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Waveguide problem
▶ Scattering in time-harmonic regime of a wave in a 3D waveguide Ω
(Dirichlet BC, e.g. in electromagnetism) coinciding with {(x, y) ∈ R× ω}, ω
bounded, outside of a compact region.

+L−L

+ Tw++Rw−

w+

Find u = ui + us s. t.
∆u + k2u = 0 in Ω,

u = 0 on ∂Ω,
us is outgoing.

▶ For this problem and λN < k < λN+1, the modes are

Propagating
Evanescent

w±
n (x, y) = e±iβnxφn(y), βn =

√
k2 − λ2

n, n ∈ J1, NK

w±
n (x, y) = e∓βnxφn(y), βn =

√
λ2

n − k2, n ≥ N + 1

where the eigenpairs (λn, φn) ∈ R∗
+ ×H1

0(ω) \ {0} solve the problem

−∆yφn = λnφn in ω

in the transverse cut.

▶ For k∈ (λ1; λ2), 2 propagating modes w± = e±iβ1xφ1(y). Set ui = w+.
▶ We have

u =
w+ + R w− + . . . for x ≤ −L

T w+ + . . . for x ≥ +L

The . . . are expo.
decaying terms.

Definition: R, T ∈ C are the reflection and transmission coefficients.

GOAL
We explain how small Dirichlet obstacles can arrange to
achieve zero reflection (R = 0).
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One small obstacle

Can one hide a small Dirichlet obstacle centered at M1

▶ Set Oε
1 := M1 + εO where M1 ∈ R× ω and O is a bounded Lipschitz

domain. We consider the problem

Oε
1 (Pε)

∆uε + k2uε = 0 in Ωε := Ω \ Oε
1

uε = 0 on ∂Ωε

uε − w+ is outgoing.

▶ We obtain

Rε = 0 + ε (4iπ cap(O)w+(M1)2) + O(ε2)

Tε = 1 + ε (4iπ cap(O)|w+(M1)|2) + O(ε2).

Non zero terms!
(cap(O) > 0)

⇒ One single small obstacle cannot be non reflecting.
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Derivation of the asymptotic of uε 1/3
▶ To simplify, we remove the index 1 of the obstacle. Consider the ansatz

uε = u0 + ζ(x) v0(ε−1(x −M)) + ε
(

u1 + ζ(x) v1(ε−1(x −M))
)

+ . . .

where ζ ∈ C ∞
0 (Ω0) is equal to one in a neighbourhood of M .

▶ Inserting this expansion in (Pε), first we find

∆u0 + k2u0 = 0 in Ω0 = R× ω
u0 = 0 on ∂Ω0

u0 − w+ is outgoing.

and so u0 = w+ (coherent since at the limit ε→ 0, the obstacle disappears).

▶ v0 serves to impose Dirichlet BC on ∂Oε at order ε0. For x ∈ ∂Oε,

u0(x) = u0(M) + (x −M) · ∇u0(M) + . . . (note that x −M is of order ε).

Therefore we impose v0 = −u0(M) on ∂O .
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Derivation of the asymptotic of uε 2/3
▶ Introduce the fast variable ξ = ε−1(x −M). In a vicinity of M , we have

(∆x + k2Id)
(
v0(ε−1(x −M)) + ε v1(ε−1(x −M)) + . . .

)
= ε−2 ∆ξv0(ξ) + ε−1 ∆ξv1(ξ) + . . . .

▶ Therefore we impose ∆ξv0 = 0 in R3 \ O and so we take

v0(ξ) = −u0(M) W (ξ) .

where W is the capacity potential for O (W is harmonic in R3 \ O, vanishes
at infinity and verifies W = 1 on ∂O).
▶ As |ξ| → +∞, we have

W (ξ) = cap(O)
|ξ|

+ q⃗ · ∇Φ(ξ) + O(|ξ|−3),

where Φ := ξ 7→ −1/(4π|ξ|) is the Green function of the Laplacian in R3,
cap(O) > 0, q⃗ ∈ R3.

8 / 50



Derivation of the asymptotic of uε 2/3
▶ Introduce the fast variable ξ = ε−1(x −M). In a vicinity of M , we have

(∆x + k2Id)
(
v0(ε−1(x −M)) + ε v1(ε−1(x −M)) + . . .

)
= ε−2 ∆ξv0(ξ) + ε−1 ∆ξv1(ξ) + . . . .

▶ Therefore we impose ∆ξv0 = 0 in R3 \ O and so we take

v0(ξ) = −u0(M) W (ξ) .

where W is the capacity potential for O (W is harmonic in R3 \ O, vanishes
at infinity and verifies W = 1 on ∂O).

▶ As |ξ| → +∞, we have

W (ξ) = cap(O)
|ξ|

+ q⃗ · ∇Φ(ξ) + O(|ξ|−3),

where Φ := ξ 7→ −1/(4π|ξ|) is the Green function of the Laplacian in R3,
cap(O) > 0, q⃗ ∈ R3.

8 / 50



Derivation of the asymptotic of uε 2/3
▶ Introduce the fast variable ξ = ε−1(x −M). In a vicinity of M , we have

(∆x + k2Id)
(
v0(ε−1(x −M)) + ε v1(ε−1(x −M)) + . . .

)
= ε−2 ∆ξv0(ξ) + ε−1 ∆ξv1(ξ) + . . . .

▶ Therefore we impose ∆ξv0 = 0 in R3 \ O and so we take

v0(ξ) = −u0(M) W (ξ) .

where W is the capacity potential for O (W is harmonic in R3 \ O, vanishes
at infinity and verifies W = 1 on ∂O).
▶ As |ξ| → +∞, we have

W (ξ) = cap(O)
|ξ|

+ q⃗ · ∇Φ(ξ) + O(|ξ|−3),

where Φ := ξ 7→ −1/(4π|ξ|) is the Green function of the Laplacian in R3,
cap(O) > 0, q⃗ ∈ R3.

8 / 50



Derivation of the asymptotic of uε 3/3
▶ Now, we turn to the terms of order ε in the expansion of uε

uε = u0 + ζ(x) v0(ε−1(x −M)) + ε
(

u1 + ζ(x) v1(ε−1(x −M))
)

+ . . . .

▶ By inserting u0 + ζ(x) v0(ε−1(x −M)) into (Pε) and replacing v0 by its
main contribution at infinity, we find that u1 must solve

−∆u1 − k2u1 = −
(
[∆x, ζ] + k2ζId

) (
w+(M) cap(O)

|x −M |

)
in Ω0

u1 = 0 on ∂Ω0.

where [∆x, ζ]φ := ∆x(ζφ)− ζ∆xφ = 2∇φ · ∇ζ + φ∆ζ (commutator).

→ This uniquely defines u1 .
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Asymptotic of the scattering coefficients
▶ We consider the ansatz

Rε = R0 + εR1 + . . . Tε = T0 + εT1 + . . . .

▶ Set Σ±L = {±L} × ω for L large enough. From the known formula

2ikRε =
∫

Σ±L

∂nuεw+− uε∂nw+dσ, 2ikTε =
∫

Σ±L

∂nuεw−− uε∂nw−dσ,

where ∂n = ±∂x at x = ±L,

we obtain R0 = 0, T0 = 1,

2ikR1 =
∫

Σ±L

∂nu1w+−u1∂nw+dσ, 2ikT1 =
∫

Σ±L

∂nu1w−−u1∂nw−dσ.

Integrating by parts, finally we get the final result:

Proposition: We have

Rε = 0 + ε (4iπ cap(O)w+(M1)2) + O(ε2)

Tε = 1 + ε (4iπ cap(O)|w+(M1)|2) + O(ε2).
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Several small obstacles

▶ One small obstacle cannot be non
reflecting. Let us try with TWO,
located at M1, M2.

Oε
1
Oε

2

▶ We obtain Rε = 0 + ε (4iπ cap(O)
2∑

n=1
w+(Mn)2) + O(ε2)

Tε = 1 + ε (4iπ cap(O)
2∑

n=1
|w+(Mn)|2) + O(ε2).

We can find M1, M2 such that Rε = O(ε2). Then moving Oε
1 from M1 to

M1 + ετ , and choosing a good τ ∈ R3 (fixed point), we can get Rε = 0 .

Comments:
→ Hard part is to justify the asymptotics for the fixed point problem.
→ We cannot impose Tε = 1 with this strategy.
→ When there are more propagating waves, we need more obstacles.

Acting as a team, obstacles can become invisible!
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Setting

▶ Scattering by a negative material in electromagnetism in time-harmonic
regime (at a given frequency):

Negative material
ε < 0

and/or µ < 0

Positive material
ε > 0

and µ > 0

Examples of negative materials:

▶ Metals at optical frequencies (ε < 0 and µ > 0).
▶ Recently, artificial metamaterials have been realized which can be
modelled (at some frequency of interest) by ε < 0 and µ < 0.

Zoom on a metamaterial: practical realizations of metamaterials are
achieved by a periodic assembly of small resonators.

Example of metamaterial (NASA)
Mathematical justification of the homogenized model (Bouchitté,
Bourel, Felbacq 09).
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Spectral problem
▶ We investigate a Dirichlet spectral problem in presence of a small
inclusion of negative material in a bounded domain.
▶ Let Ω, ω be smooth domains of R3 such that O ∈ ω, ω ⊂ Ω. For
δ ∈ (0; 1], we consider the problem

Find (λδ, uδ) ∈ C× (H1
0(Ω) \ {0}) s.t.:

−div(σδ∇uδ) = λδuδ in Ω, with, δ

Ωδ
+

Ωδ
−

• H1
0(Ω) := {u ∈ H1(Ω) |u = 0 on ∂Ω}

• σδ = σ+ > 0 in Ωδ
+ := Ω \ δ ω

σ− < 0 in Ωδ
− := δ ω.

This problem is not classical because σδ changes sign.

▶ We define the operator Aδ : D(Aδ)→ L2(Ω) such that
D(Aδ) = {u ∈ H1

0(Ω) |div(σδ∇u) ∈ L2(Ω)}
Aδu = −div(σδ∇u).
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Main question

▶ Using boundary integral equations (see Costabel and Stephan 85,
Dauge and Texier 97) or the T-coercivity approach (see Bonnet-Ben Dhia
et al. 99,10,12,13), we can prove the :

Proposition. Assume that σ−/σ+ ̸= −1. For δ > 0, the operator Aδ is
selfadjoint and has compact resolvent. Its spectrum S(Aδ) consists in two
sequences of isolated eigenvalues:

−∞ ←
n→+∞

. . . λδ
−n ≤ · · · ≤ λδ

−1 < 0 ≤ λδ
1 ≤ λδ

2 ≤ · · · ≤ λδ
n . . . →

n→+∞
+∞.

▶ For all δ ∈ (0; 1], Aδ has negative spectrum. At the limit δ = 0, the
inclusion of negative material vanishes and σ0 is strictly positive.

What happens to the negative spectrum when δ tends to zero?
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Far field operator
▶ As δ → 0, the small inclusion of negative material disappears.

▶ We introduce the far field operator A0 such that

D(A0) = {v ∈ H1
0(Ω) |∆v ∈ L2(Ω)}

A0v = −σ+∆v.

Proposition. There holds S(A0) = {µn}n≥1 with

0 < µ1 < µ2 ≤ · · · ≤ µn . . . →
n→+∞

+∞.
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Near field operator
▶ Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

▶ Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}
B∞w = −div (σ∞∇w).

Proposition. Assume that σ−/σ+ ̸= −1. The continuous spectrum of B∞

is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.

19 / 50



Near field operator
▶ Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

▶ Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}
B∞w = −div (σ∞∇w).

Proposition. Assume that σ−/σ+ ̸= −1. The continuous spectrum of B∞

is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.

19 / 50



Near field operator
▶ Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

▶ Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}
B∞w = −div (σ∞∇w).

Proposition. Assume that σ−/σ+ ̸= −1. The continuous spectrum of B∞

is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.

19 / 50



Near field operator
▶ Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

▶ Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}
B∞w = −div (σ∞∇w).

Proposition. Assume that σ−/σ+ ̸= −1. The continuous spectrum of B∞

is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.

19 / 50



Near field operator
▶ Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

▶ Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}
B∞w = −div (σ∞∇w).

Proposition. Assume that σ−/σ+ ̸= −1. The continuous spectrum of B∞

is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.

19 / 50



Near field operator
▶ Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

▶ Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}
B∞w = −div (σ∞∇w).

Proposition. Assume that σ−/σ+ ̸= −1. The continuous spectrum of B∞

is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.

19 / 50



Near field operator
▶ Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

▶ Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}
B∞w = −div (σ∞∇w).

Proposition. Assume that σ−/σ+ ̸= −1. The continuous spectrum of B∞

is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.

σ∞ = σ+

σ∞ = σ−

19 / 50



Near field operator
▶ Introduce the rapid coordinate ξ := δ−1x and let δ → 0.

▶ Define the near field operator B∞ such that

D(B∞) = {w ∈ H1(R3) | div (σ∞∇w) ∈ L2(R3)}
B∞w = −div (σ∞∇w).

Proposition. Assume that σ−/σ+ ̸= −1. The continuous spectrum of B∞

is equal to [0; +∞) while its discrete spectrum is a sequence of eigenvalues:

S(B∞) \ R+ = {µ−n}n≥1 with 0 > µ−1 ≥ · · · ≥ µ−n . . . →
n→+∞

−∞.

σ∞ = σ+

σ∞ = σ−

19 / 50



1 Non reflecting small obstacles in waveguide

2 Spectrum in presence of a small negative inclusion
Limit operators
Results
Numerical experiments

3 Cloaking in acoustic waveguides

20 / 50



Results
Assume that σ−/σ+ ̸= −1 and that B∞ is injective. For n ∈ N∗, we denote
λδ

±n, µδ
n, µδ

−n the eigenvalues of Aδ, A0, B∞ as in the previous slides.

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C, δ0 > 0 depending on n, ε but independent of δ, such that

|λδ
n − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Theorem. (Negative spectrum) For all n ∈ N∗, there exist constants
C, γ, δ0 > 0, depending on n but independent of δ, such that

|λδ
−n − δ−2µ−n| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].

Proposition. (Localization effect) For all n ∈ N∗, let uδ
−n be an

eigenfunction corresponding to the negative eigenvalue λδ
−n. There exist

constants C, γ, δ0 > 0, depending on n but independent of δ, such that∫
Ω

(|uδ
−n|2 + |∇uδ

−n|2)eγx/δdx ≤ C ∥uδ
−n∥Ω, ∀δ ∈ (0; δ0].
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cut-off functions +construction of almost inverse).
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21 / 50



Results
Assume that σ−/σ+ ̸= −1 and that B∞ is injective. For n ∈ N∗, we denote
λδ

±n, µδ
n, µδ

−n the eigenvalues of Aδ, A0, B∞ as in the previous slides.

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C, δ0 > 0 depending on n, ε but independent of δ, such that

|λδ
n − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Theorem. (Negative spectrum) For all n ∈ N∗, there exist constants
C, γ, δ0 > 0, depending on n but independent of δ, such that

|λδ
−n − δ−2µ−n| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].

Proposition. (Localization effect) For all n ∈ N∗, let uδ
−n be an

eigenfunction corresponding to the negative eigenvalue λδ
−n. There exist

constants C, γ, δ0 > 0, depending on n but independent of δ, such that∫
Ω

(|uδ
−n|2 + |∇uδ

−n|2)eγx/δdx ≤ C ∥uδ
−n∥Ω, ∀δ ∈ (0; δ0].

21 / 50



Results
Assume that σ−/σ+ ̸= −1 and that B∞ is injective. For n ∈ N∗, we denote
λδ

±n, µδ
n, µδ

−n the eigenvalues of Aδ, A0, B∞ as in the previous slides.

Theorem. (Positive spectrum) For all n ∈ N∗, ε ∈ (0; 1), there exist
constants C, δ0 > 0 depending on n, ε but independent of δ, such that

|λδ
n − µn| ≤ C δ3/2−ε, ∀δ ∈ (0; δ0].

Theorem. (Negative spectrum) For all n ∈ N∗, there exist constants
C, γ, δ0 > 0, depending on n but independent of δ, such that

|λδ
−n − δ−2µ−n| ≤ C exp(−γ/δ), ∀δ ∈ (0; δ0].

Proposition. (Localization effect) For all n ∈ N∗, let uδ
−n be an

eigenfunction corresponding to the negative eigenvalue λδ
−n. There exist

constants C, γ, δ0 > 0, depending on n but independent of δ, such that∫
Ω

(|uδ
−n|2 + |∇uδ

−n|2)eγx/δdx ≤ C ∥uδ
−n∥Ω, ∀δ ∈ (0; δ0].

21 / 50



1 Non reflecting small obstacles in waveguide

2 Spectrum in presence of a small negative inclusion
Limit operators
Results
Numerical experiments

3 Cloaking in acoustic waveguides

22 / 50



Numerical experiments
▶ Using FreeFem++, we approximate numerically the spectrum of Aδ

using a usual P1 Finite Element Method. We solve the problem

Find (λδ
h, uδ

h) ∈ C× (Vh \ {0}) s.t.:∫
Ω

σδ
h∇uδ

h · ∇vh = λδ
h

∫
Ω

uδ
h vh, ∀vh ∈ Vh,

where Vh approximates H1
0(Ω) as h→ 0 (h is the mesh size).

▶ We consider the following 2D geometry:

∂Ω

Ωδ
+ Ωδ

−

1

δ/2

δ

We display the spectrum as δ → 0 (h is more or less fixed).
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Numerical experiments
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▶ The positive part of S(Aδ) converges to S(A0) when δ → 0.
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Linear regression for the 1st negative eigenvalue: a = −2.0056

▶ The negative part of S(Aδ) is asymptotically equivalent to the negative
part of δ−2S(B∞) when δ → 0.
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Localization effect

Eigenfunction associated to the
first negative eigenvalue

Eigenfunction associated to the
first positive eigenvalue

δ=0.5

δ=0.05

δ=0.5

δ=0.05

▶ The eigenfunctions corresponding to the negative eigenvalues are
localized around the small inclusion. Here, σ−/σ+ = −2.5.
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Setting

▶ We consider the propagation of waves in a 2D acoustic waveguide with
an obstacle (also relevant in optics, microwaves, water-waves theory,...).

1
x

y

Ω

(P) ∆u + k2u = 0 in Ω,
∂nu = 0 on ∂Ω

▶ We fix k ∈ (0; π) so that only the plane waves e±ikx can propagate.

▶ The scattering of these waves leads us to consider the solutions of (P)
with the decomposition

u+ = eikx + R+ e−ikx + . . .
T e+ikx + . . .

u− = T e−ikx + . . . x→ −∞
e−ikx + R− e+ikx + . . . x→ +∞

R±, T ∈ C are the scattering coefficients , the . . . are expon. decaying terms.
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Goal

We wish to slightly perturb the walls of the guide to obtain R± = 0, T = 1
in the new geometry (as if there were no obstacle)⇒ cloaking at “infinity”.

Difficulty: the scattering coefficients have a not explicit and not linear
dependence wrt the geometry.

Difference with what we did previously: we wish to cloak big obstacles and
not only small perturbations.
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1 Non reflecting small obstacles in waveguide

2 Spectrum in presence of a small negative inclusion

3 Cloaking in acoustic waveguides
Asymptotic analysis in presence of thin resonators
Almost zero reflection
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Setting

Main ingredient of our approach: outer resonators of width ε≪ 1.
ε

ℓ

A

Ωε

(Pε) ∆u + k2u = 0 in Ωε,
∂nu = 0 on ∂Ωε

▶ In this geometry, we have the scattering solutions

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

uε
− = T ε e−ikx + . . . x→ −∞

e−ikx + Rε
− e+ikx + . . . x→ +∞

Next we compute an asymptotic expansion of uε
±, Rε

±, T ε as ε→ 0.
(see Beale 73, Gadyl’shin 93, Kozlov et al. 94, Nazarov 96, Maz’ya et al. 00,
Joly & Tordeux 06, Lin & Zhang 17, 18,...).

30 / 50



Setting

Main ingredient of our approach: outer resonators of width ε≪ 1.
ε

ℓ

A

Ωε

(Pε) ∆u + k2u = 0 in Ωε,
∂nu = 0 on ∂Ωε

▶ In this geometry, we have the scattering solutions

uε
+ = eikx + Rε

+ e−ikx + . . .
T ε e+ikx + . . .

uε
− = T ε e−ikx + . . . x→ −∞

e−ikx + Rε
− e+ikx + . . . x→ +∞

Next we compute an asymptotic expansion of uε
±, Rε

±, T ε as ε→ 0.
(see Beale 73, Gadyl’shin 93, Kozlov et al. 94, Nazarov 96, Maz’ya et al. 00,
Joly & Tordeux 06, Lin & Zhang 17, 18,...).

30 / 50



Asymptotic analysis
▶ We work with the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω,

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator.

▶ Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.

The features of (P1D) play a key role in the physical phenomena
and in the asymptotic analysis.

▶ We denote by ℓres (resonance lengths) the values of ℓ, given by

ℓres := π(m + 1/2)/k, m ∈ N,

such that (P1D) admits the non zero solution v(y) = sin(k(y − 1)).

31 / 50



Asymptotic analysis
▶ We work with the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω,

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator.

▶ Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.

The features of (P1D) play a key role in the physical phenomena
and in the asymptotic analysis.

▶ We denote by ℓres (resonance lengths) the values of ℓ, given by

ℓres := π(m + 1/2)/k, m ∈ N,

such that (P1D) admits the non zero solution v(y) = sin(k(y − 1)).

31 / 50



Asymptotic analysis
▶ We work with the outer expansions

uε
+(x, y) = u0(x, y) + . . . in Ω,

uε
+(x, y) = ε−1v−1(y) + v0(y) + . . . in the resonator.

▶ Considering the restriction of (Pε) to the thin resonator, when ε tends
to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D)
∂2

yv + k2v = 0 in (1; 1 + ℓ)
v(1) = ∂yv(1 + ℓ) = 0.

The features of (P1D) play a key role in the physical phenomena
and in the asymptotic analysis.

▶ We denote by ℓres (resonance lengths) the values of ℓ, given by

ℓres := π(m + 1/2)/k, m ∈ N,

such that (P1D) admits the non zero solution v(y) = sin(k(y − 1)).
31 / 50



Asymptotic analysis – Non resonant case

▶ Assume that ℓ ̸= ℓres . Then we find v−1 = 0 and when ε→ 0, we get

uε
±(x, y) = u± + o(1) in Ω,

uε
±(x, y) = u±(A) v0(y) + o(1) in the resonator,

Rε
± = R± + o(1), T ε = T + o(1).

Here v0(y) = cos(k(y − 1) + tan(k(y − ℓ) sin(k(y − 1).

The thin resonator has no influence at order ε0.

→ Not interesting for our purpose because we want Rε
± = 0 + . . .

T ε = 1 + . . .
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Asymptotic analysis – Resonant case
▶ Now assume that ℓ = ℓres . Then we find v−1(y) = a sin(k(y − 1)) for
some a to determine.

▶ Inner expansion. Set ξ = ε−1(x −A) (stretched coordinates). Since

(∆x + k2)uε
+(ε−1(x −A)) = ε−2∆ξuε(ξ) + . . . ,

when ε→ 0, we are led to study the problem

(⋆) −∆ξY = 0 in Ξ
∂νY = 0 on ∂Ξ.

O

Ξ−

Ξ+

Ξ

▶ Problem (⋆) admits a solution Y 1 (up to a constant) with the expansion

Y 1(ξ) =


ξy + CΞ + O(e−πξy ) as ξy → +∞, ξ ∈ Ξ+

1
π

ln
1

|ξ|
+ O

( 1
|ξ|

)
as |ξ| → +∞, ξ ∈ Ξ−.

▶ In a neighbourhood of A, we look for uε
+ of the form

uε
+(x) = CA Y 1(ξ) + cA + . . . (cA, CA constants to determine).

Since at A, the Taylor formula gives

uε
+(x) = ε−1v−1(y) + v0(y) + · · · = 0 + (akξy + v0(1)) + . . . ,

we take CA = ak.
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+(x) = CA Y 1(ξ) + cA + . . . (cA, CA constants to determine).

Since at A, the Taylor formula gives

uε
+(x) = ε−1v−1(y) + v0(y) + · · · = 0 + (akξy + v0(1)) + . . . ,

we take CA = ak.

33 / 50



Asymptotic analysis – Resonant case
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Asymptotic analysis – Resonant case
▶ In the ansatz uε

+ = u0 + . . . in Ω, we deduce that we must take

u0 = u+ + akγ

where γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω.

▶ Then in the inner field expansion uε
+(x) = ak Y 1(ξ) + cA + . . . , this sets

cA = u+(A) + ak(Γ + π−1 ln |ε|).

▶ Matching the constant behaviour in the resonator, we obtain

v0(1) = u+(A) + ak(Γ + π−1 ln |ε|+ CΞ).

▶ This is a Fredholm problem with a non zero kernel. A solution exists iff
the compatibility condition is satisfied. This sets

ak = −
u+(A)

Γ + π−1 ln |ε|+ CΞ

and ends the calculus of the first terms.
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Asymptotic analysis – Resonant case

▶ Finally for ℓ = ℓres , when ε→ 0, we obtain

uε
+(x, y) = u+(x, y) + akγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + iau+(A)/2 + o(1), T ε = T + iau−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

ak = −
u+(A)

Γ + π−1 ln |ε|+ CΞ
.

