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Chapter 1

Introduction

1.1 Oncology clinical trials

1.1.1 Cancer treatment

Cancer is a class of diseases characterized by the uncontrolled growth of a single cell.
The many resulting cancer cells form a tumor and might invade neighbouring tissue and
spread to other parts of the body. To kill all cancer cells is the aim of cancer treatment.
Traditionally, this is tried to be achieved by surgery, radiotherapy and/or chemotherapy,
depending on the cell type affected [8, Chapter 9.5]. But these treatments have some
restrictions. They often do not reach all cancer cells and/or do also harm normal cells.
To improve therapy specificity, target-specific drugs have been developed [13]. These
drugs can either be antibodies or small molecules. They are normally given in addition
to traditional treatments, but combinations of them might replace chemotherapy in the
future.

To compare different treatments and to monitor treatment success, in many indications
doctors look at tumor size changes. Tumor size is often measured by imaging techniques,
such as computer tomography (CT) or positron emission tomography (PET). Depending
on the size change of tumor lesions, patients are then assigned to response categories
that are relevant for determination of treatment success and further treatments. These
categories are for most solid tumors and lymphoma complete response (CR) when the
lesions disappear completely, partial response (PR) when their size remarkably decreases,
stable disease (SD) when they stay the same size, and progressive disease (PD) when the
lesions grow or new lesions appear [7, 4].

1.1.2 Study endpoints

Phase III oncology clinical trials are normally randomized and controlled, and ideally the
endpoint is overall survival. However, when treatment is effective and for indolent (slowly
progressing) cancer types (eg. Follicular Lymphoma), overall survival might be very long.
In consequence, this leads to large studies with either very long study time or huge study
size.

Therefore other, intermediate endpoints, called surrogate endpoints, have been estab-
lished as primary endpoints. In cancer, surrogate endpoints are often based on tumor
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assessments and the treatment response criteria that were described in Section 1.1.1.
Two common surrogate endpoints based on tumor progression are time to progression

(TTP) and progression-free survival (PFS). TTP is defined as the time from randomization
to tumor progression. If a patient in a TTP study dies before progression, he is right-
censored at the day of death. PFS is a composite endpoint made up from TTP and
overall survival (OS), that means death is considered an event [15]. Composite endpoints
have some advantages over single endpoints. As they capture both intermediate events
and death, they increase study power. Additionally, they eliminate the problem of the
competing risk of death by including death events in the analysis [5, p. 66]. The Food
and drug administration of USA (FDA) prefers the PFS endpoint to the TTP endpoint
[15].

Surrogate endpoints such as TTP and PFS have one disadvantage compared to OS
endpoints. The event is based on tumor progression. Often, progression might be asymp-
tomatic, that means not accompanied by any symptoms that could be reported by the
patient, and it can only be detected in a hospital visit via a tumor assessment. Therefore
the event date cannot be determined exactly, but is just known to have happened between
two assessment dates. This type of event is called interval-censored, that means, the event
of interest is just known to lie inside a certain time interval.

1.1.3 Censoring of observations

Progression events are one example of censoring in oncology clinical trials with PFS end-
point, but there are some more.

A few patients drop out from the study and are therefore right-censored. These patients
decide to not continue with treatment and/or assessment visits and are then censored at
the last assessment date. By doing this we use the information that they did not have an
event until that date and might have one anytime in the future.

All the patients that did not have an event yet when the study is analysed are right-
censored at the last assessment date before the analysis timepoint. So we know that
their event time is larger than that date. This type of censoring is called administrative
censoring.

As a generalization of the progression events, any kind of events due to tumor assess-
ments are interval-censored between two assessment dates. We only know that this kind
of event has happened in between the two assessment visits, but not when exactly it has
happened.

If time-to-event data was not censored, it would be straightforward to analyze it with
standard statistical procedures for continuous variables. But there are always censored
events in time-to-event clinical trials. This is due to withdrawal of consent and because we
cannot wait until all patients in the study have an event. Therefore more special survival
analysis procedures have to be used.

A general assumption in analysis of censored data is that the censoring times and
event times are independent (also called noninformative censoring) [21]. The methods
used in this thesis all imply this assumption. For interval-censored data in addition the
interval-generating process has to be independent of event and rightcensoring times [3,
Chapter 1]. In practice the independence assumption of censoring and event times can
hardly be proven and might not always be correct.
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The most established survival analysis methods consider just right-censored data. If
one wants to consider interval-censored data, one has to use more general methods.

1.2 Project aim

1.2.1 Standard analysis of a time-to-event study

Typically, oncology clinical trials are analyzed with standard survival analysis methods
such as Kaplan-Meier estimates, log-rank test, and Cox regression [21]. These methods are
well-established and used for decades, but they only consider right-censoring, no interval-
censoring. Therefore all events are assumed to have happened at an exact date. For
progression events, the assessment date where the event was first detected is used as exact
date. Even if this approach generally overestimates endpoints such as PFS (we impute
the right end of the censoring interval, which is the latest possible event timepoint), this
procedure is generally accepted, also from health authorities [3, Chapter 10].

But some bias to longer progression times might be introduced here. This bias tends
to be bigger the longer the intra-assessment periods are [3, Chapter 10]. With long
intraassessment and study periods this bias might be substantial.

When we consider only plausible cases this bias can be reduced by imputing the middle
of the intra-assessment period as an exact event instead of imputing the end [3, Chapter
10]. This is done sometimes, but the result is only unbiased if the assumption of a constant
event probability (density, not hazard) in that interval holds. This assumption implies a
linear survival function, which is not very plausible.

It would be best to use the appropriate methods that also consider interval-censoring.
Some of these methods, like the Turnbull estimator for survival functions [39], are al-
ready available for many years. In recent years many more methods for interval-censored
data have been established [34] and implemented in statistical software. The methods
for interval-censored data that correspond to the above-mentioned methods for right-
censored data are the Turnbull estimator [39], generalized log-rank test [3, Chapter 14]
and ”generalized Cox regression” [18].

Methods for interval-censored data are still not used regularly in the pharmaceutical
industry. Nevertheless, there have been some first requests from health authorities to
provide interval-censored analysis as a sensitivity analysis [41, slide 6]. Interval-censored
analysis has also been recommended as a sensitivity analysis of PFS endpoints by the
PhRMA working group that is sponsored by the American Pharmaceutical Research and
Manufacturers Association [31]. So this type of analysis might be used more often in
clinical studies in the future.

1.2.2 Aim of thesis

Roche would like to improve its knowledge of interval-censoring methods in general and
of their behaviour compared to the well-known right-censoring methods in particular.
The aim of this thesis is to establish a framework of survival analysis procedures for
interval-censored data in the software R [29] and to test it with some realistically simulated
datasets. With these simulations effects of right- and interval-censoring are compared for
different scenarios and their behaviour is better understood.
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Finally, realistic data generation for simulation of other studies is established in R,
ready to use by other statisticians at Roche. The established framework should also be
usable with clinical trial data to be ready for further health authority requests.

1.2.3 Project outline

This aim is achieved in a three-step procedure.
First, some survival data is simulated and right- and interval-censorings applied to it.

Simulation parameters are chosen appropriately to mimic a clinical trial in lymphoma.
Then the estimations of the survival functions, of the p-values of the log-rank tests and

of the hazard ratios of the Cox regression are done with both right- and interval-censoring
methods. The survival function is estimated with both non-parametric and parametric
procedures (by Weibull distribution).

Finally, the estimates are compared to the true values simulated from. Survival func-
tion estimates are compared at certain times and quantiles by mean squared error (MSE)
and bias. Log-rank tests are compared by power and Type I-error and hazard ratios by
MSE and bias as well.

This whole simulation procedure is repeated with some specific trial parameters changed
and then results are compared. In this way we can find out with which type of trial we
can expect big differences between right-censoring and interval-censoring analysis.

Also simulation scenarios are chosen that do not fulfil the uninformative censoring
criterion (see 1.1.3) because their behaviour differs systematically across arms. Some
bias might be introduced when these scenarios are analyzed [3, Chapter 10]. By testing
these scenarios the robustness of the right- and intervalcensoring methods with regards
to informative censoring is compared. The final goal of all these tests is to assess which
method is more suitable for the analysis of what kind of data.

1.3 Example of clinical trial: GALLIUM

We would like to simulate data that is close to real clinical trial data. So we use the
sample size calculation parameters of a real clinical trial called GALLIUM [1] as a basis
of our simulations. The GALLIUM trial is explained more thoroughly in the next section.

1.3.1 Key features

The trial is a phase III trial designed for approval of the drug in this new indica-
tion. It is a two-arm, 1:1 randomized, open-label study that compares the control treat-
ment chemotherapy plus Rituximab (an established antibody drug) to the new treatment
chemotherapy plus Gazyva (a new antibody drug). The study started in 2011 and is
expected to complete in 2017. It includes a total of 1400 patients in about 200 sites in
70 countries worldwide. The patients have untreated, advanced, indolent Non-Hodgkin’s
lymphoma, about 1200 of them the subtype follicular lymphoma, the other 200 patients
have the subtype marginal zone lymphoma. The primary endpoint of the study is PFS of
the follicular lymphoma patients.
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1.3.2 Disease

Lymphoma is the cancer of the lymph cells. These are the cells of the immune system.
There are diagnosed about 20 new lymphoma cases per 100000 people per year [22], about
7 - 10% of all cancer cases.

Follicular lymphoma is a cancer of B-cells in follicles of lymph nodes. B-cells are
the antibody-producing cells of the immune system. Follicular lymphoma accounts for
about 20% of all lymphoma cases. In marginal zone lymphoma another subtype of B-cells
is affected, that is present in lymph nodes, spleen, stomach and other organs. 10% of
lymphoma cases are of this subtype [22].

Follicular lymphoma is a disease of the elderly. The median age at diagnosis is 60
years [40]. Mostly it is accompanied by a prominent genetic change, overexpression of
the oncogene Bcl-2. It is an indolent disease, which means slowly progressing. When
patients have no symptoms and the cancer lesions are small, patients are sometimes not
treated immediately but kept in ”watch and wait” state, sometimes for years. Patients
with advanced disease are treated with chemotherapy plus Rituximab, which is the control
treatment of this study. Median PFS with this treatment is six years [1]. This is quite long
and typical for indolent diseases. In summary, follicular lymphoma is highly treatable,
but ultimately uncurable [40].

1.3.3 Treatment regimen

Follicular lymphoma is regularly treated with different chemotherapeutic agents. There-
fore three different agents, Bendamustine, CHOP and CVP can be used in the GALLIUM
study. Sites can choose the one they prefer. These chemotherapies are given intravenously
in the hospital. They kill most proliferating cells in the body, not only cancer cells. So
they are not that specific, but still effective.

The chemotherapy is combined with an anti-CD20-antibody that binds to antigens
on the surface of B-cells and induces cell death. All B-cells are killed here, not just the
cancerous ones. The antibodies are given intravenously, together with the chemotherapy.
In the study, the standard antibody Rituximab (marketed as MabThera in Europe) that
is a first generation antibody drug and on the market for 16 years is used in the control
group. The new antibody marketed as Gazyva (with product name Obinutuzumab), a
glycoengineered, humanized antibody of the second generation is tested in the treatment
group.

Treatment response is measured by imaging with CT or PET scans. Six tumor lesions
(mostly in lymph nodes) are assessed regularly by size measurements and the response
categories described in Section 1.1.1 are applied [4].

1.3.4 Study phases

The GALLIUM study has three phases.
The first one is the induction treatment phase that lasts for about 6 months and

contains 6 to 8 cycles of chemotherapy plus antibody and 3 tumor assessments, one of
them being a baseline assessment before start of treatment.

The second phase is the maintenance treatment or observation phase. Patients with
complete or partial response after induction will receive maintenance treatment, which is
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12 more cycles of antibody during 2 years. All patients (also those with stable disease
who get into observation phase at this time) will have 5 tumor assessments in this period.

The third phase is the follow-up phase that lasts for a maximum of 5 years. In the
first 3 years there are assessments every 6 months, followed by yearly assessments.

Exact treatment and assessment dates are shown for CVP chemotherapy in Figure 1.1.
In the first plot, one can also see that in the first of the eight three-weekly chemotherapy
cycles, there are two more Gazyva infusions, on day 8 and 15, due to results from pharma-
cokinetic studies. Rituximab patients do not need an infusion on these days. And because
there are no placebo infusions done for ethical reasons, this study cannot be blinded.
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Figure 1.1: Three phases of GALLIUM study: Induction, maintenance and follow-up. Exam-
ple of treatment with CVP chemotherapy and either Rituximab or Gazyva antibody. Tumor
assessment dates are indicated with red crosses
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Chapter 2

Methodology

2.1 Survival analysis

Statistical analysis of time-to-event data is called survival analysis, also when the event
is not death. It has some characteristics that differ from standard statistical analysis for
continuous variables, in addition to the different terminology.

We already got to know some special characteristics of survival analysis, like the consid-
eration of censored observations in Section 1.1.3 and the treatment of composite endpoints
in Section 1.1.2 of the introductory chapter. There are some more that are explained here.

First, event times are continuous random variables that can only be non-negative
(T ≥ 0). Any distribution function that is used for description of event times has to
consider this.

Secondly, in survival analysis the standard representation of a distribution is not the
cumulative distribution function (cdf) F (t) = P (T ≤ t), and the corresponding density
function f(t) = ∂F (t)/∂t. Instead, the survival function S(t) = 1−F (T ) = P (T > t) and
the hazard function h(t) = f(t)/S(t) are used for analysis and display of time-to-event
data. This for historical reasons and because they are interpretable in an intuitive way as
the probability of an event after a certain time (for S) and the instantaneous risk of an
event (for h) [21, Chapter 2].

2.2 Estimation of survival functions

Survival functions of the study arms are a very important result of oncology clinical trials,
especially the timepoints of the median survival. Therefore they are estimated first in my
simulation study, and they are estimated in two ways. In addition to nonparametric
estimation, also the parametric case is considered.

2.2.1 Parametric estimation: Weibull

Parametric models have the advantage of being easily applicable to both right- and
interval-censored data. Maximum likelihood estimation results in parameter estimates
and thus estimated distributions including standard errors based on Maximum likelihood
theory [17] that can be used for any kind of further inference. The disadvantage is the
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strong assumption on the distribution of the data that is taken when a parametric model
is used. If that assumption does not hold, any further inference is biased.

Weibull distributon

As a realistic representation of a survival function for the GALLIUM study, the Weibull
distribution was chosen. It has two parameters and can be represented in the following
way [17, appendix]:

T ∼ Wb(α, µ), α, µ > 0

F (t) = 1− exp

[
−
(

1

µ
· t
)α]

, t ≥ 0

f(t) =
1

µ
· α ·

(
1

µ
· t
)α−1

· exp

[
−
(

1

µ
· t
)α]

.

S(t) = 1− F (t) = exp

[
−
(

1

µ
· t
)α]

h(t) =
1

µ
· α ·

(
1

µ
· t
)α−1

.

The Weibull distribution has the advantage of being adaptable to many different shapes
and at the same time fulfilling the proportional hazard assumption. This assumption is
convenient, because it allows calculation of a hazard ratio that is constant over time.

Likelihood functions

Parametric estimation is done easily by applying the Maximum Likelihood (ML) frame-
work to the chosen distribution. So the likelihood is the product of the densities at the
observed event times:

L =
n∏

i=1

f(Ti) .

The likelihood depends on the parameters of the distribution, and we want to estimate
these parameters in likelihood inference, but for the sake of simplicity, a symbol for these
parameters was not included in the equation above and in the next equations. The above
equation is only valid if all events are completely observed, that means if there are no
censored observations. Censored observations have to be considered in a different way.

In the right-censoring framework, one can observe exact events and right-censorings.
They are displayed with two variables [21, Chapter 3]:

time TRC

indicator δ =

{
1 if time is event,

0 if time is censoring .

For right-censored observations the event could happen anytime after the censoring.
To find the corresponding likelihood, the probabilities of all possible event times are inte-
grated, that means all times bigger than the censoring time. This integrated probability
corresponds to the survival probability at the censoring time.
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To find the likelihood of the whole sample, again the product of the likelihoods of the
observations has to be formed. To choose the appropriate likelihood for each observation
the censoring indicator δ comes now into place. The likelihood formula for right-censored
and exact observations is [21, Chapter 3]:

L =
n∏

i=1

f(TRC i)
δi · S(TRC i)

1−δi .

It is only valid if the censoring and event-generating mechanisms are independent.
Interval-censored observations are represented by two times, TL for the left border

of the censoring interval and TR for the right border. Exact events and right-censorings
are special cases in this framework and therefore can be represented by two times as well.
For exact events TL = TR = TRC and for right-censorings TL = TRC , TR =∞.

The likelihood of interval-censored observations can be explained in a similar way as
the one of the right-censored observations. One should find the probability of all possible
event times, which for an interval-censored event corresponds to the value of the survival
function at the left border minus the value of the survival function at the right border.
This probability can be found via P (TL ≤ T ≤ TR) = F (TR)− F (TL) = S(TL)− S(TR).
It is only valid if the censoring and event generating process are independent.

In this version of the likelihood function also exact events and right-censored observa-
tions can be inserted. The resulting likelihood function is [21, Chapter 3]:

L =
n∏

i=1

[S(TL i)− S(TR i)] .

Insertion of the corresponding Weibull distribution functions into the likelihood func-
tions results in the likelihood functions that we used in this thesis. These are:

for right-censoring:

L(α, µ) =
n∏

i=1

{
1

µ
· α ·

(
1

µ
· TRC i

)α−1

· exp

[
−
(

1

µ
· TRC i

)α]}δi

·
{

exp

[
−
(

1

µ
· TRC i

)α]}1−δi
,

for interval-censoring:

L(α, µ) =
n∏

i=1

{
exp

[
−
(

1

µ
· TL i

)α]
− exp

[
−
(

1

µ
· TR i

)α]}
.

These likelihood functions are maximized with the observed times inserted, what re-
sults in ML estimates of the Weibull parameters, α̂ML and µ̂ML for these observations.
The corresponding survival function of the Weibull distribution is taken to find estimates
at certain times and quantiles.
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Implementation in R [29]

Parametric estimation of distributions for time-to-event data is available in R packages
survival [37, 38] and fitdistrplus [6]. With survival package, the data is put in
a Surv object that is called in the survreg function. In fitdistrplus package the
fitdistcens function is used.

The two functions give sufficiently close results. They can both be used for right- and
interval-censored data, but in the fitdistcens function the data can only be inserted in
the interval-censoring representation with two times.

In the simulations in this thesis the survreg function is used for estimation of para-
metric survival functions. Estimation of survival quantiles and times is summarized in the
here-defined SurvWeibUncens, SurvWeibRightcens, SurvWeibIntervalcens, TimeWei-
bUncens, TimeWeibRightcens and TimeWeibIntervalcens functions that are shown in
the Appendix 8.2.2.

2.2.2 Nonparametric estimation: NPMLE

Generalizations of the empirical cumulative distribution function (ECDF) that also con-
sider censorings are normally used as nonparametric estimators in the survival analysis
context. These nonparametric estimators are quite popular in survival analysis because
they do not make any assumptions on the shape of the function. But their disadvantage is
that they are step functions and inference for them is less immediately available compared
to parametric functions.

One can also show that these estimators are a special type of Maximum Likelihood
(ML) estimators. So they are also called nonparametric maximum likelihood estimators
(NPMLE) [34, Chapter 3].

For right-censored data: Kaplan-Meier

The nonparametric estimator used for right-censored data is called Kaplan-Meier estima-
tor or product-limit estimator [19, 20]. This estimator can be derived from probability
ratios that are used to formulate a likelihood function whose maximization results in ML
estimates in the form of counts. The usual definition of the Kaplan-Meier estimator is
with these counts.

Theory To start the explanations we have to sort the observed event times (TRC i, δi =
1, i ∈ {1, 2, ..., n}) in increasing order and get unique event times tj, j = {1, 2, ..., s} such
that

t1 < t2 < t3 ... < ts .

There can be more than one observation with the same time. Then these observations
are tied and their number per timepoint is recorded in the variable dj with j = 1, 2, 3, ..., s.

The event times tj are considered to be fixed. They define the location of the steps
of the step function. That means the survival function does only decrease at these event
times and is constant in between ??. The value of the survival function at one of the
event times tj is:
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S(tj) = P (T > tj) = P (T ≥ tj+1)

=
P (T ≥ tj+1)

P (T ≥ tj)
· P (T ≥ tj)

P (T ≥ tj−1)
· ... · P (T ≥ t2)

P (T ≥ t1)
· P (T ≥ t1)

=

[
1− P (T = tj)

P (T ≥ tj)

]
·
[
1− P (T = tj−1)

P (T ≥ tj−1)

]
· ... ·

[
1− P (T = t1)

P (T ≥ t1)

]

=

j∏

l=1

[
1− P (T = tl)

P (T ≥ tl)

]
=:

j∏

l=1

(1− λl) . (2.1)

In a next step the censoring times of the censored observations (TRC i, δi = 0, i ∈
{1, 2, ..., n}) are sorted, per event time interval [tj, tj+1):

tjk, k = {1, 2, 3, ..., cj} ,

where cj is the number of censored observations in the j-th time-interval. The survival
probability at an individual censoring time is:

P (T > tjk) = S(tjk) = S(tj) . (2.2)

This because of the constant survival function at non-event times.
At the same time the likelihood contribution of an event time can be written in terms

of the survival function:

f(tj) = P (T = tj) = P (T ≥ tj)− P (T > tj) = S(tj−1)− S(tj) . (2.3)

With knowledge of (2.1), (2.2) and (2.3) one can reformulate the likelihood function
in terms of event times as follows:

L(λ1, ..., λs) =
s∏

j=1

[S(tj−1)− S(tj)]
dj · S(tj)

cj

=
s∏

j=1

[
j−1∏

l=1

(1− λl)−
j∏

l=1

(1− λl)
]dj
·
[

j∏

l=1

(1− λl)
]cj

=
s∏

j=1

[
λ
dj
j (1− λj)[(

∑s
i=j di+ci)−dj]

]
.

Maximizing the likelihood leads to the following ML estimate of λj (see Appendix 8.1
for details):

λ̂j;ML =
dj∑s

i=j di + ci
=
dj
rj

=:
# of events at tj

# at risk just before tj
.

dj and rj are two numbers that can be calculated at every event time tj of the dataset.
They represent the number of events (dj) and the risk set (rj) and can be summarized for
any right-censored dataset with times TRC i = ti, i = {1, 2, 3, ..., n} as follows:
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dj =
n∑

i=1

{
1 if ti = tj and δi = 1,

0 otherwise

rj =
n∑

i=1

{
1 if ti ≥ tj,

0 otherwise .

The resulting Kaplan-Meier estimator for any set of t is defined as [21, Chapter 4]:

Ŝ(t) =





1 for t < t1,∏
tj≤t

(
1− dj

rj

)
for t ≥ t1

not defined for t > tmax .

Example Typically to compute Kaplan-Meier survival function estimation a so-called
risk table is generated. This lists the time (tj), number at risk (rj), number of events (dj)

and Kaplan-Meier estimator (Ŝ(tj)) at all numbered event times (j).
We show this risk table in Table 2.1 for an example dataset with 15 patients which is

the same dataset as the one used in Figure 3.1 in the simulation setup section.
The corresponding Kaplan-Meier estimate is shown in Figure 2.1. In this dataset the

last patient was censored. That is the reason why the curve does end above zero survival
probability. For all timepoints after the last time the function is not defined. Therefore
no survival probabilities below the value of the last time are estimated.

j tj rj dj S(tj)
1 71 15 1 0.933
2 74 14 1 0.867
3 169 13 1 0.800
4 344 12 1 0.733
5 353 11 1 0.667
6 382 10 1 0.600
7 504 8 1 0.525
8 579 7 1 0.450
9 645 6 1 0.375

10 754 5 1 0.300
11 829 4 1 0.225
12 971 2 1 0.113

Table 2.1: Risk table to com-
pute a Kaplan-Meier estimate
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Figure 2.1: Kaplan-Meier NPMLE for right-censored data. The
timepoints where censorings occurred are marked with /-signs on
the curve.
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Implementation in R [29] Kaplan-Meier estimation is available in the R package
survival [37, 38]. The data is put in a Surv object that is called in the survfit function.

Estimation of survival quantiles and times is summarized in the here-defined SurvStepUn-

cens, SurvStepRightcens, TimeStepUncens and TimeStepRightcens functions that are
shown in the Appendix 8.2.2.

For interval-censored data: Turnbull

The nonparametric estimator used for interval-censored data is called Turnbull estimator
[19, Chapter 3], [39]. It is uniquely defined up to certain areas of identical likelihood.
Unfortunately, its ML estimate cannot be derived analytically but only iteratively by
some optimization algorithms.

Theory Again, we have to sort the observed times in increasing order, now both the
TL i and TR i, i = {1, 2, ..., n} together and get tb k with b ∈ {R,L} and k = {1, 2, ..., 2n}
(if there are no ties) such that

tb 1 < tb 2 < tb 3 ... < tb 2n .

If we have exact events with TL i = TR i, we convert them to very small intervals to be
able to apply the above sorting. For ties of the form TL i = TR j, i 6= j we increase TL i
a little bit to avoid them. This is done formally by defining intervals that are left-open
and right-closed, as described in the next paragraph. If whole intervals are tied, that
means TL i = TL j and TR i = TR j, one interval has to be put inside the other, that means
TL i < TL j < TR j < TR i, by slightly shifting the times.

In a second step we have to identify all intervals (tLk, tRk+1] of adjacent left and right
interval borders, called Turnbull intervals, and redefine them in increasing order as

(tL j, tRj] = tj, j = {1, 2, ..., s} .

It can be shown that any NPMLE of interval-censored data must concentrate all
mass on these s Turnbull intervals [19]. That means the NPMLE is only decreasing
inside these intervals and constant outside of them. At the same time the NPMLE is
unidentifiable (up to upper and lower boundaries) inside the Turnbull intervals. This
gives the Turnbull estimate survival function a special shape with horizontal stretches
in non-Turnbull intervals and rectangular boxes indicating areas of equal likelihood in
Turnbull intervals.

The levels of the horizontal stretches, i.e. the survival probabilities at certain times,
are found by the following procedure. We again consider the tj to be fixed and then
only consider the mass inside the Turnbull intervals f(tj) = S(tL j)− S(tR j) to form the
likelihood function:

L (f(t1), ..., f(ts)) =
n∏

i=1

(
s∑

j=1

αij · f(tj)

)
,

where αij = 1{(tL j, tRj] ⊂ (TL i, TR i]} indicates whether the interval j is inside the
observation i, that means the observation could have occurred in the Turnbull interval.

Maximizing the likelihood is done numerically in an interative way. Turnbull [39] uses
the self-consistency algorithm which estimates f(tj) repetitively by applying:
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f̂(tj) =
n∑

i=1

αij · f̂(tj)∑s
l=1 αil · f̂(tl)

.

This procedure is a special form of the expectation-maximization (EM) algorithm [19].
There exist other algorithms that are faster. The fastest one that is implemented in an R

package was chosen for this thesis, see below.

Example We show the generation of the Turnbull estimate with the same example
dataset as the one used in Figure 2.1 in the Kaplan-Meier function section that is coming
from Figure 3.1 in the simulation setup section. The boundaries of the Turnbull intervals
( (tL,j, tR,j] ), that are the basis of the function, are shown in Table 2.2.

The corresponding Turnbull survival estimate is shown in Figure 2.2. The Turnbull
intervals are marked with rectangles. The Turnbull estimate is not defined inside them
and could take any decreasing kind of shape there. Consequently, at some timepoints
and most quantiles the Turnbull survival function is only defined up to a certain range.
This is a disadvantage for estimations of points on the curve that we would like to do
later. Estimations are much easier if we choose one line type that is crossing through the
rectangles.

In later estimations we choose three ways of crossing the Turnbull intervals. These are
the lower boudary (dashed line in Figure 2.2), the upper boundary (solid line in Figure
2.2) and the linear approximation through the rectangles, which crosses all rectangles
diagonally from the upper left to the lower right corner (dotted line in Figure 2.2). In this
thesis the linear approximation (dotted line) is chosen for the simulation study.

The last rectangle in Figure 2.2 extends to infinite time and therefore does not contain
any linear approximation. Consequently, the linear approximation does end above zero
survival percentage.

The interpretation of the last rectangle is the same as for the rightcensoring. For
all timepoints after the last non-infinite time the function is not defined. Therefore no
survival probabilities beyond the value of the last time are possible.
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j tL,j tR,j S(tj)
1 1 71 0.867
2 76 169 0.800
3 288 344 0.600
4 501 504 0.525
5 579 579 0.375
6 667 754 0.300
7 829 829 0.225
8 920 971 0.113
9 1071 Inf 0.000

Table 2.2: Table with
Turnbull intervals, used to
generate the Turnbull esti-
mate
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Figure 2.2: Turnbull NPMLE for interval-censored data. Both
the upper and the lower boundaries of the Turnbull intervals are
shown in the plot, giving rise to rectangular boxes inside which
the function could take any shape. The linear approximation
through the boxes that is taken for simulation studies in this
thesis is indicated with the dotted line.

Implementation in R [29] Turnbull estimation is available in four different R packages
that use different maximization algorithms. These are:

� EM algorithm in packages:

– survival [37, 38] (functions: Surv, survfit)

– interval [9] (function: icfit)

� EM-ICM (iterative-convex-minorant) algorithm in package:

– Icens [12, 42] (function: EMICM)

� ISDM algorithm in package:

– Icens [12, 23] (function: ISDM)

� projected gradient algorithm in package:

– Icens [12, 43] (function: PGM)

� vertex exchange algorithm in package:

– Icens [12, 2] (function: VEM)

� height map algorithm for reduction step and combination of sequential quadratic
programming and support reduction algorithm for optimization step in package:
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– MLEcens [25] (function: computeMLE)

Performance of these functions was compared by application to datasets generated in
this thesis. ISDM and projected gradient algorithms did not converge and therefore were
not considered further. Vertex exchange algorithm converged when bigger tolerance than
default was accepted and was considered further. All remaining procedures led to the same
result, but the speed of convergence was quite different. The speed was measured by R
profiling and the resulting times shown in Table 2.3. The VEM and EM-ICM algorithms
were the slowest, the EM algorithm variant in the survival package was quite a bit faster,
but the most complex algorithm used in the MLEcens package was by far the fastest.

Estimation of survival quantiles and times is summarized in the here-defined SurvStepIn-

tervalcens and TimeStepIntervalcens functions that are shown in the Appendix 8.2.2.

survival Icens EMICM Icens VEM MLEcens interval
1.94 3.60 5.56 0.16 3.58

Table 2.3: Time needed for calculation of Turnbull NPMLE, in seconds. Determined from one
run with the Rprof function.

The MLEcens package with the computeMLE function is used in simulations of this
thesis.

2.3 Test for identity

It is common in oncology clinical studies to compare the survival functions of the treat-
ment groups by a statistical test. Simple tests for equality of survival functions are
nonparametric rank tests [19].

2.3.1 For right-censored data: Logrank test

Theory

A nonparametric rank test for rightcensored data is the logrank test [19]. It tests for the
null hypothesis of equal hazard. We use the two-sample version where the hazard of two
groups is compared (H0 : h1 = h2, formula of test statistic in [21, Chapter 7]). This is the
same as testing if the hazard ratio between the two groups is equal to one (HR = 1).

The logrank test has highest power when treatment groups have proportional hazard
[19]. It is equivalent to the score statistic of the semiparametric Cox regression model.
The Cox regression model is a linear transformation model with Extreme Value proba-
bility distribution function [24], the same model type that is used for derivation of the
generalized logrank test for intervalcensored data in the next section. The asymptotic
properties of the logrank test can be derived by counting process theory [19].

Implementation in R [29]

The logrank test for rightcensored data is available in the R package survival [37, 38].
The data is put in a Surv object that is called in the survdiff function.
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Estimation of p-values is summarized in the here-defined LogRankTestUncens and
LogRankTestRightcens functions that are shown in Appendix 8.2.3.

2.3.2 For interval-censored data: Generalized logrank test

Theory

There are different ways to generalize the logrank test for rightcensoring data to the
intervalcensoring case. In this thesis we focus on the ones mentioned in the interval R

package that are nicely described in [3, Chapter 13] and also used in our estimations.
In Chapter 13 of [3] the derivation of two types of generalized logrank statistics is

done for linear (or parametric) transformation models and their score statistics. Linear
transformation models are defined by an unknown increasing function of event time, g(.),
and a known probability function, F (.), such that

P (T ≤ t|x) = F
(
g(t)− xT · β

)
.

With this we can write the survival function at t for a patient with treatment indicator
xi as

S(t; xTi β, S0) = 1− F
(
F−1 (1− S0(t))− xTβ

)
, (2.4)

with S0(t) being an unspecified survival function.
Now to get a score statistic we would like to maximize the likelihood as described for

the general case in Section 2.2.1,

L(β, S0) =
n∏

i=1

[
S(TL i; x

T
i β, S0)− S(TR i; x

T
i β, S0)

]
,

under the null hypothesis of β = 0, what implies S(t; 0, S0) = S0 and results in the
likelihood function

L(0, S0) =
n∏

i=1

[S0(TL i)− S0(TR i)] .

The maximization can be done with the nonparametric maximum likelihood estimator
for intervalcensored data, the Turnbull NPMLE, that is described in Section 2.2.2. Now
we have a ML estimate for S0, Ŝ0 ML.

Finally the score statistic can be written as

Z =

[
∂ log (L(β, S0))

∂β

]

β=0,S0=Ŝ0

=
n∑

i=1

xi ·
Ŝ ′(TL i)− Ŝ ′(TR i)

Ŝ0(TL i)− Ŝ0(TR i)
, (2.5)

where

Ŝ ′(T ) =

[
∂ log

(
S(T ; η = xTi β, S0)

)

∂η

]

η=0,S0=Ŝ0

. (2.6)
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This is the general form of the score statistic. Now we can define different variants of
it by using different assumptions to get a simplified version of Ŝ ′(t).

One assumption, that is made by Finkelstein [11] and used in our estimations, is the
proportional hazard assumption. It is reached by setting the probability distribution F
to an Extreme value distribution [3, Chapter 13]. With this assumption we can simplify
(2.4) to

S(t; xTi β, S0) = S0(t)exp(−xTi β) ,

and (2.6) to

Ŝ ′(t) = S0(t) · log (S0(t)) .

This results in the generalized logrank test statistic proposed by Finkelstein [11],

Z =
n∑

i=1

xi ·
Ŝ0(TL i) log

(
Ŝ0(TL i)

)
− Ŝ0(TR i) log

(
Ŝ0(TR i)

)

Ŝ0(TL i)− Ŝ0(TR i)
, (2.7)

that is used for all generalized tests in this thesis.
The variant by Sun [33] that can be chosen in the LogRankTestIntervalcens function,

has a slightly different definition of Ŝ ′(t) resulting in the statistic

Z =
n∑

i=1

xi ·
Ŝ0(TL i) log

(
S̃0(TL i)

)
− Ŝ0(TR i) log

(
S̃0(TR i)

)

Ŝ0(TL i)− Ŝ0(TR i)
, (2.8)

with S̃(t) being a function of a Nelson-Aalen type of estimate of Ŝ0.
The intervalcensoring methods for the logrank test cannot be related to the counting

process theory and therefore it is difficult to derive their asymptotic properties [3, Page
13]. Because the asymptotic properties of these methods under the alternative hypothesis
are unknown, they cannot be used for sample size calculations.

Implementation in R [29]

Different types of nonparametric tests for intervalcensored data are available in the R

package interval [9]. They are all implemented in the icfit function with different
arguments. Two types of generalizations of the logrank test, the one described by Finkel-
stein in [11] and Sun in [33], were examined further in two estimation process variants
each, a permutation and a score variant. For our datasets it was observed that the four
variants gave very similar results. In general the permutation variant was faster than the
score estimation process.

To compute the logrank test statistic, the Turnbull NPMLE has to be computed. This
is done with the EM algorithm of the icfit function that has been described in Section
2.2.2 as being quite slow. Therefore the estimation speed is much slower than for the
survival function estimates of Section 2.2. One could implement a faster algorithm if
one would mimick the structure of the icfit output. This was not done due to time
limitations.

Estimation of p-values with all four versions is implemented in the here-defined Lo-

gRankTestIntervalcens function that is shown in Appendix 8.2.3. The Finkelstein
method in permutation form is the default analysis method in that function and is also
used for all the analysis in this thesis.
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Chapter 3

Simulation setup

3.1 Overview

Our goal is to compare analysis methods for right- and interval-censored data in a specific
study setting. For the best comparison we should relate the estimates obtained by analysis
of censored datasets to the true values. The true values are only known for simulated
datasets. Therefore we have to simulate datasets and cannot use observed data for our
comparison. To stay close to the real world we try to simulate datasets that are very
close to the GALLIUM clinical study of lymphoma. With the PFS primary endpoint the
simulated datasets contain the following five main groups of patients:

1. patients that dropout from the study before an event due to refusal of consent or
toxicity.

→ They are right-censored at dropout.

2. patients that die before progression is detected.
There are two possible ways of treatment in the literature [36].

– if we expect these patients having died from the disease: There must have been
progression before death, we just did not detect it. They have an interval-
censored event between the last assessment visit and the death date

– if we expect these patients having died from another cause:

→ They have an exact event at the day of death.

We choose the second option in our simulations.

3. patients that progress during the study.

→ They have an interval-censored event between two planned tumor assessment
visits.

4. patients with no event (or dropout) until the last planned assessment visit.

→ They are right-censored at the last assessment visit.

5. patients with no event until study analysis. (Analysis might be earlier than the last
planned visit. Typically analysis is done after a pre-specified number of events.)
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→ They are right-censored at their last assessment visit.

These five patient groups are considered in a sequential manner in the data simulation
process for this thesis.

Two types of censored data is generated, containing all the patient groups. The data
types are displayed in more detail in Table 3.1.

a) Patient type Data type Intervalcensoring
No Description left time (TL) right time (TR)
1. dropout rightcensored time of dropout infinity
2. death event exact event time of death time of death
3. progression event intervalcensored assess. before assess. after
4. no event last assess. rightcensored last assess. infinity
5. no event analysis rightcensored assess. before infinity

b) Patient type Data type Rightcensoring
No Description event/censoring time (TRC) event indicator (δ)
1. dropout rightcensored time of dropout 0 (censored)
2. death event exact event time of death 1 (event)
3. progression event exact event assess. after 1 (event)
4. no event last assess. rightcensored last assess. 0 (censored)
5. no event analysis rightcensored assess. before 0 (censored)

Table 3.1: Different patient groups and data types, applied to interval-censoring (a) and right-
censoring (b) analysis.

3.2 Setup step by step

In this section, the data simulation process is explained step by step. The explanations
are accompanied by a simulation of a small dataset and its visualization in Figures 3.1
and 3.2. The simulation parameters are all listed with the same names as the ones used
in the simulation functions WeibPFSSim1 and WeibPFSSim2 that are shown in Appendix
8.2.1. The simulation functions exactly map the procedures that are explained below.

3.2.1 Sampling of event times

Event times (TE) are sampled from the Weibull distribution,

TE ∼ Wb(α = shape, µ = scale) , S(t) = 1− F (t) = exp

[
−
(

1

µ
· t
)α]

,

t ≥ 0 ; α, µ > 0 .

This step is visualized in Figure 3.1 a) and b). In Figure 3.1 a) the Weibull survival
function that is sampled from is shown and the random sample drawn from it by ”x”-es in
the bottom. In Figure 3.1 b) the sampled event times are displayed in increasing order,
such that the resulting plot looks similar to the 1 - ECDF of that sample.
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The shape and scale parameters of the Weibull distribution as well as the number
of patients n (reflected in the sample size) form simulation parameters that have to be
defined before the simulation can be started.

3.2.2 Sampling of death events

Indicators of death events are sampled from a binomial distribution with π-parameter
corresponding to the probability of a death event,

death.ind ∼ Bin(1, π = deathprob) .

If then death.ind = 1, this event was a death event, and

TE = TRC = TL = TR ,

see also Section Overview 3.1, Point 2 for an alternative way to sample death events.
This step is visualized in Figure 3.1 c). The death events are the ones where both

the right-censoring event time in blue and the interval-censoring time borders in red are
displayed.

The deathprob parameter is the relevant simulation parameter for this sampling pro-
cess.

3.2.3 Sampling of censoring times for dropout

One of the prerequisites for most analysis methods of censored data is that the censor-
ing mechanism has to be independent from the mechanism of event generation (see also
Section 1.1.3). In simulations one considers this by separately sampling from a censoring
distribution, comparing the censoring and event times and choosing the one time that
comes first.

We sample the censoring times (TC) from the survival function of an exponential
distribution,

TC ∼ Exp(λ = 1/µ = 1/censscale) , S(t) = 1− F (t) = exp

(
− 1

µ
· t
)

,

t ≥ 0 ; µ > 0 .

Then we choose the minimum of TE and TC as the rightcensoring time (TRC) and either
0 or 1 as the censoring indicator (δ):

TRC = min{TE, TC}

δ =

{
1 if TE ≤ TC ,

0 otherwise .

For all the patients that are right-censored (δ = 0), we apply the following interval-
censoring times (TL and TR):

TL = TRC , TR =∞ .
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This step is visualized in Figure 3.1 d) and e). In Figure 3.1 d) the Weibull survival
function used for sampling the event times (in black) and the Exponential survival function
used for sampling the censoring times (in red) are shown. The Exponential function
decreases more slowly, so the probability to sample a smaller censoring time is quite low.
This was also the case in our small sample shown in Figure 3.1 e), where only two event
times are censored. The censoring times are displayed with green dots and red bars
showing the left boundary of the interval-censoring interval.

The censscale parameter is the relevant simulation parameter that has to be defined
for this process.

3.2.4 Sampling of assessment times for progression events

To simulate progression events, the tumor assessment schedule (assess.vec) has to be
defined first.

In a first example with no deviations, the assessment times exactly match the as-

sess.vec. The assessment time before the event (TA.before) is taken as the left boundary
of the interval-censoring interval and the assessment time after the event (TA.after) is taken
as the right boundary of the interval-censoring interval and as the right-censoring event
time:

TA.before = TL, TA.after = TRC = TR ,

as explained in Section 1.2.1. All the event times that had not been assigned to death or
censoring are mapped to that schedule. The result of this procedure is visualized in Figure
3.1 f), where assessment times are shown in orange lines, Interval-censoring intervals are
shown in red and right-censoring events are displayed in blue.

An assessment schedule with no deviations for all patients is quite unrealistic in prac-
tice. To make it more realistic it was allowed in the simulation to introduce some devia-
tions in the assessment schedule.

This was done by sampling the intrassessment interval widths (a vector) from some
normal distribution with its mean corresponding to the target interval width and its
standard deviation (sd) introduced as a simulation parameter

widthv = assess.vecv − assess.vecv−1 ,

v = {2, ...,m}, m = number of assessments = length of assess.vec ,

width.jit ∼ N(µ = width, σ = sd) .

The resulting vector of widths is different for every patient and converted back to a
patient-specific assessment schedule (assess.vec.jit)

assess.vec.jit1 = width.jit1, assess.vec.jitv =
v∑

w=1

width.jitw .

The matching of the assessment times to the event time is done in the same way as for
the first example with no deviations and displayed in Figure 3.1 g).
An additional procedure has to be followed for the event or censoring times that are
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larger than the last assessment time (TA.last). They have to be right-censored at the last
assessment, because their event or censoring can only be detected until that timepoint.
The corresponding mathematical formulae are:

If TRC > TA.last :

TA.last = TRC = TL, TR =∞ ,

and this is done for patient 1 in Figure 3.1 h).
The assess.vec vector and the sd parameter are the relevant simulation parameters for
this sampling process.

3.2.5 Sampling of recruitment rate to calculate analysis time-
point

In clinical trials with time-to-event endpoint the analysis timepoint is chosen after a
certain number of events, because this number, together with the estimated hazard ratio,
determines the study’s power. The number of events are defined for the whole study,
therefore the data of all the study arms has to be put together for this last simulation
step. The previous steps have been done with the WeibPFSSim1 function, individually for
every study arm, and this step is done with the WeibPFSSim2 function, see also Appendix
8.2.1.
The number of events has to be assessed on the level of calendar time to find a calendar
timepoint where the necessary number of events have been observed. To find the calendar
event time from the simulated event time (which is the time since randomization), arrival
times of patients to the study have to be sampled. We did this with the parameter recr
that defines the patients recruited per month for that study arm. The sampling of arrival
times (Tarrival) was done from an uniform distribution of the width one month. recr

arrival times were sampled in the first month, the same amount in the second month, etc.
until all patients had their arrival time,

For i ≤ recr : Tarrival i ∼ U(0, 30) ,

For recr < i ≤ 2 · recr : Tarrival i ∼ U(30, 60) ,

etc.

i = {1, ..., n}, n = number of patients in this study arm .

Then the calendar rightcensoring time (Tcalendar) was calculated as the sum of the arrival
time and the rightcensoring time,

Tcalendar = Tarrival + TRC .

We then put the calendar times of the events (with event indicators δ = 1) in increasing
order,

Tcalendar (δ=1) 1 ≤ Tcalendar (δ=1) 2 ≤ Tcalendar (δ=1) 3 ≤ ... ,
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and pick out the event time of the cutoff-th patient. The cutoff time (Tcutoff) is then
found just after this event time,

Tcutoff = Tcalendar (δ=1) cutoff + ∆ ,

where ∆ is a very small positive number.
All patients with calendar times that are larger than the cutoff time are rightcensored

at the last assessment before the cutoff time

If Tcalendar > Tcutoff :

TA.before.cutoff = TRC = TL, TR =∞ .

This process is visualized in Figure 3.2 a) and b) and the final dataset shown in c). a)
shows the calendar time per patient and in b) the cutoff time is applied as a dotted pink
line and all events beyond that line are censored. An extract of the final dataset in c) is
shown in Table 3.2 with all the time values and the description of the censoring processes
applied to these patients. The recr parameter per study arm and the cutoff parameter
for the whole study are the relevant simulation parameters for this sampling process.

no Description left.time right.time Data.type rightcens.time indic.
14 dropout 501 Inf right 501 0
13 progression 753 835 interval 835 1
12 death 829 829 exact 829 1
11 progression 903 971 interval 971 1
10 death 1006 1006 exact 1006 1
9 dropout 920 Inf right 920 0
8 analysis 1071 Inf right 1071 0
7 assess. + analysis 1036 Inf right 1036 0
6 assess. + analysis 1031 Inf right 1031 0
5 assess. + analysis 1071 Inf right 1071 0

Table 3.2: Extract of dataset used to construct plot c) in Figure 3.2.
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Figure 3.1: First part of simulation with one study arm: Visualization of the different steps
with a small dataset. The data of the last plot h) can be reproduced by using this function:
WeibPFSSim1(1, 40, 0.9, 500, 0.25, 5000, (1:20)*90, 10, 10, 200)$sim.data[[1]][21:35,

]. See Sections 3.2.1 to 3.2.4 for details of the process.
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Figure 3.2: Second part of simulation with both study arms: For calculation of cutoff time
the whole dataset and the arrival times have to be considered. The patients from the study
arm whose data is shown in Figure 3.1 are indicated with thicker lines in a) and b). The final
dataset in c) can be received with the following function:
WeibPFSSim2(WeibPFSSim1(1, 40, 0.9, 500, 0.25, 5000, (1:20)*90, 10, 10, 200),

WeibPFSSim1(1, 40, 0.9, 700, 0.25, 5000, (1:20)*90, 10, 10, 20000), 5, 5, 60, 2,

200)$sim.data[[1]][c(21:35, 61:75), ].
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3.3 Simulation scenarios

To perform a data simulation as it is described in the previous section, one needs to
specify many parameters. The name and nature of these parameters is also described in
the previous section, but not the parameter values that were used. Dependent on the
parameter values many different kinds of datasets can be simulated.

