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What are singular perturbations?

® example:
—?u du=f onQ=(0,1), u0)=u(l)=0

® typical: differential equations with small parameters
® hallmark: in the limit £ — 0 the equation changes order so that not all boundary

conditions can be imposed any more.
8 Example:

—ev —u +u=f onQ=(0,1), uw(0) =u(1l) =0

In the limit £ — 0, only one boundary condition can be imposed. (In fact, at x = 1)
® regular perturbations: equation does not change type in the limit € — 0

example:

—u" +eu +u=f onQ, u(0) =u(1)=0
with limit problem
—u"4+u=f onQ, u(0) = u(1l) =0
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Typical solution behavior

convection-reaction-diffusion equation
reaction-diffusion equation
—eu”" +u +u=f
_€2u// +u= f

08

—eu'’ —+ ' + w1

4 0

35t —c2u! +u=1+e" .

o ’ o ! ® |ayer at one endpoint
® |imit equation: u = f ® length scale ¢
® |ayers at both endpoints to ensure b.c. ® limit equation: in large parts: u =~
® length scale ¢ solution of @ + = f, a(—-1) =0

® |ayer at x = 1 ensures b.c.
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turning point problems and the possibility of interior layers

turning point problem | turning point problem Il

" / .
e + o +u=f —eu’ —au +u=7f

06
1" ’
—eu'’ — gu’ fu =1

05

® |imit equation:

® |imit equation: zu' +u = f —at' +a=f, a(-1)=0on (~1,0)
® general solution for f=1: u=1- 2 —zt@' +a=f, @()=0o0n (0,1)

® smoothness requirement — ¢ = 0 ’ ’

® |ayers at both endpoints to ensure b.c. ® interior layer at 2 = 0

® |ength scale ¢ ® length scale /2
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reaction-diffusion problems: existence and uniqueness

Louw:=—®u"+bx)u=f onQ=(0,1), u0)=ul)=0, b>b>0 (1)

Lemma (existence and uniqueness)

For each f € L?(f2), the solution u. € H} () exists and is unique. Moreover,

lelle = /22t By + ey < Cllfllz2gen

Proof: Lax-Milgram
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asymptotic expansions for reaction-diffusion equations

Leu:=—2u” +b(@)u=f onQ=(0,1), w0 =u(l)=0, b>by>0

8 general technique: matched asymptotic expansions.
Part of the procedure is to reveal the length scales of the problem
here: we will always “inject” knowledge of the proper length scale into the ansatz

® here: simpler approach using outer and inner expansion: u(x) &2 u®“e" (x) + u'™"e (z)
® purpose of u®“¢": good approximation away from endpoints x = 0, z = 1
u®“r is (approx.) particular solution

inner.

® purpose of u . ensures the b.c. since u®“**" does not satisfy the correct b.c.

® asymptotic expansions aim at “small residual” ~~ justification of asymptotic expansions
requires a stability result (e.g., Lax-Milgram)
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illustration: the case b =1

Loue = —c*u! +u.=f onQ=(0,1), u(0) = u(1) =0,

® limit equation: u = f correct with uBL = Ae=%/¢ 4 Be~(1=%)/¢ sych that
(uo +uP*)(0) = (up +u"")(1) = 0

® question: is Ugppros 1= Uo + uPl a good approximation?

® the residual 7 := U, — Ugppros Satisfies

Lor=Lou. — Loug=f — (762u8 +ug)=f+ 62u8 —f=e2f" r(0)=7r(1)=0

® By Lax-Milgram, [|7]|. = O(£?)

® question: even better approximations?
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illustration: the case b =1

Loue = —c*u! +u.=f onQ=(0,1), u(0) = u(1) =0, (2)

outer. ,,outer T, .
® Ansatz for u"*¢": ~ > etu(x)

® inserting ansatz in (2) yields

Z_gi-i-zu;/_i_giui:f:50f+€1,0+52.()+...
)

8 equating like powers of ¢ yields

n -
ug = f, u; =0, Uiyo = Uy, t=0,1,...
® truncated expansion u§y'" = Z?i/{) glu; satisfies
oM
outer _ 2M-+2 1 2M+2 outer _ 7
Lougf® —f=—¢ gy = O(e ), ug e (0) = E e'u;(0)
i=0
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the case b = 1, cont’d

inner

® outer expansion u34'*" does not satisfy the b.c. ~~ correct with u/}
® Solutions of the homogeneous equation are u/¢ft ;= ¢=%/¢ and u"9ht ;= ¢~(1-2)/e

® set u™ (1) ~ 3, el (@)u; (0) + etum9M (2)u; (1)

® truncated inner expansion u%*" () := — S 20! (ehuleft (2)u; (0) + et (2)u;(1))

® remainder 7y = ue — (u§H + ulleT) satisfies:

Lory = O(e*M+2), (1) = 0(e V%), ra(0) = O(e™ /%)

Lemma
Let f be smooth. Then, for each fixed M € Ny there holds u. = uﬁt” + uﬁ(/}"e’” + 7 with:
® u§'" is smooth and derivatives can be controlled uniformly in e;
8 yiner — Ae=@/¢ 4 Be=(1=2)/¢ for some A, B (bounded uniformly in ¢ );

® [Irarle = O(24+2).
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the case of general b > by > 0

Lou:=—*u" +bx)u=f onQ=(0,1), u(0) = u(1) = 0, b>by>0

® Ansatz for outer expansion: u(z) ~ >, elu;(z)
® inserting the Ansatz into differential equation gives!

