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Sensitivity of sensing using hole structures

Joint work with Junshan Lin from Auburn University:
Sensitivity of resonance frequency in the detection of thin layer using nano-slit structures,

IMA Journal of Applied Mathematics , 2021.
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Motivation: Biosensing

References: A. Cetin, et al (2015), A. Blanchard-Dionne and M. Meunier (2017),
J. Gomez-Cruz, et al (2018), S. Oh and H. Altug (2018), · · ·

Mathematical questions:

Characterize the spectral sensitivity in the detection of thin biochemical
layer.

Identify the main features of the samples from resonance frequencies and
their shifts (Inverse Spectral Problems).
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Spectral sensitivity analysis

dk(H)

dH
= O(1+| log(H/δ)|) if H . δ and

dk(H)

dH
= O

(
δ

H

)
if H & δ

where k(H) is the resonant frequency.
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Superresolution imaging of thin objects
using hole structures

Joint work with Junshan Lin from Auburn University:
Super-resolution imaging via subwavelength hole resonances,

Physical Review Applied, 2020.

Hai Zhang 5 / 32



The roadmap for super-resolution imaging I
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Imaging in an ideal scenario in 2D:

• The thin sample is characterized by the
transmission function q(x)
• The incident field u satisfying ∆u + k2u = 0
generates an illumination pattern on the sample
plane.
• v is the transmitted field at the sample plane.
• Goal: Recover q from the far-field data.
• Diffraction limit: far-field data is given by
v̂(ξ) for ξ ∈ (−k, k). If u is a plane wave, then
the illumination pattern only has Fourier
component for |ξ| < k. One can only retrieve
the Fourier component of q for |ξ| < 2k.
• Idea of superresolution: generate
high-oscillatory illumination pattern on the
sample plane.

• Example um = e imkx−ζy with (mk)2 − ζ2 = k2, m = ±2,±3, · · · ,±M then

v̂m(ξ, 0) = ûm(ξ, 0) ∗ q̂(ξ) = q̂(ξ −mk) for ξ ∈ (−k, k).

• q̂(ξ) for ξ ∈ [−(M + 1)k, (M + 1)k] can be recovered
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The roadmap for super-resolution imaging II
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• An array of identical slit holes S1, S2, · · · , SJ are patterned in a metallic slab, with
δ � ` < λ/2 .

• Apply the resonant modes generated from subwavelength hole as the illumination patterns.

• By tuning the incidence at resonant frequencies, the subwavelength holes generate strong
wave field with desired oscillation patterns.

• The substrate is needed to control the shift of resonant frequencies caused by the sample.
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Resonance for subwavelength holes I
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• The total field u satisfies
∇ ·
(

1

ε(x)
∇u
)

+ k2u = 0 in D,

where D := D(1) ∪ D(2) ∪ D(3) ∪ (∪Jj=1Sj );

∂u

∂ν
= 0 on ∂D(1).

• udiff := u − uinc satisfies the outgoing
radiation conditions at infinity.

• The complex-valued resonances can be obtained by using layer potential techniques.

Im k

Re k
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Wave patterns at resonant frequencies

• The transmitted field adopts the expansion

u(x) =
J∑

j=1

aj · g(x , xj) + O(δβ),

where xj is located at the j ′th slit aperture.
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Transmitted field above the sample plane at the resonant frequencies k = < k1j for j = 1,

2, · · · , 6
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Wave patterns at resonant frequencies

Transmitted field on the sample plane at the resonant frequencies k = < k1j for j = 1, 2, · · · , 6
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Hai Zhang 10 / 32



Super-resolution imaging of infinitely thin samples I
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• utran: transmitted field on the sample plane through the subwavelength holes

• q(x1): transmission function of an infinitely thin layer

• usamp(x1, 0) = q(x1)utran(x1, 0): wave field transmitted immediately through the sample

• The propagation of the sample field usamp to the detection plane is described by the
propagator (transfer function) in the Fourier domain:

ûdet(ξ, d) = e iρ0(ξ)d ûsamp(ξ, 0),

where

ρ0(ξ) =


√

k2ε0 − ξ2, |ξ| ≤ k,

i
√
ξ2 − k2ε0, |ξ| > k.

