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What are singular perturbations?

� example:
−ε2u′′ + u = f on Ω = (0, 1), u(0) = u(1) = 0

� typical: differential equations with small parameters
� hallmark: in the limit ε→ 0 the equation changes order so that not all boundary

conditions can be imposed any more.
� Example:

−εu′′ − u′ + u = f on Ω = (0, 1), u(0) = u(1) = 0

In the limit ε→ 0, only one boundary condition can be imposed. (In fact, at x = 1)
� regular perturbations: equation does not change type in the limit ε→ 0

example:
−u′′ + εu′ + u = f on Ω, u(0) = u(1) = 0

with limit problem

−u′′ + u = f on Ω, u(0) = u(1) = 0
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Typical solution behavior

reaction-diffusion equation

−ε2u′′ + u = f
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−ε2u′′ + u = 1 + ex

- �
ε

� limit equation: u = f
� layers at both endpoints to ensure b.c.
� length scale ε

convection-reaction-diffusion equation

−εu′′ + u′ + u = f

−εu′′ + u′ + u = 1

- �
ε

� layer at one endpoint
� length scale ε
� limit equation: in large parts: u ≈

solution of ũ′ + ũ = f , ũ(−1) = 0
� layer at x = 1 ensures b.c.
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turning point problems and the possibility of interior layers

turning point problem I

−εu′′ + xu′ + u = f

−εu′′ + xu′ + u = 1

- �
ε

� limit equation: xu′ + u = f
� general solution for f ≡ 1: u = 1− c

x
� smoothness requirement → c = 0
� layers at both endpoints to ensure b.c.
� length scale ε

turning point problem II

−εu′′ − xu′ + u = f

−εu′′ − xu′ + u = 1

- �
√
ε

� limit equation:
−xũ′ + ũ = f, ũ(−1) = 0 on (−1, 0)

−xũ′ + ũ = f, ũ(1) = 0 on (0, 1)

� interior layer at x = 0
� length scale

√
ε
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regularity of 1D reaction-diffusion equations
by asymptotic expansions
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reaction-diffusion problems: existence and uniqueness

Lεu := −ε2u′′ + b(x)u = f on Ω = (0, 1), u(0) = u(1) = 0, b ≥ b0 > 0 (1)

Lemma (existence and uniqueness)

For each f ∈ L2(Ω), the solution uε ∈ H1
0 (Ω) exists and is unique. Moreover,

‖uε‖ε :=
√
ε2‖u′ε‖2L2(Ω)

+ ‖uε‖2L2(Ω)
≤ C‖f‖L2(Ω)

Proof: Lax-Milgram
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asymptotic expansions for reaction-diffusion equations

Lεu := −ε2u′′ + b(x)u = f on Ω = (0, 1), u(0) = u(1) = 0, b ≥ b0 > 0

� general technique: matched asymptotic expansions.
Part of the procedure is to reveal the length scales of the problem
here: we will always “inject” knowledge of the proper length scale into the ansatz

� here: simpler approach using outer and inner expansion: u(x) ≈ uouter(x) + uinner(x)

� purpose of uouter: good approximation away from endpoints x = 0, x = 1
uouter is (approx.) particular solution

� purpose of uinner: ensures the b.c. since uouter does not satisfy the correct b.c.

� asymptotic expansions aim at “small residual”  justification of asymptotic expansions
requires a stability result (e.g., Lax-Milgram)
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illustration: the case b ≡ 1

Lεuε := −ε2u′′ε + uε = f on Ω = (0, 1), u(0) = u(1) = 0,

� limit equation: u = f correct with uBL = Ae−x/ε +Be−(1−x)/ε such that
(u0 + uBL)(0) = (u0 + uBL)(1) = 0

� question: is uapprox := u0 + uBL a good approximation?

� the residual r := uε − uapprox satisfies

Lεr = Lεuε − Lεu0 = f − (−ε2u′′0 + u0) = f + ε2u′′0 − f = ε2f ′′, r(0) = r(1) = 0

� By Lax-Milgram, ‖r‖ε = O(ε2)

� question: even better approximations?
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illustration: the case b ≡ 1

Lεuε := −ε2u′′ε + uε = f on Ω = (0, 1), u(0) = u(1) = 0, (2)

� Ansatz for uouter: uouter ∼∑i ε
iui(x)

� inserting ansatz in (2) yields∑
i

−εi+2u′′i + εiui = f = ε0f + ε1 · 0 + ε2 · 0 + · · ·

� equating like powers of ε yields

u0 = f, u1 = 0, ui+2 = u′′i , i = 0, 1, . . .

� truncated expansion uouterM :=
∑2M

i=0 ε
iui satisfies

LεuouterM − f = −ε2M+2u′′2M = O(ε2M+2), uouterM (0) =

2M∑
i=0

εiui(0)
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the case b ≡ 1, cont’d

� outer expansion uouterM does not satisfy the b.c.  correct with uinnerM

� Solutions of the homogeneous equation are uleft := e−x/ε and uright := e−(1−x)/ε

� set uinner(x) ∼∑i ε
iuleft(x)ui(0) + εiuright(x)ui(1)

� truncated inner expansion uinnerM (x) := −∑2M+1
i=0

(
εiuleft(x)ui(0) + εiuright(x)ui(1)

)
� remainder rM := uε − (uouterM + uinnerM ) satisfies:

LεrM = O(ε2M+2), rM (1) = O(e−1/ε), rM (0) = O(e−1/ε)

Lemma

Let f be smooth. Then, for each fixed M ∈ N0 there holds uε = uouterM + uinnerM + rM with:

� uouterM is smooth and derivatives can be controlled uniformly in ε;

� uinnerM = Ae−x/ε +Be−(1−x)/ε for some A, B (bounded uniformly in ε);

� ‖rM‖ε = O(ε2M+2).

J.M. Melenk – 8 – singular perturbations



the case of general b ≥ b0 > 0

Lεu := −ε2u′′ + b(x)u = f on Ω = (0, 1), u(0) = u(1) = 0, b ≥ b0 > 0

� Ansatz for outer expansion: u(x) ∼∑i ε
iui(x)

� inserting the Ansatz into differential equation gives1∑
i

εi(−u′′i−2 + b(x)ui)
!

= f(x) = ε0f(x) + ε1 · 0 + ε2 · 0 + · · ·

� equating like powers of ε yields the recursion

u0 :=
f(x)

b(x)
, u1(x) = 0, ui+2(x) :=

u′′i (x)

b(x)
, i = 0, 1, . . .

