap resampling method to a transformation

model is limited in cases where the underlying transformation model is not adequately established. In other

words, caution must be exercised whenever the underlying parametric model is wrong, as the application of
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the parametric bootstrap resampling will also lead to wrong results. To quote Box (1979), “All models are

wrong but some are useful.”, so to speak, the original model has to be considered useful.

Furthermore, the dependency on the original model itself could be looked at as a limitation of the procedure.

Some may criticise the fact that bootstrap samples are based on a single sample data set (here: GBSG2) for a

given population. A phenomenon which causes the replications to be limited to a finite number of replications

(“bootstrap resampling variability”, Davino et al., 2013).

4.2. Outlook

In summary, it can be said that this thesis forms a solid foundation for the application of the parametric

bootstrap resampling method to the framework of transformation models. Nevertheless, the research findings

presented in this thesis have created several new ideas that should be further explored. These findings are

addressed in the paragraph below.

Figure 4.1.: Beanplot of the standardized model coefficients. The estimated density of the distribution as well

as the mean of the bootstrap generated coefficients can directly be interpreted from the plot. The blue dots

represent the coefficients of the original model.

The parametric bootstrap inference for the parameters of transformation models (cf. Section 3.2) can be

looked at as a starting point for a future implementation of a (visualized) Type-1-error hypothesis test. Figure

4.1 roughly exhibits this idea. The shown beanplots represent the standardized distribution of the bootstrap

generated model coefficients together with the original model coefficients visualized with a blue dot. The ticks

on each beanplot mark the 50 % quantile, i.e. the mean. The distributions of the model coefficients shown in

Figure 4.1 could be interpreted in the following way: The red dashed line represents the null hypothesis which

states that the i-th coefficient ϑ̂i of the model is equal to zero. Hence, the coefficients close to the red dashes,

i.e. distributed around ϑ̂i = 0, do not affect the response variable Y of the model as much as the coefficients

that are further away from the red dashes, i.e. distributed around ϑ̂i 6= 0. This Type-1-error hypothesis test
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4. Discussion

might as well be useful for variable selection.

Now in comparing the computing time of the bootstrap resampling method to the most likely transformation

models in R is dependent on B: the more bootstrap samples B that are drawn, the more time-consuming

the computations for estimating the model gets. Especially the process of the maximization of the gradient

does take a while. For future research projects, the performance of the mlt() function could be improved by

outsourcing the maximization of the gradient into the programming languages C++ or Python in order to use

their speed as an advantage.

Further, future research projects can explore a specific parametric bootstrap based inference methodology

for transformation models which are estimated in a survival analysis framework. This approach should then

additionally be able to consider the issue of censored observations (cf. Section 3.3).

And lastly, the most obvious future research induced by this thesis, is the need to investigate the degrees of

freedom of the Chi-squared distributed LLRS. We dare to hypothesize that not using the Bernstein polynomial

as a basis function, reduces the doubled coefficients entries which then corrects the expected degree of

freedom of the Chi-squared distributed LLRS.
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A. Appendix

A.1. Flowchart: How to Estimate a Transformation Model in a

Step-by-Step Manner

The theory of transformation models was introduced in Section 2.2. This flowchart summarises at a glance

main steps required to estimate a transformation model in a full likelihood framework.

Experiment: Y1, . . . , YN
iid∼ F̂Y,N

Estimation of F̂Y,N :

FY(y) = FZ(h(y))

Define fY in terms of fZ

Define L in terms of fY

Maximise log(L) wrt h̃

log(L(h̃|Y ∈ Ci))

→ Most likely transformation (MLT)

Parametrise h(y)

h(y) = a(y)>ϑ, ϑ ∈ RP

→ FZ(h(y)) = FZ(a(y)>ϑ)

→ Transformation family

Maximise log(L) wrt ϑ

log(L(a>ϑ|Y ∈ Ci))

→ Maximum likelihood estimator

Final transformation model: (FZ, a, ϑ)

→ FY = FZ ◦ a>ϑ

→ L(a>ϑ|Y ∈ C)

Figure A.1.: Flowchart illustrating the main steps required to

estimate a transformation model in a full likelihood framework
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A.2. Histogram of the Log-Likelihood Ratio Statistics Calculated from

the Original Transformation Model and the Bootstrap Generated

Models with Bernstein Polynomials of Different Order

We introduced the log-likelihood ratio statistic as a measure for doing likelihood based inference in Section

3.1.2. The following histograms visualize the log-likelihood ratio statistics from the original transformation

model (FZ, c(y, x), ϑ̂N) and the bootstrap generated models (FZ, c(y, x), ϑ̂?
b)b=1,...,B with Bernstein polyno-

mial of different order: (FZ, (aBs,i=2, 3, 7, 8, 12, 13(y), b(x)>)>, ϑ̂N). The coloured lines are probability density

functions of the Chi-squared distribution with different degrees of freedom according to the summary of Table

3.2 in Section 3.1.2. The colours red, blue, yellow and green also correspond to the explaination given in

Section 3.1.2.
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A. Appendix

A.4. R-Code on How to Define the Hypothetical Observation

In Section 3.3, the hypothetical observation was introduced and explained. The following R-Code A.1 shows

how the definition of such a hypothetical observation can be implemented in R.