In our simulation study we first define parameter values that closely match an existing
study, the GALLIUM study of lymphoma. The set of these parameters is called the
baseline scenario. This scenario should be quite realistic. Its composition and properties
are described in the next section.

In the subsequent sections some parameters of the baseline scenario are varied to
get scenarios that deviate in some aspects from the baseline scenario. With these other
scenarios the robustness of the estimation methods with regards to deviations from the
baseline scenario is tested. The final goal of this process and the whole thesis is to find
differences between rightcensoring and intervalcensoring methods.

The parameter values that were used for the different scenarios are summarized in
Table 3.3. In addition, for all the scenarios the same simulation seed was used. It was
200 for WeibPFSSim1 for the control arm, 20000 for WeibPFSSim1 for the treatment arm
and 200 for WeibPFSSim2.

3.3.1 GALLIUM study: baseline Scenario 1

To define the parameter values of this scenario we use the values that were used for sample
size calculations of the GALLIUM study. The only deviation from these parameters is to
use a Weibull distribution as the basis of the simulations instead of the Exponential dis-
tribution that was used in sample size calculations. This because the Weibull distribution
is more flexible in capturing different shapes for the survival function.

Parameters of Section 3.2.1: Sampling of event times

The shape (= α) parameter of the Weibull distribution (in the form of Section 2.2.1) was
chosen to be 0.9. With this parameter the function has a similar shape as the Kaplan-
Meier estimate of an earlier study on Follicular Lympoma [26].

With this shape parameter and the knowledge of the observed median survival of 6
years for Rituximab treatment and the assumed median survival of the Gazyva treatment
of 8.1 years the scale parameter could be calculated from the quantile function of the
Weibull distribution,

F−1(t) = Q(p) = scale · (− log(1− p)) 1
shape ,

by finding the scale parameter of the only suitable Weibull function that crosses the
median at the derived timepoint. This is done in practice by setting the quantile function
equal to the derived timepoint t and then solving the resulting equation for scale to get

scale =
t

(− log(1− p)) 1
shape

.
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By inserting t = 6 · 365.24 = 2191 for the control arm and t = 8.1 · 365.24 = 2958 for the
treatment arm, and p = 0.5 and shape = 0.6 we get the scale parameter for the control
arm to be 3293, and for the treatment arm to be 4446.

The number of patients per study arm (parameter n) is 600. This is calculated from
the 1200 Follicular Lymphoma patients needed for the whole study and considering the
1:1 randomization to the study arms. Only the Follicular Lymphoma patients from GAL-
LIUM are included because this population is used for the primary endpoint of the study.

Parameters of Section 3.2.2: Sampling of death events

The probability for a death event (parameter deathprob) is 0.25. This probability is
known empirically from previous studies in Follicular Lymphoma and from the current
GALLIUM data.

Parameters of Section 3.2.3: Sampling of censoring times for dropout

The annual dropout rate is assumed to be 2.5%. We have to recalculate this value to a
daily dropout rate with a kind of compound interest calculation and then convert it to the
scale parameter of the Exponential distribution of which the censoring times are sampled
from. This is done with the formula

censscale =
1

1− exp (log(1− dropout.year)/365.24)
.

Inserting 0.025 for the annual rate results in censscale = 14427.

Parameters of Section 3.2.4: Sampling of assessment times for progression
events

The assessment days are calculated according to the GALLIUM study protocol and visu-
alized in Figure 1.1. They are 78, 197, 270, 391, 513, 696, 909, 1061, 1244, 1426, 1609,
1792, 1974, 2339 and 2705 days after randomization.

Parameters of Section 3.2.5: Sampling of recruitment to calculate analysis
timepoint

According to the sample size calculation of GALLIUM, the recruitment number per month
is smaller until the first futility interim analysis, and higher later on. In our simulations
we just model the final analysis timepoint and therefore a simpler model could be chosen
with just one recruitment number per month per arm (parameter recr), corresponding
to the later recruitment number of GALLIUM.

The advantage to define the recruitment number per arm is that one can cover different
randomization patterns by setting the recr parameter to different values across arms.
However, in GALLIUM there is 1:1 randomization and the recr parameter was set to 18
for both arms for the baseline scenario.

The cutoff parameter is defined for the whole study and represents the number of
events that are needed for a certain study power. In the case of GALLIUM this is 370
events for 80% power, and we take the same number of events for our simulations.
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3.3.2 Change in assessment times: Scenarios 2 to 7

Scenario 2: exact adherence to assessment schedule

It is not sure whether the Normal variation that is applied to the assessment schedule in
Scenario 1 is already introducing some error in the analysis. Therefore there was chosen
a scenario that does not allow for any deviation from the assessment schedule by setting
the sd parameter to zero. This scenario has the mathematically most pure case of interval
definition and is therefore interesting to look at, but at the same time it maps a case that
might never occur in clinical reality.

Scenario 3: bigger variance in assessment times

To assess the effect of even more Normal variation, a third scenario was chosen with
sd = 20 days.

Scenario 4: less variance in assessment times in control arm

Because of the open-label nature of the GALLIUM study there might be introduced by
the doctors some unconscious bias that is called evaluation-time bias in the literature
[3, Chapter 10]. For example, the doctors might think that the new treatment is better
because its superiority has already been proven for other, closely related indications. This
is the case for GALLIUM. Then they might be more strict with patients in the control arm
to follow the assessment schedule than with patients in the treatment arm. A scenario
like this has been considered in Scenario 4, where for the control arm the sd parameter
is set to 5 days and for the treatment arm to 20 days. This scenario does violate the
uninformative censoring assumption described in Section 1.1.3.

Scenario 5: longer intraassessment intervals in both arms

How does the performance of the estimation methods change if the intraassessment in-
tervals are longer? This question is tried to be answered in Scenario 5, where every
intraassessment interval was prolongued by 14 days, resulting in the following assessment
schedule: 92, 225, 312, 447, 583, 780, 1007, 1173, 1370, 1566, 1763, 1960, 2156, 2535 and
2915 days.

Scenario 6: longer intraassessment intervals in treatment arm

Another type of evaluation-time bias (see Scenario 4) is considered in Scenario 6: here it is
thought that the treatment arm patients have the prolongued schedule that is described in
Scenario 5, but not the control arm patients. This scenario might be realistic for the same
reasons as Scenario 4. This scenario does violate the uninformative censoring assumption
described in Section 1.1.3 as well.

Scenario 7: missingness of every second assessment time

Scenario 7 is quite an extreme scenario. We assume for it that every second assessment is
not done for all patients, resulting in this schedule: 197, 391, 696, 1061, 1426, 1792 and
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2339 days. With this scenario we would like to see the changes in estimation precision if
much less assessments are performed.

3.3.3 Change in proportion of deaths: scenarios 8 and 9

What is the effect of the proportion of death events on estimation precision? This question
was tried to answer with the following two scenarios.

Scenario 8: smaller probability of death event

In Scenario 8 the deathprob parameter was set to 0.1.

Scenario 9: bigger probability of death event

In Scenario 9 we use a higher probability of a death event, 0.5.

3.3.4 Increase in percentage of dropout: scenarios 10 and 11

Scenario 10: more dropouts in both arms

The dropout rate is generally difficult to estimate. Therefore another scenario with a
higher annual dropout rate of 10% is created, Scenario 10. The dropout rate is converted
to the censscale parameter by the formula explained for Scenario 1 in Section 3.3.1,
resulting in a value of 3467.

Scenario 11: more dropouts in control arm

Open-label studies might be susceptible to another type of bias that is explained in [3,
Chapter 10], the attrition bias. One form of this bias occurs when patients in the control
arm more often dropout from the study, for example due to switching to the new treat-
ment, because they (or their doctor) thinks the new treatment is more effective. This
behaviour is modeled in Scenario 11, where the annual dropout rate of the control arm
patients is increased to 10% and the dropout rate of the treatment arm patients stays at
2.5%. Therefore the censscale parameter of the treatment arm changes to 3467. This
scenario does violate the uninformative censoring assumption described in Section 1.1.3.

3.3.5 Increase in events at cutoff: scenario 12

Finally we consider a scenario where more events are observed before the analysis cutoff.
The new number of events is 520. It was chosen to be close to the maximum number of
events that could be obtained with this setting, to get the biggest possible deviation form
the baseline scenario.
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Section Description parameter value
a) Scenario 1

1 number of patients in study arm n = 600
parameter of Weibull distribution shape = 0.9
parameter of Weibull distribution (control arm) scale = 3293
parameter of Weibull distribution (treatment arm) scale = 4446

2 percentage of death events deathprob = 0.25
3 parameter of Exponential distr. for censoring censscale = 14427
4 vector of assessment times assess.vec =

(78, 197, 270, 391, 513, 696, 909, 1061, 1244, 1426, 1609, 1792, 1974, 2339, 2705)
parameter of Normal distr. for intraassess. length var. sd = 10

5 number of patients recruited per month per study arm recr = 18
number of events needed at analysis (whole study) cutoff = 370

- number of datasets simulated per scenario M = 1000

b) Scenario 2

4 parameter of Normal distr. for intraassess. length var. sd = 0

c) Scenario 3

4 parameter of Normal distr. for intraassess. length var. sd = 20

d) Scenario 4

4 parameter of Normal distr. (control arm) sd = 5
parameter of Normal distr. (treatment arm) sd = 20

e) Scenario 5

4 vector of assessment times assess.vec =
(92, 225, 312, 447, 583, 780, 1007, 1173, 1370, 1566, 1763, 1960, 2156, 2535, 2915)

(all intervals: plus 14 days)

f) Scenario 6

4 vector of assessment times (control arm) assess.vec = (like Scen. 1)
vector of assessment times (treatment arm) assess.vec = (like Scen. 5)

g) Scenario 7

4 vector of assessment times assess.vec =
(197, 391, 696, 1061, 1426, 1792, 2339) (only every second assessment)

h) Scenario 8

2 percentage of death events deathprob = 0.1

i) Scenario 9

2 percentage of death events deathprob = 0.5

j) Scenario 10

3 parameter of Exponential distr. for censoring censscale = 3467

k) Scenario 11

3 parameter of Exponential distr. (control arm) censscale = 3467
3 parameter of Exponential distr. (treatment arm) censscale = 14427

l) Scenario 12

5 number of events needed at analysis (whole study) cutoff = 520

Table 3.3: Parameters used to simulate Scenario 1 (a) and deviations from these parameters to
simulate the other scenarios (b to l).
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Chapter 4

Simulation results

All the different scenarios were simulated 1000 times with the procedure described in
Chapter 3. The resulting 1000 datasets per scenario were analyzed with the estimation
methods described in Chapter 2. The resulting estimates are analyzed and summarized
in this chapter.

4.1 Estimation of survival function at certain quan-

tiles and times

The survival function was estimated by study arm, by a nonparametric MLE function
(called ”step” in later figures of this section) and a parametric Weibull function (called
”weib” in later figures of this section), as described in Section 2.2. Examples of these
estimated functions are shown in Figure 4.1.

When we look at the light blue lines in Figure 4.1, that indicate the points of the
survival function that were analyzed further in fingerprint plots, we can see that they
follow a certain sequence. In arm1 (control arm) this sequence is 500 days, 0.8 quantile,
1000 days, 0.65 quantile, 1500 days, 0.5 quantile along the function. In arm2 (treatment
arm) the sequence is nearly the same, only 1500 days and 0.65 quantile are switched.

We are aware that the estimation of quantiles and timepoints is statistically a different
procedure and therefore, strictly speaking, the resulting RMSE and bias values cannot be
compared directly. But, as we will see in the following result sections, their relative size
drifts along the survival function are comparable. Because of that, and for the sake of
simplicity, we will sometimes summarize the results from quantiles and timepoints in the
same sentence in the next sections.

Instead of dividing the estimates by estimation direction, we will map the estimates
to different stages of the function and study. We can map 500 days, 0.8 survival quantile
and 1000 days to the early stage, 0.65 survival quantile and 1500 days to the late stage
and the 0.5 survival quantile (the median) to the too late stage, because it is not covered
in most datasets, as we will see in Section 4.1.1.

The median is chosen as a quantile of interest because of its general importance in
oncology, where normally the median survival (or other endpoint) is reported as a primary
summary of the survival function estimates. Nevertheless, the GALLIUM study that is
mimicked with our data, is not designed to reach the median PFS, because the required
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Figure 4.1: Example of estimated survival functions of from a dataset that has been simulated
with Scenario 1: a) nonparametric MLE (NPMLE) functions of the control arm (arm1), b)
Weibull functions of the control arm (arm1), c) nonparametric MLE (NPMLE) functions of the
treatment arm (arm2). The marks for censorings are not included in blue lines of plots (a + c)
because they would cover the whole curve. The light blue lines indicate the survival quantiles
and timepoints that were analyzed further in fingerprint plots.

36



number of events at analysis cutoff is most likely to be reached before the median.
The same terminology of early and late stage of the function can be used for both

study arms. That will be useful later on.
In a second plot type we will use the estimates of five timepoints, 500 days, 750 days,

1000 days, 1250 days and 1500 days. They can also be graded in an early and a late stage
group. The first three timepoints (500 to 1000 days) are put in the early stage group and
the later two (1250 days and 1500 days) in the late stage group.

4.1.1 RMSE and bias

The root mean squared error (RMSE) is a measure of the accuracy of an estimation
method. It shows the root of the mean squared error (MSE), which is the average squared
deviation of the estimate from the true value [17, Chapter 3]. The RMSE is used here
to compare right- and interval-censoring estimation methods of survival functions for
different settings.

The MSE can be split into two additive components, the squared bias and the variance.
It is also interesting to look at one of these components to see where the MSE comes from.
In this thesis we look primarily at the bias. We expect it to be bigger in the rightcensoring
estimates because of the attribution of progression events to the end of the intraassessment
interval, as described in Section 1.2.1.

In one plot type we will compare the size of the bias with the size of the RMSE. From
the gap between the bias and corresponding RMSE value one can guess the share of the
variance that is included in the estimation process, because

RMSE =
√

bias2 + Var and therefore Var = RMSE2 − bias2 .

RMSE and bias values are calculated for different data subsets (control arm (arm1)
and treatment arm (arm2) of the studies), different estimation methods (NPMLE and
parametric Weibull) and different survival times (500, 1000 and 1500 days) and quantiles
(0.8, 0.65, 0.5) of the survival function. So there are a total of 48 RMSE values per
scenario and the same number of bias values. In order to be able to compare them
between scenarios, they will plotted in two plots each with colorcoding that forms a kind
of fingerprint of the scenarios.

4.1.2 Scenario 1: like GALLIUM study

Results from the baseline scenario are looked at more thoroughly than from the other
scenarios, because it is a realistic scenario that fulfills all the statistical assumptions of
noninformative censoring. A close look is also important because deviations from results
of the baseline scenario will be discussed later.

RMSE

Figure 4.2 (a + b) shows the fingerprint plots of the RMSE values of all data subsets,
estimation methods, censoring methods and survival times and quantiles for the baseline
Scenario 1. We look now at differences between all these groups.
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f) Survival quantiles 0.8, 0.65, 0.5
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Figure 4.2: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 1 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they may be subject to bias.
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Times and quantiles RMSE values at timepoints and survival quantiles are shown in
separate plots. Figure 4.2 a) shows the RMSE value in terms of survival probability and
Figure 4.2 b) in terms of survival time in days. The RMSE values in these two plots have
a quite different range. This is caused by the difference in axis scale which goes from 0 to
2000 on the x-axis (time) and from 0 to 1 on the y-axis (survival probability).

The colorcoding connects the two ranges and allows comparison of both types of
estimates and differentiation of early and late stage estimates independent of their type.

When looking at Figure 4.2 b) we see as well that the NPMLE (step) function RMSE
values at the median are not coloured for both arms and censoring types. This is because
the estimation is done with less than 900 datasets (from a total of 1000) and therefore
not completely reliable. For the other datasets the function did not reach that quantile
and is therefore undefined at that point, as described in Methods Section 2.2.2 in the
Example paragraphs. Estimation for parametric Weibull functions is possible at any
quantile, because parametric survival functions are defined for all t ≥ 0.

Censoring First we would like to compare the RMSE values of the right-censoring and
interval-censoring estimation methods, the main goal of our study. To better visualize
this comparison, another plot type was produced. It is displayed in Figure 4.2 (c + d)
and shows the percentage of the size of the intervalcens RMSE in terms of the rightcens
RMSE.

But first we look at the fingerprint plot in Figure 4.2 (a + b) again and we see that
the RMSE values of the intervalcensored estimates are continuously increasing during the
course of the study. That means the accuracy of the estimates is continuously decreas-
ing. A potential explanation for this gain in RMSE is the decrease in the number of
patients during the course of the study. In the nonparametric case the number of patients
considered is called the ”risk set”, explained in Section 2.2.2). The RMSE values of the
rightcensored estimates are stable in early stage, and they increase in late stage of the
function.

The ratio of intervalcensored to rightcensored RMSE, as it is visualized in Figure 4.2 (c
+ d), gives the following picture. The percentage of intervalcensored is between 50% and
90% for the early stage, between 85% and 110% for the late stage. We can conclude from
this data that for estimation at the early stage of a survival function the intervalcensoring
analysis method is better, at a late stage it is about the same as the rightcensoring. The
bigger difference in the early stage might be due to a higher bias of the rightcensoring
estimates, what is explored in the next section.

But before we go to the bias section, we would like to do some other comparisons.

Study arms and estimation type When we compare the study arms in the censoring
ratio Figure 4.2 (c + d), we see that they are comparable. That means the accuracy gain
when doing the intervalcensoring analysis is about the same for both study arms. The
same is approximately true for the two estimation methods, NPMLE and Weibull. In the
very early stage of the function (500 days) and in the too late stage (0.5 quantile) the
accuracy increase seems to be even bigger in Weibull estimation. This is due to higher
rightcensoring RMSE values at these points. So Weibull estimation with rightcensoring
methods is less accurate in the extremes of the functions.
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For the comparison of the study arms we can do another ratio figure, similar to the
one in censoring. In Figure 4.3 we display the percentages of the arm 2 values in terms of
the arm1 values. The result is quite surprising: In plot a) all the percentages are below
100%, that means the RMSE values are smaller for arm2, but in plot b) it is opposite.
There, apart from one exception, all percentages are above 100%, what means the RMSE
values are bigger for arm2.

This phenomenon cannot be explained easily. The observations in Figure 4.3 b) do
better match with intuition. In general, the measurement accuracy has to do with the
proportion of events (exact and intervalcensored events) from all observations. Here this
is lower in arm2, because in the treatment arm the median time to event is longer. An
estimation with a lower number of events is generally less accurate. Therefore the RMSE
values for arm2 should be bigger than for arm1. We have no explanation for the observa-
tions in Figure 4.3 a) that go in the opposite direction.
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Figure 4.3: RMSE ratios of study arm2 : arm1 of Scenario 1 in colors: the more reddish the color
the bigger the increase in RMSE, the more greenish the color the bigger the decrease in RMSE.
We look at the timepoints in plot a) and at the survival quantiles in plot b) and differentiate the
estimation variants on the x-axis, both censoring types and three timepoints or quantiles on the
y-axis of the plots. Sometimes the NPMLE functions were not defined at the readout quantile
in all datasets. Then the number of datasets with a valid estimate (from a total of 1000) are
displayed in brackets below the RMSE value. Estimates from less than 900 datasets in at least
one estimation do not get the color coding because they are not completely reliable.

Bias

By looking at the bias one can find out more about the general direction of the error and
about its share of the RMSE. The fingerprint plot of the bias of Scenario 1 is shown in
Figure 4.2 (e + f).

We can see from the more coloured upper parts of Figure 4.2 (e + f) that the bias
is bigger in general for the rightcensoring estimates. In early stage the rightcensoring
bias is positive, in late stage it is mostly negative. The bias is much smaller in the
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intervalcensoring estimates, nearly zero in early stage and slightly negative in late stage.
The bigger positive bias of rightcensoring estimates at early stage can be explained by
the incorrect handling of progression events, where the late end of an intraassessment
interval is taken as an exact event. In intervalcensoring estimation the progression events
are treated correctly as intervalcensored and no bias is introduced in the estimates. The
bigger negative bias of rightcensoring estimates at late stage is more difficult to explain.
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Figure 4.4: RMSE and bias values of NPMLE function estimates of Scenario 1 in order of
appearance on the function: Solid lines represent the RMSE, dotted lines the bias values. We
look at arm1 in plot a) and at arm2 in plot b). We compare the estimates at five timepoints:
500 days, 750 days, 1000 days, 1250 days and 1500 days.

To better compare censoring differences at different timepoints another figure type
is introduced. Figure 4.4 shows the NPMLE function RMSE and bias values at five
timepoints in solid and dotted lines of the two study arms. There the bias and RMSE
values can be followed over time and the bias can be compared directly to the size of the
RMSE. From the gap between the bias and corresponding RMSE value one can guess the
share of the variance, as explained in Section 4.1.1.

One can see in early stage (timepoints 500 days to 1000 days) that the much bigger
bias in rightcensoring estimation does only convert partially to a higher RMSE, because
in intervalcensoring we have a much bigger variance in the estimation. This might come
from the bigger uncertainty that is implied in intervalcensoring estimation of progression
events.

But the RMSE (including both bias and variance) is absolutely still smaller in inter-
valcensoring estimation, so it is recommended to use that estimation anyway, because
it does not only have a much smaller bias but also the squared error of its estimation
is smaller. This result is not surprising. The intervalcensoring method models the data
correctly and should therefore produce smaller RMSE values.

In late stage (timepoints 1250 days and 1500 days) the situation is more balanced.
The RMSE values are closer together and the bias is mostly negative for both censoring
methods. But also there the bias of the rightcensoring estimates is generally bigger and
therefore it is recommended to use intervalcensoring estimation functions also for point
estimates at late timepoints.
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4.1.3 Scenarios 2 to 7: change in assessment times

We can divide these scenarios in two groups. In the first group containing Scenarios 2 to
4 just the variance of the intraassessment period length was varied according to a normal
distribution, in the second group containing Scenarios 5 to 7 the intraassessment period
length was changed. Scenario 6 is not discussed here, because its arm1 is like the one of
Scenario 1 and its arm2 like the one of Scenario 5.

RMSE

Scenarios 2 - 4: change variation of intraassessment period lengths The RMSE
fingerprint plots of Scenarios 2 to 4 are only shown in the Appendix Section 8.3 in Figures
8.1, 8.2 and 8.3, because they are very similar to the plots of Scenario 1 in Figure 4.2. We
can conclude that the amount of normal variation in the intraassessment length does not
influence estimation of the survival function. This result was expected.

One remark could be done about Scenario 2, where we have observations with exact
assessment schedules, that means many events at exactly the same date. In this scenario
estimation procedures run remarkably smooth, even if it is an extreme setting with many
ties. Only in intervalcensoring estimation 5 of the 1000 datasets could not be estimated
because the algorithm did not converge. This problem might be due to the special data
structure, because in no other scenario similar problems occurred with that algorithm.

Scenario 5: add two weeks to all intraassessment periods The RMSE fingerprint
plots of Scenario 5 are more interesting and shown in Figure 4.5 (a + b). We see some
slight shifts in the RMSE of rightcensoring estimates and NPMLE functions.

At the first timepoint (500 days) the RMSE is decreased compared to Scenario 1, at the
two following points (0.8 quantile and 1000 days) it is increased. In early stage, apart from
the earliest timepoint, rightcensoring estimation seems to become less accurate when the
length of the assessment intervals is increased. This observation is expected because we
expect the rightcensoring bias to increase with an increase in assessment interval length.

Anyway, in late stage (at timepoint 1500 days) there is observed a slight decrease
of rightcensoring RMSE in NPMLE functions again. In general, the RMSE shifts are
only small. They show a complex pattern for timepoints, that does not go always in the
expected direction. For the quantiles the RMSE increases compared to Scenario 1, as
expected. the intervalcens RMSE values in contrast, are quite stable. We will see in the
next section whether the pattern of the bias is the same.

The shifts mentioned above are only observed in NPMLE function estimation (marked
with ”step” in the figure). Weibull function estimation is stable and seems to be more
robust towards slight changes in assessment interval length.

Figure 4.5 (c + d) show whether the rightcensoring RMSE increase is reflected in a
percentage decrease of the intervalcens : rightcens ratio. When looking at the percentages
we can conclude that they changed in the same way as explained for the rightcens RMSE,
and also only for NPMLE functions. This because there is observed nearly no change in
the intervalcens RMSE values.

Scenario 7: leave out every second assessment This quite extreme scenario gives
some interesting results that are shown in the fingerprint Figure 4.6. The changes in colors
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b) Survival quantiles 0.8, 0.65, 0.5
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f) Survival quantiles 0.8, 0.65, 0.5
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Figure 4.5: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 5 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they may be subject to bias.
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b) Survival quantiles 0.8, 0.65, 0.5
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Figure 4.6: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 7 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they may be subject to bias.
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are quite dramatic and more extreme in the upper half of the plots, what means in the
rightcensoring estimation setting. All RMSE changes , as shown in Figure 4.6 (a + b) are
increases. This is expected, because we have much less information for the progression
events if we only have half the number of assessments.

However, the size of the increase in rightcensoring RMSE varies between the stages
of the curve and the estimation functions. In very early stage (at timepoint 500 days)
the increase is much bigger for the Weibull function. In all later stages (timepoints 1000
and 1500 days, quantiles 0.8 and 0.65) there is observed a bigger increase for NPMLE
functions. Only in the too late stage the increase is bigger for the Weibull function again.
So the same effect that has been detected for Scenario 1, that the Weibull estimation with
rightcensoring methods is less accurate in the extremes of the functions, is seen here even
to a bigger extent.

Intervalcensoring RMSE did not change much, even with the halved number of assess-
ments. And with intervalcensoring the RMSE increased a bit nearly only with NPMLE
functions. So intervalcensoring estimation is quite robust to these dramatic changes in
the assessment schedule.

These big differences between righcensoring and intervalcensoring RMSE estimates are
translated into dramatically decreased percentages in the censoring ratio plot in Figure
4.6 (c + d) compared to Scenario 1. The much more green and yellow coloured plot
reflects this shift.

Bias

Scenario 5: add two weeks to all intraassessment periods Figure 4.5 (e + f)
shows the size of bias values for Scenario 5. The decreased and increased RMSE values
with respect to Scenario 1 that we had observed in Figure 4.5 (a + b) for rightcensored
estimates are reflected in increased and decreased bias values in Figure 4.5 (a + b). Only
the increased RMSE value of the 0.8 quantile is not reflected in an increased bias value.
We can summarize that in general the RMSE changes in Scenario 5 can be explained by
bias changes, but not for all the cases. The changes might be too small to be separable
from simulation error.

Scenario 7: leave out every second assessment The increases in bias in Figure 4.6
(e + f) are also reflections of the increases in RMSE in plots (a + b) of the same figure.
Again, RMSE changes in this scenario can be explained by bias changes.

We can conclude from this scenario: the fewer assessments, the bigger the difference
between right- and intervalcensoring estimation, and therefore the bigger the accuracy
gain by using intervalcensoring estimation methods.

Before we go on we look a bit closer to estimation error at five different timepoints
of the nonparametric survival function, that is shown in Figure 4.7. There we see that
rightcensoring RMSE and bias can vary a lot depending on the exact place of the curve
we look at. We see that at the timepoints that were not considered for the fingerprint
plots, 750 days and 1250 days, the RMSE and bias of the rightcensored estimates is much
smaller than for the other timepoints, 500, 1000 and 1500 days. This discrepancy might
make sense when we compare it to the assessment schedule. We see there that e.g. the
timepoints 1000 days and 1500 days are close to a planned assessment timepoint, but e.g.
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the timepoint 1250 days is about in the middle between two planned assessments. So we
might be able to explain the lower RMSE and bias value at 1250 days by its position in
the middle of an intraassessment period, where it might fit better to the true function.

We know that the nonparametric rightcensoring survival function reacts a lot to the
assessment timepoints by forming a ”bump” on the curve whenever an assessment is done,
because all progression events are mapped to the assessment timepoint. This behaviour
is more extreme in Scenario 7, because there are less assessments, and it might explain
the big differences in estimation accuracy between timepoints in this scenario.

Intervalcensoring estimation is much more stable in this respect, as we see a constant
slight increase in intervalcensoring RMSE values in Figure 4.7. Also parametric estimation
is more stable, what is shown in Figure 4.8.
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Figure 4.7: RMSE and bias values of NPMLE function estimates of Scenario 7 in order of
appearance on the function: Solid lines represent the RMSE, dotted lines the bias values. We
look at arm1 in plot a) and at arm2 in plot b). We compare the estimates at five timepoints:
500 days, 750 days, 1000 days, 1250 days and 1500 days.
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Figure 4.8: RMSE and bias values of Weibull function estimates of Scenario 7 in order of
appearance on the function: Solid lines represent the RMSE, dotted lines the bias values. We
look at arm1 in plot a) and at arm2 in plot b). We compare the estimates at five timepoints:
500 days, 750 days, 1000 days, 1250 days and 1500 days.

4.1.4 Scenarios 8 and 9: change in proportion of deaths

RMSE

Scenario 8: smaller proportion of death events Estimations with a proportion of
death events of about 10% are tested in Scenario 8 and result in the RMSE values shown
in Figure 4.9 (a + b). They show a slight increase in the rightcensoring RMSE values for
both function types at early stage of the curve (timepoints 500 and 1000 days, quantile
0.8), but not anymore at late stage of the curve. These shifts can be explained by the
increase in proportion of progression events, what increases the bias for rightcensoring
estimations.

These shifts are also observed in Figure 4.9 (c + d), where they manifest in slightly
decreased percentages for early stage points. The even slighter increase of percentages
that is observed at late stage in arm1 NPMLE function estimates might be neglectable.

Scenario 9: bigger proportion of death events Estimations with a proportion of
death events of about 50% are tested in Scenario 9 and result in the RMSE values shown
in Figure 4.10 (a + b). Here we observe at early stage and for rightcensoring RMSE values
the opposite shifts of those observed in Scenario 8. This is logical, because opposite to
Scenario 8, in this scenario the proportion of progression events is smaller and therefore
the amount of bias on rightcensored estimates might be also smaller. However, at late
stage (timepoint 1500 days and quantile 0.65) of the curve the result diverges from the
one of Scenario 8. Here the RMSE slightly increases in both censoring variants. Another
unknown effect might play a bigger role at that stage of the curve.

The shifts at early stage of the rightcensoring RMSE are also observed in Figure 4.10
(c + d), where they manifest in slightly increased percentages for early stage points. At
late stage also a slight increase in percentages is observed.
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Figure 4.9: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 8 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they may be subject to bias.
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Figure 4.10: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 9 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they may be subject to bias.

49



Bias

Bias estimates for Scenarios 8 and 9 are shown in Figure 4.9 (e + f) and Figure 4.10 (e
+ f). All plots reflect closely the shifts in RMSE of the respective scenarios. That means
that the shifts in RMSE that were explained above might mainly come from shifts in bias.
This was already expected in the section above, because then we have an explanation for
the shifts, especially for those at early stage of the curve.

We can conclude that the bigger the proportion of intervalcensored events from all
events, the more we can profit from intervalcensoring estimation compared to rightcen-
soring estimation. Intervalcensoring estimation should therefore be considered especially
in studies with high proportions of truly intervalcensored events, like eg. rogression events.

4.1.5 Scenario 10 and 11: increase in percentage of dropout

RMSE

We estimate with an increased dropout rate of 10% for both arms in scenario 10. The
resulting RMSE values for this scenario are shown in Figure 4.11 (a + b). By compar-
ing them to Scenario 1 we see that the biggest shifts occur at late stage of the curve,
especially at timepoint 1500 days. There the rightcensoring RMSE values decrease, the
intervalcensoring values also slightly.

The shifts are so small that they result only in slight changes in intervalcensoring ratio
percentages in Figure 4.11 (c + d). Anyway, these small changes are increases, that means
with more dropouts the advantage of intervalcensoring estimation methods is decreasing.

Scenario 11 is a mixture of Scenarios 10 and 1 because arm1 has 10% dropout per year
and arm2 2.5% dropout. But there are slight changes in number of events and dropouts
per arm in this scenario compared to Scenarios 1 and 10, as it will be shown in Figure 4.15
in the later Section 4.2.2 of that thesis. Anyway, these changes do not lead to different
RMSE and bias values in the fingerprint plots and therefore they are only shown in Figure
8.4 in Appendix Section 8.3.

Bias

As we see in Figure 4.11 (e + f) the negative bias at late stage timepoint 1500 days is
decreased for both censoring variants. Therefore the RMSE decrease might come from
this bias decrease. At late stage quantile 0.65 the negative bias decreases as well or even
changes to positive bias.

To summarize it looks like estimation gets more accurate when we have more right-
censorings due to dropouts (instead of righcensorings at analysis cutoff, because the total
number of events does stay the same). This especially at later stages of the curve. This
makes sense, because in this scenario we might have to wait longer until we can observe
the target number of events, because more patients drop out from the study. So we have
more events at later timepoints. This makes estimation at later timepoints more precise.

The bigger ratios of intervalcensoring : rightcensoring RMSE at all stages are more
difficult to explain. It might be the case that we have here a bigger share of information
from the truly rightcensored observations than in Scenario 1 and therefore the share of
information coming from incorrectly rightcensored observations (being progression events)
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Figure 4.11: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 10 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they may be subject to bias.
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is smaller and thus the difference between rightcensoring and intervalcensoring estimation
gets smaller. Anyway, this effect is quite small.

4.1.6 Scenario 12: increase in events at cutoff

RMSE

The last scenario with 520 events is also quite interesting to look at. Its RMSE values are
shown in Figure 4.12 (a + b). At late stage (timepoint 1500 days and quantile 0.65) we
see a decrease in RMSE for both censorings, functions and arms (with one exception, the
RMSE at 0.65 quantile for rightcens and arm1 is increasing). At early stage of the curve
(timepoint 1000 days and quantile 0.8) the Weibull function RMSE of rightcensoring are
increasing. Only the very early stage (timepoint 500) RMSE values stay about the same.

Both these shifts are a sign that in this scenario the early stage is prolonged and the
late stage shifted to later timepoints and smaller quantiles. Also in this scenario for more
datasets the median is reached with the NPLME function.

When looking at the censoring ratio plots that are shown in Figure 4.12 (c + d) we see
that here the percentages decrease for late early stage (timepoint 1000 days and quantile
0.8) and they increase a bit in late stage. These slight changes are also a sign that the
stage border is shifted in this scenario.

This makes sense when we imagine the distribution of events along the Survival curve
here. In Scenario 12 we have more events in the middle and late stage of the curve and
some events occur at later timepoints and lower quantiles than before. So the estimation
precision and the specific characteristics of estimation are also shifted along the survival
function.

Bias

The shift of curve stage border can also be read from the bias estimates in Figure 4.12 (e
+ f). In rightcensoring at early and late stage the bias is shifted to more positive values
and in intervalcensoring at late stage it is shifted as well.

These shifts in RMSE and bias to later times can also be seen nicely in the timecourse
plots in Figure 4.13.

It seems that at late stage of the curve there is always a negative bias present, for both
censorings and in all scenarios. This seems to be a specific property of survival function
estimation that occurs for both function types and censoring analysis methods. The bias
is smaller with intervalcensoring methods, but still present.
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Figure 4.12: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 12 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they may be subject to bias.
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Figure 4.13: RMSE and bias values of NPMLE function estimates of Scenario 12 in order of
appearance on the function: Solid lines represent the RMSE, dotted lines the bias values. We
look at arm1 in plot a) and at arm2 in plot b). We compare the estimates at five timepoints:
500 days, 750 days, 1000 days, 1250 days and 1500 days.

4.2 Test for identity

As a test for identity of the two study arms, the logrank test was used, as described in
Section 2.3. By testing two different types of studies (with a treatment effect and with
no effect), two types of properties of the logrank test could be tested. This is on one
hand the property to reject the null hypothesis for a study with a hazard rate of 1 with
the correct probability of a Type I error and on the other hand the probability to reject
the null hypothesis for a study with a hazard rate of 0.76 (the hazard rate of GALLIUM
simulations). For the power, the underlying probability of rejecting a hazard ratio of 0.76
is approximated from Schoenfeld’s sample size formula. This calculation is explained in
Section 4.2.2.

The quality of the logrank test is highest when the proportion of rejected true null
hypotheses is exactly matching the α-level, which is a two-sided 5% here. If the proportion
of rejected true nulls is well below the α-level, the test is called conservative, because it
does detect an effect at a lower proportion than indicated by the p-value. If the proportion
of rejected hypotheses is well above the α-level, the test is called liberal, because it does
detect an effect too often.

One part of the logrank test estimation process for intervalcensored data is nonpara-
metric estimation of the survival function, as described in Section 2.3.1. For some datasets
the algorithm used in this process does not converge and then no test statistic could be
obtained. The test statistic of the corresponding rightcensoring analysis was also omitted
for the nonconverged datasets to make the percentages of rejected datasets more compara-
ble. It is assumed that nonconvergence is not related to the simulated dataset, otherwise
the final percentages would be biased. The number of datasets that were amenable to
estimation is indicated in the bottom of the plots in Figures 4.14 and 4.15.
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4.2.1 Type I error

The Type I error is determined empirically by testing datasets that are following the null
hypothesis of the test. The results of this estimation for all the scenarios are shown in
Figure 4.14 and explained in the next sections.

Scenario 1: like GALLIUM study

For the baseline Scenario 1, the empirical Type I error is shown in Figure 4.14 a). The
proportion of rejected null hypothesis is slightly above the targeted 5% and therefore the
test is slightly liberal for this data. Anyway, this slight deviance from the ideal is seen for
both types of logrank tests, for rightcensoring and intervalcensoring data.

Scenarios 2 to 7: change in assessment times

When we look first at the Scenarios 2 to 4 with differences in intraassessment period
length variation, whose results are shown in Figure 4.14 b) to d), we see an effect on the
Type I error.

Scenario 2 has an about 20% elevated Type I error, about the same for both rightcen-
soring and intervalcensoring data. It seems that the logrank test cannot cope well with
identical assessment times for all observations and gives a too low p-value for rejection of
the null hypothesis. That means this statistic is too liberal for this special data.

The empirical Type I error of Scenario 3 matches with the significance level. To
summarize the results of Scenarios 1 to 3, it seems that the test is best if there is a lot
of random normal variation of the intraassessment period lengths. The standard normal
variation of 10 days standard deviation of Scenario 1 does seem to be not high enough to
reach a correct Type I error.

Scenario 4 with variation difference between the two arms seems to perform about the
same as standard Scenario 1. Its Type I error estimate is too high as well what means
the statistic is liberal. The logrank tests seem to loose some performance if the random
variation of the two arms is not the same.

When looking at Scenarios 5 and 6 whose results are shown in Figure 4.14 e) and f),
we see not much change compared to Scenario 1. The increase of the interval lengths by
two weeks seems to have not much effect on the precision of the Type I error.

Scenario 7 in Figure 4.14 g) gives too low percentages of rejected hypotheses for both
rightcensoring and intervalcensoring methods. The conservativity of the test with this type
of data is quite pronounced with an about 20% reduced Type I error. In this scenario, half
the assessments are not done what results in double the length of intraassessment periods
and half the number of assessments. One of these changes seems to be too extreme for
the test to cope with, in order that it does not reach the wanted Type I error any more.

For all these scenarios the rigthcensoring and intervalcensoring results are comparable.
The intervalcensoring test seems to have very similar properties as the rightcensoring test
for Type I error detection when assessment times are varied.

Scenarios 8 and 9: change in proportion of deaths

Results for Scenarios 8 and 9 are shown in Figure 4.14 h) and i).
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Figure 4.14: Proportion of rejected null hypothesis: Proportion of p-values < 0.05 of all datasets
with true hazard ratio 1 that were logrank-tested successfully. Scenarios 1 - 12 in plots a) to l)
with two values each, determined by logrank-testing with rightcensoring and intervalcensoring
methods. The target α-level is 0.05, as indicated by a line.
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The reduction in the proportion of deaths to 10% seems to influence the intervalcensor-
ing test negatively by increasing its proportion of rejected and making it too liberal. This
effect is not very pronounced and it is unsure whether this result is just due to simulation
error.

When the proportion of deaths is increased to 50%, the calculated test statistic seem
to correspond well with the correct Type I error, even better than with the standard
proportion of deaths of 25% of Scenario 1.

Scenarios 10 and 11: increase in percentage of dropout

Figure 4.14 j) indicates that the performance of the test statistics changes for both right-
censoring and intervalcensoring methods when the percentage of yearly dropout is in-
creased to 10% in both arms. The logrank test gets too conservative in both cases of
censoring. The effect seems to be hidden if only one arm has increased dropout as it is
shown in Figure 4.14 k).

Scenario 12: increase in events at cutoff

We see in Figure 4.14 l) that an increase of events at cutoff does not change the perfor-
mance of both rightcensoring and intervalcensoring tests remarkably. We can conclude
that the 370 events of Scenario 1 are enough for the logrank test to achieve its postulated
properties.

4.2.2 Power

Power calculations for the GALLIUM study have been done based on an Exponential
distribution and taking into account interim analyses. We are using a Weibull distribution
for simulation and have only one final analysis timepoint. Therefore, we have to calculate
the power in this context ourself. The sample size formula for survival data that only
assumes proportional hazard and needs the hazard ratio of a study with two same-size
arms is:

n.events =
4 · (z1−β + z1−α

2
)2

(log(HR))2
(4.1)

where in general zα is the α-quantile of a standard Normal distribution and
1 − β = power, α = significance level, n.events = total no of events,HR = hazard ratio.
This sample size formula has been described by Schoenfeld in [30].

For our purposes we have to solve this equation for power:

z1−β =

√
n.events · (log(HR))2

4
− z1−α

2
. (4.2)

Then we have to calculate the hazard ratio for our Weibull distribution context. By
using the hazard function of Section 2.2.1, setting its parameters µ = scale and α =
shape and simplifying the ratio of the hazard functions of the two treatment arms,

HR =
h2(t)

h1(t)
=

1
scale2

· shape2 ·
(

1
scale2

· t
)shape2−1

1
scale1

· shape1 ·
(

1
scale1

· t
)shape1−1 , (4.3)
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we get

HR =
scale

shape
1

scale
shape
2

, (4.4)

if the shape parameter is the same for both arms (shape = shape1 = shape2), what is
the case in our simulations. By inserting scale1 = 3293, scale2 = 4446, shape = 0.9 we
get the hazard ratio HR = 0.76.

Inserting n.events = 370,HR = 0.76, α = 0.05 into (4.2), we get 1 − β = 0.74 for
Scenarios 1 - 11. For Scenario 12 we use n.events = 520 in (4.2) and get 1 − β = 0.87.
These values are tepicted in the legend of Figure 4.15.

The 74% power in most of the scenarios here is smaller than the power that was used
for sample size calculations of the GALLIUM study. There, to get a power of 80%, the
total number of events needed was 370.

The empirical power to detect an assumed hazard ratio for a given simulation scenario
is determined by testing many datasets that have been simulated according to that sce-
nario and then calculating the percentage of datasets that reject the null hypothesis. This
percentage should correspond well to the calculated power of that study. It is shown for
all scenarios in Figure 4.15 and its behaviour is discussed in the next sections.

Scenario 1: like GALLIUM study

As we see in Figure 4.15 a), the theoretical power level is reached quite accurately with
the simulated datasets. There is no relevant difference between the rightcensoring and
intervalcensoring tests.

Scenarios 2 to 7: change in assessment times

We look first at Scenarios 2 to 4 that vary the variation in intraassessment period lengths.
Figure 4.15 b) to d) show the percentage of rejected datasets for these scenarios. They
are all very close to the theoretical power level. So the logrank test seems to perform
very well in this setting, different to the Type I error, where only Scenario 3 with highly
variable intraassessment period lengths had a very precise percentage of rejected datasets.

There seems to be a difference between Scenarios 5 and 6, whose results are shown
in Figure 4.15 e) and f). When both study arms have longer intraassessment intervals,
the study power is still reached, but when only the intervals of the treatment arm are
changed, a decrease in power of 2 to 4% is detected. This decrease is bigger with the
rightcensoring method than with the intervalcensoring method. It might be related to the
violation of the noninformative censoring assumption in Scenario 6.

In Scenario 7 that is shown in Figure 4.15 g) there is also a decrease in power detected,
even if the two arms do not differ here in the assessment schedule. But this decrease is
smaller and only about 1 to 2%.

In summary the power is met in most of these scenarios. Only if the assumption of
informative censoring is not met (in Scenario 6) and if the intraassessment period length
is too long or the number of assessments too small (in Scenario 7) the test statistic is too
conservative. In both these cases the intervalcensoring method is closer to the targeted
power than the rightcensoring method.
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Figure 4.15: Proportion of rejected null hypothesis: Proportion of p-values < 0.05 of all datasets
simulated like GALLIUM (hazard ratio 0.76) that were logrank-tested successfully. Scenarios 1 -
12 in plots a) to l) with two values each, determined by logrank-testing with rightcensoring and
intervalcensoring methods. The target power is 0.74 for Scenarios 1 - 11 and 0.87 for Scenario
12, as indicated by a line. In a, j and k also the number of events and dropouts per arm are
indicated, to serve for a possible explanation of the results.
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Scenarios 8 and 9: change in proportion of deaths

Figure 4.15 h) and i) shows that the change in proportion of deaths does not have a big
impact on the percentage of rejected datasets

Scenarios 10 and 11: increase in percentage of dropout

The results for Scenarios 10 and 11 that are shown in Figure 4.15 j) and k) are quite
surprising. An increase of dropouts in both arms (as in Scenario 10) seems to decrease
the power of detecting a difference with the logrank test for both estimation methods,
but if the increase in dropouts is only in the control arm (as in Scenario 11) it seems
to have the opposite effect for the rightcensoring method and less of the same effect in
the intervalcensoring method. The intervalcensoring result is less surprising here, the
power decrease seems to be related to the amount of dropouts. This makes sense, because
when we have more dropouts (that are rightcensorings at early timepoints) compared to
rightcensorings at the analysis timepoint, we have less information about the shape of the
curve. Less information leads then to smaller power in detection of a difference between
the curves.

It is difficult to say why the dropout increase in just one arm is inverting the effect
of the dropout increase in both arms on power in the rightcensoring framework. The
smaller difference between the number of events between the two arms (see numbers in
the figure) cannot be the cause of such a shift. Maybe the rightcensoring logrank test
is reacting more to violation of the noninformative censoring assumption in Scenario 11.
The intervalcensoring method seems to be more robust towards such violations. After all,
the effect we describe here is only small.

Scenario 12: increase in events at cutoff

In a study with more events the power is increased, as expected, and the percentage of
rejected exactly matches the theoretical power, see Figure 4.15 l).
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Chapter 5

Discussion

5.1 Estimation of survival function

5.1.1 Baseline Scenario 1

An overlay of different effects can explain the size of the RMSE values.
On one side there is the decreasing estimation precision in course of time because of a

decreasing amount of events per time. This leads to increasing RMSE values in course of
time, for both censoring methods.

Then there is the positive bias introduced by incorrectly assigning progression events
to the first following assessment time in rightcensoring estimation. This is especially
visible at early timepoints (and high quantiles), maybe because this effect is masked by a
negative bias at later timepoints, that is explained in the next paragraph.

The observation of negative bias at late timepoints (and low quantiles) has led us to
the thought that nonparametric MLEs of survival functions might be biased in general. A
negative bias has been described and quantified in [32] for Kaplan-Meier estimators. This
explains our observations for rightcensored estimates. We hypothesize that the Turnbull
estimator might be biased in a similar way.

When comparing parametric and nonparametric estimators we saw that the rightcen-
soring parametric estimator has a bigger RMSE in the extremes of the function, being
very early timepoints (very high quantiles) and very late timepoints (very low quantiles).
This phenomenon could not be explained easily.

By comparing the study arms it was expected to see smaller RMSE values in the
control arm (arm1), because it contained a bigger proportion of events and therefore the
estimates could be determined more precisely. But this was only true for point estimation
at quantiles, at timepoints the relation of the arms was opposite. This effect is difficult
to explain.

As a general guidance for point estimations on survival functions with data similar to
the GALLIUM study, we can say that especially when estimating points on early stage
of the function it is recommended to use intervalcensoring methods, because they are not
only much less biased, but also have a smaller RMSE. At late stage of the function the
intervalcensoring method is still better, but the difference to the rightcensoring method
is smaller.
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5.1.2 Deviations in other scenarios

Differences in the variance of intraassessment period length (Scenarios 2 – 4) does not
lead to substantial changes in the RMSE pattern.

When the assessment periods are prolonged (as done in Scenarios 5 – 7), the RMSE
values of rightcensoring estimation are increased, because the bias introduced by pro-
gression events is increased. Intervalcensoring estimation is much more robust towards
prolongation of assessment periods. Only with doubled assessment periods the interval-
censoring RMSE is increased a bit in NPMLE estimation. We can conclude that the
longer the assessment periods the bigger the advantage of intervalcensoring estimation.

When the proportion of death events is changed (as in Scenarios 8 and 9), it changes
the rightcensoring RMSE. The more death events (and thus the less progression events)
the lower the rightcensoring RMSE. But the rightcensoring RMSE does not go below the
level of intervalcensoring RMSE. Thus we get the biggest accuracy gain by doing inter-
valcensoring estimation in studies with few death events (and many progression events).

When there are more dropouts (as in Scenarios 10 and 11), there is a tendency towards
lower rightcensoring RMSE, especially at late stage of the function. We can conclude that
the intervalcensoring estimation is especially useful in studies with few dropouts.

When analyzing a study with more events (as in Scenario 12), we observe still the same
effects that shape the size of RMSE values. These effects just appear at later timepoints
(and lower quantiles) than what we were used in the other scenarios. From this we can
conclude that the staging of the survival function (the separation in early and late stage)
is an appropriate concept to describe its properties at different areas of the function. This
because it is a dynamic concept that can be adapted to survival functions spanning very
short or very long time periods.

5.2 Test for identity

5.2.1 Type I error

In general, the rightcensoring and intervalcensoring logrank test statistics behave similar
with respect to Type I error. Only maybe in Scenarios 8 and 11 the test statistic could be
slightly liberal in intervalcensoring methods and more accurate in rightcensoring methods.
So the intervalcensoring logrank test seems to have slightly more problems with a low rate
of exact events and maybe also with a varying dropout rate between arms. Anyway, these
differences are quite small and it is unclear whether they are prominent enough to be
consistent if more simulations were done per scenario. In general the two methods agree
quite well for all scenarios we looked at.

There are some general deviations from ideal test statistics detected in Figure 4.14 that
might be a bit surprising. One can give some general guidance for some of them. One
should be careful in simulating assessment schedules that do not consider any deviation
from the schedule as in Scenario 2, as one might detect too many positive results of a
difference between study arms if there is none in reality. And one should keep in mind that
testing of a study with very long assessment intervals and few assessments as in Scenario
7, or with too many dropouts as in Scenario 10, might result in a too conservative test.

62



5.2.2 Power

In most of the scenarios the rightcensoring and intervalcensoring methods lead to similar
results in terms of power. Only in two of the four scenarios with remarkable deviations
(that are Scenarios 6, 7, 10 and 11) the deviations for the rightcensoring logrank test are
much bigger than for the intervalcensoring test. These are also the two scenarios where
the noninformative censoring assumption is violated (Scenarios 6 and 11). It looks like
the intervalcensoring logrank test is more robust with respect to these violations.

This bigger sensitivity of the rightcensoring method towards violation of the noninfor-
mative censoring assumption has not been seen in the analysis of Type I error in Section
4.2.1. It seems only to occur with data that comes from a study with a hazard ratio 6= 1.

The general deviations from ideal test properties that are detected should also be kept
in mind. Too many dropouts (as in Scenario 10) might cause a power loss of the test
similar to the reduced Type I error in the last section and a different assessment schedule
for the two arms (as in Scenario 6) might as well be a reason for a loss in power. A smaller
amount of power loss might be caused by a study with very long assessment intervals and
few assessments as in Scenario 7.

5.3 Comparison to other simulation studies

Interesting other simulation studies on comparison of right- and intervalcensoring methods
have been done [3, Chapter 10], [35, 31, 36]. These studies compare e.g. logrank tests
and get to similar conclusions as our study.

The study described in the book [3, Chapter 10] especially stresses the importance of
having the same assessment periods in different treatment arms, because noncompliance
with this rule is a mayor source of bias. This has also been observed in our study, where
Scenario 6 led to power loss.
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Chapter 6

Conclusion and outlook

This simulation study provides an overview of the behaviour of right- and intervalcensoring
methods in the context of oncology studies with a PFS endpoint.

While doing the programming and analyzing the results it became clear that other
types of estimations could be done to improve knowledge about the behaviour of inter-
valcensoring estimation methods in this context and to make it usable on a regular basis
in clinical trials. Some of these types of estimations are outlined in the next sections.

6.1 Estimation of root mean integrated squared error

along the survival curve

Point estimation at a certain point of the survival function can show nicely the errors at
that spot but it can never give a complete picture of the errors on the whole curve. As
we have seen in Scenario 7 with very long intervalcensoring intervals, depending on where
on the function we put that point estimate, the accuracy and precision of the resulting
estimate might be quite different. But it is possible to integrate up all the squared error
values of point estimates along the survival function and then take the mean and root
of the integrated squared error [16]. With this method one gets one RMSE value of the
whole curve and one can compare the overall MSE value of the whole curve. This would
be interesting to do with the data in this thesis. It was also planned in the beginning to
do so, but finally due to time restrictions this task was not completed.

6.2 Estimation of hazard ratio with intervalcensoring

methods

The original aim of this thesis also included comparison of estimation methods for the
hazard ratio. During the months of preparation of this thesis this turned out to be quite
a challenge. There are a lot of articles written about hazard ratio estimation with inter-
valcensored data and a lot of different methods proposed [10, 11, 27, 34]. But besides one
R package named intcox [18, 27] there is no implementation in R available for interval-
censoring data that is related to the Cox-model for rightcensoring data.

Two methods have been tried for this thesis, the intcox function in the intcox package
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and a function written by David Dejardin, a colleague at Roche that combines the methods
of Goggins [14] and Pan [28]. The first function was fast and worked fine for small datasets
but with bigger datasets as the ones used in the Scenarios described in Section 3.3 it
could not start the iteration process anymore. The second function was very slow in the
beginning and could be fastened by exchanging all dataframes in the estimation process
with matrices and vectors. But this was not enough to enable estimation of 1000 datasets
in due time. Finally time was running out to consider parallelization or program another
approach and this estimation procedure was not applied to the simulated datasets. The
generated estimation functions are anyway added to the Appendix Section 8.2.4.

As communicated by Emanuela Pozzi, another colleague at Roche, there is also no
such function implemented in SAS, the other statistical software that is used regularly
at Roche. Considering this, it would be very important in the future to make available
a suitable estimation method of hazard ratios with intervalcensored data in statistical
software.

6.3 Application of intervalcensoring methods to real

clinical data

During my time at Roche there was a request from a health authority to provide interval-
censoring analysis as a further sensitivity analysis for two clinical studies in oncology that
had been submitted for filing. The responsible statistician approached me and together
we could apply my estimation functions to her data.

The intervalcensoring results confirmed the results of the rightcensoring analysis. But
during this analysis I got aware that normally in clinical trials, two types of analysis are
performed, the unstratified analysis only with the treatment covariable, and the stratified
analysis, where some additional variables are considered in the estimation of the hazard
function and as a consequence the logrank test. With my functions we could only do the
unstratified analysis, they do not allow for the addition of stratification factors.

Methods for intervalcensoring analysis considering stratification factors are currently
not available in the repositories of R or SAS. In order that the intervalcensoring methods
are becoming more widely used as a sensitivity analysis, it would be needed to establish
and program these methods.
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Chapter 8

Appendix

8.1 Derivation of Kaplan-Meier estimator

The following document was downloaded via this link:
http://www.ics.uci.edu/∼vqnguyen/stat255/KM-Derivation.pdf
This is the website of Vinh Q. Nguyen, lecturer of the course Stat255 in Survival Analysis at University
of California, Irvine.
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Statistics 255, Fall 2012

Derivation of the Kaplan-Meier estimator as a nonparametric MLE

Let t1 < t2 < · · · < tD be the observed failure times in a sample of size n from a population with survival
function S. Suppose that dj observations failed at time tj and mj observations were right-censored in the
interval [tj , tj+1) at times tj1, . . . , tjmj

, j = 0, . . . , D, where t0 = 0 and tD+1 =∞. Let

nj = (mj + dj) + · · ·+ (mD + dD) =
D∑

l=j

(ml + dl)

denote the number of observations at risk just prior to time tj .
The contribution to the likelihood for an observation that failed at time tj is

Pr[T = tj ] = f(tj) = −
dS(t)

dt

∣∣∣∣
t=tj

.

Under the assumption of independence between the censoring time and failure time, the contribution to the
likelihood for a censored observation at time tjl is

Pr[T > tjl] = S(tjl).

The probability of the observed data is thus

L =

D∏

j=0

{
Pr[fail at time tj ]

dj

ml∏

l=1

Pr[censored at time tjl]

}

=
D∏

j=0





[
−dS(t)

dt

∣∣∣∣
t=tj

]dj ml∏

l=1

S(tjl)



 .

If we consider maximizing L with respect to S such that S only assigns positive probability to the observed
failure times, then the maximizer S will be a discrete survival function and is discontinuous at t1 < t2 <
· · · < tD. This implies S(t∗j ) = S(tj) for t∗j ∈ [tj , tj+1). Since, tjl ∈ [tj , tj+1), we have S(tjl) = S(tj).

Further, −dS(t)
dt

∣∣
t=tj

can be written as

S(tj−1)− S(tj) = Pr[T = tj ],

where Pr is the probability mass function (pmf) corresponding to the maximizer S. Thus, the likelihood as
a function of the discrete survival function S is

L(S) =

D∏

j=0

{
[S(tj−1)− S(tj)]dj

ml∏

l=1

S(tj)

}

Now let
λj = Pr[T = tj |T > tj−1].

For j = 1, . . . , D, we have

Pr[T = tj ] = Pr[T = tj |T > tj−1]× Pr[T > tj−1|T > tj−2]×
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· · · × Pr[T > t2|T > t1]× Pr[T > t1|T > t0]

= Pr[T = tj |T > tj−1]

j−1∏

l=1

Pr[T > tl|T > tl−1]

= Pr[T = tj |T > tj−1]

j−1∏

l=1

(1− Pr[T = tl|T > tl−1])

= λj

j−1∏

l=1

(1− λl),

and

Pr[T > tj ] = Pr[T > tj |T > tj−1]× Pr[T > tj−1|T > tj−2]×
· · · × Pr[T > t2|T > t1]× Pr[T > t1|T > t0]

=

j∏

l=1

Pr[T > tl|T > tl−1]

=

j∏

l=1

(1− Pr[T = tl|T > tl−1])

=

j∏

l=1

(1− λl),

Thus, the likelihood can be reparameterized as a function of ~λ = (λ1, . . . , λD)T :

L(~λ) =

D∏

j=1

{
λ
dj

j

[
j−1∏

l=1

(1− λl)dj

][
j∏

l=1

(1− λl)mj

]}

=
D∏

j=1

{
λ
dj

j

(1− λj)dj

[
j∏

l=1

(1− λl)dj

][
j∏

l=1

(1− λl)mj

]}

=
D∏

j=1

{
λ
dj

j

(1− λj)dj

[
j∏

l=1

(1− λl)dj+mj

]}

=




D∏

j=1

λ
dj

j

(1− λj)dj






D∏

j=1

j∏

l=1

(1− λl)dj+mj




=




D∏

j=1

λ
dj

j

(1− λj)dj


 (1− λ1)d1+m1(1− λ1)d2+d2(1− λ2)d2+m2×

(1− λ1)d3+d3(1− λ2)d3+m3(1− λ3)d3+m3 × · · ·

=




D∏

j=1

λ
dj

j

(1− λj)dj






D∏

j=1

(1− λj)
∑D

l=j ml+dl




=




D∏

j=1

λ
dj

j

(1− λj)dj






D∏

j=1

(1− λj)nj




=

D∏

j=1

[
λ
dj

j (1− λj)nj−dj

]
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To this end,

l(~λ) = logL(~λ)

=
D∑

j=1

dj log λj + (nj − dj) log(1− λj)

Uj(~λ) =
∂l(~(λ))

∂λj
=
dj
λj
− nj − dj

1− λj

and solving for Uj(~̂λ) ≡ ~0 we have λ̂j = dj/nj . From this, we have

Ŝ(t) =
∏

j:tj≤t

(1− λ̂j) =
∏

j:tj≤t

(1− dj/nj) (the KM estimator).

Now,

Ijj(~λ) = −E
[
∂Uj(~λ)

∂λj

]
= E

[
dj
λ2j

+
nj − dj
(1− λj)2

]

Ijk(~λ) = −E
[
∂Uj(~λ)

∂λk

]
= 0,

and

Îjj(~λ) =
dj

λ̂2j
+

nj − dj
(1− λ̂j)2

= · · · =
n3j

dj(nj − dj)
.

So, from likelihood theory, we have

~̂λ
.∼ N

(
~λ, I−1(~λ)

)
,

and by the δ-method,

log(1− λ̂j) .∼ N
(
log(1− λj),

1

(1− λj)2
I−1
jj (~λ)

)
,

where

V̂ar[log(1− λ̂j)] =
Î−1
jj (~λ)

1− λ̂j
=

n2j
(nj − dj)2

× dj(nj − dj)
n3j

=
dj

nj(nj − dj)

From this, log Ŝt =
∑

j:tj≤t log(1− λ̂j) and

V̂ar[log Ŝ(t)] =
∑

j:tj≤t

V̂ar[log(1− λ̂)] =
∑

j:tj≤t

dj
nj(nj − dj)

,

and again, by the δ-method,

V̂ar[Ŝ(t)] = Ŝ(t)2
∑

j:tj≤t

dj
nj(nj − dj)

,

yielding Greenwood’s formula.
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8.2 Functions defined for simulation and estimation

This section contains the functions that were defined and used to simulate the datasets and to do the
estimations in this thesis.

8.2.1 Simulation: WeibPFSSim1 and WeibPFSSim2 functions

The functions WeibPFSSim1 and WeibPFSSim2 are used in a sequential manner. With WeibPFSSim1 data
of every study arm is simulated, one at a time. WeibPFSSim2 is used to combine the study arms and to
rightcensor all events after the analysis cutoff. See Chapter 3 for details about parameters.

WeibPFSSim1

> ## =============================================================================

> ## this script contains a function

> ## that simulates a dataset of a study arm for a PFS endpoint

> ## based on a Weibull parametric survival function

> ## applying right- and interval-censoring

> ## resulting in exact, right-censored and interval-censored observations

> ## without censoring at cutoff

> ## =============================================================================

>

>

> WeibPFSSim1 <- function (scenario, n, shape, scale, deathprob, censscale,

assess.vec, sd, M, seed = NA) {

# =============================================================================

# with simulation parameters:

# simulate realistic dataset that contains:

# - death events

# - PFS events

# - dropouts

# and save in list

# Args:

## 0. Scenario number

# scenario = scenario number (for easy recognition)

## 1. exact event times: Weibull distribution - rweibull(n, shape, scale)

# n = number of observations

# shape = alpha

# scale = mu or beta, = 1 / lambda

## 2. death events: exact event time by binomial distribution - rbinom(n, deathprob)

# deathprob = probability of event being death

## 3. right-censoring by early drop out: by exponential distribution - rweib(n, 1, censlambda)

# censscale = scale (1 / lambda) used for exponential distribution of right-censoring times

## 4. interval-censoring of PFS events: define assessment schedule

# assess.vec = vector of assessment days

# sd = standard deviation of normal rv generation for all widths -

# eg. rnorm(n, assess[2] - assess[1], sd) (= variation of widths)

## 5. number of simulations

# M = simulations with the same dataset

## 6. seed for simulation (to reproduce same data)

# seed = number corresponding to starting point of random variable generator

# (default is NA, what means no starting point is set)

# Returns:

# list of

# $sim.data: list of M dataframes with 5 columns

# (event.time, rightcens.time, rightcens.ind, left.time, right.time)

# representing (uncensored, right-censored, interval-censored) data

# $sim.par: vector of simulation parameters
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# $assess.par: vector of assessment times inserted as parameters

# $assess.times: list of M matrices with n rows and length(assess.vec) columns

# representing all assessment times

# =============================================================================

# M simulations:

sim.data <- list(NA)

assess.times <- list(NA)

## ============================================================================

## set seed

## ============================================================================

if (!is.na(seed)) {set.seed(seed)}

for (j in 1:M) {

# setup result vectors

## ============================================================================

event.time <- rep(NA, times = n)

rightcens.time <- rep(NA, times = n)

rightcens.ind <- rep(NA, times = n)

left.time <- rep(NA, times = n)

right.time <- rep(NA, times = n)

# and simulation indicator

sim.ind <- rep(NA, times = n)

# 1. simulate events

## ============================================================================

event.time <- rweibull(n, shape, scale)

# 2. simulate death events: exact time known

## ============================================================================

# by binomial distribution

sim.ind <- rbinom(n, 1, prob = deathprob)

for (i in 1:n) {

if (sim.ind[i] == 1) {

rightcens.time[i] <- event.time[i]

rightcens.ind[i] <- 1

left.time[i] <- event.time[i]

right.time[i] <- event.time[i] }

}

# 3. simulate right-censoring by early drop out

## ============================================================================

# find censoring by comparison of time value modeled by exponential distribution

cens.time <- rweibull(n, 1, censscale)

for (i in 1:n) {

if (cens.time[i] <= event.time[i]) {

rightcens.time[i] <- cens.time[i]

rightcens.ind[i] <- 0

left.time[i] <- cens.time[i]

right.time[i] <- Inf }

}

# 4. simulate interval-censoring of PFS events: with assessment schedule

## ============================================================================

# a) calculate width of time intervals

width <- c(assess.vec[1], diff(assess.vec), Inf)

# and vary it by rnorm with sd = sd

width.jit <- matrix(rep(NA, n * length(width)), nrow = n)

for (i in 1:n) {width.jit[i, ] <- rnorm(length(width), mean = width, sd = sd) }

# b) establish jittered assessment schedule

assess.vec.jit <- apply(width.jit, 1, cumsum)

assess.vec.jit <- rbind(rep(0, n), assess.vec.jit)
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# c) choose appropriate timepoints for patients not considered in 2. and 3.

for (i in 1:n) {

if (is.na(rightcens.ind[i])) {

left.time[i] <- max(assess.vec.jit[, i][assess.vec.jit[, i] < event.time[i]])

right.time[i] <- min(assess.vec.jit[, i][assess.vec.jit[, i] > event.time[i]])

rightcens.ind[i] <- 1

rightcens.time[i] <- right.time[i] }

}

# d) set patients with progression event after last assessment to right-censored at last assessment

for (i in 1:n) {

if (right.time[i] == Inf & rightcens.ind[i] == 1) {

left.time[i] <- assess.vec.jit[, i][nrow(assess.vec.jit) - 1]

right.time[i] <- Inf

rightcens.ind[i] <- 0

rightcens.time[i] <- left.time[i] }

}

# e) set patients with death event after last assessment to right-censored at last assessment

for (i in 1:n) {

if (right.time[i] == left.time[i] & right.time[i] > assess.vec.jit[, i][nrow(assess.vec.jit) - 1]) {

left.time[i] <- assess.vec.jit[, i][nrow(assess.vec.jit) - 1]

right.time[i] <- Inf

rightcens.ind[i] <- 0

rightcens.time[i] <- left.time[i] }

}

## ============================================================================

## round all generated time values

## ============================================================================

event.time <- round(event.time)

rightcens.time <- round(rightcens.time)

left.time <- round(left.time)

right.time <- round(right.time)

assess.vec.jit <- round(assess.vec.jit)

## ============================================================================

## avoid zeros, they would result in survreg-errors

## ============================================================================

event.time <- ifelse(event.time == 0, 1, event.time)

rightcens.time <- ifelse(rightcens.time == 0, 1, rightcens.time)

left.time <- ifelse(left.time == 0, 1, left.time)

right.time <- ifelse(right.time == 0, 1, right.time)

## ============================================================================

## generate data frame

## ============================================================================

parsim <- data.frame( event.time = event.time,

rightcens.time = rightcens.time,

rightcens.ind = rightcens.ind,

left.time = left.time,

right.time = right.time)

## ============================================================================

## put together list of data frames sim.data and list of matrices assess.times

## ============================================================================

sim.data[[j]] <- parsim

assess.times[[j]] <- assess.vec.jit[-c(1, nrow(assess.vec.jit)), ]

}

## ============================================================================

## generate vectors sim.par and assess.par

## ============================================================================

options(scipen = 4)

sim.par <- c(scenario, n, shape, scale, deathprob, censscale,
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sd, M, seed)

names(sim.par) <- c("scenario", "n", "shape", "scale", "deathprob", "censscale",

"sd", "M", "seed")

assess.par <- assess.vec

## ============================================================================

## output list of data and parameters

## ============================================================================

list(sim.data = sim.data, sim.par = sim.par, assess.par = assess.par,

assess.times = assess.times)

}

>

WeibPFSSim2

> ## =============================================================================

> ## this script contains a function

> ## that simulates the censoring at analysis cutoff

> ## of PFS datasets of one to four study arms.