� The truncated series uouterM :=
∑2M

i=0 ε
iui(x) satisfies

LεuouterM − f = O(ε2M+2), uouter(0) =
2M∑
i=0

εiui(0), uouter(1) =
2M∑
i=0

εiui(1)

1here and in the following, we set ui ≡ 0 for i < 0
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asymptotic expansions, inner expansion II
� ideal requirements on uinner: Lεuinner = 0 and uinner(0) = −uouterM (0), uinner(1) = −uouterM (1)

technique: blow-up at endpoints. Construct the approximation uinner = uinner,l + uinner,r, i.e.,
separately near x = 0 and x = 1

� near x = 0:

� scaled variables x̂ = x/ε
� ansatz uinner,l(x̂) ∼∑i ε

iûi(x̂)

� rewrite the condition Lεuinner,l !
= 0 in terms of x̂:∑

i

εi
(
−ε2−2û′′i (x̂) + b(εx̂)︸ ︷︷ ︸

Taylor
=

∑
j ε
j x̂jbj

ûi(x̂)
)

!
= 0

� equate like powers of ε to get the recursion

−û′′i + b0ûi = −
i−1∑
j=0

bi−j x̂
i−j ûj on (0,∞)

equipped with the side conditions

ûi(0) = −ui(0), ûi(x̂)→ 0 as x̂→∞
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asymptotic expansions, inner expansion III

−û′′i + b0ûi = −
i−1∑
j=0

bi−j x̂
i−j

ûj on (0,∞) ûi(0) = −ui(0), ûi(x̂)→ 0 as x̂→∞

Lemma

The functions ûi can be computed recursively. For each i, the solution ûi is an entire
function of the form ûi(z) = πi(z)e

−z/
√
b0 for some polynomial πi ∈ Pi of degree i

� Each solution ûi decays exponentially as x̂→ 0

� The truncated expansion uinner,lM (x) :=
∑2M+1

i=0 εiûi(x̂) satisfies

� uinner,lM (0) + uouterM (0) = 0 since ui(0) = −ûi(0) for each i

� |uinner,lM (1)| = O(e−c/ε) for some c > 0

� Lεuinner,lM = O(ε2M+2)
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asymptotic expansions, inner expansion III

� analogous calculation near x = 1 with scaled variable x̂R := (x− 1)/ε for uinner,r

� uinnerM :=
∑2M+1

i=0 εiûi(x̂) +
∑2M+1

i=0 εiûri (x̂
R)

� obtain Lεuinner = O(ε2M+2) and |uouterM (0) + uinnerM (0)| = O(e−c/ε)

justification of the expansion: Remainder rM := u− (uouterM + uinnerM ) satisfies

LεrM = O(ε2M+2), |rM (0)|+ |rM (1)| = O(e−c/ε)

By Lax-Milgram, we get
‖rM‖ε = O(ε2M+2).

Lemma

Let f , b be smooth. For each M one can write u = uouterM + uinner,lM + uinner,r + rM with:

� uouterM (x) =
∑2M

i=0 ε
iui(x) is smooth (uniformly in ε);

� uinner,lM (x) =
∑2M+1

i=0 εiûi(x/ε) is smooth and | d
n

dx̂n
uinner,lM (x̂)| ≤ Cn,Me−βx̂, β > 0 suitable;

� ‖rM‖ε = O(ε2M+2).
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FEM for reaction-diffusion equations
Lεu := −ε2u′′ + b(x)u = f on Ω = (0, 1), u(0) = u(1) = 0, b ≥ b0 > 0

weak formulation

Find uε ∈ H1
0 (Ω) s.t.

aε(uε, v) :=

∫
Ω
ε2u′εv

′ + b(x)uεv dx = `(v) :=

∫
Ω
f(x)v dx ∀v ∈ H1

0 (Ω)

abstract FEM

Given closed VN ⊂ H1
0 (Ω) find uN ∈ VN s.t.

aε(uN , v) = `(v) ∀v ∈ VN (3)

Theorem (Céa Lemma/quasioptimality)

There is a unique solution uN of (3) and there is C > 0 depending only on Ω, b s.t.

‖uε − uN‖ε ≤ C inf
v∈VN

‖uε − v‖ε
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classical FEM

� T = {Ki}n−1
i=0 = mesh with elements Ki = (xi, xi+1) and nodes

0 = x0 < x1 < · · · < xn = 1

� Sp,1(T ) := {v ∈ H1(Ω) | v|Ki ∈ Pp ∀Ki ∈ T } = space of piecewise polyn. of deg. p

� VN := Sp,10 (T ) := Sp,1(T ) ∩H1
0 (Ω)

how to choose T ?

� uε = uouterM + uinnerM + rM
� idea: design T such that uouterM and uinnerM can be approximated well

� uouterM is smooth (uniformly in ε) =⇒ (refinements of) uniform meshes are OK

� uinnerM behaves near x = 0 like e−x/ε =⇒ refine mesh near x = 0 (and analogously near
x = 1)
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Shishkin mesh
Shishkin mesh

Given a transition parameter τ > 0 the Shishkin mesh T SN is given by the piecewise uniform
mesh with N nodes each in [0, τ ], [τ, 1− τ ], and [1− τ, 1].

Lemma

Let f be smooth. If τ = min{λε logN, 1/2} for sufficiently large λ > 0 then the piecewise
linear interpolant Ihu

inner
M satisfies

‖uinnerM − IhuinnerM ‖L2(Ω) +
√
ε‖(uinnerM − IhuinnerM )′‖L2(Ω) ≤ CN−1 log3/2N

Proof: see blackboard; note that the factor
√
ε is a stronger result than the energy norm with factor ε

Corollary

Let f be smooth. For λ > 0 sufficiently large, the FEM based on S1,1(T SN ) ∩H1
0 (Ω) yields

‖uε − uN‖ε ≤ CN−1 log3/2N

Proof: see blackboard
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mesh grading functions

mesh grading function ϕ : [0, 1]→ [0, 1]

� mesh points xi = ϕ(ti), where ti are uniformly distrib. on [0, 1]

� hi ≈ ϕ′(ti)N−1, N = number of nodes

� uniform mesh where ϕ is affine

� equidistributing interpolation error could suggest good choices of ϕ

� example: ϕ(t) = t → uniform mesh

� example: Shishkin mesh: ϕ = piecewise affine

x

t

1

1

τ
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Bakhvalov mesh
� “typical” sol. behavior near endpoint x = 0:

1− e−βx/ε

� idea: near x = 0, want

q(1− e−βxi/(σε)) = ti,

for q ∈ (0, 1), σ user chosen parameters.

