
Master’s Thesis

Institute of Mathematics

A spate of statistical tests to climate
data validation

Author:
Carina Schneider
Matriculation number: 10-737-575
carina.schneider@uzh.ch

Supervisors:
Prof. Dr. Reinhard Furrer

Professor at the Institute of Mathematics
University of Zurich

Dr. David Masson
Postdoctorial Researcher

Zurich,
5th March, 2016

mailto:carinamariaschneider@gmail.com


Contents

Abstract IV

Acknowledgments V

1 Introduction 1
1.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Inhomogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Definition of inhomogeneity and homogeneity . . . . . . . . . . . . 2
1.3.2 Causes of inhomogeneous data . . . . . . . . . . . . . . . . . . . . . 2
1.3.3 Types of inhomogeneities . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Methodology and contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Origin and structure of the data 5
2.1 Coupled Model Intercomparison Project (CMIP) and IPCC . . . . . . . . . 5
2.2 CMIP Phase 5 next generation (CMIP5-ng) . . . . . . . . . . . . . . . . . 6

2.2.1 Climate variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Climate scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Climate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Climate ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Spatial and temporal resolution . . . . . . . . . . . . . . . . . . . . 13
2.2.6 NetCDF files and their naming convention . . . . . . . . . . . . . . 13

3 Preanalysis of the data 15
3.1 Application and results of the preanalysis . . . . . . . . . . . . . . . . . . . 15

3.1.1 The R function standardTest() . . . . . . . . . . . . . . . . . . . 15
3.1.2 The R function multipleStanTest() . . . . . . . . . . . . . . . . . 18

4 Standard Normal Homogeneity Test (SNHT) 20
4.1 Original SNHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Modified SNHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 SNHT on single time series . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 SNHT on pairwise difference series . . . . . . . . . . . . . . . . . . 23

4.3 Inhomogeneity detection performance . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Local shifts of the mean . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Local drifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 Global shifts and negatively correlated neighbor series . . . . . . . . 28
4.3.4 Summary of inhomogeneity detection performance . . . . . . . . . . 28

4.4 Empirical runtime estimation of pairwiseSNHT() . . . . . . . . . . . . . . 29
4.5 SNHT methods on CMIP5-ng data . . . . . . . . . . . . . . . . . . . . . . 32

I



5 Gaussian Markov Random Field (GMRF) 39
5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Univariate GMRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Multivariate GMRF . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Multivariate Gaussian Markov Random Field (MGMRF) model . . . . . . 43
5.2.1 Model based hypothesis testing with MGMRF . . . . . . . . . . . . 44
5.2.2 Validation of the MGMRF model through simulation runs . . . . . 46

5.3 Inhomogeneity detection performance . . . . . . . . . . . . . . . . . . . . . 53
5.3.1 Local and global shifts of the mean . . . . . . . . . . . . . . . . . . 53
5.3.2 Local drifts and negatively correlated neighbor series . . . . . . . . 53
5.3.3 Summary of inhomogeneity detection performance . . . . . . . . . . 53

5.4 MGMRF inhomogeneity testing in R . . . . . . . . . . . . . . . . . . . . . 54
5.4.1 Convergence of optim() . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.2 Empirical runtime estimation of the gmrfHomogeneity-

TestComp() function . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 MGMRF methods on the CMIP5-ng data . . . . . . . . . . . . . . . . . . 58

5.5.1 Removing seasonality and trends . . . . . . . . . . . . . . . . . . . 58
5.5.2 Applying gmrfHomogeneityTestComp() to CMIP5-ng data sets . . 66

6 Lattice Krig 74
6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.1 Basic construction of the spatial model . . . . . . . . . . . . . . . . 74
6.1.2 The role of GMRF in Lattice Krig . . . . . . . . . . . . . . . . . . . 77
6.1.3 Estimation and prediction . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Lattice Krig tests in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.1 Lattice Krig setup in R . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.2 The smoothing parameter λ . . . . . . . . . . . . . . . . . . . . . . 81
6.2.3 Lattice Krig test with σ̂ML . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.4 Lattice Krig test with a reference model . . . . . . . . . . . . . . . 90

6.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Inhomogeneity detection performance . . . . . . . . . . . . . . . . . . . . . 94
6.5 Lattice Krig methods on the CMIP5-ng data . . . . . . . . . . . . . . . . . 94

6.5.1 Monthly Near Surface Temperature at time t = 100 . . . . . . . . . 94
6.5.2 Monthly Surface Upwelling Longwave Radiation at t = 100 . . . . . 98

7 Conclusion and outlook 100
7.1 Setup of the statistical framework . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 Application of the framework on CMIP5-ng data . . . . . . . . . . . . . . 101

8 Appendix 104
8.1 Runtime experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.1.1 SNHT: Runtime experiment (Space vs. time) . . . . . . . . . . . . 104
8.1.2 GMRF: Runtime experiment (Space vs. time) . . . . . . . . . . . . 105

8.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.1 Preanalysis of data output . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.2 Lattice Krig output . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.3 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3.1 Preanalysis of data source code . . . . . . . . . . . . . . . . . . . . 112
8.3.2 SNHT source code . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

II



8.3.3 GMRF source code . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.3.4 Lattice Krig source code . . . . . . . . . . . . . . . . . . . . . . . . 124

III



Abstract

In this master’s thesis, an R framework for the analysis of the CMIP5-ng climate data has
been developed and documented. The CMIP5-ng is a data portal which provides terra
bytes of climate data. It has been set up by the Institute for Atmospheric and Climate
Science (IAC) at the ETH Zurich in collaboration with the applied statistics group at
the University of Zurich. The CMIP5-ng has evolved from the recently released and well-
known CMIP Phase 5 (CMIP5) climate simulation data by the provision of the CMIP5
data using a coherent 2.5◦ × 2.5◦ spatial resolution, which introduces new possibilities of
analyzing the CMIP5 climate simulation runs. In this thesis, R code has been developed
that can identify CMIP5-ng model projections with an unreasonable amount of missing
values or suspiciously high or low data values. Furthermore, inhomogeneity detection
methods have been implemented on the basis of SNHT, a spatio-temporal model based
on GMRF and a spatial model called “Lattice Krig”. These methods can be used to
analyze and test parts of single CMIP5-ng model projections or whole classes of climate
model projections for different sorts of inhomogeneities. The R application of the frame-
work developed has given an indication that certain model projections of the CMIP5-ng
diverge in their values at polar regions. Furthermore, it is suggested that variable projec-
tions of the Surface Upwelling Longwave Radiation (rlus) are more heterogeneous than
the, probably more thoroughly analyzed, Near Surface Temperature (tas). Moreover, it
has been discovered that the model projections for equal climate variables, scenarios and
resolution also differ in the number of time units that have been modeled and vary regard-
ing the number of missing values, which especially makes comparison among projections
harder.
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Chapter 1

Introduction

Climate change is having an indisputable effect on the climate of the Earth and its biodi-
versity. The precise effect of such a change is still not well understood. Climate modeling
projects such as the CMIP, however, have provided large pools of simulated climate data
that are used to better understand the consequences of climate change. Nonetheless, these
data pools are often not homogenized and raw for practical use. The goal of this master’s
thesis is to develop a framework of statistical tests that can detect corrupt or erroneous
runs in the latest phase of the CMIP, the CMIP5 data. Nowadays, climate models are
becoming more complex as the physical description of climate model processes enhances.
Simultaneously,“[...] every bit of added complexity [...] also introduces new sources of
possible error (e.g., via uncertain parameters) and new interactions between model com-
ponents that may, if only temporarily, degrade a models simulation of other aspects of the
climate system” [Stocker et al., 2013]. It is, therefore, important that newly developed
models are investigated properly and this thesis aims to provide tools to do so.

1.1 Research questions

Throughout this thesis, the following research questions are answered with respect to the
CMIP5-ng data and models:

1. How can one detect climate model projections with unusually many missing values
or values that are not within a reasonable range?

2. How can the SNHT be applied to find anomalies in the climate data?

3. How can one detect drifts, large scale and small scale anomalies in the climate data
using GMRF?

4. How can a newly developed spatial model called “Lattice Krig” be used to detect
anomalies?

1.2 Structure

This thesis introduces three mathematical concepts namely SNHT, GMRF and Lattice
Krig. Each concept is briefly presented in a theoretical manner but, for the most part,
emphasis is put on practical applications of the inhomogeneity tests that were developed
on the basis of SNHT, GMRF and Lattice Krig. R examples based on simulated and
the CMIP5-ng data projections illustrate the usage of pre-built or newly developed R
functions and aim to show other scientists and engineers ways and tools to approach
anomaly or inhomogeneity detection in the CMIP5-ng model projections. Each concept
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(SNHT, GMRF, Lattice Krig etc.) and its R implementations are discussed with respect
to their performance in detecting different types of inhomogeneities (e.g., drifts, local
shifts, global shifts) as well as runtime and stability. It must be pointed out that this
thesis is conceptualized for the CMIP5-ng data and its analysis. However, some concepts
may also be easily transferred to other climate data.

1.3 Inhomogeneity

As mentioned before, it is essential that new model projections are checked for erroneous
runs. In order to detect these anomalies in the CMIP5-ng simulation runs, various, so-
called, “homogeneity tests” have been developed and presented in this thesis. Before
introducing the reader to these tests, it may be sensible to define what is referred to as a
“homogeneous” data set in this thesis. This section serves to clarify the most important
homogeneity and inhomogeneity related terms and briefly explains the causes and types
of inhomogeneities in order to outline what anomalies ought to be detected.

1.3.1 Definition of inhomogeneity and homogeneity

In climate data sets, an inhomogeneity is a change point in the data caused by non-
climatic factors [Toreti et al., 2011]. A climate data set is, therefore, called homogeneous
if it is free from inhomogeneities, i.e., the only variation in the data ought to be due to
real climate variability. This is equivalent to having no shifts in the mean level of the
investigated time series of a climate variable after removing seasons and other climatic
occurrences.

1.3.2 Causes of inhomogeneous data

Alexandersson and Moberg [1997] as well as Menne and Williams Jr [2009] see possible
causes of inhomogeneities in the relocation of measuring stations, changes in the instru-
mentation or its exposure as well as observation practices or schedules.
Since the CMIP5 data does not consist of real observations but rather of computer based
simulations, different causes of inhomogeneities have had to be considered. Shifts in the
mean level originate from errors in the developed model simulation software. Mainly, the
complex climate models which exist today are more vulnerable to these sorts of errors.

1.3.3 Types of inhomogeneities

Erroneous climate simulation runs may result in different types of inhomogeneities. Four
possible cases of inhomogeneities are displayed in Figure 1.1, for each of which five time
series have been generated. The graph above the plot of the series represents a possible
spatial arrangement of the five series.
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Figure 1.1: Different types of inhomogeneities illustrated for 5 locations (1st time series
is inhomogeneous) for which the stations may be arranged as in the graph above the
depicted series.

In the subsequent chapters, all of the homogeneity tests developed have been analyzed
with respect to the performance of detecting these four types of inhomogeneities.

1.4 Methodology and contributions

Until now, a single method that can detect large and small scale inhomogeneities as well
as inhomogeneities in space and time simultaneously and with the same accuracy has not
been developed. Therefore, a framework of methods is preferable over single ones. Such
a framework has been developed in the course of this thesis. It essentially consists of
preanalysis tools that can be used to detect an unreasonable amount of missing values or
suspicious data values, the SNHT, the applications of a GMRF spatio-temporal model and
inhomogeneity indicator based on the Lattice Krig spatial model. The following section
briefly elucidates the contributions of this thesis to existing methods and R code related
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to the SNHT, GMRF and Lattice Krig and provides insight into the reasons for their
selection for this thesis.
One part of the framework is the SNHT, which is a well established method in climate
institutes such as MeteoSwiss. It is advantageous for finding inhomogeneities such as local
shifts and drifts but is not suitable for the detection of global shifts or finding negatively
correlated time series. Josh Browning has developed the snht R package [Browning and
Schneider, 2015] that provides the pairwiseSNHT() function, which uses the pairwise dif-
ference series to detect inhomogeneities in space and time via the SNHT statistics. Part
of this thesis has been the improvement of this package through the contribution of a
vignettes description and code debugging.
Chapter 5 introduces the GMRF and a spatio-temporal model that is based on Rue and
Held [2005]. The GMRF methods compensate for the lack of success in global shift detec-
tion of the SNHT but still cannot detect a range of negatively correlated time series. The
usage of GMRF is feasible in the context of climate data since it models the conditional
dependence structure of space and time in only one multivariate normal distribution that
includes the spatio-temporal structure of climate data in its sparse precision matrix. In-
homogeneity testing can then be done on the basis of the likelihood ratio statistics, which
is known to have a χ2

1 distribution. The Maximum Likelihood Estimate (MLE) under the
null and alternative hypotheses involves the calculation of the determinant of the sparse
Symmetric and Positive Definite (SPD) precision matrix. This can be efficiently calcu-
lated by the Cholesky factorization. Applications of this GMRF spatio-temporal model
were presented by Schibli [2011] in her master’s thesis. Schibli [2011], however, has only
developed R code for global shift detection via the GMRF spatial model. As part of this
thesis, an additional local shift detection tool with the GMRF model has been imple-
mented and runtime has been improved via the usage of newly developed R functions
such as precmat.GMRFreglat() of the spam R package [Furrer, 2015]. Furthermore, the
R gmrfHomogeneityTestComp() function is provided, which allows a more user friendly
application of inhomogeneity detection with the spatio-temporal GMRF model.
Moreover, use has been made of a spatial model called “Lattice Krig”. The Lattice Krig
spatial model as well as the corresponding LatticeKrig R package [Nychka et al., 2015]
were developed by Dr. Nychka and his working group. The Lattice Krig spatial model is
a Kriging method that uses radial basis functions on different levels of spatial resolutions.
The stochastic coefficients of these basis functions follow the principles of the GMRF. This
construction ensures better runtime than many other spatial models [Nychka et al., 2013].
In this thesis, the Lattice Krig model estimation, which is provided by the LatticeKrig

R package [Nychka et al., 2015], has been used as a basis for the development of the
refLatTest() and sigmaLatTest() functions. These R functions use reference spatial
fields, smoothing and noise parameters to find inhomogeneities in space, by which the
time component is accordingly fixed. The applications of SNHT and GMRF analysis
of the spatial structure of the whole Earth at a specific time can be done. The SNHT
and GMRF methods are still only computationally feasible over relatively small spatial
regions.
Overall, the methods included in this master’s thesis have been selected based on their
computational cost and methods have been sought that complement each other in finding
different types of inhomogeneities. Recent development and extensions of the spam [Fur-
rer, 2015] and LatticeKrig [?] R packages have provided efficient base-code that have
been used to write state-of-the-art R scripts.

4



Chapter 2

Origin and structure of the data

The CMIP5-ng data and its quality which is investigated in this thesis is of extreme
importance to the climate science community. This chapter gives insight into the origin
of the CMIP5-ng and why it is such an invaluable project, but it also introduces the
overall characteristics (variables, scenarios, resolution etc.) and the attributes of the
NetCDF (*.nc) CMIP5-ng data files. This chapter and, especially Section 2.2.6, contains
information which might be useful for the interpretation of R examples in the subsequent
chapters.

2.1 CMIP and IPCC

The data that is investigated in this thesis originates from the Coupled Model Intercom-
parison Project (CMIP). The CMIP was initiated under the World Climate Research
Programme in 1995 [Taylor, 2009]. Since then its working groups have provided globally
coupled, ocean-atmosphere, general circulation models under certain boundary conditions
“[...] such as the solar ‘constant’ and atmospheric concentrations of radiatively active gases
and aerosols” [Covey et al., 2003]. Originally, the CMIP modeled “control runs” in which
radiative forcing1 was held constant. Later on, scenarios such as a constant 1% increase
of CO2 per year were modeled [Taylor, 2009]. Nowadays, the CMIP provides data under
several newly developed scenarios as well as control runs to assess model performance.
Furthermore, the CMIP has acquired more research groups from all over the world, which
are involved in the climate modeling process. How much an increase of the number of
models really enhances the overall quality of climate projections is, however, still con-
troversial. Masson and Knutti [2011], for instance, criticize the assumption of models
being independent and, therefore, contributing additional information as not always true
since “[...] successful concepts in models are often copied or inherited”. Nevertheless,
nowadays, the CMIP models and their output data sets are an essential source for the
Intergovernmental Panel on Climate Change (IPCC) in their Assessment Reports (AR).
In the AR, the IPCC assesses climate change in a scientific manner. Furthermore, the
release of these AR has probably contributed to IPCC’s position as the world’s leading
provider of climate change information [IPCC, 2016].
In its latest assessment report the IPCC reported that climate models in the fifth phase
of CMIP (CMIP5) have improved due to better physical description of climate processes,
new model components and better resolution [Stocker et al., 2013]. For instance, several

1 Radiative forcing or climate forcing is defined to be the difference of the solar irradiance which is
absorbed by the Earth on a long term and the energy which is radiated back into space. A positive
radiative forcing therefore means that there is more incoming energy than outgoing which implies that
the system warms up whereas a negative radiative forcing is interpreted as a cooling effect [Stocker et al.,
2013].
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models of the CMIP5 (latest phase of CMIP) simulated complex climate phenomena as
the Monsoon and the El Niño-Southern Oscillation (ENSO) better than previous phases
of the CMIP [Stocker et al., 2013]. This is also clearly evident in Figure 2.1.

Figure 2.1: Monsoon precipitation intensity (shading) and domain (lines) for “(a)
observation-based estimates from Global Precipitation Climatology Project (GPCP), (b)
the CMIP5 multi-model mean, (c) the best model and (d) the worst model in terms of
the threat score” [Stocker et al., 2013].

Overall, the CMIP is probably the most important and influential climate modeling
project in the world, which has expanded tremendously over the last decade and improved
its model performance. The quality of its climate simulations is of extreme importance
to IPCC, the climate science community and the world.

2.2 CMIP5-ng

As mentioned before, CMIP5 provides a pool of simulated data from various research
groups. Not all of the research groups have provided their simulations using the same
spatial resolution. The Institute for Atmospheric and Climate Science (IAC) at the ETH
Zurich has, therefore, edited the original CMIP5 data and created the data pool CMIP5-
ng, which provides all the CMIP5 data on a coherent 2.5◦ × 2.5◦ spatial grid. This is
especially useful for comparison of data models and ensembles.
In order to get an understanding of these climate models and ensembles as well as the
climate variables, scenarios and resolution of the CMIP5-ng, details are provided in the
next few sections. At this point, it should be mentioned that the CMIP5 as well as the
CMIP5-ng are only now being evaluated, i.e., there are only a few references available
[Stocker et al., 2013]. Most of the information and plots provided in this Section 2.2 have
been obtained and produced directly from the CMIP5-ng data files, which have been
provided on an ETH server over the course of this thesis.
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2.2.1 Climate variables

The CMIP5-ng provides simulated data for 21 different ocean, land and atmospheric
climate variables. An overview can be derived from Table 2.1.
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Variable Longname Unit Comment

tas Near-Surface Air Temperature K reported at 2 m height
tasmax Daily maximum Near-surface Air Temperature K reported at 2 m height
tasmin Daily minimum Near-surface Air Temperature K reported at 2 m height
clt Total Cloud Fraction % for the whole atmospheric column

as seen from the surface or the top of the atmosphere.
Include both largescale and convective clouds

evspsbl Evaporation kg m−2 s−1 at surface; flux of water into the atmosphere
due to conversion of both liquid and solid phases to vapor

rsds Surface Downwelling Shortwave Radiation Wm−2

rsus Surface Upwelling Shortwave Radiation Wm−2

rsut Top of Atmosphere Outgoing Shortwave Radiation Wm−2

rtmt Net Downward Flux at Top of Model Wm−2 reported only if it differs from the net downward
radiative flux at the top of the atmosphere.

rlds Surface Downwelling Longwave Radiation Wm−2

rlut Top of Atmosphere Outgoing Longwave Radiation Wm−2

rlus Surface Upwelling Longwave Radiation Wm−2

pr Total Precipitation kg m−2 s−1 at surface; includes both liquid and solid phases
from all types of clouds (both large-scale and convective)

psl Sea Level Pressure Pa
sos Sea Surface Salinity psu

(Practical Salinity Units)
tos Sea Surface Temperature K may differ from ”surface temperature” in sea ice regions
sic Sea-ice Concentration %
mrro Total Runoff kg m−2 s−1 part of precipitation which does not evaporate or transpire

and flows back to water bodies
mrso Total Soil Moisture Content kg m−2

mrros Surface Runoff kg m−2 s−1 part of total runoff which flows over the surface
mrsos Moisture in the Upper Part of the Soil Column kg m−2 mass of water in all phases in uppermost 10 cm of soil

Table 2.1: Next generation CMIP5 variables [Taylor, 2013b].
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2.2.2 Climate scenarios

The CMIP5 working groups simulated the above variables under certain climate scenarios.
Scenario simulations in climate research are a way to explore the consequences of realistic
or unrealistic changes in the climate of Earth. A scenario is not a forecast but rather a
description of how climate may develop based on a set of coherent assumptions [Stocker
et al., 2013]. These assumptions may be described through the amount of atmospheric
greenhouse gases or aerosols at certain times (e.g., in “abrupt4xCO2”, see Table 2.2) in the
past or future but they can also be summarized through global characteristic numbers such
as natural and anthropogenic radiative forcing. Representative Concentration Pathways
(RCP) are scenarios assuming different levels of radiative forcing. As illustrated in Table
2.2, the CMIP5 provides data under four different RCP scenarios (RCP26,RCP45, RCP60
and RCP85), all of which have a different target radiative forcing level in the year 2100.
In order to get a rough understanding of radiative forcing, Figure 2.2 illustrates what its
natural or anthropogenic components and their quantities were on Earth between 1750
and 2011.

Figure 2.2: Radiative forcing factors from 1750 until 2011 as presented in the IPCC AR5
[Stocker et al., 2013].

One can clearly see that greenhouse gases were a driving force of radiative forcing. A
certain combination of these factors above could then potentially lead to RCP45, RCP60
etc. scenarios in the future.
Apart from the future-related RCP scenarios, preindustrial runs such as “piControl”
(preindustrial control run, from ≈ 1750-1850) and historical runs (1850-2005) such as
“historicalGHG” or “historicalNat” are also simulated in the CMIP5. These past-oriented
scenarios are used to control the performance of climate models. They, for instance, build
a basis for the analysis of global surface temperature variability [Stocker et al., 2013].
Therefore, past-related scenarios become tools to model future-related scenarios such as
the RCP-scenarios.
The so-called “abrupt4xCO2” scenario was designed to derive equilibrium climate sensi-

9



tivities2 [Stocker et al., 2013].
More characteristics of all the scenarios briefly mentioned above can be extracted from
the Table 2.2.

Scenario Explanation

rcp26 Radiative forcing peak at ≈ 3 Wm−2 (equal to 421 ppm CO2)
before the year 2100 then decline to 2.6 Wm−2 until 2100

rcp45 Radiative forcing is stabilized at ≈ 4.5 Wm−2 (equal to 538 ppm CO2)
after 2100

rcp60 Radiative forcing is stabilized at ≈ 6 Wm−2 (equal to 670 ppm CO2)
after 2100

rcp85 High pathway; radiative forcing reaches > 8.5 Wm−2 (equal to 936 ppm
CO2) by 2100 and continues to rise until 2250

piControl Coupled atmosphere/ocean pre-industrial control run
abrupt4xCO2 Instantaneous quadrupling of CO2, then stabilized
historicalNat Historical simulation with natural forcing only
historicalGHG Historical simulation with greenhouse gas forcing only

Table 2.2: Next generation CMIP5 scenarios Taylor [2014].

The RCP scenarios make up a large part of the CMIP5 scenarios and test examples in
this thesis are based on them. Therefore, one may be interested in what time series
look like under different RCP scenarios. As an illustration, the Chinese BCC-CSM1-1
model projections of the annual Near Surface Temperature in Switzerland under all RCP
scenarios are displayed in Figure 2.3. Until 2005, data consists of historical simulations
that agree under all scenarios since radiative forcing is set to historical levels. From
2005 onwards, the radiative forcing increases according to Table 2.2 above, resulting in
different responses of the temperature and other climate variables that are not depicted
here. Among other things, the plot shows the ubiquitous notion of increasing temperature
until the year 2100 under all RCP scenarios, in which higher radiative forcing leads to
higher temperatures.

2“Equilibrium climate sensitivity” is defined as the equilibrium change in the annual global mean
surface temperature following a doubling of the atmospheric equivalent carbon dioxide concentration
[Stocker et al., 2013].
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Figure 2.3: RCP projections with the Chinese BCC-CSM1-1 climate model of the annual
Near Surface Temperature from 1850 until 2100.

2.2.3 Climate models

As mentioned in Section 2.1, research institutes from all around the world are involved in
the CMIP. Each institute provides at least one climate model. A few examples of models
and the institutions responsible can be found in Table 2.3.

Modeling Center Model Institution

BCC BCC-CSM1.1 Beijing Climate Center China Meteorological Administration
BCC-CSM1.1(m)

CCCma CanAM4 Canadian Centre for Climate Modelling
CanCM4 and Analysis
CanESM2

CMCC CMCC-CESM Centro Euro-Mediterraneo per I
CMCC-CM Cambiamenti Climatici
CMCC-CMS

CNRM-CERFACS CNRM-CM5 Centre National de Recherches Meteorologiques
CNRM-CM5-2 Centre Europeen de Recherche et Formation

Avancees en Calcul Scientifique
CSIRO-BOM ACCESS1.0 CSIRO (Commonwealth Scientific and Industrial

ACCESS1.3 Research Organisation, Australia),
BOM (Bureau of Meteorology, Australia)

NASA GISS GISS-E2-H NASA Goddard Institute for Space Studies
GISS-E2-H-CC
GISS-E2-R
GISS-E2-R-CC

Table 2.3: Next generation CMIP5 models, for more information about the working groups
see Taylor [2013a]

Over all, the CMIP5 working groups have developed approximately 40 different climate
models. One might be interested in an example of different model projections of the same

11



climate variable, scenario and resolution. Figure 2.4 visualizes such model projections of
the Near Surface Temperature data under the “abrupt4xCO2” (see Table 2.2) scenario.
The models do not agree with respect to their starting values but all show similar trends
as a response to a quadrupling of the amount of CO2 in the atmosphere.
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Figure 2.4: Different ensemble projections with the CNRM-CM5-2 model of the monthly
Near Surface Temperature under an “piControl” scenario.

At that point, it might be interesting to point out that such comparisons of model pro-
jections are a common practice to evaluate model performance in order to estimate the
model uncertainty through the amount of spread among the models [Stocker et al., 2013].

2.2.4 Climate ensembles

Climate models, as introduced above, do not just produce one single projection of a
scenario for a certain variable and resolution but rather a range of projections are produced
that are assumed to be equally likely. These projections using a single model are called
“ensembles”. Different projections, for instance, arise from different initial values in
simulations. The CMIP pursues the idea of ensemble modeling since that offers another
tool to quantify the uncertainty of simulations by a measure of spread across the ensembles
[Masson and Knutti, 2011]. Different ensembles, that originate from the same model are
illustrated in the Figure 2.5. One can clearly recognize dependencies.
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Figure 2.5: Different ensembles of annual Near Surface Temperature under the
“abrupt4xCO2” scenario.

When it comes to finding an average representation of a specific scenario, variable and
resolution, often throughout this thesis the arithmetic mean over specific models are used.
Each chosen model is then represented as the average over all ensembles. In Section 5.5.1
tools are provided to prevent the usage of biased representations.

2.2.5 Spatial and temporal resolution

As mentioned above, CMIP5-ng model projections are available on a coherent 2.5◦× 2.5◦

longitude-latitude grid which corresponds to spatial squares of approximately 278 km ×
278 km at the equator. The original CMIP5 resolution is also available, however, the grid
size may differ based on which institute has produced the data.
Apart from spatial resolutions, there are three types of temporal resolutions provided in
the CMIP5-ng data. These are,

• month (mon)

• season (sea) (i.e., 3 month periods in all consecutive possibilities:
January/February/March, February/March/April etc.)

• year (ann)

The R code and applications that have been implemented in the course of this thesis
usually are illustrated on the basis of data on a 2.5◦ × 2.5◦ spatial grid choosing months
as the temporal resolution to guarantee coherence and find inhomogeneities with respect
to the highest possible temporal resolution.

2.2.6 NetCDF files and their naming convention

Sections 2.2.1 to 2.2.4 above have illustrated the coarse dimensions and characteristics
of the CMIP5-ng data. The CMIP5-ng data is provided as 74,595 NetCDF (*.nc) files.
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These CMIP5-ng files play an important role and and are referred to as “NetCDF” files
throughout this thesis. Using NetCDF files in R requires the ncdf R package [Pierce,
2015]. Each file contains an individual model projection of a specific variable, scenario,
ensemble and resolution, as described above, as well as some meta data on the spatial
grid, units of time etc.
The data files are named after their content, i.e., the climate variable, scenario, model,
ensemble, spatial and temporal resolution. More precisely, the files are named according
to the following pattern:

‘variable name’_‘temporal resolution’_‘model’_

‘scenario’_‘ensemble’_‘spatial resolution’.nc

e.g.,

tas_ann_CanESM2_rcp26_r1i1p1_g025.nc

variable name tas, tasmax, tasmin etc. (see Section 2.2.1)
temporal resolution mon, ann, sea
model BCC-CSM1.1, CanAM3, CMCC-CESM etc.
scenario rcp26, rcp45, rcp60, rcp85 etc. (see Section 2.2.2)
ensemble r1i1p1, r2i1p1 etc.
spatial resolution g025 (2.5◦ × 2.5◦), native (original CMIP5 resolution)
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Chapter 3

Preanalysis of the data

Before applying homogeneity tests to different models, scenarios, ensembles etc., one
should roughly verify the reasonableness of the data. The two tests presented in this
chapter are less time consuming than the homogeneity tests presented in the subsequent
chapters. The output of the preanalysis R functions provides meta data on single or
multiple NetCDF files. The tests are feasible to detect major mistakes in the data such
as wrong signs, an unexpected amount of missing values, outliers etc. in an early phase
of analysis. Tolerance intervals are used to indicate outliers with respect to the means,
maxima and minima of the n CMIP5-ng data sets that have been investigated.
It is thereby assumed that the n arising means : x̄(1), . . . , x̄(n) are samples from a normal
distribution. The n minima and n maxima, on the other hand, are thought to be samples
from the Gumbel extreme value distribution.
The tolerance interval bounds have been calculated by the function normtol.int() and
exttol.int() from the tolerance R package [Young, 2015] and the parameters have
been estimated by the Maximum Likelihood Estimation employing the Newton-Raphson
algorithm.

3.1 Application and results of the preanalysis

The standardTest() and multipleStanTest() R functions, which have been developed
in the course of this thesis, allow to perform such preanalysis tests as described above.
This section illustrates the usage of these functions on the basis of the CMIP5-ng NetCDF
files.

3.1.1 The R function standardTest()

standardTest() takes the path to a single NetCDF file as input and, basically returns
the type of the climate variable (sea,land or global), some standard statistics, informa-
tion on any missing values, the range of the data values and the format of the data. One
needs to recall that the existence of missing values is generally not undesirable. If the
climate variable type is sea or land, then by definition, there should be missing values
in complementary regions of land or sea respectively. In such cases, the absolute and
relative numbers of missing values and a comment (missComment ∈{ok,suspicious}) are
returned by standardTest(). ok is returned if the ratio of missing values does not ex-
ceed a certain threshold. This threshold is set to 0.4 for sea-type-variables and 0.8 for
land-type-variables, which may not in all cases be ideal and can be modified by the user
depending on how restrictive one wants to be. In a continuous setting, land is known to
cover approximately 29% of the Earth while the ocean covers about 71% but, since the
CMIP5-ng has a spatial resolution of 2.5◦ × 2.5◦, it would be too restrictive to set the
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thresholds to 0.29 and 0.71.
At this point, one may be interested in what output the standardTest() method pro-
duces. Below, two model projections of the same variable, scenario and resolution are
passed to standardTest() and their output is compared.

Example 3.1.1. standardTest() applied to the Australian ACCESS1-0 model and the
Norwegian NorESM1 model for the Sea Surface Temperature (tos) climate variable, under
a (“piControl”) preindustrial control run scenario gives the following output:

#standardTest input: path to NetCDF file

#standardTest output:

#name: NetCDF file name

#varname: climate variable (see section on climate variables)

#type: ’land’, ’sea’ or ’global’

# (depending on where the variable can be measured)

# E.g., tos, i.e., sea surface temperature can only be

# measured at regions of sea.

#missing: TRUE/FALSE, if TRUE -->there are missing values

# if FALSE--> no missing values

#numbOfNA: number of missing values

#ratioNA: ratio of missing values, i.e.,

# ratioNA=(number of missing values)/(144*72*timeDim)

# 144*72*timeDim corresponds to the total number of values

# that can be assigned for a 2.5x2.5 degree pixel.

#missComment: "ok"/"suspicious", depending on the ratioNA.

# "suspicious" if it is higher than a set threshold

# thresholds: 40% for sea type, 80% for land type variables

#sgn: sign of the climate variable values

#totmax: maximum of the climate variable values

#totmin: minimum of the climate variable values

#average: arithmetic mean of the climate variable values

#std: standard deviation of the climate variable values

#timeDim: number of time units (months, years, seasons) that are modeled

#range: "ok"/"suspicious"

# "suspicious": variable values are higher or lower then

# predefined bounds

> out0 <- standardTest("/.../tos_mon_ACCESS1-0_piControl_r1i1p1_g025.nc")

> out0

name varname type missing

1 tos_mon_ACCESS1-0_piControl_r1i1p1_g025.nc tos sea TRUE

numbOfNA ratioNA missComment sgn totmax totmin average

23376000 0.3757716 ok >=0 307.7083 271.2249 286.955

std timeDim range

11.09679 6000 ok

> out1 <- standardTest("/.../tos_mon_NorESM1-M_piControl_r1i1p1_g025.nc")

> out1

name varname type missing

1 tos_mon_NorESM1-M_piControl_r1i1p1_g025.nc tos sea TRUE
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numbOfNA ratioNA missComment sgn totmax totmin average

22845600 0.3665123 ok >=0 305.611 271.3318 286.5824

std timeDim range

11.11418 6012 ok

The ACCESS1-0 as well as NorESM1-M have produced non-suspicious projections as the
range and number of missing values (missComment) are declared as ok. One may recall
that missComment and range are marked with ok for the tos sea-type variable, if the data
values do not exceed predefined interval bounds for glstos and if there are not more than
40% missing values.
Nevertheless, timeDim differs among the two model projections even though both data sets
are model projections of the same climate variable (tos) under the same scenario (“pi-
Control”) and resolution. Different numbers of time units make it impossible to do model
comparisons as one does not know which values to compare. Due to this issue, Section
3.1.2 provides more details and an R function to find time coherent model projections.
Apart from timeDim, one might have recognized that the number of missing values also
differs between the two model projections. This might be due to different original native
spatial resolutions resulting in an unequal specification of boundary pixels between land and
sea. The ACCESS1-0 model has produced more missing values relative to the NorESM1
model. At this point, one might be interested in which spatial regions the ACCESS1-0 and
NorESM1-M projection differ regarding the missing values. In Figure 3.1, the pixels to
which Sea Surface Temperature values have been assigned by the NorESM1-M model but
missing values have been assigned by the ACCESS1-0 model are depicted.
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Figure 3.1: Red pixels are regions where ACCESS1-0 has missing values but simultane-
ously the NorESM1-M has Sea Surface Temperature assigned.

As presumed, the red pixels in Figure 3.1 are found in adjacent regions of land and sea.
This fact may need to be kept in mind when comparisons among models and analysis is
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conducted in boundary regions of land and sea.
It might be tedious to check the range and missing values separately for every single
NetCDF file with the standardTest() function. Hence, the multipleStanTest() func-
tion was implemented, which automates the standardTest() procedure and gives further
indications of outliers in the data via tolerance intervals.

3.1.2 The R function multipleStanTest()

multipleStanTest() not only performs standardTest() on a single NetCDF file but on
a directory containing several NetCDF files. This directory should contain files with model
projections from the same climate variable, resolution and scenario to allow reasonable
comparison. The multipleStanTest() method returns an overview of simple statistics
such as the mean, the minimum and maximum, the dimension of time (number of months,
seasons, years) as well as a comment about the overall reasonableness (ok or susp) for
each NetCDF file. Furthermore, a tolerance interval, which uses a normal distribution,
is defined based on the means of the data values of each file and tolerance intervals
for the minimum and maximum are being defined based on the Gumbel extreme value
distribution. Stars (“*”) indicate mean, maximum and minimum values of data sets that
lie outside of these tolerance intervals.

Example 3.1.2. Again, one can analyze the “piControl” scenario for the Sea Surface
Temperature (tos) on a monthly resolution. multipleStanTest() gives the following
output:

> out <- multipleStanTest("/.../tos",alpha=0.05,P=0.8)

There are 15 suspicious files in your directory.

> out

name timeDim max min mean susp/ok

[1,] "tos_mon_ACCESS1-0_piControl_r1i1p1_g025.nc" "6000" "307.71 *" "271.22 " "286.95 " "ok"

[2,] "tos_mon_ACCESS1-3_piControl_r1i1p1_g025.nc" "6000" "305.86 " "271.24 " "286.99 " "ok"

[3,] "tos_mon_BNU-ESM_piControl_r1i1p1_g025.nc" "6708" "306.28 " "271.36 " "286.47 " "ok"

[4,] "tos_mon_CCSM4_piControl_r1i1p1_g025.nc" "12612" "305.64 " "271.12 " "286.73 " "ok"

[5,] "tos_mon_CCSM4_piControl_r2i1p1_g025.nc" "1872" "305.28 " "271.13 " "286.71 " "ok"

[6,] "tos_mon_CCSM4_piControl_r4i1p1_g025.nc" "600" "305.23 " "271.16 " "286.74 " "ok"

[7,] "tos_mon_CESM1-BGC_piControl_r1i1p1_g025.nc" "6000" "305.29 " "271.08 " "286.76 " "ok"

[8,] "tos_mon_CESM1-CAM5-1-FV2_piControl_r1i1p1_g025.nc" "600" "307.7 *" "271.22 " "287 " "ok"

[9,] "tos_mon_CESM1-CAM5_piControl_r1i1p1_g025.nc" "3828" "306.34 " "271.24 " "286.69 " "ok"

[10,] "tos_mon_CESM1-FASTCHEM_piControl_r1i1p1_g025.nc" "2664" "305.51 " "271.14 " "286.74 " "ok"

[11,] "tos_mon_CMCC-CESM_piControl_r1i1p1_g025.nc" "3324" "307.64 *" "271.05 *" "286.74 " "susp"

[12,] "tos_mon_CMCC-CMS_piControl_r1i1p1_g025.nc" "6000" "306.93 " "271.05 *" "286.85 " "susp"

[13,] "tos_mon_CMCC-CM_piControl_r1i1p1_g025.nc" "3960" "305.85 " "271.11 " "286.6 " "susp"

[14,] "tos_mon_CNRM-CM5-2_piControl_r1i1p1_g025.nc" "4920" "306.08 " "270.1 *" "286.49 " "ok"

[15,] "tos_mon_CNRM-CM5-2_piControl_r1i1p2_g025.nc" "1680" "305.84 " "270.23 *" "286.43 " "ok"

[16,] "tos_mon_CNRM-CM5-2_piControl_r1i1p3_g025.nc" "1680" "305.9 " "270.74 *" "286.24 " "ok"

#... (see appendix, Section 8.2.1)

[38,] "tos_mon_IPSL-CM5A-LR_piControl_r1i1p1_g025.nc" "12000" "305.36 " "271.19 " "285.64 *" "susp"

[39,] "tos_mon_IPSL-CM5A-MR_piControl_r1i1p1_g025.nc" "3600" "304.96 *" "271.15 " "286.17 " "susp"

[40,] "tos_mon_IPSL-CM5B-LR_piControl_r1i1p1_g025.nc" "3600" "306.4 " "271.24 " "287.16 " "susp"

[41,] "tos_mon_MIROC-ESM_piControl_r1i1p1_g025.nc" "8160" "306.71 " "271.26 " "286.61 " "ok"

[42,] "tos_mon_MIROC5_piControl_r1i1p1_g025.nc" "8040" "305.86 " "271.24 " "286.97 " "ok"

[43,] "tos_mon_MPI-ESM-LR_piControl_r1i1p1_g025.nc" "12000" "306.85 " "271.25 " "286.4 " "ok"

[44,] "tos_mon_MPI-ESM-MR_piControl_r1i1p1_g025.nc" "12000" "309.83 *" "271.25 " "286.61 " "ok"

[45,] "tos_mon_MPI-ESM-P_piControl_r1i1p1_g025.nc" "13872" "307.29 *" "271.25 " "286.49 " "ok"

[46,] "tos_mon_MRI-CGCM3_piControl_r1i1p1_g025.nc" "6000" "304.2 *" "271.29 " "287.02 " "ok"

[47,] "tos_mon_NorESM1-ME_piControl_r1i1p1_g025.nc" "3024" "305.67 " "271.33 " "286.3 " "ok"

[48,] "tos_mon_NorESM1-M_piControl_r1i1p1_g025.nc" "6012" "305.61 " "271.33 " "286.58 " "ok"

[49,] "tos_mon_bcc-csm1-1-m_piControl_r1i1p1_g025.nc" "4800" "305.18 " "271.26 " "286.4 " "ok"

[50,] "tos_mon_bcc-csm1-1_piControl_r1i1p1_g025.nc" "6000" "305.12 " "271.26 " "286.31 " "ok"

[51,] "tos_mon_inmcm4_piControl_r1i1p1_g025.nc" "6000" "305.33 " "270.73 *" "287.33 " "ok"
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A file is thereby declared as suspicious (susp) if data values are extremely high or low
(i.e., the range as an output of standardTest() is marked as suspicious) or if the
number of missing values is greater than a set threshold for sea- or land-type variables.
All of the 15 suspicious files have a large amount of missing values which is apparent
in the standardTest() summaries. The GISS-E2-R model projection, e.g., contains
approximately 44% missing values, which is over the 40% threshold and, hence, has been
classified as suspicious:

name varname type missing

1 tos_mon_GISS-E2-R_piControl_r1i1p141_g025.nc tos sea TRUE

numbOfNA ratioNA missComment sgn totmax totmin average

63150900 0.436439 suspicious >=0 305.0261 271.2438 287.272

std timeDim range

11.19767 13956 ok

The large amount of missing values in these files may likely be a result of the homoge-
nization process (transformation from CMIP5 to CMIP5-ng) to guarantee a 2.5◦ × 2.5◦

spatial grid.
One may also notice that the files that have a mean that lies outside of the tolerance in-
terval (marked with a “*” in the “mean” column above) are also declared as suspicious.
These two tests (tolerance interval test and missing value/range test), thus, seem to be
quite consistent.
Apart from different numbers of missing values, it has become apparent that model projec-
tions of the same variable, scenario and resolution also vary with respect to their time di-
mension (i.e., the number of months, years or seasons that are modeled). This is especially
undesirable if model comparisons are conducted. If the challenge is to extract only time-
coherent files from a certain directory, the function extractTimeCoh() (see appendix)
might be helpful. extractTimeCoh() seeks the time dimension that is attained most fre-
quently. It then returns a subset of the original set of files with this time dimension.
In the above example, timeDim attains the value 6000 most frequently. Therefore, those
files with time series of the length of 6000 months are returned by extractTimeCoh().
Suspicious files are not discarded and it is left to the user to decide which files to use.

> extractTimeCoh(out)

The most frequent number of time steps is: 6000

name timeDim susp/ok

[1,] "tos_mon_ACCESS1-0_piControl_r1i1p1_g025.nc" "6000" "ok"

[2,] "tos_mon_ACCESS1-3_piControl_r1i1p1_g025.nc" "6000" "ok"

[3,] "tos_mon_CESM1-BGC_piControl_r1i1p1_g025.nc" "6000" "ok"

[4,] "tos_mon_CMCC-CMS_piControl_r1i1p1_g025.nc" "6000" "susp"

[5,] "tos_mon_CSIRO-Mk3-6-0_piControl_r1i1p1_g025.nc" "6000" "susp"

[6,] "tos_mon_FGOALS-s2_piControl_r1i1p1_g025.nc" "6000" "ok"

[7,] "tos_mon_GFDL-ESM2G_piControl_r1i1p1_g025.nc" "6000" "ok"

[8,] "tos_mon_GFDL-ESM2M_piControl_r1i1p1_g025.nc" "6000" "ok"

[9,] "tos_mon_MRI-CGCM3_piControl_r1i1p1_g025.nc" "6000" "ok"

[10,] "tos_mon_bcc-csm1-1_piControl_r1i1p1_g025.nc" "6000" "ok"

[11,] "tos_mon_inmcm4_piControl_r1i1p1_g025.nc" "6000" "ok"
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Chapter 4

SNHT

The SNHT is an inhomogeneity detection test for climate data. It was constructed to
find shifts in the mean level of time series at a specific point in time and space, but may
be used for drift detection as well (see Section 4.3).
Preliminary, this chapter introduces the SNHT as an analysis tool for single time series
via the snht() R function (snht R package [Browning and Schneider, 2016]) and for
spatially arranged series via the pairwiseSNHT() R function (snht R package [Browning
and Schneider, 2016]).
In either instance, a SNHT statistic must be calculated. A very well known SNHT statistic
was introduced by Alexandersson and Moberg in 1997. Since then, modified versions
have been developed. This chapter shortly discusses different SNHT approaches and
then focuses on the snht R package version [Browning and Schneider, 2015] that was
co-developed as part of the thesis and is put to practice on CMIP5-ng data sets at the
end of the chapter.

4.1 Original SNHT

The following section is based on the theory of Alexandersson and Moberg [1997].
A standard normally distributed time series Z = {Zt : t ∈ {1, . . . , T}} with no shift
or a single shift at time t0 can be expressed through the following null and alternative
hypotheses:

H0 : Zt ∼ N (0, 1), t ∈ {1, . . . , T}
H1 : Zt ∼ N (µ1, 1), t ∈ {1, . . . , t0}

Zt ∼ N (µ2, 1), t ∈ {t0 + 1, . . . , T}, µ1 6= µ2, where µ1 = 0 or µ2 = 0.

Definition 4.1.1. The original SNHT statistic is defined as:
T smax = max1≤t0≤T−1{T st0} = max1≤t0≤T−1{t0 · z̄1

2 + (T − t0) · z̄2
2}, where

z̄1 := 1
t0

∑t0
t=1 zt,

z̄2 := 1
T−t0

∑T
t=t0+1 zt

are the arithmetic means of the standard normally distributed time series realizations
{zt}t∈{1,...,T}.

Remark 4.1.1. The above statistics T smax does not have a closed form distribution.

Thereby, the standard normally distributed realizations {zt}1≤t≤T−1 are obtained from
the data through:

Zt =
Qt − Q̄
σQ

, where (4.1)
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Qt =


Yt −

(∑k
j=1 ρ

2
j (Xjt−X̄j+Ȳ )∑k

j=1 ρ
2
j

)
, for temperature data,

Yt·
∑k

j=1 ρ
2
j

(
∑k

j=1 ρ
2
jXjtȲ /X̄j)

, for precipitation data.

ρj : correlation coefficient between the candidate and a reference station

Xj∈{1,...,k},t : time series of surrounding reference location j evaluated at time t

k : number of reference series

Yt : candidate time series evaluated at time t

X̄j : mean over time of reference time series Xj

Ȳ : mean over time of candidate time series

If Alexandersson’s method is applied, then for each time series, i.e., for each spatial
pixel, the neighbor series would need to be found, the Q-series and Z-series as well as
the correlation coefficients to the neighbors would have to be calculated or estimated.
Furthermore, a table should be produced via the likelihood ratio statistic that indicates
the critical values of T smax. This is computationally expensive and tedious due to the
in-existence of a closed form distribution for the statistic.

4.2 Modified SNHT

Due to some of the disadvantages of the original Alexandersson method, the following
section introduces an alternative SNHT approach which is first presented for single time
series analysis and then expanded to the analysis of a spatial field of time series in Section
4.2.2.

4.2.1 SNHT on single time series

Apart from the disadvantages of the orginal SNHT mentioned above, the Alexandersson
and Moberg version was also critized by Haimberger [2005] concerning the performance
of detecting inhomogeneities. Haimberger [2005] came to the conclusion that the original
SNHT tends to falsely detect inhomogeneities at the beginning and end of the time inter-
vals, when either t0 or T − t0 is small and it poorly estimates the time of the change in
case there are periodic signals in the data. Haimberger therefore suggested the following
approach: For each observation, two means are computed, one for the N observations
prior to the one at time t0, X̄L,t0 , and one for the N observations following the one at
time t0, X̄R,t0 .
One may then consider the following test statistic for each t0 ∈ {N + 1, . . . , T −N} of a
time series of length T :

Tt0 =
N

s2
t0

(
(X̄L,t0 − X̄t0)

2 + (X̄R,t0 − X̄t0)
2
)
, (4.2)

X̄t0 : mean of X̄L,t0 and X̄R,t0 , i.e., X̄t0 =
1

2
(X̄L,t0 + X̄R,t0)

st0 : estimated standard deviation over the N observations

prior and N observations following observation t0.

21



Remark 4.2.1. Haimberger [2005] himself defined the statistic slightly differently. He
divided only by st0 instead of s2

t0
. This is thought to be a mistake when again comparing

the statistic to Alexandersson’s version. The advantage of the formula (4.2) is the fact
that the statistic follows an approximate χ2

1 distribution under the null hypothesis, i.e.,
under the assumption that there is no change point in the time series.

Hypothesis testing is then simpler: If the test statistic T exceeds some threshold at time
t0
∗, it is probable that an inhomogeneity occurred at time t0

∗. This modified SNHT
is implemented in R in the snht package [Browning and Schneider, 2015]. Its usage is
illustrated below for different periods (N = 20 and N = 150) and normally distributed
samples with two artificially generated shifts. Thereby, a Bonferroni adjusted significance
level is chosen since multiple testing is conducted.

library(snht)

set.seed(123)

baseData <- rnorm(1000)

baseData[201:500] <- baseData[201:500]+.4

baseData[501:600] <- baseData[501:600]-.6

snhtStatistic <- snht(data=baseData,period=20)

plotSNHT(data=baseData,stat=snhtStatistic,

alpha=0.05/960)

snhtStatistic <- snht(data=baseData,period=150)

plotSNHT(data=baseData,stat=snhtStatistic,

alpha=0.05/700)

Figure 4.1: Illustration of the SNHT statistic for different period lengths N .

On the one hand, a large period gives better results in the above example as it detects
both of the artificially generated shifts, whereas for N = 20 only the largest one was
detected. On the other hand, large periods generate missing values of the SNHT statistic
at the beginning and the end of the time interval. This is due to the definition of the
modified SNHT statistic. Shifts that happen at a time t0 ≤ N or t0 > (T − N) are
therefore not detectable, which is especially a disadvantage if the period N is large.
Until now, the computational cost that has been gained from the modified definition
of the SNHT compared to the original definition is that the mean does not have to be
calculated over T values but only over 2N + 1 < T values for each time t ∈ {1, . . . , T}
in a time series. Using snht() for every time series of a CMIP5-ng file is however still
computationally expensive. Furthermore, no spatial structure is included up to this point.
In order to reduce computational cost and to include spatial structure pairwiseSNHT()

has been implemented as part of the snht R package [Browning and Schneider, 2015].
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4.2.2 SNHT on pairwise difference series

If many time series from different locations need to be investigated, a relative homogeneity
test is an option and has been implemented in the pairwiseSNHT() R function. Menne
and Williams Jr [2009] suggested to use a relative homogeneity test which uses reference
series to detect inhomogeneities at a certain location, an idea that was already part of
Alexandersson’s method. The pairwiseSNHT() R function puts this idea into practice
by calculating the pairwise difference series of neighbor time series as described in Menne
and Williams Jr [2009]. This has the advantage that overall periodic or linear trends are
no longer dominant in the difference series which then can be investigated through the
SNHT. It must be pointed out that the underlying assumption is that “similar variations
in climate occur at nearby locations” [Menne and Williams Jr, 2009]. If this assumption is
violated, the chances of committing a type I error may increase. In this regard, using the
correlation coefficient as Alexandersson suggested might generate more accurate results
for less correlated series, but at the same time it is computationally more expensive.
The pairwiseSNHT() investigates at most k difference series for each spatial location.
These unique1 difference series come about through subtracting the k closest neighbor
series from the investigated candidate series. pairwiseSNHT() then counts the number of
times the null hypothesis (i.e., having no shift in the difference series) has been rejected
where a certain station is involved. The locations with the highest counts of rejections
at a specific time are then assumed to be the locations where inhomogeneities occurred.
More details on the pairwiseSNHT() function can be found in the vignettes of the snht

R package [Browning and Schneider, 2015], which has been written as part of this thesis.

4.3 Inhomogeneity detection performance

The pairwiseSNHT(), as briefly introduced above, is suggested to be used as a CMIP5-
ng inhomogeneity analysis tool. With this in view, this section serves to show what one
can expect regarding the performance of detecting different types of inhomogeneities as
presented in Section 1.3.3. The performance is illustrated for five simulated time series
spatially arranged in the following manner:

Figure 4.2: The arrangement of 5 stations for which time series were generated.

The stations 1, . . . , 5 are thought to be arranged with the following Euclidean distances

1The difference series are unique since for neighbor pairs i and j only the differences “series i-series
j” or “series j-series i” are analyzed not both differences.
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to each other:

D =


0 1 1 1 1

1 0
√

2 2
√

2

1
√

2 0
√

2 2

1 2
√

2 0
√

2

1
√

2 2
√

2 0

 .

Dij represents the distance of station i to station j. In the following paragraphs the five
series are generated with high correlation among each other and a periodic signal in order
to simulate data with similar characteristics as the CMIP5-ng data.

4.3.1 Local shifts of the mean

At first, one can look at the reaction of pairwiseSNHT() to a local shift. For this purpose,
Series 1 has been shifted by a magnitude of 0.5 at time t0 = 401. In R, the data has been
generated as follows:

set.seed(2)

Cor <- rbind(c(0.5,0.8,0.8,0.8,0.8),c(0,0.5,0.8,0.5,0.6),

c(0,0,0.5,0.8,0.5),c(0,0,0,0.5,0.6),c(0,0,0,0,0.5))

Cor <- t(Cor)+Cor

baseData <- rmvnorm(mean=rep(0,5),sig=Cor,n=1000)+cos(1:1000*2*pi/200)

baseData[401:1000,1] <- baseData[401:1000,1]+0.5

Figure 4.3 depicts the data graphically. The shift can hardly be visually detected.
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Figure 4.3: Five simulated time series where only Series 1 is shifted by 0.5 at time t0 = 401.

In order to apply pairwiseSNHT() the following code can be run:

install.packages("/.../snht_1.0.4.tar.gz",type="src",repo=NULL)
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library(snht)

colnames(baseData) <- "1":"5"

baseData <- data.frame(time = 1:1000, baseData)

baseData <- melt(baseData, id.vars = "time", variable.name = "location",

value.name = "data")

baseData$location <- gsub("X","",baseData$location)

out1 <- pairwiseSNHT(baseData, dist, k=3, period=200,

crit=qchisq(1-0.05/600,df=1), returnStat=T)

pairs <- colnames(out1)

out2 <- pairwiseSNHT(baseData, dist, k=3, period=200,

crit=qchisq(1-0.05/600,df=1), returnStat=F)

out2$breaks

# > out2$breaks

# time location shift

# 402 1 0.5857773

The location, time and shift are all estimated well. Figure 4.4 visualizes the SNHT
statistic for each difference pair, whereby the local shift in Series 1 is apparent.
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Figure 4.4: SNHT statistic for difference series of neighbor locations with high correlation
among each other. Thereby, e.g., “1-2” refers to the difference series of time series 1 and
time series 2.

Until now, pairwiseSNHT() seems to perform well at local shift detection. However, it
might be obvious, but still important, to point out that the performance deteriorates with
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lower correlation among the series. Simultaneously, the probability of committing a type
I error can increase. The following example shows that the SNHT statistic is not as high
as before with no correlation among the time series.

set.seed(2)

Cor <- diag(5)

baseData <- rmvnorm(mean=rep(0,5),sig=Cor,n=1000)+cos(1:1000*2*pi/200)

baseData[401:1000,1] <- baseData[401:1000,1]+0.5

#... (same as before)

out2 <- pairwiseSNHT(baseData, dist, k=3, period=200,

crit=qchisq(1-0.05/600,df=1), returnStat=F)

out2$breaks

# > out2$breaks

# time location shift

# 402 1 0.7974403

The magnitude of the shift is not as accurately estimated as before and the SNHT statistic
is lower at time t0 = 402 as apparent in Figure 4.5.
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Figure 4.5: SNHT statistic for difference series of neighbor locations with no correlation
among each other. Thereby, e.g., “1-2” refers to the difference series of time series 1 and
time series 2.

Over all, the performance for cases of low correlation is still acceptable but not as good
as for correlated data.
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4.3.2 Local drifts

The SNHT and especially pairwiseSNHT() are not constructed to detect drifts in one or
a few time series, i.e., the maximal SNHT statistic is not a good mean to detect the time
or magnitude of the drift. pairwiseSNHT() can, however, detect the location where such
a drift occurred under the assumption that the neighbor series are all homogeneous. The
following example shows an extract of the code and the output of pairwiseSNHT() on a
data set with a drift introduced in the first out of the five time series.
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Figure 4.6: Five simulated time series with an introduced drift in series 2 at time 401.

Cor <- rbind(c(0.5,0.8,0.8,0.8,0.8),c(0,0.5,0.8,0.5,0.6),

c(0,0,0.5,0.8,0.5),c(0,0,0,0.5,0.6),c(0,0,0,0,0.5))

Cor <- t(Cor)+Cor

baseData <- rmvnorm(mean=rep(0,5),sig=Cor,n=1000)+cos(1:1000*2*pi/200)

baseData[401:1000,1] <- baseData[401:1000,1]+1/120*(401:1000)-10/3

#... (same as above)

out2 <- pairwiseSNHT(baseData, dist, k=3, period=200,

crit=qchisq(1-0.05/600,df=1), returnStat=F)

> out2$breaks

time location shift

1 744 1 1.7188140

2 534 1 1.5715238

3 333 1 0.3578464
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Figure 4.7: SNHT statistic for difference series of neighbor locations where the values of
series 1 drift apart. Thereby, e.g., “1-2” refers to the difference series of time series 1 and
time series 2.

It can be observed that the SNHT statistic increases to highly significant regions in cases
of this slight drift of slope 1/120 in one series. The shape of the plot above might also
give a user a visual indication if the exceedance of the SNHT threshold is more likely due
to either a local drift or a shift in the mean level.

4.3.3 Global shifts and negatively correlated neighbor series

By definition, global shifts are not detected by pairwiseSNHT(). They could be detected
by applying the snht() function to every time series individually but that is computation-
ally expensive. In Section 8.3.3, better algorithms are provided for global shift detection.
As long as there is no reasonably large shift in the mean level, pairwiseSNHT() does
not detect negatively correlated series either. This is due to the definition of the SNHT
statistic.

4.3.4 Summary of inhomogeneity detection performance

The Sections 4.3.1 – 4.3.3 have provided an insight into the performance of the pairwiseSNHT()
function. This performance has been summarized in Table 4.1.
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Inhomogeneity type Performance of SNHT/ pairwiseSNHT()

local shifts in mean of single time series ++
local drifts +

(good at finding the location,
bad at detecting the time)

global shifts in mean −−
negatively correlated neighbor series −−

Table 4.1: Summary of the inhomogeneity detection performance of pairwiseSNHT().
++: Very good performance, +: reasonable performance, −: poor performance, −−:
extremely poor performance.

4.4 Empirical runtime estimation of pairwiseSNHT()

The focus of this chapter is on the pairwiseSNHT() R function as an inhomogeneity de-
tection method. Before applying pairwiseSNHT() to CMIP5-ng data, a runtime analysis
might be of interest to users. The runtime of pairwiseSNHT() depends on the various
input parameters of pairwiseSNHT(). These input parameters are:

pairwiseSNHT(data,dist,k,period,crit,returnStat=T/F)

#k: number of neighbor series that are used

# as reference series for each candidate series

#period: was denoted by N in the theory above,

# i.e., it is the number of values that are

# used to calculate the left and right mean

#crit: the critical value of the statistics

#

#returnStat=TRUE/FALSE:

#if TRUE: only the statistics is given back for each

# difference pair

#if FALSE: the location, time and shift as well as

# the homogenized data is given back.

The runtime naturally depends on the data size but also on the input parameters k,
period and returnStat.

returnStat=TRUE

If returnStat=TRUE then only the statistics are returned for each difference series. Run-
time increases linearly for a growing number of time units as for each additional time unit
the same statistics (including the calculation of 2N + 1 means and the standard devia-
tion over 2N values) have to be calculated for each difference series. For an increasing
number of spatial pixels, the runtime increases approximately linearly as well. It is not
an exact linear relation since it depends on how many pairwise differences of time series
are generated with an additional pixel, which varies depending on the position of the
pixel. Figure 4.8 shows what one may expect as runtime for a CMIP5-ng file of dimension
144× 72× 2772, k = 3 and period=200.
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Figure 4.8: Runtime of pairwiseSNHT() for different numbers of spatial rows in a CMIP5-
ng data set. The elapsed CPU time (in seconds) describes how long it took to execute
pairwiseSNHT() for a CMIP5-ng file with a varying number of rows, 72 spatial columns
and 2772 time units per time series.

As runtime has only been tested for 8 spatial regions, Figure 4.8 should be understood
as an indicator for the runtime of pairwiseSNHT() for different sizes of data and not be
confused with an analytically determined runtime calculation.
The input parameter k is thought to have an approximate linear effect on runtime. Run-
time as a function of k, however, also depends on the shape of the spatial domain since a
vertex or edge location has less closest neighbors than a pixel in the middle of the spatial
field. An increasing value for period generally increases the runtime, but in a non-linear
way. This is induced by the fact that the larger period is, the more values need to be
considered when calculating the left and right mean. At the same time, only T − 2N
(with N representing the period) statistics need to be calculated which simultaneously
reduces the cost. Figure 4.9 shows the non-linear effect of period on the runtime of
snht() for a vector of random numbers of length 1000. The effect of a varying period
on pairwiseSNHT() is then a multiple of the CPU time, shown in Figure 4.9, since it
calls snht() multiple times (on each difference series), nonetheless, the relation between
period and the CPU time stays less-than-linear.
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Figure 4.9: Runtime of snht() depending on period (denoted by N in equation (4.2)).

returnStat=FALSE

Setting returnStat=FALSE adds a lot of additional computational cost to the testing
process since it implies that for each difference series the statistics not only need to
be calculated, but it also needs to be checked at which time the statistic exceeds the
threshold. Furthermore, it is deduced which spatial pixel is most probably responsible for
the inhomogeneity. Applying pairwiseSNHT() with returnStat=FALSE on spatial fields
of size 10× 6 and 2772 time units as presented in Section 4.5 is reasonably fast and takes
only about one minute of system CPU time. Applying it on a whole 144 × 72 × 2772
CMIP5-ng file with k=3,period=200, however, takes about 26 hours, which is still rather
long.

Space vs. time

Apart from the absolute runtime, a user may be interested in the question of “space vs.
time” illustrated in Figure 4.10, i.e., one asks if it computationally faster to pass data on a
large spatial field with only a few time units or if it is faster to pass data on a narrow spatial
field with many time units. An experiment, comparing the pairwiseSNHT() runtime of
a 3 × 3 × 100 data set with the one of a 10 × 10 × 9 data set, has suggested the latter.
The experiment has been conducted on ACCESS1-0 (r1i1p1) Near Surface Temperature
data under the RCP45 scenario (for code and exact output: see appendix, Section 8.1).
In this particular example, it has been discovered that it is approximately 5 times faster
to pass a 3 × 3 × 100 data set to pairwiseSNHT() compared to a data set of dimension
10× 10× 9.
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Figure 4.10: Left: Data block on a large spatial region with few time units. Right: Data
block on a small spatial region with many time units.

4.5 SNHT methods on CMIP5-ng data

After giving a few ideas on the strengths and weaknesses of pairwiseSNHT(), users might
be interested in finally seeing application results of the pairwiseSNHT() on CMIP5-ng
data.

Monthly Near Surface Temperature over Europe (RCP45): ACCESS1-0 (r1i1p1)

As a first example, 60 locations over Europe have been chosen as displayed in Figure 4.11.
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Figure 4.11: 60 2.5◦ × 2.5◦ pixels over Europe.
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The monthly Near Surface Temperature projection of the ACCESS1-0 (r1i1p1) model is
considered. The code below illustrates how a user can call the pairwiseSNHT() func-
tion and which preparation steps (such as the calculation of the distance matrix) are
mandatory.

library(ncdf)

library(reshape2)

install.packages("/.../snht_1.0.4.tar.gz",type="src",repo=NULL)

library(snht)

source(‘/.../getCoord.R’)

file <- ‘/.../tas_mon_ACCESS1-0_rcp45_r1i1p1_g025.nc’

nc <- open.ncdf(file)

data <- get.var.ncdf(nc)

close.ncdf(nc)

baseDataEurope <- data[c(1:10),c(55:60),]

coord <- getCoordinates(c(1:10),c(55:60))

#create coordinates

d <- as.matrix(dist(coord))

dim(baseDataEurope) <- c(dim(baseDataEurope)[1]*

dim(baseDataEurope)[2],dim(baseDataEurope)[3])

baseDataEurope <- t(baseDataEurope)

colnames(baseDataEurope) <- "1":"60"

baseData <- data.frame(time=1:2772,baseDataEurope)

baseData <- melt(baseData,id.vars="time",variable.name=

"location",value.name="data")

baseData$location <- gsub("X","",baseData$location)

system.time(out <- pairwiseSNHT(baseData,d,k=3,period=200,

crit=qchisq(1-0.05/2372,df=1),returnStat=F))

# user system elapsed

# 63.673 0.000 63.559 #---> runtime is within reason.

# > out$breaks

# time location shift

# 1 707 51 0.20400579

# 2 660 42 -0.01161282

# 3 911 51 -0.13019694

# 4 209 41 -0.05971085

# 5 1694 19 0.14797760

# 6 561 30 0.16337336

out$breaks gives information on the inhomogeneities that have been found by the pair-

wiseSNHT(). Overall, six spatial pixels with shifts have been detected. The shift heights
are, nonetheless, of relatively low magnitude. One may notice that the location of these
series form two spatial patches (both at the boundary of the spatial domain) of close-by
neighbor series in Figure 4.11. In Figure 4.12, the difference series are depicted that have
caused the threshold-exceeding values of the SNHT statistics.
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Figure 4.12: The difference series whose SNHT statistic exceeds the threshold. The red
dashed line on the left corresponds to the detected break point. Left: Difference series
itself, right: SNHT statistic over time of the corresponding difference series.