This time the thin resonator has an influence at order ε0
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Asymptotic analysis – Resonant case
▶ Similarly for ℓ = ℓres + εη with η ∈ R fixed, by modifying only the last
step with the compatibility relation, when ε→ 0, we obtain

uε
+(x, y) = u+(x, y) + a(η)kγ(x, y) + o(1) in Ω,

uε
+(x, y) = ε−1a(η) sin(k(y − 1)) + O(1) in the resonator,

Rε
+ = R+ + ia(η)u+(A)/2 + o(1), T ε = T + ia(η)u−(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in Ω
∂nγ = δA on ∂Ω

and

a(η)k = −
u+(A)

Γ + π−1 ln |ε|+ CΞ + η
.

This time the thin resonator has an influence at order ε0

and it depends on the choice of η!
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Asymptotic analysis – Resonant case
▶ Below, for several η ∈ R, we display the paths

{(ε, ℓres + ε(η − π−1| ln ε|)), ε > 0} ⊂ R2.

ε

ℓ

ℓres

ε0

ε

ℓ

A

Ωε

According to η, the limit of the scattering coefficients along
the path as ε→ 0+ is different.

▶ For a fixed small ε0, the scattering coefficients have a rapid variation for
ℓ varying in a neighbourhood of the resonance length.
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Almost zero reflection

▶ We got
Rε

+ = R0
+(η) + o(1)

T ε = T 0(η) + o(1)
with

R0
+(η) := R+ + ia(η) u±(A) /2

T 0(η) := T + ia(η) u±(A) /2.

▶ One can show that {R0
+(η) | η ∈ R}, {T 0(η) | η ∈ R} are circles in C.

Asymptotically, when the length of the resonator is perturbed
around the resonance length, Rε

+, T ε run on circles.

-1 -0.5 0.5 1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

▶ Using the expansions of u±(A) far from the obstacle, one shows:

Proposition: There are positions of the resonator A such that the circle
{R0

+(η) | η ∈ R} passes through zero. ⇒ ∃ situations s.t. Rε
+ = 0 + o(1).
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Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.3).

ℜe uε
+

ℜe eikx

ℜe (uε
+ − eikx)

→ Simulations realized with the Freefem++ library.

To cloak the object, it remains to compensate the phase shift!
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Almost zero reflection
▶ Example of situation where we have almost zero reflection (ε = 0.01).
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Phase shifter

▶ Working with two resonators, we can create phase shifters , that is
devices with almost zero reflection and any desired phase.

ℜe uε

ℜe eikx

▶ Here the device is designed to obtain a phase shift approx. equal to π/4.
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Cloaking with three resonators
▶ Gathering the two previous results, we can cloak any object with three
resonators.

ℜe u+

ℜe uε
+

ℜe (uε
+ − eikx)
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Cloaking with two resonators
▶ Working a bit more, one can show that two resonators are enough to
cloak any object.

t 7→ ℜe (u+(x, y)e−ikt)

t 7→ ℜe (uε
+(x, y)e−ikt)

t 7→ ℜe (eik(x−t))
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Cloaking with two resonators
▶ Another example

t 7→ ℜe (u+(x, y)e−ikt)

t 7→ ℜe (uε
+(x, y)e−ikt)

t 7→ ℜe (eik(x−t))
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Recap of the cloaking strategy

What we did

♠ We explained how to approximately cloak any object in monomode
regime using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε0 with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit

dependence wrt to the geometry.

Possible extensions and open questions

1) We can similarly hide penetrable obstacles or work in 3D.

2) We can do cloaking at a finite number of wavenumbers (thin
structures are resonant at one wavenumber otherwise act at order ε).

3) With Dirichlet BCs, other ideas must be found.

4) Can we realize exact cloaking (T = 1 exactly)? This question is also
related to robustness of the device.
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Conclusion of session 4

What we did

1) We explained how small obstacles can be arranged to get zero
reflection in waveguides.

2) We studied the spectrum of a diffusion operator in presence of a
small inclusion of negative material.

3) We showed how to approximately cloak defects in acoustic
waveguides using thin resonators.
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Conclusion of the course

What we did

1) We gave on certain examples of smooth perturbations a few general
ideas of asymptotic analysis.

2) We detailed how to address small obstacle asymptotics.

3) We explained how to establish error estimates in certain situations.

4) We presented examples of applications of asymptotic analysis.

It is important to mention however that each problem requires a rather
specific treatment. There is no real systematic approach and non trivial
questions appear very often.
→ To be continued...
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