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Abstract

This study investigated and compared four commonly used phylogenetic comparative
methods (phylogenetic logistic regression, phylogenetic generalised estimating equa-
tions, phylogenetic logistic regression and phylogenetic mixed model) modeling the
correlated evolution of simulated data. The phylogenetic mixed model showed the
best performance in case of a continuous response variable, the phylogenetic gener-
alised least-squares regression in case of an ordinal scaled variable treated as pseudo-
continuous and in case of binary data, the logistic regression by Ives and Garland
(2010) and Ho and Ané (in review) showed good statistical abilities. Ignoring the phy-
logenetic dependencies between species by using a simple non-phylogenetic generalised
linear model approach, always results in highly elevated type I error rates and bad
estimation abilities.
Furthermore, the methods were tested with respect to different evolutionary and em-
pirical parameters such as phylogenetic tree structure, sample size and strength of
correlation. The study shows that the different phylogenetic approaches vary in their
statistical abilities depending on the underlying simulated conditions. Therefore, the
decision of what method to use does not only depend on the overall statistical per-
formance of a method, but also on the given data and the underlying evolutionary
question.
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General notes

There are some general notes which need to be made prior to reading this thesis.
First, about the mathematical notation: matrices and vectors are always denoted in
bold symbols, whereas scalars are shown in normal font. For example: Y = Xβ + ε.
Y , β and ε are vectors printed in bold font, as well as X representing a matrix. As
there is no specific symbolic differentiation between vectors and matrices, in most cases
the variables used in mathematical formulas are additionally described in written form
and dimension specifications are given. Moreover, MLE stands for the abbreviation of
the maximum likelihood estimate. Second, all the methods described are implemented
in R (R Development Core Team 2011) and mostly, assumptions and model descrip-
tions are based on their implementations in R. Moreover, functions and packages in R
are denoted in the typical R font.

Commonly used variables and indices:

• N = number of species i = {1, 2, . . . , N} (indices i and j represent two different
species)

• p = number of covariates

• S = number of clusters/units s = {1, 2, . . . , S}

• k = rank of a matrix
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1 Introduction

1.1 Comparative methods - a key to understand adapta-
tion and correlated evolution

Comparative methods in evolutionary biology are used for testing hypotheses of adap-
tation which cannot be tested experimentally. They are the key to understand evolu-
tion in a very broad sense, to understand evolutionary processes across many different
species in contrast to within a single species. Phylogenetic comparative methods, with
phylogenetic referring to the evolutionary relationships between species, allow to ap-
proach many different kinds of evolutionary questions: the ancestral states of certain
biological traits (i.e. specific phenotypic features of a species including morphological,
behavioural and life history traits e.g. body size or the age of first reproduction),
about how fast certain traits change over evolutionary time or whether two traits show
correlated evolution.
To explain the aim and application of a comparative study, the best thing to do is to
give an example based on a real evolutionary question, e.g. concerning the evolution of
life history across species (i.e. the length of the different episodes of the biological life
cycle such as the age at which a species first reproduces). For example, the brain mal-
nutrition risk hypothesis, states that larger brains need longer developmental periods
in order to avoid the brain to grow too fast which would result in harmful energetic
deficits (Janson and van Schaik 1993). In other words, this hypothesis tries to explain
the variation in the length of development (e.g. represented by the age of first repro-
duction) with the variation in brain size across species predicting a positive correlation
between the two traits. For illustration purposes, this example of correlated evolution
will be used throughout the whole thesis.
When testing such a correlation, one needs to be aware of the fact that different species
share a common evolutionary history leading to the problem of non-independence con-
cerning statistical methods (i.e. for many statistical methods residuals need to be
independent and identically distributed). Being precise, species show high similarities
in certain traits due to their close phylogenetic relationship (if the great similarity is
mainly based on the close phylogenetic relationship, a trait shows a high phylogenetic
signal). Many studies have shown that ignoring phylogenetic dependencies between
species dramatically increases type I error rates resulting from incorrect variance esti-
mations (e.g. Rohlf 2006, Martins and Garland 1991). Therefore, as spatial clustered
data is statistically considered in e.g. mixed models, many different phylogenetic com-
parative methods have been suggested accounting for the phylogenetic dependency
between species (Felsenstein 1985, Cheverud et al. 1985, Gittleman and Kot 1999,
Lynch 1991, Hadfield and Nakagawa 2009, Ives and Garland 2010). Because there
are several different comparative methods, which claim to do all the same thing (i.e.
correcting for phylogenetic dependencies), biologists are often overstrained with the de-
cision of which method to use for what kind of data. In fact, different methods might
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respond differently to varying sample sizes or phylogenetic tree structures. Moreover,
most of these methods are designed for continuous dependent variables and only few
are specifically developed for discrete responses. However, especially discrete data is
rather common in evolutionary biology. To exemplify only a few, measures on absence
or presence of certain morphological or behavioural traits (binary traits) are typical
measures in evolutionary biology.
A lack of knowledge and the discordant and unclear literature probably often result
in studies applying wrong methods, violating important assumptions and conditions.
Therefore, the aim of this study is to compare four commonly used phylogenetic meth-
ods (phylogenetic generalised least-squares regression, phylogenetic generalised esti-
mating equation, phylogenetic logistic regression and phylogenetic generalised mixed
model) modeling evolutionary correlations under different scenarios. Based on simula-
tions of correlated evolution between traits with varying number of species, strength of
correlations and phylogenetic tree structures, the statistical performances of the four
methods are tested and compared. Additionally, to verify and compare the practical
applicabilities of these methods on a real evolutionary question, the brain malnutri-
tion risk hypothesis explained above is tested amongst other hypothesis on a data set
including 78 primates species.

In a first part, the introduction covers the explanations of specific phylogenetic terms,
and second, the specific comparative methods and their mathematical backgrounds are
described.

1.2 Phylogenetic terms

Before going into more mathematical details of the specific phylogenetic methods, it
is crucial to discuss the underlying phylogenetic terms. Although, the focus in this
section is mainly set on the biological perspective, certain links to the mathematical
translation are important in order to understand the idea behind comparative methods.
In the first section, the phylogenetic tree and its numerical representation in a variance-
covariance matrix is explained. The correlations of certain traits between species might
be based on their close phylogenetic relationships leading to non-independence of the
data. Second, each phylogenetic method makes assumptions about an underlying evo-
lutionary model. Such a model describes the mode and timing of the evolution of a
trait. In the last section, the parameters which describe an evolutionary model are
discussed.

1.2.1 Phylogenetic tree

A phylogenetic tree represents the evolutionary relationships between species. It rep-
resents the phylogenetic dependencies between species which are taken into account
in comparative methods. A phylogenetic tree consists of branches, nodes and tips:
branches link the species in a hierarchical pattern and their lengths represent the
evolutionary divergences between them proportional to the expected variances. The
divergences, branch lengths, respectively, are either based on absolute evolutionary
times since last common ancestors or variable distances of morphological, genetic and
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behavioural data (Nunn 2011). The longer the branch length, the higher the evolution-
ary divergence. Nodes represent speciation events, where lineages (species) evolve out
of others. Tips symbolize extinct or extant species. A graphical illustration is found in
Figure 1.1. If more than two branches split from a node is called a polytomy. Mostly,
such politomies reflect uncertainties about the phylogenetic relationships (Nunn 2011).
However, usually, the application of phylogenetic methods requires a complete phylo-
genetic tree with the underlying structure assumed to be true.

Figure 1.1: Phylogenetic tree. The green dots represent nodes, the tips are symbolized by red
and blue dots. The red ones stand for extinct species and the blue ones for extant species. The nodes
and tips are hierarchically linked by branches.

After having explained the phylogenetic tree mainly from a biological perspec-
tive, the following paragraph rather explains the mathematical implementation of a
phylogenetic tree. In order to take into account the phylogenetic dependencies be-
tween species in a comparative analysis, a phylogenetic tree, including its structure
and branch lengths, can be expressed in form of a variance-covariance matrix. The di-
agonal elements of this phylogenetic variance-covariance matrix, from now on denoted
with V, are given by the variance of a trait within a single species, representing the
sum of branch length from the root to the tip of the extant species. In mathematical
terms these values can be described as tσ2 with t representing the total path length
from the root to the tip of the corresponding species (Pagel 1999). The off-diagonal
elements of V are the covariances between pairs of species, represented by their shared
evolutionary history, the sum of the branch lengths from the root to the last common
ancestor of the pair of species. In other words, the longer the (shared) evolutionary
time, the higher the variance (covariance) within and between species, respectively.
For graphical illustration see Figure 1.2.
Such a variance-covariance matrix builds the basis for all the phylogenetic correlation
structures of the described comparative methods in Section 1.3.
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Figure 1.2: Phylogeny and corresponding vcv matrix. The phylogenetic tree transformed
into a vcv matrix. Diagonal elements represent the variances within species (branch length from last
common ancestor to a tip of the tree). Off-diagonal elements represent the covariances between species
due to their shared evolutionary history (sum of branch lengths from root to the last common ancestor).
(Corresponding to AnthroTree Workshop, Isabella Capellini)

1.2.2 Models of evolution

Different phylogenetic comparative approaches make different assumptions about the
underlying evolutionary model. An evolutionary model describes the mode and the
timing of the evolution of a trait. Nunn (2011, p. 100) defines it as an “explicit frame-
work for considering how traits change over time”. Two famous models of evolution
for continuous traits are the Brownian motion (Edwards and Cavalli-Sforza 1964) and
the Ornstein-Uhlenbeck (also known as the stabilizing selection model) (originally de-
veloped by Uhlenbeck and Ornstein 1930).
The value of a trait modelled according to Brownian motion can randomly increase
or decrease showing no directional trend. The model assumes that traits in lineages
evolve randomly (thus, also known as a random-walk model) with a constant rate of
change and that changes in one lineage are completely independent from changes in
another lineage (e.g. Pagel 1997). Additionally, the degree of change is proportional to
the length of a branch. Specifically, this means traits modeled by Brownian motion can
achieve random unlimited variance. The fact that Brownian motion (e.g Martins and
Hansen 1996, Nunn 2011) is very generally applicable and that several comparative
methods (e.g. independent contrasts by Felsenstein 1985) assume it to be the under-
lying evolutionary model, this model has become probably the most famous model of
evolutionary change.
Another well known model is the so called Ornstein-Uhlenbeck model which describes
stabilizing selection (e.g. Felsenstein 1988, Lavin et al. 2008, Nunn 2011). This model
is basically the same as a Brownian motion model, however, an additional incorpo-
rated force (“restraining force” α) makes sure the trait value varies around a certain
optimum. Thus, a Ornstein-Uhlenbeck model with a restraining force of α = 0 is the
same as a Brownian motion model. In evolutionary terms, this means that specific
traits cannot cross certain threshold values, such as body mass in birds constrained
by a physical boundary (Nunn 2011). Simulations of the two evolutionary models are
shown in Figure 1.3.
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Figure 1.3: Trait evolution under Brownian motion and Ornstein-Uhlenbeck. The left
figure shows a simulation of 10 evolutionary histories (each line representing a different simulation)
of a trait over time according to a Brownian motion model. The right figure shows the same for a
Ornstein-Uhlenbeck model (tu+t = tu + rn − tu × α; tu = trait value at time u, rn = random normal

variable
iid∼ N(0, 1), α = restraining force) with a restraining force α = 0.95. The trait under Brownian

motion shows a much higher variation (variance = 124.1) than under Ornstein-Uhlenbeck (variance =
16.8). Simulations were done in R using the package ape according to Nunn 2011 and the AnthroTree
website http://nunn.rc.fas.harvard.edu/groups/pica/ chapter 5.1 by Charly Nunn.

The two models presented above are designed to describe the evolutionary process
of continuous traits. However, in this study, the focus is laid on discrete traits. As
an analogue to the Brownian motion model, the Markov-transition process is used to
describe the evolution of discrete traits (e.g. Pagel 1994, 1999, Schluter et al. 1997).
This model makes the same assumptions as a Brownian motion model, namely that
evolutionary changes of one lineage is independent of the changes of other lineages
and the rate of evolutionary change is constant over time and along all branches. In
that sense it is also a random-walk model. In the case of Markov-transition process,
the probabilities that a trait changes from one state to another (transition rates) is
represented in a transition matrix (example in Figure 1.4). The transition matrix can
be designed according to certain evolutionary assumptions, such as that the changes
between states is unordered or ordered, changes might be irreversible etc. (Maddison
and Maddison 2000, p. 69-72). These transition rates are estimated by maximum
likelihood given the data of extant species and a phylogenetic tree with branch lengths
(Pagel 1994, Schluter et al. 1997).
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Figure 1.4: Markov process with corresponding transition matrix. A Markov process can
be used to describe the evolutionary model of discrete data. In this specific case, the discrete trait
consists of the three levels A, B and C. The transition matrix contains the probabilities that a trait
changes from one state to another (transition rates).

1.2.3 Phylogenetic signal and branch length transformation factors

In order to balance how much of the variation of a trait can be explained by the cor-
related evolution with an other trait and how much by its phylogenetic predisposition,
one needs to measure both, the correlation as well as the phylogenetic predisposition.
The latter is measured by a so-called phylogenetic signal. This is a measure for how
much of the similarity of a trait between two species can be explained by their phyloge-
netic relatedness (i.e. common evolutionary history). In particular, going back to the
example of the evolution of life history in relation to brain size variation, a high phy-
logenetic signal means that a large proportion of the similarity in brain size between
two closely related species, such as the gorilla and the chimpanzee, can be explained
by their close phylogenetic relatedness.

Probably the most widely known measurement of the phylogenetic signal for continu-
ous traits is lambda λ by Pagel 1999 and Freckleton et al. 2002. Switching from the
biological to the mathematical perspective, λ can be used to scale the off-diagonal ele-
ments (internal branches of a phylogenetic tree) of the phylogenetic variance-covariance
matrix (V , see former section about phylogenetic trees). λ varies between 0 and 1,
0 meaning that there is no phylogenetic signal at all ending up in a star phylogeny
(Figure 1.5) and λ equal to 1 stands for an evolutionary model of Brownian motion
(Figure 1.5). Values in between 0 and 1 indicate a smaller phylogenetic signal under
the assumption of Brownian motion (e.g. Nunn 2011). The stronger the phylogenetic
signal, λ, the larger the off-diagonal elements of the phylogenetic variance-covariance
matrix V, the higher the covariances between species due to their shared evolutionary
history.
Using a maximum likelihood procedure, an estimate of λ is found by an optimization
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algorithm given a model of evolution (Brownian motion) and a phylogeny (further de-
tails are found in the subsection about the phylogenetic least-squares regression).

Figure 1.5: Phylogeny and corresponding vcv matrix scaled by λ. A phylogenetic tree
and the corresponding vcv matrix where the off-diagonal elements are scaled by λ. λ equals to 1 is
represented by the left phylogenetic tree and λ equal to 0 is represented by the star phylogeny on the
left side. (Corresponding to AnthroTree Workshop, Isabella Capellini)

There are other so-called branch length transformation parameters for continuous
traits such as delta (δ) and kappa (κ). Delta (ranges between 0 and 3) represents a
transformation factor increasing the diagonal (total path length from the root to a tip)
and off-diagonal values (shared path length of two species) of V to the power of the
value of delta. δ equal to one corresponds to a Brownian motion model of evolution
(Nunn 2011), whereas δ > 1 means that the rate of change increases over time, longer
paths contributing more to trait evolution. δ < 1 represents the opposite pattern,
shorter paths contributing more to the evolution of a trait (lecture notes by Isabella
Capellini, AnthroTree Workshop 2011). In evolutionary biology terms, δ is a mea-
surement for the evolutionary rate (i.e. tempo of evolution), e.g. whether the rate
of evolution accelerates or slows down over time (lecture notes by Isabella Capellini,
AnthroTree Workshop 2011). In case of kappa (ranges between 0 and 3), the branch
lengths are transformed to the power of the kappa value, if κ = 0, trait evolution is
independent of branch lengths, whereas for values larger than one raises long branches
more than short branches (Nunn 2011, lecture notes Isabella Capellini, AnthroTree
Workshop 2011). Important to note is, that κ acts only on individual branches, but
does not scale the phylogenetic vcv matrix. In evolutionary terms κ reveals whether
the evolution of a certain trait is rather gradual or punctuational (lecture notes by
Isabella Capellini, AnthroTree Workshop 2011).
These branch length transformation factors (λ, κ and δ) can be changed in order to
modify and adjust the evolutionary model of certain traits. Also, the different types of
trees used for the simulations in this study are constructed using the three described
transformation parameters (λ, κ and δ) (see Material & Methods 2.1.1).
Although, λ can only be used to measure the phylogenetic signal of continuous traits
assuming a Brownian motion model of evolution, it is often mistakenly applied on dis-
crete data.
For discrete data, especially binary data, also several measurements for the estimation
of a phylogenetic signal have been proposed (Abouheif 1999, Fritz and Purvis 2010,
Ives and Garland 2010). Fritz and Purvis (2010) for instance estimate ancestral states
and then use the scaled sum of the differences between each pair of sister clades as a
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measurement for the phylogenetic signal in binary traits. The smaller this scaled sum,
the more phylogenetically clumped the two states of a binary trait. Another measure-
ment for a binary phylogenetic signal has been proposed by Ives and Garland (2010),
which is explained in detail in the section of phylogenetic logistic regression (Section
1.3.3). For categorical data with more than two states, no elaborated method has been
established yet.
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1.3 Comparative methods

As in the former sections, comparative analyses were rather explained from an evolu-
tionary biology perspective, this part now covers the mathematical description of the
specific methods. However, before describing or using any phylogenetic methods, it
is important to state some general assumptions about comparative methods. First,
the phylogenetic relationships in a given tree are assumed to be correct, second, more
closely related species show larger similarities in the analysed traits due to their shared
evolutionary history (phylogenetic signal) and third, the assumption about the under-
lying evolutionary model must be correct (Hernández et al. 2013).

Four commonly used phylogenetic methods (phylogenetic generalised least-squares re-
gression by Grafen (1989) and Martins and Hansen (1997), phylogenetic generalised
estimating equations by Paradis and Claude (2002), phylogenetic logistic regression
by Ives and Garland (2010), phylogenetic generalised linear mixed model by Hadfield
and Nakagawa (2010)) designed for continuous as well as discrete data are discussed
below. Each subsection covers one method including the model structure, parameter
estimation, the underlying assumptions and some general notes.

1.3.1 Phylogenetic least-squares regression

Phylogenetic generalised least-squares regression (PGLS) (Grafen 1989, Martin and
Hansen 1997, Pagel 1997; Garland and Ives 2000, Rohlf 2001) is probably the most
famous and widely used approach in current comparative studies. The reason why it
became so famous is its huge flexibility compared to older methods (e.g. independent
contrasts, Felsenstein 1985). The PGLS was first proposed by Grafen (1989) as an
extension of the independent contrast method (Felsenstein 1985). Grafen (1989) de-
veloped the idea of translating the phylogeny into a variance-covariance matrix and to
account this way for the non-independence between the species. The PGLS method is
implemented by the function pgls() in the package caper (Orme et al. 2012).

Model structure

As stated by Martins and Hansen 1997, an evolutionary hypothesis needs to be trans-
lated into a statistical model. In a PGLS model, the simplest linear regression model
Y = Xβ + ε can be used to model different evolutionary processes such as the cor-
related evolution of two or more traits, rates of evolution, phylogenetic effects and
reconstruction of ancestral states (Martins and Hansen 1997). Such a simple linear
regression model consists basically of two parts: Xβ is denoted as the mean structure
and ε as the error structure. The mean structure (Xβ) is used to determine what is
modeled, either evolutionary rates, phylogenetic effects, the correlated evolution of two
traits or ancestral states. For the purpose of this study, the focus is laid on the mean
structure describing the correlated evolution of two or more traits (e.g. referring to the
formerly used example: the correlated evolution between the length of development
and brain size). The coefficients (β: (p+ 1)× 1 vector) of the linear regression model
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describe the relationship between the response (Y: N × 1 vector with N observations)
and the p explanatory variables (X = design matrix with the dimensions N × (p+ 1))
and ε represents the N × 1 error structure:

Y = Xβ + ε. (1.1)

The error structure (ε), is where the dependence of the data (species sharing evo-
lutionary history) in a phylogenetic study is taken into account. The phylogeny is
transformed into a variance-covariance matrix V, as explained earlier, and is expressed
in a complex error term.

Martins and Hansen (1997) divide the error structure into three sources of varia-
tion: 1) within-species variation and measurement error (εm); 2) error due to random
evolutionary change of species along a phylogeny (εs); 3) error due to unknown or
incomplete phylogenetic relationships (εp). Although it is possible to combine and
include the three sources of errors into one error structure (see Martins and Hansen
1997), often only the data for the phylogenetic dependence between species is taken
into account (εs). In fact, normally the variance of a trait within a species, which
would allow to account for the measurement error (εm), is not given in the literature
(if the variation or standard errors are given: package phytools in R allows to do a
phylogenetic regression with intraspecific sampling error according to Ives et al. 2007).

The error structure based on phylogenetic relationships (εs) follows a multivariate
normal distribution with an expectation of 0 and the phylogenetic variance-covariance
matrix (V) with an overall phylogenetic variance of σ2 (εs ∼ N (0, σ2V)). The key
issue of the PGLS approach is the phylogenetic variance-covariance matrix V allowing
for huge flexibility concerning the model of evolution. This means, the matrix (i.e.
the phylogenetic tree) can be adjusted based on a certain model of evolution by corre-
spondingly adjusting branch lengths of the phylogenetic tree by one of the described
branch length transformation parameters (λ, κ, δ) (e.g. Pagel 1999, Freckleton et al.
2002). The adjustments with these parameters enable to avoid over - or undercorrec-
tion of phylogenetic dependency between species (Lavin et al. 2008). For example,
λ is used to scale the off-diagonal elements of the variance-covariance matrix of the
phylogenetic tree as explained in the former Section 1.2.3.

Parameter Estimation

The estimation of the parameter and its variation is very simple and comes from the
usual formulas of a least-squares regression (please note that the maximum likelihood
estimation procedure results in the same parameter estimators (e.g. Pagel 1997)). The
advantage of such estimators is that they are the best linear unbiased estimators having
the smallest variance among all unbiased estimators (Gauss-Markov estimator) (e.g.
Freckleton et al. 2011). The estimation of the GLS approach compared to the OLS
estimation is down-weighted by the variance-covariance matrix, in order to correct
for the dependence between the observations. β̂ is a vector ((p + 1) × 1) containing
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the best unbiased linear estimators for the intercept und the coefficients explaining
the relationship between the response variable and the p explanatory variables. Y is
the vector (N × 1) of the response values for each species (number of species = N ;
i = 1, 2, . . . , N) and X is the design matrix (N × (p+ 1)) of the explanatory variables
and the its rank (k). V (N × N) is the variance covariance matrix describing the
phylogenetic tree. σ2 and its unbiased estimator s2 stand for the scaling constant
(residual variance) (Rao and Toutenberg 1995, Blomberg et al. 2011), in comparative
terms also known as the overall rate of evolution (Ives et al. 2007, Garland and Ives
2000). W is the variance-covariance matrix of β:

β̂ = (XTV−1X)−1XTV−1Y. (1.2)

s2 = 1
N − k

(Y−Xβ̂)TV−1(Y−Xβ̂). (1.3)

Ŵ(β̂) = s2(XTV−1X)−1. (1.4)

It is also possible to model non-Gaussian responses by extending the method to a
GLM using some kind of link function which is not the identity function. The fol-
lowing iterative estimation procedure, also known as Fisher scoring, is used with the
corresponding approximate estimate of the variation:

β̂1 = β̂0 +
{(dµ

dβ

)T
V−1

(dµ
dβ

)}−1 {(dµ
dβ

)T
V−1(Y− µ0)

}
. (1.5)

Ŵ(β̂1) ≈
(dµ
dβ

)T
V−1

(dµ
dβ

)−1
. (1.6)

The β̂0 corresponds to an initial value of the coefficient calculated by a non-phylogenetic
least-squares regression. This value is used to calculate β̂1 in a second iterative step.
µ0 is an initial estimate of the mean (µ0 = g−1(Xβ0)) and dµ/dβ is a matrix con-
taining the derivatives of the inverse link function with respect to β and evaluated at
β̂0 (Martins and Hansen 1997). The iterative process is continued until convergence
of β0 and β1.

Further, to scale the variance-covariance matrix of the phylogenetic tree, Freckleton
et al. (2002) presented a maximum likelihood estimation of λ given the data and the
phylogenetic tree.
The model for the evolution of the response variable (Yi) under Brownian motion is
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given by the following formula with α standing for the state of the trait at time 0 (trait
in the ancestor 0) and ε representing a normally distributed random effect with a mean
of 0 and variance of σ2. t represents the time since the origin 0 and

∑Ti
l=1 summates

across the T branches with the lengths j from the root to the tip of species i:

Yi = α+
Ti∑
l=1

εitij . (1.7)

The multivariate normal probability density of the response variable Y incorporat-
ing the phylogenetic variance covariance matrix σ2V:

p(Y) = 1
(2πσ2)

N
2
|V|

−1
2 exp

[
− 1

2σ2 (Y−Xα)TV −1(Y−Xα)
]
. (1.8)

An estimation of α with the phylogenetic variance-covariance matrix scaled by λ is
given by (analogue to the estimation of β in the PGLS estimation):

α̂ = (XTV(λ)−1X)−1(XTV(λ)−1Y). (1.9)

and the unbiased estimate of σ2 is:

σ̂2 = 1
N − 1(Y− α̂X)TV(λ)−1(Y− α̂X). (1.10)

In the end, an estimate of λ is given by the maximum of the log-likelihood of the
probability density (Equation 1.8) evaluated for a wide range of values for λ, scaling
the variance-covariance matrix V.
To test whether the estimate of λ is significantly different from 0 or 1, a log-likelihood
ratio test is used with L(λ̂) representing the log-likelihood at the maximum likelihood
estimate of λ and L(λ‘) representing the log-likelihood at λ equal to 0 or 1. The result
is approximately χ2 distributed with 1 degree of freedom:

χ2 = −2[L(λ̂)− L(λ‘)]. (1.11)
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Assumptions

The pure statistical assumptions of a PGLS are the known from a common GLS model:
1) The GLS model assumes that the response variable (Y) can be expressed by a linear
combination of explanatory variables (X) resulting from the “ linear” term in a linear
model. 2) The predictor variables (the columns of X excluding the first) are assumed
to be independent of each other and of the error structure. 3) The errors are assumed
to be multivariate normally distributed ∼ MNV(0, σ2V)) with a mean of 0 and and a
variance-covariance structure of σ2V and V 6= I (V is assumed to be known and σ2

needs to be estimated). Thus, in contrast to an ordinary least-squares model (OLS),
the assumption of uncorrelated errors and homoscedasticity is relaxed.

The assumptions from an evolutionary and phylogenetic perspective, some of them
which are relaxed in a PGLS compared to IC approach, are the following: 1) Al-
though, one would be able to incorporate the within-species variation or measurement
error (Martins and Hanse 1997; Ives et al. 2007) in a PGLS model, standard program
implementations do not. Specifically, the pgls() function in the package caper (Orme
2012) does not take into account a within-species variation. 2) Compared to the Inde-
pendent Contrast method (Felsenstein 1985), the model of evolution in GLS approach
is not strictly restricted to a Brownian motion model of random walk with λ = 1 (e.g.
Martins and Hansen 1996). Using different branch length transformation factors, such
as λ, δ or κ which can be estimated or fixed in the pgls() function in caper, one is
able to adjust or rather force the evolutionary model to given data.

General notes

Compared to the old fashioned method of independent contrasts (Felsenstein 1985), it
offers a much more flexible way of appliance in terms of nonstandard assumptions (cor-
relation among data points), underlying models of evolution and intercepts which are
not forced to be zero (Nunn 2011). Moreover, compared to Felsenstein‘s independent
contrasts method (1985), the PGLS approach by Grafen (1989) can also make use of
discrete explanatory variables. In fact, under the assumption of a phylogenetic signal,
the PGLS method assumes only the errors to be multivariate normally distributed (and
not the explanatory variables as in the IC method according to a Brownian motion
model) and although a discrete or dichotomous variable cannot undergo Brownian mo-
tion evolution and do not follow a multivariate normal distribution, the error structure
does (Martins and Hansen 1996).

Although, the mean structure of this method could theoretically be extended for spe-
cial link functions (e.g. logit-link) so far no further specifications of an appropriate
variance-covariance structure for discrete characters in the function pgls() in caper

has been implemented. The pgls() function is only designed for continuous responses.
However, many studies apply this function to discrete and ordinal data (Schuppli et al.
2012; Matthews et al. 2010). But, when using the PGLS approach including λ, κ, δ as
a branch length transformation parameters, as implemented in caper (Freckleton et al.
2002), it is pretty straightforward why it should be applied only on continuous varying
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traits. In fact, e.g. using λ assumes a Brownian motion model of evolution which
is only applicable for continuous data (a Brownian motion model produces infinite
variation which does not match the finite number of states of a discrete trait).
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1.3.2 Phylogenetic generalised estimating equations

The generalised estimating equations (GEE) method is an extension of a generalised
linear model (GLM) taking correlated data (repeated measures or clustered data) into
account. Thus, the GEE approach can be used to model not only Gaussian responses,
but also binomial, poisson and other distributions belonging to the exponential family.
In contrast to the cluster or subject specific models (e.g. random effects model), the
GEE approach estimates population-averaged parameters representing “the averaged
effect of a unit change in the predictors for the whole population” (Ghisletta and Spini
2004, p. 423). On the contrary, cluster or subject specific approaches focus on the
individual coefficients. In other words, the coefficient is represented by a distribution
based on cluster or subject specific regression coefficients (Ghisletta and Spini 2004).
However, for a comparative method taking phylogenetic relationships into account,
the GEE approach seems to be perfectly appropriate as the main interest lies not on
a species specific, but rather on an averaged effect within a certain taxa group. The
phylogenetic generalised estimating equations approach is implemented by the function
compar.gee() in ape.

Model structure in general (non-phylogenetic)

The GEE (Liang and Zeger 1986; Zeger and Liang 1986; Zorn 2001) approach is an
extension of GLM and is based on the quasi-likelihood methods (Wedderburn 1974;
Nelder and Wedderburn 1972; McCullagh and Nelder 1983, 1989). A quasi-likelihood
approach is used in case one has an idea on the mean and variance structure of the data,
but the distributional assumption of the response is unclear (lecture notes generalised
linear regression models STA 406). In the quasi-likelihood method only the relation-
ship between the expectation of the response variable and the predicting variables (i.e.
the inverse of the link function, Equation 1.12) and between the mean and the vari-
ance (Equation 1.13) are required, in contrast to the full form of the distribution of
the response variable (e.g. Zeger and Liang 1986). Specifically, in a quasi-likelihood
approach the variance is expressed as a function of the expectation.
The notation for the following formulas is given by S as the number of units/subject-
s/clusters s = {1, 2, . . . , S}, N as the number of time points i = {1, 2, } representing
the dependent measurements. Here, N is used for the number of time points because
in the phlyogenetic case, this corresponds to the number of species. Ys represents
a column vector of the response variable, Ys = [Ys1, Ys2, . . . , YsN ]. Xs is the design
matrix (N × (p+ 1)) of p covariates for cluster s. β is the column vector ((p+ 1)× 1)
containing the regression coefficients for the covariates. φ represents the overdisper-
sion parameter. Vs represents the variance-covariance matrix for cluster s and it is
important to note, that this matrix is not equal to the phylogenetic variance-covariance
matrix (V) defined for the PGLS approach.

The simple quasi-likelihood approach assuming no correlated data in the observed
response variable is specified by the following formulas.
The inverse of the link function g−1 describes the relationship between the expectation
µs and the linear predictor Xsβ:
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µs = g−1(Xsβ). (1.12)

Under the assumption of uncorrelated data (i.e. N = 1: independence between obser-
vations s), the variance Vs of Ys is given by a function f of the expectation:

Vs = f(µs)
φ

. (1.13)

Specifically, in case of a normal distribution, f(µs) = 1, in case of a binary response
the variance function has the form f(µs) = µs(1 − µs) and for a poisson distribution
the variance is equal to the expectation f(µs) = µs.

For correlated response values (i.e. N > 1), Liang and Zeger (1986) extended the
quasi-likelihood approach. They specified the Vs in a new way, introducing a N ×N
correlation matrix Rs(γ):

Vs = A0.5
s Rs(γ)A0.5

s

φ
. (1.14)

As represents a N × N diagonal matrix with f(µs) (i.e. the variance of Ys with-
out the dispersion parameter φ) on the diagonals and R(γ) stands for the correlation
matrix of Ys. This correlation matrix Rs(γ), the parameter γ, respectively, can be
specified accordingly to a particular dependency structure (independent, exchangeable,
autoregressive or unstructured correlation; for further details see Liang and Zeger 1986
or Zorn 2001) of the response values. This flexibility in the within-cluster correlation
structure represents one of the main advantages of the GEE approach (e.g. Ghisletta
and Spini 2004).

The quasi-likelihood score statistics for the p covariates represented by the derivatives
of the log-likelihoods is given by:

Up(β) =
S∑
s=1

( dµs
dβS

)T
V−1
s (Ys − µs) = 0. (1.15)

All in all, the generalised estimating equation for β is a combination of the Equa-
tions 1.15 and 1.14.
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Parameter estimation in general (non-phylogenetic)

The regression coefficients (β̂) and both, the correlation (γ) and dispersion parameter
(φ) of this estimating equation can be found using an iterative process, such as Fisher
scoring:

β(step+1) = β(step) −
{(dµs

dβ

)T
V−1
s

(dµs
dβ

)}−1 {(dµs
dβ

)T
V−1
s (Ys − µs)

}
. (1.16)

The iterative process can be started with Rs(γ) = I and φ = 1 leading to a fist
estimation of the coefficients β(step).The estimated β(step) can be used to calculate the
fitted values µs = g−1(Xsβ) and subsequently for calculating the standardized residu-
als r̂si = (Ysi − µsi)/

√
Vii. These residuals are then required for the estimation of As,

Rs(γ), γ, respectively, and φ. The dispersion parameter φ can be estimated using the
following formula:

φ̂−1 =
S∑
s=1

N∑
i=1

r̂2
si

(N − (p+ 1)) . (1.17)

γ can either be estimated from the data by the specific estimators which vary de-
pending on your dependence structure, more details are given in Liang and Zeger
(1986, where α corresponds to γ) or can be fully specified. Given the estimates of As,
Rs(γ) and φ, β(step+1) can be calculated in a second iterative step. The last two steps
are iterated until convergence. The main advantage of the GEE approach is the con-
sistent estimate of the regression coefficients β depending only on the mean structure
and most importantly, being robust against misspecifications of the correlation matrix
Rs(γ) (Liang and Zeger 1986).

For the sake of completeness, also the following formulas on the variance structures
of β are given. A naive or “model” based estimate of the variance-covariance matrix
Wnaive of β is given by:

Ŵnaive(β) =
{(dµ

dβ

)
V−1

(dµ
dβ

)}−1
. (1.18)

A robust estimate of Wrobust of β is given by the “sandwich estimator”:

Ŵrobust(β) =
{

S∑
s=1

(dµs
dβ

)T
V−1
s

(dµs
dβ

)}−1{ S∑
s=1

(dµs
dβ

)T
V−1
s (Ys − µs)(Ys − µs)TV−1

s

(dµs
dβ

)}
{

S∑
s=1

(dµs
dβ

)T
V−1
s

(dµs
dβ

)}−1

.

(1.19)

22



Ŵrobust(β) is also robust against misspecifications of Rs(γ). The middle term of
this robust variance estimator serves as correction factor in case of a misspecified cor-
relation structure (Norton et al. 1996). The standard error of β̂ is simply the square
root of the diagonal elements of Ŵ(β).

Phylogenetic GEE

In the case of a phylogenetic approach using GEE (PGEE) (Paradis and Claude 2002),
only a single cluster is assumed with the phylogenetic tree representing that cluster
(i.e. S = 1, model indices s drop out) and the number of time points (N) corre-
sponding to the number of species (compare to section “Model structure in general
(non-phylogenetic)”). Furthermore, Rs(γ) is the N ×N correlation matrix containing
the expected correlations of the response variable Y between the species based on their
phylogenetic relationships. In other words, the correlations are based on the species
shared path lengths on their phylogenetic tree.
With these specifications, β can be estimated in the way described above using the iter-
ative process in Equation 1.16. However, for the estimation of the variance-covariance
matrix of β, Paradis and Claude (2002) suggested some additional specifications.

For a continuous response variable, Paradis and Claude (2002) use the naive esti-
mator of Wnaive(β) because the robust estimator Ŵrobust(β) is not good in case of a
small number of independent clusters (note that using a phylogenetic approach there
is only a single cluster) (Horton and Lipsitz 1999).
Although, this naive estimator of the variance-covariance matrix of β shows good
properties for a continuous response, as shown by the simulation study by Paradis and
claude 2002, it is not appropriate for discrete response variables (Mancl and DeRouen
2001). Thus, for binary response variable they chose a quasi-likelihood estimator of
Wquasi(β) with Q representing the quasi-likelihood function:

Ŵ quasi(β) =
{
−d

2 lnQ
dβ2

}−1

. (1.20)

The quasi-likelihood function (Wedderburn 1974) is given by:

dQ

dµ
=

N∑
i=1

Yi − µi
φµi(1− µi)

. (1.21)

Assumptions

The general assumptions for a GEE approach are that (1) the response variable should
be able to be expressed by a linear combination of the explanatory variables (a spe-
cific link function needs to be determined if the response variable is not normally
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distributed), (2) the number of clusters should be relatively large and (3) the observa-
tions between clusters should be uncorrelated (Norton et al. 1996). However, in the
case of a phylogenetic GEE approach, there is only a single cluster, meaning that the
second assumption given above does not hold anymore. To avoid any bad influence
on the inference, Paradis and Claude (2002) suggest to use the naive estimator the
variance-covariance matrix of β.

General notes

Compared to the PGLS method, where additionally the phylogenetic signal of a trait is
taken into account, this approach does not do that. Furthermore, as indicated by Ives
and Garland (2010), the correlation structure R(γ) based on the phylogenetic tree is
not appropriate for discrete traits as it assumes a Brownian motion model of evolution.
However, the simulation study by Paradis and Claude (2002) showed that for binary
traits, the type I error was not significantly larger than 5%, whereas for continuous
traits this was the case. This means, that the GEE approach shows better properties
for binary characters, however, one needs to keep in mind that the variance-covariance
structure is not really appropriate.
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1.3.3 Phylogenetic logistic regression

A very recent proposed approach is the phylogenetic logistic regression (PLR) for
binary response variables by Ives and Garland (2010). This method is related to the
GEE approach by Paradis and Claude (2002), but they adopted the correlation matrix
especially for binary traits. Additionally, this approach is able to give an estimation
of the phylogenetic signal of a binary trait simultaneously to the estimation of other
parameters, giving an advantage over the method of the phylogenetic GEE by Paradis
and Claude (2002) (Ives and Garland 2010). This method is implemented in MATLAB
but also very recently, it has been implemented in R with the function phyloglm() in
the package phylolm by Ho and Ané (in review).

Model structure

The PLR approach by Ives and Garland (2010) is basically splitted into two parts:
First, an univariate case which is used to measure the phylogenetic signal of a binary
trait (i.e. no explanatory variables), and second, the approach is extended for the
case where one or more explanatory variables are modeled to explain the variation
in the binary response (multivariate case). In the univariate case the correlation of
the binary response between species depends on the transition rates between the two
states, whereas in a multivariate case, the expectation (µ) depends on the explanatory
variables.

For a binary response variable (taking either state 0 or 1), the correlation structure
specified as in the GEE approach (R(γ)) by Paradis and Claude (2002) based on the
assumption of a Brownian motion model of evolution is not appropriate (Ives and Gar-
land 2010). For the PLR, Ives and Garland (2010) suggest a specific formulation for
the correlation structure (C(α)) for a binary response based on a Markov process (see
Equations 1.22 and 1.23). For notation, Y represents the vector of response variable
∈ {0, 1} for N species, i = {1, 2, . . . , N}; V is basically the variance-covariance matrix
representing the phylogenetic tree as in the PGLS approach, however, with all diagonal
elements set to one (under the assumption of an ultrametric tree, meaning that the tips
of the tree are equally distant from the root). Important to note is that this matrix is
not the same as the correlation matrix R(γ) used in the phylogenetic GEE approach.
J is a N × N matrix with all elements equal to 1. α corresponds to the sum of the
transition rates from state 1 to 0 (α0) and the transition rate for the opposite direction
(0 to 1) α1 (α = α0 + α1).

For the univariate case (i.e. phylogenetic signal) the following formula, where the
exponential refers to an element wise operation, gives the correlation structure of Y
with the matrix 2(J −V) representing the pairwise distances of two species:

C(α) = exp(−2α(J −V)). (1.22)
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The higher the transitions rates α0 and α1, the higher α leading to lower off-diagonal
elements in C(α). From an evolutionary intuitive perspective, this means that higher
transition rates result in lower phylogenetic correlations. This is why α can be regarded
as a measurement for the phylogenetic signal for a binary trait. For very high values
of α0 and α1, the probability of state 1 approaches µ = α1/(α0 + α1).
Generally, the matrix C(α) represents an analogue to the variance-covariance matrix
V used for a continuous response under the assumption of a Ornstein-Uhlenbeck model
of evolution (e.g. PGLS). In the case where α equals to 1, Ives and Garland (2010)
compare C(α) to V for a continuous response under the assumption of a Brownian
motion model, where the degree of change is proportional to the length of a branch.
In other words, α equal to 1 for a binary trait is comparable to the continuous case
whit a λ of 1. However, V and C(α) are of course never identical. Moreover, instead
of using α directly as a measurement for the phylogenetic signal, Ives and Garland
propose to use a with a = − log(α). This leads to a more intuitive interpretation of
the phylogenetic signal as with increasing a the phylogenetic correlation of the response
variable between species increases. They use a = −4 as a cut point: everything smaller
than that indicates the absence of a phylogenetic signal, as then the C(α) is basically
equivalent to the identity matrix I.

For the multivariate case, the correlation structure is the following with M as a di-
agonal matrix with the components mii = (1 − µ̄)[µi/(1 − µi)]0.5 for µi < µ̄ and
mii = µ̄[(1 − µi)/µi]0.5 for µi > µ̄ with µi representing the expected probability of
state 1 for species i and µ̄ representing the average of the expectations of all species
(expectation see formula 1.24) (for further details see Ives and Garland 2010):

C̃(α) = MC(α)M− diag(MC(α)M) + I. (1.23)

In the case of independent data points, the analysis corresponds to a common lo-
gistic regression where C̃(α) equals to the identity matrix I.

In the end, there are two parameters which need to be estimated: α as a measurement
of the phylogenetic signal using the univariate approach and µ and β (see Equations
1.24), respectively, using the multivariate approach.

Parameter estimation

Ives and Garland (2010) propose to use alternately a quasi-likelihood function to esti-
mate µ, β, respectively, given α, and least-squares estimation for estimating α given
µ until convergence of both parameters. To find the MLE of µ, they do not use the
Newton-Raphson algorithm as in the GEE approach, however, they use another op-
timizing algorithm, the simplex minimization procedure, with higher flexibility and
efficiency.
For estimating the phylogenetic signal (i.e. univariate case), X is a N × 1 vector of
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ones, as there are no covariates, and the expectation of state 1 is a scalar µ. In the case
of a multivariate analysis, X represents the N × (p+ 1) design matrix (see Equations
1.24) and µ is a N × 1 column vector.
The formulas for the parameter estimation are given below, however, those are not
explained in detail as this is beyond the scope of this study. Further and more detailed
information can be found in Ives and Garland (2010).

The following two formulas are the logit function and and its inverse representing
the asymptotic expectation of the probability of state 1 of Yi (µ in bold font represents
the N × 1 vector containing the expectations µi for each species i for the multivariate
case, and the logarithm as well as the exponential are to be understood as element
wise operators):

g(µ) = log µ

1− µ µ = exp(Xβ)
1 + exp(Xβ) . (1.24)

The variance matrix V(α) of Y with C(α) (univariate case) or C̃(α) (multivariate
case) as the correlation matrix and the diagonal matrix A known from the GEE ap-
proach is given by:

V(α) = A0.5C̃(α)A0.5. (1.25)

The quasi-likelihood score function for estimation of β is given by (McCullagh and
Nelder 1989, p. 333):

U(β̂(α)|α) =
∑
p+1

{
(AX)TV(α)−1(Y− µ)

}
= 0. (1.26)

As it is well known that the estimates of β in logistic regressions are biased, Ives
and Garland (2010) use a penalized equation for the estimation of β (penalization
procedure by Firth 1993; see also Heinze and Schemper 2002), where the information
matrix I(β) is given by (AX)TV(α)−1(AX) = XTA0.5C(α)−1A0.5X and βr is the
r-th regression coefficient of β:

U∗
r(β̂(α)|α) = Ur(β̂(α)|α) + 1

2 tr
{
I(βr)−1

[dI(βr)
dβr

]}
= 0. (1.27)

27



For estimating α the generalised least-squares formula is used:

SS(α̂(µ)|µ) = −1
2(log |V(α)|+ (Y− µ)TV(α)−1(Y− µ)). (1.28)

The variance of β is estimated by the naive estimator also used in the GEE approach,
except that now the variance W(β) is based on the fixed MLE of α:

Ŵ naive(β̂|α̂) =
(dµ
dβ

)T
V(α̂)−1

(dµ
dβ

)
. (1.29)

Assumptions

Generally, the ordinary logistic regression is part of generalised linear models and thus,
it assumes no normality, no homoscedasticity and no linear relationship between the
response and the explanatory variables. However, the response variable needs to be
binary and the log odds should be linearly related to the explanatory variables.
Specifically for the phylogenetic case, the PLR method by Ives and Garland (2010)
assumes the process to be at stationarity, meaning that the probability for state 1 is
the same over the whole tree, on the tips as well as on the root of the tree (Ives and
Garland 2010). Another method for measuring phylogenetic signal in binary traits
has been suggested by Fritz and Purvis (2010). This method is based on the sum of
sister-clade (two direct related phylogenetic groups such as the birds and crocodiles)
differences and the assumption about stationarity is relaxed.

General notes

The estimate of a as a measurement for the phylogenetic signal is only precise (i.e.
showing low variability) and unbiased if the binary data shows a balanced number of
zeros and ones. As soon as there are only very few zeros and or very few ones, the
estimate of the phylogenetic signal shows rather poor properties (i.e. low precision
and downward bias) (see Figures 1 and 2 in Ives and Garland 2010). In real data sets,
however, this kind of unbalanced data is rather common and thus, one needs to be es-
pecially careful using this kind of phylogenetic signal for binary traits. Moreover, in the
multivariate case, the simulations of Ives and Garland (2010) show that the estimates
(β) are upward biased, with the bias being stronger in case of higher phylogenetic sig-
nals (a). However, they still perform better than an ordinary logistic regression where
dependence between species is not taken into account. Parametric bootstrapping in
the MATLAB code allows for detecting possible bias in the estimators.
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1.3.4 Phylogenetic generalised linear mixed model

The phylogenetic generalised linear mixed model (PGLMM), which is based on quan-
titative genetic methods, can be applied for a wide range of phylogenetic questions and
is able to analyse non-Gaussian and discrete dependent variables. The phylogenetic
covariance matrix, the analogue to the relationship matrix of a pedigree in quantitative
genetics, is included as a random effect in the mixed model. This method makes use of
Bayesian inference using the Markov Chain Monte Carlo (MCMC) technique (Hadfield
and Nakagawa 2010). The phylogenetic mixed model is implemented with the function
MCMCglmm in the equally named package MCMCglmm.

Model structure

The phylogenetic mixed model is based on a quantitative genetic method, the so-called
animal model. This model is used to distinguish between genetic and environmental
effects on a certain phenotype, including all the relationships within a pedigree. An
animal model is nothing else than a mixed model including a fixed effect, represent-
ing an overall mean (µ), and two random effects, one for the genetic additive effect
(heritability resulting from a pedigree) (a) and one for the environmental effect (e)
(Lynch 1991, Postma and Charmantier 2007). In case of a single character, µ is a
scalar and Y, a , e and 1 are all N×1 column vectors with N representing the number
of individuals in a pedigree:

Y = µ1 + a + e . (1.30)

This model built the basis for the phylogenetic mixed model where a phylogenetic tree
with N species is the analogue to a pedigree (Lynch 1991, Housworth et al. 2004, Had-
field and Nakagawa 2010). Lynch (1991) and Housworth et al. (2004) describe the phy-
logenetic mixed model as a way to model two different kinds of evolutionary changes:
gradual, long-lasting evolutionary change as an analogue to the heritability in quan-
titative genetics (a), and fast, reversible evolutionary change (e), such as phenotypic
plasticity, as an analogue to the environmental effects (Housworth et al. 2004). A very
recent publication by Hadfield and Nakagawa (2010) further emphasizes the flexibility
of the phylogenetic mixed model by making the link to meta-analysis. They demon-
strate that many proposed model designs (the original phylogenetic meta-analysis by
Adams (2008), the method allowing for additionally including within-species variation
by Ives et al. 2007 and the method proposed by Felsenstein (2008) considering multiple
measurements per species) can be applied as a mixed model using ASReml (Gilmour
et al. 2009), a program made for analysing animal models.

The main advantage of this model framework is its huge flexibility as it allows to
include any number of fixed and random effects and even makes it possible to model
multiple responses (Hadfield and Nakagawa 2010). The basic model, as described by
Hadfield (2010, 2012) and Hadfield and Nakagawa (2010), consists of X as the design
matrix of the fixed effects and Z as the design matrix for the random effects. β and u
are vectors containing the fixed effects and random effects, respectively. ε stands for
the residuals. For the non-Gaussian case a latent variable ł is introduced, the response
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function (inverse of link function) of which is equal to the canonical parameter of a
specific distribution (e.g. Poisson distribution: Yi ∼ Pois(λ = exp(li))).
The basic model for a Gaussian and non-Gaussian response is given by:

Y = Xβ + Zu + ε ł = Xβ + Zu + ε. (1.31)

The fixed and random effects and the residuals follow a multivariate normal distribution
with the mean vectors of β0 and 0. The overall variance-covariance matrix contains
the variance-covariance matrix of the fixed effects B, the variance-covariance matrix
of the random effects σ2

uG and the variance-covariance matrix of the residuals σ2
ε I. In

the phylogenetic case, where the phylogenetic relationships are included as a random
effect, G corresponds to V, the phylogenetic N ×N variance-covariance matrix. The
variance matrix of the residuals is the identity matrix I, assuming the residuals to be
independent and homoscedastic.βu

ε

 ∼ N(
β0

0
0

 ,
B 0 0

0 σ2
uG 0

0 0 σ2
ε I

). (1.32)

The latent variables, the fixed and random effects as well as the variances σ2
u and

σ2
ε need to be estimated. In the package MCMCglmm a multivariate normal prior for

the fixed effects is assumed, where you need to specify the mean vector (mu) and
a variance-covariance matrix (V, note: has nothing to do with the phylogenetic vcv
matrix). For the variance components (σ2

u and σ2
ε ) an inverse-Whishart prior with the

parameter V and the degree of belief parameter nu is assumed. Thus, for the func-
tion MCMCglmm, one needs to specify the priors for the fixed effects, and the variance
components σ2

a and σ2
ε . The default prior for the fixed effects is a multivariate normal

distribution with a zero mean and large variances (108) and covariances equal to zero.
For the inverse-Wishart priors for the variance components of the random effects and
the residuals, the default is a nu of zero and V of 1. Further information about the
prior specifications is found in the section about method specifications.

A special and useful application of the phylogenetic mixed model proposed by Hadfield
and Nakagawa (2010) is to model multinomial logit models for nominal responses with
more than two levels. To keep it short and simple, the idea behind the multinomial
model is a parameter reduction. In other words, if the multinomial variable has J lev-
els, the parameters are reduced to J−1 by using one level as a reference category. The
parameters are represented by log odds ratios (each of the J − 1 levels in relation to
the reference level) (Equation 1.33). The corresponding matrix, known as a contrast
matrix ∆, with rows representing the multinomial levels and the columns the J−1 log
odds ratios (latent variables lij) looks as follows (example: multinomial variable with
three levels 1, 2 and 3 and αij as the probability for level j of species i):

lij = log
(
αij
αi1

)
∆ =

−1 −1
1 0
0 1

 . (1.33)
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A simple model with fixed effects:

exp((∆∆T )−1∆Xiβ) ∝ E

αi1αi2
αi3

 . (1.34)

The estimation of variance covariance matrices of the random effects and the residuals
is given by V = ∆T Ṽ∆ where the tilde marked V represents the variance covari-
ance matrix of the log probabilities (log(αi)). As the residuals are not estimated in
case of multinomial data, the variance-covariance matrix needs to be fixed, basically
arbitrarily.

Parameter estimation

The original phylogenetic mixed model proposed by Lynch (1991) uses the iterative
expectation-maximization (EM) algorithm and maximum likelihood for parameter es-
timation, however, this procedure was weigh too computer intensive and for a small
number of species problems with convergence arise (Lynch 1991). Moreover, Housworth
et al. (2004) point out that small sample sizes, which is often the case in phylogenetic
analyses compared to pedigree analyses, may lead to negative variance estimates of σ2

u

(“ genetic additive effect”) and σ2
ε (“ environmental effect”) due to no mathematical

constraints. Thus, Housworth et al. (2004) reparametrized (taking the two variance
components together as a total variance: σ2 = σ2

u + σ2
ε ) the model of Lynch (1991) in

order to overcome this problem and use maximum likelihood and restricted maximum
likelihood (REML) estimation procedures. However, due to complexity of the like-
lihood, these estimation procedures are basically only reliable for Gaussian response
variables (Hadfield and Nakagawa 2010). In form of a generalised linear mixed model,
Hadfield and Nakagawa (2010) propose a Bayesian approach, the MCMC technique,
to estimate parameters of non-Gaussian response variables. MCMC is a class of algo-
rithms, often used in Bayesian inference, drawing random numbers out of probability
density functions. In case of the PGLMM, two such algorithms are used: Metropolis-
Hastings-algorithm and the Gibbs sampler (see Appendix A1).

As known from the previous section, the following parameters need to be estimated:
the latent variables , the fixed and random effects and the variances σ2

u and σ2
ε . The la-

tent variables are sampled in blocks using the Metropolis-Hastings algorithm (see Box
1) because the conditional posterior is unrecognizable. The fixed and random effects,
and the variances σ2

u and σ2
ε are sampled using the Gibbs-sampler (see Box2) and fol-

low a multivariate normal and a scaled inverted chi-squared distribution, respectively.
Further details are found in the appendix of Hadfield (2010) and in Hadfield (2012).
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Assumptions

For continuous data, it assumes a Brownian motion model of evolution (Martins et al.
2002). However, as one can also model discrete data using the MCMC technique, which
obviously does not follow Brownian motion, this assumption is relaxed for discrete data.

General notes

Using the Bayesian approach for estimation of a phylogenetic mixed model, one needs
to be aware of the fact that the priors have higher influence on the posterior if the
sample size is small, i.e. small number of species. Thus, having a small sample size,
one really needs to make sure to specify appropriate prior distributions (Hadfield and
Nakagawa 2010).

The main interest in this study is whether the mixed model approach by Hadfield
and Nakagawa (2010) using Bayesian inference gives similar results to PGLS, PGEE
and PLG (in this study ignoring intraspecific variation). Housworth et al. (2007) com-
pared their mixed model (using likelihood inference) to PGLS and noted that whether
to use PGLS or the mixed model approach basically depends on your evolutionary as-
sumptions. For example, if a trait is assumed to show high phenotypic plasticity, then
a mixed model would be more appropriate, whereas the PGLS approach is probably
more useful if the trait values of the species vary around a single optimum.

Furthermore, some considerations about the interpretation of the effects of a phy-
logenetic mixed models are important as they might considerably differ from the in-
terpretations of an animal model. First, the phylogenetic signal in a mixed model
approach is represented by the pyhlogenetic heritability from quantitative genetics
(H2 = σ2

u/(σ2
u +σ2

ε )). This is the analogue measurement to λ and also ranges between
zero and one (Hadfield and Nakagawa 2010). However, compared to the PGLS ap-
proach, the estimated phylogenetic signal is not used to scale/adjust the phylogenetic
vcv matrix. Second, the overall mean (µ) in the phylogenetic mixed model basically
represents the ancestral state of a trait of a phylogeny. Third, the additive phylogenetic
effect (a) represents that part of a trait which is phylogenetically inherited from the
clade, but also includes non-genetic adaptations due to a shared environment. And
finally, the non-genetic, environmental effects (e) might be also either of genetic or
non-genetic nature, however, considered on a much shorter time scale (Housworth et
al. 2007).
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1.4 Aims and questions

The aim of this study is to compare four different comparative methods (described
above: PGLS (Martins and Hansen 1997); PGEE (Paradis and Claude 2002); PLR
(Ives and Garland 2010); PGLMM (Hadfield and Nakagawa 2009)) measuring the cor-
related evolution between two traits with the focus directed on categorical response
variables (i.e. ordinal and binary). Besides categorical response data, the methods
are also applied to continuous data. Although, individually, these methods have been
compared mostly to the original independent contrast (Felsenstein 1985) method as
well as to PGLS, an overall comparison, focused on categorical responses, has not been
done yet. Moreover, several studies have compared the statistical abilities of different
phylogenetic methods, however, mostly using continuous traits (Martins and Garland
1991; Diaz-Uriarte and Garland 1996; Martins et al. 2002).

With the help of simulations the statistical performances and adequateness of these
methods are compared and verified. In that respect, the reliability and bias of the
estimates is of special interest. Further, this study aims to test how sensible the per-
formances of the different methods are in respect to different scenarios in terms of
sample size, tree structure and the strength of correlation. Moreover, comparing those
models, it needs to be tested, whether they end up in the same or at least similar results
applying them to a real data set. With a data set of 78 primate species, containing
data about niche complexity (ordinal and binary response variables) and life history,
these models are applied and compared on a real evolutionary correlation question.

In a broader context, the link between the mathematical estimation procedures, also in
terms of how phylogenetic relationships are taken into account, and the evolutionary
interpretations of results is of interest.
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2 Material & Methods

With simulating phylogenetically dependent data and their correlations based on vary-
ing parameters (number of species, phylogenetic tree structure and strength of correla-
tion), the performances of the four different phylogenetic comparative methods, always
in comparison to the corresponding non-phylogenetic method, were investigated.
It is important to note that the following simulations and analyses are based on a
few phylogenetic assumptions. First, it is always assumed that the phylogenetic rela-
tionships between species are known, and thus, possible uncertainties of phylogenetic
relationships are not taken into account. Third, the phylogeny is assumed to be based
on characters others than those studied for phylogenetic correlations (Martins and
Garland 1991).

2.1 Simulation

2.1.1 Simulation setup

The main aim of this study is to test how well different phylogenetic methods perform
on different types of data. The uncorrelated/correlated evolution of two or three traits
was simulated (response and one or two explanatory variables) along a phylogeny and
subsequently the different non-phylogenetic and phylogenetic methods were applied to
the simulated data. To test the flexibility, sensitivity and robustness of those meth-
ods, the simulations were run with different varying parameters including the number
of species, the structure of the phylogenetic tree and the strength of the correlation.
All these parameters might have an impact on the statistical abilities of the different
phylogenetic methods.
The simulation loops, including the data simulation and subsequent analyses using
the four phylogenetic methods, for the continuous, ordinal and binary response imple-
mented in R are found in the Appendix B1 to B3.

The number of species were simulated to vary between 20, 50 and 100 species, which
are very realistic and plausible numbers in comparative studies. Below 20 species the
power for applying any phylogenetic analyses is probably too low.
Using these three different numbers of species, four different structures of a phylo-
genetic tree were generated using the functions sim.bdtree() and transform() in
geiger (Harmon et al. 2008) (Figure 2.1). Tree 1 represents a random ultrametric
tree with ultrametric meaning that all tips of a tree are equally distant from the root
(tree 1 to 3 in Figure 2.1 are ultrametric). Tree 1 is also the basis for the trans-
formations of tree 2 to 4. Tree 2 simulates a macroevolutionary pattern where most
diversifications occur very early in the evolutionary history (λ chosen to be very small,
0.1, reducing the length of the shared branches), whereas the third type of tree rep-
resents the opposite pattern, the largest part of the diversification occurring late in
the evolutionary history of a clade (branch length transformation factor δ set to 0.1
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which means that shorter paths contribute more to the trait evolution). The last tree
was simulated to have all branch-lengths equal to one (branch length transformation
factor κ set to zero, meaning that trait evolution is independent of branch lengths)
resulting in a non-ultrametric tree. This scenario stands for cases where the actual
branch lengths are not known and thus, all set to one. The four types of trees are
shown in Figure 2.1.
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Figure 2.1: Phylogenetic tree types for simulation setup. The four different types of phylo-
genetic trees used in the simulation setup here shown for 20 species: tree 1 is an ultrametric random
generated tree; tree 2 represents a transformation of the phylogenetic tree 1 were most of the diver-
gences occur early in the tree (similar to a star phylogeny) with λ=0.1; tree 3 represents the opposite
of a star phylogeny, where most of the divergences occur late in the tree (transformation of tree 1 with
δ=0.1) and in tree 4 all branch lengths are equal to one (tree 1 transformed with κ=0). For the tree
transformations the function transform() in geiger was used.

Another source of variation is the strength of correlation. Each method was ap-
plied to two simple models: an univariate model with a single continuous explanatory
variable (Y ~X1) and a multivariate model with a continuous and a binary predictor
variable (Y ~X1 + X2). The three traits (one response and two explanatory variables)
were simulated to correlate either weakly (r = 0.01), moderately (r = 0.5) or strongly
(r = 0.9) with each other using the function sim.char() in geiger. The correlation
coefficients r of 0.01 and 0.9 were chosen in order to calculate the type I error rates
and the power of the statistical methods. The correlation coefficient for simulating
a strong association was chosen to be 0.9 and not higher in order to avoid a high
occurrence of the perfect fit problem. A perfect fit, for instance in case of a binary
response, means that all cases (Y = 1) of the binary response have higher values in
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the explanatory variable than the non-cases (Y = 0) or vice versa. This might cause
numerical problems especially in case of logistic regression models.
For the sim.char() function, if simulating two or more correlated traits, a variance-
covariance matrix needs to be specified. The response variable (Y) and each of the
two explanatory variables (X1 and X2) were simulated to be correlated with the three
correlation coefficients mentioned above (variance-covariance matrices shown in Tables
2.1 and 2.2). The two explanatory variables among themselves were simulated not
to be correlated (see Table 2.1). However, for a correlation coefficient of r = 0.9,
the covariances between X1 and X2 had to be set to 0.65, the smallest covariance still
resulting in a positive definite matrix (see Table 2.2). In fact, sim.char() accepts
only positive definite matrices.
All in all, this leads to 36 possible parameter combinations (3 numbers of species × 4
trees × 3 correlation coefficients).

Table 2.1: Simulation of correlated
traits. Vcv implemented in the sim.char()

function for r = 0.01 and r = 0.5 with Y as
the response variable and X1 and X2 as the
two explanatory variables.

Y X1 X2
Y 1 r r

X1 r 1 0
X2 r 0 1

Table 2.2: Simulation of correlated
traits. Vcv implemented in the sim.char()

function for r = 0.9 with Y as the response
variable and X1 and X2 as the two explanatory
variables.

Y X1 X2
Y 1 r r

X1 r 1 0.65
X2 r 0.65 1

The response variables are either continuous, ordinal (with four levels) or binary.
The ordinal and binary response as well as the binary explanatory variable were gen-
erated based on the simulated continuous variable. In other words, the simulated
continuous response was transformed into an ordinal and binary response variable us-
ing quarter quantiles and the mean, respectively, as cut points. More specifically, the
ordinal response variable has four different levels, each level corresponding to a quarter
cut of the originally continuous variable (cut() function). The analogue holds for the
binary response and explanatory variable, where the cut point for 0 and 1 is the mean
of the simulated continuous variable. A small simulation loop shows that transforming
a continuous character into an ordinal or binary character does not affect the input
correlation coefficient initially set between two continuous characters. In other words,
when looking at the correlation between the continuous and both, the generated ordi-
nal and binary character, the Spearmen correlation coefficients approximate the input
correlation coefficients quite well (see Figure 2.2 with an input correlation coefficient
of 0.5). This shows that transforming a continuous variable into an ordinal or binary
character does not affect the input correlation coefficient between two continuous vari-
ables legitimating the way of simulating the correlated evolution between a categorical
and continuous character along a phylogeny.
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Further, the function sim.char() allows to select a specific model of evolution includ-
ing Brownian motion and speciational models. The simulations of this study follow
Brownian motion (i.e. λ = 1) resulting in multivariate normally distributed response
and explanatory variables with the phylogenetic covariance matrix corresponding to
the tree structure.
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Figure 2.2: Spearman correlation. The distributions of 500 Spearman correlation coefficients.
Two continuous characters are simulated 500 times with sim.char() using an input correlation co-
efficient of r = 0.5. Out of one of these characters an ordinal and a binary variable is generated as
described in the text. For the 500 simulations, the Spearman correlation coefficients between the two
continuous (a) and the continuous and both, the ordinal (b) and the binary (c) variable are calculated.
The dashed green vertical line indicates the empirical mean, and the red solid line the input correlation
of r = 0.5 of the simulated data.

With the three different types of response variables, continuous, ordinal or binary,
the simulation setup ends up in a total of 108 possible combinations. In other words,
for a single simulation, there are 108 differently generated data sets (one data set con-
tains five columns: continuous, ordinal and binary response variable and a continuous
and binary predictor variable). In order to analyse the statistical properties of the
phylogenetic methods, each these 108 possible data sets were simulated a 1000 times,
resulting in a total of 180‘000 simulated data sets. The simulation setup is graphically
illustrated in Figure 2.3.
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Figure 2.3: Simulation setup. Four different types of trees are simulated containing 20, 50 and 100
species. For each of these combinations, three different correlations coefficients are simulated a 1000
times and subsequently the simulated continuous variable is transformed into and ordinal and binary
response variable. For each type of response variable (continuous, ordinal and binary) there are 36
possible combinations, in total, for all types of response variables, there are 108 possible combinations.
For each parameter condition, 1000 simulations were run. This results in a total of 108,000 simulated
data sets.

As a next step in the simulation setup, the simulated data is analysed by the dif-
ferent phylogenetic methods. Specifically, on each data set within that 1000, 180,000,
respectively, a non-phylogenetic analysis and the four phylogenetic methods are applied
(PGLS, PGEE, PLR, and PGLMM). For the non-phylogenetic analysis, Gaussian re-
gression models for continuous and ordinal responses and logistic regressions for binary
responses were applied. One needs to keep in mind that the PLR cannot be used for
continuous and ordinal data. Therefore, not each method is applied to each kind of
response variable. A detailed overview of which method was applied to which type of

38



Table 2.3: Methods used for the different types of response variables. Within the simula-
tion loop, depending on the type of response variable, four of five non-phylogenetic and phylogenetic
methods were used. For the continuous response, assumed to follow a Gaussian distribution, the iden-
tity link is used. The ordinal response consists of four categories based on an underlying continuous
distribution. Here, as commonly done in literature, the ordinal response is assumed to be pseudo-
continuous, thus, also the identity link is used. In the case of a binary response variable, which is also
based on an underlying continuous distribution, the logit link is used.

Continuous response Ordinal response Binary response

Non-phylogenetic GLM X X X
PGLS X X
PGEE X X X

PLR X
PGLMM X X X

response is found in Table 2.3.
In the case of the continuous response variable, the Gaussian family and the identity
link were used. Assuming the ordinal response to be pseudo-continuous, the Gaussian
family with the identity link was also used, which is often done in phylogenetic studies
(e.g. Matthews et al. 2010, Schuppli et al. 2012). This way, one can test whether
treating ordinal as continuous data leads to elevated type I error rates and whether
the new method using generalised linear mixed models gives better results using a
multinomial model. In the case of the binary response variable, the binomial family
with the logit-link was used.

2.1.2 Method specifications

For each type of response variable, a non-phylogenetic and three phylogenetic methods
were applied (see Table 2.3). For the implementation in R the functions glm(), pgls(),
compar.gee(). MCMCglmm() and phyloglm() were used from the packages stats, ca-
per, ape, MCMCglmm and phylolm. For the non-phylogenetic GLM, the PGLS and the
PGEE the implementation is straightforward and no special specifications need to be
done.