There are exceeding values in exactly 6 neighbor difference series (“41-42”, “51-52”, “51-
42”, “30-40” and “29-19”) depicted in Figure 4.12. Whether or not the found location
series really are erroneous would need to be investigated more closely, e.g., by analyzing
other Near Surface Temperature model projections for the same period of time.

Monthly Surface Upwelling Longwave Radiation over South Africa (RCP45):
CSIRO-Mk3L-1-2

Another example investigates the projection of the CSIRO-Mk3L-1-2 model for the Sur-
face Upwelling Longwave Radiation under the RCP45 scenario on a larger spatial region
(see Figure 4.13) over South Africa.
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Figure 4.13: 220 2.5◦ × 2.5◦ pixels over South Africa.

The code that needs to be compiled is very similar to the previous example.

library(ncdf)

library(reshape2)

install.packages("/.../snht_1.0.4.tar.gz",type="src",repo=NULL)

library(snht)

source(‘/.../getCoord.R’)

file <- ‘/.../rlus_mon_CSIRO-Mk3L-1-2_rcp45_r1i2p1_g025.nc’

nc <- open.ncdf(file)

data <- get.var.ncdf(nc)

close.ncdf(nc)

baseDataAfrica <- data[c(1:20),c(20:30),]

coord <- getCoordinates(c(1:20),c(20:30))

#create coordinates

d <- as.matrix(dist(coord))

dim(baseDataAfrica) <- c(dim(baseDataAfrica)[1]*

dim(baseDataAfrica)[2],dim(baseDataAfrica)[3])

baseDataAfrica <- t(baseDataAfrica)

colnames(baseDataAfrica) <- "1":"220"

baseData <- data.frame(time=1:2772,baseDataAfrica)

baseData <- melt(baseData,id.vars="time",variable.name=

"location",value.name="data")

baseData$location <- gsub("X","",baseData$location)

system.time(out <- pairwiseSNHT(baseData,d,k=3,period=200,

crit=qchisq(1-0.05/2372,df=1),returnStat=F))
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# user system elapsed

# 234.433 0.325 234.625 --->runtime is still within reason.

# > out$breaks

# time location shift

# 1 2060 45 -0.7836156845

# 2 2410 183 -0.0326845169

# 3 1272 182 -0.0170727921

# 4 1280 163 -0.1401939011

# 5 2471 123 0.0883020782

# 6 2267 143 0.0183229828

# 7 2477 142 -0.0264778519

# 8 2387 164 0.0058427048

...

# 383 2473 85 0.0609847641

# 384 491 163 0.0411592865

# 385 2497 156 0.2348451614

# 386 1343 176 0.1233944702

# 387 630 22 -0.0563951111

# 388 1548 22 0.0916710281

Unlike in the Near Surface Temperature example, considerably more inhomogeneities have
been found by the pairwiseSNHT(), namely 388 shifts at 133 different locations. Figure
4.14 gives intriguing insight into which series are declared as inhomogeneous and the
summed up absolute heights of the shifts are displayed.

0 10 20 30 40 50

−
50

−
40

−
30

−
20

−
10

Added up shift heights

LON

LA
T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

Figure 4.14: The added up absolute shift heights estimated by pairwiseSNHT() over
Africa.

The plot reveals that only series over regions of sea have been declared as inhomogeneous.
Reasons for this behavior would need to be given by climate model developers. A vague
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presumption might be that existent measurements of Surface Upwelling Longwave Radi-
aton are imprecise over regions of sea and, therefore, simulations based on measurements
come along with inherited errors.
The inhomogeneities, which have been detected by pairwiseSNHT() over the 220-pixel
region over Africa, can also be investigated in a temporal dimension. The following his-
togram shows in which years the most inhomogeneities have been detected. All detected
inhomogeneities have been weighted equally regardless of the estimated shift height.
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Figure 4.15: Frequency of inhomogeneities detected by pairwiseSNHT() over the spatial
region depicted in Figure 4.13 from 1870 until 2100.

Figure 4.15 illustrates that the 388 inhomogeneities have been found across the whole
interval from 1870 until 2100. Thereby, shortly after 1900 and before 2050 most inhomo-
geneities have been detected. These temporal regions may want to be further investigated.
At this point, it might be interesting to see if smaller regions on the Southern Atlantic
ocean show the same distribution as in Figure 4.15.
25 pixels in the South Atlantic Ocean are chosen as an example as depicted in Figure
4.16.
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Figure 4.16: 25 2.5◦ × 2.5◦ pixels close to South Africa.

The histogram of the inhomogeneneities over the years 1870-2100 has again been plotted
over this smaller spatial region.

Histogram of the detected shifts at different times over 5 x 5 spatial region
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Figure 4.17: Frequency of inhomogeneities detected by pairwiseSNHT() over the spatial
region depicted in Figure 4.16 from 1870-2100.

Compared to Figure 4.15, Figure 4.17 does not contribute largely to the 16 inhomo-
geneities detected shortly after 1900 but it contributes all the more to the 20 inhomo-
geneities detected shortly before 2050. In conclusion, even though the pairwiseSNHT() is
not a suitable tool for global shift detection, histograms can be used to extract information
about overall temporal inhomogeneities.
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Chapter 5

GMRF

As mentioned in the previous chapter, the pairwiseSNHT() function cannot detect global
shift inhomogeneities. In this chapter, homogenization tests are introduced using GMRFs
which compensate for this deficiency. A MGMRF model includes the spatio-temporal
structure of the data in a sparse precision matrix. The sparseness is especially useful for
fast calculations of the determinant via the Cholesky factorization, which is, for instance,
needed to determine the likelihood, find the MLEs and to do hypothesis testing.

5.1 Theory

The following theorems and definitions are based on the book by Rue and Held [2005].

Definition 5.1.1. Two multivariate random vectors ~x, ~y are called conditionally indepen-
dent given ~z, if π(~x, ~y|~z) = π(~x|~z) · π(~y|~z) for the generic density π.

Definition 5.1.2. An undirected graph G is a tuple (V , E), where V is the set of nodes of
the graph and E is the set of edges {i, j}, where i, j ∈ V , i 6= j.
If V = {1, . . . , n} then the undirected graph is called labeled. Labeled and undirected graphs
are used for the conditional independence structure in a GMRF.

5.1.1 Univariate GMRF

Definition 5.1.3. A random vector ~x = (x1, . . . , xn)T ∈ Rn is called a GMRF with
respect to a labeled graph G = (V , E), mean ~µ and a SPD precision matrix Q, if its density
has the form:
π(~x) = (2π)−n/2|Q|1/2· exp

(
−1

2
(~x− ~µ)TQ(~x− ~µ)

)
and

Qij 6= 0⇔ {i, j} ∈ E ,∀i 6= j

Definition 5.1.4. The precision matrix Q is defined to be the inverse of the covariance
matrix.

Definition 5.1.5. The neighbors of node i are all nodes in G having an edge connected
with node i. One writes: j ∼ i if node i is directly connected through one edge to node j.

Lemma 5.1.1. For random variables x, y: x ⊥ y|z ⇔ π(x, y, z) = f(x, z)g(y, z), for
some functions f, g and ∀z with π(z) > 0.

Theorem 5.1.1. Let ~x be a normally distributed random vector with mean ~µ and positive
definite precision matrix Q, then for i 6= j, xi ⊥ xj|~x−ij ⇔ Qij = 0.
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Proof. Without loss of generality let ~µ = 0. By definition:
π(xi, xj, ~x−ij) ∝ exp (−1

2

∑
k,l xkQklxl)

∝ exp (−1
2
xixj(Qij +Qji)− 1

2

∑
{k,l}6={i,j} xkQklxl)

This term depends on xi, xj ⇔ Qij 6= 0, i.e.,
∃f, g : π(xi, xj, ~x−ij) = f(xi, ~x−ij)g(xj, ~x−ij)⇔ Qij = 0
Applying the previous Lemma 5.1.1 proves the Theorem.

Hence, the (i, j)th entry of the precision matrix is nonzero if and only if xi, xj are condi-
tionally dependent, i.e., the spatial structure is visually apparent in the precision matrix,
which is useful for interpretation. For grid data as the CMIP5-ng, every data point has
at most 4 spatial neighbors. Therefore, for a fixed time t0, Q is a sparse matrix with
at most 4 non-zero off-diagonals on each side. To calculate the determinant of Q, it is
recommended to perform a Cholesky factorization. Thereby, it needs to be remembered
that Q has been defined as a positive definite matrix, which guarantees that the Cholesky
factor exists.

Theorem 5.1.2. Let x be a GMRF with respect to the graph G = (V , E) with mean ~µ and
positive definite precision matrix Q, then:

E(xi|~x−i) = µi −
1

Qii

∑
j:j∼i

Qij(xj − µj) (5.1)

Prec(xi|~x−i) = Qii

Cor(xi, xj|~x−ij) = − Qij√
QiiQjj

, i 6= j

Remark 5.1.1. This theorem allows to interprete the elements of the precision matrix as
conditional correlations of xi and xj and conditional precisions of xi.

Often, the precision is also implicitly specified using full conditionals {π(xi|~x−i)}.

E(xi|~x−i) = µi +
∑
j:j∼i

βij(xj − µj),

P rec(xi|~x−i) = κi,

with κi > 0, κiβij = κjβji , s.t.

Qij =


−κiβij, if i 6= j, i ∼ j,

κi, if i = j,

0, else,

is SPD.
In practice, however, it would not make sense to specify the precision in such an over-
parameterized manner, yielding high computational cost for estimation. E.g., κi and βij
can be parameterized in the following way:

κ ≡ κi,∀i,
β ≡ βij,∀i ∼ j.
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5.1.2 Multivariate GMRF

In climate data sets, not only the spatial neighbors are conditionally correlated but also
temporal conditional correlation exists (illustrated in Figure 5.1).
Thus, it is useful to work with multivariate instead of univariate GMRFs.

Figure 5.1: Spatio-temporal structure of grid data.

Definition 5.1.6. A Multivariate GMRF is a generalization of the univariate GMRF
from above.
A random vector ~x = ( ~x1

T , . . . , ~xn
T )T ∈ Rnp where dim(~xi) = p is called a Multivariate

Gaussian Markov Field (MGMRFp) wrt G = (V = {1, . . . , n}, E) with mean vector
~µ = ( ~µ1

T , . . . , ~µn
T )T ∈ Rnp and positive definite precision matrix Q̃, iff its density has the

form:

π(x) =
(

1
2π

)np
2 |Q̃| 12 exp (−1

2
(~x− ~µ)T Q̃(~x− ~µ)) and Q̃ij 6= 0p×p ⇔ {i, j} ∈ E , ∀i 6= j

Remark 5.1.2. Every MGMRFp is also a GMRF with dimension np.

Theorem 5.1.3. Again xi ⊥ xj|~x−ij ⇔ Q̃ij = 0

Proof. Follows immediately from Theorem 5.1.1.

In climate data, temporal and spatial correlation should be taken into account, therefore,
the MGMRF is suitable. In the above definition, n is chosen as the number of time units
T and p is chosen to be n, where n is the number of locations (spatial 2.5◦ × 2.5◦ pixels
in CMIP5-ng).
Hence, the investigated MGMRF is the random vector
~x = (x11, . . . , xn1, x12, . . . , xn2, . . . , x1T , . . . , xnT )T and its precision matrix should have the
following block matrix form:

Q̃Tn×Tn =


Q̃11 Q̃12 0 . . . 0

Q̃21 Q̃22 Q̃23 . . . 0

0
. . . . . . . . . 0

... Q̃T−1,T−2 Q̃T−1,T−1 Q̃T−1,T

0 · · · 0 Q̃T,T−1 Q̃TT

,

where each Q̃ij is an n× n matrix (for i, j ∈ {1, . . . , T}).
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Remark 5.1.3. Q̃ij = 0n×n with |i − j|> 1 for i, j ∈ {1, . . . , T} are then not directly
adjacent in time and therefore thought to be conditionally independent.

Definition 5.1.7. Q̃ii is called the spatial block since it contains the spatial conditional
correlations.
Q̃ij, i 6= j, |i−j|= 1 is called the temporal block since it contains the temporal conditional
correlations.

Again, one can specify the precision matrix with full conditionals:

E(~xt|~x−t) = ~µt +
∑
u:u∼t

(βtu)n×n(~xu − ~µu), t, u ∈ {1, . . . , T},

E(xit|~x−it) = µit +
∑
j:j∼i

βspij (xjt − µjt) +
∑
u:u∼t

βtetu(xiu − µiu),

i, j ∈ {1, . . . n}, t, u ∈ {1, . . . , T},
P rec(~xt|~x−t) = (κt)n×n, call diag(κt) = (κ

(t)
1 , . . . , κ(t)

n ).

Then, the spatial block of the precision matrix has the following form:

Q̃ii =



κ
(i)
1 −κ(i)

1 β
sp
12 0 . . . 0 −κ(i)

1 β
sp
1l 0 . . . 0

−κ(i)
2 β

sp
21

. . . . . . 0
. . . 0

. . . . . .
...

0
. . . . . . . . . 0

. . . . . . . . . 0
... 0

. . . . . . . . . . . . . . . 0 −κ(i)
k β

sp
kn

0
. . . 0

. . . . . . . . . 0
. . . 0

−κ(i)
m β

sp
m1 0

. . . . . . . . . . . . . . . 0
...

0
. . . . . . . . . 0

. . . . . . . . . 0
...

. . . . . . 0
. . . 0

. . . . . . −κ(i)
n−1β

sp
n−1,n

0 . . . 0 −κ(i)
n βsp,in,p 0 . . . 0 −κ(i)

n β
sp
n,n−1 κ

(i)
n



.

The temporal block looks as follows:

Q̃ij =



−κ(i)
1 β

te
ij 0 0 . . . 0 0 0 . . . 0

0
. . . . . . 0

. . . 0
. . . . . .

...

0
. . . . . . . . . 0

. . . . . . . . . 0
... 0

. . . . . . . . . . . . . . . 0 0

0
. . . 0

. . . . . . . . . 0
. . . 0

0 0
. . . . . . . . . . . . . . . 0

...

0
. . . . . . . . . 0

. . . . . . . . . 0
...

. . . . . . 0
. . . 0

. . . . . . 0

0 . . . 0 0 0 . . . 0 0 −κ(i)
n βteij



.

For the sake of simplicity κ
(i)
j , β

sp
ij and βteij can again be parameterized as follows:

κ ≡ κ
(i)
j ,

βsp ≡ βspij ,

βte ≡ βteij .

Then, the temporal and spatial block can be expressed as:
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Q̃ij = κIn,

Q̃ii = (In − βspA)κ, where

Aij =

{
1, if i ∼ j in the spatial field

0, else

A is called the adjacency matrix since

it gives information on the neighboring structure of the spatial grid.

The whole precision matrix Q̃ can be calculated using the Kronecker product [Van Loan,
2000]:
Q̃ = (IT ⊗ Q̃ii + C ⊗ Q̃ij), with j : |i− j|= 1, where

Cij =

{
1, if |i− j|= 1,

0, else.

5.2 MGMRF model

GMRF models can be set up by different parametrizations of the precision matrix. Schibli
[2011] has introduced the following “Model 1” parametrization for Q̃:

Model 1

κ
(t)
i = 1,∀i ∈ {1, . . . , n}, t ∈ {1, . . . , T}

βteijκ
(t)
i = βteij = f (5.2)

βspij κ
(t)
i = βspij = b

c a scaling parameter for the precision

Schibli [2011] approximated the valid parameter space for this Model 1. A valid parameter
space is thought to be the set of parameters that result in a SPD precision matrix.
Schibli [2011] also produced the Figure 5.2, which depicts her approximation of the valid
parameter space depending on the parameters b and f .
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Figure 5.2: Parameters b and f that result in a SPD precision matrix (green) and param-
eters resulting in a symmetric but non-positive-definite precision matrix (red) [Schibli,
2011].

One can observe that the valid parameter space does not allow high conditional temporal
or spatial correlations. Yet, Schibli [2011] has shown that the model is still practicable
and should not be condemned, even though in climate data (with high temporal and
spatial correlation) the true parameters tend to lie within the non-valid parameter space.

5.2.1 Model based hypothesis testing with MGMRF

Finally, the null and alternative hypotheses for inhomogeneity testing can be stated based
on Model 1 parametrization, which has been introduced above. Thereby, i, j ∈ {1, . . . , n}
represent spatial locations.

H0 : µit ≡ µ0,∀t ∈ {1, . . . , T}
But: µit 6= µjt, for i 6= j

H1 :


µit ≡ µ0,∀t ∈ {1, . . . , t0}
µit = µ0 + a(t),∀t ∈ {t0 + 1, . . . , T}
But for other series µjt0 = µjt, t ∈ {t0 = 1, . . . , T},
i.e., other series may be homogeneous.

Hereby, t0 is the time at which the change point occurred.
If a(t) ≡ a0,∀t ∈ {t0 + 1, . . . , T} then it is called a “shift”, if it varies with time, then one
calls it a “drift”.
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Distribution under H0 and H1

The vector ~x := (x11, . . . , xn1, . . . , x1T , . . . , xnT )T ∈ RnT as a MGMRF is clearly multi-
variate normally distributed, i.e.,

~x ∼ NTn





µ11
...
µn1

...

...
µ1T

...
µnT


,


Q̃11 Q̃12 0 . . . 0

Q̃21 Q̃22 Q̃23 . . . 0

0
. . . . . . . . . 0

... Q̃T−1,T−2 Q̃T−1,T−1 Q̃T−1,T

0 · · · 0 Q̃T,T−1 Q̃TT



−1


.

Under H0:
µi,1 = µi,2 = · · · = µi,T , ∀i ∈ {1, . . . , n}

Under H1:
µi,1 = µi,2 = · · · = µi,t0−1,∀i and
µi,t = µi,t0−1 + a(t),∀t ∈ {t0, . . . , T} and for some i ∈ {1, . . . , n}, t0 ∈ {1, . . . , T}

Test statistic
The likelihood ratio test statistic W provides a mean to compare the likelihood under
the alternative hypothesis with the likelihood under the null hypothesis (see (5.3)). The
statistic follows an approximate χ2

1− distribution since there is only one additional pa-
rameter to be estimated under H1 than under H0. In order to find the MLEs of the
parameters under H1 and H0, the minimization R function

optim()

has been employed. optim() – i.e., minimization – is applied to twice the negative log-
likelihood. The ~θ which minimizes −2lH0(

~θ) or −2lH1(
~θ), maximizes 2lH0(

~θ) or 2lH1(
~θ)

respectively, i.e., one can find the MLE by applying optim(). The following transforma-
tions illustrate what the likelihood and likelihood ratio statistics look like and what to
expect regarding their distributions:
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W := 2 log

L(~̂θML|H1)

L(~̂θML|H0)

 (5.3)

= 2 · (lH1(
~̂θML)− lH0(

~̂θML))

= (−2lH0(
~̂θML))− (−2lH1(

~̂θML))
approx∼ χ2

1, where

L(~θ) = L(~µ, b, c, f) =

(
1

2π

)Tn
2

|Q̃|1/2exp

(
−1

2
(~x− ~µ)T Q̃(~x− ~µ)

)
and

−2 · lH0(~µ, b, c, f) = nT log(2π)− log(|Q̃|) + (~x− ~µ)T Q̃(~x− ~µ)

−2 · lH1(~µ, b, c, f, a) = nT log(2π)− log(|Q̃|) +

(~x− ~µ− a~d)T Q̃(~x− ~µ− a~d)

~d = (0, 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
(T−t0+1) times

, 0, . . . , 0) ∈ RnT

5.2.2 Validation of the MGMRF model through simulation runs

Before applying the R functions to the CMIP5-ng data, it might be interesting to ana-
lyze the estimated parameters b̂ML, ĉML, f̂ML and the inhomogeneity detection behavior in
general. In this section, the performance of the convergence as well as the sensitivity of
the homogeneity test is analyzed with a set of samples drawn from a MGMRF. Simulated
data sets are useful in this setting since true parameter values are known and, thus, one
can examine the performance of the test based on the amount of deviations from the
estimates to the true values of the parameters.
The MGMRF sampling has been done with the rmvnorm.prec() R function from the
spam R package [Furrer, 2015]. The samples are thereby generated on a 3× 3 spatial grid
and T = 50 time values in each time series. A single sample (of dimension 3 × 3 × 50)
from the MGMRF can then be generated as follows:

library(spam)

source(‘/.../mgmrfPrec.R’)

b <- 0.2

c <- 1

f <- 0.1

T <- 50 #time steps

N <- 9 #9 spatial locations

mu <- rep(1,9)

Q <- mgmrf.prec(b,c,f,row,col,T)

#the code of the function mgmrf.prec()

#can be found in the appendix

set.seed(1)

x <- rmvnorm.prec(1, mu = mu, Q) #x has the dimension 1 x 450

y <- x

dim(y) <- c(N,T) #bringing into right format

#.......................

#or alternatively by the function dataGenerator.R (see appendix)

source(‘/.../dataGenerator.R’)

y <- dataGenerator(0.2,1,0.1,3,3,50)
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The MGMRF precision matrix thereby has dimension 450 × 450 (9 locations × 50 time
units) and looks as follows:

column

ro
w

100 200 300 400

40
0

30
0

20
0

10
0

column

ro
w

5 10 15

15
10

5

Figure 5.3: MGMRF precision matrix of dimension 450 × 450. Left: Whole precision
matrix, right: 2 temporal and 2 spatial blocks enlarged.

Parameter estimation of Model 1 under H0

Firstly, the parameter estimation of Model 1 under the null hypothesis is analyzed. This
is done with 200 samples from the MGMRF without introducing inhomogeneities. Since
one knows the true value of the parameters ~θ = (~µT , b, c, f)T , the performance of the
estimation can be analyzed. A histogram and scatter plot show how the optim() R
function estimates ~θ = (~µT , b, c, f)T under H0 with 200 replicates generated as above
using rmvnorm.prec(). The starting values for optim() are thereby chosen as described
in Figure 5.4.
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Estimates for b under H0 (start. val=1e−5)
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Estimates for f under H0 (start. val=1e−5)
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Estimates for µ under H0 (start. val=rep(1,9))
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Figure 5.4: Estimates for ~θ under H0 and non-perfect starting values for optim() for 200
samples. The red line corresponds to the true value. For the vector ~̂µ, the average of its
components are depicted in the last histogram.

Figure 5.4 shows that the estimates approach the real value closely. Only the estimates
for f show a larger spread around the true value. Apart from a histogram, it might be
interesting to look at the distribution of the estimates in a scatter plot in order to exclude
the possibility of correlation among the parameters.
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Figure 5.5: Estimates for ~θ under H0 and non-perfect starting values and a sample size
of n = 200. The red point corresponds to the real value.
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Figure 5.5 shows satisfying results since most of the estimates lie close to the real value
with weak correlations among the parameters.

Parameter estimation of Model 1 under H1

Similar checks as for the null hypothesis can be done for the MGMRF model under the
alternative hypothesis. The alternative hypothesis states that there is some type of an
inhomogeneity in the data. Below, different scenarios of inhomogeneities are simulated
and the performance of the functions test.H1Glob() and test.H1Loc() (see appendix)
are put to the test.

Global shifts
In order to simulate a global shift, the data matrix y ∈ RN×T (N : number of locations, T :
number of time units) (y is again produced as illustrated on page 46) has been modified
in the following manner.

y[,t0:T] <- y[,t0:T]+a

#a: amount of global shift at time t0

If one chooses a = 0.5 as true magnitude for the global shift, then the estimates for
~θ = (~µT , b, c, f, a)T under H1 for 200 replicates look as depicted in Figure 5.6.
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Figure 5.6: Estimates for ~θ under H1 with non-perfect starting values for optim() and a
sample size of n = 200. The red lines correspond to the true value of the parameters.
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Apart from histograms, one might again be interested in the distribution of the parameter
estimates, which is shown in the scatter plot Figure 5.7:
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Figure 5.7: Estimates for ~θ under H1 and non-perfect starting values and a sample size
of n = 200. The red point corresponds to the real value.

The scatter plot shows similar low correlations among ~µ, b, c, f as before. Unlike before,
â, i.e., the shift height, is included in the analysis and shows a strong negative correlation
with µ̂. This high correlation is desired and valid since the higher µ is, (i.e., the mean
level of the time series before the global shift) the lower a needs to be in order to reach
the same mean level after the global shift.
Apart from estimating the parameters, it might be interesting to look at the likelihood
ratio statistic for different heights of global shifts and times t ∈ {1, . . . , T} in order to
estimate the sensitivity of the GMRF homogeneity test. One should again remember
that multiple testing is conducted. Therefore, the significance level has been Bonferroni
adjusted, i.e., α/T is chosen as a significance level.
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Figure 5.8: Likelihood ratio statistic for different heights a of global shifts at time t0 = 25.
â is the estimated height of the inhomogeneity at t0 = 25.

Figure 5.8 indicates that the estimation of the shift magnitudes is fairly accurate over
all simulation runs. The null hypothesis, however, is only rejected for the rather large
shift height of a = 1, i.e., the test is not extremely sensitive since the deviation makes
up approximately 0.8 (slightly deviates depending on the location of the series) of the
standard deviation of each of the 9 series. The location of the shift heights a has been
estimated well for a shift height of 0.5 or larger.

Local shifts
Apart from global shift detection, the test.H1Loc() function (see appendix) also makes
local shift detection possible with the GMRF model developed. For this purpose, the
likelihood ratio statistic is not only being evaluated at every point in time but also every
spatial location.
Similarly as before, the performance of test.H1Loc() can be analyzed through a simu-
lation example with 9 locations (on a 3× 3 grid) and 50 time units. The same basis data
has been used as in the global shifts simulation above, in order to allow comparison. This
time, shifts of different magnitudes have been introduced in series 5, which is the location
in the middle of the 3×3 spatial grid, i.e., the data matrix y ∈ RN×T of MGMRF samples
have been adjusted as illustrated in this pseudo code:

l0 <- 5

t0 <- 25

changes <- c(0.1,0.5,1,1.5,2)

ynew <- y

for(i in 1:length(changes)){

ynew[l0,t0:T] <- y[l0,t0:T]+changes[i]

}

Again multiple testing is conducted over space and time and the significance level is
Bonferroni corrected. The likelihood ratio statistic values are depicted in Figure 5.9.
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Figure 5.9: Likelihood ratio statistic for local shifts a ∈ {0.1, 0.5, 1, 1.5, 2} at location 5
and time t0 = 25.

The plots in Figure 5.9 show that local shifts are less likely to be detected compared to
global shifts as depicted in Figure 5.8. In Figure 5.8, the global shift of a = 0.5 has been
detected whereas in the Figure above, the green line corresponding to a = 0.5 does not
show any significant values of the likelihood ratio statistic. This comparison is admissible
since the same underlying data has been used for the simulations in the Global shifts and
Local Shifts sections above.
Apart from the difference in sensitivity, the above Figure 5.9 illustrates the GMRF prop-
erties of conditionally dependent neighbors. Even though the series at locations 2, 4, 6
and 8 have been left unchanged over the course of increasing shift heights at location 5,
their likelihood ratio statistics increase.
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5.3 Inhomogeneity detection performance

5.3.1 Local and global shifts of the mean

Section 5.2.2 has shown that the MGMRF model succeeds in detecting local and global
shifts for some samples of simulated data with large enough shifts introduced. One might
be curious if the MGMRF model also succeeds at detecting local drifts or negatively
correlated series (as depicted in Section 1.3.3).

5.3.2 Local drifts and negatively correlated neighbor series

For this purpose, one can again simulate data with a local drift in one pixel and see if
gmrfHomogeneityTestComp() can detect this pixel. Below, data is generated using the
function dataGenerator() (see appendix) on a 3× 3 spatial grid with T = 50 time steps
and a precision matrix with parameters set to b = 0.2, c = 1 and f = 0.1. A linear drift
of slope 2/25 is introduced in the time series at the location in the middle that starts at
time t0 = 25. The result is the following:

data <- dataGenerator(rep(0,9),0.2,5,0.1,3,3,50)

dataNewDrift <- data

dataNewDrift[2,2,25:50] <- 2/25*c(25:50)-2+data[2,2,25:50]

driftout <- gmrfHomogeneityTestComp(dataNewDrift,"local",

muStart=rep(0,9),0.2,1,0.1,0.05,L=1)

inhomoFound timeOfInhomo heightInhomo locInhomo

TRUE 34 1.176874 5

Similar as in the SNHT case, the time is not estimated accurately which is due to the
construction of the test.H1Loc(), but the location is detected correctly.

Negatively correlated series are usually not detected by the MGMRF by defintion.

5.3.3 Summary of inhomogeneity detection performance

Based on the previous sections, the performance of the MGMRF or the gmrfHomogeneity
TestComp() R function can be briefly summarized in Table 5.1:

Inhomogeneity type Performance of MGMRF model
gmrfHomogeneityTestComp()

local shifts in mean of single time series ++
local drifts +

(good at finding the location,
bad at detecting the time)

global shifts in mean ++
negatively correlated neighbor series −−

Table 5.1: Summary of the inhomogeneity detection performance of
gmrfHomogeneityTestComp(). ++: Very good performance, +: reasonable perfor-
mance, −: poor performance, −−: extremely poor performance.
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Remark 5.3.1. Table 5.1 only takes into account the inhomogeneity detection perfor-
mance based on simulation runs. Runtime, stability etc. are not considered up to this
point.

5.4 MGMRF inhomogeneity testing in R

Hypothesis testing with the MGMRF model has been implemented in the gmrfHomogen-

eityTestComp() function (details in appendix). Using perfect samples from a MGMRF
on gmrfHomogeneity TestComp() does obviously not yield issues, mainly if the starting
values for the optim() minimization function can be chosen perfectly. If the gmrfHomogen-
eityTestComp() function is applied to real climate data, conditions for the optim()

convergence are often not perfect and optim() usually does not find the MLE of the
parameters within a certain number of iterations. The following section serves to re-
solve uncertainties regarding the usage of the gmrfHomogeneityTestComp() function by
making suggestions on how to avoid obtaining non-convergence. Furthermore, details are
given regarding the runtime of the gmrfHomogeneityTestComp() function, which might
be interesting for users of the framework developed.

5.4.1 Convergence of optim()

As already mentioned on page 45, the optim() R function is used to find the ML-
estimates for the parameters ~µ, b, c, f and a by finding the minimum of twice the negative
log-likelihood function under the null and alternative hypotheses (see Section 5.2.1), i.e.,
under the null hypothesis, the minimum over n+3 parameters needs to be found and under
the alternative hypothesis even n+4 ML-estimates need to be approximated for each time
t ∈ {1, . . . , T} (and location, if local inhomogeneity detection is applied), where n is the
number of locations and T is the total number of months, years or seasons depending on
the temporal resolution of one’s CMIP5-ng file.
optim() itself, or more precisely the method “L-BFGS-B”, which has been used in all of
the optim() calls in this thesis, is a limited-memory quasi-Newton algorithm with specified
lower and upper bounds for each parameter as constraints for optimization [Held and Bové,
2013]. The Newton – Raphson algorithm for optimization is a numerical algorithm for a
function g : Rn → R, where the update of each iteration is defined in the following way:

~θ(t+1) = ~θ(t) − (Hg(~θ
(t)))−1 · ∇g(~θ

(t)) (5.4)

Whereas the Newton – Raphson method for optimization uses the exact Hessian Hg(~θ
(t))

and gradient ∇g(~θ
(t)) at every iteration step t, “quasi-Newton” methods use positive

definite approximations of the Hessian based on the successive approximations of the gra-
dients. Thereby, the gradient can be approximated by:

∂g(~θ)

∂~θi
≈ g(~θ + εei)− g(~θ − εei)

2ε
, where

ei = (0, . . . , 1︸︷︷︸
ith entry

, . . . , 0),

ε ∈ R>0 chosen small.