Zei(—ugl_g + b(x)u,) = fx) = () +e' - 0+e>-0+---

® equating like powers of ¢ yields the recursion

x ul (x ,
w=I8 w@=0 ww =5 e
® The truncated series u§}*" := Z?JV(I) lu; () satisfies
oM
L. uouter f _ O(€2M+2), outer ZE uz uouter(l) _ Zezui(l)
=0
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asymptotic expansions, inner expansion |l
® ideal requirements on u'""": Lou'™"" =0 and """ (0) = —uf7 " (0), u'""(1) = —ufye (1)

technique: blow-up at endpoints. Construct the approximation u?™m¢" = yimnert L qinnenr ja
separately near x =0 and z =1

® near x = O:
> scaled variables ¥ = x /¢

P ansatz u'"enl(T) ~ Y, £4;(7)
. . . v ~
» rewrite the condition L u*"¢"t =0 in terms of Z:

Sl (-STA@ beR)  w(@) L0

i
P equate like powers of € to get the recursion
1—1

—@) +boll; = — »_bi;37h;  on (0,00)
=0

equipped with the side conditions
u;(0) = —u;(0), u;(Z) >0 asT — oo
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asymptotic expansions, inner expansion |1l

—a} +bol; = — > bj—;@Ta;  on (0,00) @ (0) = —u;(0), (@) > 0 as® — oo

Lemma

The functions u; can be computed recursively. For each i, the solution w; is an entire
function of the form Ti;(z) = m;(z)e 2/ for some polynomial ; € P; of degree i

® Each solution @; decays exponentially as 7 — 0

® The truncated expansion u’"*"!(z) := S 2MH1 ¢i7,(%) satisfies
4 u?&ner,l (0) + u?\}l‘t”(O) =0 since u; (0) = —u;(0) for each i
P |uinmerl (1)) = O(e=¢/%) for some ¢ > 0

P Loulmenl = O(e2M+2)
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asymptotic expansions, inner expansion Ill

® analogous caIcuIation near z = 1 with scaled variable 2% := (2 — 1) /e for u/"me""
inner .__ 2M+1 2M+1 cigr (R
& uy =00 ewi(@) + 305, i (Z7)

® obtain ﬁauznner — O( 2M+2) and |uouter(0) znner( )| — ( —c/e)
justification of the expansion: Remainder 7y := u — (u$¥" + u¥¥"*") satisfies
Lorar = O0EEM2), rar(0)] + [rar(1)] = O(e™)

By Lax-Milgram, we get
Irarlle = O(*+2).

Lemma

Let f, b be smooth. For each M one can write u = u$4*" + uﬁ\’ffnerl + uimnerT 4 - with:

® youter () = ZZZJV(I) e'u;(x) is smooth (uniformly in € );

) n ~
o e () = SO2MEL iy (2 fe) is smooth and ’d’\n ug @) < Crpre ™%, 55 0 sitabie
s HTMHE-: — O(€2M+2).
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FEM for reaction-diffusion equations

Leu:= —2u + b(z)u=f onQ=(0,1), u(0) = u(1l) =0, b>bg >0

weak formulation
Find u. € H}(Q) s.t.

ac(ue,v) == /9821/51)’ + b(z)ucvde = L(v) := /Qf(ac)v dx Yo € Hy ()

abstract FEM
Given closed Vy C H{(Q) find uy € Vi sit.

ac(un,v) = £(v) Yv € Viy (3)

Theorem (Céa Lemma/quasioptimality)

There is a unique solution uy of (3) and there is C > 0 depending only on ), b s.t.

lue —un|le < Cvier%/fN |lue — vl
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classical FEM

o T ={K;} 0 = mesh with elements K; = (z;,x;+1) and nodes
0—x0<x1< < xy =1

s SPHT):={ve HI(Q) |vlk, € Pp VK, € T} = space of piecewise polyn. of deg. p

& Vy = SPHT) == SP1(T) N HL(Q)

how to choose 77

® oy = uouter + uznner +ry

® idea: design 7 such that u$%“" and u¥"“" can be approximated well

® yJute" is smooth (uniformly in €) = (refinements of) uniform meshes are OK

® YT behaves near z = 0 like e~%/¢ — refine mesh near = = 0 (and analogously near
r=1)

J.M. Melenk -14 -



Shishkin mesh
 Shishkinmesh ]

Given a transition parameter 7 > 0 the Shishkin mesh T]\*? is given by the piecewise uniform
mesh with N nodes each in [0, 7], 7,1 — 7], and [1 — 7, 1].

Lemma

Let f be smooth. If T = min{Aelog N, 1/2} for sufficiently large X\ > O then the piecewise

nner

linear interpolant IpuYy**" satisfies

Hu?’\n/[ner o Ihu?/l[nETHLQ(Q) + \/EH(U?}[”GT . IhUZ]GneT)IHL%Q) < CN_l 10g3/2N

Proof: se blackboard; note that the factor \/€ is a stronger result than the energy norm with factor €
Corollary

Let f be smooth. For \ > 0 sufficiently large, the FEM based on SY(T;3) N HE(Q) yields

lue — unlle < CN~1 log3/2N

Proof: see blackboard
J.M. Melenk -15-



mesh grading functions

o(t)

J.M. Melenk

mesh grading function ¢ : [0, 1] — [0, 1]

mesh points x; = (t;), where t; are uniformly distrib. on [0, 1]

hi = ¢'(t;)N—1, N = number of nodes

uniform mesh where ¢ is affine

equidistributing interpolation error could suggest good choices of ¢
example: o(t) =t — uniform mesh

example: Shishkin mesh: ¢ = piecewise affine

t
1

—16 —



Bakhvalov mesh

8 “typical” sol. behavior near endpoint x = 0:
1— e Pu/e

® idea: near x = 0, want

m(t) w(t)

q(1— e*ﬁwi/(df)) =1,

x(t) —

I for ¢ € (0,1), o user chosen parameters.

8 ¢ = proportion of mesh points in the layer;
o controls grading in the layer

® away from z = 0: uniform mesh
— _oe |y =t
. () = x(t) == —F In L te [0,7’],
7(t) == x(7) + X' (7)(t — 7) otherwise
® note: p € C' by construction

® 7 such that (1) = 1. (= can compute 7 ~ g — F; x(1) = % In %)

Remark: convergence results for singular perturbation problems without logarithmic factors,
but mesh construction more complicated




high order methods

® Shishkin meshes and fixed order methods yield only algebraic convergence
® question: is exponential convergence possible?
® answer: use Vy = SP1(T(e,p)) N HY(Q) with T (e,p) given by the nodes

0, =, 1—7, 1, with 7 = Ape and A sufficiently small and let p — oo

e - Ape

p p p
ingredients of the proof of exponential convergence:

® analyticity (with control of constants) of the decomposition u. = u§}*" + uzﬁner +rar

8 polynomial approximation results for analytic functions
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interlude: low order vs. high order methods

iecewise "I Chebyshev
Ilinear interpolation
interpolation (p=14

J.M. Melenk -19 -



interlude: low order vs. high order methods

iecewise "I Chebyshev
Ilinear interpolation
interpolation (p=14

error: error:

1
17 = 15l < SRS . I
-1 o < o
. R LA
algebraic convergence —
If = If||lpee < CN"2 exponential convergence possible:

I f = IS " fllpe < Ce™
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interlude: low order vs. high order methods

0
10 109
10 107!
(] N
8 10 piecewise 8, 1073
= linear = 19" Chebyshev
10* Hinterpolation 107 finterpolation
5 5
10 10° 102 107 3 5 7 9
number of knots N polynomial degree p
error: 1 error:
If = 1fllzee < Sh°|Lf" |l Lo -p
-8 Cheb 2 (p+1)
. < P
algebraic convergence
=

If = If|pe < CN—2 exponential convergence possible:

If = L5 fllp= < Ce™*?
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example of failure: u(z) = 2* on (0,1), a € (0,1)

observe: u(x) = z® is not smooth at x =0

100 =<

L error

Chebyshev
interpolation of u(z) = \/x

107"
10 30
polynomial degree p

for exponential convergence: use piecewise polynomial approximation on geometric mesh

J.M. Melenk -20 -



geometric mesh

~@®

=Y ]

[2) Scherer 1981, Babugka & Guo (1986), Schwab, p and hp FEM (1998)
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[2) Scherer 1981, Babugka & Guo (1986), Schwab, p and hp FEM (1998)



geometric mesh

[2) Scherer 1081, Babugka & Guo (1986), Schwab, p and hp FEM (1998)



geometric mesh

[2) Scherer 1081, Babugka & Guo (1986), Schwab, p and hp FEM (1998)



geometric mesh

*—o—0—— 0
0 1

geometric mesh 7y, with
® [ layers and
® grading factor o € (0,1):

ro=0, z1=0F wzy=0cl"t ..., zp=1

[2) Scherer 1081, Babugka & Guo (1986), Schwab, p and hp FEM (1998)



geometric mesh

*—o—0—— 0
0 1

geometric mesh 7y, with
® [ layers and
® grading factor o € (0,1):

ro=0, z1=0F wzy=0cl"t ..., zp=1
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geometric mesh

*—o—0—— 0
0 1

geometric mesh 7y, with
® [ layers and
® grading factor o € (0,1):

ro=0, z1=0F wzy=0cl"t ..., zp=1

[2) Scherer 1081, Babugka & Guo (1986), Schwab, p and hp FEM (1998)



geometric mesh

0 1

geometric mesh 7y, with
® [ layers and
® grading factor o € (0,1):

ro=0, z1=0F wzy=0cl"t ..., zp=1

[2) Scherer 1081, Babugka & Guo (1986), Schwab, p and hp FEM (1998)



geometric mesh

geometric mesh 7y, with
® [ layers and
® grading factor o € (0,1):

ro=0, z1=0F wzy=0cl"t ..., zp=1

[2) Scherer 1081, Babugka & Guo (1986), Schwab, p and hp FEM (1998)



geometric mesh

o
¢ * On a geometric mesh with p layers:
p=2 p=2
[l — Ipw,; %L < Ce™P,
3 3 3
e N =p(p+1)
4 4 4 4
*——0—o——0
0 1

geometric mesh 7y, with
® [ layers and
® grading factor o € (0,1):

zg =0, xlzoL, CEQZO'L_l, e, xp =1

[2) Scherer 1981, Babugka & Guo (1986), Schwab, p and hp FEM (1998)



geometric mesh

Theorem
p=1

On a geometric mesh with p layers:

p=2 p=2
| — « Cheb a
”‘T - Ipw D ||L < CC
3 3 3
—————— N =p(p+1)
4 4 4 4 100
*——0—o——0
0 1
geometric mesh 7y, with 10°

error

® [ layers and

00

. . ~
® grading factor o € (0,1): 107" piecewise Chebyshev
interpolation of \/x
L L-1
r0=0, x1=0", x2=0 s ..., xp =1 -
10° 10! 102 10°

number of knots N ~ p?

[2) Scherer 1981, Babugka & Guo (1986), Schwab, p and hp FEM (1998)






analytic regularity by decompositions: b = 1

Leue = —e2u +uc =f onQ=(0,1), u(0)=u(l)=0, (@)

o yquter = S2M i (1) with
" .
up=f, wr =0, ue2=u;, >0

& — uy(z) = f)(z) and ugiy1(z) = 0.

inner __ 2M+1 _4 e~ /e 2M+1 4 —(1—x)/e __. znnerl mnner,r
@ e = SR i 00 4 T e e
o Loufyler — f = —e2MH 25000

question: what is a good M?

outer

® idea: choose M (in dependence on €) such that residual || L uf}*" — f]| is minimized
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analytic regularity of the decomposition

Lemma

Let f € C(R) satisfy

Hf(n)HLOO(Q) <Cpypnl  VneNg
Then the choice M ~ e~! leads to a decomposition u. = u§¥" + ué(}”er’l + ué(}”e” + 77
with
(38| ooy < Curiin!  V¥n € Ny
|(umerh ™) ()] < Ce™™e™®/* Wn e Ny
I lley < €5, ne{0,1,2).
PrOOf.' see blackboard
® Motivation for choice of M:
[Lcu§ — fllo=@) < M2 fCMHD| Lo @) < Cplev)®™MF2(2M +2)! < Cp (e (2M +2))>M+2

® choose M such that (2M + 2)ey;s ~ 1/2 so as to get exponential convergence in M



the case of non-constant b

Leue i= —2ul +b(@)uc = f onQ=(0,1), wu(0)=u(l)=0, (5)

Lemma (Melenk ’97)

Let f, b e C*(Q) satisfy

1F ™ |eo(@) < Cprfnl  ¥n €Ny, [0 peo() < Coagnl VY € Ny,
and b > by > 0.
Then one can select M ~ 1/e such that u. = u§{'*" + um”e” + uﬁ"ew + ry with

()™ || oo () < Cuviin!  ¥n € Ny
(™" (@)] < Cy"e™/F max{n,e} ™"  V¥n €Ny,
Pl <75, ne{0,1,2}.