• The relation in the spatial domain:

udet(·, d) = wd ∗ usamp = wd ∗ (q · utran), where ŵd (ξ) = e iρ0(ξ)d
.
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Super-resolution imaging of infinitely thin samples II
• Define the forward operator Ak [p] := wd ∗ (p · utran).

• hk and h
(0)
k : measurement when the sample is present and not, respectively.

• Recover p := 1− q by solving the equation

Ak [p] + ηk = gk , where gk := hk − h
(0)
k , ηk is the noise.

• For multiple frequency configuration, solve the equation A[p] + η = g , where

A =


Ak1

·
·
·

Akm

 , g =


gk1

·
·
·

gkm

 , and η =


ηk1

·
·
·
ηkm

 .

• Two numerical approaches: Gradient descent method and Total variation regularization.
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Numerical examples

A total of 9 slit holes span about 2λ such that the neighboring slit distance ` ≈ λ/4;
The measurement distance is 5λ, 5% Gaussian random noise.
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Super-resolution imaging of thin samples with finite thickness
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• Born approximation:

∆udiff + k2udiff = −k2 (ε(x)− 1) utran in D(3),

.
• The forward operator:

Ak [p] = −k2

∫
R0

g (3)(x1, d ; y)utran(y) p(y)dy , p = ε− 1.

• Gradient descent and total variation regularizations are applied.
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Numerical examples

The neighboring slit distance ` ≈ λ/4.
Top: real image; middle: gradient reconstruction; bottom: TV regularization

The neighboring slit distance ` ≈ λ/8
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Summary and outlook

Summary: Subwavelength holes can be used to generate illumination
patterns which can probe both the high and low spacial frequency
components of imaging targets to achieve superresolution.

Outlook

1 Real metallic structures and 3D subwavelength structures:
quantitative analysis and numerical approach
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2 Applications in biosensing and imaging (inverse problems).
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Reconstruct small objects beyond the resolution limit:
plasmonic sensing

Joint work with H. Ammari, M. Ruiz, S. Yu:
SIAM Journal on Imaging Sciences, 2018
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Plasmonic sensing

1 Reconstruct (or classify) a small object from far field measurements.

2 The inverse problem is severally ill-posed because of the diffract limit
and low signal-to-noise ratio (SNR).

3 Idea: Plasmonic sensing.

Hai Zhang 18 / 32



Plasmonic nanoparticles

1 Metallic particle (typically made of gold) whose size range from
several nm’s to a hundred of nm’s;

2 The free electron density of the plasmonic particle can be strongly
coupled to EM fields at surface plasmon resonant frequencies in the
visible and near-infrared regime, and results strong resonant
scattering.


∇ · 1

εD
∇u = 0 in R3,

εD = εmχ(R3\D̄) + εcχ(D̄),

εc = 1−
ω2
p

ω(ω+iγp)
.
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Plasmon resonance: Quasi-static model (the far field)

Define the contrast parameter:

λ = λ(ω) =
εm + εc(ω)

2(εm − εc(ω))
.

Theorem
The solution u has the following asymptotic

u(x) = ui (x) +∇yG(x , 0) ·M(λ,D)∇ui (0) + O

(
δd+1

dist(λ, σ(K∗D))

)
,

where σ(K∗D) = {λ1, λ2, · · · .} denotes the spectrum of K∗D (The Nuemann-Poicare operator
associated with the domain D) in H∗(∂D) and

M(λ,D) =
∞∑
j=1

(νl , ϕj )H∗ (ϕj , xm)

λ− λj

is the polarization tensor associated with D.
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The Neumann-Poincare operator

For a domain D with C 1,α boundary, we define

K∗Dψ(x) =
1

ωd
p.v .