� q ≈ proportion of mesh points in the layer;
σ controls grading in the layer

� away from x = 0: uniform mesh

� ϕ(t) =

{
χ(t) := −σεβ ln q−t

q t ∈ [0, τ ],

π(t) := χ(τ) + χ′(τ)(t− τ) otherwise

� note: ϕ ∈ C1 by construction

� τ such that ϕ(1) = 1. (=⇒ can compute τ ≈ q − σε
β ; χ(τ) ≈ σε

β ln βq
σε )

Remark: convergence results for singular perturbation problems without logarithmic factors,
but mesh construction more complicated
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high order methods

� Shishkin meshes and fixed order methods yield only algebraic convergence

� question: is exponential convergence possible?

� answer: use VN = Sp,1(T (ε, p)) ∩H1
0 (Ω) with T (ε, p) given by the nodes

0, τ, 1− τ, 1, with τ = λpε and λ sufficiently small and let p→∞

spectral boundary layer mesh T (ε, p) (Schwab & Suri ’96)

PSfrag replacements
λpελpε

ppp

ingredients of the proof of exponential convergence:

� analyticity (with control of constants) of the decomposition uε = uouterM + uinnerM + rM
� polynomial approximation results for analytic functions
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interlude: high order methods and the
geometric mesh
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interlude: low order vs. high order methods
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interlude: low order vs. high order methods
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interlude: low order vs. high order methods
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example of failure: u(x) = xα on (0, 1), α ∈ (0, 1)

observe: u(x) = xα is not smooth at x = 0

1 10 30

polynomial degree p

10 -1

10 0

L
 e

rr
o
r

Chebyshev
interpolation of u(x) =

√
x

O(p−1)

for exponential convergence: use piecewise polynomial approximation on geometric mesh
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geometric mesh
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x0 = 0, x1 = σL, x2 = σL−1, . . . , xL = 1

Theorem

On a geometric mesh with p layers:

‖xα − IChebpw,p x
α‖L∞ ≤ Ce−bp,

N = p(p+ 1)

10
0

10
1

10
2

10
3

10
-15

10
-10

10
-5

10
0

piecewise Chebyshev
interpolation of

√
x
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q Scherer 1981, Babuška & Guo (1986), Schwab, p and hp FEM (1998)

J.M. Melenk – 21 – singular perturbations



geometric mesh

0 1

0 1

p = 1

p = 2 p = 2

3 3 3

4 4 4 4

geometric mesh Tgeo with

� L layers and
� grading factor σ ∈ (0, 1):

x0 = 0, x1 = σL, x2 = σL−1, . . . , xL = 1

Theorem

On a geometric mesh with p layers:

‖xα − IChebpw,p x
α‖L∞ ≤ Ce−bp,

N = p(p+ 1)

10
0

10
1

10
2

10
3

10
-15

10
-10

10
-5

10
0

piecewise Chebyshev
interpolation of

√
x
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regularity and exponential convergence for
1D reaction-diffusion equation
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analytic regularity by decompositions: b ≡ 1

Lεuε := −ε2u′′ε + uε = f on Ω = (0, 1), u(0) = u(1) = 0, (4)

� uouterM =
∑2M

i=0 ε
iui(x) with

u0 = f, u1 = 0, ui+2 = u′′i , i ≥ 0

� =⇒ u2i(x) = f (2i)(x) and u2i+1(x) = 0.

� uinnerM =
∑2M+1

i=0 εiui(0)e−x/ε +
∑2M+1

i=0 εie−(1−x)/ε =: uinner,lM + uinner,rM

� LεuouterM − f = −ε2M+2u2M+2

question: what is a good M?

� idea: choose M (in dependence on ε) such that residual ‖LεuouterM − f‖ is minimized
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analytic regularity of the decomposition

Lemma

Let f ∈ C∞(Ω) satisfy
‖f (n)‖L∞(Ω) ≤ Cfγnf n! ∀n ∈ N0

Then the choice M ∼ ε−1 leads to a decomposition uε = uouterM + uinner,lM + uinner,rM + rM
with

‖(uouterM )(n)‖L∞(Ω) ≤ Cuγnun! ∀n ∈ N0

|(uinner,lM )(n)(x)| ≤ Cε−ne−x/ε ∀n ∈ N0

‖r(n)
M ‖L∞(Ω) ≤ e−c/ε, n ∈ {0, 1, 2}.

Proof: see blackboard

� Motivation for choice of M :

‖LεuouterM − f‖L∞(Ω) ≤ ε2M+2‖f (2M+2)‖L∞(Ω) ≤ Cf (εγf )2M+2(2M + 2)! ≤ Cf (εγf (2M + 2))2M+2

� choose M such that (2M + 2)εγf ≈ 1/2 so as to get exponential convergence in M
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the case of non-constant b
Lεuε := −ε2u′′ε + b(x)uε = f on Ω = (0, 1), u(0) = u(1) = 0, (5)

Lemma (Melenk ’97)

Let f , b ∈ C∞(Ω) satisfy

‖f (n)‖L∞(Ω) ≤ Cfγnf n! ∀n ∈ N0, ‖b(n)‖L∞(Ω) ≤ Cbγnb n! ∀n ∈ N0,

and b ≥ b0 > 0.
Then one can select M ∼ 1/ε such that uε = uouterM + uinner,lM + uinner,rM + rM with

‖(uouterM )(n)‖L∞(Ω) ≤ Cuγnun! ∀n ∈ N0

|(uinner,lM )(n)(x)| ≤ Cγne−cx/ε max{n, ε}−n ∀n ∈ N0,

‖r(n)
M ‖L∞(Ω) ≤ e−b/ε, n ∈ {0, 1, 2}.

Proof: induction argument to control ui of outer expansion and ûi of inner expansion
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Polynomial approximation on the reference element K̂ = (−1, 1)

Theorem

Let û ∈ C∞(K̂) satisfy

‖û(n)‖
L2(K̂)

≤ Cuγnun! ∀n ∈ N0

There there are constants C, c > 0 (depending only on γu) and a polynomials πp ∈ Pp with
(û− πp)(±1) = 0 such that

‖û− πp‖H1(K̂)
≤ CCue−cp

Proof: see blackboard

�1 construct πp(x) := û(−1) +
∫ x
−1 ΠL

2

p−1û
′(t) dt

�2 use

∫ 1

−1
(1− x2

)
k
L

(k)
i (x)L

(k)
j dx = δij

2

2i + 1

(i + k)!

(i− k)!

�3 conclude from (2) for Legendre expansion v =
∑∞
i=0 viLi(x) that

∫ 1

−1
(1− x2

)
k|v(k)

(x)|2 dx =
∞∑
i=k

2

2i + 1
|vi|

2 (i + k)!

(i− k)!

�4 conclude from (3) exponential decay of the coefficients bi of û′ =
∑
i biLi via the choice k = λi for sufficiently small λ
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approximation on T (ε, p)

T (ε, p):

PSfrag replacements
λpελpε

ppp

Theorem (Melenk ’97)

Let f , b ∈ C∞(Ω) satisfy

‖f (n)‖L∞(Ω) ≤ Cfγnf n! ∀n ∈ N0, ‖b(n)‖L∞(Ω) ≤ Cbγnb n! ∀n ∈ N0,

and b ≥ b0 > 0. Then there are λ0 > 0, C, β > 0 (depending only on f and b) such that for
λ ∈ (0, λ0]

inf
v∈Sp,10 (T (ε,p))

‖uε − v‖ε ≤ Cλ−1/2e−βλp

Proof: key is the approximation of the boundary layer part uinnerM .
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pure p-version versus 3-element mesh

−ε2u′′ + u = (2− x2)−1 on (−1, 1), u(±1) = 0

PSfrag replacements

p

PSfrag replacements
λpελpε

ppp
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geometric meshes

geometric mesh with L layers

• geometric mesh T Lgeo,σ with L layers

0 σL σσ2. . . 1

characterizing feature

• element at x = 0: size σL

• all other elements:

diamK

dist(K, 0)
= const

� geometric meshes are cornerstone of high order methods to resolve (algebraic)
singularities

� can also resolve boundary layers if L is s.t. scale resolution condition σL ≈ ε is satisfied

Exercise: Show that if L is such that σL ≈ ε, then

inf
v∈Sp,10 (T Lgeo,σ)

‖uε − v‖ε ≤ Ce−βp

for some β > 0. The problem size is N = dimSp,10 (T Lgeo,σ) ∼ pL ∼ p| log ε|
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resolving layers and singular rhs by geometric mesh

−ε2u′′ + u = (1 + x)−0.45 on (−1, 1), u(±1) = 0
λpε

σL ≈ ε

σL−1
...
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asymptotics of the reaction-convection-diffusion equation

−εu′′ε − b(x)u′ε + a(x)uε = f on Ω = (0, 1), uε(0) = uε(1) = 0. (6)

� b ≥ b0 > 0
� consider the constant coefficient case:

� fundamental system for homogeneous equation: eλ1x, eλ2x with

λ1 =
b+
√
b2 + 4aε

−2ε
≈ − b

ε
, λ2 =

b−
√
b2 + 4aε

−2ε
≈ a

b

� expect layer at x = 0 of length scale O(ε)
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asymptotic expansion for reaction-convection-diffusion equation

� asymptotic expansion: ansatz uouter ∼∑i ε
iui(x) yields∑

i

εi(−u′′i−1 − bu′i + aui)
!

= f

� equating coefficients yields recursion

−bu′0 + au0 = f on Ω, u0(1) = 0,

−bu′i + aui = u′′i−1 on Ω, ui(1) = 0, i ≥ 1

� expansion
∑

i ε
iui satisfies the b.c. at x = 1.

� the boundary layer at x = 0 is obtained by the inner expansion uinner(x) ∼∑i ε
iûi(x/ε)

� using, e.g., the maximum principle and a suitable barrier function, one can show that the
remainder rM satisfies ‖rM‖L∞(Ω) = O(εM+1)

q Melenk 1997
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an example of a system with multiple scales
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an example of a system
Lε,µU := −Eε,µU′′ + A(x)U = F on Ω = (0, 1), U(0) = U(1) = 0,

Eε,µ :=

(
ε2 0
0 µ2

)
, A pointwise SPD, A(x) ≥ c0 > 0, 0 < ε ≤ µ ≤ 1

� existence and uniqueness by Lax-Milgram
� FEM discretization quasi-optimal by Céa Lemma
� solution structure: boundary layers for small ε and/or µ of length scales O(ε) and O(µ)
� layer structure depends on the scale separation of the scales ε, µ, 1, i.e., the ratios

µ

1
and

ε

µ

4 cases:
(I) no scale separation: neither µ/1 nor ε/µ is small

(II) 3 scales: µ/1 is small and ε/µ is small
(III) 2 scales: µ/1 is small and ε/µ is not small
(IV) 2 scales: µ/1 is not small and ε/µ is small

q Melenk, Xenophontos, Oberbroeckling ’13
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asymptotic expansions for the 3-scale case

� layers on scales O(µ), O(ε) → stretched variables x̃ := x/µ and x̂ := x/ε near x = 0
(and corresponding ones x̃R, x̂R at x = 1)

� formal ansatz

U(x) ∼
∑
i,j

(µ
1

)i( ε
µ

)j [
Uij(x) + Ũij(x̃) + Ûij(x̂) + ŨR

ij(x̃
R) + ÛR

ij(x̂
R)
]

� write

A(x)
Taylor

=
∑
k

Akx
k =

∑
k

Akµ
kx̃k =

∑
k

Akµ
k

(
ε

µ

)k
x̂k

� write the operator Lε,µ as:

on the x̃-scale: − µ−2Eε,µ∂
2
x̃U(x̃) +

∑
k

µkAkx̃
kU(x̃),

on the x̂-scale: − ε−2Eε,µ∂
2
x̂U(x̂) +

∑
k

µk
(
ε

µ

)k
Akx̂

kU(x̂).
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asymptotic expansions for the 3-scale case, II

viewing the variables x, x̃, x̂ as independent variables and inserting the ansatz into the
differential equation yields

O(1)-scale:
∑
i,j

µi
(
ε

µ

)j [
−Eε,µU′′ij(x) + A(x)Uij(x)