Proof: induction argument to control u; of outer expansion and ; of inner expansion
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Polynomial approximation on the reference element K= (—=1,1)

Theorem

Let i € C°(K) satisfy

Ha(n)”LZ(I/E) < Cu’)ﬁn' Vn € Ny

There there are constants C, ¢ > 0 (depending only on 7,) and a polynomials m, € P, with
(U —mp)(£1) = 0 such that

~ R —cp
I 7Tp||H1(K) < CCye
Proof: see blackboard
construct mp (a) i= @(—1) + [, IE @ (¢) at

1 20k 5 (k) &) 2 (i+k)!
use /71(1—33 ) L (ac)Lj dx—éij2i+1 G R

i 2 “|2<i+k)!

1
conclude from (2) for Legendre expansion v = Y92 g v; L;(x) that / (1-— zz)k\v(k) (z)\2 dz = - v; -
-1 =20+ 1 (2 — k)!

E] conclude from (3) exponential decay of the coefficients b; of @’ = >, b; L; via the choice k = X for sufficiently small X
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approximation on 7 (¢, p)

>
=
[0
<| I
&

T(e,p): —

Theorem (Melenk ’97)
Let f, b € C*°(Q) satisfy

1F Ny < Cprfnt Y €No,  [b"l@) < Cifn!  ¥n € No,

and b > by > 0. Then there are \y > 0, C, 8 > 0 (depending only on f and b) such that for
AE (O, )\0]
inf e — v]|le < CATV/2e=Bp
veSY (T (e,p))

Proof: key is the approximation of the boundary layer part ué\’/}”er.
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pure p-version versus 3-element mesh

—e?u 4 u=(2—2%)"" on (—1,1),  u(£l)=0

p P P D

P-VERSION (1 elem), a-2.0

10 T T T T 10 T T T T T T
o'k 4 \\ —— eps=10"(-2)
4
R NN eps=10%-4) | 1
2 N
107 E N -~ eps=10%(-6)
T o - eps=10%-8)
>10°L 1 F10° .. B
310 = ~
3 3 <
2 5 ~
& ~
=107 1 ~ AN
5 S10° b S B
£ 5 N
'210°F 1 2 N
E K] s
K s <
E10°F 210" N 1
— eps=107(-2) S
eps=10%(-4 ~
ol pe-10Y-4) ) o
- - eps=10%(-6) 102k <. ]
- - eps=10(-8) ~
ol ps=10°(-8) R
1 L L L L L L L L N
107 s 10 15 20 40 5 50
0 5 10 15 20 25 30 35 40

Degrees of Freedom
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geometric meshes

geometric mesh with L layers characterizing feature

e geometric mesh 7.k,  with L layers e element at z = 0: size o©
o oL g2 . L e all other elements:
oee—e ° ° ° diam K .

————— =cons
dist(K, 0)
® geometric meshes are cornerstone of high order methods to resolve (algebraic)
singularities

L

® can also resolve boundary layers if L is s.t. scale resolution condition o“ ~ ¢ is satisfied

Exercise: Show that if L is such that 0¥ ~ ¢, then

inf e — vl < Ce PP
veSy (Tgeo.)

for some 5 > 0. The problem size is N = dim 55’1(7;];0,0) ~ pL ~ p|loge]



resolving layers and singular rhs by geometric mesh

2 fu=142)""" on(-1,1), u(£1) =0
Ap=

—_ | | I
+— T T
— L
g e
L—-1
a
0
a
s bdy layer mesh at right endp, fixed geom. mesh, a=1.0, eps=10"(-4) ) by layer mesh at right endpt, fixed geom. mesh, a=L.0, eps=10%(-6)
T T 10
10° B
10" N
J10° B
s 3
5 o
& L J
£ £
g s
o [CET B
] 3
e & — 2layers
10 1 e
2 layers 10™) 4layers 1
- - dlayers - - Glayers
~ ~Glayers . - - 8layers
— 8layers. 10 — 10 layers 1
107! 10!
10° 3 10" 10° 10° 10t 10° 10°
Degrees of Freedom Degrees of Freedom
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asymptotics of the reaction-convection-diffusion equation

—eu! —b(x)u. +a(z)ue = f on Q=(0,1), u(0)=u.(1)=0. (6)

®bH>by>0
® consider the constant coefficient case:
» fundamental system for homogeneous equation: e®, e*2% with

b+ Vb2 + dae b A b— Vb2 +4das a
= Kk —— g = K -
b

’ —2¢

A
! —2¢ e

P expect layer at = 0 of length scale O(e)
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asymptotic expansion for reaction-convection-diffusion equation

® asymptotic expansion: ansatz u®“*" ~ > c'u;(z) yields
. |
Za%—ué’,l —bu, +au;) = f
i

8 equating coefficients yields recursion

—buy + aug = f  on Q, up(1)

—bu, +au; =u_; onQ, ui(1)

i

0
0, i>1

® expansion ) . e, satisfies the b.c. at x = 1.
® the boundary layer at = 0 is obtained by the inner expansion v (z) ~ 3. c't;(z /<)

® using, e.g., the maximum principle and a suitable barrier function, one can show that the
remainder ryy satisfies ||[ra7|| 00 () = O(eMT1)

[2] Melenk 1997






an example of a system
L.,U:=-E, U +A@x)U=F onQ=(0,1), U((0) =U(1) =0,

2
E., = ( % ,1?2 > , A pointwise SPD, A(zx) > co >0, 0<e<u<l1

8 existence and uniqueness by Lax-Milgram
® FEM discretization quasi-optimal by Céa Lemma
® solution structure: boundary layers for small £ and/or u of length scales O(e) and O(u)
® layer structure depends on the scale separation of the scales ¢, u, 1, i.e., the ratios
K and €
1 %
4 cases:
(1) no scale separation: neither 11/1 nor €/p is small
(1) 3 scales: 1t/1 is small and e/ is small
(111) 2 scales: u/1 is small and e/ is not small
(IV) 2 scales: 1/1 is not small and ¢/p is small