# **********************************************

# Define hypothetical observation for prediction

# **********************************************

GBSG2_covariates <- GBSG2[,xvar]

summary(GBSG2_covariates)

# Define sub data frames.

GBSG2_num_covariates <- GBSG2_covariates[,c("age", "tsize", "pnodes",

"progrec", "estrec")]

GBSG2_cat_covariates <- GBSG2_covariates[,c("horTh", "menostat", "tgrade")]

# Calculate median of all numerical covariates

hypo_obs_num_covariates <- data.frame(t(data.frame(apply(GBSG2_num_covariates,

2, median))))

hypo_obs_num_covariates <- round(hypo_obs_num_covariates, 0)

# Calculate median of all categorical covariates

hypo_obs_cat_covariates <- rep(NA, ncol(GBSG2_cat_covariates))

names(hypo_obs_cat_covariates) <- colnames(GBSG2_cat_covariates)

for( i in colnames(GBSG2_cat_covariates)){
hypo_obs_cat_covariates[i] <- names(sort(table(GBSG2_cat_covariates[,i]),

decreasing=TRUE)[1])

}
#

hypo_obs <- cbind(hypo_obs_num_covariates,

t(data.frame(hypo_obs_cat_covariates)))

hypo_obs <- hypo_obs[,xvar]

#

levels(hypo_obs$horTh) <- levels(GBSG2$horTh)

levels(hypo_obs$menostat) <- levels(GBSG2$menostat)

hypo_obs$tgrade <- ordered(hypo_obs$tgrade, levels=c("I", "II", "III"))

#

summary(hypo_obs)

R-Code A.1: Explaining in a step-by-step manner how the hypothetical observation,

i.e. hypothetical patient, is defined
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A. Appendix

A.5. Parametric Bootstrap Inference for Functions Obtained from the

Conditional Distribution Function of the Transformation Models

In Section 3.3, the parametric bootstrap inference for functions obtained from the conditional distribution

function of the transformation model was introduced. It has been noted (cf. R-Code 3.2) that depending

on the argument type of the predict() function the following functions can be predicted “distribution”,

“survivor”, “density”, “logdensity”, “hazard”, “loghazard”, “cumhazard”, “quantile”, “trafo”. Here, we

concentrate on the distribution function (cf. Appendix A.5.1), the density function (cf. Appendix A.5.2) and the

hazard function (cf. Appendix A.5.3).
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A. Appendix

A.5.1. The Cumulative Distribution Function

Figure A.6.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing

the B = 1000 bootstrap generated transformation models (FZ, c(y, x), ϑ̂?
b )b=1,...,B versus the original trans-

formation model (FZ, c(y, x), ϑ̂N) of the original data set (left panel). Estimated distribution functions of the

extreme (F̂b(RLL) < 0.05) bootstrap models (right panel).

Figure A.7.: Distribution functions of the bootstrap generated models versus the original model distinguished

between F̂b(RLL) < 0.05 (left panel) and F̂b(RLL) ≥ 0.05 (right panel)
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A. Appendix

A.5.2. The Density Function

Figure A.8.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing

the B = 1000 bootstrap generated transformation models (FZ, c(y, x), ϑ̂?
b )b=1,...,B versus the original transfor-

mation model (FZ, c(y, x), ϑ̂N) of the original data set (left panel). Estimated probability density functions of

the extreme (F̂b(RLL) < 0.05) bootstrap models (right panel).

Figure A.9.: Probability density functions of the bootstrap generated models versus the original model distin-

guished between F̂b(RLL) < 0.05 (left panel) and F̂b(RLL) ≥ 0.05 (right panel)
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A.5.3. The Hazard Function

Figure A.10.: Empirical cumulative distribution function of the relative log-likelihoods calculated by comparing

the B = 1000 bootstrap generated transformation models (FZ, c(y, x), ϑ̂?
b )b=1,...,B versus the original transfor-

mation model (FZ, c(y, x), ϑ̂N) of the original data set (left panel). Estimated hazard functions of the extreme

(F̂b(RLL) < 0.05) bootstrap models (right panel).

Figure A.11.: Hazard functions of the bootstrap generated models versus the original model distinguished

between F̂b(RLL) < 0.05 (left panel) and F̂b(RLL) ≥ 0.05 (right panel)
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