> ## The datasets contain uncensored, right-censored and interval-censored data

> ## =============================================================================

>

>

> WeibPFSSim2 <- function (WeibPFSSim1.data1,

WeibPFSSim1.data2 = NULL,

WeibPFSSim1.data3 = NULL,

WeibPFSSim1.data4 = NULL,

recr1, recr2 = NULL, recr3 = NULL, recr4 = NULL,

cutoff, arm, seed = NA) {

# =============================================================================

# with simulation parameters:

# simulate with 1-4 realistic datasets:

# - analysis cutoff

# and save datasets in list

# Args:

# WeibPFSSim1.data1 = dataset to apply the cutoff on,

# for description of structure see WeibPFSSim-function

# WeibPFSSim1.data2, 3, 4 = optional additional datasets (other study arms),

# added to apply an overall cutoff

# these datasets need to have the same number of simulations

# in order to be able to

## right-censoring at clinical cutoff: (= administrative censoring)

# recr1 = number of patients recruited per month

# recr2, 3, 4 = for other datasets: number of patients recruited per month

# cutoff = number of patients with event before cutoff (overall)

# arm = number of study arms

# seed = number corresponding to starting point of random variable generator

# (default is NA, what means no starting point is set)

# Returns:

# list of

# $sim.data: list of M dataframes of all study arms with 6 columns

# (event.time, rightcens.time, rightcens.ind, left.time, right.time, treatment)

# representing (uncensored, right-censored, interval-censored) data

# after right-censoring at analysis cutoff

## and treatment arm as a number from 0 to 3 (according to arms 1 to 4).

# $assess.times: list of M matrices with n rows and length(assess.vec) columns

# representing all assessment times of all study arms

# $arm1: list of data of first arm of study, with these objects:

# - $sim.data: list of M dataframes with 5 columns

# - $sim.par: vector of simulation parameters

# - $assess.par: vector of assessment times inserted as parameters

# $arm2, 3, 4: optional, list of data of other study arms,

# with the same objects as arm1
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# =============================================================================

## ============================================================================

# check if there are not more than 4 study arms:

## ============================================================================

if (length(arm) > 4) {warning("This function can only handle up to 4 study arms.

You indicated usage of more arms by defining 'arm' > 4.")}

## ============================================================================

# check if M is the same for all study arms:

## ============================================================================

stopifnot(WeibPFSSim1.data1$sim.par[["M"]] == WeibPFSSim1.data2$sim.par[["M"]] &

WeibPFSSim1.data1$sim.par[["M"]] == WeibPFSSim1.data3$sim.par[["M"]] &

WeibPFSSim1.data1$sim.par[["M"]] == WeibPFSSim1.data4$sim.par[["M"]])

M <- WeibPFSSim1.data1$sim.par[["M"]]

## ============================================================================

## introduce lists for saving

## ============================================================================

sim.data <- list(NA)

assess.times <- list(NA)

arm1 <- list(NA)

arm2 <- list(NA)

arm3 <- list(NA)

arm4 <- list(NA)

sim.data1 <- list(NA)

sim.data2 <- list(NA)

sim.data3 <- list(NA)

sim.data4 <- list(NA)

## ============================================================================

## set seed

## ============================================================================

if (!is.na(seed)) {set.seed(seed)}

for (j in 1:M) {

## ============================================================================

# read in data vectors

## ============================================================================

event.time <- c(WeibPFSSim1.data1$sim.data[[j]]$event.time,

WeibPFSSim1.data2$sim.data[[j]]$event.time,

WeibPFSSim1.data3$sim.data[[j]]$event.time,

WeibPFSSim1.data4$sim.data[[j]]$event.time)

rightcens.time <- c(WeibPFSSim1.data1$sim.data[[j]]$rightcens.time,

WeibPFSSim1.data2$sim.data[[j]]$rightcens.time,

WeibPFSSim1.data3$sim.data[[j]]$rightcens.time,

WeibPFSSim1.data4$sim.data[[j]]$rightcens.time)

rightcens.ind <- c(WeibPFSSim1.data1$sim.data[[j]]$rightcens.ind,

WeibPFSSim1.data2$sim.data[[j]]$rightcens.ind,

WeibPFSSim1.data3$sim.data[[j]]$rightcens.ind,

WeibPFSSim1.data4$sim.data[[j]]$rightcens.ind)

left.time <- c(WeibPFSSim1.data1$sim.data[[j]]$left.time,

WeibPFSSim1.data2$sim.data[[j]]$left.time,

WeibPFSSim1.data3$sim.data[[j]]$left.time,

WeibPFSSim1.data4$sim.data[[j]]$left.time)

right.time <- c(WeibPFSSim1.data1$sim.data[[j]]$right.time,

WeibPFSSim1.data2$sim.data[[j]]$right.time,

WeibPFSSim1.data3$sim.data[[j]]$right.time,

WeibPFSSim1.data4$sim.data[[j]]$right.time)

n1 <- WeibPFSSim1.data1$sim.par[["n"]]

n2 <- WeibPFSSim1.data2$sim.par[["n"]]

n3 <- WeibPFSSim1.data3$sim.par[["n"]]

n4 <- WeibPFSSim1.data4$sim.par[["n"]]

n <- length(right.time)

assess.vec.jit1 <- rbind(rep(0, n1), WeibPFSSim1.data1$assess.times[[j]], rep(Inf, n1))

if (length(n2) != 0) {

assess.vec.jit2 <- rbind(rep(0, n2), WeibPFSSim1.data2$assess.times[[j]], rep(Inf, n2))
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} else { assess.vec.jit2 <- NULL}

if (length(n3) != 0) {

assess.vec.jit3 <- rbind(rep(0, n3), WeibPFSSim1.data3$assess.times[[j]], rep(Inf, n3))

} else { assess.vec.jit3 <- NULL}

if (length(n4) != 0) {

assess.vec.jit4 <- rbind(rep(0, n4), WeibPFSSim1.data4$assess.times[[j]], rep(Inf, n4))

} else { assess.vec.jit4 <- NULL}

assess.vec.jit <- cbind(assess.vec.jit1, assess.vec.jit2, assess.vec.jit3, assess.vec.jit4)

## ============================================================================

# for first arm dataset

## ============================================================================

# a) define arrival times (recr per month (30 days))

arrival.time <- NULL

for (i in 1:ceiling(n1 / recr1)) {

arrival.time <- c(arrival.time, runif(recr1, min = (i - 1) * 30, max = i * 30))}

arrival.time1 <- arrival.time[1:n1]

# b) calculate total time

total.time1 <- arrival.time1 + rightcens.time[1:n1]

## ============================================================================

# for additional datasets

## ============================================================================

if (length(n2) != 0) {

# a) define arrival times (recr per month (30 days))

arrival.time <- NULL

for (i in 1:ceiling(n2 / recr2)) {

arrival.time <- c(arrival.time, runif(recr2, min = (i - 1) * 30, max = i * 30))}

arrival.time2 <- arrival.time[1:n2]

# b) calculate total time

total.time2 <- arrival.time2 + rightcens.time[(n1+1):(n1+n2)]

} else {arrival.time2 <- NULL

total.time2 <- NULL }

if (length(n3) != 0) {

# a) define arrival times (recr per month (30 days))

arrival.time <- NULL

for (i in 1:ceiling(n3 / recr3)) {

arrival.time <- c(arrival.time, runif(recr3, min = (i - 1) * 30, max = i * 30))}

arrival.time3 <- arrival.time[1:n3]

# b) calculate total time

total.time3 <- arrival.time3 + rightcens.time[(n1+n2+1):(n1+n2+n3)]

} else {arrival.time3 <- NULL

total.time3 <- NULL }

if (length(n4) != 0) {

# a) define arrival times (recr per month (30 days))

arrival.time <- NULL

for (i in 1:ceiling(n4 / recr4)) {

arrival.time <- c(arrival.time, runif(recr4, min = (i - 1) * 30, max = i * 30))}

arrival.time4 <- arrival.time[1:n4]

# b) calculate total time

total.time4 <- arrival.time4 + rightcens.time[(n1+n2+n3+1):(n1+n2+n3+n4)]

} else {arrival.time4 <- NULL

total.time4 <- NULL }

arrival.time <- c(arrival.time1, arrival.time2, arrival.time3, arrival.time4)

total.time <- c(total.time1, total.time2, total.time3, total.time4)
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## ============================================================================

# find cutoff time from cutoff patient numbers

## ============================================================================

# c) find cutoff time from cutoff n

cutoff.n <- cutoff

total.time.events <- total.time[rightcens.ind == 1]

if (cutoff.n >= length(total.time.events)) {

warning("the maximum of events is smaller than the events requested for cutoff")

cutoff.n <- length(total.time.events)

}

cut.time <- sort(total.time.events)[cutoff.n] + 0.1

# d) apply censoring

sim.ind <- rep(NA, times = n)

rest.time <- rep(NA, times = n)

for (i in 1:n) {

if (total.time[i] >= cut.time) {

sim.ind[i] <- 0

rest.time[i] <- cut.time - arrival.time[i]

# differentiate positive and negative rest.times

# (negative means: the patient was censored before arrival)

# do not differentiate between right-censoring and event rest.times

# because the right-censoring (by dropout) is only decided at the timepoint of censoring

if (rest.time[i] >= 0) {

left.time[i] <- max(assess.vec.jit[, i][assess.vec.jit[, i] < rest.time[i]])

} else {

left.time[i] <- 0 }

right.time[i] <- Inf

rightcens.ind[i] <- 0

rightcens.time[i] <- left.time[i] }

}

## ============================================================================

## round all generated time values

## ============================================================================

event.time <- round(event.time)

rightcens.time <- round(rightcens.time)

left.time <- round(left.time)

right.time <- round(right.time)

assess.vec.jit <- round(assess.vec.jit)

## ============================================================================

## avoid zeros, they would result in survreg-errors

## ============================================================================

event.time <- ifelse(event.time == 0, 1, event.time)

rightcens.time <- ifelse(rightcens.time == 0, 1, rightcens.time)

left.time <- ifelse(left.time == 0, 1, left.time)

right.time <- ifelse(right.time == 0, 1, right.time)

## ============================================================================

## build treatment vector

## ============================================================================

if (arm == 2)

{treatment <- c(rep(0, n1), rep(1, n2))}

if (arm == 3)

{treatment <- c(rep(0, n1), rep(1, n2), rep(2, n3))}

if (arm == 4)

{treatment <- c(rep(0, n1), rep(1, n2), rep(2, n3), rep(3, n4))}

## ============================================================================

## generate data frame

## ============================================================================

if (arm == 1) {

parsim <- data.frame( event.time = event.time,
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rightcens.time = rightcens.time,

rightcens.ind = rightcens.ind,

left.time = left.time,

right.time = right.time)} else {

parsim <- data.frame( event.time = event.time,

rightcens.time = rightcens.time,

rightcens.ind = rightcens.ind,

left.time = left.time,

right.time = right.time,

treatment = treatment)}

## ============================================================================

## put together list of data frames sim.data and list of matrices assess.times

## ============================================================================

sim.data[[j]] <- parsim

sim.data1[[j]] <- parsim[1:n1, c(1:5)]

if (length(n2) != 0) {sim.data2[[j]] <- parsim[(n1+1):(n1+n2), c(1:5)]

} else {sim.data2[[j]] <- NULL }

if (length(n3) != 0) {sim.data3[[j]] <- parsim[(n1+n2+1):(n1+n2+n3), c(1:5)]

} else {sim.data3[[j]] <- NULL }

if (length(n4) != 0) {sim.data4[[j]] <- parsim[(n1+n2+n3+1):(n1+n2+n3+n4), c(1:5)]

} else {sim.data4[[j]] <- NULL }

assess.times[[j]] <- assess.vec.jit[-c(1, nrow(assess.vec.jit)), ]

}

## ============================================================================

## generate vectors sim.par and assess.par

## ============================================================================

sim.par1 <- c(WeibPFSSim1.data1$sim.par, recr1, cutoff, arm, seed)

names(sim.par1) <- c("scenario", "n", "shape", "scale", "deathprob", "censscale",

"sd", "M", "seed", "recr", "cutoff", "arm", "seed2")

assess.par1 <- WeibPFSSim1.data1$assess.par

if (length(n2) != 0) {

sim.par2 <- c(WeibPFSSim1.data2$sim.par, recr2, cutoff, arm, seed)

names(sim.par2) <- c("scenario", "n", "shape", "scale", "deathprob", "censscale",

"sd", "M", "seed", "recr", "cutoff", "arm", "seed2")

} else {sim.par2 <- NULL}

assess.par2 <- WeibPFSSim1.data2$assess.par

if (length(n3) != 0) {

sim.par3 <- c(WeibPFSSim1.data3$sim.par, recr3, cutoff, arm, seed)

names(sim.par3) <- c("scenario", "n", "shape", "scale", "deathprob", "censscale",

"sd", "M", "seed", "recr", "cutoff", "arm", "seed2")

} else {sim.par3 <- NULL}

assess.par3 <- WeibPFSSim1.data3$assess.par

if (length(n4) != 0) {

sim.par4 <- c(WeibPFSSim1.data4$sim.par, recr4, cutoff, arm, seed)

names(sim.par4) <- c("scenario", "n", "shape", "scale", "deathprob", "censscale",

"sd", "M", "seed", "recr", "cutoff", "arm", "seed2")

} else {sim.par4 <- NULL}

assess.par4 <- WeibPFSSim1.data4$assess.par

## ============================================================================

## output list of data and parameters

## ============================================================================

list(sim.data = sim.data, assess.times = assess.times,

arm1 = list(sim.data = sim.data1, sim.par = sim.par1, assess.par = assess.par1),

arm2 = list(sim.data = sim.data2, sim.par = sim.par2, assess.par = assess.par2),

arm3 = list(sim.data = sim.data3, sim.par = sim.par3, assess.par = assess.par3),

arm4 = list(sim.data = sim.data4, sim.par = sim.par4, assess.par = assess.par4))

}

>
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8.2.2 Estimation of survival quantiles and times: TimeStep...,
TimeWeib..., SurvStep..., SurvWeib... functions

Four types of functions are defined:

TimeStep: to find survival times at certain survival quantiles, by nonparametric estima-
tion of the survival function with the NPMLE

TimeWeib: to find survival times at certain survival quantiles, by parametric estimation
if the survival function with the Weibull function

SurvStep: to find survival quantiles at certain survival times, by nonparametric estima-
tion of the survival function with the NPMLE

SurvWeib: to find survival quantiles at certain survival times, by parametric estimation
if the survival function with the Weibull function

For all these types of function, three versions are defined, for uncensored (complete),
rightcensored and intervalcensored data. For uncensored data the rightcensoring
methods are used.

TimeStepUncens

> ## =============================================================================

> ## this script contains a function

> ## that for specific survival probabilities (surv.grid) estimates the survival timepoints

> ## corresponding to looking at the quantile function of the nonparametric (Kaplan-Meier or Turnbull) distribution

> ## =============================================================================

>

>

> TimeStepUncens <- function (surv.grid, event.time, CI = FALSE) {

# =============================================================================

# with uncensored data:

# calculate nonparametric (Kaplan-Meier) estimates of inverse survival function

# and their confidence interval boundaries at specific survival prob. surv.grid

# and save in vectors

# Args:

# surv.grid: vector of survival probabilities that should be evaluated

# event.time: vector of event times of one dataset

# all events have to be observed, no censoring allowed

# CI: logical value indicating if 95% confidence interval boundaries are added

# to the result and result is output in a list instead of a vector

# Returns:

# if confint = FALSE :

# vector of time estimates for each survival probability in surv.grid

# if confint = TRUE :

# list of three vectors: uncens, uncens.CI.low, uncens.CI.up:

# vectors of time estimates and their 95% confidence interval boundaries

# for each survival probability in surv.grid

# =============================================================================

# initialize result vectors

uncens <- rep(NA, length(surv.grid))

uncens.CI.low <- rep(NA, length(surv.grid))

uncens.CI.up <- rep(NA, length(surv.grid))

# calculate estimate

survfit.est <- survfit(Surv(event.time, rep(1, length(event.time))) ~ 1,

conf.type = "log-log")
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for (i in 1:length(surv.grid)) {

uncens[i] <- quantile(survfit.est, probs = 1 - surv.grid[i])$quantile[[1]]

uncens.CI.low[i] <- quantile(survfit.est, probs = 1 - surv.grid[i])$lower[[1]]

uncens.CI.up[i] <- quantile(survfit.est, probs = 1 - surv.grid[i])$upper[[1]]

}

# decide between the two output versions

if (CI == TRUE) {output <- list(uncens, uncens.CI.low, uncens.CI.up)

names(output) <- c("uncens", "uncens.CI.low", "uncens.CI.up")

} else {output <- uncens}

output

}

TimeStepRightcens

> ## =============================================================================

> ## this script contains a function

> ## that for specific survival probabilities (surv.grid) estimates the survival timepoints

> ## corresponding to looking at the quantile function of the nonparametric (Kaplan-Meier or Turnbull) function

> ## =============================================================================

>

>

> TimeStepRightcens <- function (surv.grid, rightcens.time, rightcens.ind, CI = FALSE) {

# =============================================================================

# with rightcensored data:

# calculate nonparametric (Kaplan-Meier) estimates of inverse survival function

# and their confidence interval boundaries at specific survival prob. surv.grid

# and save in vectors

# Args:

# surv.grid: vector of survival probabilities that should be evaluated

# rightcens.time: vector of event and right-censoring times of one dataset

# rightcens.ind: vector of censoring indicator (1 = event time, 0 = censoring time)

# (right-censoring means: event has happened any time after the censoring time)

# CI: logical value indicating if 95% confidence interval boundaries are added

# to the result and result is output in a list instead of a vector

# Returns:

# if confint = FALSE :

# vector of time estimates for each survival probability in surv.grid

# if confint = TRUE :

# list of three vectors: uncens, uncens.CI.low, uncens.CI.up:

# vectors of time estimates and their 95% confidence interval boundaries

# for each survival probability in surv.grid

# =============================================================================

# initialize result vectors

rightcens <- rep(NA, length(surv.grid))

rightcens.CI.low <- rep(NA, length(surv.grid))

rightcens.CI.up <- rep(NA, length(surv.grid))

# calculate estimate

survfit.est <- survfit(Surv(rightcens.time, rightcens.ind) ~ 1, conf.type = "log-log")

for (i in 1:length(surv.grid)) {

rightcens[i] <- quantile(survfit.est, probs = 1 - surv.grid[i])$quantile[[1]]

rightcens.CI.low[i] <- quantile(survfit.est, probs = 1 - surv.grid[i])$lower[[1]]

rightcens.CI.up[i] <- quantile(survfit.est, probs = 1 - surv.grid[i])$upper[[1]]

}

# decide between the two output versions

if (CI == TRUE) {output <- list(rightcens, rightcens.CI.low, rightcens.CI.up)

names(output) <- c("rightcens", "rightcens.CI.low", "rightcens.CI.up")

} else {output <- rightcens}

output

}
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TimeStepIntervalcens

> ## =============================================================================

> ## this script contains a function

> ## that for specific survival probabilities (surv.grid) estimates the survival timepoints

> ## corresponding to looking at the quantile function of the nonparametric (Kaplan-Meier or Turnbull) function

> ## =============================================================================

>

>

> TimeStepIntervalcens <- function (surv.grid, left.time, right.time,

approxim = "linear", tol = 10^-5) {

# =============================================================================

# with intervalcensored data:

# calculate nonparametric (Turnbull) estimates of inverse survival function

# at specific survival probability points surv.grid and save in vectors

# In some survival prob. ranges the time ML-estimate is ambigous,

# it can be any value between lower and upper boundaries.

# The user can choose the output: either one boundary value or

# a value assuming linear change between the unique border values

# Args:

# surv.grid: vector of survival probabilities that should be evaluated

# left.time: vector of left boundary of interval-censored times of one dataset

# right.time: vector of right boundary of interval-censored times of one dataset

# approxim: define how non-unique estimates should be handled (see below)

# tol: tolerance,

# algorithm terminates when difference in MLE between two steps is below tolerance

# Returns:

# depending on handling of non-unique estimates:

# if approxim = "linear" :

# vector of time estimates with linear change in ambigous areas, followed by

# the numerical value corresponding to the logical indicator of convergence

# of the NPMLE algorithm (0 = FALSE, 1 = TRUE)

# if approxim = "lower" :

# vector of time estimates at lower boundary followed by the same convergence indicator

# if approxim = "upper" :

# vector of time estimates at upper boundary followed by the same convergence indicator

# if approxim = "all" :

# list of the three vectors above,

# named intervalcens.linear, intervalcens.lower, intervalcens.upper

# =============================================================================

# check approxim entry

approxim <- match.arg(approxim, c("lower", "upper", "linear", "all"))

# initialize result vectors

intervalcens.lower <- rep(NA, length(surv.grid))

intervalcens.upper <- rep(NA, length(surv.grid))

intervalcens.linear <- rep(NA, length(surv.grid))

# save censored values as data, add dummy variable (0,1) as second variable

# (because needed input format is observation rectangles)

data <- cbind(left.time = left.time,

right.time = right.time,

dum.left = rep(0, length(left.time)),

dum.right = rep(1, length(left.time)))

data <- as.matrix(data)

# define boundaries (0 = open, 1 = closed)

# (have to be 1,1 for exact values, and are set to 0,1 for intervals, because mathematically easier)

bound1 <- matrix(rep(NA, times = 2 * length(left.time)), ncol = 2)

for (i in 1:length(left.time)) {

if (left.time[i] == right.time[i]) {bound1[i, ] <- c(1, 1)} else {

bound1[i, ] <- c(0, 1)}

}

bound2 <- matrix(c(rep(0, times = length(left.time)),

rep(1, times = length(left.time))), ncol = 2)
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bound <- cbind(bound1, bound2)

# =============================================================================

# calculate NPMLE

# =============================================================================

MLEcens.est <- computeMLE(data, bound, tol = tol)

# save convergence indicator

converge <- MLEcens.est$conv

# extract numbers from output

step.lower.time <- MLEcens.est$rects[, 1]

step.upper.time <- MLEcens.est$rects[, 2]

surv.step <- 1 - cumsum(MLEcens.est$p)

# and add first line: time = 0, survival = 1

step.lower.time <- c(0, step.lower.time, Inf)

step.upper.time <- c(0, step.upper.time, Inf)

surv.step <- c(1,surv.step, 0)

# display in a dataframe

cbind(step.lower.time, step.upper.time, surv.step)

# =============================================================================

# calculate estimates for lower and upper bounds

# =============================================================================

# rounded values, needed for equality:

r.surv.step <- round(surv.step, 8)

r.surv.grid <- round(surv.grid, 8)

for (i in 1:length(surv.grid)) {

intervalcens.lower[i] <- if (any(r.surv.step == r.surv.grid[i])) {

mean(c(step.lower.time[which(r.surv.step == r.surv.grid[i])],

step.lower.time[which(r.surv.step == r.surv.grid[i]) + 1]))

} else {

step.lower.time[which(surv.step < surv.grid[i] &

c(1, surv.step[-length(surv.step)]) > surv.grid[i])]

} }

for (i in 1:length(surv.grid)) {

intervalcens.upper[i] <- if (any(r.surv.step == r.surv.grid[i])) {

mean(c(step.upper.time[which(r.surv.step == r.surv.grid[i])],

step.upper.time[which(r.surv.step == r.surv.grid[i]) + 1]))

} else {

step.upper.time[which(surv.step < surv.grid[i] &

c(1, surv.step[-length(surv.step)]) > surv.grid[i])]

} }

# =============================================================================

# calculate estimates for linear approximation

# =============================================================================

if (approxim == "linear" | approxim == "all") {

# no linear approximation possible at uppermost timestep: insert NA

step.upper.time.lm <- ifelse(step.upper.time == Inf, NA, step.upper.time)

# initialize model vector

linear.model <- list()

# create linear models for ambigous survival-time areas

for (j in 2:(length(step.lower.time)-1)) {

linear.model[[j]] <- lm(time.step ~ surv.step,

data = data.frame( time.step = c(step.lower.time[j], step.upper.time.lm[j]),

surv.step = surv.step[(j - 1):j]))

# some models have coeff NA:

# - the ones before the last model are at exact timesteps and not needed later

# - the last model is needed and returns NA for values above uppermost timestep

}
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# split surv.grid values to apply suitable approximation procedure

for (i in 1:length(surv.grid)) {

# write down unique time values

if (intervalcens.lower[i] == intervalcens.upper[i])

{intervalcens.linear[i] <- intervalcens.lower[i]} else {

# find suitable model for surv.grid value

for (j in 2:(length(step.lower.time)-1)) {

if (r.surv.grid[i] >= r.surv.step[j] & r.surv.grid[i] < r.surv.step[j - 1])

{intervalcens.linear[i] <- suppressWarnings(predict(linear.model[[j]],

newdata = data.frame(surv.step = surv.grid[i]),

type = "response"))}

}

# suppressWarnings is necessary because else warning

# "prediction from a rank-deficient fit may be misleading" is printed

# this warning is not valid here because

# we only predict inside the suitable survival probability interval

# put NA to values where intervalcens.upper == Inf

if (intervalcens.upper[i] == Inf) {intervalcens.linear[i] <- NA}

} } }

# =============================================================================

# add convergence indicator to intervalcens vectors

# =============================================================================

intervalcens.lower <- c(intervalcens.lower, converge)

intervalcens.upper <- c(intervalcens.upper, converge)

intervalcens.linear <- c(intervalcens.linear, converge)

# =============================================================================

# choose appropriate output:

# =============================================================================

if (approxim == "lower") {output <- intervalcens.lower}

if (approxim == "upper") {output <- intervalcens.upper}

if (approxim == "linear") {output <- intervalcens.linear}

if (approxim == "all") {output <- list(intervalcens.lower = intervalcens.lower,

intervalcens.upper = intervalcens.upper,

intervalcens.linear = intervalcens.linear)}

output

}

TimeWeibUncens

> ## =============================================================================

> ## this script contains a function

> ## that for specific survival probabilities (surv.grid) estimates the survival timepoints

> ## corresponding to looking at the quantile function of the parametric Weibull distribution

> ## =============================================================================

>

>

> TimeWeibUncens <- function (surv.grid, event.time) {

# =============================================================================

# with uncensored data:

# calculate parametric Weibull estimates of inverse survival function

# at specific survival probabilities surv.grid

# and save in vectors

# Args:

# surv.grid: vector of survival probabilities that should be evaluated

# event.time: vector of event times of one dataset

# all events have to be observed, no censoring allowed

# Returns:

# vector of time estimates for each survival probability in surv.grid

# =============================================================================
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# initialize result vector

uncens <- rep(NA, length(surv.grid))

# calculate estimate

weibull.est <- survreg(Surv(event.time, rep(1, length(event.time))) ~ 1,

dist = "weibull")

summary(weibull.est)

summary(weibull.est)$table

vcov(weibull.est)

#extract parameters from summary

weib.b <- exp(summary(weibull.est)$table[2]) # = scale

weib.u <- summary(weibull.est)$table[1] # = intercept

weib.b.sd <- exp(summary(weibull.est)$table[4]) # = scale

weib.u.sd <- summary(weibull.est)$table[3] # = intercept

# compute time estimates for surv.grid

uncens <- qsurvreg(1 - surv.grid, weib.u, weib.b, distr = "weibull")

#output

uncens

}

TimeWeibRightcens

> ## =============================================================================

> ## this script contains a function

> ## that for specific survival probabilities (surv.grid) estimates the survival timepoints

> ## corresponding to looking at the quantile function of the parametric Weibull distribution

> ## =============================================================================

>

>

> TimeWeibRightcens <- function (surv.grid, rightcens.time, rightcens.ind) {

# =============================================================================

# with rightcensored data:

# calculate parametric Weibull estimates of inverse survival function

# at specific survival probabilities surv.grid

# and save in vectors

# Args:

# surv.grid: vector of survival probabilities that should be evaluated

# rightcens.time: vector of event and right-censoring times of one dataset

# rightcens.ind: vector of censoring indicator (1 = event time, 0 = censoring time)

# (right-censoring means: event has happened any time after the censoring time)

# Returns:

# vector of time estimates for each survival probability in surv.grid

# =============================================================================

# initialize result vector

rightcens <- rep(NA, length(surv.grid))

# calculate estimate

weibull.est <- survreg(Surv(rightcens.time, rightcens.ind) ~ 1,

dist = "weibull")

summary(weibull.est)

summary(weibull.est)$table

vcov(weibull.est)

#extract parameters from summary

weib.b <- exp(summary(weibull.est)$table[2]) # = scale

weib.u <- summary(weibull.est)$table[1] # = intercept

weib.b.sd <- exp(summary(weibull.est)$table[4]) # = scale

weib.u.sd <- summary(weibull.est)$table[3] # = intercept

# compute time estimates for surv.grid
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rightcens <- qsurvreg(1 - surv.grid, weib.u, weib.b, distr = "weibull")

#output

rightcens

}

TimeWeibIntervalcens

> ## =============================================================================

> ## this script contains a function

> ## that for specific survival probabilities (surv.grid) estimates the survival timepoints

> ## corresponding to looking at the quantile function of the parametric Weibull distribution

> ## =============================================================================

>

>

> TimeWeibIntervalcens <- function (surv.grid, left.time, right.time) {

# =============================================================================

# with intervalcensored data:

# calculate parametric Weibull estimates of inverse survival function

# at specific survival probabilities surv.grid

# and save in vector

# Args:

# surv.grid: vector of survival probabilities that should be evaluated

# left.time: vector of left boundary of interval-censored times of one dataset

# right.time: vector of right boundary of interval-censored times of one dataset

# Returns:

# vector of time estimates for each survival probability in surv.grid

# =============================================================================

# initialize result vector

intervalcens <- rep(NA, length(surv.grid))

# construct additional vector with indicator for interval- and right-censoring

# (right-censored = 0, interval-censored = 3, not censored = 1)

cens.ind <- rep(NA, length(left.time))

cens.ind <- ifelse(!(right.time == Inf) & !(left.time == right.time), 3, 1)

cens.ind <- ifelse(right.time == Inf, 0, cens.ind)

# calculate estimate

weibull.est <- survreg(Surv(left.time, right.time, cens.ind, type = "interval") ~ 1,

dist = "weibull")

summary(weibull.est)

summary(weibull.est)$table

vcov(weibull.est)

#extract parameters

weib.b <- exp(summary(weibull.est)$table[2]) # = scale

weib.u <- summary(weibull.est)$table[1] # = intercept

weib.b.sd <- exp(summary(weibull.est)$table[4]) # = scale

weib.u.sd <- summary(weibull.est)$table[3] # = intercept

# compute time estimates for surv.grid

intervalcens <- qsurvreg(1 - surv.grid, weib.u, weib.b, distr = "weibull")

#output

intervalcens

}

SurvStepUncens

> ## =============================================================================

> ## this script contains a function

> ## that for specific timepoints (time.grid) calculates the

> ## nonparametric (Kaplan-Meier or Turnbull) survival estimates
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> ## =============================================================================

>

>

> SurvStepUncens <- function (time.grid, event.time, CI = FALSE) {

# =============================================================================

# with uncensored data:

# calculate nonparametric (Kaplan-Meier) estimates of survival function S(t)

# and their confidence interval boundaries at specific timepoints time.grid

# and save in vectors

# Args:

# time.grid: vector of timepoints that should be evaluated

# event.time: vector of event times of one dataset

# all events have to be observed, no censoring allowed

# CI: logical value indicating if 95% confidence interval boundaries are added

# to the result and result is output in a list instead of a vector

# Returns:

# if confint = FALSE :

# vector of survival estimates for each timepoint in time.grid

# if confint = TRUE :

# list of three vectors: uncens, uncens.CI.low, uncens.CI.up:

# vectors of survival estimates and their 95% confidence interval boundaries

# for each timepoint in time.grid

# =============================================================================

# initialize result vectors

uncens <- rep(NA, length(time.grid))

uncens.CI.low <- rep(NA, length(time.grid))

uncens.CI.up <- rep(NA, length(time.grid))

# calculate estimate

survfit.est <- survfit(Surv(event.time, rep(1, length(event.time))) ~ 1,

conf.type = "log-log")

# extract numbers from summary

step.time <- summary(survfit.est)$time

surv.step <- summary(survfit.est)$surv

surv.step.CI.low <- summary(survfit.est)$lower

surv.step.CI.up <- summary(survfit.est)$upper

# and add first line: time = 0, survival = 1

step.time <- c(0,step.time)

surv.step <- c(1,surv.step)

surv.step.CI.low <- c(1,surv.step.CI.low)

surv.step.CI.up <- c(1,surv.step.CI.up)

# expand estimates to grid

uncens <- surv.step [findInterval(time.grid, step.time)]

uncens.CI.low <- surv.step.CI.low[findInterval(time.grid, step.time)]

uncens.CI.up <- surv.step.CI.up [findInterval(time.grid, step.time)]

# decide between the two output versions

if (CI == TRUE) {output <- list(uncens, uncens.CI.low, uncens.CI.up)

names(output) <- c("uncens", "uncens.CI.low", "uncens.CI.up")

} else {output <- uncens}

output

}

SurvStepRightcens

> ## =============================================================================

> ## this script contains a function

> ## that for specific timepoints (time.grid) calculates the

> ## nonparametric (Kaplan-Meier or Turnbull) survival estimates

> ## =============================================================================

>

>
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> SurvStepRightcens <- function (time.grid, rightcens.time, rightcens.ind, CI = FALSE) {

# =============================================================================

# with rightcensored data:

# calculate nonparametric (Kaplan-Meier) estimates of survival function S(t)

# and their confidence interval boundaries at specific timepoints time.grid

# and save in vectors

# Args:

# time.grid: vector of timepoints that should be evaluated

# rightcens.time: vector of event and right-censoring times of one dataset

# rightcens.ind: vector of censoring indicator (1 = event time, 0 = censoring time)

# (right-censoring means: event has happened any time after the censoring time)

# CI: logical value indicating if 95% confidence interval boundaries are added

# to the result and result is output in a list instead of a vector

# Returns:

# if confint = FALSE :

# vector of survival estimates for each timepoint in time.grid

# if confint = TRUE :

# list of three vectors: uncens, uncens.CI.low, uncens.CI.up:

# vectors of survival estimates and their 95% confidence interval boundaries

# for each timepoint in time.grid

# =============================================================================

# initialize result vectors

rightcens <- rep(NA, length(time.grid))

rightcens.CI.low <- rep(NA, length(time.grid))

rightcens.CI.up <- rep(NA, length(time.grid))

# calculate estimate

survfit.est <- survfit(Surv(rightcens.time, rightcens.ind) ~ 1, conf.type = "log-log")

# extract numbers from summary

step.time <- summary(survfit.est)$time

surv.step <- summary(survfit.est)$surv

surv.step.CI.low <- summary(survfit.est)$lower

surv.step.CI.up <- summary(survfit.est)$upper

# and add first line: time = 0, survival = 1

step.time <- c(0,step.time, max(rightcens.time))

surv.step <- c(1,surv.step, 0)

surv.step.CI.low <- c(1,surv.step.CI.low, 0)

surv.step.CI.up <- c(1,surv.step.CI.up, 0)

cbind(step.time, surv.step, surv.step.CI.low, surv.step.CI.up)

# expand estimates to grid

rightcens <- surv.step [findInterval(time.grid, step.time)]

rightcens.CI.low <- surv.step.CI.low[findInterval(time.grid, step.time)]

rightcens.CI.up <- surv.step.CI.up [findInterval(time.grid, step.time)]

# put NA to values beyond time.max, where rightcens == 0, because is undefined

for (i in 1:length(time.grid)) {

if (rightcens[i] == 0) {

rightcens[i] <- NA

rightcens.CI.low[i] <- NA

rightcens.CI.up[i] <- NA}

}

# decide between the two output versions

if (CI == TRUE) {output <- list(rightcens, rightcens.CI.low, rightcens.CI.up)

names(output) <- c("rightcens", "rightcens.CI.low", "rightcens.CI.up")

} else {output <- rightcens}

output

}
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SurvStepIntervalcens

> ## =============================================================================

> ## this script contains a function

> ## that for specific timepoints (time.grid) calculates the

> ## nonparametric (Kaplan-Meier or Turnbull) survival estimates

> ## =============================================================================

>

>

> SurvStepIntervalcens <- function (time.grid, left.time, right.time,

approxim = "linear", tol = 10^-5) {

# =============================================================================

# with intervalcensored data:

# calculate nonparametric (Turnbull) estimates of survival function S(t)

# at specific timepoints time.grid and save in vectors

# In some time ranges the survival ML-estimate is ambigous,

# it can be any value between lower and upper boundaries.

# The user can choose the output: either one boundary value or

# a value assuming linear change between the unique border values

# Args:

# time.grid: vector of timepoints that should be evaluated

# left.time: vector of left boundary of interval-censored times of one dataset

# right.time: vector of right boundary of interval-censored times of one dataset

# approxim: define how non-unique estimates should be handled (see below)

# tol: tolerance,

# algorithm terminates when difference in MLE between two steps is below tolerance

# Returns:

# depending on handling of non-unique estimates:

# if approxim = "linear" :

# vector of survival estimates with linear change in ambigous areas, followed by

# the numerical value corresponding to the logical indicator of convergence

# of the NPMLE algorithm (0 = FALSE, 1 = TRUE)

# if approxim = "lower" :

# vector of survival estimates at lower boundary followed by the same convergence indicator

# if approxim = "upper" :

# vector of survival estimates at upper boundary followed by the same convergence indicator

# if approxim = "all" :

# list of the three vectors above,

# named intervalcens.linear, intervalcens.lower, intervalcens.upper

# =============================================================================

# check approxim entry

approxim <- match.arg(approxim, c("lower", "upper", "linear", "all"))

# initialize result vectors

intervalcens.lower <- rep(NA, length(time.grid))

intervalcens.upper <- rep(NA, length(time.grid))

intervalcens.linear <- rep(NA, length(time.grid))

# save censored values as data, add dummy variable (0,1) as second variable

# (because needed input format is observation rectangles)

data <- cbind(left.time = left.time,

right.time = right.time,

dum.left = rep(0, length(left.time)),

dum.right = rep(1, length(left.time)))

data <- as.matrix(data)

# define boundaries (0 = open, 1 = closed)

# (have to be 1,1 for exact values, and are set to 0,1 for intervals, because mathematically easier)

bound1 <- matrix(rep(NA, times = 2 * length(left.time)), ncol = 2)

for (i in 1:length(left.time)) {

if (left.time[i] == right.time[i]) {bound1[i, ] <- c(1, 1)} else {

bound1[i, ] <- c(0, 1)}

}

bound2 <- matrix(c(rep(0, times = length(left.time)),

rep(1, times = length(left.time))), ncol = 2)
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bound <- cbind(bound1, bound2)

# =============================================================================

# calculate NPMLE

# =============================================================================

MLEcens.est <- computeMLE(data, bound, tol = tol)

# save convergence indicator

converge <- MLEcens.est$conv

# extract numbers from output

step.lower.time <- MLEcens.est$rects[, 1]

step.upper.time <- MLEcens.est$rects[, 2]

surv.step <- 1 - cumsum(MLEcens.est$p)

# and add first line: time = 0, survival = 1

step.lower.time <- c(0,step.lower.time)

step.upper.time <- c(0,step.upper.time)

surv.step <- c(1,surv.step)

# display in a dataframe

cbind(step.lower.time, step.upper.time, surv.step)

# =============================================================================

# choose estimates for lower and upper bounds

# =============================================================================

intervalcens.lower <- surv.step[findInterval(time.grid, step.lower.time)]

intervalcens.upper <- surv.step[findInterval(time.grid, step.upper.time)]

# =============================================================================

# calculate linear change values:

# =============================================================================

if (approxim == "linear" | approxim == "all") {

# no linear approximation possible at uppermost timestep: insert NA

step.upper.time.lm <- ifelse(step.upper.time == Inf, NA, step.upper.time)

# initialize model vector

linear.model <- list()

# create linear models for ambigous survival-time areas

for (j in 2:length(step.lower.time)) {

linear.model[[j]] <- lm(surv.step ~ time.step,

data = data.frame( time.step = c(step.lower.time[j], step.upper.time.lm[j]),

surv.step = surv.step[(j - 1):j]))

# some models have coeff NA:

# - the ones before the last model are at exact timesteps and not needed later

# - the last model is needed and returns NA for values above uppermost timestep

}

# split time.grid values to apply suitable approximation procedure

for (i in 1:length(time.grid)) {

# write down unique survival values

if (intervalcens.lower[i] == intervalcens.upper[i])

{intervalcens.linear[i] <- intervalcens.lower[i]} else {

# find suitable model for time.grid value

for (j in 2:length(step.lower.time)) {

if (time.grid[i] >= step.lower.time[j] & time.grid[i] < step.upper.time[j])

{intervalcens.linear[i] <- suppressWarnings(predict(linear.model[[j]],

newdata = data.frame(time.step = time.grid[i]),

type = "response"))}

}

# suppressWarnings is necessary because else warning

# "prediction from a rank-deficient fit may be misleading" is printed

# this warning is not valid here because

# we only predict inside the suitable time interval

# put NA to values where intervalcens.lower < 10^-3

if (intervalcens.lower[i] < 10^-3) {

intervalcens.linear[i] <- NA}

} } }
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# =============================================================================

# add convergence indicator to intervalcens vectors

# =============================================================================

intervalcens.lower <- c(intervalcens.lower, converge)

intervalcens.upper <- c(intervalcens.upper, converge)

intervalcens.linear <- c(intervalcens.linear, converge)

# =============================================================================

# choose appropriate output:

# =============================================================================

if (approxim == "lower") {output <- intervalcens.lower}

if (approxim == "upper") {output <- intervalcens.upper}

if (approxim == "linear") {output <- intervalcens.linear}

if (approxim == "all") {output <- list(intervalcens.lower = intervalcens.lower,

intervalcens.upper = intervalcens.upper,

intervalcens.linear = intervalcens.linear)}

output

}

SurvWeibUncens

> ## =============================================================================

> ## this script contains a function

> ## that for specific timepoints (time.grid) calculates the

> ## parametric Weibull survival estimates

> ## =============================================================================

>

>

> SurvWeibUncens <- function (time.grid, event.time) {

# =============================================================================

# with uncensored data:

# calculate parametric Weibull estimates of survival function S(t)

# at specific timepoints time.grid

# and save in vectors

# Args:

# time.grid: vector of timepoints that should be evaluated

# event.time: vector of event times of one dataset

# all events have to be observed, no censoring allowed

# Returns:

# vector of survival estimates for each timepoint in time.grid

# =============================================================================

# initialize result vector

uncens <- rep(NA, length(time.grid))

# calculate estimate

weibull.est <- survreg(Surv(event.time, rep(1, length(event.time))) ~ 1,

dist = "weibull")

summary(weibull.est)

summary(weibull.est)$table

vcov(weibull.est)

#extract parameters from summary

weib.b <- exp(summary(weibull.est)$table[2]) # = scale

weib.u <- summary(weibull.est)$table[1] # = intercept

weib.b.sd <- exp(summary(weibull.est)$table[4]) # = scale

weib.u.sd <- summary(weibull.est)$table[3] # = intercept

# compute surv estimates for time.grid

uncens <- 1 - psurvreg(time.grid, weib.u, weib.b, distr = "weibull")
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#output

uncens

}

SurvWeibRightcens

> ## =============================================================================

> ## this script contains a function

> ## that for specific timepoints (time.grid) calculates the

> ## parametric Weibull survival estimates

> ## =============================================================================

>

>

> SurvWeibRightcens <- function (time.grid, rightcens.time, rightcens.ind) {

# =============================================================================

# with rightcensored data:

# calculate parametric Weibull estimates of survival function S(t)

# at specific timepoints time.grid

# and save in vector

# Args:

# time.grid: vector of timepoints that should be evaluated

# rightcens.time: vector of event and right-censoring times of one dataset

# rightcens.ind: vector of censoring indicator (1 = event time, 0 = censoring time)

# (right-censoring means: event has happened any time after the censoring time)

# Returns:

# vector of survival estimates for each timepoint in time.grid

# =============================================================================

# initialize result vector

rightcens <- rep(NA, length(time.grid))

# calculate estimate

weibull.est <- survreg(Surv(rightcens.time, rightcens.ind) ~ 1,

dist = "weibull")

summary(weibull.est)

summary(weibull.est)$table

vcov(weibull.est)

#extract parameters from summary

weib.b <- exp(summary(weibull.est)$table[2]) # = scale

weib.u <- summary(weibull.est)$table[1] # = intercept

weib.b.sd <- exp(summary(weibull.est)$table[4]) # = scale

weib.u.sd <- summary(weibull.est)$table[3] # = intercept

# compute surv estimates for time.grid

rightcens <- 1 - psurvreg(time.grid, weib.u, weib.b, distr = "weibull")

#output

rightcens

}

SurvWeibIntervalcens

> ## =============================================================================

> ## this script contains a function

> ## that for specific timepoints (time.grid) calculates the

> ## parametric Weibull survival estimates

> ## =============================================================================

>

>

> SurvWeibIntervalcens <- function (time.grid, left.time, right.time) {

# =============================================================================
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# with intervalcensored data:

# calculate parametric Weibull estimates of survival function S(t)

# at specific timepoints time.grid

# and save in vector

# Args:

# time.grid: vector of timepoints that should be evaluated

# left.time: vector of left boundary of interval-censored times of one dataset

# right.time: vector of right boundary of interval-censored times of one dataset

# Returns:

# vector of survival estimates for each timepoint in time.grid

# =============================================================================

# initialize result vector

intervalcens <- rep(NA, length(time.grid))

# construct additional vector with indicator for interval- and right-censoring

# (right-censored = 0, interval-censored = 3, not censored = 1)

cens.ind <- rep(NA, length(left.time))

cens.ind <- ifelse(!(right.time == Inf) & !(left.time == right.time), 3, 1)

cens.ind <- ifelse(right.time == Inf, 0, cens.ind)

# calculate estimate

weibull.est <- survreg(Surv(left.time, right.time, cens.ind, type = "interval") ~ 1,

dist = "weibull")

summary(weibull.est)

summary(weibull.est)$table

vcov(weibull.est)

# extract parameters

weib.b <- exp(summary(weibull.est)$table[2]) # = scale

weib.u <- summary(weibull.est)$table[1] # = intercept

weib.b.sd <- exp(summary(weibull.est)$table[4]) # = scale

weib.u.sd <- summary(weibull.est)$table[3] # = intercept

# compute surv estimates for grid

intervalcens <- 1 - psurvreg(time.grid, weib.u, weib.b, distr = "weibull")

# output

intervalcens

}

8.2.3 Estimation of Log-rank test p-values: LogRankTest... func-
tions

Three functions are defined, for uncensored (complete), rightcensored and intervalcensored
data. For uncensored data the rightcensoring methods are used.

LogRankTestUncens

> ## =============================================================================

> ## this script contains a function

> ## that for two study arms calculates the

> ## logrank test statistic and its p-value of equal survival curves

> ## =============================================================================

>

>

> LogRankTestUncens <- function (event.time1, event.time2, stat = FALSE) {

# =============================================================================

# with uncensored data:

# calculate logrank test statistic

# and save
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# Args:

# event.time1: vector of event times of the first study arm

# event.time2: vector of event times of the second study arm

# stat: logical value indicating if chisquare statistic values are added

# to the result and result is output in a list instead of a vector

# Returns:

# if stat = FALSE :

# p-value of the logrank test

# if stat = TRUE :

# list of two values: p-value, chisquare statistic:

# logrank test p-value and its chisquare statistic

# =============================================================================

# form dataset from vectors

data <- data.frame(event.time = c(event.time1, event.time2),

treatment = c(rep(0, times = length(event.time1)),

rep(1, times = length(event.time2))))

data$treatment <- as.factor(data$treatment)

# calculate estimate

survdiff.mod <- survdiff(Surv(data$event.time, rep(1, nrow(data))) ~ treatment,

data = data, rho = 0)

# extract numbers from summary

statistic <- survdiff.mod$chisq

p.value <- 1 - pchisq(survdiff.mod$chisq, df = 1)

# put estimates to vector

uncens <- p.value

uncens.stat <- statistic

# decide between the two output versions

if (stat == TRUE) {output <- list(uncens, uncens.stat)

names(output) <- c("uncens", "uncens.stat")

} else {output <- uncens}

output

}

LogRankTestRightcens

> ## =============================================================================

> ## this script contains a function

> ## that for two study arms calculates the

> ## logrank test statistic and its p-value of equal survival curves

> ## =============================================================================

>

>

> LogRankTestRightcens <- function (rightcens.time1, rightcens.time2,

rightcens.ind1, rightcens.ind2, stat = FALSE) {

# =============================================================================

# with rightcensored data:

# calculate logrank test statistic

# and save

# Args:

# rightcens.time1: vector of rightcensored event times of the first study arm

# rightcens.time2: vector of rightcensored event times of the second study arm

# rightcens.ind1: vector of rightcensoring event time indicators of the first study arm

# (0 = censored, 1 = event)

# rightcens.ind2: vector of the same indicators of the second study arm

# stat: logical value indicating if chisquare statistic values are added

# to the result and result is output in a list instead of a vector

# Returns:

# if stat = FALSE :

# p-value of the logrank test

# if stat = TRUE :
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# list of two values: p-value, chisquare statistic:

# logrank test p-value and its chisquare statistic

# =============================================================================

# check length of vectors:

if (length(rightcens.time1) != length(rightcens.ind1))

{warning("rightcens.time1 and rightcens.ind1 vectors do not have the same size")}

if (length(rightcens.time2) != length(rightcens.ind2))

{warning("rightcens.time2 and rightcens.ind2 vectors do not have the same size")}

# form dataset from vectors

data <- data.frame(rightcens.time = c(rightcens.time1, rightcens.time2),

rightcens.ind = c(rightcens.ind1, rightcens.ind2),

treatment = c(rep(0, times = length(rightcens.time1)),

rep(1, times = length(rightcens.time2))))

data$treatment <- as.factor(data$treatment)

# calculate estimate

survdiff.mod <- survdiff(Surv(rightcens.time, rightcens.ind) ~ treatment,

data = data, rho = 0)

# extract numbers from summary

statistic <- survdiff.mod$chisq

p.value <- 1 - pchisq(survdiff.mod$chisq, df = 1)

# put estimates to vector

rightcens <- p.value

rightcens.stat <- statistic

# decide between the two output versions

if (stat == TRUE) {output <- list(rightcens, rightcens.stat)

names(output) <- c("rightcens", "rightcens.stat")

} else {output <- rightcens}

output

}

>

LogRankTestIntervalcens

> ## =============================================================================

> ## this script contains a function

> ## that for two study arms calculates the

> ## logrank test statistic and its p-value of equal survival curves

> ## =============================================================================

>

>

> LogRankTestIntervalcens <- function (left.time1, left.time2,

right.time1, right.time2,

maxit = 10000, stat = FALSE, type = "pFinkelstein") {

# =============================================================================

# with intervalcensored data:

# calculate logrank test statistic (three variants)

# and save

# Args:

# left.time1: vector of left borders of intervalcensored event times of the first study arm

# left.time2: vector of left borders of the second study arm

# right.time1: vector of right borders of intervalcensored event times of the first study arm

# right.time2: vector of right borders of the second study arm

# maxit: the maximum of iterations used in the icfit NPMLE algorithm

# stat: logical value indicating if chisquare statistic values are added

# to the result and result is output in a list instead of a vector

# type: one of four: "pFinkelstein", "pSun", "sFinkelstein" or "sSun"

# these are test statistics described in two articles:

# Finkelstein (1986) and Sun (1996), in two forms: permutation or score

# see documentation of ictest function for more details

# Returns:
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# if stat = FALSE :

# a vector with two entries: the p-value of the logrank test and

# the numerical value corresponding to the

# logical indicator of convergence of the NPMLE algorithm

# (0 = FALSE, 1 = TRUE)

# if stat = TRUE :

# list: first element: vector of p-value and convergence indicator, (of logrank test)

# second element: numeric of chisquare or z statistic:

# (chisquare for score form or z for permutation form of statistic)

# =============================================================================

# check length of vectors:

if (length(left.time1) != length(right.time1))

{warning("left.time1 and right.time1 vectors do not have the same size")}

if (length(left.time2) != length(right.time2))

{warning("left.time2 and right.time2 vectors do not have the same size")}

# check types

type <- match.arg(type, c("pFinkelstein", "pSun", "sFinkelstein", "sSun"))

# form dataset from vectors

data <- data.frame(left.time = c(left.time1, left.time2),

right.time = c(right.time1, right.time2),

treatment = c(rep(0, times = length(right.time1)),

rep(1, times = length(right.time2))))

data$treatment <- as.factor(data$treatment)

# calculate estimate

if (type == "pFinkelstein")

{icfit.mod <- icfit(Surv(left.time, right.time, type = "interval2") ~ 1, data = data,

control = icfitControl(maxit = maxit))

ictest.res <- ictest(Surv(left.time, right.time, type = "interval2") ~ treatment,

data = data, scores = "logrank2",

alternative = "two.sided", icFIT = icfit.mod)}

if (type == "pSun")

{icfit.mod <- icfit(Surv(left.time, right.time, type = "interval2") ~ 1, data = data,

control = icfitControl(maxit = maxit))

ictest.res <- ictest(Surv(left.time, right.time, type = "interval2") ~ treatment,

data = data, scores = "logrank1",

alternative = "two.sided", icFIT = icfit.mod)}

if (type == "sFinkelstein")

{icfit.mod <- icfit(Surv(left.time, right.time, type = "interval2") ~ 1, data = data,

control = icfitControl(maxit = maxit))

ictest.res <- ictest(Surv(left.time, right.time, type = "interval2") ~ treatment,

data = data, scores = "logrank2", method = "scoretest",

alternative = "two.sided", icFIT = icfit.mod)}

if (type == "sSun")

{icfit.mod <- icfit(Surv(left.time, right.time, type = "interval2") ~ 1, data = data,

control = icfitControl(maxit = maxit))

ictest.res <- ictest(Surv(left.time, right.time, type = "interval2") ~ treatment,

data = data, scores = "logrank1", method = "scoretest",

alternative = "two.sided", icFIT = icfit.mod)}

# extract numbers from summary

statistic <- ictest.res$statistic

p.value <- ictest.res$p.value

converge <- ictest.res$fit$converge

# put estimates to vector

intervalcens <- c(p.value, converge)

intervalcens.stat <- statistic

# decide between the two output versions

if (stat == TRUE) {output <- list(intervalcens, intervalcens.stat)
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names(output) <- c("intervalcens", "intervalcens.stat")

} else {output <- intervalcens}

output

}

>

8.2.4 Estimation of proportional hazard hazard ratios: HazRat...

functions

Three functions are defined, for uncensored (complete), rightcensored and intervalcensored
data. For uncensored data the rightcensoring methods are used. For intervalcensored data
one can choose between two types of estimation.

HazRatUncens

> ## =============================================================================

> ## this script contains a function

> ## that for two study arms calculates the

> ## hazard ratio estimates determined by the Cox model

> ## =============================================================================

>

>

> HazRatUncens <- function (event.time1, event.time2, CI = FALSE) {

# =============================================================================

# with uncensored data:

# calculate hazard ratio estimates by Cox regression

# and save

# Args:

# event.time1: vector of event times of the first study arm

# event.time2: vector of event times of the second study arm

# CI: logical value indicating if 95% confidence interval boundaries are added

# to the result and result is output in a list instead of a vector

# Returns:

# if confint = FALSE :

# hazard ratio estimate (second study arm / first study arm)

# if confint = TRUE :

# list of three values: uncens, uncens.CI.low, uncens.CI.up:

# hazard ratio estimate and its 95% confidence interval boundaries

# =============================================================================

# form dataset from vectors

data <- data.frame(event.time = c(event.time1, event.time2),

treatment = c(rep(0, times = length(event.time1)),

rep(1, times = length(event.time2))))

data$treatment <- as.factor(data$treatment)

# calculate estimate

coxph.mod <- coxph(Surv(event.time, rep(1, nrow(data))) ~ treatment, data = data)

# extract numbers from summary

hazrat.est <- summary(coxph.mod)$coef[2]

hazrat.CI.low <- summary(coxph.mod)$conf.int[3]

hazrat.CI.up <- summary(coxph.mod)$conf.int[4]

# put estimates to vector

uncens <- hazrat.est

uncens.CI.low <- hazrat.CI.low

uncens.CI.up <- hazrat.CI.up

# decide between the two output versions

if (CI == TRUE) {output <- list(uncens, uncens.CI.low, uncens.CI.up)

names(output) <- c("uncens", "uncens.CI.low", "uncens.CI.up")
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} else {output <- uncens}

output

}

>

HazRatRightcens

> ## =============================================================================

> ## this script contains a function

> ## that for two study arms calculates the

> ## hazard ratio estimates determined by the Cox model

> ## =============================================================================

>

>

> HazRatRightcens <- function (rightcens.time1, rightcens.time2,

rightcens.ind1, rightcens.ind2, CI = FALSE) {

# =============================================================================

# with rightcensored data:

# calculate hazard ratio estimates by Cox regression

# and save

# Args:

# rightcens.time1: vector of rightcensored event times of the first study arm

# rightcens.time2: vector of rightcensored event times of the second study arm

# rightcens.ind1: vector of rightcensoring event time indicators of the first study arm

# (0 = censored, 1 = event)

# rightcens.ind2: vector of the same indicators of the second study arm

# CI: logical value indicating if 95% confidence interval boundaries are added

# to the result and result is output in a list instead of a vector

# Returns:

# if confint = FALSE :

# hazard ratio estimate (second study arm / first study arm)

# if confint = TRUE :

# list of three values: rightcens, rightcens.CI.low, rightcens.CI.up:

# hazard ratio estimate and its 95% confidence interval boundaries

# =============================================================================

# check length of vectors:

if (length(rightcens.time1) != length(rightcens.ind1))

{warning("rightcens.time1 and rightcens.ind1 vectors do not have the same size")}

if (length(rightcens.time2) != length(rightcens.ind2))

{warning("rightcens.time2 and rightcens.ind2 vectors do not have the same size")}

# form dataset from vectors

data <- data.frame(rightcens.time = c(rightcens.time1, rightcens.time2),

rightcens.ind = c(rightcens.ind1, rightcens.ind2),

treatment = c(rep(0, times = length(rightcens.time1)),

rep(1, times = length(rightcens.time2))))

data$treatment <- as.factor(data$treatment)

# calculate estimate

coxph.mod <- coxph(Surv(rightcens.time, rightcens.ind) ~ treatment, data = data)

# extract numbers from summary

hazrat.est <- summary(coxph.mod)$coef[2]

hazrat.CI.low <- summary(coxph.mod)$conf.int[3]

hazrat.CI.up <- summary(coxph.mod)$conf.int[4]

# put estimates to vector

rightcens <- hazrat.est

rightcens.CI.low <- hazrat.CI.low

rightcens.CI.up <- hazrat.CI.up

# decide between the two output versions

if (CI == TRUE) {output <- list(rightcens, rightcens.CI.low, rightcens.CI.up)

names(output) <- c("rightcens", "rightcens.CI.low", "rightcens.CI.up")

} else {output <- rightcens}
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output

}

>

>

HazRatIntervalcens

> ## =============================================================================

> ## this script contains a function

> ## that for two study arms calculates the

> ## hazard ratio estimates determined by a proportional hazard model

> ## =============================================================================

>

>

> HazRatIntervalcens <- function (left.time1, left.time2,

right.time1, right.time2, CI = FALSE, type = "intcox",

Pan.numrep = rep(20,50)) {

# =============================================================================

# with intervalcensored data:

# calculate hazard ratio estimates by Cox regression

# and save

# Args:

# left.time1: vector of left borders of intervalcensored event times of the first study arm

# left.time2: vector of left borders of the second study arm

# right.time1: vector of right borders of intervalcensored event times of the first study arm

# right.time2: vector of right borders of the second study arm

# CI: logical value indicating if 95% confidence interval boundaries are added

# to the result and result is output in a list instead of a vector

# type: one of two: "intcox" or "Pan", intcox is default

# these are estimation methods described in the following articles:

# intcox: Henschel (2009), Pan: Goggins (1998) and Pan (2000)

# many thanks to David Dejardin who coded the second one

#Pan.numrep: vector of the form rep(number, repetitions), filled with two numbers:

# - number: number of datasets generated for estimation

# - repetitions: number of iteration steps

# Returns:

# if confint = FALSE :

# hazard ratio estimate (second study arm / first study arm)

# if confint = TRUE :

# list of three values: intervalcens, intervalcens.CI.low, intervalcens.CI.up:

# hazard ratio estimate and its 95% confidence interval boundaries

# =============================================================================

# check length of vectors:

if (length(left.time1) != length(right.time1))

{warning("left.time1 and right.time1 vectors do not have the same size")}

if (length(left.time2) != length(right.time2))

{warning("left.time2 and right.time2 vectors do not have the same size")}

# check types

type <- match.arg(type, c("intcox", "Pan"))

# =============================================================================

# dataset creation

# =============================================================================

# form dataset from vectors

data <- data.frame(left.time = c(left.time1, left.time2),

right.time = c(right.time1, right.time2),

treatment = c(rep(0, times = length(right.time1)),

rep(1, times = length(right.time2))))

data$treatment <- as.factor(data$treatment)

# reconfigure dataset in two ways:

# - introduce small interval for exact (= death) events
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# - replace "Inf" by "NA" for right-censored events

data[data$right.time == data$left.time, "left.time"] <- data[data$right.time == data$left.time, "left.time"] - 0.1

data[data$right.time - 0.1 == data$left.time, "right.time"] <- data[data$right.time - 0.1 == data$left.time, "right.time"] + 0.1

data[data$right.time == "Inf", "right.time"] <- NA

# =============================================================================

# intcox estimation

# =============================================================================

if (type == "intcox") {

# calculate estimate

intcox.mod <- intcox(Surv(left.time, right.time, type = "interval2") ~ treatment,

data = data)

# output warning if algorithm does not converge

if (intcox.mod$termination != 1) {hazrat.est <- NA

warning("The algorithm did not converge.")}

# extract numbers from summary

hazrat.est <- summary(intcox.mod)$coef[2]

hazrat.CI.low <- NA

hazrat.CI.up <- NA

# put estimates to vector

intervalcens <- hazrat.est

intervalcens.CI.low <- hazrat.CI.low

intervalcens.CI.up <- hazrat.CI.up }

# =============================================================================

# Pan estimation

# =============================================================================

if (type == "Pan") {

# choose correct ratio (treated/control):

data$treat.ratio <- as.numeric(data$treatment)

# add variables T1, T2, cov

data$T1 <- data$left.time

data$T2 <- data$right.time

data$cov <- data$treat.ratio

# set iteration parameters

nmcint <- Pan.numrep

crit <- 0.00001

rmeanl <- 40

# =============================================================================

#start Pan function

iterda <- length(nmcint)

T1_ <- data$T1

T2_ <- data$T2

C_ <- is.finite(data$T2)

cov <- data$cov

ldat <- length(T1_)

#### initial step

# uniform generation of T

betalist <- NULL

tempL0 <- NULL

for ( imc in c(1:nmcint[1]) ) {

T_ <- T1_

T_[C_]<- runif(n=sum(C_), min= T1_[C_], max=T2_[C_])

pc <- coxph( Surv(T_ , C_) ~ cov , method= "efron")

betalist <- c(betalist, pc$coefficients )

bh <- basehaz(pc, centered = FALSE)

tempL0 <- rbind( tempL0, matrix(c(rep( imc,length(bh$time)), bh$time, bh$hazard), ncol = 3))

colnames(tempL0) <- c("mcint", "time", "val")

}
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# define chazval and L0list functions

chazval <- function(timech, L0v.time, L0v.val) {

L0vtime <- c(0, L0v.time)

L0val <- c(0, L0v.val)

tmpd.time <- rep(timech, each = length(L0vtime))

tmpd.valtime <- rep(L0vtime, length(timech))

tmpd.val <- rep(L0val, length(timech))

tmpd.time2 <- tmpd.time[tmpd.time >= tmpd.valtime]

tmpd.val2 <- tmpd.val[tmpd.time >= tmpd.valtime]

reschval <- tapply(tmpd.val2, tmpd.time2, FUN = max, simplify = TRUE)

reschval[timech > max(L0vtime)] <- NA

return(reschval)

}

L0list <- function(L0l) {

tm_ <- sort(unique( L0l[, "time"]))

lss_ <- unique(L0l[, "mcint"])

L0r <- NULL

for (ils in lss_) {

timils <- L0l[, "time"][L0l[, "mcint"] == ils]

valils <- L0l[, "val"][L0l[, "mcint"] == ils]

L0r <- cbind(L0r, chazval(tm_, timils, valils))

}

result <- matrix(c(tm_, cummax(apply(L0r, 1, mean, na.rm = TRUE))), ncol = 2)

colnames(result) <- c("time", "val")

return(result)

}

curL0 <- L0list(tempL0)

curS <- matrix(c(curL0[, "time"], exp(-curL0[, "val"])), ncol = 2)

colnames(curS) <- c("time", "val")

curbeta <- mean(betalist )

tempL <- NULL

beta <- NULL

rbeta <- NULL

LL <- NULL

#### DA iteration

dares <- NULL

for (idagm in c(1: iterda)) {

curmcint <- nmcint[idagm]

matmc <- matrix(nrow = ldat, ncol = curmcint, data = 0)

for (idata in c(1:ldat)) {

cjd <- NULL

gent <- NULL

if (C_[idata] == 1) { #2

tvl <- c(1,curS[, "val"]^exp( data$cov[idata] * curbeta))

tpvl <- c(1,head(tvl, n=-1))

covS.time <- c(0,curS[, "time"])

covS.inc <- tpvl - tvl

subcovS.time <- covS.time[covS.time > T1_[idata] & covS.time <= T2_[idata]]

subcovS.inc <- covS.inc[covS.time > T1_[idata] & covS.time <= T2_[idata]]

cinc <- cumsum(subcovS.inc / sum(subcovS.inc))

lcinc <- length(cinc)

cmpmat <- matrix(runif(n = curmcint), nrow = curmcint, ncol = lcinc)

ff <- function( m_, inc_, t_) {

t_[which(m_ <= inc_ )[1]] }

matmc[idata, ] <- apply(cmpmat, MARGIN=1, ff, inc_ = cinc, t_ = subcovS.time)

} else {

matmc[idata, ] <- T1_[idata]

}

# if (idata==200) {print( matmc) ;stop()}

}

betalist <- NULL
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varlist <- NULL

tempL0 <- NULL

for ( imc in 1:curmcint) {

pc <- coxph(Surv(matmc[, imc], C_) ~ cov, method = "efron")

betalist <- c(betalist, pc$coefficients )

varlist <- c(varlist, pc$var )

bh <- basehaz(pc, centered = FALSE)

tempL0 <- rbind(tempL0, matrix(c(rep(imc, length(bh$time)), bh$time, bh$hazard), ncol = 3))

colnames(tempL0) <- c("mcint", "time", "val")

lastitdata <- list(lstbetalist = betalist, lstL0 = tempL0, lstvar = varlist, m = curmcint)

}

curL0 <- L0list(tempL0)

dares <- rbind(dares, cbind(iter = rep(idagm, length(curL0[, "time"])), curL0))

curS <- matrix(c(curL0[, "time"], exp(-curL0[, "val"])), ncol = 2)

colnames(curS) <- c("time", "val")

curS <- data.frame( time= curL0[, "time"], val= exp(-curL0[, "val"]))

curbeta <- mean(betalist )

beta <- c(beta, curbeta)

varbeta <- mean(lastitdata$lstvar) + (1+1/lastitdata$m)* var(lastitdata$lstbetalist)

names(beta) <- NULL

rbeta <- c(rbeta, mean(tail(beta,n= rmeanl )))

diffs <- ifelse(length(beta) > rmeanl, abs( tail( rbeta, n=1) - tail( rbeta, n=2)[1]),1)

if (diffs < crit) { break }

}

res <- list( P = data.frame(curS[, "time"], 1 - curS[, "val"]), S = curS, iter = dares,

betalist = beta, beta = tail(beta, n = 1), varbeta = varbeta, lastitdata = lastitdata)

}

# =============================================================================

intervalcens <- res$beta

intervalcens.CI.low <- res$beta - qnorm(0.975) * res$varbeta ^ 0.5

intervalcens.CI.up <- res$beta + qnorm(0.975) * res$varbeta ^ 0.5

# decide between the two output versions

if (CI == TRUE) {output <- list(intervalcens, intervalcens.CI.low, intervalcens.CI.up)

names(output) <- c("intervalcens", "intervalcens.CI.low", "intervalcens.CI.up")

} else {output <- intervalcens}

output

}

>

8.3 Additional results of survival function estimation

Results for scenarios whose RMSE and bias values are similar to Scenario 1 are not
included in the Results Section 4.1. For the sake of completeness they are added here.
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Figure 8.1: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 2 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they are not completely reliable.
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Figure 8.2: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 3 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they are not completely reliable.
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Figure 8.3: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 4 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they are not completely reliable.
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b) Survival quantiles 0.8, 0.65, 0.5
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f) Survival quantiles 0.8, 0.65, 0.5
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Figure 8.4: RMSE (a + b), RMSE ratio (c + d) and bias (e + f) estimates of 1000 datasets
of Scenario 11 in colors. The estimates at timepoints 500, 1000 and 1500 days are shown in
the left plots (a, c + e) and the survival quantiles 0.8, 0.65 and 0.5 in the right plots (b, d +
f). The values are colorcoded as indicated in the legends. We differentiate both study arms
and estimation variants on the x-axis, both censoring types and three timepoints or quantiles
on the y-axis of the plots. Sometimes the NPMLE (step) functions were not defined at the
readout quantile in all datasets. Then the number of datasets with a valid estimate is displayed
in brackets below the RMSE value. Estimates from less than 900 datasets do not get the color
coding because they are not completely reliable.
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