Convergence of optim() with the “L-BFGS-B” method is therefore reached if the gradient
is 0 and the corresponding Hessian matrix is positive definite, which are sufficient criteria
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for a local minimum.
The “L-BFGS-B” method, however, might not necessarily converge to the desired mini-
mum, if starting values are far away from the actual minimum or if there are discontinuities
in the likelihood function. 106 has been assigned to twice the negative log-likelihood in
the non-valid parameter space. On the valid parameter space, the negative log-likelihood
is significantly smaller. Therefore, optim() convergence issues appear at the boundary of
the valid and non-valid parameter space.
In this thesis, optim() has been used with the maximal number of iterations set to 200.
This can be done with the command

control=list(maxit=200).

If optim() does not converge within 200 iterations an exception is thrown by the
gmrfHomogeneityTestComp() saying: “quasi – Newton method did not converge under
H0/H1”. If this is the case, a user might want to know how to proceed. Hence, operating
instructions are given in these few steps:

1. Apply the gmrfHomogeneityTestComp() to the data.

2. The quasi-Newton method does not converge under H0:

(a) If optim$convergence=52: then one can extract the latest valid parameters b, c
and f and pass them to gmrfHomogeneityTestComp VR(). The b, f parameters
should be at the bounds of the valid and non-valid parameter space (see Figure
5.2).

(b) If optim$convergence=1: The iterations limit maxit has been reached. One
can try another starting value or proceed as in the optim$convergence=52

case.

3. gmrfHomogeneityTestCom VR() fixes the parameter b under H0 and H1 to the input
value and fixes f and c under H1 to the converged value under H0. This procedure,
with almost no exception, leads to convergence of the optim() but increases runtime
tremendously.

It is obvious that fixing a parameter has an effect on the likelihood under H0 and H1

since the parameters affect the determinant of the precision matrix, which is an important
component of the likelihood function. Fixing parameters, however, also has an influence on
the sensitivity of the significance test. Two aspects of the fixation influence the behavior
and are briefly elucidated.
First, one should be aware of the fact that fixing parameters, which have been obtained by
the optim() under H0, leads to suppressing the following effect: Under H1, the parameter
estimates for b, c and f are usually smaller if there is an inhomogeneity in the data
compared to the estimates under H0. This is due to the fact that a shift in a time
series leads to higher temporal and spatial conditional correlation. If the parameters are
then fixed to the same value under H0 and H1, this effect is then suppressed and could
potentially lead to a biased likelihood ratio statistics.
Second, if a parameter is fixed to a value that is further away from the truth, the model
bias tends to be reinforced.
In order to examine these two aspects, the same global shift experiment (with the same
underlying data) has been repeated as in Section 5.2.2. This time, the gmrfHomogeneity-
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TestComp VR() has been used and b has been fixed to 0.2 under H0 and H1 and then fixed
to 10−5 under H0 and H1. The true value of b is 0.2 under H1.
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0
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W

Likelihood ratio statistics for different heights of
global shifts and b fixed to 0.2 under H0 and H1

Time

α T

a=0.1 (estimate at t=25: 0.230) 
a=0.5 (estimate at t=25: 0.578)
a=1    (estimate at t=25: 1.035)
a=1.5 (estimate at t=25: 1.493)
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Likelihood ratio statistics for different heights of
global shifts and b fixed to 1e−5 under H0 and H1

Time
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a=0.1 (estimate at t=25: 0.241) 
a=0.5 (estimate at t=25: 0.597)
a=1    (estimate at t=25: 0.983)
a=1.5 (estimate at t=25: 1.263)

Figure 5.10: Likelihood ratio statistics in global shift detection with varying shift heights
introduced at t0 = 25. Top: b has been fixed to 0.2 (true value under H1). Bottom: b has
been fixed to 10−5.

Comparing Figure 5.10 to Figure 5.8 of Section 5.2.2 reveals that essentially nothing
changes if b is fixed to 0.2 and f, c are fixed to MLEs as obtained by the null hypothesis.
However, if b is fixed to a value that is approximately 0.2 away from the true value, changes
are apparent. It seems as if the estimates for the shift height get more inaccurate the
larger the introduced shift in the mean level is. Simultaneously, the test statistic increases
and the test in general is more sensitive with an increased probability of committing a
type I error (e.g., shortly before t = 50, a type I error has been committed for b set to
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10−5). Overall, the impact of fixing b is, however, less extreme as probably suspected.
Through extracting the b to a realistic value as obtained under H0, it is more probable to
be in a situation as depicted in the top plot than the bottom plot of Figure 5.10.

5.4.2 Empirical runtime estimation of the gmrfHomogeneity-

TestComp() function

A user of the gmrfHomogeneityTestComp() function might be interested in a runtime
estimation. One may remember that the gmrfHomogeneityTestComp() function includes
the optimization of the likelihood function under the null and alternative hypotheses using
a quasi-Newton method. Runtime, therefore, partly depends on the speed of convergence
of this numerical method. The speed of convergence, on the other hand, depends on
further variables such as the chosen starting values, the upper and lower bounds or scaling
factors set in the option “parscale” in the optim() call. The maximal number of iterations
in optim() can, however, be controlled by the option maxit. All the code produced for
this thesis works with 200 as an upper bound for the number of iterations. In a single
iteration the precision and the likelihood needs to be estimated based on the optim()

updated values of the parameters. Furthermore, optim() needs to estimate the gradient,
the Hessian matrix and calculates a new vector of parameters ~θ(i+1) from the previously
parameter vector ~θ(i).
Apart from optimizing the likelihood, the size of the data itself has a large effect on
runtime. The data is passed to the gmrfHomogeneityTestComp() function as a three
dimensional array with dimensions longitude, latitude and time. The time component
has an approximately linear effect on the runtime if L = 1 as input parameter in
gmrfHomogeneityTestComp(). Thereby, L is an integer parameter and determines in
what temporal distances the likelihood ratio statistics are evaluated. E.g., if L = 1, then
the likelihood ratio statistics are evaluated at every time unit, if L = 5, then it is eval-
uated only every 5th time etc. Thus, choosing L large accelerates runtime by a factor
of L but simultaneously information on the likelihood ratio statistic is lost and the time
at which a temporal shift of the mean level occurred, might not be detected accurately.
Apart from the temporal dimension, runtime of the gmrfHomogeneityTestComp() func-
tion obviously increases by an increasing number of spatial locations. More parameters
need to be estimated with a larger spatial field. The runtime also depends on the “type”
as an input parameter of the gmrfHomogeneityTestComp() function. If it is chosen as
“local”, a loop over all locations is performed which would then lead to a more than linear
increase of runtime with an increasing number of locations. The question is, if it is also
more than linear, if the “type” is chosen as global. For this reason, the “space vs. time”
comparison has been conducted.

Space vs. time
Is it more expensive to apply a narrow spatial field with many time units or a large spatial
field with a few time units to the gmrfHomogeneityTestComp() function? An experiment
has indicated that the latter is the case, i.e., it usually takes longer to estimate the
parameters for many spatial pixels compared to only estimate them for every time on
a small spatial domain. The experiment has been conducted on a 3 × 3 × 100 and a
10 × 10 × 9 data array over Europe, i.e., in both cases the same amount of data values
have been analyzed. The code of the experiment can be found in the appendix. A 5 times
faster runtime has been measured for the data set with large temporal dimension on a
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narrow spatial domain compared to the large spatial domain with only a few time units.
Overall, runtime of the gmrfHomogeneityTestComp() function is dependent on the speed
of the likelihood optimization, but also on large parts on the input parameters that are
chosen as well as the size of the data.

5.5 MGMRF methods on the CMIP5-ng data

The previous sections have illustrated that the gmrfHomogeneityTestComp() R func-
tion can be used as a tool to detect global and local inhomogeneities in spatio-temporal
data sets. This section finally presents applications of gmrfHomogeneityTestComp() on
CMIP5-ng data. Preliminary, the CMIP5-ng data needs to be “transformed” as close as
possible to realizations of a MGMRF, in order to provide good conditions for convergence
of the optim() and inhomogeneity detection performance in general. Raw CMIP5-ng
data contains seasonality and trends (e.g., induced by RCP-scenarios) which can affect
the performance of inhomogeneity detection and optimization. Therefore, these climatic
occurrences are recommended to be removed. In Section 5.5.1, methods are presented
that use the residuals of different representative models, which can then be passed to
gmrfHomogeneityTestComp() in order to provide more stability in the code compilation
process.

5.5.1 Removing seasonality and trends

The challenge in removing seasonality and trends from the residuals is to find a model
that does not eliminate the inhomogeneities that need to be detected. Two possible
approaches are discussed in this section. The first one fits a Generalized Additive Mixed
Models (GAMM) for every time series individually, whereas the second one makes use
of the weighted mean over different CMIP5-ng model projection. The latter method has
more bias potential, but is computationally faster. Accordingly, Section 5.5.1 provides
details on how the user can avoid including strong outlier models in the weighted mean.

Decomposition with GAMM

This section focuses on the decomposition of the data into trends and seasonality with a
GAMM. Thereby, the model should include predictive functions that are rather smooth
with few degrees of freedom in order to not remove the inhomogeneities from the residuals
that one wants to find. In a GAMM, a penalized term controls the smoothness by a penalty
on the integrated and squared second derivative of the smoother. The GAMM models,
which are suggested to be used, look as follows:

~y = β0 + sseason(~x1) + strend(~x2) + ~ε, for monthly data,

~y = β0 + strend( ~x2) + ~ε, for annual data.

Smoothers: sseason, strend
If the data to be analyzed has a temporal resolution of a month, it is suggested to use
a cyclic cubic spline for the seasonal smoother sseason on the vector of months, i.e.,
x1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, . . . ). Here, the cyclic cubic spline consists of
a basis of cubic splines all fitted for the same period of 12 subsequent months (January,
. . . , December). A weighted sum over these basis splines then form the cyclic cubic spline.

58



Knot points are defined at which the spline basis functions should meet to avoid discon-
tinuity. In the gamm() R function of the R package gamair [Wood, 2015], the cyclic cubic
spline type is specified as bs=‘‘cc’’.
For strend the bs=‘‘cr’’ R type is suggested to be used, which refers to a basis of cubic
splines with a moderate size of equidistant knots across the covariates x2. Here, x2 is
chosen as a sequence of 1, . . . , T , where T is the total number of months in the inves-
tigated CMIP5-ng data set. The gamPeriodTrendRem() R function (see appendix) has
been implemented in the course of this thesis to assist in the removal process with the
above described smoothers in the GAMM.

Example 5.5.1. The usage and results of the GAMM model is illustrated below on
a CMIP5-ng Near Surface Temperature time series of the climate model ACCESS1-0
(r1i1p1) at a 2.5◦ × 2.5◦ pixel over Switzerland. The gamPeriodTrendRem() function
prints out a summary of the model fit with GAMM.

Family: gaussian

Link function: identity

Formula:

values ~ s(month, bs = "cc", k = 12) + s(time, bs = "cr")

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 281.53155 0.03255 8649 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(month) 9.760 10.000 5180.6 <2e-16 ***

s(time) 7.092 7.092 276.1 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.951

Scale est. = 2.9359 n = 2772

The R summary shows highly significant p-values as one might have expected.
At this point, one may be interested in predictions of the GAMM model, which are illus-
trated in Figure 5.11 for a first slice of 100 months. The smooth trend part of the model
is depicted as well.
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Figure 5.11: Top: Trend part of the GAMM in the context of the ACCESS1-0 data series.
Bottom: Prediction of the GAMM model based on the ACCESS1-0 data series for the
first 200 months since 1870.

Figure 5.11 shows a smooth trend with little variance as desired. The remaining residuals
of the GAMM at the spatial pixel centered at 46.25◦N 8.75◦E have Autocorrelation Func-
tion (ACF), Partial Autocorrelation Function (PACF) and Q-Q plots depicted in Figure
5.12:
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Figure 5.12: ACF, PACF and Q-Q plots of the residuals of the GAMM model applied to
the ACCESS1-0 data series. The red dashed line depicts the theoretical normal quantiles.

The ACF and PACF plots show significant autocorrelation for lags of 1,2 and 3 which
may be fixed by modeling and AR(2) process, nevertheless, the MGMRF is applied to the
residuals in which way temporal correlations are wanted. For a lag of 12, the ACF exceeds
the 95% threshold, which is most likely to seasonality that could not be removed through
the process.

Decomposition with weighted model means

A more efficient way of removing seasonality and trends in one specific CMIP5-ng file
would be to subtract it from the overall (weighted-) mean over all models and ensembles
of a specific scenario, variable and resolution in the CMIP5-ng data pool. The underlying
assumption is that the mean of different model projections of the same climate variable,
scenario and resolution provide a reasonable overall representation of a specific variable
under a specific scenario and resolution. If this assumption is not fulfilled then one may
proceed as in Section 5.5.1.

Example 5.5.2. One may again look at the Near Surface Temperature data under the
RCP45 scenario and the ACCESS1-0 (r1i1p1) model for a monthly temporal resolution
and subtract it from the overall weighted mean of all monthly Near Surface Temperature
data files under the RCP45 scenarios. Figure 5.13 illustrates what the difference series
and the mean series as well as the original data look like at a spatial pixel located in
Switzerland for the first 100 months.

61



1920 1922 1924 1926 1928

26
5

27
5

28
5

ACCESS1−0, r1i1p1 projection of the monthly tas data
under the RCP45 (46.25°N 8.75°E)

Time [years]

Te
m

pe
ra

tu
re

 [K
]

1920 1922 1924 1926 1928

27
5

28
5

Weighted mean of the monthly tas model projections
under the RCP45 (46.25°N 8.75°E)

Time [years]

Te
m

pe
ra

tu
re

 [K
]

1920 1922 1924 1926 1928

−
4

0
2

4
6

Difference of weighted mean and
ACCESS1−0 projection (46.25°N 8.75°E)

Time [years]

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
s 

[K
]

Figure 5.13: Time series at a pixel in Switzerland for the first 100 months. Top: The
original ACCESS1-0, r1i1p1 data. Center: Mean series of all tas-RCP45-monthly-2.5◦ ×
2.5◦ CMIP5-ng data sets. Bottom: The difference time series of ACCESS1-0 (r1i1p1) and
the weighted mean of 110 model projections of the same scenario, variable and resolution.

One might also be interested in whether or not the above difference series really are nor-
mally distributed. The Q-Q plots from three sample time series in Figure 5.14 show that
it very much depends on the geographical region how close the residuals resemble samples
from a normal distribution.
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Figure 5.14: ACF, PACF and Q-Q plots for different spatial pixels (2.5◦ × 2.5◦) based
on the “deseasonalized” (trend, seasonality removed) ACCESS1-0 (r1i1p1) monthly tas
data. The red dashed line in the Q-Q plots depict the theoretical normal quantiles.

The ACF and Q-Q plots for the spatial pixel over Switzerland look very similar to the one
in Figure 5.12. It similarly shows a positive autocorrelation for a lag of 12 and lags 1, 2
and 3, i.e., despite a different approach to removing the seasonality and trend was used,
similar effects and structure are still existent in the remaining residuals.
The time series that is located around the Equator shows better results in terms of the
ACF and the Q-Q plot which might be due to the fact that Equatorial regions experience
less marked seasonality as regions in the Antarctica or in Switzerland.

The procedure of building the weighted mean is automated by the meanOfFiles() func-
tion, which has been implemented in the course of this thesis. This method can be used
as follows (illustrated for a NetCDF file containing monthly precipitation data on the
RCP45 scenario):

source(‘/../meanBuilder.R’)

source(‘/.../MeanOfFiles.R’)

source(‘/.../difference.R’)

#meanOfFiles only needs the path to the directory

#with all pr_mon_.*_rcp45_.*_g025.nc files

prMean <- meanOfFiles("/.../pr",weighted=T)

#difference subtracts the mean (here ‘‘prMean’’) from

#a specific data set and standardizes each time series.

desData <- difference(Mean = prMean,

path = "/.../pr/pr_mon_CCSM4_rcp45_r6i1p1_g025.nc")
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Given a path of a directory with NetCDF files and a specific file from this directory, it
calculates the weighted mean over all files in that directory. The weights are defined
according to the number of ensembles a certain model produces. The assumption is that
ensembles are more likely to be dependent whereas models are thought to be independent
even though, due to shared code among the climate institutes, independence can still not
always be guaranteed.

Bias in the weighted mean

One may criticize that the removal of trends and seasonality via the weighted mean is not
optimal since biased models, if existent, are included in determining the weighted mean.
The measurement and assessment of the overall bias, on the other hand, is non-trivial
due to uncertainties of the model projections in general.
Nonetheless, one may for instance order the models according to the standardized Sum
of Squared Differences (SSD) of the overall weighted mean to the mean of the model pro-
jections (mean over all ensemble projections of a certain model) in order to detect models
that are “far away” from the overall mean. The SSD for a model M is defined as:

SSD(M) :=
∑

i∈Lon×Lat×T ime

(x
(M)
i − x̄(i))2

s2
, where

Lon = {1, . . . , 144}, this range only applies for a 2.5× 2.5◦ spatial resolution

Lat = {1, . . . , 72}, this range only applies for a 2.5× 2.5◦ spatial resolution

Time = {1, . . . , T}
x

(M)
i : data values of model M at location and time i

x̄(i) : value of the weighted overall mean at location and time i

s : sample standard deviation across all values of x̄

In R, the following code can be used to calculate the SSD:

weigthedMeanTas <- meanOfFiles("/.../tas",weighted = T) #code: see appendix

meansOfModels <- getMeansOfModel("/.../tas") #code: see appendix

des <- list()

for(i in 1:length(meansOfModels)){

des[[i]] <- (weigthedMeanTas-meansOfModels[[i]])

}

names(des) <- names(meansOfModels)

ssd <- numeric(length(des))

for(i in 1:length(des)){

ssd[i] <- sum((des[[i]]/sd(weigthedMeanTas))^2)

}

The SSD for the Near Surface Temperature can also be represented graphically as done
in 5.15.
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Figure 5.15: The SSD the weighted over all mean to the model mean, illustrated for
monthly RCP45 Near Surface Temperature data.

Figure 5.15 shows that the IPSL-CM5B-LR climate model is furthest away from the
overall weighted mean. That does not mean that the climate model is a “bad” climate
projection since the truth is unknown. At this point, it is left to the user to decide if or
not to remove the IPSL-CM5B-LR model from the calculation of the weighted mean.
For monthly precipitation data under the RCP45 the SSD looks slightly different as
depicted in Figure 5.16.
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Figure 5.16: The SSD the weighted over all mean to the model mean, illustrated for
monthly RCP45 precipitation data.

This procedure not only reveals the cause of a possible bias in the overall mean by looking
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at outliers, but it also shows that models from the same research institution produce
similar results, such as ACCESS1-0, ACCESS1-3, HadGEM2-AO or HadGEM2-CC.
In this above case, one may notice that the ACCESS models are furthest away from
the overall weighted mean. That does again not mean, that the ACCESS models have
produced “bad” projections of the variable and scenario since the truth is unknown. Last
but not least, the same plot has been produced for the Upwelling Longwave Radiation
(see Figure 5.17).

● ● ●● ●● ● ●● ●●● ●●● ●● ●●● ●●● ● ●● ●●●● ●●● ●●

ACCESS1−0 ACCESS1−3

BNU−ESMCCSM4 CESM1−BGC

CESM1−CAM5

CMCC−CMS

CMCC−CM

CNRM−CM5 CSIRO−Mk3−6−0CSIRO−Mk3L−1−2

CanESM2 FGOALS−g2

GFDL−CM3

GFDL−ESM2G

GFDL−ESM2M

GISS−E2−H−CC

GISS−E2−H

GISS−E2−R−CC

GISS−E2−R

HadGEM2−CC

HadGEM2−ES

IPSL−CM5A−LR

IPSL−CM5A−MR

IPSL−CM5B−LR

MIROC−ESM−CHEM

MIROC−ESM

MIROC5

MPI−ESM−LR

MPI−ESM−MR MRI−CGCM3

NorESM1−ME

NorESM1−M

bcc−csm1−1−m

bcc−csm1−1

3e+05 4e+05 5e+05 6e+05 7e+05 8e+05
SSD

SSD of model and weighted mean difference for RCP45, monthly rlus data

Figure 5.17: The SSD the weighted over all mean to the model mean, illustrated for
monthly RCP45 Surface Upwelling Longwave Radiation data.

Figure 5.17 reveals that the same climate models, as in the Near Surface Temperature
case, seem to be outlier models in the Surface Upwelling Longwave Radiation, which
might be due to the fact that Near Surface Temperature and Longwave Radiation are
strongly related climate variables.

5.5.2 Applying gmrfHomogeneityTestComp() to CMIP5-ng data
sets

After introducing all the MGMRF tools that have been developed in this thesis, this
section finally presents the output of the gmrfHomogeneityTestComp() R function on
CMIP5-ng data. The same spatial regions, models and variables are chosen as in the
SNHT Section 4.5 in order to allow comparison of the results.

Monthly Near Surface Temperature over Europe (RCP45): ACCESS1-0 (r1i1p1)

Again, one may look at the 60 pixels over Europe as shown in Figure 4.11.

Global inhomogeneities; decomposition with GAMM
The GAMM has been used and fit to every single time series of the ACCESS1-0 monthly
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Near Surface Temperature data projection. In R, this fitting procedure can be done as
follows:

library(ncdf)

library(ncdf.tools)

library(mgcv)

library(gamair)

source(‘/.../gamPeriodTrendRem.R’)

file1 <- ‘/.../tas_mon_ACCESS1-0_rcp45_r1i1p1_g025.nc’

nc1 <- open.ncdf(file1)

data1 <- get.var.ncdf(nc1)

times <- convertDateNcdf2R(time.source=nc1$dim$time$vals,

units="days",origin=as.POSIXct("1850-01-01",tz="UTC"),

time.format=’%Y-%m-%d’)

close.ncdf(nc1)

times[1] #"1870-01-16 12:00:00 UTC"

times[length(times)] #"2100-12-15 12:00:00 UTC"

year <- rep(seq(1870,2100),each=12)

month <- rep(c(1:12),length(times)/12)

res <- matrix(0,nrow=144*72,ncol=length(year))

k <- 1

for(j in 1:72){

for(i in 1:144){

data <- data.frame(month=month,year=as.factor(year),

values=data1[i,j,],time=c(1:length(year)))

res[k,] <- gamPeriodTrendRem(data)

k <- k+1

}

}

Having the residuals, the likelihood ratio statistics can then be obtained as follows:

#Europe 10x6x2772

library(spam)

source(‘/.../gmrfHomogeneityTest_VR.R’)

dim(res) <- c(144,72,2772) # res from above

desDataEurope <- res[c(1:10),c(55:60),]

av <- matrix(0,10,6)

for(i in 1:10){

for(j in 1:6){

av[i,j] <- mean(desDataEurope[i,j,])

}

}

timeTaken <- system.time(

outGlobTasVR <- gmrfHomogeneityTestComp_VR(desDataEurope,

type="global",mu=c(av),

bStart=0.14,cStart=1.2,fStart=0.2,

sigLevel=0.05,L=5))
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# inhomoFound timeOfInhomo heightInhomo

# 1 TRUE 2710 0.6554669

# > timeTaken

# user system elapsed

# 32766.594 57.361 32835.670 --> approximately 9 h

outGlobTasVR carries the likelihood ratio statistics as well as the estimates for the global
shift heights a. These are depicted in Figure 5.18.
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Figure 5.18: Likelihood ratio statistics and estimated shift heights â over time for the
monthly Near Surface temperature ACCESS1-0 (r1i1p1) projection on a 10 × 6 × 2772
field over Europe.

In general, one should pay more attention to significant likelihood ratio statistics in the
middle of the time interval than at the beginning and end of the time interval. The
reason for that can be found in the construction of the test.H1Glob() R function. If
there are a few extreme values at the end of the interval, the likelihood ratio statistics
will react sensitively to these values. This behavior is somewhat similar to the original
Alexandersson’s SNHT statistics.
More importantly, if one compares the results of the gmrfHomogeneityTestComp() in
Figure 5.18 with the ones of the pairwiseSNHT() in Figure 4.12, it becomes evident
that similar time regions have been declared as inhomogeneous, namely those between
the years 1900 and 1950 as well as between 2000 and 2050. Thus, the two inhomogeneity
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tests share some level of consistency even though they use completely different approaches
to find inhomogeneities.

Global inhomogeneities; decomposition with weighted mean model
Proceeding analogously as above, the difference of the ACCESS1-0 and the weighted mean
model can be used as an input for the gmrfHomogeneityTestComp() function.

library(ncdf)

source(‘/.../gmrfHomogeneityTest_VR.R’)

source(‘/.../MeanOfFiles.R’)

source(‘/../difference.R’)

Mean <- meanOfFiles("/.../tas",weighted = T)

desData <- difference(Mean,’/.../tas_mon_ACCESS1-0_rcp45_r1i1p1_g025.nc’,

standardize = TRUE)

desDataEurope <- desData[c(1:10),c(55:60),]

av <- matrix(0,10,6)

for(i in 1:10){

for(j in 1:6){

av[i,j] <- mean(desDataEurope[i,j,])

}

}

timeTaken <- system.time(

outGlobWght <- gmrfHomogeneityTestComp_VR(desDataEurope,

type="global",mu=c(av),

bStart=0.13,cStart=2,fStart=0.2,

sigLevel=0.05,L=5))

# > timeTaken

# user system elapsed

# 47763.961 45.816 47837.277 --> approximately 13 h 17 min

# inhomoFound timeOfInhomo heightInhomo

# TRUE 1415 -0.1631918

outGlobWght$a and outGlobWght$lRatioStat can again be plotted as above, yielding
likelihood ratio statistics and shift heights as depicted in Figure 5.19.
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Figure 5.19: Likelihood ratio statistic and estimated shift height a produced by
gmrfHomogeneityTestComp() on the differences of the ACCESS1-0 to the overall
weighted mean of monthly Near Surface Temperature data under the RCP45 scenario.

The likelihood ratio statistic is significant almost at any point in time. The estimates
for a, on the other hand, are almost all negative. Yet, the two plots do not agree on the
absolute values of the maximum. The likelihood ratio statistic is maximal at t0 = 1415
(months since January, 1870) whereas the estimates for a are maximal in absolute terms
at t0 = 2770 (months since January, 1870). Interestingly, the estimates for a look very
similar in a neighborhood of t0 = 2770 (months since January, 1870) as in Figure 5.18.
Overall, the statistic and its associated estimates for a, however, are not reasonable. At the
very end of the time interval, the statistic shows no significance, but the corresponding
estimates of the shift heights are large in absolute terms. A possible reason for this
behavior might be that the time series are still not normalized enough by the subtracting
the weighted mean. Hence, it is suggested to use the weighted mean approach for different
applications but not to remove trends and seasonality.

Monthly Surface Upwelling Longwave Radiation over South Africa (RCP45):
CSIRO-Mk3L-1-2 (r1i2p1)

Analogously as above, the residuals via the GAMM can be obtained for the CSIRO-Mk3L-
1-2 (r1i2p1) model projection. It has been elucidated in the previous sections that the
gmrfHomogeneityTestComp() function performs with relatively slower runtime on large
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spatial fields. Therefore, unlike in the applications section of the SNHT, it is only focused
on a rather small spatial field over Africa with 25 locations instead of the original 220
locations. The spatial field looks as in Figure 4.16.

Global inhomogeneities with GAMM
The global shift detection has been applied analogously as in the Near Surface Tempera-
ture example, yielding:

# inhomoFound timeOfInhomo heightInhomo

# TRUE 2765 -3.723992 # 2755 refers to the 2755-th

# month after January 1870

# the CPU time measured of ’gmrfHomogeneityTestComp()’ is the following:

# > timeTaken

# user system elapsed

# 5325.478 8.420 5335.282 --> approximately 1.5 h
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Figure 5.20: Likelihood ratio statistics and estimated shift height for a over time for the
monthly Surface Upwelling Longwave Radiation projection on a 5 × 5 × 2772 field over
Africa.

Figure 5.20 as well as the gmrfHomogeneityTestComp() output, again, show highly sig-
nificant values at the end of the time interval. These might again not be too significant as
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also illustrated in the next section. Interestingly, however, is the fact that the two exceed-
ing likelihood ratio statistics, in the middle of the time interval, lie at similar temporal
regions as detected by the pairwiseSNHT() (see Figure 4.17).

Local Inhomogeneities with GAMM
In order to illustrate the usage of the local inhomogeneity detection, a rather small time
interval from year 2050 until 2100 has been chosen, in order to keep runtime short. The
code and its output are provided below:

#...(same data, libraries as above)

timeTaken <- system.time(

outLocAfricaSmall <- gmrfHomogeneityTestComp_VR(desDataAfrica,type="local",

mu=c(av),

bStart=0.1393180,

cStart=1.6189352,

fStart=0.2583866,

sigLevel=0.05,L=5))

# >timeTaken

# user system elapsed

# 7063.846 35.892 7099.973 --> approximately 1 h 58 min

# inhomoFound timeOfInhomo heightInhomo locInhomo

# TRUE 590 -2.564506 21
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Figure 5.21: Likelihood ratio statistics at pixels at the vertices of the 5×5 spatial domain
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Figure 5.22: Likelihood ratio statistics at pixels in the middle of the 5×5 spatial domain.

The effect of the strongly exceeding likelihood ratio statistics is not as extreme as before,
yielding exceedance of the significance threshold only at location 21.
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Chapter 6

Lattice Krig

Apart from GMRF models, a multi-resolution spatial model called “Lattice Krig”, which
was developed by Dr. Douglas Nychka and his working group has been chosen as an
analysis tool for the large CMIP5-ng data. It is applicable to large data sets since esti-
mation and prediction of the model are computationally affordable, which is due to the
GMRF methodology that is used for the stochastic coefficients of compact-support ba-
sis functions. Unlike in the previously introduced GMRF models, there is no temporal
component included in the multi-resolution model Lattice Krig.

6.1 Theory

The following theory on Lattice Krig is based on Nychka et al. [2013]. It intends to
illustrate the basic ideas, definitions and properties of the spatial Lattice Krig model as
a preparation to the R applications Section 6.2.

6.1.1 Basic construction of the spatial model

Given are n pairs of observations (~xi, yi), i ∈ {1, . . . , n}, then a model of the following
form is considered:

yi = ~ZT
i
~d+ g(~xi) + εi, where (6.1)

εi are random errors and

g : Rp → R is an unknown, smooth function,
~Zi is a vector of covariates,
~d is a vector of linear parameters.

The goal of Lattice Krig is to estimate g(~x) based on the observations and to quantify the
uncertainty of the estimates. Here, p = 2, i.e., one looks at longitude-latitude predictive
variables {~xi}i∈{1,...,n}, whereby the function g : R2 → R is constructed in the following
way:
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g(~x) =
L∑
l=1

gl(~x), where

gl(~x) =

m(l)∑
j=1

cljφj,l(~x) and (6.2)

{φlj}j∈{1,...,m(l)} a sequence of basis functions at level l

~c l ∈ Rm(l) a vector of coefficients distributed as Nm(l)(0, ρPl)

(Pl)m(l)×m(l) depends on additional parameters

Zn×m(l) matrix of covariates

~d vector of length m(l) of linear parameters

Nychka et al. [2013] also uses the following simplified notation of the multi-resolution
Lattice Krig model in descriptions of his package and other presentations that can be
found online:

~y = Z~d+ Φ~c+ ~e, where (6.3)

Φij = φj(~xi), i.e., Φ is an n×m matrix,

~c ∼ Nm(0, ρP ). (6.4)

One should notice that in (6.4), the coefficient vectors {~c l}l∈{1,...,L} have been combined
into a single vector ~c = (~c 1, . . . ,~cL). Apart from the general form, one may be interested
in the explicit form of the basis functions and different levels of resolution, which is
explained in more detail below.

Radial basis functions

It should be remembered that the Lattice Krig model is a spatial model with different
levels of spatial resolution. At each level l, a set of basis functions {φlj}j∈{1,...,m(l)} is
arranged on a spatial rectangular grid with grid points {~u lj}1≤j≤m(l), where ~u lj ∈ [a1, a2]×
[b1, b2] ⊂ R2,∀j ∈ {1, . . . ,m(l)}.

Definition 6.1.1. For a unimodal, symmetric one-dimensional radial function φ, the
Lattice Krig basis function φlj for the grid point ~u lj is defined and constructed as follows:

φlj(~x) := φ

(
||~x− ~u lj ||

θl

)
, θl > 0 (6.5)

Remark 6.1.1. In the LatticeKrig R package [Nychka et al., 2015] the radial function
φ : R→ R is chosen by default as a Wendland function [Wendland, 1995] defined as:

φ(d) =

{
1
3
(1− d)6(35d2 + 18d+ 3), if d ∈ [0, 1],

0, else,
(6.6)

where d stands for the scaled distances between the grid points in one up to three dimen-
sions, i.e., φ is a radial function with compact support and attains the value 0 for all
scaled distances larger than 1.
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Geometrically speaking, the set of basis functions at each level consists of bumps that are
centered at the grid points ~u lj . The overlap of these functions is thereby controlled by
the parameter θl (in (6.5)) and in the LatticeKrig R package [Nychka et al., 2015] this
overlap is set to 2.5 times the grid spacing by default [Nychka et al., 2015].

Grid spacing and different levels of resolution

In the last paragraph, the construction of the radial functions on different levels of reso-
lution has briefly been introduced. However, it has still not been pointed out how m(l),
i.e., the number of grid points and basis functions, are chosen at each resolution level.
The spacing of the grid points successively halves from one level to the next, i.e., assuming
that the spatial domain of one’s data is [a1, a2]× [b1, b2] covered with mx×my grid points,
then the grid spacing among the points {~u 1

j }j is δ(1) = a2−a1
mx−1

= b2−b1
my−1

. By definition, this

means that δ(l+1) = δ(1)2−l, yielding a sequence of grids for each level with grid points
{~u lj}j increasing in number by roughly 4 from level l to level l+ 1. m(l), i.e., the number
of basis functions at each level, can then be calculated as follows:

m(l) = (mx − 1)(my − 1)4l−1 +mx +my + 1.

This identity immediately follows from the “halving property” of the grid from one level
to the next. In order to leave the overlap of the basis functions constant to 2.5 units of
spacing at each level, θl needs to change as well in the course of changing levels. The
width needs to shrink by the same amount as the spacing shrinks between the grid points,
i.e., the parameter θl needs to attain the following value:

θl =
θ1

2l−1

Property on the distribution of ~y

In order to make estimation and prediction possible with the Lattice Krig model, it is
useful to derive the following property of the distribution of the data vector ~y.

Proposition 6.1.1. Under the assumption that ~e ∼ Nn(0, σ2W−1) in (6.3), it follows
that:

~y = Z~d+ Φ~c+ ~e ∼ Nn(Z~d, ρΦPΦT + σ2W−1). (6.7)

Proof. The proof is straightforward from the fact that ~c and ~e are independent multivari-
ate normal random variables and so is a linear combination of the two:

E(~y) = E(Z~d+ Φ~c+ ~e) = Z~d+ ΦE(~c) + E(~e) = Z~d

cov(~y) = cov(Z~d+ Φ~c+ ~e) =
~c⊥~e

Φcov(~c)ΦT + cov(~e) = ΦPΦT + σ2W−1.
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6.1.2 The role of GMRF in Lattice Krig

It still has not been discussed how P , i.e., the covariance of the coefficients ~c, is con-
structed. It should be recalled that ~c l ∼ Nm(l)(0, ρPl), where Pl may depend on additional
parameters. The dependence among the clj at each level l can, therefore, be modeled by
a GMRF or more specifically a spatial autoregressive model of order 1 with precision
Ql = (ρPl)

−1. The spatial autoregressive model of order 1 looks as follows:

(4 + κ2
l )c

l
j −

∑
k∈Nj

clk = elj,where ~e l ∼ Nm(l)(0, ρIm(l)×m(l)), κl > 0 (6.8)

Remark 6.1.2. ~e l in (6.8), as the error terms of the spatial autoregressive model, should
not be confused with ~e in (6.7) representing the residuals of the whole model.

Nj stands for the 1st order neighborhood of the grid point ~u lj . Additionally, it is assumed
that the coefficients between different resolution levels are independent. In some references
of Nychka, (6.8) is also denoted by matrix notation as:

Bl~c l = ~e l, where

Bl
i,j =


4 + κ2

l , if i = j,

−1, if i 6= j and ~uli, ~u
l
j are neighbor grid points at level l,

0, else.

Therefore,

Ql = cov(~c l)−1 = cov((Bl)−1~e l)−1

=
(
(Bl)−1ρ(Bl)−T

)−1
= ρ−1(Bl)TBl.

Remark 6.1.3. Unlike in Chapter 5, the precision matrix of the Lattice Krig model is
always positive definite, independent of the chosen values for κl or other model parameters.
By definition of the symmetric matrix, Bl has four off-diagonals filled with -1’s (coming
from the 4 closest neighbors of a certain pixel in the spatial field) and a diagonal filled
with 4 + κ2’s. The positive definiteness comes from the fact that for any ~x ∈ Rm(l) the
term ~xTBl~x > 0 since, intuitively speaking, the four −1’s in each column of the matrix
cancel the 4 of the diagonal term 4 + κ2, but can never exceed 4 + κ2 as κ2 > 0. It
is also straight forward from the diagonal dominance criterion for symmetric matrices1.
The positive definiteness of Bl then also implies that Q, as a block matrix consisting of
positive matrices Bl, is positive definite. It should be mentioned, that due to the positive
definiteness of the Lattice Krig precision Q, the expenses of calculating the Cholesky factor
as a criterion on positive definiteness, as done in the previous GMRF chapter, can be
avoided.

In general, one may stack all coefficients ~c l for different levels of resolution into a vector
~c = (~c 1, . . . ,~cL), where L is the total number of levels. The parameters α1, . . . , αL with∑L

l=1 αl = 1 form an additional set of weights for each level and the total precision Qm×m
consists of the block matrices (αl)

−1(Bl)TBl for l ∈ {1, . . . , L} or more specifically:

1A symmetric matrix A is SPD if the following property holds: Aii −
∑

j:j 6=i|Aij |> 0 [Rue and Held,
2005]
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Qm×m = ρ−1


(1/α1)(B1)TB1 0 . . . 0

0 (1/α2)(B2)TB2 . . . 0
... 0

. . .
...

0 · · · 0 (1/αL)(BL)TBL

.

This block matrix form is induced by the fact that the coefficients are independent between
different levels.
Hence, the above construction shows that the covariance of ~c depends on at least 2L
parameters, namely: {κ1, . . . , κL, α1, . . . , αL}. That means, the number of parameters,
which are to be estimated, depends on the number of resolution levels needed. More
levels are needed when there is a largely varying range of data values among few spatial
locations.

6.1.3 Estimation and prediction

Estimation

Setting Mλ = ΦPΦT + λW−1 and λ = σ2/ρ in (6.7) yields ~y ∼ Nn(Z~d, ρMλ) and accord-
ingly the log likelihood for ~y is:

l(~y|ρ, P, λ, ~d) = −1

2
(~y − Z~d)T (ρMλ)

−1(~y − Z~d)− 1

2
log(|ρMλ|)−

n

2
log(2π)

In the LatticeKrig R package [Nychka et al., 2015], estimates for ρ, ~d and λ are found
via Maximum Likelihood estimation.
To find estimates for the coefficients ~c, the following identity was used:

Lemma 6.1.1. If

(
~X(1)

~X(2)

)
∼ Nm+n

((
~µ(1)

~µ(2)

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

then ~X(1)| ~X(2) ∼ Nm(~µ(1) + Σ12Σ−1
22 ( ~X(2) − ~µ(2)),Σ11 − Σ12Σ−1

22 Σ21)

Here,(
~c
~y

)
∼ Nm+n

((
0

Z~d

)
,

(
ρMλ ρPΦT

ρΦP ρMλ

))
.

Lemma 6.1.1 then gives the conditional distribution of ~c|~y:

~c|~y ∼ Nm(PΦTM−1
λ (~y − Z~d), ρP − ρPΦT (Mλ)

−1ΦP )

It is then suggested to take the expected value of ~c|~y,

~̂c = PΦTM−1
λ (~y − Z~d), (6.9)

as an estimate for ~c.

Remark 6.1.4. (6.9) shows that λ is inversely related to ~̂c.
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Prediction

Lattice Krig model prediction, with the above introduced spatial Lattice Krig model, can
be done quite easily as follows:

~̂y(~x) = ZT (~x) ~̂d+ ĝ(~x), where

ĝ(~x) =
m∑
j=1

φj(~x)ĉj, where ĉj is chosen as in (6.9).

6.2 Lattice Krig tests in R

This section introduces different approaches on how to use the Lattice Krig spatial model
to find anomalies such as patches with negative correlation to neighbor pixels where the
temporal component is fixed. The LatticeKrig R package [Nychka et al., 2015] is used
to set up the Lattice Krig spatial model, i.e., estimate various spatial model parameters
given predefined gridpoints and other parameters that are used to build the spatial model.
It must be pointed out that the tests that are presented in the following sections act as
indicators rather than significance tests for spatial inhomogneities. All the “LatticeKrig”
R package information that is presented in this chapter is based on Nychka et al. [2015].

6.2.1 Lattice Krig setup in R

As already mentioned (see p.76), the spatial Lattice Krig model is set up on different
levels of spatial resolutions, where the number of grid points and, therefore, the number
of basis functions duplicates in each dimension from one level to the other.
In the R code and tests that have been developed in this thesis, the following Lattice Krig
setup is used:

LKinfo <- LKrigSetup(x=x, nlevel=3, alpha=c(1/3,1/3,1/3),

a.wght=4.05, NC=36, NC.buffer=0, overlap=2.5)

There are three different levels of spatial resolution chosen, all levels are weighted the
same. NC = 36 means that there are 36 node points in the direction of the longitude
at the coarsest level of resolution. Furthermore, the overlap between the basis functions
is set to 2.5. It should be recalled that 2.5 refers to the relative overlap in units of the
spacing at each level and the support of the basis functions can be calculated as 2.5 · δi
for i ∈ {1, 2, 3}, where δi represents the spacing between the grid points at level i. x is
chosen to be the coordinates from the CMIP5-ng 144 × 72 rectangular spatial domain.
LKinfo then has the following properties:

#> LKinfo

#Classes for this object are: LKinfo LKRectangle

#The second class usually will indicate the geometry

# e.g., 2-d rectangle is LKRectangle

#

#Ranges of locations in raw scale:

# [,1] [,2]
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#[1,] -178.75 -88.75

#[2,] 178.75 88.75

#Number of levels: 3

#delta scalings: 10.21429 5.107143 2.553571

#with an overlap parameter of 2.5

#alpha: 0.3333333 0.3333333 0.3333333

#a.wght: 4.05 4.05 4.05

#Basis type: Radial using WendlandFunction and Euclidean distance.

#Basis functions will be normalized

#Total number of basis functions 13003

# Level Basis size

# 1 648 36 18

# 2 2485 71 35

# 3 9870 141 70

#

#Lambda value: NA

One notices that the distances between the grid points (see delta scalings) are close to
2.5 at the finest level of resolution, i.e., approximately four 2.5◦ × 2.5◦ spatial pixels are
summarized by one spatial pixel at the coarsest level of resolution. The distances between
the grid points at different levels are also depicted graphically in Figure 6.1.
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Figure 6.1: The three suggested levels of resolution for Lattice Krig.

6.2.2 The smoothing parameter λ

Proposition 6.1.1 stated that: cov(~y) = ρΦPΦT + σ2W−1. One can further recall that
λ := σ2

ρ
. Therefore, λ can be interpreted as a noise to signal ratio with regards to the
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variance of ~y and acts as a smoothing parameter, similarly as in cubic spline models. The
larger λ is, the less smooth is the underlying data and the more smoothing needs to be
done by the spatial model. On the one hand, these estimates for λ themselves can give an
indication on the structure of the spatial field. On the other hand, the smoothing factor
λ can be kept constant in order to make comparisons possible among the basis function
coefficients of different CMIP5-ng model projections at one specifically fixed point in
time. Otherwise, inhomogeneities might not be detected, as the spatial model smooths
them out. Thereby, λ should be fixed to a value that is not too small or too large since
that could result in over or under fitting the spatial model. The following two sections
introduce these two approaches.

λ as an indicator for spatial structure

The estimates for λ, themselves, may be useful as indicators for inhomogeneities. The
larger λ is, the more smoothing needs to be done by the spatial model. Large λ estimates
can therefore either indicate a model projection with a high resolution or a model projec-
tion with suspicious spatial patches. These two phenomena are illustrated on the basis of
CMIP5-ng data sets.

Order the model projections by λ
Again, the monthly RCP45 model projections of the Near Surface temperature are chosen.
Time is fixed to the 100-th month. For each model projection, the Lattice Krig parameter
λ is estimated, yielding the following values for λ:

source(‘/.../getCoord.R’)

coord <- getCoordinates(lonInd,latInd)

xNew <- cbind(coord$coordLon,coord$coordLat)

tasLambda <- lambdaLatTest(pathToDir = "/.../tas",

T=100,xNew)

> tasLambda

file lambda

[1,] "tas_mon_BNU-ESM_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[2,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r10i1p1_g025.nc" "0.000123653610613044"

[3,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[4,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r2i1p1_g025.nc" "0.000123653610613044"

[5,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r3i1p1_g025.nc" "0.000123653610613044"

[6,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r4i1p1_g025.nc" "0.000123653610613044"

[7,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r5i1p1_g025.nc" "0.000123653610613044"

[8,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r6i1p1_g025.nc" "0.000123653610613044"

[9,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r7i1p1_g025.nc" "0.000123653610613044"

[10,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r8i1p1_g025.nc" "0.000123653610613044"

# ... (see appendix, Section 8.2.2)

[101,] "tas_mon_GISS-E2-R_rcp45_r1i1p3_g025.nc" "0.00173972508449444"

[102,] "tas_mon_GISS-E2-H_rcp45_r5i1p2_g025.nc" "0.00174753604222548"

[103,] "tas_mon_GISS-E2-R_rcp45_r2i1p3_g025.nc" "0.00175980502931455"

[104,] "tas_mon_GISS-E2-H_rcp45_r4i1p1_g025.nc" "0.00184457351420222"

[105,] "tas_mon_GISS-E2-H_rcp45_r2i1p3_g025.nc" "0.00188735119085388"

[106,] "tas_mon_GISS-E2-H_rcp45_r5i1p1_g025.nc" "0.00188814929359308"

[107,] "tas_mon_GISS-E2-R_rcp45_r3i1p1_g025.nc" "0.00190870937729969"

[108,] "tas_mon_GISS-E2-R_rcp45_r6i1p1_g025.nc" "0.00192168723825333"
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[109,] "tas_mon_GISS-E2-R_rcp45_r4i1p2_g025.nc" "0.00202220248937382"

[110,] "tas_mon_CMCC-CM_rcp45_r1i1p1_g025.nc" "0.00448169866503329"

Once again, the dependence among the ensembles of the same climate model are evident
in the estimates for λ. The λ estimates can also be graphically displayed in a histogram
(see Figure 6.2):

λ̂

F
re

qu
en

cy

0.000 0.001 0.002 0.003 0.004

0
10

20
30

40
50

Histogram of λ̂
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Figure 6.2: Histogram of the Lattice Krig λ estimates of all monthly Near Surface Tem-
perature projections at time t = 100 under the RCP45 scenario. The red dashed line
corresponds to the median of the λ estimates.

The maximal λ is attained by the CMCC-CM model projection whereas the minimal λ is,
for instance, attained by the BNU-ESM projection. What these model projections look
like is graphically depicted in Figure 6.3.
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monthly tas CMCC−CM (r1i1p1) projection under the RCP45

at t=100 with: λ̂=0.0045
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monthly tas BNU−ESM (r1i1p1) projection under the RCP45

at t=100 with: λ̂=0.0001

Figure 6.3: Model projections attaining the maximal and minimal λ estimates.

The CMCC-CM projection reveals more details on the Near Surface Temperature whereas
the BNU-ESM projection seems almost blurred. The reason for this behavior may be due
to different native spatial resolutions of the two models. Nevertheless, visually speaking,
both model projections seem to be homogeneous.

λ as an indicator for inhomogeneity
The other possibility is that a large value for λ is induced by an abnormal spatial patch
or stripes as illustrated in Figure 6.4.
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Figure 6.4: Original and modified Near Surface Temperature at time 1. Top left: The
original ACCESS1-0 projection at time t = 1. Top right: Modified projection with 50
pixels shifted by 30 Kelvin over Europe. Bottom left: Modified projection with 400 pixels
shifted by 30 Kelvin over Europe and Africa. Bottom right: Modified projection with
mixed up longitude coordinates.

Figure 6.4 shows how λ changes if different sorts of modifications are carried out. From
Figure 6.4 it is also apparent that λ does not always increase if inhomogeneities are
existent, i.e., some inhomogeneities might remain undetected by λ. The estimates for λ
should, therefore, be conceived as a first indicator of the spatial structure of climate data
but is not an extremely powerful inhomogeneity detection tool.

Fix λ

As mentioned above, λ should be fixed to a certain value when comparisons of the Lattice
Krig basis function coefficients among different model projections are conducted. The
difficulty remains in finding the optimal λ. On the one hand, if λ is chosen too large, then
the spatial model will give small variability to the fitted values, i.e., it will perform under
fitting. On the other hand, if λ is chosen too small, then the spatial model comes close
to interpolating the data with large variability among the fitted values, i.e., over fitting
is performed. Both cases are illustrated in Figure 6.5 by an example on the Near Surface
Temperature data based on the ACCESS1-0 (r1i1p1) projection at time t = 1 under the
RCP45 scenario.
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Fitted values for λ= 1
monthly tas, ACCESS1−0, r1i1p1, RCP45 at t=100
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Residuals for λ=1
monthly tas, ACCESS1−0, r1i1p1, RCP45 at t=100
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Figure 6.5: Fitted values and residuals of the Lattice Krig model for fixed λ ∈ {10−3, 1}.
Both cases were obtained with the same underlying ACCESS1-0 model projection data
of the Near Surface Temperature at time t = 100.

The plots show correlated residuals in both cases as there is still some structure apparent
at coastal areas. It further illustrates that fixing a large λ yields a blurred picture with
large absolute values of the residuals whereas a small λ reveals more details on the fitted
values and smaller absolute values of the residuals. Both, over and under fit, are not
desirable as they have low predictive power. In the following paragraphs, two approaches
are presented on how one can proceed in finding λ systematically.

Weighted mean estimate for λ
A very simple and practical approach is to fix λ to the estimate of the weighted mean
representation over all CMIP5-ng model projections under the same scenario, resolution
and at the same specific time. This procedure has low computational cost since λ only
needs to be estimated once. By that, the tendency, however, is to fix λ to a relatively low
value as the weighted mean generally provides a smoother representation than one single
model projection, i.e., the danger that comes with this procedure is to produce an under
fit with large residuals.

Median of estimates for λ
Another possibility is to take the median over all estimates for λ obtained by all CMIP5-ng
model projections under the same scenario, resolution and at the specific time of analysis.
The computational cost increases through this method compared to the weighted mean
approach since λ has to be estimated for each model projection separately, but it might
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lead to a more accurate λ.

Bootstrapping
The most sophisticated approach is to construct a bootstrap confidence interval for λ by
resampling the residuals of a specific model projection. This is, however, computationally
expensive as λ needs to be estimated for each of the B = 1, 000− 10, 000 bootstrap sam-
ples that are needed to get a reasonable interval. Generating one bootstrap sample with
the boot R package [Canty and Ripley, 2015] and estimating the λ for this new sample
of 144 × 72 CMIP5-ng spatial values takes approximately one minute, i.e., for 1,000 it
would take about 17 hours and for 10,000 bootstrap samples, it would take approximately
a week of computation to obtain a reasonable confidence interval. Therefore, it is focused
on the weighted-mean and median approaches for the rest of the chapter.

The estimates for λ are illustrated under the weighted mean and median approaches on
the basis of the ACCESS1-0 model projection of the monthly Near Surface Temperature
under the RCP45 scenario.

Weighted mean estimate for λ:

#get weighted mean estimate for lambda

library(ncdf)

library(LatticeKrig)

source(‘/.../MeanOfFiles.R’)

source(‘/.../getCoord.R’)

lonInd <- c(1:144)

latInd <- c(1:72)

coord <- getCoordinates(lonInd,latInd)

xNew <- cbind(coord$coordLon,coord$coordLat)

LKinfo <- LKrigSetup(x=xNew,nlevel=3, alpha=c(1/3,1/3,1/3),

a.wght=4.05,NC=36,NC.buffer=0, overlap=2.5)

weightedMean <- meanOfFiles(path ="/.../tas")

meanObj <- LatticeKrig(x=xNew,c(weightedMean[,,100]),LKinfo=LKinfo)

meanObj$lambda.fixed

# > meanObj$lambda.fixed

# [1] 0.0001423206 #--->lambda estimated from the weighted mean.

Median of estimates for λ:

#...same coordinates (xNew), LKinfo and libraries as above

files <- list.files("/.../tas",full.names = TRUE)

lambda <- numeric(length(files))

for(i in 1:length(files)){

nc <- open.ncdf(files[i])

data <- get.var.ncdf(nc)

obj <- LatticeKrig(x=xNew,c(data[,,100]),LKinfo=LKinfo)

lambda[i] <- obj$lambda.fixed

}

median(lambda)

#0.0006472452 --->median of the lambdas
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One sees that the median approach gives a λ that is approximately 6 times larger than
obtained by the weighted mean approach, meaning that the weighted mean model provides
a smoother representation as expected. Yet, both values for λ are relatively small, i.e.,
they yield relatively smooth representations of the model projections. Comparison with
Figure 6.3 also reveals that both estimates lie within the maximal and minimal range of
λ estimates over all monthly Near Surface Temperature RCP45 model projections.
In the next two sections, tests are presented where λ is fixed to a user defined value, which
can be fixed to either the median or weighted mean value or any other preferable value.

6.2.3 Lattice Krig test with σ̂ML

If one suspects that there are only a few suspicious pixels or regions that abruptly change
their pattern, σ̂ML, as a control parameter of the covariance of the residuals of the spatial
model, may reveal the existence of such patterns if they are severe enough. A few examples
of the modified Near Surface Temperature data and their estimates are presented below:

Example 6.2.1. The following examples illustrate what one can expect with respect to the
sensitivity and range of σ̂ML for the Near Surface Temperature, with λ fixed to the value
0.0006472452 (as obtained by the median approach). The plots, in Figure 6.6, present
single spatial 2.5◦ × 2.5◦ pixels and regions with shifted values. Furthermore, plots of
rearranged spatial patches are presented (e.g., obtained by interchanging the Northern and
Southern hemisphere values or reversing the longitudes on the Southern hemisphere). The
modifications are again made on the basis of the ACCESS1-0 (r1i1p1) projection of the
monthly Near Surface Temperature at time t = 100.
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Figure 6.6: Original and modified Near Surface Temperature data and their σ̂ML estimates.
Top left: Original tas data obtained from the monthly ACCESS1-0 (r1i1p1) projection
at time t = 100 under the RCP45 scenario. Top right: One pixel at 16.25◦S 1.25◦E
shifted by 10 Kelvin. Center left: 420 pixels over Europe and Africa shifted by 10 Kelvin,
Center right: Stripes with disarranged longitudes. Bottom left: Interchanged Northern
and Southern hemisphere values. Bottom right: Reversed longitudes on the Southern
hemisphere.

Figure 6.6 shows that σ̂ML generally increases with the introduced modifications. Only in
the last spatial field a smaller σ̂ML is estimated even though the last plot shows unreasonable
values for the Near Surface Temperature on the Southern Hemisphere. Section 6.2.4, gives
more details on how to detect cases such as depicted in the last plot of Figure 6.6.

overall, σ̂ML might, indeed, be a useful indicator for inhomogeneities such as abnormal
spatial patches and, e.g., severe dis-arrangements of longitudes. However, the values of
σ̂ML should only be used within the same class of climate model projections, where λ is
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fixed to the same value since σ̂ML depends on λ.
For λ and time T fixed, the sigmaLatTest() R function provides the ordered estimates
of σ for all CMIP5-ng files of the same class (i.e., same variable, scenario and resolution).
More application examples of sigmaLatTest() can be found in Section 6.5.

6.2.4 Lattice Krig test with a reference model

In contrast to the last section, this section does not focus on the error term, but on the
signal of the spatial model which is stored in the GMRF coefficients c. In cases of smooth
inhomogeneities such as spatial drifts, σ̂ML might not necessarily show an extreme value
since drifts, similar to normal climatic occurrences, can be fit smoothly by the spatial
model without producing large error terms. The coefficients c of the Lattice Krig model
contains the drift information to some extent, but since the spatial autoregressive model is
in between, interpreting the values for c can be difficult. Therefore, this chapter introduces
a test using a homogeneous reference spatial field. It is suggested to once again use the
weighted model mean as reference, but any other reference is admissible and compatible
with the developed refLatTest() R function. refLatTest() takes a reference spatial
field and a candidate field and compares the differences of the estimated coefficients.
A summary of the maximum, median and mean is printed out for each Lattice Krig
level of resolution. Thereby, major mistakes such as dis-arrangements of longitudes or
interchanges of the Northern and Southern hemisphere values should manifest in the
coarsest level of resolution, as long as a reasonable reference is chosen.
Again, one can look at some examples of modified Near Surface Temperature data and
their refLatTest() output.

Example 6.2.2. For the following experiments, λ is again fixed to 0.0006472452 as ob-
tained by the median approach (see p.86). In order to allow comparison, the same ex-
periments and modifications are chosen as in Section 6.2.3 and again the ACCESS1-0
projection at the 100-th month is chosen as a basis. Examples for different models and
variables as well as instructions on how to call the refLatTest() function can be found
in Section 6.5. The ACCESS1-0 projection at time t = 100 as well as modified versions
of the projection are applied to refLatTest() giving the following results:
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Figure 6.7: Left: Near Surface Temperature at time t = 100 of the original ACCESS1-0
projection. Right: Absolute values of the differences of the coefficients obtained by the
reference (weighted mean) and the candidate (ACCESS1-0 (r1i1p1) projection). The red
lines partition the 3 levels of spatial resolution.

# refLatTest() prints out the following statistics
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# on the absolute differences of the coefficients

# max median mean

# level 1 6.42073 1.335006 1.698518

# level 2 17.93001 2.021090 2.706038

# level 3 31.48010 1.104305 2.182321

The right plot in Figure 6.7 shows two bumps at each level of resolution. These bumps
are induced by the disparity of the coefficients at the poles of the Earth. It seems as if
the ACCESS1-0 projection does not completely agree on the Near Surface Temperature
with the weighted mean reference in the Arctic and Antarctica. In the third level these
disparities become more pronounced as the differences of the coefficients reach a level of
30.
Similarly as in the last section, one can shift an arbitrary pixel value by 10 Kelvin in order
to see if that has an effect on the difference of the coefficients.
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Figure 6.8: Left: Near Surface Temperature at time t = 100 of the modified ACCESS1-
0 projection. Right: Absolute values of the differences of the coefficients obtained by
the reference (weighted mean) and the candidate (ACCESS1-0 projection with 1 pixel at
16.25◦S1.25◦E shifted by 10 Kelvin). The red lines partition the levels of resolution.

# max median mean

# level 1 6.435539 1.376235 1.716851

# level 2 17.954300 1.981378 2.714559

# level 3 31.473078 1.184928 2.22458

The differences of the coefficients do not change in the first two levels of resolution, but
in the third resolution level (between index 6,000 and 8,000) there are a few increased
differences apparent. The printed out maximum, median and mean statistics change only
slightly in the third level as well.
The next experiment shows shifted regional values as in the previous section.
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Figure 6.9: Left: Near Surface Temperature at time t = 100 of the modified ACCESS1-0
projection. Right: Absolute values of the differences of the coefficients obtained by the
reference (weighted mean) and the candidate (ACCESS1-0 projection with 10 K shifted
region over Europe). The red lines partition the levels of resolution.

# max median mean

# level 1 16.80272 1.612330 2.347272

# level 2 22.16072 2.178299 3.195220

# level 3 30.86285 1.340263 2.786685

The regional shift becomes apparent in the printed out summary of the maximum, median
and mean at all levels of resolution as well as the absolute difference plot of the coeffi-
cients.
The next example shows the most pronounced effect on the coefficients c. The disarrange-
ment of the longitudes leads to extremely high values of the differences of the coefficients
at all resolution levels.
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Figure 6.10: Left: Near Surface Temperature at time t = 100 of the modified ACCESS1-0
projection. Right: Absolute values of the differences of the coefficients obtained by the
reference (weighted mean) and the candidate (interchanged longitudes with underlying
ACCESS1-0 data). The red lines partition the levels of resolution.

# max median mean

# level 1 153.9044 33.40924 41.82434

# level 2 320.2716 55.30007 79.37474

# level 3 205.2572 22.02993 33.21319

The dis-arrangement of the longitudes leads to enormously high differences of the coeffi-
cients at all levels of resolution. This is coherent with the σ̂ML estimates in the last section.
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At last, the spatial field with the interchanged longitudes on the Southern hemisphere is
applied to refLatTest().
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Figure 6.11: Left: Near Surface Temperature at time t = 100 of the modified ACCESS1-
0 projection. Right: Absolute values of the differences of the coefficients obtained by
the reference (weighted mean) and the candidate (reversed longitudes on the Southern
Hemisphere based on the ACCESS1-0 (r1i1p1) projection). The red lines partition the
levels of resolution.

# max median mean

# level 1 5.230335 1.695255 1.839952

# level 2 22.235646 4.846252 5.474112

# level 3 43.969815 1.666811 3.655357

The modification mainly reveals slightly higher differences in the finest resolution level
(apparent between index 6000 and 8000, i.e., the Equatorial region). There are also
changes apparent in the first two levels, these seem to be rather insignificant.

refLatTest() does again not provide a significance level, but it gives an idea whether
certain model projections appear suspicious or not in their overall structure in comparison
to a reference series. Since there are different levels of resolution, the printed out max,
median and mean summaries for each level, give an idea on whether and at what scale or
level a certain projection appears suspicious.
Again, it needs to be mentioned that the choice of λ also influences these differences of
the coefficients. This is due to the dependence of the estimates of the coefficients and λ,
see equation (6.9). Therefore, it is wrong to set a certain bound as a threshold without
considering the value for λ. This relation of the absolute difference and λ is inverse, i.e.,
if λ is chosen relatively large, the differences of the coefficients will get smaller whereas
for λ chosen relatively small, the differences of the coefficients will become larger.

6.3 Runtime

The expensive part of the analysis with refLatTest() and sigmaLatTest() is mainly
the estimation of the λ if a bootstrap or the median approach is chosen. Estimat-
ing the λ under the median approach takes approximately 100 minutes. Applying the
sigmaLatTest() is less expensive, if λ is fixed. It takes approximately 20 minutes.
refLatTest() is then the fastest with a runtime of approximately 20 seconds. How-
ever, refLatTest() also only gives information on one specific model projection whereas
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sigmaLatTest() gives information on every projection of a whole class of climate pro-
jections. The exact CPU time that has been measured can be found in the examples in
Section 6.5.

6.4 Inhomogeneity detection performance

The developed Lattice Krig methods, unlike the MGMRF and SNHT tests, only investi-
gate a spatial patch at a fixed point in time. Therefore, any inhomogeneities that evolve
over time cannot be detected. Nevertheless, the Lattice Krig methods, might be use-
ful as an indicator for the general structure of the projection such as the smoothness
(represented by an estimate for λ) or the amount of abrupt changes in the spatial patch
(represented by σ̂ML). refLatTest() further provides some measure of distance of the
spatial patch to a reference spatial structure at different levels of spatial resolution.

6.5 Lattice Krig methods on the CMIP5-ng data

This section provides results and interpretations of the application of the methods sigma-
LatTest() and refLatTest() on CMIP5-ng data sets. Since these Lattice Krig methods
operate on climate data with a fixed time component, the results cannot be compared
one-to-one with the results in the other CMIP5-ng application Sections 4.5 and 5.5. Since
the time component is fixed, it can be looked at the whole Earth as a spatial domain.

6.5.1 Monthly Near Surface Temperature at time t = 100

Analogously as in the previous application sections, the monthly Near Surface Tempera-
ture is applied to the function sigmaLatTest() and refLatTest().

sigmaLatTest()

Below, one sees how a user can call sigmaLatTest() as well as its output:

library(ncdf)

library(LatticeKrig)

source(‘/.../sigmaLatTest.R’)

source(‘/.../getCoord.R’)

source(‘/.../getLambda.R’)

lonInd <- c(1:144)

latInd <- c(1:72)

coord <- getCoordinates(lonInd,latInd)

xNew <- cbind(coord$coordLon,coord$coordLat)

system.time(lambda <- getLambda(pathToDir = "/.../tas",xNew = xNew,

type = "median",T = 100))

# system.time output:

# user system elapsed

# 5828.201 100.733 6021.918 --> approximately 100 minutes

system.time(sigmaTas <- sigmaLatTest(pathToDir = "/.../tas",

lambda =0.0006472452,T = 100,xNew))

# sytem.time output:

# user system elapsed
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# 1310.319 22.809 1332.466 --> approximately 22 minutes

> sigmaTas

file sigma

[1,] "tas_mon_FIO-ESM_rcp45_r3i1p1_g025.nc" "0.11006772222915"

[2,] "tas_mon_FIO-ESM_rcp45_r1i1p1_g025.nc" "0.11366495539389"

[3,] "tas_mon_FIO-ESM_rcp45_r2i1p1_g025.nc" "0.115593458668153"

[4,] "tas_mon_BNU-ESM_rcp45_r1i1p1_g025.nc" "0.122867289754893"

[5,] "tas_mon_FGOALS-g2_rcp45_r1i1p1_g025.nc" "0.142121953939162"

[6,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r1i2p1_g025.nc" "0.152685116458957"

[7,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r3i2p1_g025.nc" "0.153301490720799"

[8,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r2i2p1_g025.nc" "0.157096157213068"

[9,] "tas_mon_bcc-csm1-1_rcp45_r1i1p1_g025.nc" "0.163111081940897"

#... (see appendix, Section 8.2.2)

[104,] "tas_mon_GISS-E2-H_rcp45_r2i1p3_g025.nc" "0.572225686262292"

[105,] "tas_mon_GISS-E2-H_rcp45_r5i1p3_g025.nc" "0.572325813631521"

[106,] "tas_mon_GISS-E2-H-CC_rcp45_r1i1p1_g025.nc" "0.57613901948118"

[107,] "tas_mon_GISS-E2-H_rcp45_r2i1p2_g025.nc" "0.577021593947984"

[108,] "tas_mon_GISS-E2-H_rcp45_r3i1p1_g025.nc" "0.578371145557919"

[109,] "tas_mon_GISS-E2-H_rcp45_r1i1p1_g025.nc" "0.579337834948866"

[110,] "tas_mon_CMCC-CM_rcp45_r1i1p1_g025.nc" "0.681343428572589"

If compared to Section 6.2.2, the ordering of the model projections by σ̂ML with a fixed λ
is more or less the same as if ordered by λ̂. One shall recall that λ depends on the values
for σ since λ was defined as: λ = σ2

ρ
. If ρ as the variance of the signal in the data is more

or less constant over all model projections then the estimates for λ and σ are similar.

refLatTest()

According to σ̂ML, the most suspicious projection was produced by the CMCC-CM (r1i1p1)
model. Therefore, this projection is further analyzed with the refLatTest():

library(ncdf)

library(LatticeKrig)

source(‘/...refLatTest.R’)

source(‘/.../getCoord.R’)

source(‘/.../MeanOfFiles.R’)

weightedMeanTas <- meanOfFiles(path ="/.../tas")

time <- 100

lonInd <- c(1:144)

latInd <- c(1:72)

coord <- getCoordinates(lonInd,latInd)

xNew <- cbind(coord$coordLon,coord$coordLat)

file <- ‘/.../tas_mon_CMCC-CM_rcp45_r1i1p1_g025.nc’

nc <- open.ncdf(file)

data <- get.var.ncdf(nc)

data <- data[,,time]

close.ncdf(nc)

system.time(outTas <- refLatTest(candidate= data,

reference=weightedMeanTas[,,time],xNew,lambda = 0.0006472452))

# system.time() gives

# user system elapsed
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# 22.752 0.190 22.927 --> approximately 20 seconds

# printout by refLatTest():

# max median mean

# level 1 4.510782 1.911667 1.920838

# level 2 16.554764 1.808701 2.326461

# level 3 26.879113 1.116658 2.144481

In absolute terms, the maximum, median and mean do not seem to be extremely high.
Yet, one should be cautious with interpretations based on these simple statistics (max,
median and mean) as mentioned before. To gain more information, the absolute difference
of the coefficients have been plotted (see Figure 6.12).
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Figure 6.12: Top: Weighted mean of monthly Near Surface Temperature under the RCP45
scenario at time t = 100. Center: Near Surface Temperature Projection of the CMCC-
CM (r1i1p1) model under the RCP45 scenario at time t = 100. Bottom: Differences of
the Lattice Krig coefficients obtained by the function refLatTest().

Figure 6.12 shows that the disparity is mainly evident in the finest level of resolution which
means that the model projection generally agrees with the weighted mean projection.
The largest disparities are apparent in Antarctica, followed by the Arctic and Equatorial
regions.
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6.5.2 Monthly Surface Upwelling Longwave Radiation at t = 100

Similarly as in the last application sections, the Monthly Surface Upwelling Longwave
Radiation is investigated under the RCP45 scenario. For the analysis with Lattice Krig,
the time component is again fixed to t = 100.

sigmaLatTest()

The sigmaLatTest() function can be called as illustrated above. The median approach
has again been applied to calculate the λ, giving the following values for σ̂ML

# lambda$med

# [1] 0.001336948

# xNew as obtained before.

system.time(sigmaRlus <- sigmaLatTest(pathToDir = "/.../rlus",

lambda=0.001336948,T=100,xNew))

# user system elapsed

# 1192.573 35.530 1227.627

> sigmaRlus

file sigma

[1,] "rlus_mon_bcc-csm1-1_rcp45_r1i1p1_g025.nc" "1.12257069943875"

[2,] "rlus_mon_FGOALS-g2_rcp45_r1i1p1_g025.nc" "1.17189204415031"

[3,] "rlus_mon_BNU-ESM_rcp45_r1i1p1_g025.nc" "1.22784408801046"

[4,] "rlus_mon_CSIRO-Mk3L-1-2_rcp45_r3i2p1_g025.nc" "1.34032649858499"

[5,] "rlus_mon_MIROC-ESM_rcp45_r1i1p1_g025.nc" "1.34964408479685"

[6,] "rlus_mon_CSIRO-Mk3L-1-2_rcp45_r1i2p1_g025.nc" "1.35192757013706"

[7,] "rlus_mon_MIROC-ESM-CHEM_rcp45_r1i1p1_g025.nc" "1.35490311136217"

[8,] "rlus_mon_CSIRO-Mk3L-1-2_rcp45_r2i2p1_g025.nc" "1.35559110276213"

#... (see appendix, Section 8.2.2)

[92,] "rlus_mon_GISS-E2-R_rcp45_r6i1p3_g025.nc" "3.4046325011337"

[93,] "rlus_mon_GISS-E2-R_rcp45_r6i1p1_g025.nc" "3.4063820054556"

[94,] "rlus_mon_GISS-E2-H_rcp45_r3i1p2_g025.nc" "3.41856638908484"

[95,] "rlus_mon_GISS-E2-H_rcp45_r2i1p2_g025.nc" "3.44570652269342"

[96,] "rlus_mon_CESM1-CAM5_rcp45_r1i1p1_g025.nc" "3.53904229858017"

[97,] "rlus_mon_CESM1-CAM5_rcp45_r3i1p1_g025.nc" "3.63363356344099"

[98,] "rlus_mon_CESM1-CAM5_rcp45_r2i1p1_g025.nc" "3.65789195162577"

[99,] "rlus_mon_CNRM-CM5_rcp45_r1i1p1_g025.nc" "3.82696568740668"

[100,] "rlus_mon_CMCC-CM_rcp45_r1i1p1_g025.nc" "4.68354930141825

Interestingly, the same model (CMCC-CM) attains the maximum value as in the Near
Surface Temperature case.

refLatTest()

Again, one can look at the CMCC-CM projection of the rlus and analyze it further with
the function refLatTest() giving the following ouput:

# max median mean

# level 1 14.26672 4.964832 5.425929

# level 2 43.39104 6.700173 8.509525

# level 3 108.44810 4.671224 8.322322
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Figure 6.13: Top: Weighted mean of monthly Surface Upwelling Longwave Radiation
under the RCP45 scenario at time t = 100. Center: Surface Upwelling Longwave Ra-
diation projection of the CMCC-CM (r1i1p1) model under the RCP45 scenario at time
t = 100. Bottom: Differences of the Lattice Krig coefficients obtained by the function
refLatTest().

This time, σ̂ML attains much larger values than in the Near Surface Temperature case.
This might be due to badly chosen fixed λ or due to the lack of overall quality of the
monthly Surface Upwelling Longwave Radiation projections at time t = 100. One may
remember that the pairwiseSNHT() has detected relatively more inhomogeneities in the
variable Surface Upwelling Longwave Radiation than in the Near Surface Temperature
projection. Therefore, it might also be the case that the high differences of the coefficients,
which are displayed in Figure 6.13, come from actual inhomogeneities.
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Chapter 7

Conclusion and outlook

After presenting the CMIP5-ng analysis framework that has been developed in this thesis,
this section serves to discuss some of the most important findings that have been made
across all chapters and give an outlook on further research. This is done in two sections,
whereby the first one focuses on the setup of the R framework and the second one provides
the findings obtained by its applications on the CMIP5-ng data sets respectively.

7.1 Setup of the statistical framework

Statistical tools based on the SNHT, GMRF and Lattice Krig have been set up in order
to find anomalies in the CMIP5-ng data pool. The methods have been selected due to
their complementary nature in finding different types of inhomogeneities as well as their
potential to ensure affordable computational cost if applied to large data sets.
The pairwiseSNHT() function, presented in Chapter 4, has comparatively fast runtime,
which is partly due to the modified SNHT test statistic that does not take into account
T values (as in Alexandersson’s version) but only 2N << T . Applications have sug-
gested that the pairwiseSNHT() is more efficient than the gmrfHomogeneityTestComp()

in finding local inhomogeneities (see application/runtime Sections 4.5 and 5.5.2/4.4 and
5.4.2). Yet, global shifts cannot be detected by the pairwiseSNHT(). In this respect,
gmrfHomogeneityTestComp() still gives the best results. Nevertheless, the runtime and
stability of the gmrfHomogeneityTestComp() are still non-optimal, which is predomi-
nantly due to the discontinuity in the likelihood function at the boundaries of the valid
parameter space which often results in non-convergence of the optim() function in R. This
issue can be avoided by an analysis of the valid parameter space and fixing parameters.
A user, however, must be aware of the fact that fixing parameters under the likelihood
of the null and alternative hypotheses can lead to inaccuracies and type I errors if the
parameter is fixed to a value that is too distant from the true value. However, it can be
added that an experiment (see Section 5.4.1) has shown that fixing the parameter b in a
distance of approximately 0.2 from the true value did only yield slight deviations of the
âML estimates when compared to the reference simulations where b was not fixed.
Regarding the runtime, Sections 4.4 and 5.4.2 have suggested that the gmrfHomogeneity-
TestComp() and the pairwiseSNHT() prefer data in a narrow spatial but large temporal
region. Restricting the field of analysis to a narrow spatial region, however, yields to
large undetected spatial regions that have been shifted or rearranged. To compensate for
this deficiency, the Lattice Krig methods refLatTest() and sigmaLatTest() have been
implemented. Even though they only act as indicators and do not give information on
significance, they can be useful to find spatially suspicious regions anywhere on Earth at a
fixed specific time. Another advantage in the usage of the Lattice Krig spatial model is its
stability as the diagonally dominant blocks of the precision matrix always yield positive
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definiteness.
Overall, the complementary aspect of the framework’s methods has been achieved, whereas
for runtime optimization, one may want to implement the framework or merely the
gmrfHomogeneityTest() function in the C programming language. C is a lower level
programming language and, hence, runtime is less influenced by elements of abstraction
to allow an easy to use programming surface as in R.
In conclusion, the existing framework as presented in this thesis could be improved by
further research on the following aspects:

1. GMRF: Can the relationship between the differences b̂ML,H0 − b̂ML,H1 , ĉML,H0 −
ĉML,H1 , f̂ML,H1 − f̂ML,H0 and the global shift height âML be quantified?

2. GMRF: What is the quantitative effect on the likelihood ratio statistic when fixing
the parameters b, c, f to estimates that are a certain distance away from the true
parameter values?

3. GMRF: Is there a good parametrization of the spatial model yielding a diagonally
dominant precision matrix that guarantees more overall stability when finding the
MLEs?

4. GMRF: Is there a computationally efficient and useful alternative to GAMM to
remove seasonality and trends in climate data projections?

5. Lattice Krig: Is it possible to develop a significance test on the basis of Lattice Krig
for detecting spatial inhomogeneities?

7.2 Application of the framework on CMIP5-ng data

This thesis has focused on the development of an R framework. Its usage has been
illustrated on the basis of a few model projections on the Near Surface Temperature as
well as the Surface Upwelling Longwave Radiation under the RCP45 scenario. Some of
the observations and conjectures, which one may want to analyze further, are provided in
this section.
The application of the SNHT on the Surface Upwelling Longwave Radiation in Section
4.5 suggests that ocean regions may have been less thoroughly analyzed with more de-
tected inhomogeneities than in regions of land. Thus, it is suggested to further analyze
ocean regions for less commonly used model projections of variables such as the Surface
Upwelling Longwave Radiaton.
The application of the GMRF with the gmrfHomogeneityTestComp() function has given
similar results as the SNHT when trends and seasonality were removed using the GAMM.
The weighted mean approach has resulted in a less accurate removal of these climatic oc-
currences and, hence, in impractical output of the gmrfHomogeneityTestComp(). Nonethe-
less, the weighted mean is useful for building the SSD in order to reveal outlier models.
The application of Lattice Krig to the Near Surface Temperature sample data suggested
that, though the spatial smoothness of model projections (estimated by λ) vary between
different climate variables, model projections can be ordered according to the spatial
smoothness, which can be generated by the λ estimates of the Lattice Krig model. The
order of the model projections according to the λ’s only differs slightly between the Near
Surface Temperature and Surface Upwelling Longwave radiation climate variable projec-
tions. At this point, it should be noticed that the Near Surface Temperature and Surface
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Upwelling Longwave radiation are strongly dependent variables. Hence, one may want
to analyze if the phenomenon of spatial smoothness as an attribute of a climate model
holds for other climate variables as well. Through the application of refLatTest(), it has
become evident that certain model projections of the CMIP5-ng diverge in their values at
polar regions. Thus, further analysis may want to be conducted in these spatial regions.

Overall, the framework developed is a working analysis tool and a contribution to finding
erroneous simulation runs in the CMIP5-ng data pool. Homogenization and further inves-
tigation of non-climatic anomalies in the climate data, which can potentially be detected
by statistical tools and frameworks as provided in this thesis, can yield more representa-
tive climate simulation runs. Finally, this has the potential to reduce the uncertainty in
climate scenario projections and, among other things, is a first step in generating more
accurate future climate predictions.
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Chapter 8

Appendix

8.1 Runtime experiments

8.1.1 SNHT: Runtime experiment (Space vs. time)

library(reshape2)

install.packages("/.../snht_1.0.4.tar.gz",type="src",repo=NULL)

library(snht)

library(ncdf)

source(‘/.../getCoord.R’)

file <- ‘/.../tas_mon_ACCESS1-0_rcp45_r1i1p1_g025.nc’

nc <- open.ncdf(file)

data <- get.var.ncdf(nc)

close.ncdf(nc)

baseDataEurope <- data[c(1:3),c(55:57),c(1:100)]

coord <- getCoordinates(c(1:3),c(55:57))

#create coordinates

dist <- (as.matrix(dist(coord)))

dim(baseDataEurope) <- c(dim(baseDataEurope)[1]*

dim(baseDataEurope)[2],dim(baseDataEurope)[3])

baseDataEurope <- t(baseDataEurope)

colnames(baseDataEurope) <- "1":"9"

baseData <- data.frame(time=1:100,baseDataEurope)

baseData <- melt(baseData,id.vars="time",variable.name=

"location",value.name="data")

baseData$location <- gsub("X","",baseData$location)

system.time(out <- pairwiseSNHT(baseData,dist,k=3,period=10,

crit=qchisq(1-0.05/80,df=1),returnStat=F))

# user system elapsed

# 0.414 0.008 0.431

#vs. more locations... 10x10x9

baseDataEurope <- data[c(1:10),c(55:64),c(1:9)]

coord <- getCoordinates(c(1:10),c(55:64))

#create coordinates

dist <- (as.matrix(dist(coord)))

dim(baseDataEurope) <- c(dim(baseDataEurope)[1]*

dim(baseDataEurope)[2],dim(baseDataEurope)[3])
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baseDataEurope <- t(baseDataEurope)

colnames(baseDataEurope) <- "1":"100"

baseData <- data.frame(time=1:9,baseDataEurope)

baseData <- melt(baseData,id.vars="time",variable.name=

"location",value.name="data")

baseData$location <- gsub("X","",baseData$location)

system.time(out <- pairwiseSNHT(baseData,dist,k=3,period=2,

crit=qchisq(1-0.05/5,df=1),returnStat=F))

# user system elapsed

# 2.035 0.000 2.029

8.1.2 GMRF: Runtime experiment (Space vs. time)

library(ncdf)

library(spam)

source(‘/.../gmrfHomogeneityTest_VR.R’)

source(‘/.../mgmrfPrec.R’)

desData <- load("/.../resRCP45ACCESS1") #obtained by GAMM

dim(res) <- c(144,72,2772)

desDataEurope <- res[c(1:3),c(55:57),c(1:100)]

# image.plot(desDataEurope[,,1])

av <- matrix(0,3,3)

for(i in 1:3){

for(j in 1:3){

av[i,j] <- mean(desDataEurope[i,j,c(1:100)])

}

}

timeTaken1 <- system.time(

out1 <- gmrfHomogeneityTestComp_VR(desDataEurope,

type="global",mu=c(av),

bStart=0.14,cStart=1,fStart=0.1,

sigLevel=0.05,L=1))

# user system elapsed

# 8.803 0.129 8.879

desDataEurope <- res[c(1:10),c(55:64),c(1:9)]

av <- matrix(0,10,10)

for(i in 1:10){

for(j in 1:10){

av[i,j] <- mean(desDataEurope[i,j,c(1:9)])

}

}

timeTaken2 <- system.time(

out2 <- gmrfHomogeneityTestComp_VR(desDataEurope,
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type="global",mu=c(av),

bStart=0.14,cStart=1,fStart=0.1,

sigLevel=0.05,L=1))

# > timeTaken2

# user system elapsed

# 40.073 0.047 40.091

8.2 Output

8.2.1 Preanalysis of data output

#timeDim: number of time units (months, years, seasons)

#max: maximum of the data values of a specific projection

#min: minimum of the data values of a specific projection

#mean: mean of the data data values of a specific projection

#susp: projection has too many missing values

# (over 40% for sea-type variables,

# over 80% for land-type variables,

# more than 0% for global variables) or values that are outside of

# a predefined interval.

#ok: projection is non-suspicious wrt missing values and range of values.

> out

name timeDim max min mean susp/ok

[1,] "tos_mon_ACCESS1-0_piControl_r1i1p1_g025.nc" "6000" "307.71 *" "271.22 " "286.95 " "ok"

[2,] "tos_mon_ACCESS1-3_piControl_r1i1p1_g025.nc" "6000" "305.86 " "271.24 " "286.99 " "ok"

[3,] "tos_mon_BNU-ESM_piControl_r1i1p1_g025.nc" "6708" "306.28 " "271.36 " "286.47 " "ok"

[4,] "tos_mon_CCSM4_piControl_r1i1p1_g025.nc" "12612" "305.64 " "271.12 " "286.73 " "ok"

[5,] "tos_mon_CCSM4_piControl_r2i1p1_g025.nc" "1872" "305.28 " "271.13 " "286.71 " "ok"

[6,] "tos_mon_CCSM4_piControl_r4i1p1_g025.nc" "600" "305.23 " "271.16 " "286.74 " "ok"

[7,] "tos_mon_CESM1-BGC_piControl_r1i1p1_g025.nc" "6000" "305.29 " "271.08 " "286.76 " "ok"

[8,] "tos_mon_CESM1-CAM5-1-FV2_piControl_r1i1p1_g025.nc" "600" "307.7 *" "271.22 " "287 " "ok"

[9,] "tos_mon_CESM1-CAM5_piControl_r1i1p1_g025.nc" "3828" "306.34 " "271.24 " "286.69 " "ok"

[10,] "tos_mon_CESM1-FASTCHEM_piControl_r1i1p1_g025.nc" "2664" "305.51 " "271.14 " "286.74 " "ok"

[11,] "tos_mon_CMCC-CESM_piControl_r1i1p1_g025.nc" "3324" "307.64 *" "271.05 *" "286.74 " "susp"

[12,] "tos_mon_CMCC-CMS_piControl_r1i1p1_g025.nc" "6000" "306.93 " "271.05 *" "286.85 " "susp"

[13,] "tos_mon_CMCC-CM_piControl_r1i1p1_g025.nc" "3960" "305.85 " "271.11 " "286.6 " "susp"

[14,] "tos_mon_CNRM-CM5-2_piControl_r1i1p1_g025.nc" "4920" "306.08 " "270.1 *" "286.49 " "ok"

[15,] "tos_mon_CNRM-CM5-2_piControl_r1i1p2_g025.nc" "1680" "305.84 " "270.23 *" "286.43 " "ok"

[16,] "tos_mon_CNRM-CM5-2_piControl_r1i1p3_g025.nc" "1680" "305.9 " "270.74 *" "286.24 " "ok"

[17,] "tos_mon_CNRM-CM5-2_piControl_r1i1p4_g025.nc" "840" "305.55 " "270.78 *" "286.26 " "ok"

[18,] "tos_mon_CNRM-CM5_piControl_r1i1p1_g025.nc" "10200" "306.07 " "270.18 *" "286.72 " "ok"

[19,] "tos_mon_CSIRO-Mk3-6-0_piControl_r1i1p1_g025.nc" "6000" "305.95 " "271.32 " "290.05 *" "susp"

[20,] "tos_mon_CanESM2_piControl_r1i1p1_g025.nc" "11952" "306.03 " "270.85 *" "286.41 " "ok"

[21,] "tos_mon_EC-EARTH_piControl_r1i1p1_g025.nc" "5424" "304.5 *" "271.06 *" "286.44 " "ok"

[22,] "tos_mon_FGOALS-s2_piControl_r1i1p1_g025.nc" "6000" "304.63 *" "271.35 " "286.59 " "ok"

[23,] "tos_mon_FIO-ESM_piControl_r1i1p1_g025.nc" "9600" "305.76 " "271.21 " "286.51 " "ok"

[24,] "tos_mon_GFDL-CM3_piControl_r1i1p1_g025.nc" "9600" "307.96 *" "271.25 " "287.2 " "ok"

[25,] "tos_mon_GFDL-ESM2G_piControl_r1i1p1_g025.nc" "6000" "307.15 *" "271.24 " "286.92 " "ok"

[26,] "tos_mon_GFDL-ESM2M_piControl_r1i1p1_g025.nc" "6000" "306.42 " "271.25 " "287.13 " "ok"

[27,] "tos_mon_GISS-E2-H-CC_piControl_r1i1p1_g025.nc" "3012" "305.29 " "271.26 " "287.54 " "susp"

[28,] "tos_mon_GISS-E2-H_piControl_r1i1p2_g025.nc" "6372" "305.39 " "271.22 " "288.35 *" "susp"

[29,] "tos_mon_GISS-E2-H_piControl_r1i1p3_g025.nc" "6372" "305.22 " "271.22 " "288.36 *" "susp"

[30,] "tos_mon_GISS-E2-R-CC_piControl_r1i1p1_g025.nc" "3012" "305.02 " "271.25 " "287.27 " "susp"

[31,] "tos_mon_GISS-E2-R_piControl_r1i1p141_g025.nc" "13956" "305.03 " "271.24 " "287.27 " "susp"

[32,] "tos_mon_GISS-E2-R_piControl_r1i1p142_g025.nc" "1200" "304.97 *" "271.25 " "287.43 " "susp"

[33,] "tos_mon_GISS-E2-R_piControl_r1i1p2_g025.nc" "6372" "305.18 " "271.25 " "287.39 " "susp"

[34,] "tos_mon_GISS-E2-R_piControl_r1i1p3_g025.nc" "6372" "304.98 " "271.25 " "287.37 " "susp"

[35,] "tos_mon_HadGEM2-AO_piControl_r1i1p1_g025.nc" "1200" "307.44 *" "271.35 " "286.64 " "ok"

[36,] "tos_mon_HadGEM2-CC_piControl_r1i1p1_g025.nc" "2880" "306.93 " "271.35 " "286.72 " "ok"

[37,] "tos_mon_HadGEM2-ES_piControl_r1i1p1_g025.nc" "6912" "307.36 *" "271.35 " "286.91 " "ok"

[38,] "tos_mon_IPSL-CM5A-LR_piControl_r1i1p1_g025.nc" "12000" "305.36 " "271.19 " "285.64 *" "susp"

[39,] "tos_mon_IPSL-CM5A-MR_piControl_r1i1p1_g025.nc" "3600" "304.96 *" "271.15 " "286.17 " "susp"

[40,] "tos_mon_IPSL-CM5B-LR_piControl_r1i1p1_g025.nc" "3600" "306.4 " "271.24 " "287.16 " "susp"

[41,] "tos_mon_MIROC-ESM_piControl_r1i1p1_g025.nc" "8160" "306.71 " "271.26 " "286.61 " "ok"

[42,] "tos_mon_MIROC5_piControl_r1i1p1_g025.nc" "8040" "305.86 " "271.24 " "286.97 " "ok"

[43,] "tos_mon_MPI-ESM-LR_piControl_r1i1p1_g025.nc" "12000" "306.85 " "271.25 " "286.4 " "ok"

[44,] "tos_mon_MPI-ESM-MR_piControl_r1i1p1_g025.nc" "12000" "309.83 *" "271.25 " "286.61 " "ok"

[45,] "tos_mon_MPI-ESM-P_piControl_r1i1p1_g025.nc" "13872" "307.29 *" "271.25 " "286.49 " "ok"
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[46,] "tos_mon_MRI-CGCM3_piControl_r1i1p1_g025.nc" "6000" "304.2 *" "271.29 " "287.02 " "ok"

[47,] "tos_mon_NorESM1-ME_piControl_r1i1p1_g025.nc" "3024" "305.67 " "271.33 " "286.3 " "ok"

[48,] "tos_mon_NorESM1-M_piControl_r1i1p1_g025.nc" "6012" "305.61 " "271.33 " "286.58 " "ok"

[49,] "tos_mon_bcc-csm1-1-m_piControl_r1i1p1_g025.nc" "4800" "305.18 " "271.26 " "286.4 " "ok"

[50,] "tos_mon_bcc-csm1-1_piControl_r1i1p1_g025.nc" "6000" "305.12 " "271.26 " "286.31 " "ok"

[51,] "tos_mon_inmcm4_piControl_r1i1p1_g025.nc" "6000" "305.33 " "270.73 *" "287.33 " "ok"

8.2.2 Lattice Krig output

The estimates for λ of the monthly Near Surface Temperature Data under the RCP45 at
time t = 100 are:

#lambda refers to time t=100 in each model projection.

file lambda

[1,] "tas_mon_BNU-ESM_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[2,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r10i1p1_g025.nc" "0.000123653610613044"

[3,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[4,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r2i1p1_g025.nc" "0.000123653610613044"

[5,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r3i1p1_g025.nc" "0.000123653610613044"

[6,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r4i1p1_g025.nc" "0.000123653610613044"

[7,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r5i1p1_g025.nc" "0.000123653610613044"

[8,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r6i1p1_g025.nc" "0.000123653610613044"

[9,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r7i1p1_g025.nc" "0.000123653610613044"

[10,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r8i1p1_g025.nc" "0.000123653610613044"

[11,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r9i1p1_g025.nc" "0.000123653610613044"

[12,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r1i2p1_g025.nc" "0.000123653610613044"

[13,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r2i2p1_g025.nc" "0.000123653610613044"

[14,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r3i2p1_g025.nc" "0.000123653610613044"

[15,] "tas_mon_CanESM2_rcp45_r2i1p1_g025.nc" "0.000123653610613044"

[16,] "tas_mon_CanESM2_rcp45_r3i1p1_g025.nc" "0.000123653610613044"

[17,] "tas_mon_CanESM2_rcp45_r4i1p1_g025.nc" "0.000123653610613044"

[18,] "tas_mon_CanESM2_rcp45_r5i1p1_g025.nc" "0.000123653610613044"

[19,] "tas_mon_FGOALS-g2_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[20,] "tas_mon_FIO-ESM_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[21,] "tas_mon_FIO-ESM_rcp45_r2i1p1_g025.nc" "0.000123653610613044"

[22,] "tas_mon_FIO-ESM_rcp45_r3i1p1_g025.nc" "0.000123653610613044"

[23,] "tas_mon_GFDL-CM3_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[24,] "tas_mon_MIROC5_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[25,] "tas_mon_MIROC5_rcp45_r2i1p1_g025.nc" "0.000123653610613044"

[26,] "tas_mon_MIROC5_rcp45_r3i1p1_g025.nc" "0.000123653610613044"

[27,] "tas_mon_MPI-ESM-LR_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[28,] "tas_mon_MPI-ESM-LR_rcp45_r2i1p1_g025.nc" "0.000123653610613044"

[29,] "tas_mon_MPI-ESM-LR_rcp45_r3i1p1_g025.nc" "0.000123653610613044"

[30,] "tas_mon_MPI-ESM-MR_rcp45_r2i1p1_g025.nc" "0.000123653610613044"

[31,] "tas_mon_MPI-ESM-MR_rcp45_r3i1p1_g025.nc" "0.000123653610613044"

[32,] "tas_mon_NorESM1-ME_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[33,] "tas_mon_NorESM1-M_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[34,] "tas_mon_bcc-csm1-1_rcp45_r1i1p1_g025.nc" "0.000123653610613044"

[35,] "tas_mon_CanESM2_rcp45_r1i1p1_g025.nc" "0.000128441199114534"

[36,] "tas_mon_MPI-ESM-MR_rcp45_r1i1p1_g025.nc" "0.000130585695878178"

[37,] "tas_mon_CMCC-CMS_rcp45_r1i1p1_g025.nc" "0.000155360492284487"

[38,] "tas_mon_IPSL-CM5B-LR_rcp45_r1i1p1_g025.nc" "0.000183376508520238"

[39,] "tas_mon_IPSL-CM5A-LR_rcp45_r4i1p1_g025.nc" "0.000223893317401282"

[40,] "tas_mon_IPSL-CM5A-LR_rcp45_r1i1p1_g025.nc" "0.000227870814837588"

[41,] "tas_mon_MIROC-ESM-CHEM_rcp45_r1i1p1_g025.nc" "0.000230632620843341"

[42,] "tas_mon_IPSL-CM5A-LR_rcp45_r3i1p1_g025.nc" "0.000240921050097993"

[43,] "tas_mon_IPSL-CM5A-LR_rcp45_r2i1p1_g025.nc" "0.000259492885366603"

[44,] "tas_mon_GFDL-ESM2G_rcp45_r1i1p1_g025.nc" "0.000273509916846808"

[45,] "tas_mon_MIROC-ESM_rcp45_r1i1p1_g025.nc" "0.00027611453641935"

[46,] "tas_mon_IPSL-CM5A-MR_rcp45_r1i1p1_g025.nc" "0.000297637125704603"

[47,] "tas_mon_GFDL-ESM2M_rcp45_r1i1p1_g025.nc" "0.000346247708013947"

[48,] "tas_mon_inmcm4_rcp45_r1i1p1_g025.nc" "0.000348999068918173"

[49,] "tas_mon_bcc-csm1-1-m_rcp45_r1i1p1_g025.nc" "0.000381075594932036"

[50,] "tas_mon_ACCESS1-3_rcp45_r1i1p1_g025.nc" "0.000438119343432566"

[51,] "tas_mon_EC-EARTH_rcp45_r2i1p1_g025.nc" "0.000540317695014142"

[52,] "tas_mon_EC-EARTH_rcp45_r12i1p1_g025.nc" "0.000574333688226816"

[53,] "tas_mon_HadGEM2-ES_rcp45_r1i1p1_g025.nc" "0.00059999404594843"

[54,] "tas_mon_HadGEM2-ES_rcp45_r3i1p1_g025.nc" "0.000627811799681993"

[55,] "tas_mon_EC-EARTH_rcp45_r1i1p1_g025.nc" "0.000636201487028358"

[56,] "tas_mon_HadGEM2-AO_rcp45_r1i1p1_g025.nc" "0.000658288917001936"

[57,] "tas_mon_HadGEM2-CC_rcp45_r1i1p1_g025.nc" "0.000664418050437096"
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[58,] "tas_mon_HadGEM2-ES_rcp45_r2i1p1_g025.nc" "0.000668908191190323"

[59,] "tas_mon_EC-EARTH_rcp45_r9i1p1_g025.nc" "0.00071579595402898"

[60,] "tas_mon_EC-EARTH_rcp45_r14i1p1_g025.nc" "0.000728271205625879"

[61,] "tas_mon_CCSM4_rcp45_r4i1p1_g025.nc" "0.000734017562592531"

[62,] "tas_mon_ACCESS1-0_rcp45_r1i1p1_g025.nc" "0.000734453605063471"

[63,] "tas_mon_CESM1-BGC_rcp45_r1i1p1_g025.nc" "0.000778896932121128"

[64,] "tas_mon_CNRM-CM5_rcp45_r1i1p1_g025.nc" "0.000779284363668748"

[65,] "tas_mon_CCSM4_rcp45_r1i1p1_g025.nc" "0.000791581824222519"

[66,] "tas_mon_HadGEM2-ES_rcp45_r4i1p1_g025.nc" "0.000819995997731008"

[67,] "tas_mon_EC-EARTH_rcp45_r8i1p1_g025.nc" "0.000824069553137642"

[68,] "tas_mon_CCSM4_rcp45_r5i1p1_g025.nc" "0.000829044313245045"

[69,] "tas_mon_CESM1-CAM5_rcp45_r2i1p1_g025.nc" "0.000855046415600886"

[70,] "tas_mon_CCSM4_rcp45_r6i1p1_g025.nc" "0.000873529789192935"

[71,] "tas_mon_CESM1-CAM5_rcp45_r3i1p1_g025.nc" "0.000893730717560739"

[72,] "tas_mon_CCSM4_rcp45_r2i1p1_g025.nc" "0.000898718340810694"

[73,] "tas_mon_CCSM4_rcp45_r3i1p1_g025.nc" "0.000916731536264678"

[74,] "tas_mon_MRI-CGCM3_rcp45_r1i1p1_g025.nc" "0.000936073028757775"

[75,] "tas_mon_CESM1-CAM5_rcp45_r1i1p1_g025.nc" "0.000980026851204144"

[76,] "tas_mon_GISS-E2-R_rcp45_r5i1p1_g025.nc" "0.00119600719451149"

[77,] "tas_mon_GISS-E2-R-CC_rcp45_r1i1p1_g025.nc" "0.00127065681629919"

[78,] "tas_mon_GISS-E2-R_rcp45_r3i1p3_g025.nc" "0.0012949535483509"

[79,] "tas_mon_GISS-E2-R_rcp45_r1i1p1_g025.nc" "0.00141135543910013"

[80,] "tas_mon_GISS-E2-H_rcp45_r3i1p3_g025.nc" "0.00143527176429197"

[81,] "tas_mon_GISS-E2-H_rcp45_r4i1p3_g025.nc" "0.00144943543990124"

[82,] "tas_mon_GISS-E2-R_rcp45_r5i1p2_g025.nc" "0.00146647260446157"

[83,] "tas_mon_GISS-E2-R_rcp45_r4i1p3_g025.nc" "0.00148330279089228"

[84,] "tas_mon_GISS-E2-R_rcp45_r4i1p1_g025.nc" "0.00153204113252216"

[85,] "tas_mon_GISS-E2-R_rcp45_r6i1p3_g025.nc" "0.0015600708426182"

[86,] "tas_mon_GISS-E2-H_rcp45_r3i1p1_g025.nc" "0.00157546282803992"

[87,] "tas_mon_GISS-E2-H_rcp45_r3i1p2_g025.nc" "0.00157593464545172"

[88,] "tas_mon_GISS-E2-R_rcp45_r1i1p2_g025.nc" "0.00159523610557242"

[89,] "tas_mon_GISS-E2-H_rcp45_r1i1p1_g025.nc" "0.00162466496899046"

[90,] "tas_mon_GISS-E2-R_rcp45_r3i1p2_g025.nc" "0.00162868299940382"

[91,] "tas_mon_GISS-E2-H_rcp45_r5i1p3_g025.nc" "0.00163677341023116"

[92,] "tas_mon_GISS-E2-R_rcp45_r2i1p2_g025.nc" "0.00164012658078277"

[93,] "tas_mon_GISS-E2-H_rcp45_r2i1p1_g025.nc" "0.00164461144668598"

[94,] "tas_mon_GISS-E2-H-CC_rcp45_r1i1p1_g025.nc" "0.00165192162129867"

[95,] "tas_mon_GISS-E2-R_rcp45_r2i1p1_g025.nc" "0.00165193074231649"

[96,] "tas_mon_GISS-E2-H_rcp45_r4i1p2_g025.nc" "0.00165669599523625"

[97,] "tas_mon_GISS-E2-H_rcp45_r1i1p2_g025.nc" "0.00165852916413023"

[98,] "tas_mon_GISS-E2-H_rcp45_r1i1p3_g025.nc" "0.00166798140170572"

[99,] "tas_mon_GISS-E2-R_rcp45_r5i1p3_g025.nc" "0.00171053855901016"

[100,] "tas_mon_GISS-E2-H_rcp45_r2i1p2_g025.nc" "0.00171548163471827"

[101,] "tas_mon_GISS-E2-R_rcp45_r1i1p3_g025.nc" "0.00173972508449444"

[102,] "tas_mon_GISS-E2-H_rcp45_r5i1p2_g025.nc" "0.00174753604222548"

[103,] "tas_mon_GISS-E2-R_rcp45_r2i1p3_g025.nc" "0.00175980502931455"

[104,] "tas_mon_GISS-E2-H_rcp45_r4i1p1_g025.nc" "0.00184457351420222"

[105,] "tas_mon_GISS-E2-H_rcp45_r2i1p3_g025.nc" "0.00188735119085388"

[106,] "tas_mon_GISS-E2-H_rcp45_r5i1p1_g025.nc" "0.00188814929359308"

[107,] "tas_mon_GISS-E2-R_rcp45_r3i1p1_g025.nc" "0.00190870937729969"

[108,] "tas_mon_GISS-E2-R_rcp45_r6i1p1_g025.nc" "0.00192168723825333"

[109,] "tas_mon_GISS-E2-R_rcp45_r4i1p2_g025.nc" "0.00202220248937382"

[110,] "tas_mon_CMCC-CM_rcp45_r1i1p1_g025.nc" "0.00448169866503329"

The estimates for σ of the monthly Near Surface Temperature Data under the RCP45 at
time t = 100 are:

> sigmaTas

file sigma

[1,] "tas_mon_FIO-ESM_rcp45_r3i1p1_g025.nc" "0.11006772222915"

[2,] "tas_mon_FIO-ESM_rcp45_r1i1p1_g025.nc" "0.11366495539389"

[3,] "tas_mon_FIO-ESM_rcp45_r2i1p1_g025.nc" "0.115593458668153"

[4,] "tas_mon_BNU-ESM_rcp45_r1i1p1_g025.nc" "0.122867289754893"

[5,] "tas_mon_FGOALS-g2_rcp45_r1i1p1_g025.nc" "0.142121953939162"

[6,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r1i2p1_g025.nc" "0.152685116458957"

[7,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r3i2p1_g025.nc" "0.153301490720799"

[8,] "tas_mon_CSIRO-Mk3L-1-2_rcp45_r2i2p1_g025.nc" "0.157096157213068"

[9,] "tas_mon_bcc-csm1-1_rcp45_r1i1p1_g025.nc" "0.163111081940897"

[10,] "tas_mon_MIROC-ESM_rcp45_r1i1p1_g025.nc" "0.167913588714449"

[11,] "tas_mon_MIROC-ESM-CHEM_rcp45_r1i1p1_g025.nc" "0.172819107874678"

[12,] "tas_mon_NorESM1-ME_rcp45_r1i1p1_g025.nc" "0.234056905841689"

[13,] "tas_mon_NorESM1-M_rcp45_r1i1p1_g025.nc" "0.23566621221152"
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[14,] "tas_mon_CanESM2_rcp45_r1i1p1_g025.nc" "0.251752880924171"

[15,] "tas_mon_CanESM2_rcp45_r4i1p1_g025.nc" "0.252622776640708"

[16,] "tas_mon_CanESM2_rcp45_r5i1p1_g025.nc" "0.254188764207865"

[17,] "tas_mon_CanESM2_rcp45_r3i1p1_g025.nc" "0.261787327080742"

[18,] "tas_mon_CanESM2_rcp45_r2i1p1_g025.nc" "0.264976452335187"

[19,] "tas_mon_GFDL-ESM2G_rcp45_r1i1p1_g025.nc" "0.291977984931963"

[20,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r8i1p1_g025.nc" "0.294447453821219"

[21,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r1i1p1_g025.nc" "0.297226239464511"

[22,] "tas_mon_GFDL-ESM2M_rcp45_r1i1p1_g025.nc" "0.297708935368126"

[23,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r7i1p1_g025.nc" "0.298687134004281"

[24,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r5i1p1_g025.nc" "0.299927626958636"

[25,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r10i1p1_g025.nc" "0.302081098421895"

[26,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r6i1p1_g025.nc" "0.304634527443095"

[27,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r3i1p1_g025.nc" "0.304903070315307"

[28,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r2i1p1_g025.nc" "0.305151041470755"

[29,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r4i1p1_g025.nc" "0.306184408792047"

[30,] "tas_mon_GFDL-CM3_rcp45_r1i1p1_g025.nc" "0.314536211248328"

[31,] "tas_mon_CSIRO-Mk3-6-0_rcp45_r9i1p1_g025.nc" "0.314720403230571"

[32,] "tas_mon_MPI-ESM-MR_rcp45_r1i1p1_g025.nc" "0.338105838691436"

[33,] "tas_mon_MPI-ESM-LR_rcp45_r3i1p1_g025.nc" "0.340028664575745"

[34,] "tas_mon_IPSL-CM5A-LR_rcp45_r1i1p1_g025.nc" "0.340817048569884"

[35,] "tas_mon_MIROC5_rcp45_r1i1p1_g025.nc" "0.341888935722267"

[36,] "tas_mon_IPSL-CM5A-LR_rcp45_r3i1p1_g025.nc" "0.342196192015396"

[37,] "tas_mon_CMCC-CMS_rcp45_r1i1p1_g025.nc" "0.343687130263206"

[38,] "tas_mon_IPSL-CM5A-LR_rcp45_r4i1p1_g025.nc" "0.343815529312028"

[39,] "tas_mon_MPI-ESM-MR_rcp45_r3i1p1_g025.nc" "0.343821225137654"

[40,] "tas_mon_IPSL-CM5A-LR_rcp45_r2i1p1_g025.nc" "0.343966987075992"

[41,] "tas_mon_MIROC5_rcp45_r3i1p1_g025.nc" "0.347318040007292"

[42,] "tas_mon_MPI-ESM-MR_rcp45_r2i1p1_g025.nc" "0.348028264016044"

[43,] "tas_mon_MPI-ESM-LR_rcp45_r1i1p1_g025.nc" "0.348770783401351"

[44,] "tas_mon_MIROC5_rcp45_r2i1p1_g025.nc" "0.34931079805394"

[45,] "tas_mon_MPI-ESM-LR_rcp45_r2i1p1_g025.nc" "0.351193056857404"

[46,] "tas_mon_bcc-csm1-1-m_rcp45_r1i1p1_g025.nc" "0.365927677210095"

[47,] "tas_mon_IPSL-CM5B-LR_rcp45_r1i1p1_g025.nc" "0.386942398438445"

[48,] "tas_mon_IPSL-CM5A-MR_rcp45_r1i1p1_g025.nc" "0.393727243698931"

[49,] "tas_mon_inmcm4_rcp45_r1i1p1_g025.nc" "0.406750316901783"

[50,] "tas_mon_ACCESS1-3_rcp45_r1i1p1_g025.nc" "0.452497224520464"

[51,] "tas_mon_HadGEM2-ES_rcp45_r3i1p1_g025.nc" "0.453228532394665"

[52,] "tas_mon_HadGEM2-ES_rcp45_r1i1p1_g025.nc" "0.453439735786529"

[53,] "tas_mon_HadGEM2-ES_rcp45_r4i1p1_g025.nc" "0.458558720518478"

[54,] "tas_mon_HadGEM2-AO_rcp45_r1i1p1_g025.nc" "0.461717332050332"

[55,] "tas_mon_EC-EARTH_rcp45_r12i1p1_g025.nc" "0.465556936460681"

[56,] "tas_mon_CCSM4_rcp45_r1i1p1_g025.nc" "0.468621573726459"

[57,] "tas_mon_CCSM4_rcp45_r6i1p1_g025.nc" "0.468753491380023"

[58,] "tas_mon_CCSM4_rcp45_r4i1p1_g025.nc" "0.471318802085698"

[59,] "tas_mon_HadGEM2-ES_rcp45_r2i1p1_g025.nc" "0.471678405706982"

[60,] "tas_mon_CCSM4_rcp45_r3i1p1_g025.nc" "0.473422104045817"

[61,] "tas_mon_HadGEM2-CC_rcp45_r1i1p1_g025.nc" "0.474969251670787"

[62,] "tas_mon_EC-EARTH_rcp45_r1i1p1_g025.nc" "0.477035700958721"

[63,] "tas_mon_CCSM4_rcp45_r2i1p1_g025.nc" "0.478438028699955"

[64,] "tas_mon_CESM1-BGC_rcp45_r1i1p1_g025.nc" "0.480546247502464"

[65,] "tas_mon_MRI-CGCM3_rcp45_r1i1p1_g025.nc" "0.483280195484371"

[66,] "tas_mon_EC-EARTH_rcp45_r2i1p1_g025.nc" "0.483417250596197"

[67,] "tas_mon_EC-EARTH_rcp45_r8i1p1_g025.nc" "0.483853312905823"

[68,] "tas_mon_CCSM4_rcp45_r5i1p1_g025.nc" "0.486160991087662"

[69,] "tas_mon_EC-EARTH_rcp45_r14i1p1_g025.nc" "0.490400475646624"

[70,] "tas_mon_EC-EARTH_rcp45_r9i1p1_g025.nc" "0.491934406261398"

[71,] "tas_mon_ACCESS1-0_rcp45_r1i1p1_g025.nc" "0.493605976628916"

[72,] "tas_mon_CESM1-CAM5_rcp45_r1i1p1_g025.nc" "0.509102704695612"

[73,] "tas_mon_CESM1-CAM5_rcp45_r3i1p1_g025.nc" "0.520239388917884"

[74,] "tas_mon_CESM1-CAM5_rcp45_r2i1p1_g025.nc" "0.522204370025365"

[75,] "tas_mon_GISS-E2-R_rcp45_r3i1p2_g025.nc" "0.526191911252957"

[76,] "tas_mon_GISS-E2-R_rcp45_r2i1p1_g025.nc" "0.528768288727814"

[77,] "tas_mon_GISS-E2-R_rcp45_r2i1p3_g025.nc" "0.528993742931682"

[78,] "tas_mon_GISS-E2-R_rcp45_r6i1p3_g025.nc" "0.533866435910881"

[79,] "tas_mon_GISS-E2-R_rcp45_r4i1p1_g025.nc" "0.535774646417207"

[80,] "tas_mon_GISS-E2-R_rcp45_r5i1p3_g025.nc" "0.536739449040725"

[81,] "tas_mon_GISS-E2-R_rcp45_r5i1p1_g025.nc" "0.537064869779151"

[82,] "tas_mon_GISS-E2-R_rcp45_r3i1p3_g025.nc" "0.537424161184229"

[83,] "tas_mon_GISS-E2-R_rcp45_r1i1p2_g025.nc" "0.537837714474258"

[84,] "tas_mon_GISS-E2-R_rcp45_r1i1p1_g025.nc" "0.538853936738275"

[85,] "tas_mon_GISS-E2-R_rcp45_r4i1p2_g025.nc" "0.539707249081328"

[86,] "tas_mon_GISS-E2-R_rcp45_r4i1p3_g025.nc" "0.541019809740245"
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[87,] "tas_mon_GISS-E2-R_rcp45_r1i1p3_g025.nc" "0.542739000540321"

[88,] "tas_mon_GISS-E2-R-CC_rcp45_r1i1p1_g025.nc" "0.54804664865616"

[89,] "tas_mon_GISS-E2-R_rcp45_r3i1p1_g025.nc" "0.548228996701106"

[90,] "tas_mon_GISS-E2-R_rcp45_r2i1p2_g025.nc" "0.548603283093651"

[91,] "tas_mon_GISS-E2-R_rcp45_r5i1p2_g025.nc" "0.551277895418193"

[92,] "tas_mon_GISS-E2-R_rcp45_r6i1p1_g025.nc" "0.553503449863243"

[93,] "tas_mon_GISS-E2-H_rcp45_r4i1p2_g025.nc" "0.554553133320771"

[94,] "tas_mon_GISS-E2-H_rcp45_r1i1p3_g025.nc" "0.557070985981428"

[95,] "tas_mon_GISS-E2-H_rcp45_r4i1p3_g025.nc" "0.557396708093455"

[96,] "tas_mon_GISS-E2-H_rcp45_r5i1p1_g025.nc" "0.559554115949138"

[97,] "tas_mon_GISS-E2-H_rcp45_r4i1p1_g025.nc" "0.561627600284377"

[98,] "tas_mon_GISS-E2-H_rcp45_r2i1p1_g025.nc" "0.562381313824867"

[99,] "tas_mon_GISS-E2-H_rcp45_r5i1p2_g025.nc" "0.56242937369888"

[100,] "tas_mon_GISS-E2-H_rcp45_r1i1p2_g025.nc" "0.563763052606992"

[101,] "tas_mon_GISS-E2-H_rcp45_r3i1p3_g025.nc" "0.565812800350639"

[102,] "tas_mon_CNRM-CM5_rcp45_r1i1p1_g025.nc" "0.567894576297148"

[103,] "tas_mon_GISS-E2-H_rcp45_r3i1p2_g025.nc" "0.568096898758881"

[104,] "tas_mon_GISS-E2-H_rcp45_r2i1p3_g025.nc" "0.572225686262292"

[105,] "tas_mon_GISS-E2-H_rcp45_r5i1p3_g025.nc" "0.572325813631521"

[106,] "tas_mon_GISS-E2-H-CC_rcp45_r1i1p1_g025.nc" "0.57613901948118"

[107,] "tas_mon_GISS-E2-H_rcp45_r2i1p2_g025.nc" "0.577021593947984"

[108,] "tas_mon_GISS-E2-H_rcp45_r3i1p1_g025.nc" "0.578371145557919"

[109,] "tas_mon_GISS-E2-H_rcp45_r1i1p1_g025.nc" "0.579337834948866"

[110,] "tas_mon_CMCC-CM_rcp45_r1i1p1_g025.nc" "0.681343428572589"

The estimates for σ of the monthly Surface Upwelling Longwave Radiation under the
RCP45 at time t = 100 are:

> sigmaRlus

file sigma

[1,] "rlus_mon_bcc-csm1-1_rcp45_r1i1p1_g025.nc" "1.12257069943875"

[2,] "rlus_mon_FGOALS-g2_rcp45_r1i1p1_g025.nc" "1.17189204415031"

[3,] "rlus_mon_BNU-ESM_rcp45_r1i1p1_g025.nc" "1.22784408801046"

[4,] "rlus_mon_CSIRO-Mk3L-1-2_rcp45_r3i2p1_g025.nc" "1.34032649858499"

[5,] "rlus_mon_MIROC-ESM_rcp45_r1i1p1_g025.nc" "1.34964408479685"

[6,] "rlus_mon_CSIRO-Mk3L-1-2_rcp45_r1i2p1_g025.nc" "1.35192757013706"

[7,] "rlus_mon_MIROC-ESM-CHEM_rcp45_r1i1p1_g025.nc" "1.35490311136217"

[8,] "rlus_mon_CSIRO-Mk3L-1-2_rcp45_r2i2p1_g025.nc" "1.35559110276213"

[9,] "rlus_mon_NorESM1-ME_rcp45_r1i1p1_g025.nc" "1.80707457264746"

[10,] "rlus_mon_NorESM1-M_rcp45_r1i1p1_g025.nc" "1.86287700292733"

[11,] "rlus_mon_CanESM2_rcp45_r1i1p1_g025.nc" "2.0739086568381"

[12,] "rlus_mon_CanESM2_rcp45_r4i1p1_g025.nc" "2.08397987437844"

[13,] "rlus_mon_CanESM2_rcp45_r5i1p1_g025.nc" "2.0854431278767"

[14,] "rlus_mon_CanESM2_rcp45_r3i1p1_g025.nc" "2.12078052993802"

[15,] "rlus_mon_CanESM2_rcp45_r2i1p1_g025.nc" "2.15569826809795"

[16,] "rlus_mon_IPSL-CM5A-LR_rcp45_r1i1p1_g025.nc" "2.22175951228836"

[17,] "rlus_mon_IPSL-CM5A-LR_rcp45_r3i1p1_g025.nc" "2.2319039415424"

[18,] "rlus_mon_IPSL-CM5A-LR_rcp45_r2i1p1_g025.nc" "2.23865455374341"

[19,] "rlus_mon_IPSL-CM5A-LR_rcp45_r4i1p1_g025.nc" "2.24032342702726"

[20,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r8i1p1_g025.nc" "2.24994081628824"

[21,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r1i1p1_g025.nc" "2.26589971000066"

[22,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r2i1p1_g025.nc" "2.31641031306482"

[23,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r10i1p1_g025.nc" "2.32748654815469"

[24,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r7i1p1_g025.nc" "2.32847049667178"

[25,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r4i1p1_g025.nc" "2.33207596789444"

[26,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r5i1p1_g025.nc" "2.33502320886262"

[27,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r3i1p1_g025.nc" "2.34151062542213"

[28,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r6i1p1_g025.nc" "2.35467105785737"

[29,] "rlus_mon_IPSL-CM5B-LR_rcp45_r1i1p1_g025.nc" "2.39813010152707"

[30,] "rlus_mon_CSIRO-Mk3-6-0_rcp45_r9i1p1_g025.nc" "2.45412672328327"

[31,] "rlus_mon_GFDL-CM3_rcp45_r1i1p1_g025.nc" "2.45630826834349"

[32,] "rlus_mon_bcc-csm1-1-m_rcp45_r1i1p1_g025.nc" "2.52423901280235"

[33,] "rlus_mon_IPSL-CM5A-MR_rcp45_r1i1p1_g025.nc" "2.57747636486176"

[34,] "rlus_mon_MIROC5_rcp45_r3i1p1_g025.nc" "2.59042457827"

[35,] "rlus_mon_MIROC5_rcp45_r1i1p1_g025.nc" "2.60811914714179"

[36,] "rlus_mon_MIROC5_rcp45_r2i1p1_g025.nc" "2.6086139612406"

[37,] "rlus_mon_MPI-ESM-MR_rcp45_r1i1p1_g025.nc" "2.6232077751079"

[38,] "rlus_mon_GFDL-ESM2G_rcp45_r1i1p1_g025.nc" "2.62507285076436"

[39,] "rlus_mon_MPI-ESM-MR_rcp45_r3i1p1_g025.nc" "2.67820731486106"

[40,] "rlus_mon_MPI-ESM-LR_rcp45_r3i1p1_g025.nc" "2.68954353629021"

[41,] "rlus_mon_MPI-ESM-LR_rcp45_r1i1p1_g025.nc" "2.73386354344992"

[42,] "rlus_mon_GFDL-ESM2M_rcp45_r1i1p1_g025.nc" "2.73761230712462"
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[43,] "rlus_mon_MPI-ESM-LR_rcp45_r2i1p1_g025.nc" "2.74815747984698"

[44,] "rlus_mon_MPI-ESM-MR_rcp45_r2i1p1_g025.nc" "2.77273400204008"

[45,] "rlus_mon_inmcm4_rcp45_r1i1p1_g025.nc" "2.81690207721943"

[46,] "rlus_mon_CMCC-CMS_rcp45_r1i1p1_g025.nc" "2.8456462206077"

[47,] "rlus_mon_HadGEM2-ES_rcp45_r4i1p1_g025.nc" "3.09779916956948"

[48,] "rlus_mon_ACCESS1-0_rcp45_r1i1p1_g025.nc" "3.10307763824093"

[49,] "rlus_mon_HadGEM2-ES_rcp45_r1i1p1_g025.nc" "3.11817679473343"

[50,] "rlus_mon_HadGEM2-ES_rcp45_r3i1p1_g025.nc" "3.14044410779061"

[51,] "rlus_mon_ACCESS1-3_rcp45_r1i1p1_g025.nc" "3.19398896144411"

[52,] "rlus_mon_CCSM4_rcp45_r4i1p1_g025.nc" "3.23759283083161"

[53,] "rlus_mon_HadGEM2-CC_rcp45_r1i1p1_g025.nc" "3.24610393368884"

[54,] "rlus_mon_CCSM4_rcp45_r6i1p1_g025.nc" "3.24637765524711"

[55,] "rlus_mon_HadGEM2-ES_rcp45_r2i1p1_g025.nc" "3.25023597135025"

[56,] "rlus_mon_GISS-E2-R_rcp45_r2i1p3_g025.nc" "3.28033177633024"

[57,] "rlus_mon_GISS-E2-R_rcp45_r3i1p2_g025.nc" "3.28880204289186"

[58,] "rlus_mon_GISS-E2-R_rcp45_r2i1p1_g025.nc" "3.31183316691269"

[59,] "rlus_mon_CCSM4_rcp45_r1i1p1_g025.nc" "3.31210080452402"

[60,] "rlus_mon_GISS-E2-R_rcp45_r4i1p2_g025.nc" "3.31916797030403"

[61,] "rlus_mon_GISS-E2-H-CC_rcp45_r1i1p1_g025.nc" "3.32032008838395"

[62,] "rlus_mon_GISS-E2-R_rcp45_r1i1p2_g025.nc" "3.32476971671713"

[63,] "rlus_mon_GISS-E2-R-CC_rcp45_r1i1p1_g025.nc" "3.33199814349713"

[64,] "rlus_mon_GISS-E2-R_rcp45_r3i1p3_g025.nc" "3.33513038619489"

[65,] "rlus_mon_GISS-E2-H_rcp45_r5i1p1_g025.nc" "3.33659185633837"

[66,] "rlus_mon_MRI-CGCM3_rcp45_r1i1p1_g025.nc" "3.33846229841964"

[67,] "rlus_mon_GISS-E2-H_rcp45_r4i1p2_g025.nc" "3.34065807527213"

[68,] "rlus_mon_CCSM4_rcp45_r3i1p1_g025.nc" "3.34210424107114"

[69,] "rlus_mon_GISS-E2-R_rcp45_r4i1p1_g025.nc" "3.34241482990196"

[70,] "rlus_mon_GISS-E2-R_rcp45_r1i1p1_g025.nc" "3.34468799759035"

[71,] "rlus_mon_GISS-E2-H_rcp45_r5i1p2_g025.nc" "3.34520451140043"

[72,] "rlus_mon_GISS-E2-R_rcp45_r1i1p3_g025.nc" "3.34832373286322"

[73,] "rlus_mon_GISS-E2-H_rcp45_r2i1p1_g025.nc" "3.35101907772418"

[74,] "rlus_mon_GISS-E2-H_rcp45_r4i1p3_g025.nc" "3.35368073389759"

[75,] "rlus_mon_GISS-E2-R_rcp45_r5i1p1_g025.nc" "3.36043182823501"

[76,] "rlus_mon_CESM1-BGC_rcp45_r1i1p1_g025.nc" "3.36168684968168"

[77,] "rlus_mon_GISS-E2-H_rcp45_r4i1p1_g025.nc" "3.36170315761098"

[78,] "rlus_mon_CCSM4_rcp45_r5i1p1_g025.nc" "3.36573640690487"

[79,] "rlus_mon_CCSM4_rcp45_r2i1p1_g025.nc" "3.36619351581275"

[80,] "rlus_mon_GISS-E2-R_rcp45_r5i1p2_g025.nc" "3.36683216953893"

[81,] "rlus_mon_GISS-E2-H_rcp45_r5i1p3_g025.nc" "3.36701823641309"

[82,] "rlus_mon_GISS-E2-H_rcp45_r2i1p3_g025.nc" "3.37157233040796"

[83,] "rlus_mon_GISS-E2-H_rcp45_r1i1p3_g025.nc" "3.37318975838176"

[84,] "rlus_mon_GISS-E2-H_rcp45_r3i1p1_g025.nc" "3.37777535074578"

[85,] "rlus_mon_GISS-E2-R_rcp45_r5i1p3_g025.nc" "3.37993144649907"

[86,] "rlus_mon_GISS-E2-H_rcp45_r1i1p2_g025.nc" "3.38006339550918"

[87,] "rlus_mon_GISS-E2-R_rcp45_r4i1p3_g025.nc" "3.3841544934816"

[88,] "rlus_mon_GISS-E2-H_rcp45_r3i1p3_g025.nc" "3.3847171010753"

[89,] "rlus_mon_GISS-E2-R_rcp45_r3i1p1_g025.nc" "3.38722037434004"

[90,] "rlus_mon_GISS-E2-R_rcp45_r2i1p2_g025.nc" "3.39810755017122"

[91,] "rlus_mon_GISS-E2-H_rcp45_r1i1p1_g025.nc" "3.40121724617596"

[92,] "rlus_mon_GISS-E2-R_rcp45_r6i1p3_g025.nc" "3.4046325011337"

[93,] "rlus_mon_GISS-E2-R_rcp45_r6i1p1_g025.nc" "3.4063820054556"

[94,] "rlus_mon_GISS-E2-H_rcp45_r3i1p2_g025.nc" "3.41856638908484"

[95,] "rlus_mon_GISS-E2-H_rcp45_r2i1p2_g025.nc" "3.44570652269342"

[96,] "rlus_mon_CESM1-CAM5_rcp45_r1i1p1_g025.nc" "3.53904229858017"

[97,] "rlus_mon_CESM1-CAM5_rcp45_r3i1p1_g025.nc" "3.63363356344099"

[98,] "rlus_mon_CESM1-CAM5_rcp45_r2i1p1_g025.nc" "3.65789195162577"

[99,] "rlus_mon_CNRM-CM5_rcp45_r1i1p1_g025.nc" "3.82696568740668"

[100,] "rlus_mon_CMCC-CM_rcp45_r1i1p1_g025.nc" "4.68354930141825

8.3 Source code

The R code in this thesis has been written with Rstudio V0.99.489 for Linux. It would
be beyond the scope of this written report to include all the R scripts that have been
written. Nevertheless, one can find some extracts of the most important R scripts that
are used throughout this thesis below.
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8.3.1 Preanalysis of data source code

#standardTest input: path to NetCDF file

#standardTest output:

#name: NetCDF file name

#varname: climate variable (see section on climate variables)

#type: ’land’, ’sea’ or ’global’

# (depending on where the variable can be measured)

# E.g., tos, i.e., sea surface temperature can only be

# measured at regions of sea.

#missing: TRUE/FALSE, if TRUE -->there are missing values

# if FALSE--> no missing values

#numbOfNA: number of missing values

#ratioNA: ratio of missing values, i.e.,

# ratioNA=(number of missing values)/(144*72*timeDim)

# 144*72*timeDim corresponds to the total number of values

# that can be assigned for a 2.5x2.5 degree pixel.

#missComment: "ok"/"suspicious", depending on the ratioNA.

# "suspicious" if it is higher than a set threshold

# thresholds: 40% for sea type, 80% for land type variables

#sgn: sign of the climate variable values

#totmax: maximum of the climate variable values

#totmin: minimum of the climate variable values

#average: arithmetic mean of the climate variable values

#std: standard deviation of the climate variable values

#timeDim: number of time units (months, years, seasons) that are modeled

#range: "ok"/"suspicious"

# "suspicious": variable values are higher or lower then

# predefined bounds

#Author: Carina Schneider (2016)

standardTest <- function(path){

name <- basename(path)

varname <- read.table(text=name,sep="_", as.is=T)$V1

nc <- open.ncdf(path)

data <- get.var.ncdf(nc)

close.ncdf(nc)

timeDim <- dim(data)[3]

totmax <- max(data,na.rm=TRUE)

totmin <- min(data,na.rm=TRUE)

average <- mean(data,na.rm=TRUE)

std <- sd(data,na.rm=TRUE)

range <- "ok"

bounds <- numeric(2)

datframe <- rangeCheck(varname)

bounds[1] <- datframe$lbound

bounds[2] <- datframe$ubound

type <- datframe$vartype

if((totmax>bounds[2])|(totmin<bounds[1])){

range <- "suspicious"

}

missing <- missingValue(data,type)

sgn <- sign(bounds)

df <- data.frame(name,varname,type,missing,sgn,

totmax,totmin,average,std,timeDim,range)

return(df)

}

#Input:

#pathDir: path to a directory with NetCDF files that

# need to be checked for reasonableness

#alpha: The level chosen, s.t. 1-alpha is the confidence level

# of the tolerance intervals

#P: The proportion of the population to be covered by the

# tolerance intervals

#All NetCDF files in this directory are then applied to

#the method ’’standardTest’’

#

#Output:
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#matrix containing information on the NetCDF files of the

#directory

#Author: Carina Schneider (2016)

multipleStanTest <- function(pathDir,alpha,P){

files <- list.files(path=pathDir,pattern="*.nc",

full.names=T,recursive=FALSE)

baseFilesList <- list.files(path=pathDir,pattern="*.nc",

full.names=F,recursive=FALSE)

var <- scen <- tempRes <- spRes <- character(length=length(baseFilesList))

for(i in 1:length(baseFilesList)){

var[i] <- read.table(text=baseFilesList[i],sep="_", as.is=T)$V1

tempRes[i] <- read.table(text=baseFilesList[i],sep="_", as.is=T)$V2

scen[i] <- read.table(text=baseFilesList[i],sep="_", as.is=T)$V4

spRes[i] <- read.table(text=baseFilesList[i],sep="_", as.is=T)$V6

}

for(i in 2:length(baseFilesList)){

if((var[i]!=var[1])|(scen[i]!=scen[1])|

(tempRes[i]!=tempRes[1])|(spRes[i]!=spRes[i])){

stop("multipleStanTest only works on a directory of

CMIP5-ng files with equal scenario,variable and

temporal/spatial resolution.")

}

}

frames <- lapply(files,standardTest)

#return(frames)

n <- length(frames)

signTable <- getGlobCharNumb(frames,alpha,P)

numberOfBad <- length(which(signTable[,6]=="susp"))

cat("There are", numberOfBad, " suspicious files in your directory.")

return(signTable)

}

#Input: Output of the multipleStanTest()

#Output: matrix containing the files which

# have the most frequently attained time dimension

#it extracts only the files in a directory that have the same time dimension

#Author: Carina Schneider (2016)

extractTimeCoh <- function(out){

freqSummary <- as.matrix(summary(as.factor(out[,2])))

maxcount <- max(freqSummary)

row <- which(as.matrix(freqSummary==maxcount))

timeDim <- rownames(freqSummary)[row]

ind <- which(out[,2]==timeDim)

cat("The most frequent number of time steps is:", timeDim, ’\n’)

return(out[ind,c(1,2,6)])

}

8.3.2 SNHT source code

Code description is available on CRAN Browning and Schneider [2015].
ATTENTION: The version 1.03 of the SNHT package has a bug. Version 1.04 will be
uploaded soon. The code for the version 1.04 is available on github:
https://github.com/rockclimber112358/Stan-Norm-Hom-Test/tree/master/snht

8.3.3 GMRF source code

#generates the precision matrix

#mu: mean vector of length lon*lat

#b: conditional spatial correlation
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#f: conditional temporal correlation

#c: scaling factor for kappa

#lon: number of pixels in direction of the longitude

#lat: number of pixels in direction of the latitude

#T: number of time units

library(spam)

#Author: Carina Schneider (2016)

mgmrf.prec <- function(b,c,f,lon,lat,T){

n <- lon*lat

Qsp <- precmat.GMRFreglat(lon,lat,par=b,model="m1p1")

Qte <- diag.spam(-f,n)

C <- diag.spam(0,T)

C[cbind(1:(T-1),2:T)] <- 1

C[cbind(2:T,1:(T-1))] <- 1

Q <- kronecker.spam(diag.spam(1,T),Qsp)+kronecker.spam(C,Qte)

return(Q*c)

}

#generates GMRF data...

#mu: mean vector

#b: conditional spatial correlation

#f: conditional temporal correlation

#c: scaling factor

#lon: number of pixels in direction of the longitude

#lat: number of pixels in direction of the latitude

#Author: Carina Schneider (2016)

dataGenerator <- function(mu,b,c,f,lon,lat,T){

Sigmainv <- mgmrf.prec(b,c,f,lon,lat,T)

Q <- as.spam( Sigmainv, eps=1e-4)

set.seed(2)

x <- rmvnorm.prec(1, mu = mu, Q)

xx <- x

dim(xx) <- c(lon,lat,T)

return(xx)

}

#Input:

#y: matrix of dimension (time x number of locations)

#mu1: starting values for the mean: should be a vector of length rown*coln

#rown: number of longitudes

#coln: number of latitudes

#f: starting value for the parameter f

#b: starting value for the parameter b

#c: starting value for the parameter c

#m: number time units (months, years, seasons)

#Output:

#optim object: containing the neg2loglikelihood value

# as well as the parameters that minimize it under H0

#Comment: parts of this code have been taken over from

# Rebekka Schibli’s master’s thesis code

#Author: Carina Schneider (2016)

test.H0 <- function(y,mu1,b,c,f,rown,coln,m=nrow(y),Rstruct=NULL,...) {

n <- coln*rown

spam.options(cholupdatesingular="warning")

if (!is(Rstruct, "spam.chol.NgPeyton")) {

Q <- mgmrf.prec(b,c,f,rown,coln,m)

if (!is.spam(Q))

stop("’Covariance’ should return a spam object.")

Rstruct <- chol.spam(Q,...)

}

neg2loglikelihood <- function(fulltheta,...) {

resid <- c(t(y)-fulltheta[1:n])
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Q <- mgmrf.prec(fulltheta[n+1],fulltheta[n+2],fulltheta[n+3], rown,coln,m)

p=FALSE

p=tryCatch({

cholS <- update.spam.chol.NgPeyton(Rstruct,Q,...)

p=FALSE},

warning = function(w) {

p=TRUE

return(p)}

)

if(p==TRUE){

return(10^6)

}

else{

return(n*m*log(2*pi)-2*(c(determinant.spam.chol.NgPeyton(cholS)$modulus))

+sum(resid*(Q%*%(resid))))

}

}

return(optim(c(mu1,b,c,f), neg2loglikelihood, method = "L-BFGS-B"

,lower=c(rep(-1,n),1e-5,0.1,1e-5),upper=c(rep(1,n),0.29,3.5,0.49),

control=list(maxit=200)))

}

#Input:

#y: matrix of dimension (time x number of locations)

#mu1: vector of starting values for the mean before the shift

# (should be of length rown*coln)

#rown: number of longitudes

#coln: number of latitudes

#tb: time at which the neg2loglikelihood (-2H_1) is evaluated

#a: starting value for the shift height

#f: starting value for the parameter f

#b: starting value for the parameter b

#m: time units

#Output:

#optim object: containing the neg2loglikelihood value

# as well as the parameters that minimize

# it under H1 (having a global shift at tb)

#Comment: parts of this code have been taken over from

# Rebekka Schibli’s master thesis code

#Author: Carina Schneider (2016)

test.H1Glob <- function(y,mu1,a,tb,b,c,f,rown,coln,m=nrow(y), Rstruct=NULL,...) {

n <- coln*rown

if (!is(Rstruct, "spam.chol.NgPeyton")) {

Q <- mgmrf.prec(b,c,f,rown,coln,m)

if (!is.spam(Q))

stop("’Covariance’ should return a spam object.")

Rstruct <- chol.spam(Q,...)

}

neg2loglikelihood <- function(fulltheta,...) {

resid1 <- t(y[1:tb,])-fulltheta[1:n]

mu2 <- fulltheta[1:n]+fulltheta[(n+4)]

resid2 <- t(y[(tb+1):m,])-mu2

resid <- c(cbind(resid1,resid2))

Q <- mgmrf.prec(fulltheta[n+1],fulltheta[n+2],fulltheta[n+3],

rown,coln,m)

p=FALSE

p=tryCatch({

cholS <- update.spam.chol.NgPeyton(Rstruct,Q,...)

p=FALSE},

warning = function(w) {
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p=TRUE

return(p)}

)

if(p==TRUE){

return(10^6)

}

else{

return(n*m*log(2*pi)-2*(c(determinant.spam.chol.NgPeyton(cholS)$modulus))

+sum(resid*(Q%*%(resid))))

}

}

return(optim(c(mu1,b,c,f,a), neg2loglikelihood, method = "L-BFGS-B",

lower=c(rep(-1,n),1e-5,0.1,1e-5,-10),upper=c(rep(1,n),0.29,3.5,0.49,10),

control=list(maxit=200)))

}

#Input:

#y: matrix of dimension (time x number of locations)

#mu1: vector of starting values for the mean before the shift

# (should be of length rown*coln)

#rown: number of longitudes

#coln: number of latitudes

#a: starting value for the shift height

#f: starting value for the parameter f

#b: starting value for the parameter b

#m: time units

#tb: time at which the neg2loglikelihood (-2H_1) is evaluated

#l0: location at which the neg2loglikelihood (-2H_1) is evaluated

#Output:

#optim object: containing the neg2loglikelihood value

# as well as the parameters that minimize it under

# H1 (having a local shift at tb and l0)

#Author: Carina Schneider (2016)

test.H1Loc <- function(y,mu1,a,tb,l0,b,c,f,rown,coln,m=nrow(y), Rstruct=NULL,...) {

n <- coln*rown

if (!is(Rstruct, "spam.chol.NgPeyton")) {

Q <- mgmrf.prec(b,c,f,rown,coln,m)

if (!is.spam(Q))

stop("’Covariance’ should return a spam object.")

Rstruct <- chol.spam(Q,...)

}

neg2loglikelihood <- function(fulltheta,...) {

resid1 <- t(y[1:tb,])-fulltheta[1:n]

mu2 <- fulltheta[1:n]

mu2[l0] <- mu2[l0]+fulltheta[n+4]

resid2 <- t(y[(tb+1):m,])-mu2

resid <- c(cbind(resid1,resid2))

Q <- mgmrf.prec(fulltheta[n+1],fulltheta[n+2],fulltheta[n+3],

rown,coln,m)

p=FALSE

p=tryCatch({

cholS <- update.spam.chol.NgPeyton(Rstruct,Q,...)

p=FALSE},

warning = function(w) {

p=TRUE

return(p)}

)

if(p==TRUE){

return(10^6)

}
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else{

return(n*m*log(2*pi)-2*(c(determinant.spam.chol.NgPeyton(cholS)$modulus))

+sum(resid*(Q%*%(resid))))

}

}

return(optim(c(mu1,b,c,f,a), neg2loglikelihood, method = "L-BFGS-B",

lower= c(rep(-1,n),1e-5,0.1,1e-5,-10),upper=c(rep(1,n),0.29,3.5,0.49,10),

control=list(maxit=200)))

}

#This function performs local or global homogeneity detection.

#If an inhomogeneity is found, it prints out the location (if "local"), time and height of the

#most extreme inhomogeneity (i.e. the one with the highest likelihood ratio statistics)

#Input:

#desData: 3 dimensional array (lon x lat x T),

# i.e., the number of 2.5 pixels in longitude/latitude and number of time units

#type: "global" or "local"

# ("global": global shift detection is performed,

# "local": local shift detection is performed)

#muStart: optim starting vector for the mean before the potential global/local shift

# should be of length numbOfLon

#bStart: optim starting value for parameter b of the spatio-temporal model

#cStart: optim starting value for parameter c of the spatio-temporal model

#fStart: optim starting value for parameter f of the spatio-temporal model

#sigLevel: significance level. Suggested is 0.05. The program takes care of the

# Bonferroni correction

#L: indicates how many times the likelihood ratio statistics is evaluated.

# Default is set to 5, i.e. at every 5-th time.

#Output:

#If "global":

#list containing the vector of likelihood ratio statistics and the vector of

#estimates for the shift heights ’a’

#evaluated at every time

#If "local":

#list containing the matrix of likelihood ratio statistics (dim: N x T) and the estimates for the

#shift heights evaluated at every time at the found location of inhomogeneity

library(spam)

#Author: Carina Schneider (2016)

gmrfHomogeneityTestComp <- function(desData,type,muStart,bStart,cStart,fStart, sigLevel,L=5){

lon <- dim(desData)[1]

lat <- dim(desData)[2]

N <- lon*lat

T <- dim(desData)[3]

if(length(muStart)!=N){

stop("mu does not have the right format. The length

should equal the number of locations.")

}

desDataNew <- desData

dim(desDataNew) <- c(N,T)

if(type=="global"){

MLEH0 <- test.H0(y=t(desDataNew),muStart,bStart,cStart,fStart,lon,lat)

print(MLEH0)

if(MLEH0$convergence!=0){

stop("quasi Newton method did not converge under H0.")

}

lRatioStat <- numeric(T)

a <- numeric(T)

for(i in 2:(T-3)){

if(i %% L==0){

MLEH1 <- test.H1Glob(y=t(desDataNew),muStart,a=0,tb=i,bStart,cStart,fStart,lon,lat)
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#cat("this is time ", i)

print(MLEH1)

if(MLEH1$convergence!=0){

stop("quasi Newton method did not converge under H1

(i.e. having a global shift).")

#this usually happens if not the same bounds, parscale

# or maxit are chosen in the test.H0() and test.H1() functions

}

else{

lRatioStat[i] <- MLEH0$value-MLEH1$value

if(lRatioStat[i]<0){

print(MLEH0)

print(MLEH1)

stop("Likelihood ratio statistic <0.")

}

a[i] <- MLEH1$par[N+4]

}

}

}

evTime <- Matrix::nnzero(a)

th <- qchisq(1-sigLevel/evTime, df=1)

inhomoFound <- FALSE

timeOfInhomo <- 0

heightInhomo <- 0

if(max(lRatioStat)>th){

inhomoFound <- TRUE

timeOfInhomo <- which.max(lRatioStat)

heightInhomo <- a[timeOfInhomo]

}

print(data.frame(inhomoFound,timeOfInhomo,heightInhomo))

return(data.frame(list(a=a,lRatioStat=lRatioStat)))

#timeOfInhomo <- which.max(lRatioStat)

}

#---------

else if(type=="local"){

MLEH0 <- test.H0(y=t(desDataNew),muStart,bStart,cStart,fStart,lon,lat)

print(MLEH0)

if(MLEH0$convergence!=0){

stop("Does not converge under H0")

}

a <- matrix(0,T,N)

lRatioStat <- matrix(0,T,N)

for(i in 2:(T-2)){

if(i %% L==0){

for(k in 1:N){

MLEH1 <- test.H1Loc(y=t(desDataNew),muStart,a=0,tb=i,

l0=k,bStart,cStart,fStart,lon,lat)

if(MLEH1$convergence!=0){

stop("Does not converge under H1.")

}

a[i,k] <- MLEH1$par[N+4]

lRatioStat[i,k] <- MLEH0$value-MLEH1$value

}

}

}

evTime <- Matrix::nnzero(a[,1])

th <- qchisq(1-sigLevel/evTime, df=1)

inhomoFound <- FALSE

timeOfInhomo <- 0

heightInhomo <- 0

locInhomo <- 0

if(max(lRatioStat)>th){

inhomoFound <- TRUE

ind <- which.max(lRatioStat)

timeOfInhomo <- ind %% T

locInhomo <- ind %/% T +1

heightInhomo <- a[timeOfInhomo, locInhomo]

}
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print(data.frame(inhomoFound,timeOfInhomo,heightInhomo,locInhomo))

return(list(lRatioStat=lRatioStat,a=a[,locInhomo]))

}

else{

stop("This is not an admissible type.")

}

}

#This function can be used if optim does not converge under H0.

#It is a modified version of the original test.H0().

#input, output: see original test.H0()

#Author: Carina Schneider (2016)

test.H0_VR <- function(y,mu1,b,c,f,rown,coln,m=nrow(y),Rstruct=NULL,...) {

n <- coln*rown

spam.options(cholupdatesingular="warning")

if (!is(Rstruct, "spam.chol.NgPeyton")) {

Q <- mgmrf.prec(b,c,f,rown,coln,m)

if (!is.spam(Q))

stop("’Covariance’ should return a spam object.")

Rstruct <- chol.spam(Q,...)

}

neg2loglikelihood <- function(fulltheta,...) {

resid <- c(t(y)-fulltheta[1:n])

Q <- mgmrf.prec(b,fulltheta[n+1],fulltheta[n+2], rown,coln,m)

p=FALSE

p=tryCatch({

cholS <- update.spam.chol.NgPeyton(Rstruct,Q,...)

p=FALSE},

warning = function(w) {

p=TRUE

return(p)}

)

if(p==TRUE){

return(10^6)

}

else{

return(n*m*log(2*pi)-2*(c(determinant.spam.chol.NgPeyton(cholS)$modulus))+sum(resid*(Q%*%(resid))))

}

}

upF <- -0.49/0.29*b+0.49-0.02

return(optim(c(mu1,c,f), neg2loglikelihood, method = "L-BFGS-B"

,lower=c(rep(-1,n),1e-5,1e-5),upper=c(rep(1,n),3.5,upF),

control=list(maxit=200)))

}

#This function is a modified version of the test.H1Glob() R function.

#It can be used if optim fails to converge

#ATTENTION: Applying this function can lead to a biased likelihood ratio statistics

# that can increase the probability of committing a type I error.

#Input, output: See the original test.H1Glob()

#Author: Carina Schneider (2016)

test.H1Glob_VR <- function(y,mu1,a,tb,b,c,f,rown,coln,m=nrow(y), Rstruct=NULL,...) {

n <- coln*rown

if (!is(Rstruct, "spam.chol.NgPeyton")) {

Q <- mgmrf.prec(b,c,f,rown,coln,m)

if (!is.spam(Q))

stop("’Covariance’ should return a spam object.")

Rstruct <- chol.spam(Q,...)
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}

Q <- mgmrf.prec(b,c,f,rown,coln,m)

cholS <- update.spam.chol.NgPeyton(Rstruct,Q)

neg2loglikelihood <- function(fulltheta,...) {

resid1 <- t(y[1:tb,])-fulltheta[1:n]

mu2 <- fulltheta[1:n]+fulltheta[(n+1)]

resid2 <- t(y[(tb+1):m,])-mu2

resid <- c(cbind(resid1,resid2))

return(n*m*log(2*pi)-2*(c(determinant.spam.chol.NgPeyton(cholS)$modulus))+

sum(resid*(Q%*%(resid))))

}

return(optim(c(mu1,a), neg2loglikelihood, method = "L-BFGS-B",

lower=c(rep(-1,n),-10),upper=c(rep(1,n),10),

control=list(maxit=200)))

}

#This function is a modified version of the test.H1Loc() R function.

#It can be used if optim fails to converge under H1.

#ATTENTION: Applying this function can lead to a biased likelihood ratio statistics

# that can increase the probability of committing a type I error.

#Input: See the original test.H1Loc()

#Output: optim object with n+1 MLE parameters

#Author: Carina Schneider (2016)

test.H1Loc_VR <- function(y,mu1,a,tb,l0,b,c,f,rown,coln,m=nrow(y), Rstruct=NULL,...) {

n <- coln*rown

if (!is(Rstruct, "spam.chol.NgPeyton")) {

Q <- mgmrf.prec(b,c,f,rown,coln,m)

if (!is.spam(Q))

stop("’Covariance’ should return a spam object.")

Rstruct <- chol.spam(Q,...)

}

Q <- mgmrf.prec(b,c,f,rown,coln,m)

cholS <- update.spam.chol.NgPeyton(Rstruct,Q)

neg2loglikelihood <- function(fulltheta,...) {

resid1 <- t(y[1:tb,])-fulltheta[1:n]

mu2 <- fulltheta[1:n]

mu2[l0] <- mu2[l0]+fulltheta[n+1]

resid2 <- t(y[(tb+1):m,])-mu2

resid <- c(cbind(resid1,resid2))

return(n*m*log(2*pi)-2*(c(determinant.spam.chol.NgPeyton(cholS)$modulus))+sum(resid*(Q%*%(resid))))

}

return(optim(c(mu1,a), neg2loglikelihood, method = "L-BFGS-B",

lower= c(rep(-1,n),-10),upper=c(rep(1,n),10),control=list(maxit=200)))

}

#This function can be used if optim does not converge under H0/H1.

#It is very restrictive and fixes b under H0 and H1 and fixes all parameters under H1

#to the parameters obtained by test.H0()

#ATTENTION: Applying the function can lead to a biased likelihood ratio statistics with the

# tendency to increase the probability of committing a type I error.

#input, output: see original gmrfHomogeneitytTestComp()

#Author: Carina Schneider (2016)

library(spam)

gmrfHomogeneityTestComp_VR <- function(desData,type,muStart,bStart,cStart,fStart, sigLevel,L=5){

rown <- dim(desData)[1]

coln <- dim(desData)[2]

N <- rown*coln

T <- dim(desData)[3]

if(length(muStart)!=N){

stop("mu does not have the right format. The length should equal the number of locations.")

}
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desDataNew <- desData

dim(desDataNew) <- c(N,T)

if(type=="global"){

MLEH0 <- test.H0_VR(y=t(desDataNew),muStart,bStart,cStart,fStart,rown,coln)

print(MLEH0)

if(MLEH0$convergence!=0){

stop("quasi Newton method did not converge under H0.")

}

par <- MLEH0$par[(N+1):(N+2)]

lRatioStat <- numeric(T)

a <- numeric(T)

for(i in 2:(T-2)){

if(i %% L==0){

MLEH1 <- test.H1Glob_VR(y=t(desDataNew),muStart,a=0,i,bStart,par[1],par[2],rown,coln)

cat("this is time ", i)

print(MLEH1)

if(MLEH1$convergence!=0){

stop("quasi Newton method did not converge under H1 (i.e. having a global shift).")

}

else{

lRatioStat[i] <- MLEH0$value-MLEH1$value

if(lRatioStat[i]<0){

lRatioStat[i] <- 0

#stop("Likelihood ratio statistic <0.")

}

a[i] <- MLEH1$par[N+1]

}

}

}

evTime <- Matrix::nnzero(a)

th <- qchisq(1-sigLevel/evTime, df=1)

inhomoFound <- FALSE

timeOfInhomo <- 0

heightInhomo <- 0

if(max(lRatioStat)>th){

inhomoFound <- TRUE

timeOfInhomo <- which.max(lRatioStat)

heightInhomo <- a[timeOfInhomo]

}

print(data.frame(inhomoFound,timeOfInhomo,heightInhomo))

return(data.frame(list(a=a,lRatioStat=lRatioStat)))

}

#---------

else if(type=="local"){

MLEH0 <- test.H0_VR(y=t(desDataNew),muStart,bStart,cStart,fStart,rown,coln)

print(MLEH0)

if(MLEH0$convergence!=0){

stop("Does not converge under H0")

}

par <- MLEH0$par[(N+1):(N+2)]

a <- matrix(0,T,N)

lRatioStat <- matrix(0,T,N)

for(i in 2:(T-2)){

if(i %% L==0){

for(k in 1:N){

MLEH1 <- test.H1Loc_VR(y=t(desDataNew),muStart,a=0,tb=i,

l0=k,bStart,par[1],par[2],rown,coln)

if(MLEH1$convergence!=0){

stop("Does not converge under H1.")

}

a[i,k] <- MLEH1$par[N+1]

lRatioStat[i,k] <- MLEH0$value-MLEH1$value

}

}

}

121



evTime <- Matrix::nnzero(a[,1])

th <- qchisq(1-sigLevel/evTime, df=1)

inhomoFound <- FALSE

timeOfInhomo <- 0

heightInhomo <- 0

locInhomo <- 0

if(max(lRatioStat)>th){

inhomoFound <- TRUE

ind <- which.max(lRatioStat)

timeOfInhomo <- ind %% T

locInhomo <- ind %/% T +1

heightInhomo <- a[timeOfInhomo, locInhomo]

}

print(data.frame(inhomoFound,timeOfInhomo,heightInhomo,locInhomo))

return(list(lRatioStat=lRatioStat,a=a[,locInhomo]))

}

else{

stop("This is not an admissible type.")

}

}

# This script provides code to calculate the weighted mean of

# 3-dimensional NetCDF data file contents

# in a specific directory. The weights have been defined based on the number

# of ensembles a specific climate model

# has produced.

# Input:

# path: path to a directory containing all the NetCDF files of the same type:

# I.e., same climate scenario, variable and spatial/temporal resolution

# weighted: If TRUE weighted means are built.

# If FALSE all file contents are weighted the same. No weights are introduced.

# Output:

# ‘‘weighted’’ Mean: as a 3-dimensional array (lon x lat x time)

#Author: Carina Schneider (2016)

source(‘/.../meanBuilder.R’)

meanOfFiles<-function(path,weighted=TRUE){

files<-list.files(path=path,pattern="*.nc",

full.names=T,recursive=FALSE)

n<-length(files)

if(n==1){

stop("no mean needs to be computed. There is only 1 file in this directory.")

}

if(weighted==FALSE){

return(meanBuilder(files))

}

else{

basisfiles<-list.files(path=path,pattern="*.nc",

full.names=F,recursive=FALSE)

mod<-character(n)

mod[1]<-as.character(read.table(text=basisfiles[1],sep="_")$V3)

modList<-numeric(n)

modList[1]<-1

for(i in 2:n){

mod[i]<-as.character(read.table(text=basisfiles[i],sep="_")$V3)

if(mod[i]!=mod[i-1]){

modList[i]<-1

}

}

numbMod<-sum(modList)
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indList<-list()

k<-1

v<-which(modList==1)

#print(v)

frames<-list()

if(length(v)==1){

#only one model and only 1 frame that is the mean of all ensembles this model

#produces.

return(meanBuilder(files))

}

for(i in 2:length(v)){

if(v[i]-v[i-1]==1){

indList[[k]]<-v[i-1]

k<-k+1

}

else{

indList[[k]]<-v[i-1]:(v[i]-1)

k<-k+1

}

}

for(i in 1:length(indList)){

frames[[i]]<-meanBuilder(files[indList[[i]]])

}

temp<-0

for(i in 1:length(indList)){

temp<-frames[[i]]+temp

}

weightedMean<-1/length(indList)*temp

return(weightedMean)

}

}

#removes seasonality and trends with the GAMM

#data: data frame containing the months, years, data and time (see Section 5.5.2)

#Author: Carina Schneider (2016)

gamPeriodTrendRem <- function(data){

new <- within(data, Date <- as.Date(paste(year, month, day.of.month="15",

sep = "-")))

plot(values ~ Date, data = new, type = "l")

ctrl <- list(niterEM=0,msVerbose=TRUE,optimMethod="L-BFGS-B")

mod <- gamm(values ~ s(month, bs = "cc",k=12) + s(time, bs = "cr"),

data = new, control=ctrl)

return(mod$gam$residuals)

}

# this function takes the mean and a certain file and gives back the

# standardized difference of the two

# path: to NetCDF file

library(ncdf)

difference <- function(Mean,path, standardize=T){

file <- path

nc <- open.ncdf(file)

data <- get.var.ncdf(nc)

close.ncdf(nc)

dataNew <- Mean-data

if(standardize==F){

return(dataNew)

}

else{

for(i in 1:(dim(dataNew))[1]){

for(j in 1:(dim(dataNew))[2]){

dataNew[i,j,] <- 1/sd(dataNew[i,j,])*dataNew[i,j,]

}

}

return(dataNew/sd(dataNew))

}

}
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#this function returns the means of all models

#weighted according to the number of ensembles

#pathToDir: path to the directory of NetCDF files of the same type

#Author: Carina Schneider (2016)

getMeansOfModel <- function(pathToDir){

files <- list.files(path=pathToDir,pattern="*.nc",

full.names=T,recursive=FALSE)

basisfiles <- list.files(path=pathToDir,pattern="*.nc",

full.names=F,recursive=FALSE)

n <- length(basisfiles)

mod <- character(n)

if(n==1){

stop("Only one file in the directory found. No need to apply this function.")

}

mod[1] <- as.character(read.table(text=basisfiles[1],sep="_")$V3)

modList <- numeric(n)

#we know that at this point n>1 because of the exception above.

modList[1] <- 1

for(i in 2:n){

mod[i] <- as.character(read.table(text=basisfiles[i],sep="_")$V3)

if(mod[i]!=mod[i-1]){

modList[i] <- 1

}

}

numbMod <- sum(modList)

indList <- list()

k <- 1

v <- which(modList==1)

frames <- list()

if(length(v)==1){

#only one model and only 1 frame that is the mean of all ensembles this model

#produces.

return(meanBuilder(files))

}

frames <- list()

if(length(v)==1){

#only one model and only 1 frame that is the mean of all ensembles this model

#produces.

return(meanBuilder(files))

}

for(i in 2:length(v)){

if(v[i]-v[i-1]==1){

indList[[k]] <- v[i-1]

k <- k+1

}

else{

#not single group

indList[[k]] <- v[i-1]:(v[i]-1)

k <- k+1

}

}

modelNames <- character(length(indList))

for(i in 1:length(indList)){

frames[[i]] <- meanBuilder(files[indList[[i]]])

modelNames[i] <- mod[indList[[i]]]

}

names(frames) <- modelNames

return(frames)

}

8.3.4 Lattice Krig source code

#This function gives back the difference of the basis function

#coefficients of the reference applied to Lattice Krig

#compared to the specific file-data.

#candidate: 2 dimensional array of dimension 144x72

#reference: 2 dimensional array of dimension 144x72
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# (does not have to be from the weighted mean, can be

# any other reference model as well)

#lambda: if NULL, then the estimate of the weighted mean is used,

# otherwise it is fixed to the passed real value

#xNew: matrix of coordinates of the grid points (longitudes, latitudes)

#Author: Carina Schneider (2016)

refLatTest <- function(candidate,reference,xNew, lambda=NULL){

LKinfo <- LKrigSetup(x=xNew,nlevel=3, alpha=c(1/3,1/3,1/3),

a.wght=4.05,NC=36,NC.buffer=0, overlap=2.5)

if(length(lambda)==0){

meanObj <- LatticeKrig(x=xNew,c(reference),LKinfo=LKinfo)

lambda <- meanObj$lambda.fixed

}

else{

meanObj <- LKrig(xNew,c(reference),LKinfo=LKinfo,lambda=lambda)

}

obj <- LKrig(xNew,c(candidate),LKinfo=LKinfo,lambda=lambda)

numbOfLevels <- length(LKinfo$latticeInfo$mLevel)

ver <- numeric(numbOfLevels)

for(i in 1:numbOfLevels){

ver[i] <- sum(LKinfo$latticeInfo$mLevel[1:i])

}

plot(abs(meanObj$c.coef-obj$c.coef),type="l",

xlab="Index of coefficients",ylab="Differences of coefficients",

main="Differences of coefficients between reference and candidate")

for(i in 1:(numbOfLevels-1)){

abline(v=ver[i],col="red")

}

#print out the max, median and mean of the absolute differences of the

#coefficients of the reference and candidate

#in the first 3 levels

absDiff <- abs(meanObj$c.coef-obj$c.coef)

if(numbOfLevels==3){

level1 <- absDiff[1:ver[1]]

level2 <- absDiff[(ver[1]+1):ver[2]]

level3 <- absDiff[(ver[2]+1):length(obj$c.coef)]

max <- c(max(level1),max(level2),max(level3))

med <- c(median(level1),median(level2),median(level3))

mean <- c(mean(level1),mean(level2),mean(level3))

infoMat <- cbind(max,med,mean)

colnames(infoMat) <- c("max","median","mean")

rownames(infoMat) <- c("level 1","level 2", "level 3")

print(infoMat)

}

return(list(absDiff=abs(meanObj$c.coef-obj$c.coef),

lambdaMean=lambda,modCoef=obj$c.coef,meanCoef=meanObj$c.coef))

}

#pathToDir: path to the directory with NetCDF files of the same type

# (i.e. same variable,scenario & resolution)

#T: time of evaluation

#lambda: smoothing factor that is fixed

#Output:

#matrix with the files ordered according to the values of sigma_MLE

#Author: Carina Schneider (2016)

sigmaLatTest <- function(pathToDir,lambda,T,xNew){

files <- list.files(pathToDir,full.names = TRUE)

filesShort <- list.files(pathToDir,full.names = FALSE)

LKinfo <- LKrigSetup(x=xNew,nlevel=3, alpha=c(1/3,1/3,1/3),

a.wght=4.05,NC=36,NC.buffer=0, overlap=2.5)

sigma <- numeric(length(files))

for(i in 1:length(files)){

nc <- open.ncdf(files[i])

data <- get.var.ncdf(nc)

close.ncdf(nc)
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obj <- LKrig(xNew,c(data[,,T]),LKinfo=LKinfo,lambda=lambda)

sigma[i] <- obj$sigma.MLE

}

ind <- order(sigma)

sigma<-cbind(filesShort[ind],sigma[ind])

colnames(sigma)<-c("file", "sigma")

return(sigma)

}

#essentially the same as sigmaLatTest but for lambda...

#the lambda estimates can also be obtained by getLambda(...) when "type" is set to "median"

#Author: Carina Schneider (2016)

lambdaLatTest <- function(pathToDir,T,xNew){

files <- list.files(pathToDir,full.names = TRUE)

filesShort <- list.files(pathToDir,full.names = FALSE)

LKinfo <- LKrigSetup(x=xNew,nlevel=3, alpha=c(1/3,1/3,1/3),

a.wght=4.05,NC=36,NC.buffer=0, overlap=2.5)

lambda <- numeric(length(files))

for(i in 1:length(files)){

nc <- open.ncdf(files[i])

data <- get.var.ncdf(nc)

close.ncdf(nc)

obj <- LatticeKrig(x=xNew,c(data[,,T]),LKinfo=LKinfo)

#print(obj)

lambda[i] <- obj$lambda.fixed

}

ind <- order(lambda)

mat <- (cbind(filesShort[ind],lambda[ind]))

colnames(mat)<- c("file","lambda")

return(mat)

}

#get coordinates

#indLat: Latitude indices of the spatial locations

#indLon: Longitude indices of the spatial locations

#E.g. indLat=c(1:10), indLon=c(55:60) are 60 locations over central Europe

#Author: Carina Schneider (2016)

getCoordinates <- function(indLon,indLat){

LAT <- seq(-88.75,88.75,by=2.5)

LON <- c(seq(1.25,178.75,by=2.5),(-1)*rev(seq(1.25,178.75,by=2.5)))

LAT <- LAT[indLat]

LON <- LON[indLon]

col <- length(LON)

row <- length(LAT)

coordLat <- rep(LAT[1],col)

for(i in 2:row){

coordLat <- cbind(coordLat,rep(LAT[i],col))

}

coordLat <- c(coordLat)

coordLon <- rep((LON),row)

return(data.frame(coordLon=coordLon,coordLat=coordLat))

}
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