@ Melenk, Xenophontos, Oberbroeckling '13



asymptotic expansions for the 3-scale case

® layers on scales O(p), O(g) — stretched variables = := z/; and T := /e near z = 0
(and corresponding ones 7, % at x = 1)
® formal ansatz

Ue) ~ 3 (4) (2) [0 + 0@ + 0@ + D@ + 0"
2y

k
A(l’) Taélor ZAk-Tk _ ZAkukik _ ZAkﬂk <Z> 7k
k k k

® write the operator L., as:

on the z-scale: — u?E. ,03U(7) + Z,ukAkx U(z),

® write

on the Z-scale: — e ?E. ,03U(z) + Zu < > AL TPU(®R).
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asymptotic expansions for the 3-scale case, |l

viewing the variables x, T, T as independent variables and inserting the ansatz into the
differential equation yields

e\
O(1)-scale: Zu’ (M) [—E., Ujj(z) + A(x)Uy(z)] = F(x),
O(u)-scale: Z/ﬂ (;)J [ u2E,, U" )+ Z,ukAkx UU(E)] =0
Y]

O(e)-scale: Z“Z <;>J

—c°E, U” —i—ZskAka: i ( )]:O

and analogous equations for UR(Z%) and ﬁR@R)
now one equates like powers of u and &/ p!
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asymptotic expansions for the 3-scale case, Il

write
wi; () ~ w;; () ) S ( () )
Ui'ﬂf: J 3 UZLIZ: ~]~ s Uzl‘: ,\]A y
= (). we-( o= (08
and arrive at
wl o
— < . > + A(2)Ujj(z) = F(2)d(:,5),(0,0)
i—2.j
— < Uij—2 ) +ZZ:A U, (F) =
fﬁ’/, k i—k,j -
b k=0
- min{%,5} N
- ( i)\//w > + Z Ak/x\kUi—k,j—k(f) =0
i,j+2 =0

This recursion is complemented with the following side conditions:
U;;(0) + fjij (0) + IAJU (0) =0, and decay conditions for U, U at oo



asymptotic expansions for the 3-scale case, IV

W
- ( v ) +A@Ui; (@) = F@)33,5),(0,0)
is2,

recursion for the Uj;:
Upo(z) = A~ (2)F(z),

"

Uss(o) = A (2) ( Wi ) L) #£ 0,0

Vi—2,j
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asymptotic expansions for the 3-scale case, V

- ( Yiy2 ) + 30 AT, ;@) =0 G

©J k=0

=AU, for A = const
® simplify notation by assuming A = A (i.e., Ay =0 for k > 1)
® study the case j = 0. Then the first equation of (7) is an algebraic equation:
Ao+ A0 =0 (8)
® solve for ;o and insert into the second equation of (7):
oy Aq1Ag — AjpAg

— Yo AL vio =0 (9)
® complement (9) with the side conditions
03,0(0) = —v;0(0), 0i0(T) >0 forz — 00

® finally solve for u; o with (8).



asymptotic expansions for the 3-scale case, V

ol min{i,j} .
- -’ + > AU k() =0 (10)
Vi j+2 E=0
=Ag0

B set @p = i}\i,l =0
® then first equation of (10) yields

—Uj o+ Ao =0
w;0(0) = —u;0 Uio(Z) >0 asT — oo

® solve second equation of (10) for ©; o:
oo oo
0i2(T) = / / AoiUio(T)drdt
T t

® so far, we have obtained INJ'LO, IAJi,o. The functions INJ'” ﬁ” for 7 > 0 are obtained
recursively



asymptotic expansions for the 3-scale case, V

Theorem (Melenk, Xenophontos, Oberbroeckling "13)

Let A, F be analytic. Then, U can be written as

U =Upy(z)+ Uyn(@) + Un (@) + U ED) + UFER) + Ry

where
“DZUM”LOO(Q) < CH™n! Vn € No
D200 (@) < Ov"e™  VneN
D20 (3)] < Oy Vn e N
Ry < Ce Yk 4 Ce=1/e
Proof:

® structurally similar to the scalar case
8 optimize expansion order M



exponential convergence for multiscale problems

TREp KEp

Theorem (Melenk, Xenophontos, Oberbroeckling '13)

The FEM approximation Uy € SP" (A, ,.,) satisfies

|U — Uyl < Ce™
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Approximation in balanced norms: system case

_( 2@+1)’
A < —2cos(mx/4)

) ) R0 = s < ! )

PSR T
82—10 € =€,

405 . _ 32
52-10 € =E,
107°F _ 1078 ¢ _ (32

€, 10 L E=E,

40T . 32
82—10 € =E,

energy norm error

PP R V7
82—10 (B =€,

405 . _ 32

, 82—10 (€ =E,

— 107k _10°8 & _ (32
g, 10 E=E,

40T . 32
82—10 € =E,

balanced norm error

10 15 20 25

energy norm:
[E20")[72 + (U7

J.M. Melenk

30 10 15 20 25 30

balanced norm:
IEYV4U|13. + U3,
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2D reaction diffusion equation

—&?Auc+u.=f onQ, us =g on 9N (11)

observations:
® boundary layer at 0€): rapid changes in
normal direction, smooth solution variation
in tangential direction (smooth data)
@ — appropriate mesh design: long thin
elements

-1 -1
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the case of smooth 012

Leug 1= —EZAuE +ue = f onQ, ue =g on 9N

® (outer expansion) make the formal ansatz u. ~ Y, e'u;(, y), which leads to

u(’”t”(x,y)~ZsQiAif:f+52Af—|—64A2f+"'

® (boundary fitted coordinates): Let X : T, — 02 be a (smooth, periodic) parametrization
of 9 and n(f) be the outer normal vector at X(#). Set:

¥ :(0,p0) x Tp — RQ’ (p,0) = (p,0) := X(0) — pn(0)

@ fact: for pg sufficiently small, ¢ is smoothly invertible, and its range is a half-tubular
neighborhood of 92
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the case of smooth 00 for —<?Au+u = f, ulpg = ¢

® x(6) = curvature of 9 at X(6) and

T T

® in fitted coordinates, we have Au(p,6) = 6§u —K(0)a(p,0)0,u+*(p,0)Iu+ pr' (0)a> (p, 0)pu
8 in stretched coordinates p := p/e, we have
L. = —8% +1d +er(0)o(ep, 0)05 — 202 (ep, 0)0; — epr’ (0)a> (ep, 0)Dp

® expanding in power series of &, we write

£5 = Z 57;Li

Lo =—0%+1d, Li=—p""tai7 05 — p' 2k 205 — p a0, i>1,
. 4 . . 4 (i +2) .

at = -k, ab = (i +1)K", ay = (i+1)GE+2) )Z(Z + )/{%’

ai =ab=al=0 i<0
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® Ansatz for u/™"e": yimmer ~ N £ U(p, 0).
. !
® inserting condition L. u'"™¢" = 0 yields
i
j{:&zjg:ALjLQ,j(ﬁ;H) =0
i =0
® - recurrence relation for the [71-:

‘*3%5% %*ih :Zja,+’jg +’;%,

i—1 1—2 i—3
~ P ~ PPN ~ 1R
Fir=% payosUi 15, Fa= E PlaydpUio_j, Fz= ) p’"az0pU;_3_j,
i=0 =0 i=0

® boundary conditions:

Ui(p,0) -0 for p— o0

g —-f|aQ for ¢ 220,
Ui(0,0) = G; := ¢ AW/ flyq i i is even,
0 if 7 is odd
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asymptotic expansions for smooth 02

® induction —- U (p,0 (Z ©;;(0 )e P with smooth fcts Oy

® truncated outer expansion: uﬁ“jter =M PN

truncated inner expansion: ui " = (Z?%H EiUi(p/E,9)> o1

® By construction: u$%¢" + u4i"" = g on 99

. By construction: L.ufe" = O(e2M+2) in a neighborhood of O

® y = be a cut-off function supported by a tubular neighborhood of 9Q2; x = 1 near 92

. uﬁﬁ,”” decays exponentially away from 9Q = the function yu’**" is defined on © and
satisfies

12 Ocufif™ ) L= () = O(*42)

® — representation u. = u§¥ + xule 4 1y
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regularity of the asymptotic expansion

Theorem (Melenk & Schwab 99, Melenk '02)

Let f, g be analytic and let OS2 be analytic. Then for the choice M ~ 1/e

[V U3t | ooy < C™n! Vn € Ny,
H@gn@guﬂ”erﬂpo(u < CY" ™ m! max{n,e1}" Y(n,m) € N2,

7 aall gy < Ce™be.

J.M. Melenk — 47 -



convergence on spectral boundary layer mesh 7 (¢, p)

S

O(pe) O(pe)

tkps
Theorem (Melenk & Schwab '98)

Let f, g, OQ be analytic. Let T be a fixed mesh consisting of quadrilaterals, and let the
spectral boundary layer mesh T (g, p) be constructed by refining the elements at the
boundary. Then there is A\g > 0 such that for 0 < A\ < \g there are C, b > 0 such that

1
inf ue —v||. < C—=e2.
st (Tem) . VA
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convergence on Shishkin meshes

/N:%

O(eln N)

Aeln N

==Y,
— h_T

Shishkin mesh near 92

-08 -06 04 02 0 02 04 06 08

Bakhvalov mesh near 92

Let f, g, OQ be analytic. Let T° be a fixed mesh consisting of quadrilaterals, and let the
Shishkin mesh TShshkin be constructed by refining the elements at the boundary. Then for
A > 0 sufficiently large there is C > 0 such that

inf ue —vlle <CN'In¥2 N

,Ues(l)rl(TShishkin)
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corner domains

curvilinear polygon
® J vertices 4;,i=0,...,J —1
® J edges; I'; and I';41 meet at A; 4
® interior angles w;

® arcs ['; analytic (straight arcs = special case)

W, Ag = Ay
To=Ty

T's

Az

Ay
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asymptotic expansions for corner domains

—2Auc tuc=f inQ, uc=0 ondQ

® elliptic equations in corner domains have corner singularities — need terms ( “corner
layers™) that represent these

® definition of asymptotic require smoothness of the data! — boundary layer expansions
can only be defined in a piecewise manner. — connecting these pieces requires “corner
layers”
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convex corners

fj := half-line emating from A; in direction of I';
fj+1 := half-line emating from A; in direction of I'j 14
C; := cone with apex A; and edges fj, fj+1

(pj,8;) = local coordinates associated with T';
(pj+1,0541) = local coord. associated with T';;

ri(+) = dist(-, 4;)

parametrize fj and fjH by

on the half-line T';: r; = 2L on the half-line T 1: 7; = 52—

sin w; sin wj
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convex corners

- " o egansn:
8 onTjypr, = ol U= 2o /
! ® - boundary correction needed
® for T';, define the inner expansion u}"" = SPMHL i, 1 (pj /e, 0;) as for the smooth case
above in the local coordinates (p;, 6;)
2M+1

® for I'; 1, define the inner expansion uﬁ(/}’ﬁfl =o' €Uij+1(pj+1/e,0;41) as for the smooth
case above in the local coordinates (p;41,6;41)

8 The terms (A]¢7j+1(~,0j+1) and ﬁi7j(~,9j) decay exponentially

® mismatch on fj+1: U@j(’f’j/{f) = fj@j(,ﬂj/{%@j) = (//\'i,j(rj/(ssinwj),gj)

® mismatch on fji Ui’j+1(’l“j/€) = Ai’jﬂ(pjﬂ/a,ﬁj) = ﬁi)j+1<7“j/(5 sinwj),ﬁj)

~

® functions U, j, U, j11 decay exponentially (if extended suitably)



convex corners

® -~ define the corner layer functions UiCjL as the solutions of

—AUij + Uij =0 in cone C;

Uy =-Uij onljn
Ui,j = _Ui’jJrl on Fj

ﬁff—)O as |z| — oo in C;

® upshot: uff™” -l +ufr + oA ﬁZC;L((.%' — Aj)/e) is a good approximation to
ue in a neighborhood of A;

8 -~ |localize with a cut-off function fo
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non-convex corners

e F’j = bisector

® C; is split into two sectors Cj+ and C;°

T; cT,

® for T';, define the inner expansion uy;™" = Zfﬁ)ﬂ s’ﬁid(pj/e, 6;) as for the smooth case

above in the local coordinates (p;, 6;)

. . . ; oM +1
® for I'j 11, define the inner expansion ", = Doico

case above in the local coordinates (p;41,6;41)

nner
M

€ U,j+1(pj+1/s 0;4+1) as for the smooth

® define u near A; by

inner +
nner __ uM J+1 on C
M S

l’nne'f‘ -
(e on C;

® correct the jump and the jump of the normal derivative of u%/2"“" across F;- with a corner layer

u]CL, i.e., the solution of a suitable transmission problem

® Remark: construction also works for convex corners

J.M. Melenk - 55 -



Decomposition of u. via asymptotic expansions

For each ¢, the exact solution u. can be decomposed as
us:ws'i‘xuaBL"i_S(\uaoL"i‘rs (12)

| /’ | ® y = cut-off function

R R supported by blue region
N — N near 052
RO \ = .
A rl' ‘ n ‘ i ® \ = cut-off function .
- supported by green region
no ! L near vertices
o
Ay F;;‘ | As
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Regularity of the decomposition

Theorem (Melenk ’02)
There are C, v, a > 0, § € [0,1) s.t. for each = € (0,1] there is a decomposition of the form
u. = w. + x uBl + X ull 4 r. with
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Regularity of the decomposition

Theorem (Melenk ’02)

There are C, v, a > 0, § € [0,1) s.t. for each = € (0,1] there is a decomposition of the form
u. = w. + x uBl + X ull 4 r. with

w. is analytic on Q and ||VPw.|| () < CyPp!, Vp € Np.
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Regularity of the decomposition

Theorem (Melenk ’02)

There are C, v, a > 0, § € [0,1) s.t. for each = € (0,1] there is a decomposition of the form
u. = w. + x uBl + X ull 4 r. with

w. is analytic on Q and ||VPw.|| () < CyPp!, Vp € Np.

remainder r- € HE(Q) and ||r.||- < Cexp(—a/e).
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Regularity of the decomposition

Theorem (Melenk ’02)

There are C, v, a > 0, § € [0,1) s.t. for each = € (0,1] there is a decomposition of the form
u. = w. + x uBl + X ull 4 r. with

w. is analytic on Q and ||VPw.|| () < CyPp!, Vp € Np.

remainder r- € HE(Q) and ||r.||- < Cexp(—a/e).

On () the boundary layer function uBl satisfies

|8;j8§juBL(pj,9j)| < Cmax{r!,e "}y 55l emPi/=, p; > 0.
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Regularity of the decomposition

Theorem (Melenk ’02)

There are C, v, a > 0, § € [0,1) s.t. for each = € (0,1] there is a decomposition of the form
u. = w. + x uBl + X ull 4 r. with

w. is analytic on Q and ||VPw.|| () < CyPp!, Vp € Np.

remainder r- € HE(Q) and ||r.||- < Cexp(—a/e).

On () the boundary layer function uBl satisfies

|8;j8§juBL(pj,9j)| < Cmax{r!,e "}y 55l emPi/=, p; > 0.

@ The corner layer uST satisfies on (; N B;) U (41 N Bj)

&)
|VPuCl(z)| < CePt rjl-_p_ﬁ exp(—ar;j/e)  peNy

(B; = neighborhood of A;, r; = dist(z, A;))
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Geometric meshes in O(pc) neighborhoods of vertices

O(pe)
L=1

10e)
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hp-FEM approximation result

Theorem (Melenk ’02)
Let T (e,p) be a mesh with

® needle elements of width \pe at the boundary
® 3 geometric mesh with L layers in the O(\pe) neighborhood of the vertices.

Then there exist C', b > 0 independent of €, p, L such that

e = unle < C [ +£(rp)%e ™|

provided that X is sufficiently small.
For L ~ p, we get dimS} (T (¢,p)) =: N ~ p> and therefore

[ue — un|le < Ce ¥V,

Remark: energy norm of corner layer is O(c) = very few layers suffice
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p=1,...,15,e=10and ¢ = 103

Energy convergence on L-shaped domain:, ¢ = 0.5, ¢=1 Egergy convergence on L-shaped domain:, ¢ = 0.5, &=0.001
10 T T T 10 T T T
107} ]
5 10° ¢ ]
<
[
c
(5]
£ 107 \\““w ]
9
o —— | =0
< —— L=2 —— L=0
T 6| o L=4 —— L=2
107 = |6 1 100l == L=4
-e- =8 . —=— L=6
L=10 -e- L=8
—o— |L=p/2 - L=10
10_81 ‘2 ‘3 ‘4 10121 ‘2 ‘8 ‘4
10 10 10 10 10 10 10 10
degrees of freedom ) degrees of freedom
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geometric meshes instead of the 2-element mesh

® issue: seek robustness (¢ may not be known precisely, parameter \ needs to be chosen ...)

® observe: (anisotropic) geometric refinement towards the boundary leads to meshes that
resolve boundary layer

® observe: geometric meshes are also effective in resolving (algebraic) singularities
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meshes for multi-scale singular perturbation problems

—*Au+u=f, € is in a range: Emin <e <1
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meshes for multi-scale singular perturbation problems

—*Au+u=f, € is in a range: Emin <e <1

1D mesh 7, (L layers of refinement)

scale resolution requirement

L such that o ~ €,,;,, — all scales are resolved
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meshes for multi-scale singular perturbation problems

—*Au+u=f, € is in a range: Emin <e <1
, 2D analytic 0f)
1D mesh 7, (L layers of refinement)
O'L Ul UO 0'0 0'1 O'L \\::\\\ 7;60
Tgeo at
o0l

scale resolution requirement QA
N X NS o

L such that o ~ €,,;,, — all scales are resolved
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meshes for multi-scale singular perturbation problems

—*Au+u=f, € is in a range: Emin <e <1
, 2D analytic 0f)
1D mesh 7, (L layers of refinement)
U'L Ul UO 0'0 0'1 O'L \\\::\\\ 7;60
Tgeo i
0'0\‘04‘

scale resolution requirement QA
N X NS o

L such that o ~ €,,;,, — all scales are resolved

e polygons: geometric refinement towards edges and corners (next slide)
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meshes for multi-scale singular perturbation problems

—*Au+u=f, € is in a range: Emin <e <1
2D analytic 0f)
1D mesh 7, (L layers of refinement)
L 1 0 0 1 N 7;60

scale resolution requirement QA
N X NS o

L such that o ~ €,,;,, — all scales are resolved

e polygons: geometric refinement towards edges and corners (next slide)

Theorem (Banjai, Melenk, Schwab '20+)

f analyticon Q and L ~ p =
hp-FEM converges exponentially (in p) in the energy norm uniformly in €, < e < 1.
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mesh construction via mesh patches
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mesh construction via mesh patches
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mesh construction via mesh patches

bdy layer patch

B

\
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mesh construction via mesh patches

bdy layer patch

B

\

) tensor patch

T

2

g
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mesh construction via mesh patches

bdy layer patch
B
T B C
*JL
corner patch 4 tensor patch
T
C
+UL +UL
¥ i
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mesh construction via mesh patches

bdy layer patch mixed patch
M
B
T B | M |C
*UL R *UL
corner patch 4 tensor patch |
T
C
+O'L *UL
) i
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exponential convergence on Netgen-generated geometric meshes

error
error
error

@ www.ngsolve.org (Schoberl et al.)
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Example: Naghdi shell

Energy convergence for t=0.01

10 — . h , . . .
LN
X N RS — = unstructured trian. mesh
107 N AN structured trian. mesh ]
N AN N — unstructured quad. mesh
* e - — structured quad. mesh
107"

relative error in energy
5
T

,_\
S,

0 2000 4000 6000 8000 10000 12000 14000 16000
degrees of freedom

from: Gerdes, Matache, Schwab, ZAMM

boundary layers on scale O(t) and O(V/t)
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simply supported Reissner-Mindlin plate

L-shaped RM plate, t=0.001
T

10°H 1
E
[E 2
>
j=
5]
(=4
w
£

mesh 1 2

LIJ10 . 4
o
=
=
[
o
H B
T E

mesh 5 10° ‘ ‘
10° 10° 10*
DOF

taken from: C. Xenophontos, CNME, '98

boundary layer on O(t); non-smooth limit equation — geometric mesh
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convection-diffusion equation

Lou:=—eAu+b(z) - Vu+c(z)u=f inQ, ulog =0 (13)

® associated bilinear form: B.(u,v) := / eVu-Vv+b-Vuv+cuw, L(v)= [, fv
Q

Lemma

Assume that ¢ — %divb >co>0. Then
lull®z = elult gy + lullfz) S Be(u,u)  Yu € Hy(R)

Proof: key observation is that by integration by parts fQ b Vuu = —% Q divbu?
® — Galerkin method possible
® issue: bilinear form B is not continuous in || - [| z uniformly in ! (— no
quasi-optimality!)
® technique: modify (in a consistent way) the bilinear form for stability in a stronger norm



limit problem and layers

limit problem
b-Vu+cu=/f inQ it
u=0 onI":={recdQ|b-n<0} b

~> expect layers at outflow boundary

(also internal layers if 92 is non-smooth)

Galerkin method performs quite well if meshes are used that appropriately resolve the
layers (careful analysis!)

problem: Galerkin method fails if layers are not resolved (oscillations everywhere)
stabilized methods such as SDFEM or GLSFEM have much better stability properties:
even if layers are not resolved, the approximation is good away from the (unresolved)
layers

[2) Gerdes, Melenk, Schétzau, Schwab, '01
@ Johnson, Schatz, Wahlbin, '87
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SDFEM

Bs(u,v):_/QEVu-Vv«l»b-Vuvacuv, Z(U):/Qf’u

Bgsp(u,v) = Z JK/ —cAu+b-Vu+cu)b- Vo,
KeT
Csp(v + 3 5K/ fb-Vu
KeT

lullgp == llulz + > dxlb- Vu| iz,
KeT

Theorem
Let c — %divb > co. Let T be a shape-regular mesh. Then 3 6 > 0 s.t. for 0 < 0y min{1, h%/s}

lul3p < Bsp(u,u) VS5 (T)
choice of dk:
doh if Peg > 1 (convection dominated b||pe (P
Ok == Ohf I K ( ) Y i I i I ) Peg := M (= local Péclet number)
01~ if Pex <1 (diffusion dominated) €



GLSFEM

B,g(u,’u):/SZsVu-Vv+b-Vu'u+cu'u7 E(v):/ﬂf’u

Bars(u,v) = Be(u,v) + Z 5K/ L.uLov
KeT K

lsp(v) =Lv) + Y 5K/ fLov

KeT K
lulrs = llul?z + D SxllLeulfa )
KeT

Theorem
Let c — %divb > co. Then:

Jul|rs S Bars(u,u) VS (T)
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DG methods: discretization of limiting transport equation
® instead of working with H'-conforming elements work with discontinuous piecewise polynomials
L Sl’O(T) = {’LL € L2(Q) \u|K eP1 VK e T}

upwind DG discretization for b - Vu + cu

Birans(y, Z/ (b - Vu + cu) v+/ b ng(u—u)v

KeT

with the upwind flux b - nxu given by

- u|K if b- ng >0
U=
u|g:  for neighboring element K’ if b-nx < 0

Lemma

Let ¢ — L divb > ¢y > 0. With the jump [-] across an edge e € £

BEE™ (u,u) 2 Julgzq) + D 1D - ngl[u]lZa
ee&
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DG methods: discretization of elliptic part

DG discretization of —cAu (SIP variant)

B (u, v) Z / eVu - VU-I—Z / [ul{Vv} — {Vu}[[v]]-l——[[u]][[v]]

KeT ecE v€

with [[-] denoting the jump and {-} the average on the edge ¢ € £

Lemma

For o > 0 sufficiently large (independent of ¢)

Bf)”G (w,u) 2 e Z ||Vu||L2(K +Z5 ||[[u]]||L2 Vu € SV(T)
KeT ecé
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operator —cAu+b-Vu+ cu

Bpa(u,v) := BB (u,v) + B (u,v)

Lemma

Let c — %divb > co > 0. For a > 0 sufficiently large there holds

Bpa(u,v) 2 e > [Vulfa) + lullizx + 26 II[[U]]HLz(e) + > 1o | [ul 720
KeT eeE el
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