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Scattering by a periodic array of narrow slits
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o Asymptotic expansion of real eigenvalues and resonances:
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Fano resonance for periodic slit holes
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e Fano resonance: asymmetric spectral line shape (sharp transition from peak to dip).

e Applications: efficient optical switching devices, bio-sensing, and photonic devices
with high quality factors, etc.




Fano resonance in a nutshell:

@ Discovered first by Ettore Majorana in the experiment of scattering of electrons
from helium, first theoretical explanation was given by Ugo Fano (1961).
Basic principle: Interference between a wide-band background and a
narrow-band (resonant) scattering process.

@ Fano resonance in photonics: extensively explored since the last decade.
M. Limonov, et al., Nature Photonics (2017)

@ Mathematically, Fano resonance can be attributed to two main mechanisms:

(1) Embedded eigenvalues of the differential operator (bound states in the
continuum).
Existence of embedded eigenvalues: Bonnet-Bendia, Shipman, Volkov, etc.
Perturbation theory: Shipman, Venakides, Lu, etc.

(2) Coupled resonators with different resonance strength.

Our goal:
@ Investigate mathematically the two mechanisms for Fano resonance in the context
of subwavelength holes.

@ Show new field amplification behavior at Fano resonance for subwavelength
structures.



Setup |: weakly coupled slit holes
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e Periodic array of slits, where each period consists of two identical silts S; USZ. Each
has width € and length 1.

e The exterior domain: Q¢ = Q; UQ, US;.
o Transverse magnetic polarization: the incident magnetic field H' = (0,0, u").

e The scattering problem: Aug 4+ k*us = 0in Q¢ and dyue = 0 on Q.



Setup |: weakly coupled slit holes
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o Look for quasi-periodic solutions such that ue (x; +d, x2) = e*%ue (x,x2).

e Outgoing radiation condition: the scattered field
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Boundary integral equations
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Integral equation formulation over the slit apertures I'f and I'5':
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Homogeneous problem and the condition for singular frequencies

e Boundary integral equations in the scaled domain (x; = €X, y; = €Y):
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where T¢, T%*, T', and 7" are integral operators with Green functions kernels, ¢;* and
¢ are Neumann data.

e The set of singular frequencies (eigenvalues and resonances) o(T): we solve for k
such that T'(k; k, €) ¢ = 0 attains non-trivial solutions.
o Mathematical tools:

@ Gohberg-Sigal theory: reduce the solution of singular frequencies to the roots of
nonlinear equations.

@ Asymptotic analysis and complex analysis.

Condition for singular frequencies

o(T) are the roots of 4; 1 (k;k,€) =0 (j = 1,2), where A; .. are eigenvalues of certain
2 x 2 matrices M (k; k, €).




Asymptotic expansion of singular frequencies: k =0

Theorem (kx = 0)

If ¥ = 0, the singular frequencies of the scattering problem attain the expansions
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for m < 2/d. In the above, Im K = O(e) and Im K2 =o.

Remark: k,(nz) is an embedded eigenvalue, and the eigenmode is odd w.r.t. x;.



Asymptotic expansion of singular frequencies: k # 0

Theorem (x # 0)

If |x| < 1, the singular frequencies of the scattering problem attain the expansions
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for m < 2/d. In the above, Im A — 0(e) and Im &Y = 0(x2e).




Fano resonance |

Lemma (Reflected and transmitted wave)

If 0 < k < 27/d, the reflected and transmitted wave adopts the expansion

ul(x) = R(k, i, &) - &%= and 4L (x) = T(k, Kk, &) - <1072,
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Fano resonance I

Theorem (Fano resonance)

Set k, = Re k2. There exists k;,k; € [k — cx?e, ki + cx€] such that |T(k;)| < e and
IT(k2)| 2 1—e.

Sketch of proof. It can be calculated that R =1+ T+ O(e),
then from the conservation of energy |R|*> +|T|> = 1, we

deduce
‘ |T(k)+ 11> +|T(k))> = 1+ 0(¢). (1)
On the other hand, it can be shown that
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Field amplification at Fano resonant frequency

Field enhancement

The wave field attains the following asymptotic expansion

e (x) = [:I: Gl (é)] cos(k(x2 — 1/2)) +0(1)

K€

)= {i”— +0(%)} -sin(k(x — 1/2)) + (1)

at the Fano resonant frequency k = ‘.Kk,(,,z) where m is odd and even respectively.

The wave field at the first two Fano resonance frequencies: d =1, e = 0.05, k =0.1.
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Setup II: strongly coupled slit holes
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e The distance between two slit holes in each period is O(¢).

e Boundary integral equation formulation:
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e Decomposition of the integral operators:
T +T' = (B +B)P+S+5°, T =BP+S*+5% T'=pP+3~,

where Po = (¢, 1)1, S and S* are integral operators with logarithm kernels. B, may be
complex-valued, but ; and  are real.

e The leading terms in the resonant conditions A, 1 (k) =0 and A, . (k) =0 are
Ms ()~ (Be+ B £B+Be)(a+ @), Aos(k) = (Be+Bit f—pe)(a—a).
-



Asymptotic expansion of singular frequencies

The singular frequencies of the scattering problem attain the expansions
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Asymptotic expansion of singular frequencies

Theorem
The singular frequencies of the scattering problem attain the expansions
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for me < 1.

The imaginary parts of kﬁ,,') and kf,,z) attain the following orders:

O(ke?) if (x,mm) in the first radiation continuum;

(1) _ 2) _
Sk’ =0(e), Ik = { 0(g?) if (x,mm) above the first radiation continuum.




Fano resonance

e The transmitted field

ue() = ef- - (g2(x,(—£,0)) +0(e) ) + ey - (82(x,(£,0)) + 0(e)),
where the transmission coefficients
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Top: Transmission |T| for k € (2,7) when d = 1.3, € = 0.02. The incident angle 6 = 7 /6.
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Investigate mathematically two mechanisms for generating the Fano resonance in a
periodic array of small holes:

e Provide quantitative analysis of the embedded eigenvalues/resonances for the
homogeneous scattering problem.

e Present a rigorous proof of Fano transmission line.
e Characterize the corresponding wave field enhancement at Fano resonance.
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Outlook: Field enhancement for a single slit in a real metallic slab
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@ Multiscale problem: size of slit aperture &, skin depth of metal &,
thickness of slab d, and wavelength A;

@ The skin depth effect weakens the Fabry-Perot resonance, and induces
small shifts of the FP resonance;

© The slit structure can excite plasmonic surface waves (plasmonic
resonance) along the metal interface;

© The plasmonic resonance can interact with the FP resonance, an vice
visa.



Theoretical results: Part I-Excitation of Surface Plasmon Polariton
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The even incident case

Let &, = €, + i€/ with the following scaling:

el = 0(8%),  len| = 0(8P).

Theorem

Consider the even case. Assume that —4 < @ < 0 and 8 < 2. The solution
admits the decomposition ¢ = ¢y + ¢, where

Po = P00 X(5,)
In addition,
— 1— — 1
G IR Ml E e Zo1Gs! R S
pO(é) L'(R) 1+ |é‘ I2(R)

Remark: similar results for the odd case.

Reference: Mathematical analysis of surface plasmon resonance by a
nano-gap in the plasmonic metal, Junshan Lin and Z, SIAM Math. Anal, 2019.




Outlook

@ Part II: The interaction between plasmonic resonance and FP
resonance;

@ Part lll: The mechanism of EOT and LFE;

© Future work: 3D subwavelength structures:




