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Scattering by a periodic array of narrow slits
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• Asymptotic expansion of real eigenvalues and resonances:

km(κ) = mπ +2mπ

[
1
π

ε lnε +

(
1
α

+ γ(κ)

)
ε

]
+O(ε2 ln2

ε), m = 1,2,3, · · ·



Fano resonance for periodic slit holes

																																									

	

𝑢! 	
	

	

	

	

1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1

k

|T |

2.8298 2.83 2.8302
0

0.2

0.4

0.6

0.8

1

k

|T |

• Fano resonance: asymmetric spectral line shape (sharp transition from peak to dip).

• Applications: efficient optical switching devices, bio-sensing, and photonic devices
with high quality factors, etc.



Fano resonance in a nutshell:

Discovered first by Ettore Majorana in the experiment of scattering of electrons
from helium, first theoretical explanation was given by Ugo Fano (1961).

Basic principle: Interference between a wide-band background and a
narrow-band (resonant) scattering process.

Fano resonance in photonics: extensively explored since the last decade.
M. Limonov, et al., Nature Photonics (2017)

Mathematically, Fano resonance can be attributed to two main mechanisms:

(1) Embedded eigenvalues of the differential operator (bound states in the
continuum).
Existence of embedded eigenvalues: Bonnet-Bendia, Shipman, Volkov, etc.
Perturbation theory: Shipman, Venakides, Lu, etc.

(2) Coupled resonators with different resonance strength.

Our goal:

Investigate mathematically the two mechanisms for Fano resonance in the context
of subwavelength holes.

Show new field amplification behavior at Fano resonance for subwavelength
structures.



Setup I: weakly coupled slit holes
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• Periodic array of slits, where each period consists of two identical silts S−ε ∪S+ε . Each
has width ε and length 1.

• The exterior domain: Ωε = Ω1 ∪Ω2 ∪Sε .

• Transverse magnetic polarization: the incident magnetic field Hi = (0,0,ui).

• The scattering problem: ∆uε + k2uε = 0 in Ωε and ∂ν uε = 0 on ∂Ωε .



Setup I: weakly coupled slit holes
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• Look for quasi-periodic solutions such that uε (x1 +d,x2) = eiκduε (x1,x2).

• Outgoing radiation condition: the scattered field

us
ε (x1,x2) =

∞

∑
n=−∞

us
n,j · eiκnx1±iζnx2 in Ωj (j = 1,2),

where

κn = κ +
2πn

d
and ζn(k) =


√

k2−κ2
n , |κn| ≤ k,

i
√

κ2
n − k2, |κn|> k.



Boundary integral equations

																																									

	

	 	

	 	

Integral equation formulation over the slit apertures Γ
±
1 and Γ

±
2 :



∫
Γ
+
1,ε∪Γ

−
1,ε

ge(x,y)
∂uε (y)

∂y2
dsy +

∫
Γ
−
1,ε

gi,−
ε (x,y)

∂uε (y)
∂y2

dsy−
∫

Γ
−
2,ε

gi,−
ε (x,y)

∂uε (y)
∂y2

dsy +ui +ur = 0, on Γ
−
1,ε ,

∫
Γ
+
1,ε∪Γ

−
1,ε

ge(x,y)
∂uε (y)

∂y2
dsy +

∫
Γ
+
1,ε

gi,+
ε (x,y)

∂uε (y)
∂y2

dsy−
∫

Γ
+
2,ε

gi,+
ε (x,y)

∂uε (y)
∂y2

dsy +ui +ur = 0, on Γ
+
1,ε ,

∫
Γ
+
2,ε∪Γ

−
2,ε

ge(x,y)
∂uε (y)

∂y2
dsy−

∫
Γ
−
1,ε

gi,−
ε (x,y)

∂uε (y)
∂y2

dsy +
∫

Γ
−
2,ε

gi,−
ε (x,y)

∂uε (y)
∂y2

dsy = 0, on Γ
−
2,ε ,

∫
Γ
+
2,ε∪Γ

−
2,ε

ge(x,y)
∂uε (y)

∂y2
dsy−

∫
Γ
+
1,ε

gi,+
ε (x,y)

∂uε (y)
∂y2

dsy +
∫

Γ
+
2,ε

gi,+
ε (x,y)

∂uε (y)
∂y2

dsy = 0, on Γ
+
2,ε .



Homogeneous problem and the condition for singular frequencies

• Boundary integral equations in the scaled domain (x1 = εX, y1 = εY):

T(k;κ,ε)ϕ =


Te +T i Te,− T̃ i 0

Te,+ Te +T i 0 T̃ i

T̃ i 0 Te +T i Te,−

0 T̃ i Te,+ Te +T i




ϕ
−
1

ϕ
+
1

ϕ
−
2

ϕ
+
2

=


2f−

2f+

0
0

 ,
where Te, Te,±, T i, and T̃ i are integral operators with Green functions kernels, ϕ

±
1 and

ϕ
±
2 are Neumann data.

• The set of singular frequencies (eigenvalues and resonances) σ(T): we solve for k
such that T(k;κ,ε)ϕ = 0 attains non-trivial solutions.