∫
∂D

< y − x , ν(y) >

|x − y |d
ψ(y)dσ(y)

where d is the dimension of the space and ωd is the area of the unit
sphere in Rd .

Lemma

1 K∗D is compact from L2(∂D) to L2(∂D) and is self-adjoint in

H−
1
2 (∂D) equipped with the following inner product

(u, v)H∗ = −(u,SD [v ])− 1
2
, 1

2
.

2 The following presentation formula holds: for any ψ ∈ H−1/2(∂D),
K∗D =

∑∞
j=0 λj(·, ϕj)H∗ ⊗ ϕj , where −1

2 < λj ≤ 1
2 .

We denote the space H−
1
2 (∂D) with the new inner product by H∗(∂D).
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Plasmonic resonances

Plasmonic resonances depend on1:
1 The shape, size and the physical properties of the particle;
2 The physical properties of the background media.

1Mathematical analysis of plasmonic nanoparticles: the scalar case, Ammari, Millien,
Ruiz and Z, ARMA, 2017.
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Plasmonic sensing

Main Idea: By using the near field interaction with a known plasmonic
particle (sensor), the fine detail information of the small object can be
encoded into the shift of the resonant frequencies.
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Two interaction regimes

Intermediate interaction regime:

i) The plasmonic particle D2 has size of order one; the ordinary particle
D1 = δB has size of order δ � 1.

ii) dist(D1,D2) is of order one.

Strong interaction regime:

i) The plasmonic particle D2 has size of order one; the ordinary particle
D1 = δB has size of order δ � 1.

ii) there exist positive constants C1 and C2 such that C1 < C2 and

C1δ ≤ dist(D1,D2) ≤ C2δ.
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Shift in the plasmonic resonance in the intermediate regime

Thm: The following expansion holds in the far field:

u(x) = ui (x) +∇ui (z) ·M(λD2 ,D1,D2)∇G (x , z) +O

(
δd+1

dist(λ, σ(K∗D2
))

)
,

where

M(λD2 ,D1,D2)l ,m =
∞∑
j=1

(νl , ϕj)H∗(ϕj , xm)− 1
2
, 1

2

λD2 − λj + Pj
,

λD2 =
ε2 + εm

2(ε2 − εm)
.
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Shift in the plasmonic resonance in the intermediate regime

Thm: In the intermediate interaction regime,

Pj = Rjj +
∑

l 6=j
RjlRlj

λj−λl
+
∑

(l1,l2) 6=j

Rjl2
Rl2 l1

Rl1 j

(λj−λl1
)(λj−λl2

)
+ . . . ,

Rjl =
(

1
2
− λj

)∑M
m=1

∑N
n=1 a

j
mMm,n(D1)(aln)t + O(δM+N+1),

where Mm,n(D1)’s are the generalized polarization tensors of the object D1.

Thm (Ammari-Lim-Kang-Zaribi): For D of type C1,α and λ ∈ C, the set Mm,n(λ,D) define
uniquely λ and D.
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Inverse problem of plasmonic sensing

Assume that the plasmonic resonance occurs at λ1.
We consider two steps:

1) Recover the first order CGPTs from measurements of P1 for different
positions of the plasmonic nanoparticle.

2) An optimal control approach to estimate the shape of D1.
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Numerical results in the intermediate regime
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Plasmonic sensing in the strong interaction regime

Remark: The perturbation argument fails in the strong interaction case,
shift in resonant frequency in not small.

Main approach: design a conformal mapping which transforms the two
particle system into a shell-core structure. Perturbation argument can be
used to analyze the shift in the resonant frequencies due to the presence of
the inner dielectric core.
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Example: shifts in plasmonic resonance
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The dotted line: without dielectric particle;
The solid line: with a dieletric particle D1.
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The strong interaction regime
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Gray curves: the original shape;
Black curves: the reconstructed shape. The iteration number is 30.
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Thank You!
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