]
= F(x),

O(µ)-scale:
∑
i,j

µi
(
ε

µ

)j [
−µ−2Eε,µŨ

′′
ij(x̃) +

∑
k

µkAkx̃
kŨij(x̃)

]
= 0

O(ε)-scale:
∑
i,j

µi
(
ε

µ

)j [
−ε−2Eε,µÛ

′′
ij(x̂) +

∑
k

εkAkx̂
kÛij(x̂)

]
= 0

and analogous equations for ŨR(x̃R) and ÛR(x̂R)
now one equates like powers of µ and ε/µ!
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asymptotic expansions for the 3-scale case, III

write

Uij(x) =

(
uij(x)
vij(x)

)
, Ũij(x̃) =

(
ũij(x̃)
ṽij(x̃)

)
, Ûij(x̂) =

(
ûij(x̂)
v̂ij(x̂)

)
,

and arrive at

−
(
u′′i−2,j−2

v′′i−2,j

)
+ A(x)Uij(x) = F(x)δ(i,j),(0,0)

−
(
ũ′′i,j−2

ṽ′′i,j

)
+

i∑
k=0

Akx̃
kŨi−k,j(x̃) = 0

−
(

û′′i,j
v̂′′i,j+2

)
+

min{i,j}∑
k=0

Akx̂
kÛi−k,j−k(x̂) = 0

This recursion is complemented with the following side conditions:

Uij(0) + Ũij(0) + Ûij(0) = 0, and decay conditions for Ũ, Û at ∞
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asymptotic expansions for the 3-scale case, IV

−
(

u′′i−2,j−2

v′′i−2,j

)
+ A(x)Uij(x) = F(x)δ(i,j),(0,0)

recursion for the Uij :

U0,0(x) = A−1(x)F(x),

Ui,j(x) = A−1(x)

(
u′′i−2,j−2

v′′i−2,j

)
, (i, j) 6= (0, 0)
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asymptotic expansions for the 3-scale case, V

−
(

ũ′′i,j−2

ṽ′′i,j

)
+

i∑
k=0

Akx̃
k
Ũi−k,j(x̃)

︸ ︷︷ ︸
=A0Uij for A = const

= 0 (7)

� simplify notation by assuming A ≡ A0 (i.e., Ak = 0 for k ≥ 1)
� study the case j = 0. Then the first equation of (7) is an algebraic equation:

A11ũi,0 + A12ṽi,0 = 0 (8)

� solve for ũi,0 and insert into the second equation of (7):

− ṽ′′i,0 +
A11A22 −A12A21

A11
ṽi,0 = 0 (9)

� complement (9) with the side conditions

ṽi,0(0) = −vi,0(0), ṽi,0(x̃)→ 0 for x̃→∞
� finally solve for ũi,0 with (8).
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asymptotic expansions for the 3-scale case, V

−
(

û′′i,j
v̂′′i,j+2

)
+

min{i,j}∑
k=0

Akx̂
k
Ûi−k,j−k(x)

︸ ︷︷ ︸
=A0Û

= 0 (10)

� set v̂i,0 = v̂i,1 = 0
� then first equation of (10) yields

−û′′i,0 + A11ûi,0 = 0

ûi,0(0) = −ui,0 ûi,0(x̂)→ 0 as x̂→∞
� solve second equation of (10) for v̂i,2:

v̂i,2(x̂) =

∫ ∞
x̂

∫ ∞
t

A21ûi,0(τ) dτ dt

� so far, we have obtained Ũi,0, Ûi,0. The functions Ũi,j , Ûi,j for j > 0 are obtained
recursively
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asymptotic expansions for the 3-scale case, V

Theorem (Melenk, Xenophontos, Oberbroeckling ’13)

Let A, F be analytic. Then, U can be written as

U = UM (x) + ŨM (x̃) + ÛM (x̂) + ŨR
M (x̃R) + ÛR

M (x̂R) + RM

where

‖Dn
xUM‖L∞(Ω) ≤ Cγnn! ∀n ∈ N0

|Dn
x̃ŨM (x̃)| ≤ Cγne−bx̃ ∀n ∈ N0

|Dn
x̂ÛM (x̂)| ≤ Cγne−bx̂ ∀n ∈ N0

‖RM‖L∞(Ω) ≤ Ce−b/µ + Ce−bµ/ε

Proof:
� structurally similar to the scalar case
� optimize expansion order M
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exponential convergence for multiscale problems

κεpκεp

κµp κµp

Theorem (Melenk, Xenophontos, Oberbroeckling ’13)

The FEM approximation UN ∈ Sp,10 (∆ε,µ,p) satisfies

‖U−UN‖2E ≤ Ce−bp

J.M. Melenk – 40 – singular perturbations



Approximation in balanced norms: system case

A =

(
2 (x+ 1)

2 −
(
1 + x2

)
−2 cos(πx/4) 2.2e1−x

)
, F(x) =

1

1/2 + x

(
1
1

)
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regularity and hp-FEM for the 2D
reaction-diffusion equation
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2D reaction diffusion equation

− ε2∆uε + uε = f on Ω, uε = g on ∂Ω (11)

observations:

� boundary layer at ∂Ω: rapid changes in
normal direction, smooth solution variation
in tangential direction (smooth data)

� → appropriate mesh design: long thin
elements
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the case of smooth ∂Ω

Lεuε := −ε2∆uε + uε = f on Ω, uε = g on ∂Ω

� (outer expansion) make the formal ansatz uε ∼
∑

i ε
iui(x, y), which leads to

uouter(x, y) ∼
∑
i

ε2i∆if = f + ε2∆f + ε4∆2f + · · ·

� (boundary fitted coordinates): Let X : TL → ∂Ω be a (smooth, periodic) parametrization
of ∂Ω and n(θ) be the outer normal vector at X(θ). Set:

ψ : (0, ρ0)× TL → R2, (ρ, θ) 7→ ψ(ρ, θ) := X(θ)− ρn(θ)

� fact: for ρ0 sufficiently small, ψ is smoothly invertible, and its range is a half-tubular
neighborhood of ∂Ω
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the case of smooth ∂Ω for −ε2∆u+ u = f , u|∂Ω = g

� κ(θ) = curvature of ∂Ω at X(θ) and

σ(θ) :=
1

1− ρκ(θ)

� in fitted coordinates, we have ∆u(ρ, θ) = ∂2
ρu−κ(θ)σ(ρ, θ)∂ρu+σ2(ρ, θ)∂2

θu+ρκ′(θ)σ3(ρ, θ)∂θu

� in stretched coordinates ρ̂ := ρ/ε, we have

Lε = −∂2
ρ̂ + Id +εκ(θ)σ(ερ̂, θ)∂ρ̂ − ε2σ2(ερ̂, θ)∂2

θ − ερ̂κ′(θ)σ3(ερ̂, θ)∂θ

� expanding in power series of ε, we write

Lε =
∑
i

εiLi

L0 = −∂2
ρ̂ + Id, Li = −ρ̂i−1ai−1

1 ∂ρ̂ − ρ̂i−2ai−2
2 ∂2

θ − ρ̂i−2ai−3
3 ∂θ, i ≥ 1,

ai1 = −κi+1, ai2 = (i+ 1)κi, ai3 =
(i+ 1)(i+ 2)

2
κiκ′

ai1 = ai2 = ai3 = 0 i < 0
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� Ansatz for uinner: uinner ∼∑i ε
iÛi(ρ̂, θ).

� inserting condition Lεuinner !
= 0 yields∑

i

εi
i∑

j=0

LjÛi−j(ρ̂, θ) = 0

�  recurrence relation for the Ûi:

−∂2
ρ̂Ûi + Ûi = F̂1 + F̂2 + F̂3,

F̂1 =

i−1∑
j=0

ρ̂jaj1∂ρ̂Ûi−1−j , F̂2 =

i−2∑
j=0

ρ̂jaj2∂
2
θ Ûi−2−j , F̂3 =

i−3∑
j=0

ρ̂j+1aj3∂θÛi−3−j ,

� boundary conditions:

Ûi(ρ̂, θ)→ 0 for ρ̂→∞

Ûi(0, θ) = Gi :=


g − f |∂Ω for i = 0,

∆(i/2)f |∂Ω if i is even,

0 if i is odd
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asymptotic expansions for smooth ∂Ω

� induction =⇒ Ûi(ρ̂, θ) =
( i∑
j=0

Θij(θ)ρ̂
j
)
e−ρ̂ with smooth fcts Θij

� truncated outer expansion: uouterM :=
∑M

i=0 ε
2i∆if

� truncated inner expansion: uinnerM :=
(∑2M+1

i=0 εiÛi(ρ/ε, θ)
)
◦ ψ−1

� By construction: uouterM + uinnerM = g on ∂Ω

� By construction: LεuinnerM = O(ε2M+2) in a neighborhood of ∂Ω

� χ = be a cut-off function supported by a tubular neighborhood of ∂Ω; χ ≡ 1 near ∂Ω

� uinnerM decays exponentially away from ∂Ω =⇒ the function χuinnerM is defined on Ω and
satisfies

‖Lε(χuinnerM )‖L∞(Ω) = O(ε2M+2)

� =⇒ representation uε = uouterM + χuinnerM + rM
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regularity of the asymptotic expansion

Theorem (Melenk & Schwab ’99, Melenk ’02)

Let f , g be analytic and let ∂Ω be analytic. Then for the choice M ∼ 1/ε

‖∇nuouterM ‖L∞(Ω) ≤ Cγnn! ∀n ∈ N0,

‖∂mθ ∂nρ uinnerM ‖L∞(U) ≤ Cγn+mm! max{n, ε−1}n ∀(n,m) ∈ N2
0,

‖rM‖H1(Ω) ≤ Ce−b/ε.
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convergence on spectral boundary layer mesh T (ε, p)

O(pε)
O(pε)

6?λpε

Theorem (Melenk & Schwab ’98)

Let f , g, ∂Ω be analytic. Let T 0 be a fixed mesh consisting of quadrilaterals, and let the
spectral boundary layer mesh T (ε, p) be constructed by refining the elements at the
boundary. Then there is λ0 > 0 such that for 0 < λ ≤ λ0 there are C, b > 0 such that

inf
v∈Sp,10 (T (ε,p))

‖uε − v‖ε ≤ C
1√
λ
e−λbp.
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convergence on Shishkin meshes

O(ε lnN)

λε lnN
h = λε lnN

N

H = 1
N

Shishkin mesh near ∂Ω

Bakhvalov mesh near ∂Ω

Theorem

Let f , g, ∂Ω be analytic. Let T 0 be a fixed mesh consisting of quadrilaterals, and let the
Shishkin mesh T Shishkin be constructed by refining the elements at the boundary. Then for
λ > 0 sufficiently large there is C > 0 such that

inf
v∈S1,1

0 (T Shishkin)
‖uε − v‖ε ≤ CN−1 ln3/2N
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corner domains

curvilinear polygon

� J vertices Ai, i = 0, . . . , J − 1

� J edges; Γi and Γi+1 meet at Ai+1

� interior angles ωi
� arcs Γi analytic (straight arcs = special case)

A0 = AJ

A1

A2

AJ−1

Γ1

Γ2

Γ0 = ΓJ Γ3

ω1

ω2

A0 = AJ

A1
A2

AJ−1

Γ1

Γ2

Γ0 = ΓJ
Γ3
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asymptotic expansions for corner domains

−ε2∆uε + uε = f in Ω, uε = 0 on ∂Ω

� elliptic equations in corner domains have corner singularities → need terms (“corner
layers”) that represent these

� definition of asymptotic require smoothness of the data! → boundary layer expansions
can only be defined in a piecewise manner. → connecting these pieces requires “corner
layers”
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convex corners

Aj

Γj ⊂ Γ̃j

Γj+1 ⊂ Γ̃j+1

Cj

Aj

Γ̃j

Γ̃j+1

ρj+1

θj+1

ωj

rj
Ω

� Γ̃j := half-line emating from Aj in direction of Γj

� Γ̃j+1 := half-line emating from Aj in direction of Γj+1

� Cj := cone with apex Aj and edges Γ̃j , Γ̃j+1

� (ρj , θj) = local coordinates associated with Γj
� (ρj+1, θj+1) = local coord. associated with Γj+1