• Mathematical tools:

Gohberg-Sigal theory: reduce the solution of singular frequencies to the roots of
nonlinear equations.

Asymptotic analysis and complex analysis.

Condition for singular frequencies

σ(T) are the roots of λj,±(k;κ,ε) = 0 (j = 1,2), where λj,± are eigenvalues of certain
2×2 matrices M±(k;κ,ε).



Asymptotic expansion of singular frequencies: κ = 0

k

0
π/d

κ

-π/d

σ
even
c σ

odd
c

0 0

Theorem (κ = 0)

If κ = 0, the singular frequencies of the scattering problem attain the expansions

k(1)m = mπ +2mπ

[
1
π

ε lnε +

(
1
α

+ γ + β̂

)
ε

]
+O(ε2 ln2

ε);

k(2)m = mπ +2mπ

[
1
π

ε lnε +

(
1
α

+ γ− β̂

)
ε

]
+O(ε2 ln2

ε)

for m < 2/d. In the above, Im k(1)m = O(ε) and Im k(2)m = 0.

Remark: k(2)m is an embedded eigenvalue, and the eigenmode is odd w.r.t. x1.



Asymptotic expansion of singular frequencies: κ 6= 0

k

0
π/d

κ

-π/d

Theorem (κ 6= 0)

If |κ| � 1, the singular frequencies of the scattering problem attain the expansions

k(1)m = mπ +2mπ

[
1
π

ε lnε +

(
1
α

+ γ +
1
2
(β−+β

+)

)
ε

]
+O(ε2 ln2

ε);

k(2)m = mπ +2mπ

[
1
π

ε lnε +

(
1
α

+ γ− 1
2
(β−+β

+)

)
ε

]
+O(ε2 ln2

ε)

for m < 2/d. In the above, Im k(1)m = O(ε) and Im k(2)m = O(κ2ε).



Fano resonance I

Lemma (Reflected and transmitted wave)

If 0 < k < 2π/d, the reflected and transmitted wave adopts the expansion

ur
ε (x) = R(k,κ,ε) · eiκx1+iζ0(x2−1) and ut

ε (x) = T(k,κ,ε) · eiκx1−iζ0x2 ,

where

R(k,κ,ε) = 1−
iε
(
α +O(ε +κ2)

)
2d ζ0 (1+η)

·
[
−µ

2
+

(
1

λ1,+
+

1
λ1,−

)
+µ

2
−

(
1

λ2,+
+

1
λ2,−

)]
,

T(k,κ,ε) = −
iε
(
α +O(ε +κ2)

)
2d ζ0 (1+η)

·
[
−µ

2
+

(
1

λ1,+
− 1

λ1,−

)
+µ

2
−

(
1

λ2,+
− 1

λ2,−

)]
,

η = O(κ), µ
+ = 1+O(κ), µ

− = O(κ2).



Fano resonance II

Theorem (Fano resonance)

Set k∗ = Re k(2)m . There exists k1,k2 ∈ [k∗− cκ2ε,k∗+ cκ2ε] such that |T(k1)|. ε and
|T(k2)|& 1− ε.

−1 1
θ1

θ1
γ0

γ̃0

θ1

e
iθ0 γ̃0

i

−i

−1 1

D

θc

−i

i

Sketch of proof. It can be calculated that R = 1+T +O(ε),
then from the conservation of energy |R|2 + |T|2 = 1, we
deduce

|T(k)+1|2 + |T(k)|2 = 1+O(ε). (1)

On the other hand, it can be shown that

T(k) = t1(k∗)+
eiθ0

c1s+ i c2
+O(ε), where k− k∗ = s ·κ2

ε. (2)

θ1 = arctan
|ℑ t1(k∗)|
|ℜ t1(k∗)|



Field amplification at Fano resonant frequency

Field enhancement

The wave field attains the following asymptotic expansion

uε (x) =
[
± codd

κε
+O

(
1
ε

)]
· cos(k(x2−1/2))+O(1)

uε (x) =
[
± ceven

κε
+O

(
1
ε

)]
· sin(k(x2−1/2))+O(1)

at the Fano resonant frequency k = ℜk(2)m where m is odd and even respectively.

The wave field at the first two Fano resonance frequencies: d = 1, ε = 0.05, κ = 0.1.



Setup II: strongly coupled slit holes
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• The distance between two slit holes in each period is O(ε).

• Boundary integral equation formulation:
Te +T i Te,− T̃ i 0

Te,+ Te +T i 0 T̃ i

T̃ i 0 Te +T i Te,−

0 T̃ i Te,+ Te +T i




ϕ
−
1

ϕ
+
1

ϕ
−
2

ϕ
+
2

=


0
0
0
0

 ,
• Decomposition of the integral operators:

Te +T i = (βe +βi)P+S+S∞, Te,± = βeP+S±+S∞,±, T̃ i = β̃P+ S̃∞,

where Pϕ = 〈ϕ,1〉1, S and S± are integral operators with logarithm kernels. βe may be
complex-valued, but βi and β̃ are real.

• The leading terms in the resonant conditions λ1,±(k) = 0 and λ2,±(k) = 0 are

λ1,±(k)≈ (βe +βi± β̃+βe)(α + α̃), λ2,±(k)≈ (βe +βi± β̃−βe)(α− α̃).



Asymptotic expansion of singular frequencies

Theorem

The singular frequencies of the scattering problem attain the expansions

k(1)m = mπ +2mπ

[
2
π

ε lnε +

(
1

α + α̃
+ γ(κ,mπ)

)
ε

]
+ k(1)m,h,

k(2)m = mπ +2mπ

(
1

α− α̃
+

2ln2
π

)
ε + k(2)m,h

for mε � 1.

Theorem

The imaginary parts of k(1)m and k(2)m attain the following orders:

ℑk(1)m = O(ε), ℑk(2)m =

{
O(κε2) if (κ,mπ) in the first radiation continuum;
O(ε2) if (κ,mπ) above the first radiation continuum.



Asymptotic expansion of singular frequencies

Theorem

The singular frequencies of the scattering problem attain the expansions

k(1)m = mπ +2mπ

[
2
π

ε lnε +

(
1

α + α̃
+ γ(κ,mπ)

)
ε

]
+ k(1)m,h,

k(2)m = mπ +2mπ

(
1

α− α̃
+

2ln2
π

)
ε + k(2)m,h

for mε � 1.

Theorem

The imaginary parts of k(1)m and k(2)m attain the following orders:

ℑk(1)m = O(ε), ℑk(2)m =

{
O(κε2) if (κ,mπ) in the first radiation continuum;
O(ε2) if (κ,mπ) above the first radiation continuum.



Fano resonance

• The transmitted field

uε (x) = ε t̂− ·
(

g2
(
x,(−ε,0)

)
+O(ε)

)
+ ε t̂+ ·

(
g2
(
x,(ε,0)

)
+O(ε)

)
,

where the transmission coefficients

t̂−(κ,k,ε) := =− 1
λ1,+

(
η++O(δ )

)
+

1
λ1,−

(
η−+O(δ )

)
+

w1,+

λ2,+
−

w1,−
λ2,−

,

t̂+(κ,k,ε) := − 1
λ1,+

(
η++O(δ )

)
+

1
λ1,−

(
η−+O(δ )

)
+

w2,+

λ2,+
−

w2,−
λ2,−

.

Top: Transmission |T| for k ∈ (2,7) when d = 1.3, ε = 0.02. The incident angle θ = π/6.
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Summary

Investigate mathematically two mechanisms for generating the Fano resonance in a
periodic array of small holes:

• Provide quantitative analysis of the embedded eigenvalues/resonances for the
homogeneous scattering problem.

• Present a rigorous proof of Fano transmission line.

• Characterize the corresponding wave field enhancement at Fano resonance.
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Mathematics, 2021.



Outlook: Field enhancement for a single slit in a real metallic slab
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metal	 metal	

effective	slit	

surface	plasmon	 		

1 Multiscale problem: size of slit aperture δ , skin depth of metal δm,
thickness of slab d, and wavelength λ ;

2 The skin depth effect weakens the Fabry-Perot resonance, and induces
small shifts of the FP resonance;

3 The slit structure can excite plasmonic surface waves (plasmonic
resonance) along the metal interface;

4 The plasmonic resonance can interact with the FP resonance, an vice
visa.



Theoretical results: Part I-Excitation of Surface Plasmon Polariton
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∇ ·
(

1
ε(x)

∇u
)
+ k2u = 0 in Ω1∪Ω

+
2 ∪Ω

−
2 ,

[u] = 0,
[

1
ε

∂u
∂ν

]
= 0 on Γ

−
δ
∪Γ

+
δ
,

∂u
∂ν

= 0 on Γ0
δ
∪Γ−v ∪Γ+

v ,

where

ε(x) =


1 x ∈Ω1,

εm x ∈Ω2,
εm(ω) = 1−

ω2
p

ω(ω + iγ)



The even incident case

Let εm = ε ′m + iε ′′m with the following scaling:

|ε ′m|= O(δ α ), |ε ′′m|= O(δ β ).

Theorem

Consider the even case. Assume that −4≤ α < 0 and β < 2. The solution
admits the decomposition ϕ = ϕ0 +ϕ1, where

ϕ0 = ϕ00 ·χ(δ ,∞)

In addition,∥∥∥∥χ∆(ξ )

ρ0(ξ )
Êϕ1(ξ )

∥∥∥∥
L1(R)

. δ (1+δ
−β/2),

∥∥∥∥∥1−χ∆(ξ )√
1+ |ξ |

Êϕ1(ξ )

∥∥∥∥∥
L2(R)

. δ
1−α

√
ln

1
δ
.

Remark: similar results for the odd case.

Reference: Mathematical analysis of surface plasmon resonance by a
nano-gap in the plasmonic metal, Junshan Lin and Z, SIAM Math. Anal, 2019.



Outlook

1 Part II: The interaction between plasmonic resonance and FP
resonance;

2 Part III: The mechanism of EOT and LFE;

3 Future work: 3D subwavelength structures:


