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Extraordinary Optical Transmission Through a Small Hole Array

T. W. Ebbessen et al, Nature (1998)
Size of each hole: 150 nm, metal thickness: 300 nm, skin depth: 30nm

Classical Bethe theory for diffraction by a small hole



Subsequent Development in Extraordinary Optical Field Enhancement

F. J. Garcia-Vidal et al, Rev. Mod. Phy. (2010)
S. Rodrigo, F. León-Pérez, L. Martín-Moreno, Proceedings of the IEEE (2016)

Applications: Near-field optical imaging, biosensing, novel optical devices....



Possible Enhancement Mechanisms

Surface plasmonic resonances in noble metals

Non-plasmonic resonances (e.g., resonances induced by the geometry
of the structure)

Surface waves.

other enhancement mechanism?



Questions

There has been a long debate on the interpretation of enhancement
effects. For instance, surface plasmonic resonances strengthen or inhibit
the enhancement? interplay between different enhancement
mechanisms?

Other questions: How large is the enhancement and at what
frequencies?

Quantitative analysis of the field enhancement would be desirable!

Efficient numerical modeling techniques, optimal design for better
performance.



Outline of the lectures

Slit structures in perfect conducting (PEC) metals:

• Lecture 1: Resonant and non-resonant enhancement effects for a single slit
and an array of slits in the diffraction regime.

• Lecture 2: Enhancement effects for an array of slits in the homogenization
regime; “surface spoof plasmon" and total transmission; Fano resonance.

• Lecture 3: Applications in super-resolution imaging and sensing.



Our main approach and related work

• Mathematical tools:

layer potential techniques;

Gohberg-Sigal theory: reduce the problem of resonances/eigenvalues to
the characteristic values of operator-valued functions, and to the roots of
complex-valued functions;

Asymptotic analysis to boundary integral operators.

Reference book: Mathematical and Computational Methods in Photonics
and Phononics. H. Ammari, B. Fitzpatrick, H. Kang, M. Ruiz, S. Yu, and
Z, Mathematical Surveys and Monographs, Volume 235, AMS, 2018.

Related mathematical work:

E. Bonnetier and F. Triki (2010): Asymptotics of the Green function for a
subwavelength cavity.

Plasmonic waves allow perfect transmission through sub-wavelength
metallic gratings, G. Bouchitté, B. Schweizer, 2012.

P. Joly and S. Tordeux, Matched asymptotic expansion, 2006, 2008.



Lecture 1-1: Anomalous Scattering by a Single Subwavelength Slit Structures

Joint work with Junshan Lin, Auburn University

Scattering and field enhancement of a perfect conducting narrow slit
SIAM Journal on Applied Math, 2017



Electromagnetic Field Enhancement in a Single PEC Slit
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Transmission with metal thickness = 1, gap size = 0.02.

Resonant effect
Y. Takakura (2001), J. Sambles et al (2002), F. Garcia-Vidal, et al (2004),
R. Gordon (2006) · · ·
Non-resonant effect
Experiments: D-S. Kim (2009), S-H. Oh (2014)

Answer the following questions:

What are the resonant frequencies?

Can one characterize the wave modes at resonant frequencies?

What induces the enhancement at non-resonant frequencies?



Scattering Problem I
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• Normalization: `= 1.

• The exterior domain: Ωε = Ω+∪Ω−∪Sε .

• TM polarization: the incident magnetic field Hi = (0,0,ui), where ui = eikd·x,
k = ω/c.

• The total field uε = ui +ur +us
ε in Ω+, and uε = us

ε (transmitted wave) in Ω−.

• The scattering problem:

∆uε + k2uε = 0 in Ωε ,

∂uε

∂ν
= 0 on ∂Ωε .

lim
r→∞

√
r
(

∂us
ε

∂ r
− ikus

ε

)
= 0, r = |x| .



Scattering Resonances and Enhancement

Im k

Re k

• Fact: The scattering problem attains a unique solution if Im k ≥ 0.

Defintion

The scattering resonances are the poles of the scattering operator when
continued meromorphically to the whole complex plane.

• Field enhancement at resonant frequencies: O
(

1
|ℑkres|

)
.



Integral Equation Formulation I: Green’s functions

                                         

 

𝑢𝑖 

  


  

1
x

 

2
x

 


  




  




  

 

  

 

 

The Green function in the upper/lower half space takes the form

ge(k;x,y) =− i
4

(
H(1)

0 (k|x− y|)+H(1)
0 (k|x′− y|)

)
,

where H(1)
0 is the first-kind Hankel function of order 0, and

x′ =

{
(x1,2− x2) if x,y ∈Ω+,

(x1,−x2) if x,y ∈Ω−.

The Green function in the domain Sε takes the form:

gi
ε (k;x,y) =

∞

∑
m,n=0

cmnφmn(x)φmn(y),

where cmn =
1

k2− (mπ/ε)2− (nπ)2 , φmn(x) =
√

αmn

ε
cos
(mπx1

ε

)
cos(nπx2), and

α00 = 1; α0m = αm0 = 2 for m≥ 1; αmn = 4 for others.



Integral Equation Formulation II: representation of solutions
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•Wave field above and below the metal slab:

uε (x) =
∫

Γ
+
ε

ge(x,y)
∂uε

∂ν
dsy +ui +ur, x ∈Ω

+.

uε (x) =
∫

Γ
−
ε

ge(x,y)
∂uε

∂ν
dsy x ∈Ω

−.

•Wave field in the slit Sε : uε (x) =−
∫

Γ
+
ε ∪Γ

−
ε

gi
ε (x,y)

∂uε

∂ν
dsy.

• Integral equation formulation:
∫

Γ
+
ε

(
− i

2

)
H(1)

0 (k|x− y|)∂uε

∂ν
dsy +

∫
Γ
+
ε ∪Γ

−
ε

gi
ε (x,y)

∂uε

∂ν
dsy =−(ui +ur), on Γ

+
ε ,∫

Γ
−
ε

(
− i

2

)
H(1)

0 (k|x− y|)∂uε

∂ν
dsy +

∫
Γ
+
ε ∪Γ

−
ε

gi
ε (x,y)

∂uε

∂ν
dsy = 0, on Γ

−
ε .



Integral Equation Formulation III: scaling

• Scaling by ε: Let x1 = εX, y1 = εY, X,Y ∈ (0,1);

ϕ1(X) :=−∂uε

∂x2
(εX,1), ϕ2(X) :=

∂uε

∂x2
(εX,0), f (X) := (ui +ur)(εX,1);

Ge
ε (X,Y) := ge

ε (εX,1;εY,1) = ge
ε (εX,0;εY,0);

Gi
ε (X,Y) := gi

ε (εX,1;εY,1) = gi
ε (εX,0;εY,0);

G̃i
ε (X,Y) := gi

ε (εX,1;εY,0) = gi
ε (εX,0;εY,1).

• Equivalent integral equation formulation:[
Te +T i T̃ i

T̃ i Te +T i

][
ϕ1

ϕ2

]
=

[
f/ε

0

]
.

where

(Te
ϕ)(X) =

∫ 1

0
Ge

ε (X,Y)ϕ(Y)dY X ∈ (0,1);

(T i
ϕ)(X) =

∫ 1

0
Gi

ε (X,Y)ϕ(Y)dY X ∈ (0,1);

(T̃ i
ϕ)(X) =

∫ 1

0
G̃i

ε (X,Y)ϕ(Y)dY X ∈ (0,1).



Asymptotic Expansions for the Integral Operators

• Asymptotic expansions of the kernels:

Ge
ε (X,Y) =

1
π
[lnε + lnk+ γ0]+

1
π

ln |X−Y|+O((ε|X−Y|)2 ln(ε|X−Y|);

Gi
ε (X,Y) =

cotk
kε

+
2ln2

π
+

1
π

[
ln
(∣∣∣∣sin

(
π(X+Y)

2

)∣∣∣∣)+ ln
(∣∣∣∣sin

(
π(X−Y)

2

)∣∣∣∣)]
+O(k2

ε
2);

G̃i
ε (X,Y) =

1
(k sink)ε

+O
(

e−1/ε

)
.

κ(X,Y) =
1
π

[
ln
(∣∣∣∣sin

(
π(X−Y)

2

)∣∣∣∣)+ ln
(∣∣∣∣sin

(
π(X+Y)

2

)∣∣∣∣)+ ln |X−Y|
]
.

• Asymptotic expansions of the integral operators:[
Te +T i T̃ i

T̃ i Te +T i

]
=

[
β β̃

β̃ β

]
P+KI+

[
K∞ K̃∞

K̃∞ K∞

]
=: P+L.

where K is the integral operator corresponding to the Schwarz kernel κ(X,Y) and

β (k,ε) =
cotk
kε

+
1
π
(2ln2+ lnk+ γ0)+

1
π

lnε, β̃ (k,ε) =
1

(k sink)ε

Pϕ(X) = (ϕ,χ(0,1))χ(0,1).



Function spaces for the integral operators

Let I be a bounded open interval in R and define

Hs(I) := {u = U|I
∣∣ U ∈ Hs(R)}.

Then Hs(I) is a Hilbert space with the norm

‖u‖Hs(I) = inf{‖U‖Hs(R)

∣∣ U ∈ Hs(R) and U|I = u}.

We also define

H̃s(I) := {u = U|I
∣∣ U ∈ Hs(R) and suppU ⊂ Ī}.

The space H̃s(I) is the dual of H−s(I) and the norm for H̃s(I) can be defined
via the duality. For simplicity, we denote V1 = H̃−

1
2 (0,1) and V2 = H

1
2 (0,1).

Lemma

The operator K is bounded from V1 to V2 with a bounded inverse. Moreover,

α := 〈K−11,1〉 6= 0.



Resonance Condition

• Look for k such that (P+L)ϕ = 0 attains non-trivial solutions (characteristic
value of the operator-valued function P+L).

• The operator equation reduces to

(M+ I)

[
〈ϕ,e1〉
〈ϕ,e2〉

]
= 0,

where e1 = [1,0]T and e2 = [0,1]T , and the matrix

M=

(
β I+ β̃

[
0 1
1 0

])
·

[
〈L−1e1,e1〉 〈L−1e1,e2〉
〈L−1e1,e2〉 〈L−1e1,e1〉

]

• The eigenvalues of M+ I are given by

λ1(k,ε) = 1+(β (k,ε)+ β̃ (k,ε))
(
〈L−1e1,e1〉+ 〈L−1e1,e2〉

)
,

λ2(k,ε) = 1+(β (k,ε)− β̃ (k,ε))
(
〈L−1e1,e1〉−〈L−1e1,e2〉

)
.

Resonance condition

The resonances are the roots of λ1(k,ε) = 0 or λ2(k,ε) = 0.



Asymptotic Expansions for Resonances

Re k

Im k

π 2π 3π 4π

O(ε)

Theorem

The following asymptotic expansions hold for the resonances of the
scattering problem:

km,1=(2m−1)π +2(2m−1)π
[

1
π

ε lnε +

(
1
α
+

1
π
(2ln2+ ln((2m−1)π)+ γ0)

)
ε

]
+O(ε2 ln2

ε),

km,2=2mπ +4mπ

[
1
π

ε lnε +

(
1
α
+

1
π
(2ln2+ ln(2mπ)+ γ0)

)
ε

]
+O(ε2 ln2

ε),

for m = 1,2,3, · · · , and mε � 1. Here α = 〈K−11,1〉, γ0 = c0− ln2− iπ/2, and c0

is the Euler constant.

Remark The imaginary part of each resonance has an order of O(ε).



Solution of the Integral Equation at Resonant Frequencies

• Solving the operator equation (P+L)ϕ = f yields

ϕ = K−11 ·
[

d1 ·O(k) · e1 +
α

ε ·λ1
(e1 + e2)+

α

ε ·λ2
(e1− e2)

]
+H.O.T,

where α = 〈K−11,1〉.

• Away from the resonant frequencies, λ1 ∼ O(1/ε), λ2 ∼ O(1/ε), and
consequently ϕ ∼ O(1).

Solution at resonant frequencies

At the odd and even resonant frequencies k = ℜkm,1 and k = ℜkm,2,

λ1 =−
iα
2

+O(ε ln2
ε), λ2 =−

iα
2

+O(ε ln2
ε).



Field Enhancement at Resonant Frequencies: In the Slit
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The wave field inside the slit adopts the following expansion at the odd and
even resonances respectively:

uε (x) =
1
ε
· 2i

k sin(k/2)
· cos(k(x2−1/2))+O(ln2

ε)

and
uε (x) =−

1
ε
· 2i

k cos(k/2)
· sin(k(x2−1/2))+O(ln2

ε).



Field Enhancement at Resonant Frequencies: Over Slit Apertures

On the aperture Γ
+
ε , the wave field adopts the following expansion at

resonant frequencies:

uε (x1,1) =−
2i
π

lnε +O(1)

On the aperture Γ
−
ε ,

uε (x1,0) =−
2i
π

lnε +O(1) and uε (x1,0) =
2i
π

lnε +O(1).

at odd and even resonant frequencies, respectively.
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Field Enhancement at Resonant Frequencies: Far Field

In the region Ω+\D+
1 , the scattered field adopts the following expansion at

resonant frequencies:

us
ε (x) =−2i ·ge(x,(0,1))+O(ε ln2

ε).

Remark The amplitude of the wave at resonant frequencies: O(
1√
|x|

).

 

 

D
1

+

 



Non-resonant Enhancement at Low Frequencies I
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• Estimation (L-Reitich, 2015):
CE
k
≤
||Eε ||L2(Sε )

||Ei||L2(Sε )

≤ CE

k
, CH ≤

||Hε ||L2(Sε )

||Hi||L2(Sε )

≤ CH

• Expand the wave field in the slit as the sum of wave-guide modes:

uε (x) = a0 coskx2 +b0 cosk(1− x2)+ ∑
m≥1

[
am exp

(
−k(m)

2 x2

)
+bm exp

(
−k(m)

2 (1− x2)
)]

cos
mπx1

ε
,

where k(m)
2 =

√
(mπ/ε)2− k2.

Lemma

a0 =
1

k sink

[
α +O(kε)

]
·
(

1
ε ·λ1

+
1

ε ·λ2

)
, b0 =

1
k sink

[
α +O(kε)

]
·
(

1
ε ·λ1

− 1
ε ·λ2

)
,

√
m |am| ≤ C,

√
m |bm| ≤ C, for m≥ 1,



Non-resonant Enhancement at Low Frequencies II: In the Slit

• If k� 1 and ε � 1,

uε = 2x2 +O(k2)+O(ε lnε).

• The electric field

Eε,1 =
2

k
√

τ0/µ0
+O(k2)+O(ε lnε);

Eε,2 ∼ O(ε) and Eε,2 ∼ o(ε) near and away from apertures.

Theorem

No significant magnetic field enhancement is gained. However, the electric field
|Eε | ∼ O(1/k) or |Eε | ∼ O(1/(k`)) if ` 6= 1.

|Eε |/
∣∣Einc

∣∣ for k = 0.1. Left: `= 0.1, ε = 0.01; Right: `= 0.01, and ε = 0.001.