For the PGLMM implemented in MCMCglmm some specifications need to be done before
a model can be run. As this package uses a Bayesian approach, MCMC, priors for
variance-covariance matrix of the fixed effects (B), the variance components of the
random effects (σ2

u) and residuals (σ2
ε ) need to be specified (see Section 1.3.5). For

the variance-covariance matrix of the fixed effects (B) a multivariate normal prior is
used where one has to specify an expected value(s) mu and a (co)variance matrix V

representing the strength of belief. The bigger the variance, the more flat and thus,
the weaker the prior. Further, in MCMCglmm the priors for the the variance scalars (σ2

u

and σ2
ε ) of the random effects and residuals are assumed to follow an inverse-Wishart

distribution with the expected (co)variance V and nu representing the degree of belief
parameter (Hadfield 2012).
In the case of a continuous response the default prior for the fixed effects was used
with mu = 0, large variances V = 108 and covariances set to zero (not listed in prior
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example below). For the variance components σ2
u (R) and σ2

ε (G) a variance of 1
and nu set to a small number, 0.002, is a commonly used prior specification (prior
<- list(R=list(V=1,nu=0.002), G=list(G1=list(V=1, nu=0.002)))). It must be
taken care of that the probability distribution integrates to one because the variable
must take some value. In case of the inverse-Wishart distribution this is achieved if
V and nu are chosen to be larger than zero, otherwise the prior is improper (Hadfield
2012).
For the multinomial model, things get more complicated. First, because the residual
covariance matrix of categorical data cannot be estimated from the data, the choice of
its values is arbitrary. Usually a very strong prior is fitted with fixing it at e.g. one
(R = list(V = IJ, fix=1)). IJ represents a covariance matrix of the form 1

J (I + J)
where I is a identity matrix and J a unit matrix with the dimensions J−1 (J = number
of latent variables = number of categories - 1, more details found in Hadfield 2012).
This covariance matrix implies that the variances of the probabilities (probabilities of
being in category 2, 3 or 4 compared to the baseline category 1) are constant and
that these probabilities are independent of each other, conditional on the constraint
that they must sum to one (personal communication, Jarrod Hadfield). Second, for
the phylogenetic covariance matrix the same prior is chosen, however, this one is not
fixed in order to actually estimate it. Third, for the fixed effects B again the default
is used. Moreover, in order to have trait (trait indexes the latent variables) specific
intercepts and regression coefficients for the covariates the following implementation is
used in case of a multinomial model: ordinal.y~trait-1 + trait:X1. Additionally,
the global intercept is removed (-1) in order to have easier interpretable model outputs
(personal communication, Jarrod Hadfield).
In case of a binary response, also the residual variance structure (R) is fixed because
again the residual covariance matrix of categorical data cannot be estimated from
the data. Moreover, the default prior for the fixed effects was used and the prior
for the random effect (G) was specified in the same way as for the continuous re-
sponse model (prior <- list(R = list(V = 1, fix=1),G = list(G1 = list(V =

1,nu=0.002)))).

For the phylogenetic logistic regression implemented in phylolm, the function phy-

loglm() needs some specifications concerning the boundary of the searching space for
the linear predictor. For specifying this boundary, the argument btol is used. In
particular, this argument constrains the fitted values, in case of the default value of
10, this means that the probability of the model prediction of “1” lies within the range
of 1/(1 + exp(10)) = 0.000045 and 1/(1 + exp(−10)) = 0.999955 (Ho and Ané, 2013).
On the one hand, a too low value of btol causes an error message saying that the
current value excludes the estimated coefficients in the absence of phylogenetic signal.
In fact, the function phyloglm() uses an iterative optimization procedure the results
of a non-phylogenetic logistic regression (glm()) as a starting point. Thus, the former
error message means that the non-phylogenetic model prediction of 1 lies outside of
the boundary set by btol. On the other hand, it seems that higher btol values lead
to lower standard errors. However, due to numerical problems, too high values of btol
may also lead to an error message suggesting to reduce the boundary again. Therefore,
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to find an appropriate value somewhere in the middle is rather a trial and error issue.
For the simulations of this study, btol was set to 30.

2.1.3 Simulation output

For analysing and comparing the statistical performances of the different methods, one
needs to save the relevant estimates and values of the model outputs of each single
simulation. Generally, for keeping track of error messages, the function try() was
used in front of each method command. This way, errors were able to be saved in the
simulation outputs.

For all methods, except for PGLMM, the estimate of the coefficients, the standard
error, t-values and p-values were saved. In case of the phylogenetic mixed model using
a Bayesian approach, the posterior mean, the lower and upper 95%-confidence interval
of the means, the effective sample size and the MCMC p-value were saved. The p-value
saved in that case is not a classical p-value as we know it from frequentist inference. As
described by Jarrod Hadfield (R-sig-ME group), this Bayesian p-value in the output of
MCMCglmm() is given by twice the smaller probability of i) estimate < 0 and ii) estimate
> 0. Important to note is that for the analyses of the statistical performances, these
Bayesian p-values were treated as the p-values from the frequentist methods. Further-
more, in case of the multinomial model using PGLMM, there are three posterior means
representing the effects of the predictor variables on the probability of being in level
2,3,4 compared to level 1. To keep it simple, the estimate of the probability of level 4
compared to level 1 was used in the analyses. In fact, if there is an effect, this should
be the most pronounced.
The estimates were used for calculating the mean error and the rooted mean squared
error, whereas the p-values were used for evaluating type I error rates and power. More
details about the analyses are found in Section 2.3.

Besides these estimates, further output values were relevant for the analyses. Con-
cerning phylogenetic signals, in case of PGLS, λ, and in case of the PLR, α, the
phylogenetic signal for binary traits, were saved.
Furthermore, the simulation output contained information about whether the statis-
tical models converged or not in order to exclude those in the analyses which did not
converge. This was done by either saving the number of used iterations from the esti-
mation procedure (if they exceed the default of 25, the models was assumed not to have
converged) or by explicitly saving an attribute of the model output saying whether the
model actually converged or not. In case of the PGLMM using MCMC, the Geweke‘s
convergence diagnostic test was used using the function geweke.diag() in the package
coda (Plummer et al. 2012). Especially for binary response variables using the PGEE,
PLR or the PGLMM approaches, converging problems arise rather often. One issue
which underlies this problem is the perfect fit between the variables, i.e. all species
with the binary response equal to one have higher values of the independent variable
than the species with the binary response equal to zero. In case where the simulated
correlation coefficient is very high (r = 0.9), often the perfect fit problem occurs. If in
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a simulated data set a perfect fit occurs, this is saved in the simulation output.
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2.2 Real data set

For directly comparing the specific estimates of the four phylogenetic methods and
in order to illustrate their application on a real evolutionary question, the four meth-
ods were applied to a continuous, ordinal and binary response variable of a real data set.

The data set contains information about the complexity of foraging niches and various
morphological and life history traits of 78 primate species. The complexity of the for-
aging niche is composed of different foraging behaviours, such as extractive foraging,
big game hunting and tool use. These elements add up to an overall niche complexity
score representing an ordinal variable. The morphological and life history traits include
measures on body size, brain size and development approximated by the age at first
reproduction (AFR).
The evolutionary questions which are aimed to be tested using that data is about the
effects of brain size on the lenght of development (brain malnutrition risk hypothesis
by Janson and van Schaik 1993) and on niche complexity based on the studies about
how some species manage to evolve into more complex foraging niches (Schuppli et.
2012; Schuppli et al., in preparation; Graber et al., in preparation). Specifically, there
are three predictions for the three types of response variables: continuous, ordinal and
binary. First, brain size is predicted to be positively correlated with development, as
larger brains need more time to develop as stated by the brain malnutrition hypothe-
sis (AFR ˜ Brain + Body). The second hypothesis, saying that smarter species with
larger brains evolve into more complex niches, predicts a positive association between
the niche complexity score and brain size (Niche complexity ˜ Brain + Body). This
example illustrates a real data application for an ordinal response. Third, also based
on the former hypothesis, the occurrence of extractive foraging (0/1 coded) as part of
a complex foraging niche is expected to be positively affected by brain size (Extractive
foraging ˜ Brain + Body). In other words, species with larger brains have a higher
probability to show extractive foraging as a part of their behavioural repertoire. All
the three models are additionally controlled for body size in order to test the effect of
relative rather than absolute brain mass.
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2.3 Analyses of simulations

The following measurements representing parts of the statistical performance of a sta-
tistical method are all calculated for each combination of the different parameters
varied in the simulation (i.e. for each combination of tree, number of species and cor-
relation coefficient).
Before analyses, all the results with errors and the results of non-converged models
were excluded.

2.3.1 Type I Error Rates and Power

In connection with hypothesis testing, the different methods were compared by evalu-
ating type I error rates and power calculated from the p-values from the simulations.
The type I error represents the probability of rejecting the null hypothesis although it
is true and power is the probability or rejecting the null hypothesis under the assump-
tion of a true alternative.
The error rates were simply calculated from the ratio of the number of significant
p-values (p < 0.05) to the total number of p-values based on the simulations with a
correlation coefficient of r = 0.01. The analogue was done to calculate the power,
however, based on the simulations with a correlation coefficient of r = 0.9. To test
whether the observed ratios of significant vs. non-significant p-values are significantly
different from the expected ratio under the assumption of a type I error rate of 0.05%,
Fisher‘s exact tests were used.

2.3.2 Mean Error, Mean Squared Error and Rooted Mean Squared
Error

In order to compare the estimation abilities of the different methods, the estimates (xi)
were set in relation to the overall mean of all methods (x̄) by calculating the mean error
(ME) and the rooted mean squared error (RMSE) (Nsim = number of simulations):

ME = 1
Nsim

Nsim∑
i=1

(xi − x̄). (2.1)

MSE = 1
Nsim

Nsim∑
i=1

(xi − x̄)2. (2.2)

RMSE =
√
MSE =

√√√√ 1
Nsim

Nsim∑
i=1

(xi − x̄)2. (2.3)

The ME represents an index for bias, depending on whether it is negative or posi-
tive it indicates an over - or underestimation of an estimate. The RMSE is simply the
square root of the mean squared error. The mean squared error can be decomposed in
the variance and the squared bias of an estimator (e.g. Held and Sabanés Bové 2013),
giving information about the accuracy of a parameter estimate weighing larger errors
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more. If the bias is equal to zero, then the mean squared error is the same as the
variance of an estimate.
For each type of response variable (continuous, ordinal and binary) and each input
correlation coefficient (r = 0.01, r = 0.5 and r = 0.9), a separate overall mean was
calculated across all methods. In case of the ordinal response, however, two separate
overall means were calculated, because the estimates or rather the posterior means
of PGLMM have a different meaning compared to the estimates of the other three
methods. Thus, an overall mean including the non-phylogenetic GLM, the PGLS and
the PGEE was calculated and one for the PGLMM separately.
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3 Results

Using simulated data based on different parameter combinations, four phylogenetic
comparative methods (PGLS, PGEE, PGLMM and PLR) are compared modeling the
correlated evolution between two or three traits a 1000 times. These methods are
compared for three types of response variables: continuous, ordinal and binary. For
each type of response, the methods are compared and discussed separately in the
following three sections based on type I error rates, power, mean errors and rooted
mean squared errors. The results in the tables show the means for each combination of
the four trees (tree 1 to 4) and three numbers of species (n = 20, n = 50, n = 100) based
on the 1000 simulations. Before the analyses, the model runs which resulted in error
messages or which did not converge were excluded from the analyses explaining the
numbers of simulations smaller than 1000. For illustrating purposes of the statistical
performances of the different methods, only the results based on the simulated data of
tree structure 1 and 50 species are shown graphically or in case of rooted mean squared
error plots, only the ones for the input correlation r = 0.5. Unless otherwise stated,
the analogues plots for the other parameter combinations of tree types, numbers of
species and input correlations look similar, and thus, are not shown.

3.1 Continuous response variable

3.1.1 Non-phylogenetic GLM

Type I Error and Power

For the non-phylogenetic approach using a simple GLM model with the identity link,
type I error rates generally strongly exceed the commonly assumed error rate of α =
0.05. For almost all combinations of the four different trees (tree 1 to 4) and the
three numbers of species (n = 20, n = 50, n = 100), the observed ratio of significant
(p < 0.05) vs. non-significant (p > 0.05) p-values is significantly different from the
expected ratio (0.05/0.95). In other words, these non-phylogenetic models declare too
often statistical significance. However, interestingly, the second tree type, where most
of the diversification was simulated to occur early in the phylogenetic history (i.e. short
shared evolutionary histories between species), never shows significantly inflated type
I error rates and tree 3, with the opposite evolutionary pattern, shows the highest type
I error rates. Moreover, the type I error rates tend to increase with increasing sample
size.
The power, on the other hand, mainly never falls lower than 90% and tends to increase
for larger sample sizes. This means that the probability of detecting significance if it
really is significant, is very high. The corresponding results are found in Table 3.1
and Figures 3.1, 3.2.
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Figure 3.1: Type I error rates from continuous response models - non-phylogenetic
GLM. Distributions of p-values from data simulated with r = 0.01 including the data for tree 1 and
50 species: a) univariate model - continuous predictor; b) multivariate model - continuous predictor; c)
multivariate model - binary predictor. The horizontal dashed line indicates the density at the critical
value of 0.05.
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Figure 3.2: Power from continuous response models - non-phylogenetic GLM. Distributions
of p-values from data simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The density bar from −0.1 to 0.0 represents the density of p-values equal to zero.
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Table 3.1: Type I error rates (TIE) and Power from continuous response models - Non-
phylogenetic GLM: Fisher‘s exact test was used to compare the observed ratio of significant (p <
0.05) vs. non-significant (p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of
a type I error of α = 5%. The different significance levels of the Fisher‘s exact test are indicated by
bold font for p < 0.001 and in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.23 1.00 0.42 1.00 0.39 1.00
Tree 2 0.06 1.00 0.05 1.00 0.06 1.00
Tree 3 0.58 0.94 0.51 1.00 0.75 0.99
Tree 4 0.23 0.99 0.34 1.00 0.47 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.22 1.00 0.36 1.00 0.36 1.00
Tree 2 0.05 1.00 0.04 1.00 0.07 1.00
Tree 3 0.45 0.98 0.51 0.99 0.71 1.00
Tree 4 0.19 1.00 0.31 1.00 0.43 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.20 0.92 0.30 1.00 0.29 1.00
Tree 2 0.05 0.97 0.04 1.00 0.05 1.00
Tree 3 0.41 0.81 0.36 0.94 0.59 0.99
Tree 4 0.14 0.93 0.24 0.99 0.32 1.00

Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

First of all, the mean estimates usually strongly accord to the correlation coefficients
used for the simulations of the uncorrelated/correlated data. However, for the multi-
variate model, the pattern is not that clear compared to the univariate model, which
is probably based on the fact that two predictors are included in the model.
The mean errors are generally rather moderate especially for the univariate model.
The errors increase for the multivariate model, in particular for the binary predic-
tor. This means that bias in the estimates is rather low, however increases in case
of multivariate models, especially for binary predictors. Moreover, tree 2 with most
diversification happening early in the evolutionary history, shows the lowest estimation
bias, whereas the opposite tree structure (i.e. tree 3 with most diversification occurring
late in evolution) leads to rather elevated estimation bias.
Considering the rooted mean squared errors as an indicator for the accuracy around the
overall mean, again especially the binary predictor of the multivariate models shows
much higher rooted mean squared errors compared to the continuous predictors of the
univariate and multivariate models.
As already shown by the mean errors, tree 2 with most diversifications happening early
in the phylogeny, shows generally more accurate estimates compared to the other trees,
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and tree 3 generally shows the least accurate parameter estimates. However, for the
binary predictor of the multivariate model, the pattern looks slightly different. There,
not tree 3 but rather tree 4 shows the least accurate estimates.
Further, with increasing sample size, the rooted mean squared errors decrease implying
a higher accuracy of the estimates. The corresponding results and graphical illustra-
tions are found in Tables C.1 to C.3 in the Appendix C.1.1 and Figures 3.3, 3.4.
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Figure 3.3: Estimates from continuous response models - Non-phylogenetic GLM. Distri-
butions of the effect sizes based on the simulated data with an input correlation coefficients of r = 0.01
(blue solid line), r = 0.5 (red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model
- continuous predictor; b) multivariate model - continuous predictor; c) multivariate model binary
predictor including the data for tree 1 and the number of species of 50. The vertical lines indicate the
means overall methods. The bandwidth of the densities was set to the default ("nrd0").
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Figure 3.4: Rooted mean squared errors from continuous response models - Non-
phylogenetic GLM. The rooted mean squared errors (RMSE) are shown for the data simulated
with a correlation coefficient of r = 0.5. a) univariate model - continuous predictor; b) multivariate
model - continuous predictor; c) multivariate model - binary predictor.



3.1.2 PGLS

Type I Error and Power

Compared to the non-phylogenetic GLM, PGLS shows strongly reduced type I error
rates. Only the models including smaller samples sizes (i.e. number of species = 20)
mainly show elevated type I error rates. And remarkably, there mainly all the tree
types except type 2 (diversification early in phylogenetic history) show significantly
elevated type I error rates. Moreover, type I error rates show a tendency to decrease
with increasing sample size. All in all, except for a few cases, PGLS incorporating
pyhlogenetic dependencies performs better with respect to hypothesis testing compared
to the non-phylogenetic method.
The power again almost never falls below 90%, only for the binary predictor of the
multivariate model the values are generally a little lower, but again cross 90% for larger
samples sizes. The corresponding results and graphical illustrations are found in Table
3.2 and Figures 3.5 and 3.6.
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Figure 3.5: Type I error rates from continuous response models - PGLS. Distributions of
p-values from data simulated with r = 0.01 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The horizontal dashed line indicates the density at the critical value of 0.05.
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Figure 3.6: Power from continuous response models - PGLS. Distributions of p-values from
data simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate model -
continuous predictor; b) multivariate model - continuous predictor; c) multivariate model - binary
predictor. The density bar from −0.1 to 0.0 represents the density of p-values equal to zero.
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Table 3.2: Type I error rates (TIE) and Power from continuous response models - PGLS:
Fisher‘s exact test was used to compare the observed ratio of significant (p < 0.05) vs. non-significant
(p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of a type I error of α = 5%.
The different significance levels of the Fisher‘s exact test are indicated by bold font for p < 0.001 and
in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.07 1.00 0.06 1.00 0.05 1.00
Tree 2 0.06 1.00 0.05 1.00 0.06 1.00
Tree 3 0.12 1.00 0.05 1.00 0.05 1.00
Tree 4 0.09 1.00 0.06 1.00 0.05 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.07 1.00 0.06 1.00 0.06 1.00
Tree 2 0.05 1.00 0.05 1.00 0.06 1.00
Tree 3 0.15 1.00 0.05 1.00 0.05 1.00
Tree 4 0.08 1.00 0.06 1.00 0.05 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.08 0.74 0.04 0.91 0.06 0.99
Tree 2 0.05 0.97 0.04 1.00 0.05 1.00
Tree 3 0.14 0.55 0.05 0.83 0.05 0.86
Tree 4 0.07 0.85 0.05 0.98 0.06 1.00

Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

As for the non-phylogenetic models, the mean estimates usually strongly accord to the
correlation coefficients used for the simulations of the uncorrelated/correlated data.
However, for the multivariate model, the pattern is not that clear compared to the
univariate model, which is probably based on the fact that two predictors are included
in the model.
The mean errors tend to be slightly lower for PGLS compared to the non-phylogenetic
GLM. The errors are rather low for the univariate models, however, for the multi-
variate models, the errors are also elevated especially for the binary predictor. Thus,
the bias of the binary predictor is larger compared to the continuous predictors of the
univariate and multivariate model.
The rooted mean squared errors are also decreased in comparison to the non-phylogenetic
approach. They show similar patterns for all the four trees, except in case of the binary
predictor in the multivariate model. Strikingly, the models for the data simulated to
be highly correlated (r = 0.9) tend to have lower mean squared errors compared to
the data simulated with r = 0.01 and r = 0.5. These results are only observable in the
tables, as the Figure 3.8, illustrate the RMSEs for r = 0.5.
Furthermore, there is a strong decrease of the RMSE with increasing sample size. The
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corresponding results and graphical illustrations are found in Tables C.4 to C.6 in
Appendix in C.1.2 and Figures 3.7, 3.8.
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Figure 3.7: Estimates from continuous response models - PGLS. Distributions of the effect
sizes based on the simulated data with an input correlation coefficients of r = 0.01 (blue solid line), r =
0.5 (red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model - continuous predictor;
b) multivariate model - continuous predictor; c) multivariate model binary predictor including the data
of tree 1 and 50 species. The vertical lines indicate the means overall methods. The bandwidth of the
densities was set to the default ("nrd0").
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Figure 3.8: Rooted mean squared errors from continuous response models - PGLS. The
rooted mean squared errors (RMSE) are shown for the data simulated with a correlation coefficient of
r = 0.5. a) univariate model - continuous predictor; b) multivariate model - continuous predictor; c)
multivariate model - binary predictor.



Phylogenetic signal λ

Additionally to the estimates of the predictor variables, the PGLS method measures
the phylogenetic signal λ (∈ [0, 1]) using a maximum likelihood procedure.
To be remembered, all the data was simulated using the sim.char() function under
a Brownian motion model of evolution (i.e. the simulated observations can basically
reach unlimited variance, see Section 1.2.2) given a certain phylogenetic tree (tree 1
to 4). A phylogenetic signal λ of 1 implies a trait to evolve fully under Brownian
motion. Important to note is also that for each model (univariate or multivariate),
PGLS() estimates only one λ (see estimation procedure in Section 1.3.1).
For the univariate as well as the multivariate models, the measurements of λ are
generally very high (i.e. > 0.9), except for tree 2, where most of the diversification
occurs early in the phylogenetic history. In other words, the similarity in a certain
trait in closely related species can be explained largely by their common evolutionary
history. However, for tree 2, showing very short common evolutionary histories between
species, only a small part of the similarity between species in a trait can be explained
by their phylogenetic relatedness. Please note there also the rather high standard
deviations. The corresponding results are found in Table 3.3.

Table 3.3: Mean phylogenetic signal λ with the stan-
dard deviation in brackets from continuous response
models - PGLS:
a) univariate model.

Species 20 Species 50 Species 100

tree 1 0.92 (0.19) 1.00 (0.03) 1.00 (0.00)
tree 2 0.31 (0.45) 0.30 (0.43) 0.39 (0.44)
tree 3 0.90 (0.28) 1.00 (0.05) 1.00 (0.00)
tree 4 0.78 (0.33) 0.94 (0.12) 0.98 (0.03)

b) multivariate model.

Species 20 Species 50 Species 100

tree 1 0.85 (0.29) 0.98 (0.10) 1.00 (0.02)
tree 2 0.29 (0.45) 0.27 (0.41) 0.35 (0.43)
tree 3 0.78 (0.40) 0.99 (0.10) 1.00 (0.00)
tree 4 0.69 (0.40) 0.90 (0.18) 0.97 (0.05)
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3.1.3 PGEE

Type I Error and Power

Compared to the non-phylogenetic GLM, the PGEE method performs better concern-
ing hypothesis testing showing predominantly non-elevated type I error rates. Inter-
estingly, for tree 3 and tree 4 in combination with large sample sizes (i.e. number of
species = 100), this method shows significantly elevated type I error rates. Tree 3
simulates a phylogenetic history with most of the diversifications occurring late in the
evolutionary time and in tree 4 all branch lengths were set to 1. In sum, the error
rates are comparable to the PGLS method, however, there they occur rather for small
sample size whereas for PGEE they occur counterintuitively rather for large sample
sizes.
The power based on the simulations with r = 0.9 are mainly higher than 90% im-
plying a very good performance, however, for the binary predictor of the multivariate
model, the power is again slightly decreased especially for a small sample size. Due
to unknown reasons, the analyses of the multivariate model with the simulated data
based on tree 3 and 20 species did not produce any p-values, indicated by NA in Table
3.4. The corresponding results and graphical illustrations are shown in Table 3.4 and
Figures 3.9, 3.10.
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Figure 3.9: Type I error rates from continuous response models - PGEE. Distributions of
p-values from data simulated with r = 0.01 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The horizontal dashed line indicates the density at the critical value of 0.05.
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Figure 3.10: Power from continuous response models - PGEE. Distributions of p-values
from data simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate model
- continuous predictor; b) multivariate model - continuous predictor; c) multivariate model - binary
predictor. The density bar from −0.1 to 0.0 represents the density of p-values equal to zero.

Table 3.4: Type I error rates (TIE) and Power from continuous response models - PGEE:
Fisher‘s exact test was used to compare the observed ratio of significant (p < 0.05) vs. non-significant
(p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of a type I error of α = 5%.
The different significance levels of the Fisher‘s exact test are indicated by bold font for p < 0.001 and
in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.06 1.00 0.09 1.00 0.07 1.00
Tree 2 0.05 1.00 0.05 1.00 0.06 1.00
Tree 3 0.00 0.76 0.02 1.00 0.13 1.00
Tree 4 0.08 1.00 0.08 1.00 0.11 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.04 1.00 0.08 1.00 0.06 1.00
Tree 2 0.06 1.00 0.05 1.00 0.06 1.00
Tree 3 NA NA NA NA 0.08 1.00
Tree 4 0.06 1.00 0.07 1.00 0.12 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.04 0.58 0.07 0.92 0.07 0.99
Tree 2 0.05 0.97 0.04 1.00 0.05 1.00
Tree 3 NA NA NA NA 0.08 0.74
Tree 4 0.04 0.73 0.07 0.97 0.12 0.99
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Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

The mean estimates by PGEE for the three different correlation coefficients (r = 0.01,
r = 0.5, r = 0.9) are basically the same as for the non-phylogenetic GLM and PGLS.
Concerning estimation bias, PGEE is comparable to PGLS. Again, the estimation bias
seems to be especially pronounced for the binary predictor in case of the multivariate
model and tends to decrease for larger sample sizes.
The rooted mean squared error as an indicator for the accuracy of the estimates is also
similar to PGLS. The four types of trees don‘t show any differences, except for the
binary predictor of the multivariate model. Moreover, a very high input correlation
coefficient of r = 0.9 and increasing sample sizes lead to lower RMSE (i.e. more ac-
curate estimates). Overall, the performance of PGEE is comparable to PGLS, both
showing mainly non-elevated type I error rates and similar estimation bias and accu-
racy. The corresponding results and graphical illustrations are found in Tables C.7 to
C.9 in Appendix C.1.3 and Figures 3.11, 3.12.
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Figure 3.11: Estimates from continuous response models - PGEE. Distributions of the effect
sizes based on the simulated data with an input correlation coefficients of r = 0.01 (blue solid line), r =
0.5 (red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model - continuous predictor;
b) multivariate model - continuous predictor; c) multivariate model binary predictor including the data
of tree 1 and 50 species. The vertical lines indicate the means overall methods. The bandwidth of the
densities was set to the default ("nrd0").
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Figure 3.12: Rooted mean squared errors from continuous response models - PGEE. The
rooted mean squared errors (RMSE) are shown for the data simulated with a correlation coefficient of
r = 0.5. a) univariate model - continuous predictor; b) multivariate model - continuous predictor; c)
multivariate model - binary predictor.



3.1.4 PGLMM

Type I Error and Power

The PGLMM method shows basically no elevated type I error rates, not even for small
sample sizes. In other words, the Bayesian approach almost never mistakenly declares
statistical significance. Furthermore, detecting significance under the assumption of
the alternative, this method shows a good performance with powers of mainly 80%
and higher. As for the other phylogenetic methods concerning a continuous response,
the power is slightly decreased for the binary predictor of the multivariate model,
however, tends to increase for larger sample sizes. The corresponding results and the
graphical illustrations are found in Table 3.5 and Figures 3.13 and 3.14.
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Figure 3.13: Type I error rates from continuous response models - PGLMM. Distributions
of p-values from data simulated with r = 0.01 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The horizontal dashed line indicates the density at the critical value of 0.05.
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Figure 3.14: Power from continuous response models - PGLMM. Distributions of p-values
from data simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate model
- continuous predictor; b) multivariate model - continuous predictor; c) multivariate model - binary
predictor.
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Table 3.5: Type I error rates (TIE) and Power from continuous response models -
PGLMM: Fisher‘s exact test was used to compare the observed ratio of significant (p < 0.05) vs.
non-significant (p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of a type I
error of α = 5%. The different significance levels of the Fisher‘s exact test are indicated by bold font
for p < 0.001 and in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.04 1.00 0.06 1.00 0.06 1.00
Tree 2 0.06 1.00 0.05 1.00 0.05 1.00
Tree 3 0.07 1.00 0.05 1.00 0.07 1.00
Tree 4 0.07 1.00 0.05 1.00 0.05 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.04 1.00 0.07 1.00 0.06 1.00
Tree 2 0.05 1.00 0.04 1.00 0.06 1.00
Tree 3 0.07 1.00 0.05 1.00 0.08 1.00
Tree 4 0.05 1.00 0.05 1.00 0.06 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.06 0.70 0.05 0.93 0.06 1.00
Tree 2 0.05 0.97 0.04 1.00 0.05 1.00
Tree 3 0.06 0.43 0.04 0.85 0.06 0.89
Tree 4 0.04 0.82 0.05 0.98 0.06 1.00

61



Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

In order to prevent to be too much repetitive, this method shows similar results to the
PGLS and PGEE in case of a continuous response variable. In other words, the bias,
given by the mean error, is generally rather low, however, is increased for the binary
predictor of the multivariate model. Further, the rooted mean squared error indicating
the accuracy of the parameter estimates decreases for higher input correlation coeffi-
cients (i.e. r = 0.9) and increases for larger samples sizes. The corresponding results
and graphical illustrations are found in Tables C.10 to C.12 in Appendix C.1.4 and
Figures 3.15, 3.16.
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Figure 3.15: Estimates from continuous response models - PGLMM. Distributions of the
effect sizes based on the simulated data with an input correlation coefficients of r = 0.01 (blue solid
line), r = 0.5 (red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model - contin-
uous predictor; b) multivariate model - continuous predictor; c) multivariate model binary predictor
including the data of tree 1 and the number of species 50. The vertical lines indicate the means overall
methods. The bandwidth of the densities was set to the default ("nrd0").
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Figure 3.16: Rooted mean squared errors from continuous response models - PGLMM.
The rooted mean squared errors (RMSE) are shown for the data simulated with a correlation coefficient
of r = 0.5. a) univariate model - continuous predictor; b) multivariate model - continuous predictor;
c) multivariate model - binary predictor.



3.1.5 The four methods in comparison

Simulated data

All in all, the three phylogenetic comparative methods (PGLS, PGEE and PGLMM)
applied on continuous dependent variables, show very similar performances. All show
highly reduced type I error rates compared to the non-phylogenetic analysis, whereas
the PGLMM method for all parameter conditions of type of tree, sample size and
strength of correlation, shows the best hypothesis testing performance. Concerning
estimation abilities, all the three methods perform equivalently well.
Figure 3.17 shows the mean estimates with the corresponding 95%-confidence intervals
for the data simulated a 1000 times based on tree 1 and 50 species. The analogous
plots for the other parameter combinations would show a similar picture, and thus,
are not shown. The figure illustrates, that generally the confidence intervals of the
estimates for the 1000 simulations are very narrow, meaning the parameter estimates
fall all in the same narrow range. Moreover, the non-phylogenetic method as well as
the binary predictor of the multivariate model in general shows higher variability in
parameter estimates. The data with an input correlation coefficient of r = 0.5 and
r = 0.9 show decreased mean parameter estimates for the multivariate models.
The parameters of the non-phylogenetic and the three phylogenetic methods are plot-
ted against each other pairwise in Figure 3.18 a) to f). This shows that the non-
phylogenetic GLM produces a higher variability in parameter estimates compared to
the three phylogenetic methods (Figure 3.18 a) to c)). The phylogenetic methods
compared to each other show equivalent estimation variabilities (Figure 3.18 d) to f)).
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Figure 3.17: Mean estimates and 95%-confidence intervals from continuous response
models. Comparison of the mean estimates and corresponding 95%-confidence intervals from the four
methods for the three input correlation coefficients including the simulated data for tree 1 and 50
species (number of simulations = 1000). A: univariate model - continuous predictor; B: multivariate
model - continuous predictor; C: multivariate model - binary predictor.
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Figure 3.18: Parameter estimates compared. The parameter estimates based on the simulated
data with r = 0.5 and 50 species from the non-phylogenetic and three phylogenetic methods (continuous
response models) plotted against each other pairwise with the corresponding boxplots aside: a) Non-
phylogenetic GLM vs. PGLS; b) Non-phylogenetic vs. PGEE; c) Non-phylogenetic vs. PGLMM; d)
PGLS vs. PGEE; e) PGLS vs. PGLLMM; f) PGEE vs. PGLMM.
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Application on a real data set

In order to apply the methods on a real evolutionary question and to directly compare
the outcomes of continuous response models, the brain malnutrition hypothesis (Jan-
son and van Schaik 1993) was tested using the example data set including 78 primate
species. This hypothesis implies an effect of relative brain size (i.e. brain size corrected
for body size) on the length of development (given by age at first reproduction).
Table 3.6 shows the results of the models for the non-phylogenetic GLM and the three
phylogenetic methods (PGLS, PGEE and PGLMM). Age at first reproduction rep-
resents the continuous response, whereas brain size and body size are the predictor
variables. The parameter estimates of brain size from the four methods strongly con-
cur as well as the p-values. For the covariate body size, the estimates also quite accord,
however, the p-values are slightly different. All in all, in concordance with the pre-
diction of the brain malnutrition hypothesis, the conclusions under the four different
methods are the same. In other words, whatever phylogenetic method is used, brain
size shows a positive effect on the length of development, meaning larger brains need
more time to develop.
However, simply conducting a statistical analysis is not enough. Further, a model
needs to be validated in terms of how good the model fits the data. This is usu-
ally done by looking at so-called diagnostic plots: plot of residuals vs. fitted values
to check for homoscedasticity of the residuals and the normal quantile-quantile (q-q)
plot to test for normality of the residuals. These diagnostic plots are helpful in case
of non-phylogenetic GLM, PGLS and PGEE models, where for this specific exam-
ple, the assumptions of homoscedasticity and normality seem to be fully met (Figures
3.19, 3.20, 3.21). For the Bayesian approach using PGLMM, it needs to be checked
whether the MCMC chains converged by plotting the traces of the sampled posteriors
along the iterations. For the upper example, the trace plots show no increase or de-
crease, thus, the estimates seem to have reached convergence (Figure 3.22).
To sum up, in case of a continuous response variable, the four methods result in com-
parable parameter estimates and p-values and further, the diagnostic plot show that
the underlying model assumptions are met. However, for the non-phylogenetic GLM
it needs to be kept in mind that it shows elevated type I error rates (Section 3.1.1) and
thus, should not be used in case of phylogenetically dependent data.
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Table 3.6: Application of the four methods on a real data set - continuous response
model. Testing the effect of brain size (continuous predictor) on the length of development (continuous
response) correcting for body size (continuous predictor). Given are sample size (N), phylogenetic
signal lambda (λ) in case of PGLS, and the estimate, standard error and p-value (bold if significant)
of the explanatory variables brain size and body size. For PGLMM, the number of iterations is set
to 50,000 and the estimates represent the posterior means. According to graphical inspection of the
MCMC chains and the Geweke diagnostic test (p>0.05), the MCMC model has converged.

brain mass body mass

Method N λ estimate std. error p-value estimate std. error p-value

Non-phylogenetic GLM 78 0.543 0.091 0.000 -0.060 0.075 0.425
PGLS 78 0.893 0.568 0.130 0.000 -0.150 0.096 0.121
PGEE 78 0.631 0.027 0.000 -0.161 0.023 0.000
PGLMM 78 0.573 0.000 -0.172 0.096
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Figure 3.19: Diagnostic plots from continuous response model - non-phylogenetic GLM.
The diagnostic plots serve to check the assumptions about the normal and homoscedastic distribution
of the residuals. The plot on the left shows the residuals as a function of the fitted values. The plot
on the right shows a normal quantile plot.
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Figure 3.20: Diagnostic plots from continuous response model - PGLS. The diagnostic plots
serve to check the assumptions about the normal and homoscedastic distribution of the residuals. The
plot on the left shows the residuals as a function of the fitted values. The plot on the right shows a
normal quantile plot.
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Figure 3.21: Diagnostic plots from continuous response model - PGEE. The diagnostic
plots serve to check the assumptions about the normal and homoscedastic distribution of the residuals.
The plot on the left shows the residuals as a function of the fitted values. The plot on the right shows
a normal quantile plot.
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Figure 3.22: Diagnostic plots from continuous response model - PGLMM. The diagnostic
plots of the Markov chains serve to check for convergence. The plots on the left show the traces of the
sampled posteriors along the iterations. The plots on the right show the distributions of the sampled
posteriors.
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3.2 Ordinal response variable

To test the different phylogenetic methods on a nominal response variable, an ordinal
scaled variable with four levels (also called categories) was simulated. Very often,
ordinal scaled variables are treated as pseudo-continuous in comparative analyses. On
the one hand, this can be explained by a lack of knowledge, and on the other hand, by
a lack of available methods. In fact, until the development of the MCMCglmm package, no
method was available modeling nominal or ordinal scaled variables with more than two
levels. Therefore, this study tries to compare the analyses of ordinal variables treated
as pseudo-continuous using PGLS and PGEE with the PGLMM, explicitly modeling
multinomial logit models.

3.2.1 Non-phylogenetic GLM

The application of the non-phylogenetic GLM on the ordinal response assumes the
variable to be pseudo-continuous.

Type I Error and Power

In respect to hypothesis testing, the non-phylogenetic method shows a large number
of significantly elevated type I error rates, meaning the method declares statistical
significance too often assuming the the null hypothesis to be true. As already noted in
case of the continuous response variable, the error rates are especially pronounced in
case of tree 3, however, the analyses based on tree 2 do not show significantly elevated
type I error rates. Further, the type I error rates increase with an increasing sample
size (Table 3.7, Figure 3.23).
The analyses of power including the simulated data with a input correlation coefficient
of 0.9 implies a good performance of the method. The power reaches dominantly more
than 90% and even increases for larger sample sizes (Table 3.7, Figure 3.24).
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Figure 3.23: Type I error rates from ordinal response models - non-phylogenetic GLM.
Distributions of p-values from data simulated with r = 0.01 including the data for tree 1 and 50
species: a) univariate model - continuous predictor; b) multivariate model - continuous predictor; c)
multivariate model - binary predictor. The horizontal dashed line indicates the density at the critical
value of 0.05.
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Figure 3.24: Power from ordinal response models - non-phylogenetic GLM. Distributions
of p-values from data simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The density bar from −0.1 to 0.0 represents the density of p-values equal to zero.

Table 3.7: Type I error rates (TIE) and Power from ordinal response models - Non-
phylogenetic GLM: Fisher‘s exact test was used to compare the observed ratio of significant (p <
0.05) vs. non-significant (p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of
a type I error of α = 5%. The different significance levels of the Fisher‘s exact test are indicated by
by bold font for p < 0.001 and in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.21 0.99 0.41 1.00 0.36 1.00
Tree 2 0.05 1.00 0.06 1.00 0.05 1.00
Tree 3 0.41 0.97 0.38 1.00 0.79 0.99
Tree 4 0.20 1.00 0.30 1.00 0.44 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.18 0.99 0.35 1.00 0.33 1.00
Tree 2 0.04 1.00 0.06 1.00 0.05 1.00
Tree 3 0.39 0.96 0.35 1.00 0.75 0.98
Tree 4 0.16 1.00 0.27 1.00 0.39 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.14 0.83 0.29 0.96 0.28 1.00
Tree 2 0.05 0.87 0.05 0.99 0.05 1.00
Tree 3 0.22 0.69 0.29 0.90 0.47 0.91
Tree 4 0.13 0.85 0.22 0.98 0.30 0.99
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Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

Under different parameter conditions in terms of tree types and numbers of species,
the mean estimates show higher variability compared to the case of the continuous re-
sponse variable, specifically for the multivariate models (i.e. the continuous and binary
predictor of the multivariate model).
The mean errors indicating the estimation bias, is comparably moderate for all condi-
tions, except for tree type 3, where most species diversification was simulated to occur
late in the evolutionary history. A similar pattern is given by the measurement for
accuracy of the estimates, the rooted mean squared error where also a tree structure
with most diversification occurring late in the evolutionary history leads to less accu-
rate estimates. Moreover, tree 2, showing an opposite structure to tree 3, shows the
lowest rooted mean squared errors. However, these patterns seen for tree 3 and tree 2
are not that pronounced for the binary predictor of the multivariate model.
Furthermore, as already noted in former analyses, the accuracy of the parameter esti-
mates severely decrease for the binary predictor of the multivariate model and increas-
ing sample sizes generally result in decreased mean and rooted mean squared errors.
The corresponding results are found in Tables C.13 to C.15 in Appendix C.2.1 and
Figures 3.25, 3.26.
To sum up, concerning hypothesis testing and the estimation abilities, the non-phylogenetic
approach assuming pseudo-continuity of the ordinal response variable performs com-
parably to the continuous response models (Section 3.1.1)
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Figure 3.25: Estimates from ordinal response models - Non-phylogenetic GLM. Distribu-
tions of the effect sizes based on the simulated data with an input correlation coefficients of r = 0.01
(blue solid line), r = 0.5 (red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model
- continuous predictor; b) multivariate model - continuous predictor; c) multivariate model binary
predictor including the data of tree 1 and 50 species. The vertical lines indicate the means overall
methods. The bandwidth of the densities was set to the default ("nrd0").

72



0.
0

0.
2

0.
4

0.
6

0.
8

a

Number of species

R
M

S
E

20 50 100

Tree 1
Tree 2
Tree 3
Tree 4

0.
0

0.
2

0.
4

0.
6

0.
8

b

Number of species

R
M

S
E

20 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

c

Number of species

R
M

S
E

20 50 100

Figure 3.26: Rooted mean squared errors from ordinal response models - Non-
phylogenetic GLM. The rooted mean squared errors (RMSE) are shown for the data simulated
with a correlation coefficient of r = 0.5. a) univariate model - continuous predictor; b) multivariate
model - continuous predictor; c) multivariate model - binary predictor.



3.2.2 PGLS

The PGLS regression applied on an ordinal scaled response variable also assumes
pseudo-continuity of the dependent variable.

Type I Error and Power

The type I error rates are strongly reduced compared to the non-phylogenetic approach,
where almost for every parameter condition, α (i.e. type I error) was significantly higher
than expected (Table 3.8 and Figure 3.27). However, as for the continuous response
models, especially smaller sample sizes of 20 species mostly result in false declared
significance. But not so in case of tree structure 2, where the shared evolutionary
history between species is rather short.
Power generally reaches 90% and higher implying a good performance concerning
hypothesis testing (Table 3.8 and Figure 3.28).
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Figure 3.27: Type I error rates from ordinal response models - PGLS. Distributions of
p-values from data simulated with r = 0.01 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The horizontal dashed line indicates the density at the critical value of 0.05.
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Figure 3.28: Power from ordinal response models - PGLS. Distributions of p-values from data
simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate model - continuous
predictor; b) multivariate model - continuous predictor; c) multivariate model - binary predictor. The
density bar from −0.1 to 0.0 represents the density of p-values equal to zero.
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Table 3.8: Type I error rates (TIE) and Power from ordinal response models - PGLS:
Fisher‘s exact test was used to compare the observed ratio of significant (p < 0.05) vs. non-significant
(p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of a type I error of α = 5%.
The different significance levels of the Fisher‘s exact test are indicated by bold font for p < 0.001 and
in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.10 1.00 0.07 1.00 0.06 1.00
Tree 2 0.06 1.00 0.06 1.00 0.05 1.00
Tree 3 0.16 0.96 0.06 1.00 0.05 0.99
Tree 4 0.09 1.00 0.06 1.00 0.05 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.10 0.99 0.07 1.00 0.06 1.00
Tree 2 0.05 1.00 0.06 1.00 0.06 1.00
Tree 3 0.17 0.92 0.07 0.99 0.05 0.97
Tree 4 0.09 1.00 0.06 1.00 0.05 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.09 0.77 0.07 0.88 0.07 0.97
Tree 2 0.05 0.87 0.05 0.99 0.05 1.00
Tree 3 0.12 0.63 0.08 0.71 0.07 0.70
Tree 4 0.09 0.76 0.06 0.93 0.05 0.95
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Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

Concerning the estimation abilities of the PGLS regression for a pseudo-continuous
response variable, the pattern looks similar as for the non-phylogenetic approach, how-
ever, here phylogenetic dependency is taken into account. Especially conspicuous are
the mean errors for tree structure 3 with long shared evolutionary paths (i.e. high
phylogenetic covariances), however for the binary predictor of the multivariate model
this discrepancy disappears. In other words, a high phylogenetic signal leads to a
larger estimation bias in continuous predictors. This pattern is also reflected in the
rooted mean squared error indicating less accurate estimates for tree type 3. Further,
also the binary predictor of the multivariate model shows the least accurate parameter
estimates and generally, the accuracy increases with increasing sample size. The cor-
responding results are shown in Tables C.16 to C.18 in Appendix C.2.2 and Figures
3.29, 3.30.
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Figure 3.29: Estimates from ordinal response models - PGLS. Distributions of the effect sizes
based on the simulated data with an input correlation coefficients of r = 0.01 (blue solid line), r = 0.5
(red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model - continuous predictor;
b) multivariate model - continuous predictor; c) multivariate model binary predictor including the data
of tree 1 and 50 species. The vertical lines indicate the means overall methods. The bandwidth of the
densities was set to the default ("nrd0").
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Figure 3.30: Rooted mean squared errors from ordinal response models - PGLS. The
rooted mean squared errors (RMSE) are shown for the data simulated with a correlation coefficient of
r = 0.5. a) univariate model - continuous predictor; b) multivariate model - continuous predictor; c)
multivariate model - binary predictor.



Phylogenetic signal λ

The phylogenetic signal λ estimated by the PGLS regression are basically the same
as in case of continuous response variable (Section 3.1.2). The phylogenetic models
including tree 2, showing short shared evolutionary histories between species, show
rather low phylogenetic signals (i.e λ < 0.4), whereas the opposite tree structure, tree
3, shows the highest phylogenetic signals. In other words, trait variation between
species can only be explained by a small extent by common evolutionary history in
case of tree 2, whereas the opposite is true for tree 3. The corresponding results are
found in Table 3.9.

Table 3.9: Mean phylogenetic signal λ with the stan-
dard deviation in brackets from ordinal response models
- PGLS: a) univariate model.

Species 20 Species 50 Species 100

tree 1 0.63 (0.39) 0.84 (0.23) 0.86 (0.17)
tree 2 0.24 (0.42) 0.35 (0.45) 0.37 (0.43)
tree 3 0.71 (0.42) 0.94 (0.17) 0.97 (0.1)
tree 4 0.72 (0.35) 0.77 (0.24) 0.83 (0.17)

b) multivariate model.

Species 20 Species 50 Species 100

tree 1 0.53 (0.43) 0.74 (0.34) 0.77 (0.28)
tree 2 0.24 (0.42) 0.32 (0.44) 0.33 (0.42)
tree 3 0.58 (0.46) 0.87 (0.29) 0.94 (0.19)
tree 4 0.62 (0.41) 0.66 (0.34) 0.74 (0.28)
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3.2.3 PGEE

Type I Error and Power

PGEE modeling the correlated evolution of a pseudo-continuous response variable
shows higher frequencies of significantly elevated type I error rates compared to the
analogues analysis using PGLS. In particular, these false positive declarations are ob-
served for tree 1 and 4 and sample sizes of 50 and more species (Table 3.10, Figure
3.31).
The power analysis shows as always a very good performance (Table 3.10 and Figure
3.32).
Due to unknown reasons, the analyses of the multivariate model with the simulated
data based on tree 3 and 20 species did not produce any p-values, indicated by NA in
Table 3.10.
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Figure 3.31: Type I error rates from ordinal response models - PGEE. Distributions of
p-values from data simulated with r = 0.01 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The horizontal dashed line indicates the density at the critical value of 0.05.
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Figure 3.32: Power from ordinal response models - PGEE. Distributions of p-values from data
simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate model - continuous
predictor; b) multivariate model - continuous predictor; c) multivariate model - binary predictor. The
density bar from −0.1 to 0.0 represents the density of p-values equal to zero.
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Table 3.10: Type I error rates (TIE) and Power from ordinal response models - PGEE:
Fisher‘s exact test was used to compare the observed ratio of significant (p < 0.05) vs. non-significant
(p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of a type I error of α = 5%.
The different significance levels of the Fisher‘s exact test are indicated by bold font for p < 0.001 and
in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.06 1.00 0.14 1.00 0.14 1.00
Tree 2 0.06 1.00 0.06 1.00 0.06 1.00
Tree 3 0.00 0.05 0.13 0.98 0.17 0.94
Tree 4 0.07 1.00 0.08 1.00 0.14 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.06 1.00 0.14 1.00 0.15 1.00
Tree 2 0.05 1.00 0.06 1.00 0.06 1.00
Tree 3 NA NA 0.02 0.87 0.00 0.47
Tree 4 0.07 1.00 0.08 1.00 0.14 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.07 0.68 0.13 0.73 0.16 0.80
Tree 2 0.06 0.87 0.05 0.99 0.05 1.00
Tree 3 NA NA 0.03 0.25 0.00 0.09
Tree 4 0.06 0.68 0.09 0.86 0.13 0.91
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Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

The estimation abilities of PGEE for a pseudo-continuous response is comparable to
the PGLS regression. The mean errors as well as the rooted mean squared error are
especially pronounced for tree 3 in case of the continuous predictors of the univariate
and multivariate models. Moreover, the binary predictor of the multivariate model
shows an increased bias and decreased estimation accuracy especially for small sample
sizes. However, generally, increasing sample sizes lead to improved estimation abilities.
The corresponding results are shown in Tables C.19 to C.21 in Appendix C.2.3 and
Figures 3.33, 3.56.

−1.5 −0.5 0.5 1.5

0
1

2
3

4
5

a) univar. cont. predictor

estimate

D
en

si
ty

n= 1000
n= 1000
n= 1000

−1.5 −0.5 0.5 1.5

0
1

2
3

4

b) multivar. cont. predictor

estimate

D
en

si
ty

n= 1000
n= 1000
n= 1000

−2 −1 0 1 2 3
0.

0
0.

5
1.

0
1.

5
2.

0

c) multivar. binary predictor

estimate

D
en

si
ty

n= 1000
n= 1000
n= 1000

Figure 3.33: Estimates from ordinal response models - PGEE. Distributions of the effect sizes
based on the simulated data with an input correlation coefficients of r = 0.01 (blue solid line), r = 0.5
(red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model - continuous predictor;
b) multivariate model - continuous predictor; c) multivariate model binary predictor including the data
of tree 1 and 50 species. The vertical lines indicate the means overall methods. The bandwidth of the
densities was set to the default ("nrd0").
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Figure 3.34: Rooted mean squared errors from ordinal response models - PGEE. The
rooted mean squared errors (RMSE) are shown for the data simulated with a correlation coefficient of
r = 0.5. a) univariate model - continuous predictor; b) multivariate model - continuous predictor; c)
multivariate model - binary predictor.



3.2.4 PGLMM

One special feature of the phylogenetic mixed model based on MCMC is the multino-
mial logit model for nominal variables with more than two levels. Instead of treating
the ordinal scaled response variable as pseudo-continuous as for the non-phylogenetic,
PGLS and PGEE approach, this method measures the effects on the probabilities of
being in a certain level compared to the reference level. The simulated ordinal variable
contains four levels, thus, the PGLMM estimates the effect on the probabilities of being
in category 2, 3 and 4 compared to the reference category 1.
The following analyses on hypothesis testing and estimation abilities of the PGLMM
method are based on the effects on the probability of category 4 compared to the ref-
erence category 1. In case of a correlation between the ordinal scaled response and the
predictor variables, category 4 vs. category 1 should show the strongest effect.

Type I Error and Power

On the one hand, in case of all parameter combinations (different tree types and
numbers of species), type I error rates are significantly elevated. The analyses based
on tree structure 3, with the highest phylogenetic signal among the four trees, show
the highest rates of type I error (Table 3.11 and Figure 3.35). On the other hand,
the power analysis shows a better performance mostly reaching 60% and higher, but in
case of the binary predictor of the multivariate model these percentages are decreased
again. As usual, the power generally increases with increasing sample size (Table 3.11
and Figure 3.36).
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Figure 3.35: Type I error rates from ordinal response models - PGLMM. Distributions of
p-values from data simulated with r = 0.01 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The horizontal dashed line indicates the density at the critical value of 0.05.
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Figure 3.36: Power from ordinal response models - PGLMM. Distributions of p-values from
data simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate model -
continuous predictor; b) multivariate model - continuous predictor; c) multivariate model - binary
predictor.

Table 3.11: Type I error rates (TIE) and Power from ordinal response models - PGLMM:
Fisher‘s exact test was used to compare the observed ratio of significant (p < 0.05) vs. non-significant
(p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of a type I error of α = 5%.
The different significance levels of the Fisher‘s exact test are indicated by bold font for p < 0.001 and
in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.15 0.66 0.16 0.68 0.21 0.80
Tree 2 0.14 0.72 0.30 0.87 0.31 0.94
Tree 3 0.25 0.66 0.26 0.78 0.31 0.81
Tree 4 0.16 0.57 0.15 0.72 0.26 0.78

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.19 0.89 0.22 1.00 0.17 1.00
Tree 2 0.17 0.95 0.13 1.00 0.14 1.00
Tree 3 0.32 0.78 0.26 0.97 0.42 0.97
Tree 4 0.24 0.94 0.19 1.00 0.15 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.19 0.33 0.20 0.50 0.18 0.62
Tree 2 0.14 0.34 0.14 0.60 0.13 0.79
Tree 3 0.21 0.31 0.20 0.45 0.18 0.44
Tree 4 0.23 0.41 0.18 0.56 0.14 0.61
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Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

Not only concerning hypothesis testing but also the estimation abilities don‘t show a
very good performance using PGLMM for the multinomial model. The mean error
as well as the rooted mean squared error are strongly elevated compared to the other
methods. Again, especially tree 3 shows strongly biased and inaccurate estimates in
case of continuous predictors. Moreover, the binary predictor of the multivariate model
shows higher errors and increasing sample size leads to less biased and more accurate
parameter estimates. Further, it is important to note that the number of simulations
after excluding non-converged models, are remarkably small. In other words, in about
50% of the cases, multinomial logit models with PGLMM do not converge, thus, the
results are not meaningful. The corresponding results are found in Tables C.22 to C.24
in Appendix C.2.4 and Figures 3.37, 3.38.
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Figure 3.37: Estimates from nominal response models - PGLMM. Distributions of the effect
sizes based on the simulated data with an input correlation coefficients of r = 0.01 (blue solid line), r =
0.5 (red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model - continuous predictor;
b) multivariate model - continuous predictor; c) multivariate model binary predictor including the data
of tree 1 and 50 species. The vertical lines indicate the means overall methods.
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Figure 3.38: Rooted mean squared errors from ordinal response models - PGLMM. The
rooted mean squared errors (RMSE) are shown for the data simulated with a correlation coefficient of
r = 0.5. a) univariate model - continuous predictor; b) multivariate model - continuous predictor; c)
multivariate model - binary predictor.



3.2.5 The four methods in comparison

Simulated data

The four methods in direct comparison (Figure 3.39) shows that the mean parameter
estimates are very similar for the non-phylogenetic, the PGLS and the PGEE method
for an ordinal (i.e. pseudo-continuous) response variable. Also the 95% confidence in-
tervals are very narrow indicating a small variability in the parameter estimates. The
PGLMM method, modeling multinomial logit models, measures a different effect, in
fact the effect on the probabilities of being in a certain category compared to a reference
category. Therefore, the mean estimates of these Bayesian models are different from
the other approaches. However, they show a much higher variability in the parameter
estimates, and as already seen in the former section, show a much larger estimation
bias and a higher inaccuracy in the parameter estimates.
The parameter estimates in pairwise comparison between the four methods (Figure
3.40) shows that the variability in the non-phylogenetic method is much higher com-
pared to PGLS and PGEE. Further, the estimates from the PGLMM method are
generally much higher, keeping in mind that they measure rather the effect on prob-
abilities of one category compared to a reference category than the effect on a single
unit increase in the dependent variable. Correspondingly, also the variability in the
PGLMM estimates is higher.
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Figure 3.39: Mean estimates and 95%-confidence intervals from ordinal response models.
Comparison of the mean estimates and corresponding 95%-confidence intervals from the four methods
for the three input correlation coefficients including the simulated data for tree 1 and 50 species
(number of simulations = 1000). A: univariate model - continuous predictor; B: multivariate model -
continuous predictor; C: multivariate model - binary predictor.
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Figure 3.40: Parameter estimates compared. The parameter estimates based on the simulated
data with r = 0.5 and 50 species from the non-phylogenetic and three phylogenetic methods (ordinal
response models) plotted against each other pairwise with the corresponding boxplots aside: a) Non-
phylogenetic GLM vs. PGLS; b) Non-phylogenetic vs. PGEE; c) Non-phylogenetic vs. PGLMM; d)
PGLS vs. PGEE; e) PGLS vs. PGLLMM; f) PGEE vs. PGLMM.
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Application on a real data set

In order to compare the four methods directly, they were again applied on a real evolu-
tionary question based on the primate data set including 78 species. The application on
an ordinal response variable is based on the second hypothesis described in Material &
Methods (Section 2.2). Smarter species with larger relative brain sizes are expected to
live in more complex foraging niches compared their smaller brained relatives (Schuppli
et al. 2012, Schuppli et al. in prep., Graber et al. in prep.). Thus, the hypothesis
predicts a positive correlation between relative brain size (corrected for body size) and
the foraging niche complexity, representing the ordinal response variable.
The non-phylogenetic approach and the two phylogenetic methods (i.e. PGLS and
PGEE) treating the ordinal scaled response variable (foraging niche complexity) as
pseudo-continuous show very similar parameter estimates as well as p-values for both
continuous predictor variables, brain size and body size (Table 3.12). The PGLMM
method, on the other hand, shows a different parameter estimate with a different mean-
ing (i.e. effect on probability of on category vs. reference category), but the p-values
lead in the end to the same conclusion as for the other three methods. In fact, there is
a strong positive effect of relative brain size on niche complexity, meaning that larger
brained species managed to live in more complex foraging niches.
The corresponding diagnostic plots are shown in Figures 3.41, 3.42, 3.43 and 3.44.
The plots showing the residuals vs. the fitted values show a structure according to
the four levels of the ordinal response variable, which probably indicates a violation
of the model assumptions. The qq-plots show that the residuals are probably not per-
fectly distributed according to normality, however, are also not too bad. Furthermore,
considering the MCMC traces to check for convergence of the Bayesian approach, it
is obvious that the model has not converged, which is also confirmed by the Geweke
diagnostic test (p<0.05). In other words, the results by the PGLMM are probably
not meaningful, as the model, even after 50,000 iterations, has not reached conver-
gence. However, further studies on the prior settings in MCMCglmm are needed in order
to properly judge its statistical performance.

Table 3.12: Application of the four methods on a real data set - ordinal response model.
Testing the effect of brain size (continuous predictor) on niche complexity (ordinal response) correcting
for body size (continuous predictor). Given are sample size (N), phylogenetic signal lambda (λ) in
case of PGLS, and the estimate, standard error and p-value (bold if significant) of the explanatory
variables brain size and body size. For PGLMM, the number of iterations is set to 50,000 and the
estimates represent the posterior mean of the effects of brain size and body size on the probability of
the highest niche complexity level versus the lowest niche complexity level. Important to note is that
the PGLMM model seems not to have converged (Geweke diagnostic test: p<0.05).

brain mass body mass

Method N λ estimate std. error p-value estimate std. error p-value

Non-phylogenetic GLM 78 2.600 0.543 0.000 -1.576 0.447 0.001
PGLS 78 0.864 2.389 0.760 0.002 -1.446 0.564 0.012
PGEE 78 2.028 0.163 0.000 -1.266 0.136 0.000
PGLMM 78 59.699 0.000 -34.078 0.005
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Figure 3.41: Diagnostic plots from ordinal response model - non-phylogenetic GLM. The
diagnostic plots serve to check the assumptions about the normal and homoscedastic distribution of
the residuals. The plot on the left shows the residuals as a function of the fitted values. The plot on
the right shows a normal quantile plot.
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Figure 3.42: Diagnostic plots from ordinal response model - PGLS. The diagnostic plots
serve to check the assumptions about the normal and homoscedastic distribution of the residuals. The
plot on the left shows the residuals as a function of the fitted values. The plot on the right shows a
normal quantile plot.
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Figure 3.43: Diagnostic plots from ordinal response model - PGEE. The diagnostic plots
serve to check the assumptions about the normal and homoscedastic distribution of the residuals. The
plot on the left shows the residuals as a function of the fitted values. The plot on the right shows a
normal quantile plot.
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Figure 3.44: Diagnostic plots from ordinal response model - PGLMM. The diagnostic plots
of the Markov chains serve to check for convergence. The plots on the left show the traces of the
sampled posteriors along the iterations. The plots on the right show the distributions of the sampled
posteriors.
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3.3 Binary response variable

The simulated binary response was modeled using three different approaches: the non-
phylogenetic GLM in form of a simple logistic regression, the Bayesian approach with
PGLMM and the phylogenetic logistic regression (PLR). At this point, it is important
to note two issues about the following results. First, the method by Paradis and Claude
(2002) using generalised estimating equations (PGEE) is also implemented for binary
responses, however, certain data constellations in form of phylogenetic relatedness
structures lead to freezing of R, which prevents using this method in a simulation study.
Thus, theoretically, this method can be used to analyse binary data, however, in some
cases might overburden the statistical program. Second, the analyses of the PLR are
only based on maximal 100 simulations, due to two reasons. First, the implementation
of this method in R is very time consuming and second, several crashes of the server
disrupted the simulation loops.

3.3.1 Non-phylogenetic GLM

Type I Error and Power

Not surprisingly based on the analyses of the continuous and ordinal response using
a non-phylogenetic approach, modeling binary data with a simple logistic regression
model also leads in most cases to elevated type I error rates, with the analyses based
on tree 3 showing the highest error rates (Table 3.13 and Figure 3.45). However, tree
2 makes again an exception, where most of the species diversification was simulated
to occur early in the history of the evolution of a trait. Furthermore, the type I error
rates tend to increase for larger samples sizes, as well as the power. The power with
an average of ca. 80% shows a rather good performance at least for sample sizes of
50 and more, however, not so for a sample size of 20 species. There, especially for the
multivariate model, power is strongly decreased (Table 3.13 and Figure 3.46).
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Figure 3.45: Type I error rates from binary response models - non-phylogenetic GLM.
Distributions of p-values from data simulated with r = 0.01 including the data for tree 1 and 50
species: a) univariate model - continuous predictor; b) multivariate model - continuous predictor; c)
multivariate model - binary predictor. The horizontal dashed line indicates the density at the critical
value of 0.05.
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Figure 3.46: Power from binary response models - non-phylogenetic GLM. Distributions
of p-values from data simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor.

Table 3.13: Type I error rates (TIE) and Power from binary response models - Non-
phylogenetic GLM: Fisher‘s exact test was used to compare the observed ratio of significant (p <
0.05) vs. non-significant (p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of
a type I error of α = 5%. The different significance levels of the Fisher‘s exact test are indicated by
bold font for p < 0.001 and in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.13 0.56 0.21 0.97 0.33 1.00
Tree 2 0.02 0.60 0.04 1.00 0.06 1.00
Tree 3 0.39 0.31 0.34 0.96 0.77 0.90
Tree 4 0.12 0.60 0.28 0.98 0.32 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.08 0.07 0.20 0.72 0.31 0.97
Tree 2 0.02 0.09 0.05 0.78 0.06 0.99
Tree 3 0.07 0.04 0.27 0.69 0.56 0.85
Tree 4 0.07 0.07 0.23 0.72 0.29 0.98

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.09 0.05 0.16 0.66 0.23 0.96
Tree 2 0.03 0.05 0.05 0.73 0.05 0.99
Tree 3 0.09 0.03 0.25 0.58 0.50 0.73
Tree 4 0.08 0.06 0.18 0.64 0.23 0.97
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Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

First, the mean estimates for the different simulation conditions (tree structure, sample
size, strength of correlation) show much higher variation compared to the continuous
and ordinal response models.
The mean error as an indication for estimation bias is mainly highest for tree 3. More-
over, estimation bias is generally highest for strong correlations (i.e. input correlation
r = 0.9).
The rooted mean squared error is highly elevated for tree structure 3, meaning that
models with a phylogeny where most diversification occurs late in the evolutionary his-
tory lead to inaccurate parameter estimates. On the other hand, tree 2 shows rather
lower mean squared errors. These differences are especially pronounced for a small
sample size (n = 20), whereas for larger sample sizes, these differences disappear.
Furthermore, the multivariate models in case of strong correlations (input correlation
r = 0.9) lead to extreme high parameter estimates in a about 5% of the cases. This
also explains the extreme high mean errors and rooted mean squared errors for the
multivariate models with an input correlation of 0.9 for all methods, as the mean over
all methods serves as reference for the error calculations. The corresponding results
are shown in Tables C.25 to C.27 in Appendix C.3.1 and Figures 3.47, 3.48.
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Figure 3.47: Estimates from binary response models - Non-phylogenetic GLM. Distribu-
tions of the effect sizes based on the simulated data with an input correlation coefficients of r = 0.01
(blue solid line), r = 0.5 (red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model
- continuous predictor; b) multivariate model - continuous predictor; c) multivariate model binary
predictor including the data of tree 1 and 50 species. The vertical lines indicate the means overall
methods. The overall means for the continuous and binary predictor of the multivariate model with an
input correlation of r = 0.9 is very large (> 1011), and thus, not shown in the graph. The bandwidth
of the densities was set to the default ("nrd0").
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Figure 3.48: Rooted mean squared errors from binary response models - Non-
phylogenetic GLM. The rooted mean squared errors (RMSE) are shown for the data simulated
with a correlation coefficient of r = 0.5. a) univariate model - continuous predictor; b) multivariate
model - continuous predictor; c) multivariate model - binary predictor.



3.3.2 PGEE

The simulation loop for the PGEE method was not run for the binary response variable
due to freezing problems of R. This problem is claimed to come from very strong cor-
relations among some observations, probably leading to numerical problems (personal
communication, Emmanuel Paradis).

3.3.3 PGLMM

Type I Error and Power

Most parameter combinations of tree structure and number of species, except tree 2,
lead to significantly elevated type I error rates, comparable to the non-phylogenetic
approach. In other words, the Bayesian approach for binary data misleadingly de-
clares significance too often (Table 3.14 and Figure 3.49). The type I error rates
are especially high for tree 3 and small sample sizes (n = 20). The power, on the
other hand, shows a good performance with mostly reaching 80% and higher, with a
increasing tendency for larger samples sizes. The binary predictor of the multivariate
model shows a slightly reduced power (Table 3.14 and Figure 3.50).
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Figure 3.49: Type I error rates from binary response models - PGLMM. Distributions of
p-values from data simulated with r = 0.01 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The horizontal dashed line indicates the density at the critical value of 0.05.
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Figure 3.50: Power from binary response models - PGLMM. Distributions of p-values from
data simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate model -
continuous predictor; b) multivariate model - continuous predictor; c) multivariate model - binary
predictor.

Table 3.14: Type I error rates (TIE) and Power from binary response models - PGLMM:
Fisher‘s exact test was used to compare the observed ratio of significant (p < 0.05) vs. non-significant
(p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of a type I error of α = 5%.
The different significance levels of the Fisher‘s exact test are indicated by bold font for p < 0.001 and
in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.11 0.97 0.07 1.00 0.09 1.00
Tree 2 0.05 1.00 0.05 1.00 0.06 1.00
Tree 3 0.37 0.83 0.11 1.00 0.28 0.89
Tree 4 0.11 0.97 0.08 1.00 0.10 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.11 0.82 0.10 0.99 0.09 1.00
Tree 2 0.06 0.89 0.07 1.00 0.06 1.00
Tree 3 0.31 0.47 0.11 0.98 0.22 0.73
Tree 4 0.11 0.88 0.06 0.99 0.08 1.00

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.13 0.75 0.07 0.94 0.08 1.00
Tree 2 0.05 0.76 0.06 0.99 0.04 1.00
Tree 3 0.31 0.44 0.09 0.90 0.27 0.64
Tree 4 0.14 0.78 0.09 0.92 0.06 1.00
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Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

Again, the mean parameter estimates show a rather high variability with large standard
deviations. For tree 3 the mean errors tend to be higher than for the other tree
structures, whereas for tree 2 the opposite pattern is observed. Tree structure 3 shows
also the least accurate parameter estimates, and generally, for larger samples sizes
the accuracy increases (indicated by the RMSE). The multivariate model with a high
correlation between the traits shows extreme high estimation errors which is based
on the very high parameter estimates from the non-phylogenetic GLM included in the
overall mean. Compared to the non-phylogenetic approach, the estimation performance
is worse. The parameter estimates from PGLMM are generally much more biased and
less accurate. The corresponding results are found in Tables C.28 to C.30 in Appendix
C.3.2 and Figures 3.51, 3.52.
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Figure 3.51: Estimates from binary response models - PGLMM. Distributions of the effect
sizes based on the simulated data with an input correlation coefficients of r = 0.01 (blue solid line), r =
0.5 (red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model - continuous predictor;
b) multivariate model - continuous predictor; c) multivariate model binary predictor including the data
of tree 1 and 50 species. The vertical lines indicate the means overall methods. The overall means for
the continuous and binary predictor of the multivariate model with an input correlation of r = 0.9 is
very large (> 1011), and thus, not shown in the graph. The bandwidth of the densities was set to the
default ("nrd0").
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rooted mean squared errors (RMSE) are shown for the data simulated with a correlation coefficient of
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3.3.4 PLR

Considering the results from PLR it is important to keep it mind that they are based
on maximum of 100 simulations, whereas the other methods are as usual based on
1000 simulations. This is due to the fact that the function phyloglm() is very slow
and further, several crashes of the server led to an early stop of the simulation loop.

Type I Error and Power

In relation to hypothesis testing, the PLR shows a much better performance than the
non-phylogenetic approach and PGLMM. Only tree 3 shows significantly elevated type
I error rates specifically for larger samples sizes (n = 50, n = 100) (Table 3.15, Figure
3.53). The power analysis on the other hand, does not show such a good performance,
also compared to the other methods. In particular, the models based on tree 3 and
small sample sizes (n = 20) show very low power. However, for larger sample size and
tree structures other than 3 show very high power (Table 3.15, Figure 3.54).
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Figure 3.53: Type I error rates from binary response models - PLR. Distributions of p-
values from data simulated with r = 0.01 including the data for tree 1 and 50 species: a) univariate
model - continuous predictor; b) multivariate model - continuous predictor; c) multivariate model -
binary predictor. The horizontal dashed line indicates the density at the critical value of 0.05.
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Figure 3.54: Power from binary response models - PLR. Distributions of p-values from data
simulated with r = 0.9 including the data for tree 1 and 50 species: a) univariate model - continuous
predictor; b) multivariate model - continuous predictor; c) multivariate model - binary predictor.
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Table 3.15: Type I error rates (TIE) and Power from binary response models - PLR:
Fisher‘s exact test was used to compare the observed ratio of significant (p < 0.05) vs. non-significant
(p > 0.05) p-values to the expected ratio (0.05/0.95) under the assumption of a type I error of α = 5%.
The different significance levels of the Fisher‘s exact test are indicated by bold font for p < 0.001 and
in italics for p < 0.05. a) univariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.02 0.75 0.14 0.98 0.18 1.00
Tree 2 0.02 0.86 0.01 1.00 0.05 1.00
Tree 3 0.04 0.37 0.33 0.92 0.42 0.97
Tree 4 0.04 0.88 0.08 1.00 0.11 1.00

b) multivariate model - continuous predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.04 0.11 0.13 0.92 0.18 1.00
Tree 2 0.01 0.15 0.00 0.95 0.06 1.00
Tree 3 0.04 0.06 0.28 0.64 0.29 0.94
Tree 4 0.03 0.21 0.09 0.93 0.09 0.99

c) multivariate model - binary predictor.

Species 20 Species 50 Species 100
TIE Power TIE Power TIE Power

Tree 1 0.04 0.11 0.07 0.79 0.05 0.99
Tree 2 0.01 0.00 0.03 0.89 0.07 1.00
Tree 3 0.02 0.20 0.13 0.38 0.14 0.84
Tree 4 0.02 0.00 0.09 0.82 0.07 1.00

102



Mean estimates (M), Mean Error (ME) and Rooted Mean Squared Error
(RMSE)

The mean parameter estimates of PLR show not such a high variability in contrast
to the non-phylogenetic approach and PGLMM. The mean errors as an indication for
the estimation bias as well as the rooted mean squared errors are moderate except
for models based on tree 3 showing poor estimation abilities. Moreover, the strong
correlations (r = 0.9) show more biased and less accurate estimates as well as the
binary predictor of the multivariate model. The corresponding results are found in
Tables C.31 to C.33 in Appendix C.3.3 and Figures 3.55, 3.56.
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Figure 3.55: Estimates from binary response models - PLR. Distributions of the effect sizes
based on the simulated data with an input correlation coefficients of r = 0.01 (blue solid line), r = 0.5
(red dashed line) and r = 0.9 (green dashed-dotted line): a) univariate model - continuous predictor;
b) multivariate model - continuous predictor; c) multivariate model binary predictor including the data
of tree 1 and 50 species. The vertical lines indicate the means overall methods. The overall means for
the continuous and binary predictor of the multivariate model with an input correlation of r = 0.9 is
very large (> 1011), and thus, not shown in the graph. The bandwidth of the densities was set to the
default ("nrd0").
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Figure 3.56: Rooted mean squared errors from binary response models - PLR. The rooted
mean squared errors (RMSE) are shown for the data simulated with a correlation coefficient of r = 0.5.
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3.3.5 Phylogenetic signal α

According to Ives and Garland (2010) and Ho and Ané (in review), the phylogenetic
signal for a binary variable is measured by α. This phylogenetic signal is based on the
transition rates between 0 and 1: the higher the transition rates, the lower the phylo-
genetic correlation and the lower the phylogenetic signal. However, the interpretation
of α is counterintuitive, as a lower value stands for a high phylogenetic signal (further
details are found in Section 1.3.3).
As already observed for the phylogenetic signal of continuous traits (λ), the tree struc-
tures accord roughly to the estimated phylogenetic signals. Tree 2, with most diver-
sifications occurring early in the phylogenetic history, shows the lowest phylogenetic
signal among the four trees (high values of α). However, not tree 3 as expected shows
the highest phylogenetic signals (low values of α) but rather tree 4 where all branch
lengths were set to 1 illustrating the case where the true branch lengths are unknown.
Moreover, the phylogenetic signal increases with an increasing number of species (Table
3.16).

Table 3.16: Mean phylogenetic signal α with the stan-
dard deviation in brackets from binary response models
- PLR:
a) univariate model.

Species 20 Species 50 Species 100

Tree 1 3.78(6.54) 0.94(2.24) 1.02(3.12)
Tree 2 10.38(3.86) 6.25(2.13) 4.92(2.37)
Tree 3 7.58(8.63) 2.04(2.45) 1.6(2.22)
Tree 4 1.47(2.68) 0.4(0.94) 0.2(0.46)

b) multivariate model.

Species 20 Species 50 Species 100

Tree 1 4.16(6.75) 1.08(2.45) 1.18(2.63)
Tree 2 10.24(3.89) 6.23(2.12) 4.90(2.24)
Tree 3 9.42(9.58) 2.35(2.76) 2.67(4.09)
Tree 4 1.76(2.99) 0.85(1.79) 0.46(1.16)
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3.3.6 The four methods in comparison

Simulated data

The direct comparison shows that the estimates of the three methods roughly agree,
however, for higher correlations (r = 0.5, r = 0.9) PGLMM results in higher estimates
with higher variabilities. Further, the non-phylogenetic approach in case of the mul-
tivariate model shows a higher mean estimate in case of a low correlation (r = 0.01).
The 95% confidence-intervals of the parameter estimates show that the estimate vari-
abilities in general is very low. For graphical illustration see Figure 3.57.
Figure 3.58 shows the estimates of the three methods plotted against each other. This
illustrates that the estimates of PGLMM generally show a much higher variability
compared to the estimates of the non-phylogenetic approach and PLR.
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Figure 3.57: Mean estimates and 95%-confidence intervals from binary response models.
Comparison of the mean estimates and corresponding 95%-confidence intervals from the four methods
for the three input correlation coefficients including the simulated data for tree 1 and 50 species
(number of simulations = 1000). A: univariate model - continuous predictor; B: multivariate model -
continuous predictor; C: multivariate model - binary predictor.
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Figure 3.58: Parameter estimates compared. The parameter estimates based on the simulated
data with r = 0.5 and 50 species from the non-phylogenetic and two phylogenetic methods (binary
response models) plotted against each other pairwise with the corresponding boxplots aside: a) Non-
phylogenetic GLM vs. PGLMM; b) Non-phylogenetic vs. PLR; c) PGLMM vs. PLR.

Application on a real data set

To compare the methods for a binary response variable using a real evolutionary ques-
tions, the effect of relative brain size (corrected for body size) (continuous predictor
variable) on whether a species shows extractive foraging or not (binary response vari-
able) was tested. The application of the four methods (for the application on a real
data set PGEE method worked, whereas for the simulations this method could not be
tested due to freezing of R) on the same real primate data set shows that the param-
eter estimates as well as the p-values are very similar for the non-phylogenetic GLM,
the PGEE and PLR (Table 3.17). For PGLMM the estimates are much higher and
more important, according to the diagnostic plots and the Geweke test, the model
seems not to have converged (Figure 3.59). In other words, the results obtained from
the PGLMM modeling the binary response variable are not reliable. However, further
studies on the prior settings in MCMCglmm are needed in order to properly judge its
statistical performance.
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But all in all, concerning the direction of the effects and p-values, the four methods
lead to the same conclusion: larger brained primates more likely use extractive forag-
ing compared to their smaller brained relatives. In other words, smarter primates rely
more often on difficult to access food resources.
However, also the underlying model assumptions need to be met in order to trust the
results of an analysis. In case of the non-phylogenetic approach, this is not the case as
the data is not independent due to phylogenetic relationships between species. More-
over, for continuously distributed data, diagnostic plots help to check whether a model
fits the data or not in terms of homoscedasticity and normality of the residuals. But
for binary data, these plots do not make sense anymore. Thus, only the diagnostic plot
for the convergence of the MCMC chains of the PGLMM are shown (Figure 3.59).

Table 3.17: Application of the four methods on a real data set - binary response model.
Testing the effect of brain size (continuous predictor) on extractive foraging (binary response) correcting
for body size (continuous predictor). Given are sample size (N), phylogenetic signal alpha (α) in case
of PLR, and the estimate, standard error and p-value (bold if significant) of the explanatory variables
brain size and body size. For PGLMM, the number of iterations is set to 50,000 and the estimates
represent the posterior mean of the effects of brain size and body size on extractive foraging. Important
to note is that the PGLMM model seems not to have converged (Geweke diagnostic test: p<0.001).

brain mass body mass

Method N α estimate std. error p-value estimate std. error p-value

Non-phylogenetic GLM 78 10.638 2.907 0.000 -7.038 2.242 0.002
PGEE 78 9.724 2.794 0.004 -6.750 2.155 0.008
PLR 78 0.076 9.492 2.667 0.000 -6.307 2.073 0.002
PGLMM 78 80.718 0.003 -53.958 0.011
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Figure 3.59: Diagnostic plots from binary response model - PGLMM. The diagnostic plots
of the Markov chains serve to check for convergence. The plots on the left show the traces of the
sampled posteriors along the iterations. The plots on the right show the distributions of the sampled
posteriors.
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4 Discussion

First, a comment on the setup should give an overview of the main parts of the fol-
lowing discussion. The setup of the discussion of the statistical performances of the
phylogenetic methods is different from the structure in the results section. In fact, the
methods are not discussed separately but rather as a whole trying to pool and com-
pare the important findings and conclusions of the extensive results from the former
chapter. In the following three sections, the results for the three types of response
variables, continuous, ordinal and binary, are summarized and subsequently discussed
in terms of their statistical abilities and practical applicabilities with respect to various
conditions (tree structure, sample size, strength of correlation and predictor variable).
Three qualitative summaries, one for each type of response, give an overview of the
statistical performances of the four compared methods (Tables 4.1, 4.2, 4.3).

4.1 Continuous response

4.1.1 General comparison of the statistical performances

Not surprisingly, the non-phylogenetic approach testing the correlated evolution be-
tween two traits shows highly elevated type I error rates, error rates which are unac-
ceptable in terms of hypothesis testing. In other words, if ignoring the phylogenetic
dependencies between species, the statistical significance of an evolutionary correlation
is mostly overestimated. These results are confirmed by the findings of several other
studies (e.g. Martins and Garland 1991, Martins et al. 2002). The comparative meth-
ods PGLS, PGEE and PGLMM, taking into account the phylogenetic dependencies
between species perform much better in that respect. Generally, all the three methods
wrongly declare statistical significance only in about 5% of the cases, thus, showing
acceptable type I error rates. However, the PGLMM stands out among those methods
as it never shows any false positive results. The power analyses based on the simu-
lations with an input correlation of r = 0.9 generally show very good performances
for all methods. In relation to the estimation abilities, the non-phylogenetic approach
shows more biased and less accurate parameter estimates compared to the phylogenetic
methods, but within those the estimation abilities are comparable. In conclusion, ig-
noring phylogenetic dependencies between species is statistically not tolerable not only
in terms of assumptions violation (i.e. dependency between observations ignored) but
also due to a poor performance confirming the findings of former studies (e.g. Martins
and Garland 1991, Martins et al. 2002).
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4.1.2 Statistical performances with respect to varying evolutionary
and empirical conditions

It is of special interest to discuss and verify these findings under different evolutionary
scenarios and data conditions. Starting with the structure of the phylogenetic tree,
striking are the results based on tree 2 and 3. In combination with tree 2, the meth-
ods and in particular the non-phylogenetic approach, shows rather good performances
whereas with tree 3 rather bad performances. This can be explained by considering the
biological meaning of the tree structure: Tree structure 2 shows most diversifications
between species at a early point in the evolutionary history which goes along with short
shared evolutionary paths and long independent trait evolution between species. Tree
3, on the other hand, shows the opposite evolutionary scenario, where most diversifi-
cation occurs at the tips of the tree. In terms of the phylogenetic signal, tree 2 has
a rather low phylogenetic signal and tree 3 a rather higher phylogenetic signal, which
is also observed in the λ estimates of the PGLS regression (Table 3.3). To sum up,
if species show short common evolutionary histories (low phylogenetic signal –> tree
2) implying a weaker dependency structure, results in better statistical performances.
On the other hand, the opposite is true for an evolutionary scenario where species
show a long common phylogenetic history (tree 3). These patterns are especially pro-
nounced in the non-phylogenetic analysis. However, also the PGLS regression which
accounts for phylogenetic dependencies shows in combination with a small sample size
a tendency in that direction. Therefore, although this has not explicitly been part of
simulation setup, the results illustrate certain comparative methods are more sensitive
(i.e PGLS) to the strength of the phylogenetic signal than others (i.e. PGLMM).
Not surprisingly, also sample size has an impact on hypothesis testing and estimation
abilities of these methods. Increasing sample sizes result in lower false positive (i.e.
type I error) and higher true positive rates (i.e. power) as well as increased estimation
accuracy. Intuitively, this can be explained by the fact that increasing samples sizes
more and more approximate the whole sample/population containing the true correla-
tion coefficient.
Furthermore, how well a method performs in terms of estimation accuracy also seems
to be affected by the strength of an evolutionary correlation. In case of all methods,
stronger correlations tend to show more accurate estimates.
As a last factor, the type of the predictor variable leads generally to variation in the
estimation performances. In fact, in case of the binary predictor of the multivariate
model, all methods show remarkably worse statistical abilities (i.e. power and estima-
tion abilities) compared to the continuous predictors.

In conclusion, the statistical performances with respect to different conditions might
vary among the three comparative methods. Although, all methods are comparably
sensitive to sample size, strength of correlation and type of the predictor variable, PGLS
seems to be especially sensitive in relation to the tree structure or rather the strength
of the phylogenetic signal, whereas on the other extreme, PGLMM constantly shows
a very good statistical performance. Therefore, based on these findings, the phyloge-
netic mixed model is most recommendable for analyzing the effects on a continuous
response variable, however, in case of non-extreme or known evolutionary scenarios
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(i.e. tree 1 in contrast to tree 2,3 and 4), also PGLS and PGEE reliably measure the
correlated evolution among traits. This final conclusion is further supported by the
direct comparison of the three methods analyzing the same data set (Section 3.1.5):
the parameter estimates as well as the p-values are strongly consistent among the three
methods resulting in the same evolutionary interpretations.
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4.2 Ordinal response

Before assessing any results, it is important to remember the assumption of pseudo-
continuity for the ordinal scaled response variable applying three of the four methods,
the non-phylogenetic GLM, PGLS and PGEE. This assumption is often used in com-
parative studies either due to a lack of knowledge and or a lack of suitable phylogenetic
methods. Modeling this kind of pseudo-continuous data, however, might lead to el-
evated type I error rates, especially if the distances between the levels are unequal
(Matthews et al. 2011, Stevens 1946, Purvis et al. 2005). Therefore, the aim of this
study was to test whether assuming pseudo-continuity of ordinal scaled variables still
lead to reliable results and compare them to the very new approach, the phylogenetic
generalised mixed model (PGLMM), explicitly modeling multinomial logit models.

4.2.1 General comparison of the statistical performances

Generally, the statistical performances for the ordinal response models are very simi-
lar to the continuous response models, except for the phylogenetic mixed model. The
qualitative summary of the four methods is found in Table 4.2.
First, considering the non-phylogenetic approach for analyzing ordinal data, using a
simple GLM with the identity link, the performances are rather poor. Especially the
highly elevated type I error rates make this approach statistically unacceptable. The
estimation performance, however, is only slightly decreased in comparison to the phy-
logenetic approaches PGLS and PGEE. But the two phylogenetic methods assuming
pseudo-continuity of the response variable show much better performances in signif-
icance testing. PGLS shows only significantly elevated type I error rates for small
samples sizes (n = 20), whereas PGEE counterintuitively shows dominantly elevated
type I error rates for larger sample sizes (n = 50 and n = 100) as well as generally
more elevated type I error rates. Furthermore, estimation abilities based on the sim-
ulations and the direct comparison of the parameter estimates on a real evolutionary
question (Section 3.2.5) shows that the estimates and their errors are very similar with
the p-values leading to the exact same conclusions. In sum, whereas PGLS is slightly
better performing in hypothesis testing, the estimation abilities are equally good for
the PGLS and PGEE. Therefore, although assuming pseudo-continuity which basically
violates the model assumptions, the performances of the two phylogenetic approaches
are statistically acceptable. In concordance with this finding, a study by Matthews et
al. (2011) showed that treating ordinal scaled data as continuous is fully acceptable in
terms of type I error rates and thus, also verifies the application of linear models on
ordinal scaled response variables. All in all, in particular due to slightly lower type I
error rates for PGLS compared to PGEE, the former method is more recommendable.
After the comparison of the methods treating ordinal data as continuous, it is of spe-
cial interest whether the phylogenetic mixed model explicitly modeling a multinomial
model shows a better performance.
First of all, the phylogenetic mixed model seems to be very flexible and seems to have
many advantages over other comparative methods. Starting with a rather philosophi-
cal argument, the phylogenetic mixed model aims to explain part of the variance using
phylogeny, whereas other methods such as PGLS, incorporate it into the error term
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and transform the data in order to met the assumptions about independency of the
observations. Furthermore, it allows to model multiple response variables simultane-
ously and to account for additional random effects other than the phylogeny. Besides
modeling phylogenetic comparative analysis, the package allows for the application of
many other types of models, such as the animal model and meta-analyses (Hadfield
2012). Therefore, the phylogenetic mixed model offers a wide range of applicabilities
in the field of evolutionary biology. Based on the fact that it claims to model ex-
plicitly nominal data, the statistical performance is expected to be better compared
to models assuming pseudo-continuity. However, the results of the simulations using
PGLMM do not support that presumption. For every combination of the simulated
conditions (i.e. tree structure and sample size), the type I error rates are significantly
elevated. Moreover, the estimation abilities in terms of bias and accuracy, show a very
bad performance. All in all, based on these simulations, the MCMCglmm package does
not produce reliable results for categorical data with more than two levels. But why
is that?
Before trying to give an answer to that question, some further general comments about
the MCMCglmm package are necessary. One main disadvantage of the MCMCglmm() func-
tion is its inconvenient application. Using a Bayesian approach, the function allows
to specify the priors for the variance components of the fixed effects, the random ef-
fects and the residuals. These prior settings allow to specify the expected value as
well as the strength of belief in that expected value. However, besides the fact that
the implementation of the function and prior settings are not intuitive at all, most
biologists are probably overstrained with the question of what is an appropriate prior
for a specific evolutionary question. Inappropriate priors probably also explain why
these models very often don‘t reach convergence, despite high numbers of iterations
(example see Figure 3.44). Further, this also explains the strongly decreased number
of simulations for the results of the PGLMM in case of the ordinal response models, as
all non-converged models are excluded before analyses. In sum, the MCMCglmm() func-
tion is not at all user-friendly for a biologists with a standard statistical background.
These issues are probably also the key to the very bad performances of the multinomial
logit models in case of the ordinal scaled response variable. Unfortunately, understand-
ing the Bayesian approach and with that the extensive details of the prior settings in
MCMCglmm was beyond the scope of this thesis, therefore, the default priors were used
in the simulations of this study. These default priors are rather flat and uninformative
which in the end probably caused the bad statistical performance. Although, they
seemed to have worked in case of continuous response variable, they ended up in bad
results for the multinomial model. Moreover, for every parameter condition in terms
of phylogenetic tree structure, sample size and strength of correlation, the simulated
analyses used the same prior (i.e. default prior) which probably is also not appropri-
ate. Because the priors in some cases, even though they seem to be harmless, have
strong impacts on the posterior parameter distributions (personal communication, Jar-
rod Hadfield), they should be specified specifically for each type of data in terms of
phylogenetic structure, sample size and strength of correlation. Thus, using a global
prior, as it has been done in this simulation study, leads to unreliable results. There-
fore, future simulation studies testing the PGLMM should probably adjust the priors
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properly for each parameter condition. In conclusion, in case of non-continuous data,
it is very dangerous to use this method without properly understanding and justifying
the settings of the priors. Although, also based on the fact that for the continuous re-
sponse the PGLMM performed really well, it would probably be premature to dismiss
the multinomial model implemented in MCMCglmm, it is certainly not ready to be used.
Besides that further studies are needed to investigate the statistical abilities of model-
ing nominal data, the practical applicabilities of this package need to be substantially
improved. Therefore, MCMCglmm is not recommended to be used for non-continuous
data without properly understanding its theoretical and practical implementation.

4.2.2 Statistical performances with respect to varying evolutionary
and empirical conditions

The statistical performances with respect to the phylogenetic tree structure, sample
size, strength of correlation and type of response variable are comparable to the con-
tinuous case (Section 4.1.2) and thus, are not discussed in detail here (qualitative
summary given in Table 4.2). Lower phylogenetic signals (i.e. tree 2) generally lead
to better performances whereas in case of higher phylogenetic signals (i.e. tree 3), the
methods perform rather poor. Furthermore, larger sample sizes lead to higher power
and more accurate estimates and the binary predictor variable shows generally a worse
performance compared to the continuous predictors. The detailed discussion about
these issues can be found in Section 4.1.2.
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4.3 Binary response

For the binary response variable, only two phylogenetic comparative methods, PGLMMM
and PLR, and the non-phylogenetic approach were compared based on their hypoth-
esis testing and estimation abilities. Unfortunately, the PGEE method which is also
implemented for binary data, could not be tested with simulations due to freezing of R
for certain data constellations. Moreover, several crashes of the server led to an early
stop of the PLR simulation loop ending up in maximal 100 simulations.

4.3.1 General comparison of the statistical performances

Starting with the non-phylogenetic approach, the rather poor performance is not sur-
prising. As already in case of the continuous and ordinal response, for most conditions
in terms of tree structure and sample size, the type I error rates are significantly el-
evated. Also the power analyses don‘t show such a good performance, especially for
small sample sizes and the multivariate model. Moreover, the estimates are rather
inaccurate. In sum, a non-phylogenetic approach is also for a binary response variable
statistically not reliable.
Although, the PGLMM accounting for the phylogenetic dependencies in form of a ran-
dom effect would be expected to show a better performance, shows a similar or even
worse performance compared to the non-phylogenetic GLM. Almost for any parameter
condition, the type I error rates are significantly elevated, whereas the probability to
declare significance if the alternative is indeed true (i.e. power), shows a better per-
formance with on average 80% and higher. In relation to the estimation abilities, the
statistical performance is even worse compared to the non-phylogenetic approach with
a slightly higher bias and less inaccurate parameter estimates. This can probably also
be explained by the prior settings. As already discussed in the former Section 4.2.1,
the prior specification might have a large impact on the the posterior distribution of
the parameters. As in case for the ordinal response variable, also the settings suggested
by the author of the package was used for the simulations. However, this is probably
not an appropriate prior for each parameter condition leading unreliable results and
the problem of non-convergence. And in fact, in about 50% of the cases the models
in the simulations did not converge (see number of simulations for the PGLMM). In
sum, it would probably be premature to dismiss the phylogenetic mixed model based
on these finding, however, its implementation needs to be substantially improved and
in future studies, more reasonable prior settings are needed to further investigate the
performance of PGLMM. Therefore, the MCMCglmm is not recommendable for modeling
binary data without properly understanding and justifying the settings of the priors.
The last method modeling binary data is the phylogenetic logistic regression by Ives
and Garland (2010), which has very recently been implemented in R by Ho and Ané
(in review). Compared to the non-phylogenetic approach and the phylogenetic mixed
model, this method performed much better in terms of both, hypothesis testing and
estimation abilities. Only with a few exceptions, the type I error rates never signif-
icantly exceeded the expected 5%. Power generally also shows a good performance,
however, small sample sizes (n = 20) are problematic. Moreover, the estimates are
less biased and more accurate for the PLR compared to the other methods. In conclu-
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sion, based on the simulations of this study, the phylogenetic logistic regression gives
the most reliable results. For future studies it would be interesting to further look at
the phylogenetic mixed model and in particular to understand the prior setting and
its implications on the posterior distributions. Additionally, although PGEE showed
comparable results to PLR in the application on a real data set, this method should be
included in a simulation study in order to compare its abilities with the ones of other
methods. Without claiming anything about the statistical performance of the PGEE,
the PLR makes based on the correlation structure intuitively more sense. In fact, in
PGEE this correlation structure assumes a Brownian motion model of evolution which
is not appropriate for a discrete variable, whereas in PLR the matrix is adjusted based
on a Markov process.

4.3.2 Statistical performances with respect to varying evolutionary
and empirical conditions

With respect to different parameter conditions, the statistical behviour of the binary
response model is comparable to the continuous and ordinal response models (Sections
4.1.2, 4.2.2) (qualitative summary given in Table 4.3). In fact, in case of tree 3 with a
high phylogenetic signal, all methods show rather unreliable results. Moreover, increas-
ing sample size positively affects the statistical ability of each method. For a binary
predictor variable as well as for strong correlations, the power and the estimation abil-
ities are generally not that good. All in all, the decision among different phylogenetic
methods does not only depend on the overall performance of a phylogenetic method,
but also on the evolutionary and data conditions.
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4.4 Conclusions

The statistical performances of different phylogenetic methods were shown to vary
among different types of responses. Whereas PGLMM showed the overall best per-
formance for the continuous response variable, PGLS gives the most reliable results
treating an ordinal scaled variable as continuous. This shows that, although the model
assumptions may not be fully met, methods originally designed for continuous data also
produce reliable results for ordinal scaled variables. Moreover, the phylogenetic logistic
regression implemented in the package phylolm shows the best performance modeling
binary data. Although, it is probably premature to dismiss its statistical abilities,
the phylogenetic mixed model is not recommended for nominal and binary responses
without properly understanding the prior settings and its implications. Moreover, the
practical applicabilities and implementations of PGLS, PGEE and PLR in R are much
more user-friendly compared to PGLMM.
Furthermore, all of the investigated phylogenetic methods were shown to be sensitive
with respect to the phylogenetic tree structure as well as to sample size, however, the
grade of sensitivity for specific conditions varies among the methods. For example, in
case of a continuous response, PGLS shows a very good performance for larger sam-
ple sizes, whereas PGEE shows better performances for smaller sample sizes. What
method to use for what kind of data in terms of tree structure and sample size is
summarized in Table 4.4. It shows that for a continuous response variable, there is an
appropriate approach for each combination of tree structure and sample size, whereas
in case of an ordinal and a binary response, small sample sizes and high phylogenetic
signals, respectively, should be avoided if possible because even the method with the
best performance shows rather weak statistical abilities (indicated by brackets in Table
4.4).
All in all, these findings show that the decision of what approach to use does not only
depend on the overall statistical performance of a phylogenetic method, but also on
the type of data in terms of tree structure, sample size and in the broadest sense also
on the type of evolutionary question.
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A Comparative methods

A.1 Sampling algorithms used in PGLMM

Metropolis-Hastings-algorithm (Fahrmeir et al. 2007, p. 484):
The aim is to draw random numbers from the density function of a certain posterior
distribution is p(θ|y) where direct sampling is difficult:

1. Choose an initial value θ(0) and the number of total iterations T .

2. Draw a random value θ∗ out of a so called proposal distribution q(θ∗|θ(t−1))
and accept this as a new θ(t) with probability of α(θ∗|θ(t−1)), otherwise use
θ(t) = θ(t−1).
Probability α is basically the quotient of the posterior distribution and the pro-
posal distribution at the current state of θ(t−1) and the proposed value θ∗:

α(θ∗|θ(t−1)) = min

{
p(θ∗|yq(θ(t−1)|θ∗

p(θ(t−1|y)q(θ∗|θ(t−1))
, 1
}
.

3. If t = T stop the algorithm, otherwise continue with t = t+ 1 in 2..

After a certain convergence time t0 the random numbers θ(t0+1), . . . ,θ(T ) represent a
random sample from the posterior distribution p(θ|y).

Gibbs-sampler (Fahrmeir et al. 2007, p. 487):
The aim is to draw random numbers from the density function of a certain poste-
rior distribution is p(θ|y). Assume the parameter vector contains P parameters θ =
θ1, . . . , θP :

1. Choose initial values θ
(0)
1 , . . . , θ

(0)
P and the number of total iterations T .

2. For p = 1, . . . , P : draw random numbers θ
(t)
p out of the conditional density:

p(θp|θ(t)
1 , . . . , θ

(t)
p−1, θ

(t−1)
p+1 , . . . , θ

(t−1)
P ,y)

3. If t = T stop the algorithm, otherwise continue with t = t+ 1 in 2.

After a certain convergence time t0 the random numbers θ
(t0+1)
p , . . . ,θ

(T )
p represent a

random sample from the marginal distribution θp|y .
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B Simulation loops in R

B.1 Simulation loop for continuous response

#########################################################################################

#packages needed:

#########################################################################################

library(gee)

library(phytools)

library(geiger)

library(ape)

library(caper)

library(MCMCglmm)

library(phylolm)

############################################################################################################

#Simulation loop continuous response

############################################################################################################

foo <- function(x) #function to extract all coefficients from the compar.gee output (by Emmanuel Paradis)

{

nas <- is.na(x$coef)

coef <- x$coef[!nas]

cnames <- names(coef)

coef <- matrix(rep(coef, 4), ncol = 4)

dimnames(coef) <- list(cnames,

c("Estimate", "S.E.", "t", "Pr(T > |t|)"))

df <- x$dfP - dim(coef)[1]

coef[, 2] <- sqrt(diag(x$W))

coef[, 3] <- coef[, 1]/coef[, 2]

if (df < 0) {

warning("not enough degrees of freedom to compute P-values.")

coef[, 4] <- NA

} else coef[, 4] <- 2 * (1 - pt(abs(coef[, 3]), df))

coef

}

#set seed, number of simulations and the empty array for saving the outputs of the analyses:

set.seed(1234)

n_sim <- 1000#number of simulations

#empty arrays to save the outputs fo continuous response

results.c.cont <- array(NA, c(4,3,n_sim, 4, 21)) #array for coefficients (1 continuous predictor)

results.c2.cont <- array(NA, c(4,3,n_sim, 4, 31)) #array for coefficients (1 continuous and 1 binary predictor)

results.coefficients.cont <- NULL #empty list (for all 3 number of species) for output with 1 continuous predictor

results.res.cont <- NULL #empty list (for all 3 number of species) for residuals with 1 continuous predictor

results.coefficients2.cont <- NULL #empty list (for all 3 number of species) for output with 1 continuous and 1 binary predictor

results.res2.cont <- NULL #empty list (for all 3 number of species) for residuals with 1 continuous and 1 binary predictor

#start of simulation loop:

for (species in c(20,50,100)){#three different number of species

res.cont <- array(NA, c(4,3,n_sim,4,species))#array for residuals continuous response

res2.cont <- array(NA, c(4,3,n_sim,4,species))#array for residuals continuous response

for (t in 1:4) {#the four different trees:

tree1 <- sim.bdtree(b=1, d=0, n=species, extinct=T)#random ultrametric tree

if (t==1) tree <- tree1

if (t==2) tree <- transform(tree1, "lambda", 0.1) #tree similar to star phylogeny (diversification at base);

if (t==3) tree <- transform(tree1, "delta", 0.1)#tree opposite to a star phylogeny (diversification at tips)

tree$edge.length <- replace(tree$edge.length, tree$edge.length=="NaN", 0.5)#if producing NaN in tree3$edge.length

#-->replace with 0.5, ending up in probably non-ultrametric tree anymore!

if (t==4) tree <- transform(tree1, "kappa", 0) #tree with all branch lengths equal to 1

# for(corr in 1:3) {#three different correlation coefficients

#simulate 2 correlated continuous traits:

#create variance-covariance matrix for characters

#q <- cbind (c(1,corrs[corr]),c(corrs[corr],1));

#q2 <- cbind (c(1,corrs[corr], corrs[corr]),c(corrs[corr],1, corrs[corr]), c(corrs[corr], corrs[corr],1));
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for(corr in 1:3) {#three different correlation coefficients

#simulate 3 correlated continuous traits:

#create variance-covariance matrix for characters

#q <- cbind(c(1,corrs[corr]),c(corrs[corr],1)); #if only simulating two correlated traits

if(corr==1) corrs=0.01

q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0), c(corrs, 0,1)); #if simulating 3 correlated traits

if(corr==2) corrs=0.5

q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0), c(corrs, 0,1))

if(corr==3) corrs=0.9

q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0.65), c(corrs, 0.65,1))

for(i in 1:n_sim){#number of simulations

#simulate character evolution along a tree

sims <- sim.char(tree, par=q2, model="BM", nsim=1);

###############prepare data sets: ##############################################################3

#make binary data out of X3.1 (independent variable-->second covariate):

trait.x3 = sims[,3,1]

binary.X3 <- rep(NA,species)

for(j in 1:species)

ifelse (trait.x3[j] < mean(trait.x3), binary.X3[j] <- 0, binary.X3[j] <- 1)

#binary.X3

#make ordinal data out of X1.1 (dependent variable):

nominal.y <- rep(NA,species)

trait.x1 = sims[,1,1]

nominal.y <- cut(trait.x1, 4, labels=c("1", "2", "3", "4"))

#make binary data out of X1.1 (dependent variable):

binary.y <- rep(NA,species)

for(j in 1:species)

ifelse (trait.x1[j] < mean(trait.x1), binary.y[j] <- 0, binary.y[j] <- 1)

animal <- paste("s",c(1:species), sep="")#give species names to each species for creating the comparative data for pgls

data <- data.frame(animal,sims, binary.X3, nominal.y, binary.y);

data$nominal.ynumeric <- as.numeric(data$nominal.y)

data$binary.y <- as.factor(as.character(data[,"binary.y"]))

#print(tail(data))

#all(rownames(data) %in% tree$tip.label) #to check wheter tree tip labels and species names in data match

#########################################

#perfect fit:

#1 explanatory variable:

if(min(data[data[,"binary.y"]==1,"X2.1"]) > max(data[data[,"binary.y"]==0,"X2.1"])){

results.c.cont[t, corr, i, 1, 17] <- 333

results.c.cont[t, corr, i, 2, 17] <- 333

results.c.cont[t, corr, i, 3, 17] <- 333

results.c.cont[t, corr, i, 4, 17] <- 333

}

if (F){

#two explanatory variables

if((min(data[data[,"binary.y"]==1,"X2.1"]) > max(data[data[,"binary.y"]==0,"X2.1"])) & (isTRUE(data[,"binary.y"] == data[,"binary.X3"]))){

results.c2.cont[t, corr, i, 1, 25] <- 333

results.c2.cont[t, corr, i, 2, 25] <- 333

results.c2.cont[t, corr, i, 3, 25] <- 333

results.c2.cont[t, corr, i, 4, 25] <- 333

}

}#end if (F)

########### continuous response variable #######################################################

######################

#non-phylogenetic glm:

#1 continuous predictor:

lm1 <- try(lm(X1.1 ~ X2.1, data), silent=T)

#print(summary.lm(lm1))

if (class(lm1) != "try-error"){

results.c.cont[t, corr, i, 1, c(1:8)] <- matrix(summary(lm1)$coefficients, 1, 8)

res.cont[t,corr,i,1,c(1:species)] <- matrix(lm1$residual, 1, species)

}

else{

results.c.cont[t, corr, i, 1, c(1:8)] <- matrix(99, 1, 8)

res.cont[t,corr,i,1,c(1:species)] <- matrix(99, 1, species)
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}

#1 continuous and 1 binary predictor:

lm2 <- try(lm(X1.1 ~ X2.1 + binary.X3, data), silent=T)

#print(summary.lm(lm2))

if (class(lm2) != "try-error"){

results.c2.cont[t, corr, i, 1, c(1:12)] <- matrix(summary(lm2)$coefficients, 1, 12)

res2.cont[t,corr,i,1,c(1:species)] <- matrix(lm2$residual, 1, species)

}

else {

results.c2.cont[t, corr, i, 1, c(1:12)] <- matrix(99, 1, 12)

res2.cont[t,corr,i,1,c(1:species)] <- matrix(99, 1, species)

}

########################

#phylogenetic glm = pgls:

comp.data <- comparative.data(phy = tree, data = data, names.col = animal, vcv = TRUE)

#print(comp.data)

#1 continuous predictor:

pgls1 <- try(pgls(X1.1 ~ X2.1, data = comp.data, lambda="ML", bounds = list(lambda=c(0.001,1), kappa=c(1e-6,3), delta=c(1e-6,3))), silent=T)

#print(summary(pgls1))

if (class(pgls1) != "try-error"){

results.c.cont[t, corr, i, 2, c(1:8)] <- matrix(summary(pgls1)$coefficients, 1, 8)

results.c.cont[t, corr, i, 2, 9] <- matrix(as.numeric(summary(pgls1)$param[2]), 1, 1)

res.cont[t,corr,i,2,c(1:species)] <- matrix(pgls1$residual, 1, species)

}

else {

results.c.cont[t, corr, i, 2, c(1:9)] <- matrix(99, 1, 9)

res.cont[t,corr,i,2,c(1:species)] <- matrix(99, 1, species)

}

#1 continuous and 1 binary predictor:

pgls2 <- try(pgls(X1.1 ~ X2.1 + binary.X3, data = comp.data, lambda="ML", bounds = list(lambda=c(0.001,1), kappa=c(1e-6,3), delta=c(1e-6,3))), silent=T)

#print(summary(pgls2))

if (class(pgls2) != "try-error"){

results.c2.cont[t, corr, i, 2, c(1:12)] <- matrix(summary(pgls2)$coefficients, 1, 12)

results.c2.cont[t, corr, i, 2, 13] <- matrix(as.numeric(summary(pgls2)$param[2]), 1, 1)

res2.cont[t,corr,i,2,c(1:species)] <- matrix(pgls2$residual, 1, species)

}

else {

results.c2.cont[t, corr, i, 2, c(1:13)] <- matrix(99, 1, 13)

res2.cont[t,corr,i,2,c(1:species)] <- matrix(99, 1, species)

}

####################

#phylogenetic GEE:

#1 continuous predictor:

pgee <- try(compar.gee(X1.1 ~ X2.1, data = data, phy=tree), silent=T)

#print(pgee)

if (class(pgee) != "try-error"){

results.c.cont[t, corr, i, 3, c(1:8)] <- matrix(foo(pgee), 1, 8)

res.cont[t,corr,i,3,c(1:species)] <- matrix(pgee$residual, 1, species)

}

else {

results.c.cont[t, corr, i, 3, c(1:8)] <- matrix(99, 1, 8)

res.cont[t,corr,i,3,c(1:species)] <- matrix(99, 1, species)

}

#1 continuous and 1 binary predictor:

pgee2 <- try(compar.gee(X1.1 ~ X2.1 + binary.X3, data = data, phy=tree), silent=T)

#print(pgee2)

if (class(pgee2) != "try-error"){

results.c2.cont[t, corr, i, 3, c(1:12)] <- matrix(foo(pgee2), 1, 12)

res2.cont[t,corr,i,3,c(1:species)] <- matrix(pgee2$residual, 1, species)

}

else {

results.c2.cont[t, corr, i, 3, c(1:12)] <- matrix(99, 1, 12)

res2.cont[t,corr,i,3,c(1:species)] <- matrix(99, 1, species)

}
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#########################

#Phylogenetic mixed model:

#1 continuous predictor:

prior <- list(R=list(V=1,nu=0.002), G=list(G1=list(V=1, nu=0.002)))

m1 <- try(MCMCglmm(X1.1 ~ X2.1, random=~animal, data=data, pedigree=tree, prior=prior, pr=F, scale=F,saveX=F, nitt=30000), silent=T)#iterations!

#print(summary(m1))

#convergence diagnostics:

diag1=geweke.diag(m1$Sol)

results.c.cont[t, corr, i, 4, 18] <- matrix(diag1$z[1],1,1)#save z-value from geweke diagnostic test

results.c.cont[t, corr, i, 4, 19] <- matrix(diag1$z[2],1,1)#save z-value from geweke diagnostic test

results.c.cont[t, corr, i, 4, 20] <- matrix(2*pnorm(-abs(diag1$z[1])),1,1)#save p-value from geweke diagnostic test

results.c.cont[t, corr, i, 4, 21] <- matrix(2*pnorm(-abs(diag1$z[2])),1,1)#save p-value from geweke diagnostic test

if (class(m1) != "try-error"){

results.c.cont[t, corr, i, 4, c(1:10)] <- matrix(summary(m1)$solutions[,], 1, 10)

results.c.cont[t, corr, i, 4, c(11:16)] <- matrix(summary(m1$Sol)$statistics[,c(2:4)], 1, 6)

}

else {

results.c.cont[t, corr, i, 4, c(1:10)] <- matrix(99, 1, 10)

results.c.cont[t, corr, i, 4, c(11:16)] <- matrix(99, 1, 6)

}

#1 continuous and 1 binary predictor:

#r0=0.5

#var <- cbind(c(1e+08,r0,r0), c(r0,1e+08,r0),c(r0,r0,1e+08))#vcv for prior of fixed effects (B)

#B=list(mu=rep(0,3), V=var)

prior2 <- list(R=list(V=1,nu=0.002), G=list(G1=list(V=1, nu=0.002)))

m2 <- try(MCMCglmm(X1.1 ~ X2.1 + binary.X3, random=~animal, data=data, scale=F,pedigree=tree, prior=prior2, pr=F, saveX=F, nitt=30000), silent=T)#iterations!

#print(summary(m2))

#convergence diagnostics:

diag2=geweke.diag(m2$Sol)

results.c2.cont[t, corr, i, 4, 26] <- matrix(diag2$z[1],1,1)#save z-value from geweke diagnostic test

results.c2.cont[t, corr, i, 4, 27] <- matrix(diag2$z[2],1,1)#save z-value from geweke diagnostic test

results.c2.cont[t, corr, i, 4, 28] <- matrix(diag2$z[3],1,1)#save z-value from geweke diagnostic test

results.c2.cont[t, corr, i, 4, 29] <- matrix(2*pnorm(-abs(diag2$z[1])),1,1)#save p-value from geweke diagnostic test

results.c2.cont[t, corr, i, 4, 30] <- matrix(2*pnorm(-abs(diag2$z[2])),1,1)#save p-value from geweke diagnostic test

results.c2.cont[t, corr, i, 4, 31] <- matrix(2*pnorm(-abs(diag2$z[3])),1,1)#save p-value from geweke diagnostic test

if (class(m1) != "try-error"){

results.c2.cont[t, corr, i, 4, c(1:15)] <- matrix(summary(m2)$solutions[,], 1, 15)

results.c2.cont[t, corr, i, 4, c(16:24)] <- matrix(summary(m2$Sol)$statistics[,c(2:4)], 1, 9)

}

else {

results.c2.cont[t, corr, i, 4, c(1:15)] <- matrix(99, 1, 15)

results.c2.cont[t, corr, i, 4, c(16:24)] <- matrix(99, 1, 9)

}

}#end of n_sim loop

}#end of corr loop

} #end of tree loop

#results continuous response

results.coefficients.cont <- list(results.coefficients.cont, results.c.cont)

results.coefficients2.cont <- list(results.coefficients2.cont, results.c2.cont)

#residuals continuous response

results.res.cont <- list(results.res.cont, res.cont)

results.res2.cont <- list(results.res2.cont, res2.cont)

}# end of species loop
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B.2 Simulation loop for ordinal response

#########################################################################################

#packages needed:

#########################################################################################

library(gee)

library(phytools)

library(geiger)

library(ape)

library(caper)

library(MCMCglmm)

library(phylolm)

#############################################################################################################

#Simulation loop ordinal response

##############################################################################################################

foo <- function(x) #function to extract all coefficients from the compar.gee output (by Emmanuel Paradis)

{

nas <- is.na(x$coef)

coef <- x$coef[!nas]

cnames <- names(coef)

coef <- matrix(rep(coef, 4), ncol = 4)

dimnames(coef) <- list(cnames,

c("Estimate", "S.E.", "t", "Pr(T > |t|)"))

df <- x$dfP - dim(coef)[1]

coef[, 2] <- sqrt(diag(x$W))

coef[, 3] <- coef[, 1]/coef[, 2]

if (df < 0) {

warning("not enough degrees of freedom to compute P-values.")

coef[, 4] <- NA

} else coef[, 4] <- 2 * (1 - pt(abs(coef[, 3]), df))

coef

}

#set seed, number of simulations and the empty array for saving the outputs of the analyses:

set.seed(1234)

n_sim <- 1000 #number of simulations

#empty arrays to save the outputs fo ordinal response

results.c.nominal <- array(NA, c(4,3,n_sim, 4, 53)) #array for coefficients (1 continuous predictor)

results.c2.nominal <- array(NA, c(4,3,n_sim, 4, 79)) #array for coefficients (1 continuous and 1 binary predictor)

results.coefficients.nominal <- NULL #empty list (for all 3 number of species) for output with 1 continuous predictor

results.res.nominal <- NULL #empty list (for all 3 number of species) for residuals with 1 continuous predictor

results.coefficients2.nominal <- NULL #empty list (for all 3 number of species) for output with 1 continuous and 1 binary predictor

results.res2.nominal <- NULL #empty list (for all 3 number of species) for residuals with 1 continuous and 1 binary predictor

#start of simulation loop:

for (species in c(20,50,100)){#three different number of species

res.nominal <- array(NA, c(4,3,n_sim,4,species))#array for residuals nominal respsonse

res2.nominal <- array(NA, c(4,3,n_sim,4,species))#array for residuals nominal response

for (t in 1:4) {#the four different trees:

tree1 <- sim.bdtree(b=1, d=0, n=species, extinct=T)#random ultrametric tree

if (t==1) tree <- tree1

if (t==2) tree <- transform(tree1, "lambda", 0.1) #tree similar to star phylogeny (diversification at base);

if (t==3) tree <- transform(tree1, "delta", 0.1)#tree opposite to a star phylogeny (diversification at tips)

tree$edge.length <- replace(tree$edge.length, tree$edge.length=="NaN", 0.5)#if producing NaN in tree3$edge.length

#-->replace with 0.5, ending up in probably non-ultrametric tree anymore!

if (t==4) tree <- transform(tree1, "kappa", 0) #tree with all branch lengths equal to 1

# for(corr in 1:3) {#three different correlation coefficients

#simulate 2 correlated continuous traits:

#create variance-covariance matrix for characters

#q <- cbind (c(1,corrs[corr]),c(corrs[corr],1));

#q2 <- cbind (c(1,corrs[corr], corrs[corr]),c(corrs[corr],1, corrs[corr]), c(corrs[corr], corrs[corr],1));

for(corr in 1:3) {#three different correlation coefficients

#simulate 3 correlated continuous traits:

#create variance-covariance matrix for characters

#q <- cbind(c(1,corrs[corr]),c(corrs[corr],1)); #if only simulating two correlated traits

if(corr==1) corrs=0.01

q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0), c(corrs, 0,1)); #if simulating 3 correlated traits

if(corr==2) corrs=0.5

q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0), c(corrs, 0,1))

if(corr==3) corrs=0.9
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q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0.65), c(corrs, 0.65,1))

for(i in 1:n_sim){#number of simulations

#simulate character evolution along a tree

sims <- sim.char(tree, par=q2, model="BM", nsim=1);

###############prepare data sets: ##############################################################3

#make binary data out of X3.1 (independent variable-->second covariate):

trait.x3 = sims[,3,1]

binary.X3 <- rep(NA,species)

for(j in 1:species)

ifelse (trait.x3[j] < mean(trait.x3), binary.X3[j] <- 0, binary.X3[j] <- 1)

#binary.X3

#make ordinal data out of X1.1 (dependent variable):

nominal.y <- rep(NA,species)

trait.x1 = sims[,1,1]

nominal.y <- cut(trait.x1, 4, labels=c("1", "2", "3", "4"))

#make binary data out of X1.1 (dependent variable):

binary.y <- rep(NA,species)

for(j in 1:species)

ifelse (trait.x1[j] < mean(trait.x1), binary.y[j] <- 0, binary.y[j] <- 1)

animal <- paste("s",c(1:species), sep="")#give species names to each species for creating the comparative data for pgls

data <- data.frame(animal,sims, binary.X3, nominal.y, binary.y);

data$nominal.ynumeric <- as.numeric(data$nominal.y)

data$binary.y <- as.factor(as.character(data[,"binary.y"]))

#print(tail(data))

#all(rownames(data) %in% tree$tip.label) #to check wheter tree tip labels and species names in data match

#########################################

#perfect fit:

#1 explanatory variable:

if(min(data[data[,"binary.y"]==1,"X2.1"]) > max(data[data[,"binary.y"]==0,"X2.1"])){

results.c.nominal[t, corr, i, 1, 49] <- 333

results.c.nominal[t, corr, i, 2, 49] <- 333

results.c.nominal[t, corr, i, 3, 49] <- 333

results.c.nominal[t, corr, i, 4, 49] <- 333

}

if(F){

#two explanatory variables

if((min(data[data[,"binary.y"]==1,"X2.1"]) > max(data[data[,"binary.y"]==0,"X2.1"])) & (isTRUE(data[,"binary.y"] == data[,"binary.X3"]))){

results.c2.nominal[t, corr, i, 1, 73] <- 333

results.c2.nominal[t, corr, i, 2, 73] <- 333

results.c2.nominal[t, corr, i, 3, 73] <- 333

results.c2.nominal[t, corr, i, 4, 73] <- 333

}

}#end if(F)

############ nominal response variable ##############################################

######################

#non-phylogenetic glm:

#1 continuous predictor:

lm21 <- try(lm(nominal.ynumeric ~ X2.1, data), silent=T)

#print(summary(lm21))

if (class(lm21) != "try-error"){

results.c.nominal[t, corr, i, 1, c(1:8)] <- matrix(summary(lm21)$coefficients, 1, 8)

res.nominal[t,corr,i,1,c(1:species)] <- matrix(lm21$residual, 1, species)

}

else {

results.c.nominal[t, corr, i, 1, c(1:8)] <- matrix(99, 1, 8)

res.nominal[t,corr,i,1,c(1:species)] <- matrix(99, 1, species)

}

#1 continuous and 1 binary predictor:

lm22 <- try(lm(nominal.ynumeric ~ X2.1 + binary.X3, data), silent=T)

#print(summary(lm22))
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if (class(lm22) != "try-error"){

results.c2.nominal[t, corr, i, 1, c(1:12)] <- matrix(summary(lm22)$coefficients, 1, 12)

res2.nominal[t,corr,i,1,c(1:species)] <- matrix(lm22$residual, 1, species)

}

else {

results.c2.nominal[t, corr, i, 1, c(1:12)] <- matrix(99, 1, 12)

res2.nominal[t,corr,i,1,c(1:species)] <- matrix(99, 1, species)

}

########################

#phylogenetic glm = pgls:

comp.data <- comparative.data(phy = tree, data = data, names.col = animal, vcv = TRUE)

#print(comp.data)

#1 continuous predictor:

pgls21 <- try(pgls(nominal.ynumeric ~ X2.1, data = comp.data, lambda="ML"), silent=T)

#print(summary(pgls21))

if (class(pgls21) != "try-error"){

results.c.nominal[t, corr, i, 2, c(1:8)] <- matrix(summary(pgls21)$coefficients, 1, 8)

results.c.nominal[t, corr, i, 2, 9] <- matrix(as.numeric(summary(pgls21)$param[2]), 1, 1)

res.nominal[t,corr,i,2,c(1:species)] <- matrix(pgls21$residual, 1, species)

}

else {

results.c.nominal[t, corr, i, 2, c(1:9)] <- matrix(99, 1, 9)

res.nominal[t,corr,i,2,c(1:species)] <- matrix(99, 1, species)

}

#1 continuous and 1 binary predictor:

pgls22 <- try(pgls(nominal.ynumeric ~ X2.1 + binary.X3, data = comp.data, lambda="ML"), silent=T)

#print(summary(pgls22))

if (class(pgls22) != "try-error"){

results.c2.nominal[t, corr, i, 2, c(1:12)] <- matrix(summary(pgls22)$coefficients, 1, 12)

results.c2.nominal[t, corr, i, 2, 13] <- matrix(as.numeric(summary(pgls22)$param[2]), 1, 1)

res2.nominal[t,corr,i,2,c(1:species)] <- matrix(pgls22$residual, 1, species)

}

else {

results.c2.nominal[t, corr, i, 2, c(1:13)] <- matrix(99, 1, 13)

res2.nominal[t,corr,i,2,c(1:species)] <- matrix(99, 1, species)

}

####################

#phylogenetic GEE:

#1 continuous predictor:

pgee2 <- try(compar.gee(nominal.ynumeric ~ X2.1, data = data, phy=tree), silent=T)

#print(pgee2)

if (class(pgee2) != "try-error"){

results.c.nominal[t, corr, i, 3, c(1:8)] <- matrix(foo(pgee2), 1, 8)

res.nominal[t,corr,i,3,c(1:species)] <- matrix(pgee2$residual, 1, species)

}

else {

results.c.nominal[t, corr, i, 3, c(1:8)] <- matrix(99, 1, 8)

res.nominal[t,corr,i,3,c(1:species)] <- matrix(99, 1, species)

}

#1 continuous and 1 binary predictor:

pgee22 <- try(compar.gee(nominal.ynumeric ~ X2.1 + binary.X3, data = data, phy=tree), silent=T)

#print(pgee22)

if (class(pgee22) != "try-error"){

results.c2.nominal[t, corr, i, 3, c(1:12)] <- matrix(foo(pgee22), 1, 12)

res2.nominal[t,corr,i,3,c(1:species)] <- matrix(pgee22$residual, 1, species)

}

else {

results.c2.nominal[t, corr, i, 3, c(1:12)] <- matrix(99, 1, 12)

res2.nominal[t,corr,i,3,c(1:species)] <- matrix(99, 1, species)

}

#########################

#Phylogenetic mixed model:

#1 continuous predictor:

k <- length(levels(data$nominal.y)); k

I <- diag(k-1); I
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J <- matrix(rep(1, (k-1)^2), c(k-1, k-1)); J

IJ <- (1/k) * (I + J); IJ #this prior implies that the variance in each probability is constant and that probabilities of

#different outcomes are mutually independent, conditional on the constraint that they must sum to one.

prior22 <- list(R = list(V = IJ, fix=1),G = list(G1 = list(V = IJ,nu=0.002)))

m21 <- try(MCMCglmm(nominal.y ~ trait-1 + trait:X2.1, random=~us(trait):animal,rcov = ~us(trait):units, scale=F,family="categorical", data=data, pedigree=tree, prior=prior22, pl=T, saveX=F, nitt=12000), silent=T)#iterations!

#print(summary(m21))

#convergence diagnostics:

diag11=geweke.diag(m21$Sol)

results.c.nominal[t, corr, i, 4, 50] <- matrix(diag11$z[1],1,1)#save z-value from geweke diagnostic test

results.c.nominal[t, corr, i, 4, 51] <- matrix(diag11$z[2],1,1)#save z-value from geweke diagnostic test

results.c.nominal[t, corr, i, 4, 52] <- matrix(2*pnorm(-abs(diag11$z[1])),1,1)#save p-value from geweke diagnostic test

results.c.nominal[t, corr, i, 4, 53] <- matrix(2*pnorm(-abs(diag11$z[2])),1,1)#save p-value from geweke diagnostic test

if (class(m21) != "try-error"){

results.c.nominal[t, corr, i, 4, c(1:30)] <- matrix(summary(m21)$solutions[,], 1, 30)

results.c.nominal[t, corr, i, 4, c(31:48)] <- matrix(summary(m21$Sol)$statistics[,c(2:4)], 1, 18)

}

else {

results.c.nominal[t, corr, i, 4, c(1:30)] <- matrix(99, 1, 30)

results.c.nominal[t, corr, i, 4, c(31:48)] <- matrix(99, 1, 18)

}

#1 continuous and 1 binary predictor:

#r=0.5

Prior.phyl6 = list(R = list(V = IJ, fix=1),G = list(G1 = list(V = IJ,nu=0.002)))

m22 <- try(MCMCglmm(nominal.y ~ trait-1+ trait:X2.1 + trait:binary.X3, random=~us(trait):animal,scale=F,rcov = ~us(trait):units, pedigree=tree,

data = data, family="categorical", nitt=12000, pl=T,

prior=Prior.phyl6), silent=T)

#print(summary(m22))

#convergence diagnostics:

diag12=geweke.diag(m22$Sol)

results.c2.nominal[t, corr, i, 4, 74] <- matrix(diag12$z[1],1,1)#save z-value from geweke diagnostic test

results.c2.nominal[t, corr, i, 4, 75] <- matrix(diag12$z[2],1,1)#save z-value from geweke diagnostic test

results.c2.nominal[t, corr, i, 4, 76] <- matrix(diag12$z[3],1,1)#save z-value from geweke diagnostic test

results.c2.nominal[t, corr, i, 4, 77] <- matrix(2*pnorm(-abs(diag12$z[1])),1,1)#save p-value from geweke diagnostic test

results.c2.nominal[t, corr, i, 4, 78] <- matrix(2*pnorm(-abs(diag12$z[2])),1,1)#save p-value from geweke diagnostic test

results.c2.nominal[t, corr, i, 4, 78] <- matrix(2*pnorm(-abs(diag12$z[3])),1,1)#save p-value from geweke diagnostic test

if (class(m22) != "try-error"){

results.c2.nominal[t, corr, i, 4, c(1:45)] <- matrix(summary(m22)$solutions[,], 1, 45)

results.c2.nominal[t, corr, i, 4, c(46:72)] <- matrix(summary(m22$Sol)$statistics[,c(2:4)], 1, 27)

}

else {

results.c2.nominal[t, corr, i, 4, c(1:45)] <- matrix(99, 1, 45)

results.c2.nominal[t, corr, i, 4, c(46:72)] <- matrix(99, 1, 27)

}

}#end of n_sim loop

}#end of corr loop

} #end of tree loop

#results nominal response

results.coefficients.nominal <- list(results.coefficients.nominal, results.c.nominal)

results.coefficients2.nominal <- list(results.coefficients2.nominal, results.c2.nominal)

#residuals nominal response

results.res.nominal <- list(results.res.nominal, res.nominal)

results.res2.nominal <- list(results.res2.nominal, res2.nominal)

}# end of species loop
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B.3 Simulation loop for binary response

#########################################################################################

#packages needed:

#########################################################################################

library(gee)

library(phytools)

library(geiger)

library(ape)

library(caper)

library(MCMCglmm)

library(phylolm)

#########################################################################################

#Simulation loop binary response

#########################################################################################

set.seed(123)

foo <- function(x) #function to extract all coefficients from the compar.gee output (by Emmanuel Paradis)

{

nas <- is.na(x$coef)

coef <- x$coef[!nas]

cnames <- names(coef)

coef <- matrix(rep(coef, 4), ncol = 4)

dimnames(coef) <- list(cnames,

c("Estimate", "S.E.", "t", "Pr(T > |t|)"))

df <- x$dfP - dim(coef)[1]

coef[, 2] <- sqrt(diag(x$W))

coef[, 3] <- coef[, 1]/coef[, 2]

if (df < 0) {

warning("not enough degrees of freedom to compute P-values.")

coef[, 4] <- NA

} else coef[, 4] <- 2 * (1 - pt(abs(coef[, 3]), df))

coef

}

n_sim <- 1000 #number of simulations

#empty arrays to save the outputs fo binary response

results.c.binary <- array(NA, c(4,3,n_sim, 4, 27)) #array for coefficients (1 continuous predictor)

results.c2.binary <- array(NA, c(4,3,n_sim, 4, 32)) #array for coefficients (1 continuous and 1 binary predictor)

results.coefficients.partII.binary <- NULL #empty list (for all 3 number of species) for output with 1 continuous predictor

results.res.partII.binary <- NULL #empty list (for all 3 number of species) for residuals with 1 continuous predictor

results.coefficients2.partII.binary <- NULL #empty list (for all 3 number of species) for output with 1 continuous and 1 binary predictor

results.res2.partII.binary <- NULL #empty list (for all 3 number of species) for residuals with 1 continuous and 1 binary predictor

#start of simulation loop:

for (species in c(20,50,100)){#three different number of species

res.binary <- array(NA, c(4,3,n_sim,4,species))#array for residuals binary response

res2.binary <- array(NA, c(4,3,n_sim,4,species))#array for residuals binary response

for (t in 1:4) {#the four different trees:

tree1 <- sim.bdtree(b=1, d=0, n=species, extinct=T)#random ultrametric tree

if (t==1) tree <- tree1

if (t==2) tree <- transform(tree1, "lambda", 0.1) #tree similar to star phylogeny (diversification at base);

if (t==3) tree <- transform(tree1, "delta", 0.1)#tree opposite to a star phylogeny (diversification at tips)

tree$edge.length <- replace(tree$edge.length, tree$edge.length=="NaN", 0.5)#if producing NaN in tree3$edge.length

#-->replace with 0.5, ending up in probably non-ultrametric tree anymore!

if (t==4) tree <- transform(tree1, "kappa", 0) #tree with all branch lengths equal to 1

# for(corr in 1:3) {#three different correlation coefficients

#simulate 2 correlated continuous traits:

#create variance-covariance matrix for characters

#q <- cbind (c(1,corrs[corr]),c(corrs[corr],1));

#q2 <- cbind (c(1,corrs[corr], corrs[corr]),c(corrs[corr],1, corrs[corr]), c(corrs[corr], corrs[corr],1));

for(corr in 1:3) {#three different correlation coefficients

#simulate 3 correlated continuous traits:

#create variance-covariance matrix for characters

#q <- cbind(c(1,corrs[corr]),c(corrs[corr],1)); #if only simulating two correlated traits

if(corr==1) corrs=0.01

q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0), c(corrs, 0,1)); #if simulating 3 correlated traits

if(corr==2) corrs=0.5

q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0), c(corrs, 0,1))

if(corr==3) corrs=0.9

q2 <- cbind(c(1,corrs, corrs),c(corrs,1, 0.65), c(corrs, 0.65,1))
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for(i in 1:n_sim){#number of simulations

#simulate character evolution along a tree

sims <- sim.char(tree, par=q2, model="BM", nsim=1);

###############prepare data sets: ##############################################################3

#make binary data out of X3.1 (independent variable-->second covariate):

trait.x3 = sims[,3,1]

binary.X3 <- rep(NA,species)

for(j in 1:species)

ifelse (trait.x3[j] < mean(trait.x3), binary.X3[j] <- 0, binary.X3[j] <- 1)

#binary.X3

#make ordinal data out of X1.1 (dependent variable):

nominal.y <- rep(NA,species)

trait.x1 = sims[,1,1]

nominal.y <- cut(trait.x1, 4, labels=c("1", "2", "3", "4"))

#make binary data out of X1.1 (dependent variable):

binary.y <- rep(NA,species)

for(j in 1:species)

ifelse (trait.x1[j] < mean(trait.x1), binary.y[j] <- 0, binary.y[j] <- 1)

animal <- paste("s",c(1:species), sep="")#give species names to each species for creating the comparative data for pgls

data <- data.frame(animal,sims, binary.X3, nominal.y, binary.y);

data$nominal.ynumeric <- as.numeric(data$nominal.y)

data$binary.y <- as.factor(as.character(data[,"binary.y"]))

#print(tail(data))

#########################################

#perfect fit:

#1 explanatory variable:

if(min(data[data[,"binary.y"]==1,"X2.1"]) > max(data[data[,"binary.y"]==0,"X2.1"])){

results.c.binary[t, corr, i, 1, 17] <- 333

results.c.binary[t, corr, i, 2, 17] <- 333

results.c.binary[t, corr, i, 3, 17] <- 333

results.c.binary[t, corr, i, 4, 17] <- 333

}

if(F){

#two explanatory variables

if((min(data[data[,"binary.y"]==1,"X2.1"]) > max(data[data[,"binary.y"]==0,"X2.1"])) & (isTRUE(data[,"binary.y"] == data[,"binary.X3"]))){

results.c2.binary[t, corr, i, 1, 25] <- 333

results.c2.binary[t, corr, i, 2, 25] <- 333

results.c2.binary[t, corr, i, 3, 25] <- 333

results.c2.binary[t, corr, i, 4, 25] <- 333

}

}#if F end

##################### binary response variable ########################################################

######################

#non-phylogenetic glm:

#1 continuous predictor:

lm31 <- try(glm(binary.y ~ X2.1, data, family=binomial(link = "logit")), silent=t)

#print(summary(lm31))

if (class(lm31) != "try-error"){

results.c.binary[t, corr, i, 1, c(1:8)] <- matrix(summary(lm31)$coefficients, 1, 8)

results.c.binary[t, corr, i, 1, 13] <- matrix(summary(lm31)$iter, 1, 1)

res.binary[t,corr,i,1,c(1:species)] <- matrix(lm31$residual, 1, species)

}

else {

results.c.binary[t, corr, i, 1, c(1:8)] <- matrix(99, 1, 8)

res.binary[t,corr,i,1,c(1:species)] <- matrix(99, 1, species)

}

#1 continuous and 1 binary predictor:

lm32 <- try(glm(binary.y ~ X2.1 + binary.X3, data, family=binomial(link = "logit")), silent=T)

#print(summary(lm32))

if (class(lm32) != "try-error"){

results.c2.binary[t, corr, i, 1, c(1:12)] <- matrix(summary(lm32)$coefficients, 1, 12)

results.c2.binary[t, corr, i, 1, 13] <- matrix(summary(lm32)$iter, 1, 1)

res2.binary[t,corr,i,1,c(1:species)] <- matrix(lm32$residual, 1, species)
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}

else {

results.c2.binary[t, corr, i, 1, c(1:12)] <- matrix(99, 1, 12)

res2.binary[t,corr,i,1,c(1:species)] <- matrix(99, 1, species)

}

#######################

#phylogenetic GEE:

#freezes sometimes, not possible to run simulation loop

if(F){

#1 continuous predictor:

pgee3 <- try(compar.gee(binary.y ~ X2.1, data = data, family="binomial",phy=tree), silent=T)

print(pgee3)

if (class(pgee3) != "try-error"){

results.c.binary[t, corr, i, 2, c(1:8)] <- matrix(foo(pgee3), 1, 8)

res.binary[t,corr,i,2,c(1:species)] <- matrix(pgee3$residual, 1, species)

}

else {

results.c.binary[t, corr, i, 2, c(1:8)] <- matrix(99, 1, 8)

res.binary[t,corr,i,2,c(1:species)] <- matrix(99, 1, species)

}

#1 continuous and 1 binary predictor:

pgee32 <- try(compar.gee(binary.y ~ X2.1 + binary.X3, data = data, family="binomial", phy=tree), silent=T)

print(pgee32)

if (class(pgee32) != "try-error"){

results.c2.binary[t, corr, i, 2, c(1:12)] <- matrix(foo(pgee32), 1, 12)

res2.binary[t,corr,i,2,c(1:species)] <- matrix(pgee32$residual, 1, species)

}

else {

results.c2.binary[t, corr, i, 2, c(1:12)] <- matrix(99, 1, 12)

res2.binary[t,corr,i,2,c(1:species)] <- matrix(99, 1, species)

}

}

#########################

#Phylogenetic mixed model:

#1 continuous predictor:

Prior.phyl51 = list(R = list(V = 1, fix=1),G = list(G1 = list(V = 1,nu=0.002)))

m31 <- try(MCMCglmm(binary.y ~ X2.1, random=~animal, rcov = ~units, pedigree=tree,

data = data, family="categorical", nitt=12000, scale=F,

prior=Prior.phyl51), silent=T)#iterations!

#print(summary(m31))

if (class(m31) != "try-error"){

#convergence diagnostics:

diag1=geweke.diag(m31$Sol)

results.c.binary[t, corr, i, 3, 18] <- matrix(diag1$z[1],1,1)#save z-value from geweke diagnostic test

results.c.binary[t, corr, i, 3, 19] <- matrix(diag1$z[2],1,1)#save z-value from geweke diagnostic test

results.c.binary[t, corr, i, 3, 20] <- matrix(2*pnorm(-abs(diag1$z[1])),1,1)#save p-value from geweke diagnostic test

results.c.binary[t, corr, i, 3, 21] <- matrix(2*pnorm(-abs(diag1$z[2])),1,1)#save p-value from geweke diagnostic test

results.c.binary[t, corr, i, 3, c(1:10)] <- matrix(summary(m31)$solutions[,], 1, 10)

results.c.binary[t, corr, i, 3, c(11:16)] <- matrix(summary(m31$Sol)$statistics[,c(2:4)], 1, 6)

}

else {

results.c.binary[t, corr, i, 3, c(1:16)] <- matrix(99, 1, 16)

}

#1 continuous and 1 binary predictor:

#r1=0.5

#var2 <- cbind(c(1e+08,r1,r1), c(r1,1e+08,r1),c(r1,r1,1e+08)); var1#vcv for prior of fixed effects (B)

#B=list(mu=rep(0,3), V=var2)

Prior.phyl52 = list(R = list(V = 1, fix=1),G = list(G1 = list(V = 1,nu=0.002)))

m32 <- try(MCMCglmm(binary.y ~ X2.1 + binary.X3, random=~animal, rcov = ~units, pedigree=tree,

data = data, family="categorical", nitt=12000, scale=F,

prior=Prior.phyl52), silent=T)#iterations!

#print(summary(m32))
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if (class(m32) != "try-error"){

#convergence diagnostics:

diag2=geweke.diag(m32$Sol)

results.c2.binary[t, corr, i, 3, 26] <- matrix(diag2$z[1],1,1)#save z-value from geweke diagnostic test

results.c2.binary[t, corr, i, 3, 27] <- matrix(diag2$z[2],1,1)#save z-value from geweke diagnostic test

results.c2.binary[t, corr, i, 3, 28] <- matrix(diag2$z[3],1,1)#save z-value from geweke diagnostic test

results.c2.binary[t, corr, i, 3, 29] <- matrix(2*pnorm(-abs(diag2$z[1])),1,1)#save p-value from geweke diagnostic test

results.c2.binary[t, corr, i, 3, 30] <- matrix(2*pnorm(-abs(diag2$z[2])),1,1)#save p-value from geweke diagnostic test

results.c2.binary[t, corr, i, 3, 31] <- matrix(2*pnorm(-abs(diag2$z[3])),1,1)#save p-value from geweke diagnostic test

results.c2.binary[t, corr, i, 3, c(1:15)] <- matrix(summary(m32)$solutions[,], 1, 15)

results.c2.binary[t, corr, i, 3, c(16:24)] <- matrix(summary(m32$Sol)$statistics[,c(2:4)], 1, 9)

}

else {

results.c2.binary[t, corr, i, 3, c(1:24)] <- matrix(99, 1, 24)

}

############################################

#phylogenetic logistic regression by Lam Ho and Cecile Ane using the phylolm package:

#1 continuous predictor:

data$binaryylogreg=as.numeric(as.character(data[,7]));

data$binaryX3logreg=as.numeric(as.character(data[,5]));

plogreg1 <- try(phyloglm(binaryylogreg ~ X2.1, phy=tree, data=data, btol=30), silent=T)

#print(summary(plogreg1))

if (class(plogreg1) != "try-error"){

#res_matrix_phylolm=as.matrix(summary(plogreg1)$coefficients); res_matrix_phylolm

#res1_phylolm <- as.numeric(res_matrix_phylolm); #res1_phylolm

#tvalue <- (res1_phylolm[c(1:2)]/res1_phylolm[c(3:4)])

tvalue <- (summary(plogreg1)$coefficients[,1])/(summary(plogreg1)$coefficients[,2])

p11 = 2 * pnorm(-abs(tvalue[1])); #p11

p21 = 2 * pnorm(-abs(tvalue[2])); #p21

results.c.binary[t, corr, i, 4, c(1:4)] <- matrix(summary(plogreg1)$coefficients, 1, 4)

results.c.binary[t, corr, i, 4, c(5:6)] <- matrix(tvalue, 1, 2)

results.c.binary[t, corr, i, 4, c(7:8)] <- matrix(c(p11,p21), 1, 2)

results.c.binary[t, corr, i, 4, 18] <- matrix(summary(plogreg1)$alpha, 1, 1)

results.c.binary[t, corr, i, 4, 27] <- matrix(plogreg1$convergeflag, 1, 1)

res.binary[t,corr,i,4,c(1:species)] <- matrix(summary(plogreg1)$residuals, 1, species)

}

else {

results.c.binary[t, corr, i, 4, c(1:27)] <- matrix(99, 1, 27)

res.binary[t,corr,i,4,c(1:species)] <- matrix(99, 1, species)

}

#1 continuous and 1 binary predictor:

plogreg2 <- try(phyloglm(binaryylogreg ~ X2.1 + binaryX3logreg, phy=tree, data=data, btol=30), silent=T)

print(summary(plogreg2))

if (class(plogreg2) != "try-error"){

results.c2.binary[t, corr, i, 4, c(1:6)] <- matrix(summary(plogreg2)$coefficients, 1, 6)

t2value <- (summary(plogreg2)$coefficients[,1])/(summary(plogreg2)$coefficients[,2])

p12=2 * pnorm(-abs(t2value[1])); #p12

p22=2 * pnorm(-abs(t2value[2])); #p22

p32=2 * pnorm(-abs(t2value[3])); #p32

results.c2.binary[t, corr, i, 4, c(7:9)] <- matrix(t2value, 1, 3)

results.c2.binary[t, corr, i, 4, c(10:12)] <- matrix(c(p12,p22,p32), 1, 3)

results.c2.binary[t, corr, i, 4, 26] <- matrix(summary(plogreg2)$alpha, 1, 1)

results.c2.binary[t, corr, i, 4, 32] <- matrix(plogreg2$convergeflag, 1, 1)

res2.binary[t,corr,i,4,c(1:species)] <- matrix(summary(plogreg2)$residuals, 1, species)

}

else {

results.c2.binary[t, corr, i, 4, c(1:32)] <- matrix(99, 1, 32)

res2.binary[t,corr,i,4,c(1:species)] <- matrix(99, 1, species)

}

}#end of n_sim loop

}#end of corr loop
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} #end of tree loop

#results binary response

results.coefficients.binary <- list(results.coefficients.binary, results.c.binary)

results.coefficients2.binary <- list(results.coefficients2.binary, results.c2.binary)

#residuals binary response

results.res.partII.binary <- list(results.res.partII.binary, res.binary)

results.res2.partII.binary <- list(results.res2.partII.binary, res2.binary)

}# end of species loop
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C Results - Mean, Mean error and Rooted mean

squared error

C.1 Continuous response

C.1.1 Non-phylogenetic GLM

Table C.1: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - Non-phylogenetic GLM (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.006 (0.398) 0.001 0.398 1000 -0.005 (0.345) -0.010 0.345 1000 -0.001 (0.229) -0.006 0.229 1000
Tree 2 -0.005 (0.244) -0.010 0.244 1000 0.005 (0.149) 0.000 0.149 1000 0.007 (0.104) 0.002 0.104 1000
Tree 3 -0.036 (0.796) -0.041 0.796 1000 0.027 (0.451) 0.022 0.452 1000 0.006 (0.615) 0.001 0.615 1000
Tree 4 -0.007 (0.418) -0.012 0.418 1000 0.017 (0.299) 0.012 0.299 1000 0.008 (0.274) 0.003 0.274 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.503 (0.341) 0.002 0.341 1000 0.487 (0.297) -0.014 0.297 1000 0.502 (0.216) 0.001 0.216 1000
Tree 2 0.500 (0.215) -0.001 0.215 1000 0.496 (0.133) -0.005 0.133 1000 0.502 (0.089) 0.001 0.089 1000
Tree 3 0.518 (0.708) 0.017 0.708 1000 0.479 (0.389) -0.022 0.390 1000 0.527 (0.541) 0.026 0.541 1000
Tree 4 0.510 (0.324) 0.009 0.439 1000 0.501 (0.286) 0.000 0.286 1000 0.495 (0.225) -0.006 0.225 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.899 (0.18) 0.000 0.18 1000 0.909 (0.150) 0.01 0.150 1000 0.902 (0.105) 0.003 0.105 1000
Tree 2 0.892 (0.109) -0.007 0.109 1000 0.902 (0.064) 0.003 0.064 1000 0.901 (0.045) 0.002 0.045 1000
Tree 3 0.900 (0.371) 0.001 0.371 1000 0.890 (0.203) -0.009 0.203 1000 0.895 (0.270) -0.004 0.270 1000
Tree 4 0.902 (0.177) 0.003 0.231 1000 0.895 (0.137) -0.004 0.137 1000 0.895 (0.119) -0.004 0.119 1000
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Table C.2: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - Non-phylogenetic GLM (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.003 (0.46) -0.007 0.459 1000 -0.008 (0.362) -0.011 0.362 1000 -0.006 (0.254) -0.01 0.254 1000
Tree 2 -0.017 (0.291) -0.02 0.292 1000 0.003 (0.172) -0.001 0.172 1000 0.007 (0.123) 0.004 0.123 1000
Tree 3 0.001 (0.778) -0.003 0.778 1000 0.036 (0.517) 0.033 0.518 1000 0.002 (0.611) -0.001 0.611 1000
Tree 4 -0.008 0.459) -0.011 0.527 1000 0.013 (0.328) 0.010 0.328 1000 0.000 (0.295) -0.003 0.295 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.393 (0.381) -0.039 0.383 1000 0.382 (0.309) -0.050 0.313 1000 0.403 (0.231) -0.028 0.232 1000
Tree 2 0.400 (0.256) -0.032 0.258 1000 0.399 (0.156) -0.032 0.159 1000 0.402 (0.104) -0.030 0.109 1000
Tree 3 0.436 (0.634) 0.005 0.634 1000 0.408 (0.444) -0.023 0.444 1000 0.435 (0.522) 0.003 0.522 1000
Tree 4 0.406 (0.361) -0.026 0.432 1000 0.409 (0.302) -0.023 0.303 1000 0.398 (0.233) -0.034 0.235 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.722 (0.142) -0.051 0.150 1000 0.731 (0.110) -0.042 0.117 1000 0.725 (0.082) -0.047 0.095 1000
Tree 2 0.708 (0.100) -0.065 0.119 1000 0.721 (0.059) -0.052 0.079 1000 0.722 (0.041) -0.051 0.066 1000
Tree 3 0.747 (0.206) -0.026 0.208 1000 0.745 (0.195) -0.028 0.197 1000 0.743 (0.187) -0.030 0.189 1000
Tree 4 0.725 (0.132) -0.048 0.158 1000 0.724 (0.103) -0.049 0.114 1000 0.724 (0.092) -0.049 0.104 1000
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Table C.3: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - Non-phylogenetic GLM (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.058 (1.118) 0.042 1.118 1000 0.013 (1.15) -0.003 1.149 1000 0.031 (0.864) 0.015 0.864 1000
Tree 2 0.048 (0.710) 0.032 0.710 1000 0.022 (0.544) 0.006 0.544 1000 0.006 (0.518) -0.01 0.518 1000
Tree 3 -0.040 (1.476) -0.056 1.477 1000 -0.015 (0.457) -0.031 0.458 1000 0.041 (1.031) 0.026 1.031 1000
Tree 4 0.010 (1.399) -0.005 1.213 1000 0.045 (1.305) 0.029 1.305 1000 0.067 (1.203) 0.051 1.204 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.549 (0.928) 0.089 0.932 1000 0.721 (1.017) 0.261 1.049 1000 0.694 (0.726) 0.234 0.763 1000
Tree 2 0.480 (0.603) 0.020 0.603 1000 0.611 (0.482) 0.151 0.505 1000 0.836 (0.454) 0.376 0.589 1000
Tree 3 0.394 (1.298) -0.066 1.299 1000 0.203 (0.394) -0.257 0.470 1000 0.429 (0.939) -0.031 0.939 1000
Tree 4 0.727 (1.229) 0.267 1.061 1000 0.793 (1.113) 0.333 1.161 1000 0.945 (1.034) 0.485 1.142 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.915 (0.337) 0.073 0.345 1000 1.198 (0.365) 0.357 0.51 1000 1.237 (0.256) 0.395 0.470 1000
Tree 2 0.881 (0.203) 0.039 0.207 1000 1.124 (0.166) 0.282 0.327 1000 1.512 (0.149) 0.670 0.687 1000
Tree 3 0.692 (0.552) -0.150 0.572 1000 0.412 (0.162) -0.430 0.459 1000 0.711 (0.390) -0.130 0.411 1000
Tree 4 1.274 (0.438) 0.432 0.466 1000 1.521 (0.407) 0.679 0.791 1000 1.697 (0.377) 0.855 0.935 1000
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C.1.2 PGLS

Table C.4: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - PGLS (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.005 (0.253) 0 0.253 993 0.014 (0.151) 0.009 0.151 912 0.005 (0.098) 0.000 0.098 906
Tree 2 -0.006 (0.244) -0.011 0.244 996 0.005 (0.148) 0.000 0.148 996 0.007 (0.102) 0.002 0.102 1000
Tree 3 0.003 (0.283) -0.002 0.283 934 0.005 (0.143) 0.000 0.143 915 0.012 (0.104) 0.007 0.104 957
Tree 4 0.000 (0.27) -0.005 0.27 1000 0.010 (0.147) 0.005 0.147 997 0.008 (0.105) 0.003 0.105 996

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.502 (0.226) 0.001 0.226 996 0.5 (0.123) -0.001 0.123 910 0.503 (0.088) 0.003 0.088 911
Tree 2 0.499 (0.213) -0.002 0.213 992 0.495 (0.131) -0.006 0.131 998 0.502 (0.086) 0.001 0.086 999
Tree 3 0.514 (0.235) 0.013 0.235 928 0.496 (0.125) -0.005 0.125 905 0.500 (0.089) -0.001 0.089 952
Tree 4 0.509 (0.225) 0.008 0.225 998 0.495 (0.133) -0.006 0.133 1000 0.500 (0.091) -0.001 0.091 996

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.9 (0.113) 0.001 0.113 978 0.9 (0.062) 0.001 0.062 915 0.9 (0.044) 0.001 0.044 901
Tree 2 0.892 (0.109) -0.007 0.109 994 0.902 (0.063) 0.003 0.063 995 0.901 (0.044) 0.002 0.044 997
Tree 3 0.896 (0.119) -0.003 0.119 944 0.9 (0.065) 0.001 0.065 916 0.901 (0.045) 0.001 0.045 953
Tree 4 0.904 (0.115) 0.004 0.115 999 0.898 (0.065) -0.001 0.064 995 0.9 (0.046) 0.001 0.046 997
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Table C.5: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - PGLS (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.003 (0.284) 0.000 0.284 993 0.014 (0.163) 0.011 0.164 909 0.004 (0.110) 0.001 0.110 910
Tree 2 -0.017 (0.291) -0.020 0.291 991 0.003 (0.169) 0.000 0.169 999 0.007 (0.120) 0.004 0.12 999
Tree 3 -0.003 (0.332) -0.006 0.332 945 0.008 (0.157) 0.005 0.157 914 0.010 (0.107) 0.007 0.107 952
Tree 4 -0.004 (0.304) -0.008 0.304 999 0.007 (0.163) 0.004 0.163 997 0.009 (0.115) 0.006 0.115 997

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.441 (0.245) 0.01 0.245 990 0.456 (0.134) 0.024 0.136 897 0.459 (0.095) 0.028 0.099 911
Tree 2 0.399 (0.254) -0.032 0.256 993 0.399 (0.153) -0.033 0.157 999 0.404 (0.102) -0.028 0.106 999
Tree 3 0.477 (0.267) 0.045 0.271 942 0.460 (0.131) 0.028 0.134 909 0.477 (0.092) 0.046 0.103 956
Tree 4 0.431 (0.261) -0.001 0.261 999 0.439 (0.150) 0.007 0.15 998 0.448 (0.101) 0.016 0.102 999

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.784 (0.126) 0.011 0.126 986 0.819 (0.07) 0.047 0.084 904 0.82 (0.048) 0.047 0.068 884
Tree 2 0.709 (0.1) -0.064 0.119 997 0.722 (0.058) -0.051 0.078 998 0.723 (0.041) -0.05 0.065 999
Tree 3 0.819 (0.142) 0.047 0.149 958 0.831 (0.074) 0.058 0.094 844 0.861 (0.048) 0.088 0.100 921
Tree 4 0.762 (0.121) -0.011 0.122 996 0.785 (0.073) 0.012 0.073 993 0.804 (0.051) 0.031 0.060 994
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Table C.6: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - PGLS (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.03 (0.714) 0.014 0.714 993 0.005 (0.478) -0.011 0.477 909 0.005 (0.306) -0.01 0.306 910
Tree 2 0.049 (0.705) 0.033 0.705 991 0.022 (0.538) 0.007 0.537 999 0.005 (0.508) -0.011 0.508 999
Tree 3 -0.029 (1.137) -0.045 1.138 945 -0.004 (0.142) -0.02 0.143 914 0.012 (0.266) -0.004 0.266 952
Tree 4 0.043 (0.931) 0.028 0.931 999 0.027 (0.604) 0.012 0.604 997 -0.002 (0.441) -0.018 0.441 997

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.332 (0.597) -0.128 0.61 990 0.326 (0.441) -0.134 0.46 897 0.298 (0.270) -0.162 0.315 911
Tree 2 0.478 (0.600) 0.018 0.6 993 0.608 (0.474) 0.148 0.496 999 0.827 (0.449) 0.367 0.58 999
Tree 3 0.238 (1.036) -0.222 1.059 942 0.088 (0.133) -0.372 0.396 909 0.122 (0.371) -0.338 0.502 956
Tree 4 0.557 (0.892) 0.097 0.897 999 0.485 (0.534) 0.025 0.534 998 0.498 (0.359) 0.038 0.361 999

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.619 (0.324) -0.223 0.393 986 0.605 (0.249) -0.237 0.343 904 0.579 (0.157) -0.263 0.306 884
Tree 2 0.88 (0.203) 0.038 0.207 997 1.118 (0.163) 0.276 0.321 998 1.502 (0.148) 0.66 0.677 999
Tree 3 0.515 (0.538) -0.327 0.629 958 0.172 (0.091) -0.67 0.676 844 0.198 (0.239) -0.644 0.687 921
Tree 4 1.011 (0.361) 0.169 0.399 996 0.961 (0.226) 0.119 0.256 993 0.912 (0.165) 0.07 0.179 994
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C.1.3 PGEE

Table C.7: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - PGEE (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.008 (0.241) 0.003 0.241 1000 0.012 (0.15) 0.007 0.15 1000 0.006 (0.098) 0.001 0.098 1000
Tree 2 -0.005 (0.243) -0.01 0.243 1000 0.006 (0.147) 0.001 0.147 1000 0.006 (0.101) 0.001 0.101 1000
Tree 3 0.007 (0.249) 0.002 0.249 1000 0.008 (0.142) 0.003 0.142 1000 0.011 (0.103) 0.006 0.103 1000
Tree 4 -0.002 (0.269) -0.006 0.269 1000 0.009 (0.151) 0.004 0.15 1000 0.007 (0.11) 0.002 0.11 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.499 (0.214) -0.002 0.214 1000 0.5 (0.123) -0.001 0.123 1000 0.502 (0.088) 0.001 0.088 1000
Tree 2 0.499 (0.213) -0.002 0.213 1000 0.496 (0.13) -0.005 0.13 1000 0.502 (0.086) 0.001 0.086 1000
Tree 3 0.51 (0.208) 0.009 0.208 1000 0.496 (0.123) -0.005 0.123 1000 0.500 (0.09) -0.001 0.09 1000
Tree 4 0.511 (0.23) 0.01 0.230 1000 0.494 (0.135) -0.006 0.135 1000 0.498 (0.096) -0.003 0.096 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.901 (0.106) 0.002 0.106 1000 0.900 (0.062) 0.001 0.062 1000 0.901 (0.044) 0.001 0.044 1000
Tree 2 0.892 (0.109) -0.007 0.109 1000 0.902 (0.062) 0.003 0.062 1000 0.901 (0.044) 0.001 0.044 1000
Tree 3 0.899 (0.105) -0.001 0.105 1000 0.901 (0.065) 0.002 0.065 1000 0.901 (0.045) 0.002 0.045 1000
Tree 4 0.905 (0.114) 0.006 0.114 1000 0.898 (0.066) -0.001 0.066 1000 0.901 (0.048) 0.002 0.048 1000
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Table C.8: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - PGEE (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.008 (0.271) 0.005 0.271 1000 0.012 (0.162) 0.009 0.162 1000 0.005 (0.109) 0.001 0.109 1000
Tree 2 -0.017 (0.29) -0.02 0.291 1000 0.004 (0.169) 0.001 0.169 1000 0.006 (0.12) 0.003 0.12 1000
Tree 3 0.007 (0.271) 0.003 0.270 1000 0.009 (0.155) 0.006 0.155 1000 0.011 (0.107) 0.008 0.108 1000
Tree 4 0.001 (0.305) -0.003 0.305 1000 0.007 (0.165) 0.004 0.165 1000 0.008 (0.122) 0.005 0.122 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.444 (0.23) 0.012 0.231 1000 0.458 (0.133) 0.027 0.136 1000 0.462 (0.095) 0.03 0.099 1000
Tree 2 0.399 (0.254) -0.033 0.256 1000 0.399 (0.152) -0.032 0.156 1000 0.404 (0.102) -0.028 0.106 1000
Tree 3 0.485 (0.224) 0.053 0.230 1000 0.462 (0.13) 0.030 0.133 1000 0.478 (0.093) 0.046 0.104 1000
Tree 4 0.44 (0.257) 0.008 0.257 1000 0.441 (0.152) 0.009 0.152 1000 0.449 (0.106) 0.017 0.107 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.811 (0.112) 0.038 0.119 1000 0.825 (0.066) 0.052 0.084 1000 0.826 (0.047) 0.053 0.071 1000
Tree 2 0.709 (0.100) -0.064 0.119 1000 0.722 (0.058) -0.05 0.077 1000 0.724 (0.041) -0.049 0.064 1000
Tree 3 0.847 (0.113) 0.074 0.135 1000 0.839 (0.068) 0.066 0.095 1000 0.862 (0.048) 0.089 0.101 1000
Tree 4 0.782 (0.119) 0.009 0.119 1000 0.798 (0.07) 0.025 0.075 1000 0.814 (0.052) 0.041 0.066 1000
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Table C.9: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - PGEE (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.022 (0.688) 0.007 0.688 1000 0.007 (0.473) -0.009 0.473 1000 0.008 (0.303) -0.008 0.303 1000
Tree 2 0.049 (0.702) 0.033 0.702 1000 0.022 (0.536) 0.007 0.536 1000 0.006 (0.507) -0.01 0.507 1000
Tree 3 -0.024 (1.084) -0.039 1.085 1000 -0.002 (0.142) -0.018 0.143 1000 0.01 (0.279) -0.006 0.279 1000
Tree 4 0.008 (0.917) -0.008 0.916 1000 0.021 (0.608) 0.005 0.608 1000 0.000 (0.467) -0.016 0.467 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.306 (0.581) -0.154 0.601 1000 0.32 (0.435) -0.14 0.456 1000 0.296 (0.271) -0.164 0.317 1000
Tree 2 0.479 (0.598) 0.019 0.598 1000 0.609 (0.474) 0.149 0.496 1000 0.824 (0.448) 0.364 0.578 1000
Tree 3 0.239 (1.019) -0.221 1.042 1000 0.087 (0.13) -0.373 0.395 1000 0.125 (0.377) -0.335 0.504 1000
Tree 4 0.516 (0.844) 0.056 0.846 1000 0.475 (0.538) 0.015 0.537 1000 0.485 (0.37) 0.025 0.371 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.526 (0.305) -0.316 0.439 1000 0.58 (0.245) -0.262 0.359 1000 0.549 (0.175) -0.292 0.341 1000
Tree 2 0.877 (0.203) 0.036 0.206 1000 1.114 (0.164) 0.272 0.317 1000 1.495 (0.147) 0.653 0.669 1000
Tree 3 0.467 (0.55) -0.375 0.666 1000 0.164 (0.088) -0.678 0.684 1000 0.196 (0.231) -0.646 0.686 1000
Tree 4 0.917 (0.346) 0.076 0.354 1000 0.893 (0.213) 0.051 0.219 1000 0.868 (0.165) 0.026 0.167 1000
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C.1.4 PGLMM

Table C.10: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from continuous
response models - PGLMM (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.006 (0.247) 0.001 0.247 896 0.012 (0.151) 0.007 0.151 820 0.005 (0.101) 0.000 0.101 773
Tree 2 -0.005 (0.243) -0.01 0.243 935 0.005 (0.148) 0.000 0.148 879 0.006 (0.103) 0.001 0.103 825
Tree 3 0.009 (0.260) 0.004 0.260 898 0.01 (0.145) 0.005 0.145 862 0.011 (0.105) 0.006 0.105 751
Tree 4 0.000 (0.264) -0.004 0.263 860 0.011 (0.149) 0.006 0.149 826 0.009 (0.104) 0.004 0.104 792

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.504 (0.216) 0.003 0.216 904 0.498 (0.125) -0.003 0.125 819 0.501 (0.089) 0.000 0.089 801
Tree 2 0.499 (0.215) -0.002 0.215 937 0.495 (0.132) -0.006 0.132 903 0.502 (0.085) 0.001 0.085 841
Tree 3 0.511 (0.215) 0.011 0.215 870 0.49 (0.125) -0.011 0.126 864 0.5 (0.093) -0.001 0.093 791
Tree 4 0.513 (0.213) 0.012 0.213 858 0.495 (0.134) -0.006 0.134 857 0.497 (0.089) -0.004 0.089 802

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.899 (0.112) 0.000 0.112 914 0.9 (0.063) 0.001 0.063 876 0.9 (0.046) 0.001 0.046 815
Tree 2 0.892 (0.109) -0.007 0.109 958 0.902 (0.062) 0.003 0.062 911 0.9 (0.044) 0.001 0.044 893
Tree 3 0.896 (0.112) -0.003 0.112 905 0.896 (0.068) -0.003 0.068 783 0.898 (0.047) -0.002 0.047 840
Tree 4 0.902 (0.11) 0.003 0.110 900 0.897 (0.063) -0.002 0.063 873 0.901 (0.045) 0.002 0.045 828
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Table C.11: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from continuous
response models - PGLMM (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.005 (0.273) 0.002 0.273 879 0.011 (0.165) 0.008 0.165 800 0.000 (0.110) -0.003 0.110 788
Tree 2 -0.020 (0.289) -0.024 0.29 930 0.002 (0.168) -0.001 0.167 910 0.005 (0.118) 0.002 0.118 880
Tree 3 0.004 (0.287) 0.001 0.287 883 0.011 (0.156) 0.008 0.156 828 0.010 (0.111) 0.007 0.111 771
Tree 4 -0.003 (0.294) -0.006 0.294 857 0.003 (0.162) -0.001 0.162 834 0.010 (0.117) 0.007 0.117 791

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.436 (0.237) 0.005 0.237 881 0.457 (0.134) 0.026 0.137 805 0.461 (0.096) 0.03 0.1 794
Tree 2 0.397 (0.256) -0.034 0.258 932 0.397 (0.155) -0.035 0.159 907 0.404 (0.101) -0.027 0.105 867
Tree 3 0.481 (0.233) 0.05 0.239 898 0.454 (0.132) 0.022 0.134 843 0.474 (0.096) 0.042 0.105 740
Tree 4 0.43 (0.247) -0.002 0.247 872 0.438 (0.15) 0.007 0.15 853 0.447 (0.1) 0.016 0.101 781

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.788 (0.116) 0.015 0.117 909 0.815 (0.068) 0.042 0.080 865 0.816 (0.048) 0.043 0.065 837
Tree 2 0.708 (0.099) -0.065 0.118 946 0.722 (0.058) -0.051 0.077 927 0.723 (0.041) -0.050 0.065 900
Tree 3 0.829 (0.124) 0.056 0.136 903 0.822 (0.071) 0.049 0.086 705 0.853 (0.049) 0.080 0.094 832
Tree 4 0.765 (0.113) -0.008 0.113 900 0.787 (0.07) 0.014 0.071 895 0.805 (0.05) 0.032 0.060 841
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Table C.12: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from continuous response
models - PGLMM (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.019 (0.701) 0.003 0.701 884 0.008 (0.497) -0.008 0.497 831 0.009 (0.309) -0.006 0.309 813
Tree 2 0.057 (0.7) 0.042 0.701 931 0.026 (0.536) 0.01 0.536 904 0.003 (0.512) -0.013 0.512 888
Tree 3 -0.016 (1.075) -0.032 1.075 839 -0.002 (0.142) -0.018 0.143 894 0.009 (0.184) -0.007 0.184 810
Tree 4 0.042 (0.896) 0.027 0.896 858 0.016 (0.597) 0.001 0.597 829 -0.011 (0.446) -0.027 0.447 795

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.325 (0.572) -0.135 0.588 901 0.327 (0.438) -0.133 0.458 831 0.298 (0.272) -0.162 0.316 822
Tree 2 0.475 (0.594) 0.015 0.593 934 0.618 (0.473) 0.158 0.498 901 0.823 (0.452) 0.363 0.58 876
Tree 3 0.272 (0.962) -0.188 0.979 832 0.088 (0.129) -0.372 0.394 889 0.115 (0.337) -0.345 0.482 809
Tree 4 0.556 (0.832) 0.096 0.837 849 0.471 (0.531) 0.011 0.531 846 0.504 (0.367) 0.044 0.369 813

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.607 (0.293) -0.235 0.376 908 0.621 (0.23) -0.221 0.318 874 0.6 (0.142) -0.242 0.28 863
Tree 2 0.875 (0.201) 0.034 0.204 938 1.116 (0.165) 0.274 0.32 935 1.497 (0.146) 0.655 0.671 904
Tree 3 0.472 (0.525) -0.37 0.642 853 0.186 (0.077) -0.656 0.661 784 0.191 (0.161) -0.651 0.671 834
Tree 4 0.993 (0.328) 0.151 0.361 906 0.956 (0.217) 0.114 0.245 881 0.914 (0.165) 0.072 0.18 859

155



C.2 Ordinal response

C.2.1 Non-phylogenetic GLM

Table C.13: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from ordinal
response models - Non-phylogenetic GLM (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.008 (0.275) -0.012 0.275 1000 0.005 (0.194) 0.002 0.194 1000 0.007 (0.110) 0.004 0.110 1000
Tree 2 0.005 (0.174) 0.002 0.174 1000 0.006 (0.079) 0.003 0.079 1000 0.003 (0.045) 0.000 0.045 1000
Tree 3 -0.014 (0.696) -0.017 0.696 1000 0.010 (0.364) 0.007 0.364 1000 -0.009 (0.482) -0.012 0.482 1000
Tree 4 0.004 (0.196) 0.000 0.195 1000 0.004 (0.111) 0.000 0.111 1000 0.008 (0.087) 0.005 0.087 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.38 (0.223) 0.053 0.229 1000 0.265 (0.146) -0.062 0.159 1000 0.236 (0.084) -0.09 0.123 1000
Tree 2 0.337 (0.141) 0.01 0.141 1000 0.242 (0.062) -0.085 0.105 1000 0.204 (0.038) -0.123 0.129 1000
Tree 3 0.649 (0.622) 0.322 0.700 1000 0.518 (0.306) 0.191 0.36 1000 0.394 (0.433) 0.067 0.438 1000
Tree 4 0.264 (0.151) -0.062 0.163 1000 0.191 (0.094) -0.136 0.165 1000 0.163 (0.066) -0.164 0.177 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.696 (0.156) 0.085 0.178 1000 0.505 (0.101) -0.107 0.147 1000 0.44 (0.069) -0.171 0.184 1000
Tree 2 0.622 (0.117) 0.011 0.117 1000 0.442 (0.063) -0.169 0.181 1000 0.37 (0.046) -0.241 0.245 1000
Tree 3 1.345 (0.542) 0.734 0.912 1000 0.982 (0.297) 0.371 0.475 1000 0.816 (0.319) 0.205 0.379 1000
Tree 4 0.498 (0.114) -0.113 0.160 1000 0.371 (0.069) -0.240 0.249 1000 0.3 (0.051) -0.311 0.315 1000
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Table C.14: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from ordinal
response models - Non-phylogenetic GLM (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.01 (0.312) -0.013 0.312 1000 0.003 (0.207) 0.000 0.207 1000 0.01 (0.12) 0.007 0.121 1000
Tree 2 0.007 (0.208) 0.005 0.208 1000 0.005 (0.09) 0.002 0.09 1000 0.003 (0.053) 0.001 0.053 1000
Tree 3 0 (0.774) -0.003 0.774 1000 0.008 (0.394) 0.005 0.393 1000 -0.01 (0.503) -0.013 0.503 1000
Tree 4 0.003 (0.227) 0.000 0.227 1000 0.001 (0.124) -0.002 0.124 1000 0.006 (0.093) 0.004 0.093 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.3 (0.258) 0.025 0.259 1000 0.214 (0.17) -0.061 0.18 1000 0.185 (0.097) -0.09 0.133 1000
Tree 2 0.267 (0.168) -0.008 0.168 1000 0.19 (0.073) -0.085 0.112 1000 0.162 (0.044) -0.113 0.121 1000
Tree 3 0.521 (0.687) 0.246 0.729 1000 0.419 (0.329) 0.143 0.359 1000 0.328 (0.458) 0.052 0.461 1000
Tree 4 0.211 (0.178) -0.064 0.189 1000 0.15 (0.106) -0.125 0.164 1000 0.131 (0.074) -0.144 0.162 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.54 (0.132) 0.039 0.138 1000 0.398 (0.078) -0.103 0.129 1000 0.348 (0.053) -0.153 0.162 1000
Tree 2 0.482 (0.1) -0.019 0.101 1000 0.345 (0.05) -0.156 0.164 1000 0.291 (0.037) -0.21 0.213 1000
Tree 3 1.067 (0.424) 0.565 0.706 1000 0.78 (0.22) 0.279 0.355 1000 0.671 (0.25) 0.17 0.303 1000
Tree 4 0.388 (0.092) -0.113 0.146 1000 0.291 (0.053) -0.21 0.217 1000 0.239 (0.039) -0.262 0.265 1000
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Table C.15: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from ordinal response
models - Non-phylogenetic GLM (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.023 (0.771) 0.018 0.771 1000 0.009 (0.587) 0.004 0.587 1000 -0.015 (0.371) -0.02 0.371 1000
Tree 2 -0.006 (0.564) -0.011 0.563 1000 0.009 (0.294) 0.004 0.293 1000 0.001 (0.192) -0.004 0.192 1000
Tree 3 -0.018 (0.777) -0.023 0.777 1000 -0.004 (0.55) -0.009 0.55 1000 0.009 (0.497) 0.005 0.497 1000
Tree 4 0.012 (0.72) 0.007 0.720 1000 0.02 (0.485) 0.015 0.485 1000 0.014 (0.398) 0.009 0.398 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.379 (0.629) 0.112 0.638 1000 0.332 (0.535) 0.065 0.539 1000 0.339 (0.31) 0.072 0.318 1000
Tree 2 0.366 (0.468) 0.099 0.478 1000 0.33 (0.273) 0.063 0.28 1000 0.295 (0.168) 0.028 0.171 1000
Tree 3 0.339 (0.7) 0.072 0.703 1000 0.281 (0.478) 0.014 0.478 1000 0.274 (0.507) 0.007 0.507 1000
Tree 4 0.388 (0.616) 0.12 0.628 1000 0.353 (0.41) 0.086 0.419 1000 0.312 (0.359) 0.045 0.362 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.762 (0.323) 0.209 0.385 1000 0.681 (0.244) 0.128 0.275 1000 0.592 (0.149) 0.039 0.154 1000
Tree 2 0.735 (0.253) 0.182 0.312 1000 0.624 (0.158) 0.071 0.173 1000 0.568 (0.113) 0.015 0.114 1000
Tree 3 0.669 (0.448) 0.116 0.462 1000 0.59 (0.286) 0.037 0.288 1000 0.566 (0.361) 0.013 0.361 1000
Tree 4 0.771 (0.296) 0.218 0.367 1000 0.665 (0.2) 0.112 0.229 1000 0.597 (0.171) 0.044 0.176 1000
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C.2.2 PGLS

Table C.16: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from ordinal
response models - PGLS (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.01 (0.206) -0.013 0.206 988 0.002 (0.099) -0.001 0.098 995 0.005 (0.061) 0.002 0.061 990
Tree 2 0.002 (0.175) -0.001 0.175 903 0.007 (0.079) 0.004 0.08 972 0.003 (0.044) 0.000 0.044 989
Tree 3 0.015 (0.485) 0.012 0.485 971 0.009 (0.217) 0.006 0.217 961 0.006 (0.136) 0.003 0.136 864
Tree 4 0.004 (0.147) 0.001 0.147 999 0.003 (0.067) 0.000 0.067 997 0.003 (0.04) 0.000 0.040 999

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.367 (0.179) 0.04 0.183 990 0.263 (0.089) -0.064 0.109 994 0.231 (0.059) -0.095 0.112 987
Tree 2 0.338 (0.140) 0.011 0.141 913 0.242 (0.062) -0.085 0.105 971 0.204 (0.038) -0.123 0.129 985
Tree 3 0.687 (0.498) 0.36 0.615 974 0.506 (0.246) 0.179 0.304 955 0.421 (0.249) 0.094 0.266 890
Tree 4 0.264 (0.125) -0.063 0.140 997 0.203 (0.063) -0.124 0.139 988 0.164 (0.041) -0.163 0.168 996

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.692 (0.167) 0.081 0.186 994 0.502 (0.113) -0.109 0.157 987 0.433 (0.075) -0.178 0.193 986
Tree 2 0.622 (0.117) 0.011 0.117 909 0.441 (0.063) -0.17 0.181 978 0.37 (0.047) -0.241 0.245 986
Tree 3 1.354 (0.669) 0.742 0.999 961 0.932 (0.346) 0.32 0.471 956 0.768 (0.403) 0.157 0.432 933
Tree 4 0.498 (0.122) -0.113 0.166 989 0.369 (0.072) -0.242 0.253 994 0.303 (0.055) -0.309 0.313 996
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Table C.17: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from ordinal
response models - PGLS (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.008 (0.243) -0.011 0.244 992 0.002 (0.109) -0.001 0.109 992 0.005 (0.066) 0.002 0.066 987
Tree 2 0.005 (0.208) 0.003 0.208 884 0.005 (0.09) 0.003 0.09 972 0.002 (0.052) 0.000 0.052 992
Tree 3 0.003 (0.543) 0.000 0.542 977 0.001 (0.242) -0.002 0.242 952 0.006 (0.147) 0.003 0.147 877
Tree 4 0.002 (0.178) -0.001 0.177 990 0.004 (0.076) 0.001 0.076 996 0.003 (0.044) 0.000 0.044 997

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.299 (0.209) 0.024 0.211 990 0.234 (0.099) -0.041 0.107 994 0.206 (0.062) -0.069 0.093 993
Tree 2 0.268 (0.167) -0.007 0.167 897 0.189 (0.072) -0.086 0.112 972 0.163 (0.043) -0.113 0.121 985
Tree 3 0.568 (0.544) 0.293 0.618 974 0.459 (0.249) 0.183 0.309 965 0.387 (0.246) 0.112 0.27 881
Tree 4 0.218 (0.152) -0.057 0.162 990 0.174 (0.069) -0.101 0.122 994 0.146 (0.041) -0.129 0.135 992

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.548 (0.14) 0.047 0.148 995 0.414 (0.089) -0.087 0.125 992 0.365 (0.058) -0.136 0.148 999
Tree 2 0.484 (0.1) -0.017 0.101 919 0.345 (0.05) -0.156 0.164 977 0.291 (0.036) -0.21 0.213 991
Tree 3 1.062 (0.516) 0.56 0.762 987 0.789 (0.285) 0.288 0.405 966 0.667 (0.351) 0.165 0.388 960
Tree 4 0.397 (0.103) -0.104 0.147 990 0.301 (0.057) -0.200 0.208 996 0.255 (0.045) -0.246 0.25 998

160



Table C.18: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from ordinal response
models - PGLS (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.01 (0.608) 0.005 0.607 992 0.004 (0.298) -0.001 0.298 992 0.000 (0.187) -0.005 0.187 987
Tree 2 -0.004 (0.565) -0.009 0.565 884 0.011 (0.291) 0.006 0.291 972 0.001 (0.190) -0.004 0.19 992
Tree 3 0.018 (0.576) 0.013 0.576 977 0.009 (0.296) 0.005 0.296 952 0.002 (0.166) -0.003 0.166 877
Tree 4 0.010 (0.602) 0.005 0.601 990 -0.005 (0.284) -0.01 0.284 996 0.006 (0.18) 0.001 0.18 997

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.337 (0.501) 0.070 0.506 990 0.198 (0.285) -0.07 0.294 994 0.173 (0.179) -0.094 0.202 993
Tree 2 0.362 (0.464) 0.095 0.474 897 0.334 (0.270) 0.067 0.278 972 0.294 (0.166) 0.027 0.168 985
Tree 3 0.268 (0.545) 0 0.544 974 0.147 (0.255) -0.12 0.282 965 0.104 (0.179) -0.163 0.242 881
Tree 4 0.315 (0.516) 0.047 0.518 990 0.236 (0.255) -0.031 0.256 994 0.174 (0.166) -0.094 0.191 992

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.711 (0.316) 0.158 0.353 995 0.543 (0.224) -0.009 0.224 992 0.459 (0.14) -0.094 0.169 999
Tree 2 0.734 (0.252) 0.181 0.311 919 0.623 (0.157) 0.07 0.172 977 0.565 (0.114) 0.012 0.114 991
Tree 3 0.596 (0.414) 0.043 0.416 987 0.430 (0.274) -0.123 0.300 966 0.313 (0.228) -0.24 0.331 960
Tree 4 0.687 (0.301) 0.134 0.329 990 0.561 (0.185) 0.008 0.185 996 0.439 (0.137) -0.114 0.178 998
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C.2.3 PGEE

Table C.19: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from ordinal
response models - PGEE (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.007 (0.201) -0.01 0.201 1000 0.004 (0.105) 0.001 0.105 1000 0.006 (0.067) 0.003 0.067 1000
Tree 2 0.005 (0.173) 0.002 0.173 1000 0.006 (0.079) 0.003 0.079 1000 0.003 (0.044) -0.001 0.044 1000
Tree 3 0.017 (0.467) 0.014 0.467 1000 0.002 (0.255) -0.001 0.255 1000 0 (0.171) -0.003 0.171 1000
Tree 4 0.004 (0.142) 0.001 0.142 1000 0.002 (0.066) -0.001 0.066 1000 0.003 (0.043) 0.000 0.042 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.375 (0.182) 0.048 0.188 1000 0.269 (0.1) -0.058 0.115 1000 0.235 (0.068) -0.092 0.115 1000
Tree 2 0.337 (0.14) 0.011 0.141 1000 0.242 (0.062) -0.085 0.105 1000 0.204 (0.038) -0.123 0.129 1000
Tree 3 0.735 (0.536) 0.408 0.674 1000 0.559 (0.314) 0.232 0.39 1000 0.466 (0.292) 0.139 0.323 1000
Tree 4 0.265 (0.129) -0.061 0.142 1000 0.202 (0.064) -0.125 0.14 1000 0.162 (0.043) -0.164 0.17 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.69 (0.189) 0.079 0.205 1000 0.504 (0.131) -0.107 0.169 1000 0.432 (0.089) -0.179 0.200 1000
Tree 2 0.622 (0.117) 0.011 0.117 1000 0.442 (0.063) -0.169 0.181 1000 0.371 (0.046) -0.241 0.245 1000
Tree 3 1.369 (0.730) 0.757 1.052 1000 0.971 (0.408) 0.36 0.543 1000 0.812 (0.422) 0.201 0.468 1000
Tree 4 0.494 (0.130) -0.117 0.174 1000 0.364 (0.080) -0.247 0.26 1000 0.299 (0.058) -0.312 0.317 1000
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Table C.20: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from ordinal
response models - PGEE (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.004 (0.233) -0.007 0.233 1000 0.002 (0.117) 0.000 0.117 1000 0.006 (0.073) 0.004 0.074 1000
Tree 2 0.007 (0.208) 0.004 0.208 1000 0.005 (0.09) 0.002 0.09 1000 0.002 (0.052) 0.000 0.052 1000
Tree 3 0.022 (0.532) 0.019 0.532 1000 -0.005 (0.285) -0.007 0.285 1000 -0.001 (0.188) -0.004 0.188 1000
Tree 4 0.002 (0.171) 0.000 0.171 1000 0.003 (0.075) 0.000 0.075 1000 0.002 (0.047) -0.001 0.047 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.313 (0.207) 0.037 0.211 1000 0.245 (0.112) -0.03 0.116 1000 0.213 (0.074) -0.062 0.097 1000
Tree 2 0.267 (0.166) -0.008 0.166 1000 0.19 (0.073) -0.085 0.111 1000 0.163 (0.043) -0.112 0.12 1000
Tree 3 0.638 (0.569) 0.362 0.674 1000 0.519 (0.322) 0.244 0.404 1000 0.439 (0.294) 0.164 0.336 1000
Tree 4 0.225 (0.153) -0.05 0.161 1000 0.176 (0.069) -0.099 0.12 1000 0.146 (0.045) -0.129 0.137 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.573 (0.168) 0.072 0.182 1000 0.448 (0.123) -0.053 0.134 1000 0.39 (0.085) -0.111 0.139 1000
Tree 2 0.482 (0.1) -0.019 0.101 1000 0.346 (0.051) -0.155 0.164 1000 0.292 (0.037) -0.209 0.213 1000
Tree 3 1.151 (0.667) 0.649 0.931 1000 0.889 (0.405) 0.387 0.560 1000 0.740 (0.412) 0.239 0.476 1000
Tree 4 0.409 (0.116) -0.092 0.148 1000 0.314 (0.069) -0.187 0.200 1000 0.265 (0.051) -0.236 0.242 1000
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Table C.21: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from ordinal response
models - PGEE (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.004 (0.585) -0.001 0.585 1000 0.009 (0.302) 0.004 0.302 1000 0.002 (0.194) -0.003 0.194 1000
Tree 2 -0.006 (0.564) -0.011 0.564 1000 0.01 (0.29) 0.005 0.29 1000 0.002 (0.189) -0.003 0.189 1000
Tree 3 0.002 (0.557) -0.003 0.556 1000 0.02 (0.297) 0.015 0.297 1000 0.003 (0.203) -0.002 0.203 1000
Tree 4 0.01 (0.572) 0.006 0.571 1000 -0.004 (0.284) -0.009 0.284 1000 0.008 (0.191) 0.003 0.191 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.305 (0.48) 0.037 0.481 1000 0.164 (0.294) -0.103 0.311 1000 0.146 (0.19) -0.121 0.225 1000
Tree 2 0.364 (0.464) 0.097 0.474 1000 0.329 (0.271) 0.061 0.277 1000 0.292 (0.165) 0.025 0.166 1000
Tree 3 0.225 (0.492) -0.043 0.494 1000 0.115 (0.276) -0.152 0.315 1000 0.079 (0.187) -0.188 0.265 1000
Tree 4 0.285 (0.493) 0.018 0.494 1000 0.215 (0.25) -0.053 0.256 1000 0.161 (0.173) -0.106 0.203 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.599 (0.323) 0.046 0.326 1000 0.365 (0.249) -0.188 0.312 1000 0.281 (0.182) -0.272 0.328 1000
Tree 2 0.733 (0.254) 0.18 0.311 1000 0.619 (0.158) 0.066 0.171 1000 0.562 (0.113) 0.009 0.113 1000
Tree 3 0.443 (0.415) -0.11 0.429 1000 0.257 (0.303) -0.295 0.423 1000 0.21 (0.269) -0.342 0.436 1000
Tree 4 0.599 (0.295) 0.046 0.298 1000 0.432 (0.185) -0.121 0.221 1000 0.329 (0.134) -0.224 0.261 1000
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C.2.4 PGLMM

Table C.22: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from ordinal
response models - PGLMM (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.012 (3.216) -0.049 3.213 488 0.015 (1.444) -0.023 1.442 501 0 (0.819) -0.037 0.819 495
Tree 2 0.36 (2.226) 0.322 2.246 453 0.096 (0.814) 0.058 0.815 427 0.045 (0.414) 0.007 0.414 451
Tree 3 -0.178 (9.457) -0.216 9.449 431 0.104 (3.59) 0.066 3.587 428 0.057 (3.191) 0.019 3.187 413
Tree 4 -0.144 (2.244) -0.181 2.248 433 0.041 (0.93) 0.003 0.929 504 0.068 (0.579) 0.03 0.58 490

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 4.482 (3.316) 0.855 3.421 475 3.069 (1.687) -0.557 1.775 484 2.559 (1.029) -1.068 1.483 488
Tree 2 3.874 (2.620) 0.248 2.628 444 2.293 (1.053) -1.334 1.699 418 1.72 (0.59) -1.907 1.996 433
Tree 3 8.879 (9.012) 5.253 10.421 379 6.464 (4.173) 2.837 5.041 377 4.905 (3.588) 1.278 3.804 380
Tree 4 3.183 (2.336) -0.443 2.375 468 2.179 (1.000) -1.448 1.759 526 1.806 (0.657) -1.82 1.935 505

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 10.042 (3.671) 1.653 4.022 433 6.821 (1.967) -1.568 2.514 442 6.055 (1.296) -2.334 2.669 444
Tree 2 9.006 (3.115) 0.617 3.172 414 6.016 (1.473) -2.373 2.793 454 4.962 (0.931) -3.427 3.551 444
Tree 3 19.669 (10.670) 11.28 15.517 367 14.014 (5.178) 5.625 7.64 345 10.841 (4.886) 2.452 5.46 333
Tree 4 7.408 (2.646) -0.981 2.819 451 5.216 (1.455) -3.173 3.491 479 4.314 (0.991) -4.075 4.194 387
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Table C.23: Mean effect size (M) with standard deviation in brackets (SD), mean error
(ME), rooted mean squared error (RMSE) and number of simulations (N) from ordinal
response models - PGLMM (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.074 (4.433) -0.116 4.43 472 0.137 (1.947) 0.095 1.947 449 0.042 (0.94) 0.000 0.939 440
Tree 2 -0.062 (3.464) -0.105 3.462 436 0.062 (1.096) 0.020 1.094 411 -0.001 (0.558) -0.044 0.559 488
Tree 3 -0.096 (10.938) -0.139 10.926 433 0.394 (4.372) 0.352 4.381 438 -0.017 (3.844) -0.06 3.839 400
Tree 4 0.066 (3.153) 0.024 3.149 431 0.023 (1.213) -0.019 1.211 502 0.044 (0.66) 0.002 0.66 458

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 4.043 (4.375) 0.763 4.436 412 2.743 (1.964) -0.538 2.034 427 2.195 (1.103) -1.085 1.546 428
Tree 2 3.5 (3.494) 0.220 3.495 344 1.954 (1.200) -1.326 1.787 384 1.484 (0.662) -1.796 1.914 429
Tree 3 7.866 (10.96) 4.586 11.868 392 5.437 (4.758) 2.157 5.218 366 4.391 (4.039) 1.111 4.184 375
Tree 4 2.874 (2.939) -0.406 2.964 409 2.028 (1.166) -1.252 1.71 452 1.643 (0.721) -1.637 1.788 420

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 9.333 (3.834) 1.016 3.96 310 6.486 (1.794) -1.831 2.561 310 5.449 (1.243) -2.869 3.125 228
Tree 2 8.641 (3.215) 0.324 3.226 262 5.731 (1.48) -2.586 2.978 262 4.491 (0.961) -3.827 3.945 185
Tree 3 18.268 (10.652) 9.950 14.564 317 12.899 (4.882) 4.582 6.689 315 9.800 (4.617) 1.483 4.841 267
Tree 4 7.002 (2.902) -1.315 3.183 366 4.926 (1.315) -3.392 3.637 312 3.817 (0.879) -4.500 4.585 277
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Table C.24: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from ordinal response
models - PGLMM (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.476 (10.723) -0.443 10.72 472 -0.255 (5.202) -0.223 5.201 449 -0.162 (2.885) -0.13 2.885 440
Tree 2 0.148 (8.804) 0.18 8.796 436 0.179 (3.446) 0.212 3.449 411 0.042 (1.975) 0.075 1.975 488
Tree 3 0.644 (11.545) 0.676 11.551 433 0.053 (5.775) 0.085 5.769 438 0.065 (3.84) 0.098 3.836 400
Tree 4 -0.337 (10.656) -0.304 10.648 431 -0.207 (4.899) -0.175 4.897 502 -0.002 (3.017) 0.031 3.014 458

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 3.171 (10.142) 0.269 10.133 412 2.429 (5.339) -0.473 5.354 427 2.882 (2.936) -0.02 2.932 428
Tree 2 2.971 (8.031) 0.069 8.020 344 3.172 (3.916) 0.27 3.92 384 2.346 (2.308) -0.556 2.372 429
Tree 3 3.681 (10.533) 0.779 10.549 392 2.635 (5.205) -0.267 5.205 366 1.481 (5.097) -1.421 5.285 375
Tree 4 4.907 (8.78) 2.005 8.995 409 2.725 (4.122) -0.177 4.121 452 2.417 (2.929) -0.485 2.965 420

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 7.604 (8.854) 1.766 9.015 310 5.306 (5.337) -0.531 5.355 310 4.876 (2.837) -0.961 2.99 228
Tree 2 7.077 (6.819) 1.239 6.918 262 5.865 (3.542) 0.027 3.535 262 5.147 (2.15) -0.690 2.252 185
Tree 3 5.963 (10.155) 0.125 10.14 317 4.855 (5.217) -0.982 5.301 315 3.811 (4.998) -2.026 5.385 267
Tree 4 7.915 (8.225) 2.078 8.472 366 5.656 (4.254) -0.181 4.251 312 4.893 (3.387) -0.944 3.51 277
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C.3 Binary response

C.3.1 Non-phylogenetic GLM

Table C.25: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - Non-phylogenetic GLM (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.021 (1.044) -0.016 1.044 999 -0.002 (0.38) -0.039 0.381 1000 0.005 (0.266) -0.032 0.268 1000
Tree 2 -0.016 (0.351) -0.053 0.355 1000 0.007 (0.173) -0.03 0.176 1000 0.006 (0.106) -0.031 0.111 1000
Tree 3 0.416 (8.635) 0.378 8.637 737 0.068 (1.472) 0.03 1.472 1000 -0.072 (2.925) -0.109 2.925 865
Tree 4 0.017 (0.534) -0.02 0.534 999 0.000 (0.285) -0.038 0.288 1000 0.003 (0.185) -0.034 0.188 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 1.399 (1.806) -0.486 1.869 978 0.773 (0.482) -1.112 1.212 1000 0.626 (0.323) -1.259 1.299 1000
Tree 2 0.712 (0.553) -1.173 1.297 999 0.555 (0.238) -1.329 1.351 1000 0.471 (0.132) -1.413 1.42 1000
Tree 3 3.337 (11.71) 1.453 11.791 687 2.134 (2.154) 0.25 2.168 999 1.478 (3.426) -0.406 3.448 843
Tree 4 0.75 (0.812) -1.135 5.305 979 0.533 (0.478) -1.351 1.433 1000 0.431 (0.224) -1.453 1.471 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 5.482 (7.764) 0.485 7.775 790 3.412 (3.715) -1.585 4.037 997 2.406 (0.83) -2.591 2.721 1000
Tree 2 3.346 (7.637) -1.651 7.809 857 2.343 (1.264) -2.654 2.939 996 1.837 (0.403) -3.16 3.186 1000
Tree 3 8.472 (10.613) 3.475 11.158 534 9.458 (6.715) 4.461 8.058 959 4.566 (4.164) -0.431 4.184 714
Tree 4 2.96 (3.097) -2.037 7.709 807 2.112 (1.369) -2.885 3.193 990 1.722 (0.622) -3.275 3.334 1000
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Table C.26: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - Non-phylogenetic GLM (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.101 (1.847) 0.06 1.847 996 -0.003 (0.436) -0.044 0.438 1000 0.001 (0.304) -0.041 0.306 1000
Tree 2 -0.024 (0.507) -0.065 0.511 1000 0.007 (0.215) -0.035 0.217 1000 0.004 (0.124) -0.037 0.13 1000
Tree 3 0.194 (6.715) 0.153 6.712 780 0.028 (1.652) -0.013 1.652 1000 -0.064 (4.118) -0.105 4.117 794
Tree 4 0.016 (0.813) -0.025 3.235 994 -0.003 (0.325) -0.044 0.328 1000 -0.003 (0.208) -0.044 0.213 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 1.287 (1.988) -0.415 2.03 956 0.662 (0.526) -1.041 1.166 1000 0.533 (0.345) -1.17 1.22 1000
Tree 2 0.641 (0.897) -1.061 1.389 998 0.457 (0.270) -1.246 1.274 1000 0.38 (0.145) -1.322 1.33 1000
Tree 3 1.8 (7.075) 0.098 7.071 772 1.87 (2.356) 0.167 2.361 995 1.764 (3.958) 0.062 3.956 765
Tree 4 0.719 (1.162) -0.983 3.556 968 0.451 (0.393) -1.251 1.311 999 0.365 (0.244) -1.338 1.36 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 6.028 (7.490) -0.064 7.482 455 6.24 (8.321) 0.148 8.317 831 3.953 (2.482) -2.14 3.276 980
Tree 2 3.704 (4.736) -2.388 5.300 430 4.153 (4.504) -1.94 4.902 878 2.894 (1.694) -3.199 3.619 996
Tree 3 5.087 (11.095) -1.006 11.132 676 15.792 (16.276) 9.699 18.938 773 9.205 (9.595) 3.112 10.079 562
Tree 4 4.118 (12.289) -1.975 12.430 453 3.832 (6.121) -2.26 6.521 830 2.778 (2.575) -3.315 4.197 986
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Table C.27: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - Non-phylogenetic GLM (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.039 (3.886) -0.107 3.886 996 0.024 (1.103) -0.043 1.103 1000 0.029 (0.867) -0.038 0.867 1000
Tree 2 -0.024 (1.761) -0.092 1.763 1000 0.008 (0.724) -0.06 0.726 1000 0.017 (0.483) -0.05 0.485 1000
Tree 3 1.026 (30.054) 0.958 30.050 780 0.128 (1.685) 0.061 1.685 1000 -0.707 (11.041) -0.774 11.062 794
Tree 4 0.038 (3.397) -0.03 13.953 994 0.035 (1.204) -0.033 1.204 1000 0.055 (0.851) -0.013 0.851 1000

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 2.143 (6.338) -0.168 6.337 956 0.802 (1.359) -1.509 2.03 1000 0.678 (0.871) -1.633 1.851 1000
Tree 2 1.251 (3.826) -1.060 3.968 998 0.748 (0.746) -1.563 1.732 1000 0.758 (0.510) -1.553 1.635 1000
Tree 3 14.435 (32.033) 12.124 34.232 772 1.004 (2.458) -1.307 2.783 995 1.346 (8.836) -0.965 8.882 765
Tree 4 2.095 (6.631) -0.216 16.464 968 1.013 (2.49) -1.297 2.807 999 0.727 (0.884) -1.584 1.814 1000

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 20.17 (19.071) 6.708 20.197 455 8.697 (11.014) -4.765 11.995 831 6.247 (4.572) -7.215 8.541 980
Tree 2 15.834 (17.796) 2.372 17.933 430 7.12 (7.200) -6.342 9.592 878 5.574 (3.274) -7.888 8.54 996
Tree 3 37.588 (22.607) 24.126 33.051 676 9.301 (10.166) -4.161 10.979 773 10.909 (11.322) -2.553 11.597 562
Tree 4 18.363 (21.374) 4.901 21.910 453 8.201 (10.197) -5.261 11.468 830 5.918 (4.730) -7.544 8.903 986
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C.3.2 PGLMM

Table C.28: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - PGLMM (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.263 (5.302) 0.184 5.301 596 0.067 (1.695) -0.012 1.694 625 -0.016 (0.975) -0.095 0.979 656
Tree 2 -0.175 (2.509) -0.254 2.519 494 0.046 (1.114) -0.033 1.113 625 0.017 (0.343) -0.062 0.348 589
Tree 3 0.447 (11.439) 0.369 11.433 473 0.079 (4.786) 0.000 4.783 646 -0.163 (3.408) -0.242 3.414 574
Tree 4 0.1 (2.965) 0.021 2.962 603 0.039 (1.065) -0.04 1.065 651 0.006 (0.653) -0.073 0.657 691

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 6.594 (6.707) 4.71 8.19 450 3.77 (2.329) 1.885 2.994 417 2.843 (1.156) 0.958 1.501 401
Tree 2 3.608 (2.847) 1.724 3.325 358 1.946 (1.296) 0.062 1.295 320 1.276 (0.871) -0.609 1.061 350
Tree 3 6.719 (12.088) 4.835 13.007 448 8.651 (5.512) 6.767 8.724 479 4.194 (3.752) 2.309 4.402 460
Tree 4 3.457 (3.073) 1.573 3.450 466 2.319 (1.367) 0.435 1.433 427 1.814 (0.756) -0.07 0.759 381

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 14.181 (8.089) 9.184 12.231 355 7.269 (2.982) 2.272 3.745 318 5.836 (1.613) 0.839 1.816 290
Tree 2 7.883 (4.285) 2.886 5.162 351 4.414 (1.970) -0.583 2.053 415 2.904 (0.929) -2.093 2.29 471
Tree 3 17.621 (13.969) 12.624 18.814 368 18.706 (7.466) 13.71 15.606 361 8.604 (4.976) 3.608 6.141 335
Tree 4 8.191 (4.166) 3.194 5.245 368 4.555 (1.777) -0.442 1.829 336 3.926 (1.204) -1.071 1.61 343
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Table C.29: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - PGLMM (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.786 (8.128) 0.744 8.155 547 -0.028 (2.325) -0.07 2.325 600 0.099 (1.231) 0.058 1.231 685
Tree 2 -0.17 (3.887) -0.211 3.888 424 -0.014 (1.291) -0.056 1.291 503 -0.012 (0.492) -0.053 0.494 530
Tree 3 0.114 (16.326) 0.072 16.308 452 0.151 (6.058) 0.11 6.054 621 -0.16 (3.685) -0.201 3.687 559
Tree 4 0.202 (4.376) 0.161 4.375 548 0.005 (1.374) -0.036 1.373 644 0.029 (0.75) -0.012 0.75 682

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 5.684 (7.611) 3.981 8.582 460 3.37 (2.371) 1.668 2.897 457 2.762 (1.359) 1.059 1.722 438
Tree 2 3.433 (3.77) 1.731 4.144 380 1.956 (1.686) 0.254 1.702 309 1.356 (0.887) -0.347 0.951 299
Tree 3 6.089 (16.903) 4.387 17.445 444 7.720 (6.075) 6.017 8.546 484 3.641 (3.988) 1.939 4.43 479
Tree 4 3.427 (4.444) 1.724 4.762 500 2.234 (1.705) 0.532 1.784 468 1.751 (0.899) 0.049 0.899 433

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 13.528 (9.860) 7.435 12.338 358 6.965 (2.811) 0.872 2.939 316 5.18 (1.515) -0.913 1.766 326
Tree 2 8.122 (4.589) 2.029 5.011 333 5.507 (2.093) -0.585 2.17 303 3.746 (1.054) -2.346 2.572 345
Tree 3 9.342 (18.099) 3.249 18.366 396 18.475 (7.934) 12.382 14.7 334 6.671 (6.758) 0.578 6.774 370
Tree 4 9.813 (6.163) 3.721 7.196 1000 4.815 (1.795) -1.278 2.201 333 3.587 (1.078) -2.506 2.728 322
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Table C.30: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - PGLMM (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.623 (15.434) -0.69 15.435 544 0.091 (6.012) 0.024 6.007 585 0.094 (3.52) 0.027 3.517 662
Tree 2 0.535 (12.348) 0.468 12.342 425 0.052 (4.864) -0.016 4.859 490 -0.019 (2.061) -0.087 2.061 514
Tree 3 1.315 (37.815) 1.248 37.794 455 0.329 (5.617) 0.262 5.619 638 0.143 (14.503) 0.076 14.489 531
Tree 4 -0.600 (13.807) -0.667 13.810 503 0.227 (5.680) 0.16 5.677 623 0.033 (2.859) -0.035 2.857 712

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 4.443 (13.839) 2.132 13.988 497 3.23 (5.816) 0.919 5.883 585 2.529 (3.438) 0.218 3.442 605
Tree 2 3.186 (11.31) 0.876 11.33 419 2.986 (4.483) 0.675 4.528 431 2.154 (2.527) -0.156 2.529 431
Tree 3 3.909 (43.492) 1.598 43.473 446 2.518 (5.345) 0.207 5.344 619 2.17 (14.659) -0.141 14.646 525
Tree 4 4.837 (13.736) 2.527 13.954 544 2.895 (5.355) 0.584 5.382 579 2.217 (2.811) -0.094 2.81 652

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 18.273 (16.174) 4.811 16.856 416 9.496 (4.650) -3.967 6.107 362 7.951 (2.895) -5.511 6.223 323
Tree 2 16.234 (12.149) 2.771 12.444 347 9.600 (4.485) -3.862 5.913 322 7.414 (2.436) -6.048 6.519 313
Tree 3 28.466 (36.901) 15.004 39.794 416 9.555 (6.804) -3.907 7.839 423 13.022 (13.067) -0.44 13.06 478
Tree 4 16.302 (12.041) 2.840 12.360 438 9.84 (5.325) -3.622 6.434 368 7.692 (2.600) -5.77 6.328 367
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C.3.3 PLR

Table C.31: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - PLR (univariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.08 (0.539) 1.295 1.402 99 0.029 (0.425) 1.244 1.314 97 0.016 (0.234) 1.231 1.253 97
Tree 2 0.054 (0.301) 1.269 1.304 100 0.007 (0.135) 1.222 1.23 100 -0.006 (0.099) 1.209 1.213 100
Tree 3 0.022 (1.666) 1.237 2.068 97 -0.095 (1.097) 1.12 1.564 92 0.112 (1.682) 1.327 2.133 71
Tree 4 -0.024 (0.394) 1.191 1.254 99 0.039 (0.187) 1.254 1.268 100 0.034 (0.125) 1.249 1.255 100

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.912 (0.96) -0.973 1.363 97 0.592 (0.359) -1.293 1.341 99 0.656 (0.314) -1.228 1.267 100
Tree 2 0.588 (0.476) -1.297 1.38 100 0.51 (0.212) -1.374 1.391 100 0.46 (0.129) -1.425 1.43 100
Tree 3 1.684 (2.274) -0.2 2.27 86 1.177 (1.206) -0.707 1.393 89 1.224 (1.323) -0.66 1.472 86
Tree 4 0.572 (0.482) -1.312 1.397 96 0.493 (0.215) -1.391 1.408 100 0.396 (0.158) -1.488 1.497 100

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 2.791 (1.931) -2.206 2.923 72 2.41 (1.071) -2.587 2.798 92 2.497 (0.907) -2.5 2.658 98
Tree 2 2.16 (1.334) -2.837 3.131 84 1.893 (0.535) -3.104 3.15 98 1.79 (0.325) -3.207 3.224 100
Tree 3 5.753 (4.693) 0.756 4.721 71 3.712 (2.283) -1.285 2.604 62 4.071 (2.512) -0.925 2.662 79
Tree 4 1.718 (0.999) -3.279 3.426 73 1.548 (0.563) -3.449 3.494 94 1.491 (0.495) -3.506 3.54 100
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Table C.32: Mean effect size (M) with standard deviation in brackets (SD), mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - PLR (multivariate model - continuous predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.038 (0.706) -0.003 0.702 99 0.035 (0.521) -0.006 0.519 97 0.015 (0.26) -0.027 0.26 95
Tree 2 0.051 (0.407) 0.01 0.405 100 -0.012 (0.138) -0.053 0.147 100 -0.006 (0.126) -0.047 0.134 100
Tree 3 0.021 (2.565) -0.02 2.551 92 -0.223 (1.646) -0.264 1.658 86 0.015 (1.526) -0.026 1.515 69
Tree 4 -0.079 (0.622) -0.12 0.631 98 0.044 (0.22) 0.002 0.219 100 0.031 (0.129) -0.01 0.129 100

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 1.029 (1.7) -0.673 1.82 93 0.532 (0.378) -1.17 1.229 98 0.601 (0.319) -1.101 1.146 100
Tree 2 0.469 (0.632) -1.234 1.385 99 0.422 (0.231) -1.281 1.301 100 0.378 (0.141) -1.324 1.332 100
Tree 3 1.833 (3.293) 0.131 3.276 81 0.973 (1.738) -0.729 1.875 76 1.189 (2.347) -0.514 2.388 80
Tree 4 0.575 (0.8) -1.127 1.380 95 0.42 (0.232) -1.283 1.303 100 0.356 (0.169) -1.346 1.356 100

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 4.839 (4.214) -1.254 4.321 27 2.831 (1.239) -3.262 3.485 48 3.191 (0.995) -2.902 3.066 77
Tree 2 3.580 (2.195) -2.513 3.315 34 2.264 (0.761) -3.829 3.903 73 2.255 (0.504) -3.837 3.87 91
Tree 3 6.930 (6.162) 0.837 6.131 35 4.124 (4.017) -1.969 4.433 45 5.960 (2.543) -0.132 2.52 49
Tree 4 1.643 (1.763) -4.450 4.776 32 2.097 (0.782) -3.996 4.07 67 2.124 (0.631) -3.969 4.019 81
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Table C.33: Mean effect size (M) with standard deviation in brackets, mean error (ME),
rooted mean squared error (RMSE) and number of simulations (N) from binary response
models - PLR (multivariate model - binary predictor):
a) input correlation r = 0.01.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 -0.058 (2.88) -0.126 2.868 99 -0.154 (1.085) -0.221 1.102 97 0.03 (0.531) -0.038 0.53 95
Tree 2 0.037 (1.237) -0.031 1.231 100 0.137 (0.638) 0.069 0.639 100 -0.003 (0.536) -0.07 0.538 100
Tree 3 0.082 (5.632) 0.014 5.602 92 0.84 (6.119) 0.772 6.132 86 -0.726 (11.469) -0.793 11.413 69
Tree 4 0.017 (2.506) -0.05 2.494 98 -0.034 (0.866) -0.102 0.868 100 0.041 (0.526) -0.026 0.524 100

b) input correlation r = 0.5.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 0.665 (2.605) -1.646 3.069 93 0.607 (1.014) -1.703 1.98 98 0.407 (0.585) -1.904 1.991 100
Tree 2 0.994 (2.944) -1.317 3.212 99 0.667 (0.662) -1.644 1.771 100 0.64 (0.46) -1.67 1.732 100
Tree 3 1.672 (6.225) -0.639 6.219 81 2.212 (7.162) -0.099 7.116 76 1.978 (11.161) -0.332 11.096 80
Tree 4 1.028 (3.058) -1.282 3.301 95 1.03 (2.662) -1.281 2.942 100 0.441 (0.636) -1.87 1.974 100

c) input correlation r = 0.9.

Species 20 Species 50 Species 100

M (SD) ME RMSE N M (SD) ME RMSE N M (SD) ME RMSE N
Tree 1 9.049 (8.064) -4.413 9.061 27 4.606 (3.254) -8.857 9.424 48 4.395 (1.612) -9.067 9.207 77
Tree 2 6.895 (6.022) -6.567 8.850 34 4.1 (1.685) -9.362 9.510 73 4.238 (0.931) -9.225 9.271 91
Tree 3 10.991 (12.663) -2.471 12.723 35 11.876 (15.078) -1.586 14.994 45 8.044 (9.637) -5.418 10.97 49
Tree 4 8.215 (9.948) -5.247 11.090 28 5.332 (3.982) -8.130 9.040 67 4.936 (2.090) -8.526 8.775 81
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