� rj(·) := dist(·, Aj)
� parametrize Γ̃j and Γ̃j+1 by rj

� on the half-line Γ̃j : rj =
ρj+1

sinωj
, on the half-line Γ̃j+1: rj =

ρj
sinωj
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convex corners

Aj

Γ̃j

Γ̃j+1

ρj+1

θj+1

ωj

rj
Ω

� on Γ̃j : rj =
ρj+1
sinωj

� on Γ̃j+1: rj =
ρj

sinωj

� outer expansion:
uouterM :=

∑M
i=0 ε

2i∆if

�  boundary correction needed

� for Γj , define the inner expansion uinnerM,j =
∑2M+1
i=0 εiÛi,j(ρj/ε, θj) as for the smooth case

above in the local coordinates (ρj , θj)

� for Γj+1, define the inner expansion uinnerM,j+1 =
∑2M+1
i=0 εiÛi,j+1(ρj+1/ε, θj+1) as for the smooth

case above in the local coordinates (ρj+1, θj+1)

� The terms Ûi,j+1(·, θj+1) and Ûi,j(·, θj) decay exponentially

� mismatch on Γ̃j+1: Û i,j(rj/ε) := Ûi,j(ρj/ε, θj) = Ûi,j(rj/(ε sinωj), θj)

� mismatch on Γ̃j : Û i,j+1(rj/ε) := Ûi,j+1(ρj+1/ε, θj) = Ûi,j+1(rj/(ε sinωj), θj)

� functions Û i,j , Û i,j+1 decay exponentially (if extended suitably)
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convex corners

�  define the corner layer functions ÛCLi,j as the solutions of

−∆ÛCLi,j + ÛCLi,j = 0 in cone Ci
ÛCLi,j = −Û i,j on Γ̃j+1

ÛCLi,j = −Û i,j+1 on Γ̃j

ÛCLi,j → 0 as |x| → ∞ in Ci

� upshot: uouterM + uinnerM,j + uinnerM,j+1 +
∑2M+1

i=0 ÛCLi,j ((x−Aj)/ε) is a good approximation to
uε in a neighborhood of Aj

�  localize with a cut-off function χCLj
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non-convex corners

Aj

Γj ⊂ Γ̃j

Γj+1 ⊂ Γ̃j+1

Γ′j C+j

C−j

� Γ′j = bisector

� Cj is split into two sectors C+
j and C−j

� for Γj , define the inner expansion uinnerM,j =
∑2M+1
i=0 εiÛi,j(ρj/ε, θj) as for the smooth case

above in the local coordinates (ρj , θj)

� for Γj+1, define the inner expansion uinnerM,j+1 =
∑2M+1
i=0 εiÛi,j+1(ρj+1/ε, θj+1) as for the smooth

case above in the local coordinates (ρj+1, θj+1)

� define uinnerM near Aj by

uinnerM =

{
uinnerM,j+1 on C+

j

uinnerM,j on C−j
� correct the jump and the jump of the normal derivative of uinnerM across Γ′j with a corner layer

uCLj , i.e., the solution of a suitable transmission problem

� Remark: construction also works for convex corners
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Decomposition of uε via asymptotic expansions

For each ε, the exact solution uε can be decomposed as

uε = wε + χuBLε + χ̂ uCLε + rε (12)

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

A3

A4A5

A6 A1

A2

ρi

θi

Ωi

Ai

� χ = cut-off function
supported by blue region
near ∂Ω

� χ̂ = cut-off function
supported by green region
near vertices
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Regularity of the decomposition

Theorem (Melenk ’02)

There are C, γ, α > 0, β ∈ [0, 1) s.t. for each ε ∈ (0, 1] there is a decomposition of the form
uε = wε + χuBLε + χ̂ uCLε + rε with

�1 wε is analytic on Ω and ‖∇pwε‖L∞(Ω) ≤ Cγpp!, ∀p ∈ N0.

�2 remainder rε ∈ H1
0 (Ω) and ‖rε‖ε ≤ C exp(−α/ε).

�3 On Ωj the boundary layer function uBLε satisfies

|∂rρj∂sθju
BL(ρj , θj)| ≤ C max{r!, ε−r}γr+ss! e−αρj/ε, ρj ≥ 0.

�4 The corner layer uCLε satisfies on (Ωj ∩Bj) ∪ (Ωj+1 ∩Bj)

|∇puCL(x)| ≤ Cεβ−1 r1−p−β
j exp(−αrj/ε) p ∈ N0

(Bj = neighborhood of Aj , rj = dist(x,Aj))
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Geometric meshes in O(pε) neighborhoods of vertices

PSfrag replacements

O(pε)

L = 4

PSfrag replacements

O(pε)
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hp-FEM approximation result

Theorem (Melenk ’02)

Let T (ε, p) be a mesh with

� needle elements of width λpε at the boundary
� a geometric mesh with L layers in the O(λpε) neighborhood of the vertices.

Then there exist C, b > 0 independent of ε, p, L such that

‖uε − uN‖ε ≤ C
[
e−bp + ε(λp)2e−bL

]
provided that λ is sufficiently small.
For L ∼ p, we get dimSp0(T (ε, p)) =: N ∼ p3 and therefore

‖uε − uN‖ε ≤ Ce−b
′N1/3

.

Remark: energy norm of corner layer is O(ε) =⇒ very few layers suffice
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p-convergence for various numbers of layers
p = 1, . . . , 15, ε = 1.0 and ε = 10−3
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geometric meshes instead of the 2-element mesh

� issue: seek robustness (ε may not be known precisely, parameter λ needs to be chosen ...)

� observe: (anisotropic) geometric refinement towards the boundary leads to meshes that
resolve boundary layer

� observe: geometric meshes are also effective in resolving (algebraic) singularities
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meshes for multi-scale singular perturbation problems

−ε2∆u+ u = f, ε is in a range: εmin ≤ ε ≤ 1

1D mesh Tgeo (L layers of refinement)

Tgeo
σ0 σ1σ1 · · ·· · · σ0 σLσL

scale resolution requirement

L such that σL ≈ εmin → all scales are resolved

2D analytic ∂Ω

σ0 σ1

σL

Tgeo

• polygons: geometric refinement towards edges and corners (next slide)

Theorem (Banjai, Melenk, Schwab ’20+)

f analytic on Ω and L ∼ p =⇒
hp-FEM converges exponentially (in p) in the energy norm uniformly in εmin ≤ ε ≤ 1.
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mesh construction via mesh patches

T
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mesh construction via mesh patches

B

bdy layer patch

B

σL
?

6
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mesh construction via mesh patches

BT

bdy layer patch

B

σL
?

6 tensor patch

T

σL
?

6
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mesh construction via mesh patches

BT C

bdy layer patch

B

σL
?

6corner patch

C

σL
?

6

tensor patch

T

σL
?

6
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mesh construction via mesh patches

BT CM

bdy layer patch

B

σL
?

6

mixed patch

M

σL
?

6corner patch

C

σL
?

6

tensor patch

T

σL
?

6
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exponential convergence on Netgen-generated geometric meshes
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q www.ngsolve.org (Schöberl et al.)
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Example: Naghdi shell

from: Gerdes, Matache, Schwab, ZAMM

boundary layers on scale O(t) and O(
√
t)

unstructured trian. mesh

structured trian. mesh  

unstructured quad. mesh 

structured quad. mesh   
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simply supported Reissner-Mindlin plate

mesh 1

mesh 5

 Mesh 1 
 Mesh 5 
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m

L−shaped RM plate, t=0.001

taken from: C. Xenophontos, CNME, ’98

boundary layer on O(t); non-smooth limit equation→ geometric mesh
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the convection-diffusion problem

J.M. Melenk singular perturbations



convection-diffusion equation

Lεu := −ε∆u+ b(x) · ∇u+ c(x)u = f in Ω, u|∂Ω = 0 (13)

� associated bilinear form: Bε(u, v) :=

∫
Ω
ε∇u · ∇v + b · ∇uv + cuv, `(v) =

∫
Ω fv

Lemma

Assume that c− 1
2 divb ≥ c0 > 0. Then

‖u‖2√ε = ε|u|2H1(Ω) + ‖u‖2L2(Ω) . Bε(u, u) ∀u ∈ H1
0 (Ω)

Proof: key observation is that by integration by parts
∫

Ω
b · ∇uu = − 1

2

∫
Ω

divbu2

� → Galerkin method possible
� issue: bilinear form Bε is not continuous in ‖ · ‖√ε uniformly in ε! (→ no

quasi-optimality!)
� technique: modify (in a consistent way) the bilinear form for stability in a stronger norm
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limit problem and layers

limit problem
b · ∇u+ cu = f in Ω

u = 0 on Γin := {x ∈ ∂Ω |b · n < 0} b

Γin Γout

�  expect layers at outflow boundary
� (also internal layers if ∂Ω is non-smooth)
� Galerkin method performs quite well if meshes are used that appropriately resolve the

layers (careful analysis!)
� problem: Galerkin method fails if layers are not resolved (oscillations everywhere)
� stabilized methods such as SDFEM or GLSFEM have much better stability properties:

even if layers are not resolved, the approximation is good away from the (unresolved)
layers

q Gerdes, Melenk, Schötzau, Schwab, ’01

q Johnson, Schatz, Wahlbin, ’87
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SDFEM
Bε(u, v) =

∫
Ω
ε∇u · ∇v + b · ∇uv + cuv, `(v) =

∫
Ω
fv

BSD(u, v) = Bε(u, v) +
∑
K∈T

δK

∫
K

(−ε∆u+ b · ∇u+ cu)b · ∇v,

`SD(v) = `(v) +
∑
K∈T

δK

∫
K

fb · ∇v

‖u‖2SD := ‖u‖2√ε +
∑
K∈T

δK‖b · ∇u‖2L2(K)

Theorem

Let c− 1
2 divb ≥ c0. Let T be a shape-regular mesh. Then ∃ δ′0 > 0 s.t. for δK ≤ δ′0 min{1, h2

K/ε}

‖u‖2SD . BSD(u, u) ∀S1,1
0 (T )

choice of δK :

δK :=

{
δ0hK if PeK > 1 (convection dominated)

δ1
h2
K

ε if PeK ≤ 1 (diffusion dominated)
PeK :=

‖b‖L∞(K)hK

ε
(= local Péclet number)
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GLSFEM

Bε(u, v) =

∫
Ω
ε∇u · ∇v + b · ∇uv + cuv, `(v) =

∫
Ω
fv

BGLS(u, v) = Bε(u, v) +
∑
K∈T

δK

∫
K
LεuLεv

`SD(v) = `(v) +
∑
K∈T

δK

∫
K
f Lεv

‖u‖2GLS := ‖u‖2√ε +
∑
K∈T

δK‖Lεu‖2L2(K)

Theorem

Let c− 1
2 divb ≥ c0. Then:

‖u‖2GLS . BGLS(u, u) ∀S1,1
0 (T )
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DG methods: discretization of limiting transport equation
� instead of working with H1-conforming elements work with discontinuous piecewise polynomials

� S1,0(T ) := {u ∈ L2(Ω) |u|K ∈ P1 ∀K ∈ T }

upwind DG discretization for b · ∇u+ cu

BtransDG (u, v) :=
∑
K∈T

∫
K

(b · ∇u+ cu)v +

∫
∂K

b · nK(û− u)v

with the upwind flux b · nK û given by

û :=

{
u|K if b · nK > 0

u|K′ for neighboring element K ′ if b · nK < 0

Lemma

Let c− 1
2 divb ≥ c0 > 0. With the jump J·K across an edge e ∈ E

BtransDG (u, u) & ‖u‖2L2(Ω) +
∑
e∈E
‖ |b · nK |JuK‖2L2(e)
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DG methods: discretization of elliptic part

DG discretization of −ε∆u (SIP variant)

Bell
DG(u, v) :=

∑
K∈T

∫
K
ε∇u · ∇v +

∑
e∈E

ε

∫
e
−JuK{∇v} − {∇u}JvK +

α

he
JuKJvK

with J·K denoting the jump and {·} the average on the edge e ∈ E

Lemma

For α > 0 sufficiently large (independent of ε)

Bell
DG(u, u) & ε

∑
K∈T

‖∇u‖2L2(K) +
∑
e∈E

ε
α

he
‖JuK‖2L2(e) ∀u ∈ S1,0(T )
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DG methods: discretization of the full singularly perturbed
operator −ε∆u+ b · ∇u+ cu

BDG(u, v) := Btrans
DG (u, v) +Bell

DG(u, v)

Lemma

Let c− 1
2 divb ≥ c0 > 0. For α > 0 sufficiently large there holds

BDG(u, v) & ε
∑
K∈T

‖∇u‖2L2(K) + ‖u‖2L2(K) +
∑
e∈E

ε
α

he
‖JuK‖2L2(e) +

∑
e∈E
‖ |b · nK |JuK‖2L2(e)
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