Introduction to asymptotic methods for PDEs.

A focus on small obstacle asymptotics.

- Session 1 -

Lucas Chesnel ${ }^{1}$ and Xavier Claeys ${ }^{2}$

${ }^{1}$ Idefix team, CMAP, École Polytechnique, France
${ }^{2}$ LJLL, Alpines team, Université Pierre et Marie Curie, France

Zurich, 24/08/2021

Introduction

- Consider a problem ($\mathrm{PDE}+\mathrm{BC}$) depending on a small parameter $\varepsilon>0$ (coefficient in the PDE, parameter of the geometry,...).

-••
- We want to obtain an asymptotic expansion of its solution (assuming that it is well-defined) as ε tends to zero.

Introduction

- Consider a problem (PDE +BC) depending on a small parameter $\varepsilon>0$ (coefficient in the PDE, parameter of the geometry,...).

-••
- We want to obtain an asymptotic expansion of its solution (assuming that it is well-defined) as ε tends to zero.
- The aim is to explicit the behaviour with respect to ε. The expansion (or representation or approximation) should involve functions which are independent of ε and functions with explicit dependence with respect to ε.

EXAMPLE: $\quad\left\|u_{\varepsilon}-\hat{u}_{\varepsilon}\right\| \leq C \varepsilon^{3} \quad$ with $\quad \hat{u}_{\varepsilon}=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}$.

Introduction

- Consider a problem (PDE +BC) depending on a small parameter $\varepsilon>0$ (coefficient in the PDE, parameter of the geometry,...).

-••
- We want to obtain an asymptotic expansion of its solution (assuming that it is well-defined) as ε tends to zero.
- The aim is to explicit the behaviour with respect to ε. The expansion (or representation or approximation) should involve functions which are independent of ε and functions with explicit dependence with respect to ε.

EXAMPLE: $\quad\left\|u_{\varepsilon}-\hat{u}_{\varepsilon}\right\| \leq C \varepsilon^{3} \quad$ with $\quad \hat{u}_{\varepsilon}=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}$.

- Many possible motivations:
\rightarrow One can wish to study the stability of an equilibrium.

Introduction

- Many possible motivations:
\rightarrow One can wish to understand a physical phenomenon. One adds some small dissipation (or viscosity). What happens at the limit when it tends to zero (limiting absorption principle)? Which solution is selected?

Introduction

- Many possible motivations:
\rightarrow One can wish to understand a physical phenomenon. One adds some small dissipation (or viscosity). What happens at the limit when it tends to zero (limiting absorption principle)? Which solution is selected?
\rightarrow Numerical purposes

We consider a problem set in a geometry with a small obstacle. To use FEM, we are obliged to work with a very refined mesh. Can one get a good approximation of the solution at low computational cost?

Introduction

- Many possible motivations:
\rightarrow One can wish to understand a physical phenomenon. One adds some small dissipation (or viscosity). What happens at the limit when it tends to zero (limiting absorption principle)? Which solution is selected?
\rightarrow Numerical purposes

We consider a problem set in a geometry with a small obstacle. To use FEM, we are obliged to work with a very refined mesh. Can one get a good approximation of the solution at low computational cost?

Goals of the mini course

1) To describe in detail how to treat small obstacle asymptotics.
2) Each problem requires a rather specific treatment. We also wish to give an idea of how to treat different problems of asymptotics and to present a few general techniques.
3) To explain how to establish error estimates, an aspect which is sometimes neglected in literature.
4) To present examples of applications where asymptotic expansions can be useful.

Goals of the mini course

1) To describe in detail how to treat small obstacle asymptotics.
2) Each problem requires a rather specific treatment. We also wish to give an idea of how to treat different problems of asymptotics and to present a few general techniques.
3) To explain how to establish error estimates, an aspect which is sometimes neglected in literature.
4) To present examples of applications where asymptotic expansions can be useful.

Structure of the mini course

Session 1. Introduction to asymptotic expansions (smooth perturbations).
Sessions $2 \& 3$. Small obstacle asymptotics (singular perturbations).
Session 4. Examples of applications.

Outline of session 1

(1) Perturbation in the equation
(2) Smooth perturbation of the domain
(3) Application to invisibility in acoustic waveguides

4 An example of singularly perturbed problem

(1) Perturbation in the equation

(2) Smooth perturbation of the domain

(3) Application to invisibility in acoustic waveguides

4 An example of singularly perturbed problem

Perturbation of the Poisson's problem

- We study a first simple example with a perturbation in the equation. For Ω a bounded Lipschitz domain and $f \in \mathrm{~L}^{2}(\Omega)$, consider the problem

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{rlll}
-\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon} & =f & \text { in } \Omega \\
u_{\varepsilon} & =0 & \text { on } \partial \Omega .
\end{array}\right.
$$

- For all $\varepsilon \geq 0,\left(\mathscr{P}_{\varepsilon}\right)$ admits a unique solution u_{ε} in $\mathrm{H}_{0}^{1}(\Omega)$ (Lax-Milgram).

Perturbation of the Poisson's problem

- We study a first simple example with a perturbation in the equation. For Ω a bounded Lipschitz domain and $f \in \mathrm{~L}^{2}(\Omega)$, consider the problem

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{rlll}
-\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon} & =f & \text { in } \Omega \\
u_{\varepsilon} & =0 & \text { on } \partial \Omega .
\end{array}\right.
$$

- For all $\varepsilon \geq 0,\left(\mathscr{P}_{\varepsilon}\right)$ admits a unique solution u_{ε} in $\mathrm{H}_{0}^{1}(\Omega)$ (Lax-Milgram).
- We want to compute an expansion of u_{ε} to explicit its dependence with respect to ε as $\varepsilon \rightarrow 0$.

Perturbation of the Poisson's problem

- We study a first simple example with a perturbation in the equation. For Ω a bounded Lipschitz domain and $f \in \mathrm{~L}^{2}(\Omega)$, consider the problem

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{rlll}
-\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon} & =f & \text { in } \Omega \\
u_{\varepsilon} & =0 & \text { on } \partial \Omega .
\end{array}\right.
$$

- For all $\varepsilon \geq 0,\left(\mathscr{P}_{\varepsilon}\right)$ admits a unique solution u_{ε} in $\mathrm{H}_{0}^{1}(\Omega)$ (Lax-Milgram).
- We want to compute an expansion of u_{ε} to explicit its dependence with respect to ε as $\varepsilon \rightarrow 0$.

General procedure:
Step I: we propose an expansion (ansatz) and identify the terms of this expansion.
Step II: we prove error estimates.

Step I - ansatz

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{rll}
-\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon} & =f & \text { in } \Omega \\
u_{\varepsilon} & =0 & \text { on } \partial \Omega .
\end{array}\right.
$$

- Consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots
$$

where the terms $u_{0}, u_{1}, u_{2}, \ldots$ have to be determined.

Step I - ansatz

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{rll}
-\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon} & =f & \text { in } \Omega \\
u_{\varepsilon} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

- Consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots
$$

where the terms $u_{0}, u_{1}, u_{2}, \ldots$ have to be determined.

- Inserting the expansion in $\left(\mathscr{P}_{\varepsilon}\right)$, letting ε tends to zero and identifying the powers in ε, we get

Step I - ansatz

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{rll}
-\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon} & =f & \text { in } \Omega \\
u_{\varepsilon} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

- Consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots
$$

where the terms $u_{0}, u_{1}, u_{2}, \ldots$ have to be determined.

- Inserting the expansion in $\left(\mathscr{P}_{\varepsilon}\right)$, letting ε tends to zero and identifying the powers in ε, we get
$\left.\left|\begin{array}{rlll}-\Delta u_{0} & = & f & \text { in } \Omega \\ u_{0} & = & 0 & \text { on } \partial \Omega\end{array}\right| \begin{array}{rlll}\Delta u_{1} & = & u_{0} & \text { in } \Omega \\ u_{1} & = & 0 & \text { on } \partial \Omega\end{array} \right\rvert\, \begin{array}{rlll}\Delta u_{2} & = & u_{1} & \text { in } \Omega \\ u_{2} & = & 0 & \text { on } \partial \Omega .\end{array}$
- Each of these problems admits a unique solution in $\mathrm{H}_{0}^{1}(\Omega)$.

Step I - ansatz

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{rll}
-\Delta u_{\varepsilon}+\varepsilon u_{\varepsilon} & =f & \text { in } \Omega \\
u_{\varepsilon} & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

- Consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\varepsilon^{2} u_{2}+\ldots
$$

where the terms $u_{0}, u_{1}, u_{2}, \ldots$ have to be determined.

- Inserting the expansion in $\left(\mathscr{P}_{\varepsilon}\right)$, letting ε tends to zero and identifying the powers in ε, we get

- Each of these problems admits a unique solution in $\mathrm{H}_{0}^{1}(\Omega)$.
\rightarrow This defines the expansion.

Step II - error estimate

- The proof of error estimates generally relies on two points:

1) A stability estimate;
2) A consistency result.

Combining the two, then we get the desired error estimate.

Step II - error estimate

- The proof of error estimates generally relies on two points:

1) A stability estimate;
2) A consistency result.

Combining the two, then we get the desired error estimate.

1) Stability estimate. Green's formula gives

$$
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\left|u_{\varepsilon}\right|^{2} d \mathrm{x}=\int_{\Omega} f u_{\varepsilon} d \mathrm{x}
$$

From the Poincaré inequality

$$
\|\varphi\|_{\mathrm{L}^{2}(\Omega)} \leq C_{P}\|\varphi\|_{\mathrm{H}_{0}^{1}(\Omega)}:=\|\nabla \varphi\|_{\mathrm{L}^{2}(\Omega)}, \quad \forall \varphi \in \mathrm{H}_{0}^{1}(\Omega)
$$

we deduce the stability estimate, for all $\varepsilon>0$,

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq C_{P}\|f\|_{\mathrm{L}^{2}(\Omega)} \tag{*}
\end{equation*}
$$

Step II - error estimate

- The proof of error estimates generally relies on two points:

1) A stability estimate;
2) A consistency result.

Combining the two, then we get the desired error estimate.

1) Stability estimate. Green's formula gives

$$
\int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2}+\varepsilon\left|u_{\varepsilon}\right|^{2} d \mathrm{x}=\int_{\Omega} f u_{\varepsilon} d \mathrm{x} .
$$

From the Poincare inequality

$$
\|\varphi\|_{\mathrm{L}^{2}(\Omega)} \leq C_{P}\|\varphi\|_{\mathrm{H}_{0}^{1}(\Omega)}:=\|\nabla \varphi\|_{\mathrm{L}^{2}(\Omega)}, \quad \forall \varphi \in \mathrm{H}_{0}^{1}(\Omega),
$$

we deduce the stability estimate, for all $\varepsilon>0$,

$$
\begin{equation*}
\left\|u_{\varepsilon}\right\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq C_{P}\|f\|_{\mathrm{L}^{2}(\Omega)} \tag{*}
\end{equation*}
$$

"The solution of $\left(\mathscr{P}_{\varepsilon}\right)$ is controlled uniformly (C_{P} is independent of $\varepsilon, f)$ by the source term."

Step II - error estimate

2) Consistency results. Set $\hat{u}_{\varepsilon}:=\sum_{n=0}^{N} \varepsilon^{n} u_{n} \in \mathrm{H}_{0}^{1}(\Omega)$.

Inserting the error $u_{\varepsilon}-\hat{u}_{\varepsilon}$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we obtain the discrepancy

$$
(-\Delta+\varepsilon)\left(u_{\varepsilon}-\hat{u}_{\varepsilon}\right)=f-\left(-\sum_{n=0}^{N} \varepsilon^{n} \Delta u_{n}+\sum_{n=1}^{N+1} \varepsilon^{n} u_{n-1}\right)=-\varepsilon^{N+1} u_{N} .
$$

Step II - error estimate

2) Consistency results. Set $\hat{u}_{\varepsilon}:=\sum_{n=0}^{N} \varepsilon^{n} u_{n} \in \mathrm{H}_{0}^{1}(\Omega)$.

Inserting the error $u_{\varepsilon}-\hat{u}_{\varepsilon}$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we obtain the discrepancy

$$
(-\Delta+\varepsilon)\left(u_{\varepsilon}-\hat{u}_{\varepsilon}\right)=f-\left(-\sum_{n=0}^{N} \varepsilon^{n} \Delta u_{n}+\sum_{n=1}^{N+1} \varepsilon^{n} u_{n-1}\right)=-\varepsilon^{N+1} u_{N}
$$

Using this consistency result in the stability estimate $(*)$, we find

$$
\left\|u_{\varepsilon}-\hat{u}_{\varepsilon}\right\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq C_{P} \varepsilon^{N+1}\left\|u_{N}\right\|_{\mathrm{L}^{2}(\Omega)}
$$

Noting that $\left\|u_{N}\right\|_{\mathrm{L}^{2}(\Omega)} \leq C_{P}\left\|u_{N}\right\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq C_{P}^{3}\left\|u_{N-1}\right\|_{\mathrm{H}_{0}^{1}(\Omega)}$, finally we get:
Proposition: We have the error estimate

$$
\left\|u_{\varepsilon}-\hat{u}_{\varepsilon}\right\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq C_{P}^{2 N+2} \varepsilon^{N+1}\|f\|_{\mathrm{L}^{2}(\Omega)}
$$

Comments

- Recall the standard scheme

Step I: ansatz and identification of the terms of the ansatz;
Step II: error estimates (stability estimate + consistency result).
What validates the relevance of some ansatz is the error estimate.

- In general, the choice of the ansatz requires experience and knowledge of the problem. The derivation of the stability estimate is the hard part.

Comments

- Recall the standard scheme

Step I: ansatz and identification of the terms of the ansatz;
Step II: error estimates (stability estimate + consistency result).

Δ
What validates the relevance of some ansatz is the error estimate.

- In general, the choice of the ansatz requires experience and knowledge of the problem. The derivation of the stability estimate is the hard part.
- In our example, the uniform coercivity property made things very simple. Direct generalization to the problem:

$$
A_{\varepsilon} u_{\varepsilon}=f \in \mathrm{X} \quad \text { with } \quad A_{\varepsilon}:=A_{0}+P(\varepsilon)
$$

Here X is a Banach space, $A_{0}: \mathrm{X} \rightarrow \mathrm{X}$ is an isomorphism and $P(\cdot): \mathrm{X} \rightarrow \mathrm{X}$ is a family of bounded operators that depend analytically on ε s.t. $P(0)=0$.

Comments

- Recall the standard scheme

Step I: ansatz and identification of the terms of the ansatz;
Step II: error estimates (stability estimate + consistency result).

Δ
What validates the relevance of some ansatz is the error estimate.

- In general, the choice of the ansatz requires experience and knowledge of the problem. The derivation of the stability estimate is the hard part.
- In our example, the uniform coercivity property made things very simple. Direct generalization to the problem:

$$
A_{\varepsilon} u_{\varepsilon}=f \in \mathrm{X} \quad \text { with } \quad A_{\varepsilon}:=A_{0}+P(\varepsilon)
$$

Here X is a Banach space, $A_{0}: \mathrm{X} \rightarrow \mathrm{X}$ is an isomorphism and $P(\cdot): \mathrm{X} \rightarrow \mathrm{X}$ is a family of bounded operators that depend analytically on ε s.t. $P(0)=0$.

To prove the stability estimate, write

$$
A_{\varepsilon}=A_{0}+\left(A_{\varepsilon}-A_{0}\right)=A_{0}\left(\operatorname{Id}+A_{0}^{-1}\left(A_{\varepsilon}-A_{0}\right)\right) .
$$

This implies $\left\|u_{\varepsilon}\right\|_{\mathrm{x}} \leq C\|f\|_{\mathrm{x}}$ with $C>0$ independent of ε for $\varepsilon \in\left(0 ; \varepsilon_{0}\right]$.

Comments

- Recall the standard scheme

Step I: ansatz and identification of the terms of the ansatz;
Step II: error estimates (stability estimate + consistency result).

Δ
What validates the relevance of some ansatz is the error estimate.

- In general, the choice of the ansatz requires experience and knowledge of the problem. The derivation of the stability estimate is the hard part.
- In our example, the uniform coercivity property made things very simple. Direct generalization to the problem:

$$
A_{\varepsilon} u_{\varepsilon}=f \in \mathrm{X} \quad \text { with } \quad A_{\varepsilon}:=A_{0}+P(\varepsilon)
$$

Here X is a Banach space, $A_{0}: \mathrm{X} \rightarrow \mathrm{X}$ is an isomorphism and $P(\cdot): \mathrm{X} \rightarrow \mathrm{X}$ is a family of bounded operators that depend analytically on ε s.t. $P(0)=0$.

This applies for example to the problem
Find $u \in \mathrm{H}_{0}^{2}(\Omega)$ such that $\Delta \Delta u_{\varepsilon}+\frac{i \varepsilon}{1+\sin \varepsilon} \Delta u_{\varepsilon}=f \in \mathrm{~L}^{2}(\Omega)$.

(1) Perturbation in the equation

(2) Smooth perturbation of the domain

- Source term problem
- Eigenvalue problem

(3) Application to invisibility in acoustic waveguides

(4) An example of singularly perturbed problem

Smooth perturbation of the domain

- We perturb slightly ($\varepsilon \geq 0$ is small) the geometry

Locally $\partial \Omega_{\varepsilon}$ coincides with the graph of $x \mapsto \varepsilon h(x)$, where $h \in \mathscr{C}_{0}^{\infty}(-1 ; 1)$ is a given profile function.

- We consider the Laplace problem in the perturbed domain

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{rll}
-\Delta u_{\varepsilon} & =f & \text { in } \Omega_{\varepsilon} \\
u_{\varepsilon} & =0 & \text { on } \partial \Omega_{\varepsilon}
\end{array}\right.
$$

- For all $\varepsilon \geq 0,\left(\mathscr{P}_{\varepsilon}\right)$ has a unique solution u_{ε} in $\mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right)$ (Lax-Milgram).

Smooth perturbation of the domain

- We perturb slightly ($\varepsilon \geq 0$ is small) the geometry

Locally $\partial \Omega_{\varepsilon}$ coincides with the graph of $x \mapsto \varepsilon h(x)$, where $h \in \mathscr{C}_{0}^{\infty}(-1 ; 1)$ is a given profile function.

- We consider the Laplace problem in the perturbed domain

$$
\begin{array}{l|llll}
\left(\mathscr{P}_{\varepsilon}\right) & -\Delta u_{\varepsilon} & =f & \text { in } \Omega_{\varepsilon} \\
u_{\varepsilon} & = & 0 & \text { on } \partial \Omega_{\varepsilon} .
\end{array}
$$

- For all $\varepsilon \geq 0,\left(\mathscr{P}_{\varepsilon}\right)$ has a unique solution u_{ε} in $\mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right)$ (Lax-Milgram). What is the dependence of u_{ε} with respect to ε ?
\rightarrow This question has been extensively studied in shape optimization.

A first formal approach

- Let \mathcal{O} be a fixed neighbourhood of the perturbation. To simplify, we assume that $f \in \mathrm{~L}^{2}\left(\Omega_{\varepsilon}\right)$ is zero in \mathcal{O}. In Ω_{0}, we consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots
$$

where the terms u_{0}, u_{1} have to be determined.

- Observing that at the limit $\varepsilon \rightarrow 0, \Omega_{\varepsilon}$ converges to Ω_{0}, we get

$$
\begin{array}{|l|l}
-\Delta u_{0}=f \text { in } \Omega_{0} & -\Delta u_{1}=0 \text { in } \Omega_{0}
\end{array}
$$

A first formal approach

- Let \mathcal{O} be a fixed neighbourhood of the perturbation. To simplify, we assume that $f \in \mathrm{~L}^{2}\left(\Omega_{\varepsilon}\right)$ is zero in \mathcal{O}. In Ω_{0}, we consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots
$$

where the terms u_{0}, u_{1} have to be determined.

- Observing that at the limit $\varepsilon \rightarrow 0, \Omega_{\varepsilon}$ converges to Ω_{0}, we get

$$
\begin{array}{l|l}
-\Delta u_{0}=f \text { in } \Omega_{0} & -\Delta u_{1}=0 \text { in } \Omega_{0}
\end{array}
$$

- For the boundary conditions, for $(x, y) \in I$, we can write

$$
\begin{aligned}
0=u_{\varepsilon}(x, \varepsilon h(x)) & =u_{\varepsilon}(x, 0)+\varepsilon h(x) \partial_{y} u_{\varepsilon}(x, 0)+\ldots \\
& =u_{0}(x, 0)+\varepsilon u_{1}(x, 0)+\varepsilon h(x) \partial_{y} u_{0}(x, 0)+\ldots
\end{aligned}
$$

A first formal approach

- Let \mathcal{O} be a fixed neighbourhood of the perturbation. To simplify, we assume that $f \in \mathrm{~L}^{2}\left(\Omega_{\varepsilon}\right)$ is zero in \mathcal{O}. In Ω_{0}, we consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots
$$

where the terms u_{0}, u_{1} have to be determined.

- Observing that at the limit $\varepsilon \rightarrow 0, \Omega_{\varepsilon}$ converges to Ω_{0}, we get

$$
\begin{aligned}
-\Delta u_{0} & =f \text { in } \Omega_{0} \\
u_{0} & =0 \text { on } \partial \Omega_{0}
\end{aligned}
$$

$$
\begin{aligned}
-\Delta u_{1} & =0 \text { in } \Omega_{0} \\
u_{1}(x, y) & =-h(x) \partial_{y} u_{0}(x, 0) \mathbb{1}_{I}(x, y) \text { on } \partial \Omega_{0} .
\end{aligned}
$$

- For the boundary conditions, for $(x, y) \in I$, we can write

$$
\begin{aligned}
0=u_{\varepsilon}(x, \varepsilon h(x)) & =u_{\varepsilon}(x, 0)+\varepsilon h(x) \partial_{y} u_{\varepsilon}(x, 0)+\ldots \\
& =u_{0}(x, 0)+\varepsilon u_{1}(x, 0)+\varepsilon h(x) \partial_{y} u_{0}(x, 0)+\ldots
\end{aligned}
$$

A first formal approach

- Let \mathcal{O} be a fixed neighbourhood of the perturbation. To simplify, we assume that $f \in \mathrm{~L}^{2}\left(\Omega_{\varepsilon}\right)$ is zero in \mathcal{O}. In Ω_{0}, we consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots
$$

where the terms u_{0}, u_{1} have to be determined.

- Observing that at the limit $\varepsilon \rightarrow 0, \Omega_{\varepsilon}$ converges to Ω_{0}, we get

$$
\begin{aligned}
-\Delta u_{0} & =f \text { in } \Omega_{0} \\
u_{0} & =0 \text { on } \partial \Omega_{0}
\end{aligned}
$$

$$
\begin{aligned}
-\Delta u_{1} & =0 \text { in } \Omega_{0} \\
u_{1}(x, y) & =-h(x) \partial_{y} u_{0}(x, 0) \mathbb{1}_{I}(x, y) \text { on } \partial \Omega_{0}
\end{aligned}
$$

- For the boundary conditions, for $(x, y) \in I$, we can write

$$
\begin{aligned}
0=u_{\varepsilon}(x, \varepsilon h(x)) & =u_{\varepsilon}(x, 0)+\varepsilon h(x) \partial_{y} u_{\varepsilon}(x, 0)+\ldots \\
& =u_{0}(x, 0)+\varepsilon u_{1}(x, 0)+\varepsilon h(x) \partial_{y} u_{0}(x, 0)+\ldots
\end{aligned}
$$

This uniquely defines u_{0} and u_{1}.

A first formal approach

- Let \mathcal{O} be a fixed neighbourhood of the perturbation. To simplify, we assume that $f \in \mathrm{~L}^{2}\left(\Omega_{\varepsilon}\right)$ is zero in \mathcal{O}. In Ω_{0}, we consider the ansatz

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots
$$

where the terms u_{0}, u_{1} have to be determined.

- Observing that at the limit $\varepsilon \rightarrow 0, \Omega_{\varepsilon}$ converges to Ω_{0}, we get

$$
\begin{aligned}
-\Delta u_{0} & =f \text { in } \Omega_{0} \\
u_{0} & =0 \text { on } \partial \Omega_{0}
\end{aligned}
$$

$$
\begin{aligned}
-\Delta u_{1} & =0 \text { in } \Omega_{0} \\
u_{1}(x, y) & =-h(x) \partial_{y} u_{0}(x, 0) \mathbb{1}_{I}(x, y) \text { on } \partial \Omega_{0}
\end{aligned}
$$

- For the boundary conditions, for $(x, y) \in I$, we can write

$$
\begin{aligned}
0=u_{\varepsilon}(x, \varepsilon h(x)) & =u_{\varepsilon}(x, 0)+\varepsilon h(x) \partial_{y} u_{\varepsilon}(x, 0)+\ldots \\
& =u_{0}(x, 0)+\varepsilon u_{1}(x, 0)+\varepsilon h(x) \partial_{y} u_{0}(x, 0)+\ldots
\end{aligned}
$$

This uniquely defines u_{0} and u_{1}.
\rightarrow Let us see how to justify this formal calculus.

To establish error estimates, we consider a change of variables to work in a fixed geometry.

- For all $\varepsilon \in\left[0 ; \varepsilon_{0}\right]$, there is a smooth diffeomorphism

$$
\begin{array}{ll}
\Phi_{\varepsilon}: \quad \Omega_{0} & \rightarrow \Omega_{\varepsilon} \\
\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) & \mapsto x=\Phi_{\varepsilon}(\mathrm{x})=\mathrm{x}+\varepsilon \phi(\mathrm{x}) .
\end{array}
$$

To establish error estimates, we consider a change of variables to work in a fixed geometry.

- For all $\varepsilon \in\left[0 ; \varepsilon_{0}\right]$, there is a smooth diffeomorphism

$$
\begin{aligned}
\Phi_{\varepsilon}: \quad \Omega_{0} & \rightarrow \Omega_{\varepsilon} \\
\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) & \mapsto x=\Phi_{\varepsilon}(\mathrm{x})=\mathrm{x}+\varepsilon \phi(\mathrm{x})
\end{aligned}
$$

- With this choice, Φ_{ε} is a small perturbation of the identity.
" 2 : $=$ To establish error estimates, we consider a change of variables to work in a fixed geometry.
- For all $\varepsilon \in\left[0 ; \varepsilon_{0}\right]$, there is a smooth diffeomorphism

$$
\begin{array}{ll}
\Phi_{\varepsilon}: \quad \Omega_{0} & \rightarrow \Omega_{\varepsilon} \\
\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) & \mapsto x=\Phi_{\varepsilon}(\mathrm{x})=\mathrm{x}+\varepsilon \phi(\mathrm{x})
\end{array}
$$

- With this choice, Φ_{ε} is a small perturbation of the identity.
- We can take ϕ supported in \mathcal{O}, of the form

$$
\phi(\mathrm{x})=\left(\phi_{1}(\mathrm{x}), \phi_{2}(\mathrm{x})\right)=\left(0, h\left(\mathrm{x}_{1}\right) \rho\left(\mathrm{x}_{2}\right)\right)
$$

where ρ is smooth, compactly supported and equal to one in a vicinity of 0 .
'? To To establish error estimates, we consider a change of variables to work in a fixed geometry.

- For all $\varepsilon \in\left[0 ; \varepsilon_{0}\right]$, there is a smooth diffeomorphism

$$
\begin{aligned}
\Phi_{\varepsilon}: \quad \Omega_{0} & \rightarrow \Omega_{\varepsilon} \\
\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) & \mapsto x=\Phi_{\varepsilon}(\mathrm{x})=\mathrm{x}+\varepsilon \phi(\mathrm{x})
\end{aligned}
$$

- With this choice, Φ_{ε} is a small perturbation of the identity.
- We can take ϕ supported in \mathcal{O}, of the form

$$
\phi(\mathrm{x})=\left(\phi_{1}(\mathrm{x}), \phi_{2}(\mathrm{x})\right)=\left(0, h\left(\mathrm{x}_{1}\right) \rho\left(\mathrm{x}_{2}\right)\right)
$$

where ρ is smooth, compactly supported and equal to one in a vicinity of 0 .

- Observe that we have $\left.\Phi_{\varepsilon}\right|_{\Omega_{0} \backslash \overline{\mathcal{O}}}=\mathrm{Id}$.
- Set $U_{\varepsilon}=u_{\varepsilon} \circ \Phi_{\varepsilon}, V=v \circ \Phi_{\varepsilon}, F=f \circ \Phi_{\varepsilon}$. We have

$$
\begin{aligned}
& \int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} \nabla u_{\varepsilon} \cdot \nabla v d x=\int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} f v d x \\
\Leftrightarrow & \int_{\Omega_{0}}\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla U_{\varepsilon} \cdot\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla V J_{\Phi_{\varepsilon}} d \mathrm{x}=\int_{\Omega_{0}} F V J_{\Phi_{\varepsilon}} d \mathrm{x} .
\end{aligned}
$$

- Set $U_{\varepsilon}=u_{\varepsilon} \circ \Phi_{\varepsilon}, V=v \circ \Phi_{\varepsilon}, F=f \circ \Phi_{\varepsilon}$. We have

$$
\int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} \nabla u_{\varepsilon} \cdot \nabla v d x=\int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} f v d x
$$

$$
\Leftrightarrow \int_{\Omega_{0}}\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla U_{\varepsilon} \cdot\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla V J_{\Phi_{\varepsilon}} d \mathrm{x}=\int_{\Omega_{0}} F V J_{\Phi_{\varepsilon}} d \mathrm{x} .
$$

Here $\left\lvert\, D \phi=\left(\begin{array}{ll}\partial_{\mathrm{x}_{1}} \phi_{1} & \partial_{\mathrm{x}_{2}} \phi_{1} \\ \partial_{\mathrm{x}_{1}} \phi_{2} & \partial_{\mathrm{x}_{2}} \phi_{2}\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ \rho \partial_{\mathrm{x}_{1}} h & h \partial_{\mathrm{x}_{2}} \rho\end{array}\right)\right.$
$J_{\Phi_{\varepsilon}}=\operatorname{det}(\operatorname{Id}+\varepsilon D \phi)=1+\varepsilon h \partial_{\mathrm{x}_{2}} \rho$.

- Set $U_{\varepsilon}=u_{\varepsilon} \circ \Phi_{\varepsilon}, V=v \circ \Phi_{\varepsilon}, F=f \circ \Phi_{\varepsilon}$. We have

$$
\int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} \nabla u_{\varepsilon} \cdot \nabla v d x=\int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} f v d x
$$

$$
\Leftrightarrow \int_{\Omega_{0}}\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla U_{\varepsilon} \cdot\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla V J_{\Phi_{\varepsilon}} d \mathrm{x}=\int_{\Omega_{0}} F V J_{\Phi_{\varepsilon}} d \mathrm{x} .
$$

Here $\left|\begin{array}{ll} \\ \end{array}\right|=\left(\begin{array}{ll}\partial_{x_{1}} \phi_{1} & \partial_{x_{2}} \phi_{1} \\ \partial_{x_{1}} \phi_{2} & \partial_{x_{2}} \phi_{2}\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ \rho \partial_{x_{1}} h & h \partial_{x_{2}} \rho\end{array}\right)$
$J_{\Phi_{\varepsilon}}=\operatorname{det}(\operatorname{Id}+\varepsilon D \phi)=1+\varepsilon h \partial_{\mathrm{x}_{2}} \rho$.

- Thus we obtain the problem

$$
\begin{aligned}
& \text { Find } U_{\varepsilon} \in \mathrm{H}_{0}^{1}\left(\Omega_{0}\right) \text { such that } \\
& -\operatorname{div}\left(\sigma_{\varepsilon} \nabla U_{\varepsilon}\right)=F J_{\Phi_{\varepsilon}} \text { in } \Omega_{0}
\end{aligned}
$$

with $\left\lvert\, \begin{aligned} & \sigma_{\varepsilon}:=J_{\Phi_{\varepsilon}}(\operatorname{Id}+\varepsilon(D \phi))^{-1}\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1}=\operatorname{Id}+\varepsilon \sigma_{1}+\varepsilon^{2} \sigma_{2}+\ldots \\ & F J_{\Phi_{\varepsilon}}=F+\varepsilon h \partial_{\mathbf{x}_{2}} \rho F .\end{aligned}\right.$

- Considering the expansion

$$
U_{\varepsilon}=U_{0}+\varepsilon U_{1}+\varepsilon^{2} U_{2}+\ldots
$$

we can prove the following error estimate with C independent of $\varepsilon \in\left(0 ; \varepsilon_{0}\right]$

$$
\left\|U_{\varepsilon}-\sum_{n=0}^{N} \varepsilon^{n} U_{n}\right\|_{\mathrm{H}_{0}^{1}\left(\Omega_{0}\right)} \leq C \varepsilon^{N+1}\|f\|_{\mathrm{L}^{2}\left(\Omega_{0}\right)}
$$

- Considering the expansion

$$
U_{\varepsilon}=U_{0}+\varepsilon U_{1}+\varepsilon^{2} U_{2}+\ldots,
$$

we can prove the following error estimate with C independent of $\varepsilon \in\left(0 ; \varepsilon_{0}\right]$

$$
\left\|U_{\varepsilon}-\sum_{n=0}^{N} \varepsilon^{n} U_{n}\right\|_{\mathrm{H}_{0}^{1}\left(\Omega_{0}\right)} \leq C \varepsilon^{N+1}\|f\|_{\mathrm{L}^{2}\left(\Omega_{0}\right)}
$$

- Since $u_{\varepsilon}=U_{\varepsilon} \circ \Phi_{\varepsilon}^{-1}$, this yields

$$
\left\|u_{\varepsilon}-\sum_{n=0}^{N} \varepsilon^{n} U_{n} \circ \Phi_{\varepsilon}^{-1}\right\|_{\mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right)} \leq C \varepsilon^{N+1}\|f\|_{\mathrm{L}^{2}\left(\Omega_{0}\right)} .
$$

Now the geometry is fixed and we have a pertubation in the equation.

- Considering the expansion

$$
U_{\varepsilon}=U_{0}+\varepsilon U_{1}+\varepsilon^{2} U_{2}+\ldots,
$$

we can prove the following error estimate with C independent of $\varepsilon \in\left(0 ; \varepsilon_{0}\right]$

$$
\left\|U_{\varepsilon}-\sum_{n=0}^{N} \varepsilon^{n} U_{n}\right\|_{\mathrm{H}_{0}^{1}\left(\Omega_{0}\right)} \leq C \varepsilon^{N+1}\|f\|_{\mathrm{L}^{2}\left(\Omega_{0}\right)}
$$

- Since $u_{\varepsilon}=U_{\varepsilon} \circ \Phi_{\varepsilon}^{-1}$, this yields

$$
\left\|u_{\varepsilon}-\sum_{n=0}^{N} \varepsilon^{n} U_{n} \circ \Phi_{\varepsilon}^{-1}\right\|_{\mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right)} \leq C \varepsilon^{N+1}\|f\|_{\mathrm{L}^{2}\left(\Omega_{0}\right)}
$$

- Using that $U_{0} \circ \Phi_{\varepsilon}^{-1}+\varepsilon U_{1} \circ \Phi_{\varepsilon}^{-1}=U_{0}+\varepsilon\left(U_{1}-\nabla U_{0} \cdot \phi\right)+\ldots$
$U_{0}=u_{0}, \quad U_{1}-\nabla U_{0} \cdot \phi=U_{1}-h \rho \partial_{\mathrm{x}_{2}} U_{0}=u_{1}$, finally we obtain

$$
\left\|u_{\varepsilon}-\left(u_{0}+\varepsilon u_{1}\right)\right\|_{\mathrm{H}^{1}\left(\Omega_{0} \backslash \mathcal{O}\right)} \leq C \varepsilon^{2}\|f\|_{\mathrm{L}^{2}\left(\Omega_{0}\right)}
$$

Comments

- This is only to give a flavour. Much more refined results exist in the literature concerning shape optimization.

Q M. Pierre and A. Henrot. Shape Variation and Optimization. A Geometrical Analysis. EMS, 2018.
© M.C. Delfour and J.P. Zolésio. Shapes and geometries: metrics, analysis, differential calculus, and optimization. Society for Industrial and Applied Mathematics, 2011.

- In particular:
- For this Dirichlet problem, smoothness assumptions of the geometry can be considerably relaxed and result exist when Ω_{0} is only measurable.
- Higher order terms can be computed but then smoothness on f is required.

(1) Perturbation in the equation

(2) Smooth perturbation of the domain

- Source term problem
- Eigenvalue problem

(3) Application to invisibility in acoustic waveguides

(4) An example of singularly perturbed problem

Eigenvalue problem

- We consider the same perturbation of the geometry as before

Locally $\partial \Omega_{\varepsilon}$ coincides with the graph of $x \mapsto \varepsilon h(x)$, where $h \in \mathscr{C}_{0}^{-1 ; 1}(\mathbb{R})$ is a given profile function.

- We study the eigenvalue problem

$$
\begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}
$$

Eigenvalue problem

- We consider the same perturbation of the geometry as before

Locally $\partial \Omega_{\varepsilon}$ coincides with the graph of $x \mapsto \varepsilon h(x)$, where $h \in \mathscr{C}_{0}^{-1 ; 1}(\mathbb{R})$ is a given profile function.

- We study the eigenvalue problem

$$
\left\lvert\, \begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}\right.
$$

- For all $\varepsilon \geq 0$, the spectrum is made of positive isolated eigenvalues

$$
0<\lambda_{\varepsilon}^{[1]}<\lambda_{\varepsilon}^{[2]} \leq \lambda_{\varepsilon}^{[3]} \leq \cdots \leq \lambda_{\varepsilon}^{[n]} \leq \rightarrow+\infty .
$$

Eigenvalue problem

- We consider the same perturbation of the geometry as before

Locally $\partial \Omega_{\varepsilon}$ coincides with the graph of $x \mapsto \varepsilon h(x)$, where $h \in \mathscr{C}_{0}^{-1 ; 1}(\mathbb{R})$ is a given profile function.

- We study the eigenvalue problem

$$
\left\lvert\, \begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}\right.
$$

- For all $\varepsilon \geq 0$, the spectrum is made of positive isolated eigenvalues

$$
0<\lambda_{\varepsilon}^{[1]}<\lambda_{\varepsilon}^{[2]} \leq \lambda_{\varepsilon}^{[3]} \leq \cdots \leq \lambda_{\varepsilon}^{[n]} \leq \rightarrow+\infty .
$$

What is the dependence of $\lambda_{\varepsilon}^{[n]}$ with respect to ε ?

Asymptotic expansion of the eigenvalues

$$
\begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}
$$

- We work with an ansatz both for u_{ε} and λ_{ε}

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots, \quad \lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots
$$

where the terms $u_{0}, u_{1}, \lambda_{0}, \lambda_{1}, \ldots$, have to be determined.

Asymptotic expansion of the eigenvalues

$$
\left\lvert\, \begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}\right.
$$

- We work with an ansatz both for u_{ε} and λ_{ε}

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots, \quad \lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots
$$

where the terms $u_{0}, u_{1}, \lambda_{0}, \lambda_{1}, \ldots$, have to be determined.

- Inserting these expansions in the problem, we get

$$
\begin{array}{rlrl}
-\Delta u_{0} & =\lambda_{0} u_{0} & \text { in } \Omega_{0} \\
u_{0} & =0 & & \text { on } \partial \Omega_{0}
\end{array}
$$

Asymptotic expansion of the eigenvalues

$$
\left\lvert\, \begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}\right.
$$

- We work with an ansatz both for u_{ε} and λ_{ε}

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots, \quad \quad \lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots
$$

where the terms $u_{0}, u_{1}, \lambda_{0}, \lambda_{1}, \ldots$, have to be determined.

- Inserting these expansions in the problem, we get

$$
\begin{array}{|cc|rl}
-\Delta u_{0}=\lambda_{0} u_{0} & \text { in } \Omega_{0} & -\Delta u_{1}-\lambda_{0} u_{1}=\lambda_{1} u_{0} & \text { in } \Omega_{0} \\
u_{0}=0 & \text { on } \partial \Omega_{0} & u_{1}(x, y)=-h(x) \partial_{y} u_{0}(x, 0) \mathbb{1}_{I}(x, y) & \text { on } \partial \Omega_{0}
\end{array}
$$

Asymptotic expansion of the eigenvalues

$$
\left\lvert\, \begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}\right.
$$

- We work with an ansatz both for u_{ε} and λ_{ε}

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots, \quad \lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots
$$

where the terms $u_{0}, u_{1}, \lambda_{0}, \lambda_{1}, \ldots$, have to be determined.

- Inserting these expansions in the problem, we get

$$
\begin{array}{rl|rl}
-\Delta u_{0}=\lambda_{0} u_{0} & \text { in } \Omega_{0} & -\Delta u_{1}-\lambda_{0} u_{1}=\lambda_{1} u_{0} & \text { in } \Omega_{0} \\
u_{0}=0 & \text { on } \partial \Omega_{0} & u_{1}(x, y)=-h(x) \partial_{y} u_{0}(x, 0) \mathbb{1}_{I}(x, y) & \text { on } \partial \Omega_{0}
\end{array}
$$

- If λ_{0} is simple, the second problem admits a solution iff

$$
\lambda_{1} \int_{\Omega_{0}}\left|u_{0}\right|^{2} d \mathrm{x}=\int_{\partial \Omega_{0}} u_{1} \partial_{n} u_{0} d \sigma
$$

Asymptotic expansion of the eigenvalues

$$
\left\lvert\, \begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}\right.
$$

- We work with an ansatz both for u_{ε} and λ_{ε}

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots, \quad \lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots
$$

where the terms $u_{0}, u_{1}, \lambda_{0}, \lambda_{1}, \ldots$, have to be determined.

- Inserting these expansions in the problem, we get

$$
\begin{array}{cc|cc}
-\Delta u_{0}=\lambda_{0} u_{0} & \text { in } \Omega_{0} & -\Delta u_{1}-\lambda_{0} u_{1}=\lambda_{1} u_{0} & \text { in } \Omega_{0} \\
u_{0}=0 & \text { on } \partial \Omega_{0} & u_{1}(x, y)=-h(x) \partial_{y} u_{0}(x, 0) \mathbb{1}_{I}(x, y) & \text { on } \partial \Omega_{0} .
\end{array}
$$

- If λ_{0} is simple, the second problem admits a solution iff

$$
\lambda_{1} \int_{\Omega_{0}}\left|u_{0}\right|^{2} d \mathrm{x}=\int_{\partial \Omega_{0}} u_{1} \partial_{n} u_{0} d \sigma
$$

Writing the compatibility condition allows us to set the value of λ_{1}.

Asymptotic expansion of the eigenvalues

$$
\left\lvert\, \begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, u_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{\varepsilon}\right) \backslash\{0\} \text { such that } \\
& -\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \quad \text { in } \Omega_{\varepsilon} .
\end{aligned}\right.
$$

- We work with an ansatz both for u_{ε} and λ_{ε}

$$
u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots, \quad \lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots
$$

where the terms $u_{0}, u_{1}, \lambda_{0}, \lambda_{1}, \ldots$, have to be determined.

- Inserting these expansions in the problem, we get

$$
\begin{array}{cc|cc}
-\Delta u_{0}=\lambda_{0} u_{0} & \text { in } \Omega_{0} & -\Delta u_{1}-\lambda_{0} u_{1}=\lambda_{1} u_{0} & \text { in } \Omega_{0} \\
u_{0}=0 & \text { on } \partial \Omega_{0} & u_{1}(x, y)=-h(x) \partial_{y} u_{0}(x, 0) \mathbb{1}_{I}(x, y) & \text { on } \partial \Omega_{0} .
\end{array}
$$

- If λ_{0} is simple, the second problem admits a solution iff

$$
\lambda_{1} \int_{\Omega_{0}}\left|u_{0}\right|^{2} d \mathrm{x}=\int_{\partial \Omega_{0}} u_{1} \partial_{n} u_{0} d \sigma=-\int_{I} h(x)\left(\partial_{y} u_{0}(x, y)\right)^{2} d \sigma
$$

Writing the compatibility condition allows us to set the value of λ_{1}.

Hadamard's formula

Proposition: The perturbation of a simple eigenvalue $\left(\lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots\right)$, is given by the Hadamard's formula

$$
\lambda_{1}=-\frac{\int_{I} h(x)\left(\partial_{y} u_{0}(x, y)\right)^{2} d \sigma}{\int_{\Omega_{0}}\left|u_{0}\right|^{2} d \mathrm{x}} .
$$

J. Hadamard. Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, 33 (1908) Imprimerie nationale.

Hadamard's formula

Proposition: The perturbation of a simple eigenvalue $\left(\lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots\right)$, is given by the Hadamard's formula

$$
\lambda_{1}=-\frac{\int_{I} h(x)\left(\partial_{y} u_{0}(x, y)\right)^{2} d \sigma}{\int_{\Omega_{0}}\left|u_{0}\right|^{2} d \mathrm{x}}
$$

围 J. Hadamard. Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, 33 (1908) Imprimerie nationale.

Remark:

If h is non negative, the domain increases and $\lambda_{1} \leq 0$.
If h is non positive, the domain decreases and $\lambda_{1} \geq 0$.
\rightarrow This is coherent with physics (the smaller Ω, the larger the eigenvalues).

Justification

We consider again the map $\Phi_{\varepsilon}: \Omega_{0} \rightarrow \Omega_{\varepsilon}$ to work in a fixed geometry.

- Set $U_{\varepsilon}=u_{\varepsilon} \circ \Phi_{\varepsilon}$ and $V=v \circ \Phi_{\varepsilon}$. We have

$$
\begin{aligned}
& \int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} \nabla u_{\varepsilon} \cdot \nabla v d x=\lambda_{\varepsilon} \int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} u_{\varepsilon} v d x \\
\Leftrightarrow & \int_{\Omega_{0}}\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla U_{\varepsilon} \cdot\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla V J_{\Phi_{\varepsilon}} d \mathrm{x}=\lambda_{\varepsilon} \int_{\Omega_{0}} U_{\varepsilon} V J_{\Phi_{\varepsilon}} d \mathrm{x} .
\end{aligned}
$$

Justification

We consider again the map $\Phi_{\varepsilon}: \Omega_{0} \rightarrow \Omega_{\varepsilon}$ to work in a fixed geometry.

- Set $U_{\varepsilon}=u_{\varepsilon} \circ \Phi_{\varepsilon}$ and $V=v \circ \Phi_{\varepsilon}$. We have

$$
\begin{aligned}
& \int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} \nabla u_{\varepsilon} \cdot \nabla v d x=\lambda_{\varepsilon} \int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} u_{\varepsilon} v d x \\
\Leftrightarrow & \int_{\Omega_{0}}\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla U_{\varepsilon} \cdot\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla V J_{\Phi_{\varepsilon}} d \mathrm{x}=\lambda_{\varepsilon} \int_{\Omega_{0}} U_{\varepsilon} V J_{\Phi_{\varepsilon}} d \mathrm{x} .
\end{aligned}
$$

- Thus we obtain a spectral problem of the form

$$
\begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, U_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{0}\right) \backslash\{0\} \text { such that } \\
& A_{\varepsilon} U_{\varepsilon}=\lambda_{\varepsilon} B_{\varepsilon} U_{\varepsilon}
\end{aligned}
$$

where $A_{\varepsilon}=A_{0}+\varepsilon A_{1}+\ldots, B_{\varepsilon}=B_{0}+\varepsilon B_{1}$ are bounded operators of $\mathrm{H}_{0}^{1}(\Omega)$.

Justification

We consider again the map $\Phi_{\varepsilon}: \Omega_{0} \rightarrow \Omega_{\varepsilon}$ to work in a fixed geometry.

- Set $U_{\varepsilon}=u_{\varepsilon} \circ \Phi_{\varepsilon}$ and $V=v \circ \Phi_{\varepsilon}$. We have

$$
\begin{aligned}
& \int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} \nabla u_{\varepsilon} \cdot \nabla v d x=\lambda_{\varepsilon} \int_{\Omega_{\varepsilon}=\Phi_{\varepsilon}\left(\Omega_{0}\right)} u_{\varepsilon} v d x \\
\Leftrightarrow & \int_{\Omega_{0}}\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla U_{\varepsilon} \cdot\left(\operatorname{Id}+\varepsilon(D \phi)^{\top}\right)^{-1} \nabla V J_{\Phi_{\varepsilon}} d \mathrm{x}=\lambda_{\varepsilon} \int_{\Omega_{0}} U_{\varepsilon} V J_{\Phi_{\varepsilon}} d \mathrm{x} .
\end{aligned}
$$

- Thus we obtain a spectral problem of the form

$$
\begin{aligned}
& \text { Find }\left(\lambda_{\varepsilon}, U_{\varepsilon}\right) \in \mathbb{R} \times \mathrm{H}_{0}^{1}\left(\Omega_{0}\right) \backslash\{0\} \text { such that } \\
& A_{\varepsilon} U_{\varepsilon}=\lambda_{\varepsilon} B_{\varepsilon} U_{\varepsilon}
\end{aligned}
$$

where $A_{\varepsilon}=A_{0}+\varepsilon A_{1}+\ldots, B_{\varepsilon}=B_{0}+\varepsilon B_{1}$ are bounded operators of $\mathrm{H}_{0}^{1}(\Omega)$.
A general theory exists for such problems and we can prove that $\varepsilon \mapsto \lambda_{\varepsilon}$ and $\varepsilon \mapsto U_{\varepsilon}$ are analytic near zero.
T. Kato. Perturbation theory for linear operators, Chap. 7, §6.5. 1976 \dot{z}_{3}

(1) Perturbation in the equation

(2) Smooth perturbation of the domain

(3) Application to invisibility in acoustic waveguides

(4) An example of singularly perturbed problem

General setting

- We wish to study questions of invisibility in acoustic waveguides.

Can we find situations where waves go through like if there were no defect

- One can wish to have good energy transmission through the structure.
- One can wish to hide objects.

Waveguide problem

- Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times(0 ; 1)\}$ outside a compact region.

$$
\begin{aligned}
& \text { Find } u=u_{i}+u_{s} \text { s. t. } \\
& \Delta u+k^{2} u=0 \quad \text { in } \Omega \\
& \partial_{n} u=0 \quad \text { on } \partial \Omega \\
& u_{s} \text { is outgoing. }
\end{aligned}
$$

Waveguide problem

- Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times(0 ; 1)\}$ outside a compact region.

$$
\begin{aligned}
& \text { Find } u=u_{i}+u_{s} \text { s. t. } \\
& \Delta u+k^{2} u=0 \quad \text { in } \Omega \\
& \partial_{n} u=0 \quad \text { on } \partial \Omega \\
& u_{s} \text { is outgoing. }
\end{aligned}
$$

- For this problem, the modes are

Propagating $w_{n}^{ \pm}(x, y)=e^{ \pm i \beta_{n} x} \cos (n \pi y), \beta_{n}=\sqrt{k^{2}-n^{2} \pi^{2}}, n \in \llbracket 0, N-1 \rrbracket$
Evanescent $\quad w_{n}^{ \pm}(x, y)=e^{\mp \beta_{n} x} \cos (n \pi y), \beta_{n}=\sqrt{n^{2} \pi^{2}-k^{2}}, n \geq N$.

Waveguide problem

- Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times(0 ; 1)\}$ outside a compact region.

$$
\begin{aligned}
& \text { Find } u=u_{i}+u_{s} \text { s. t. } \\
& \Delta u+k^{2} u=0 \quad \text { in } \Omega \\
& \partial_{n} u=0 \quad \text { on } \partial \Omega \\
& u_{s} \text { is outgoing. }
\end{aligned}
$$

Waveguide problem

- Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times(0 ; 1)\}$ outside a compact region.

$$
\begin{aligned}
& \text { Find } u=u_{i}+u_{s} \text { s. t. } \\
& \Delta u+k^{2} u=0 \quad \text { in } \Omega \\
& \partial_{n} u=0 \quad \text { on } \partial \Omega, \\
& u_{s} \text { is outgoing. }
\end{aligned}
$$

- For $k \in(0 ; \pi)$, only 2 propagating modes $w^{ \pm}=e^{ \pm i k x}$.

Waveguide problem

- Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times(0 ; 1)\}$ outside a compact region.

$$
\begin{aligned}
& \text { Find } u=u_{i}+u_{s} \text { s. t. } \\
& \Delta u+k^{2} u=0 \quad \text { in } \Omega \\
& \partial_{n} u=0 \quad \text { on } \partial \Omega, \\
& u_{s} \text { is outgoing. }
\end{aligned}
$$

- For $k \in(0 ; \pi)$, only 2 propagating modes $w^{ \pm}=e^{ \pm i k x}$. Set $u_{i}=w^{+}$.

Waveguide problem

- Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times(0 ; 1)\}$ outside a compact region.

Find $u=u_{i}+u_{s} \mathrm{~s} . \mathrm{t}$.
$\Delta u+k^{2} u=0 \quad$ in Ω, $\partial_{n} u=0$ on $\partial \Omega$, u_{s} is outgoing.

- For $k \in(0 ; \pi)$, only 2 propagating modes $w^{ \pm}=e^{ \pm i k x}$. Set $u_{i}=w^{+}$.
- We have

$$
u=\left\lvert\, \begin{aligned}
w_{+}+R w_{-}+\ldots & \text { for } x \leq-L \\
T w_{+}+\ldots & \text { for } x \geq+L
\end{aligned}\right.
$$

Waveguide problem

- Scattering in time-harmonic regime of a plane wave in the acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times(0 ; 1)\}$ outside a compact region.

Find $u=u_{i}+u_{s} \mathrm{~s} . \mathrm{t}$.
$\Delta u+k^{2} u=0 \quad$ in Ω, $\partial_{n} u=0 \quad$ on $\partial \Omega$, u_{s} is outgoing.

- For $k \in(0 ; \pi)$, only 2 propagating modes $w^{ \pm}=e^{ \pm i k x}$. Set $u_{i}=w^{+}$.
- We have

$$
u=\left\lvert\, \begin{array}{rll}
w_{+}+R w_{-}+\ldots & \text { for } x \leq-L & \text { The } \ldots \text { are expo. } \\
T w_{+}+\ldots & \text { for } x \geq+L & \text { decaying terms. }
\end{array}\right.
$$

Definition: $R, T \in \mathbb{C}$ are the reflection and transmission coefficients.

Invisibility

- At infinity, one measures only R and/or T (other terms are too small).
- From conservation of energy, one has

$$
|R|^{2}+|T|^{2}=1
$$

Invisibility

- At infinity, one measures only R and/or T (other terms are too small).
- From conservation of energy, one has

$$
|R|^{2}+|T|^{2}=1
$$

Definition: Defect is said | non reflecting if $R=0 \quad(\|T\|=1)$ |
| :--- |
| |
| perfectly invisible if $T=1 \quad(R=0)$. |

- For $T=1$, defect cannot be detected from far field measurements.

Invisibility

- At infinity, one measures only R and/or T (other terms are too small).
- From conservation of energy, one has

$$
|R|^{2}+|T|^{2}=1
$$

Definition: Defect is said | non reflecting if $R=0 \quad(\|T\|=1)$ | |
| :--- | :--- |
| | perfectly invisible if $T=1 \quad(R=0)$. |

- For $T=1$, defect cannot be detected from far field measurements.

Remark: less ambitious than usual cloaking and therefore, more accessible. Also relevant for applications.

Invisibility

- At infinity, one measures only R and/or T (other terms are too small).
- From conservation of energy, one has

$$
|R|^{2}+|T|^{2}=1
$$

Definition: Defect is said non reflecting if $R=0 \quad(|T|=1)$
perfectly invisible if $T=1 \quad(R=0)$.

- For $T=1$, defect cannot be detected from far field measurements.

Remark: less ambitious than usual cloaking and therefore, more accessible. Also relevant for applications.

GOAL
We explain how to use perturbative techniques to construct geometries such that $R=0$ or $T=1$.

General picture

- Perturbative technique: we construct small non reflecting defects using variants of the implicit functions theorem.

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$
(no obstacle leads to null measurements).

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0($ with $\mu \not \equiv 0)$.

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- We look for small perturbations of the geometry: $\mu=\varepsilon h$ where $\varepsilon>0$ is a small parameter and where h has be to determined.

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0($ with $\mu \not \equiv 0)$.

- Taylor: $R(\varepsilon h)=R(0)+\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.
$\exists h_{0}, h_{1}, h_{2} \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ s.t. $d R(0)\left(h_{0}\right)=0, d R(0)\left(h_{1}\right)=1$ and $d R(0)\left(h_{2}\right)=i$.

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.
$\exists h_{0}, h_{1}, h_{2} \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ s.t. $d R(0)\left(h_{0}\right)=0, d R(0)\left(h_{1}\right)=1$ and $d R(0)\left(h_{2}\right)=i$.

- Take $h=h_{0}+\tau_{1} h_{1}+\tau_{2} h_{2}$ where the τ_{n} are real parameters to set:

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.
$\exists h_{0}, h_{1}, h_{2} \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ s.t. $d R(0)\left(h_{0}\right)=0, d R(0)\left(h_{1}\right)=1$ and $d R(0)\left(h_{2}\right)=i$.

- Take $h=h_{0}+\tau_{1} h_{1}+\tau_{2} h_{2}$ where the τ_{n} are real parameters to set:

$$
0=R(\varepsilon h) \quad \Leftrightarrow
$$

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.

$$
\exists h_{0}, h_{1}, h_{2} \in \mathscr{C}_{0}^{\infty}(\mathbb{R}) \text { s.t. } d R(0)\left(h_{0}\right)=0, d R(0)\left(h_{1}\right)=1 \text { and } d R(0)\left(h_{2}\right)=i .
$$

- Take $h=h_{0}+\tau_{1} h_{1}+\tau_{2} h_{2}$ where the τ_{n} are real parameters to set:

$$
0=R(\varepsilon h) \quad \Leftrightarrow \quad 0=\varepsilon\left(\tau_{1} d R(0)\left(h_{1}\right)+\tau_{2} d R(0)\left(h_{2}\right)\right)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)
$$

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.

$$
\exists h_{0}, h_{1}, h_{2} \in \mathscr{C}_{0}^{\infty}(\mathbb{R}) \text { s.t. } d R(0)\left(h_{0}\right)=0, d R(0)\left(h_{1}\right)=1 \text { and } d R(0)\left(h_{2}\right)=i .
$$

- Take $h=h_{0}+\tau_{1} h_{1}+\tau_{2} h_{2}$ where the τ_{n} are real parameters to set:

$$
0=R(\varepsilon h) \quad \Leftrightarrow \quad 0=\varepsilon\left(\tau_{1}+i \tau_{2}\right)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)
$$

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.
$\exists h_{0}, h_{1}, h_{2} \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ s.t. $d R(0)\left(h_{0}\right)=0, d R(0)\left(h_{1}\right)=1$ and $d R(0)\left(h_{2}\right)=i$.

- Take $h=h_{0}+\tau_{1} h_{1}+\tau_{2} h_{2}$ where the τ_{n} are real parameters to set:

$$
0=R(\varepsilon h) \quad \Leftrightarrow \quad \vec{\tau}=G^{\varepsilon}(\vec{\tau}) \quad \text { where } \begin{aligned}
& \vec{\tau}=\left(\tau_{1}, \tau_{2}\right)^{\top} \\
& G^{\varepsilon}(\vec{\tau})=-\varepsilon\left(\Re e \tilde{R}^{\varepsilon}(h), \Im m \tilde{R}^{\varepsilon}(h)\right)^{\top} .
\end{aligned}
$$

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.
$\exists h_{0}, h_{1}, h_{2} \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ s.t. $d R(0)\left(h_{0}\right)=0, d R(0)\left(h_{1}\right)=1$ and $d R(0)\left(h_{2}\right)=i$.

- Take $h=h_{0}+\tau_{1} h_{1}+\tau_{2} h_{2}$ where the τ_{n} are real parameters to set:

$$
0=R(\varepsilon h) \quad \Leftrightarrow \quad \vec{\tau}=G^{\varepsilon}(\vec{\tau}) \quad \text { where } \begin{aligned}
& \vec{\tau}=\left(\tau_{1}, \tau_{2}\right)^{\top} \\
& G^{\varepsilon}(\vec{\tau})=-\varepsilon\left(\Re e \tilde{R}^{\varepsilon}(h), \Im m \tilde{R}^{\varepsilon}(h)\right)^{\top}
\end{aligned}
$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text {sol }}$.

Sketch of the method

- For $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$, set $R=R(\mu) \in \mathbb{C}$.

Note that $R(0)=0$ (no obstacle leads to null measurements).

Our goal: to find $\mu \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ such that $R(\mu)=0$ (with $\left.\mu \not \equiv 0\right)$.

- Taylor: $R(\varepsilon h)=\varepsilon d R(0)(h)+\varepsilon^{2} \tilde{R}^{\varepsilon}(h)$.

Assume that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto.
$\exists h_{0}, h_{1}, h_{2} \in \mathscr{C}_{0}^{\infty}(\mathbb{R})$ s.t. $d R(0)\left(h_{0}\right)=0, d R(0)\left(h_{1}\right)=1$ and $d R(0)\left(h_{2}\right)=i$.

- Take $h=h_{0}+\tau_{1} h_{1}+\tau_{2} h_{2}$ where the τ_{n} are real parameters to set:

$$
0=R(\varepsilon h) \quad \Leftrightarrow \quad \vec{\tau}=G^{\varepsilon}(\vec{\tau}) \quad \text { where } \quad \begin{aligned}
& \vec{\tau}=\left(\tau_{1}, \tau_{2}\right)^{\top} \\
& G^{\varepsilon}(\vec{\tau})=-\varepsilon\left(\Re e \tilde{R}^{\varepsilon}(h), \Im m \tilde{R}^{\varepsilon}(h)\right)^{\top} .
\end{aligned}
$$

If G^{ε} is a contraction, the fixed-point equation has a unique solution $\vec{\tau}^{\text {sol }}$. Set $\mu^{\text {sol }}:=\varepsilon h^{\text {sol }}$. We have $R\left(\mu^{\text {sol }}\right)=0$ (non reflecting perturbation).

Calculus of the differential

- We need to compute $d R(0)(h)$ that is the term R_{1} in the expansion

$$
R(\varepsilon h)=R_{0}+\varepsilon R_{1}+\ldots
$$

Calculus of the differential

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{gathered}
\Delta u_{\varepsilon}+k^{2} u_{\varepsilon}=0 \quad \text { in } \Omega_{\varepsilon} \\
\partial_{n_{\varepsilon}} u_{\varepsilon}=0 \quad \text { on } \partial \Omega_{\varepsilon} \\
u_{\varepsilon}-w^{+} \text {is outgoing }
\end{gathered}\right.
$$

- We need to compute $d R(0)(h)$ that is the term R_{1} in the expansion

$$
R(\varepsilon h)=R_{0}+\varepsilon R_{1}+\ldots
$$

- Inserting the expansion $u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots$ in $\left(\mathscr{P}_{\varepsilon}\right)$,

Calculus of the differential

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{gathered}
\Delta u_{\varepsilon}+k^{2} u_{\varepsilon}=0 \quad \text { in } \Omega_{\varepsilon} \\
\partial_{n_{\varepsilon}} u_{\varepsilon}=0 \quad \text { on } \partial \Omega_{\varepsilon} \\
u_{\varepsilon}-w^{+} \text {is outgoing }
\end{gathered}\right.
$$

- We need to compute $d R(0)(h)$ that is the term R_{1} in the expansion

$$
R(\varepsilon h)=R_{0}+\varepsilon R_{1}+\ldots
$$

- Inserting the expansion $u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we find

$$
\left\lvert\, \begin{array}{c|ccc}
\Delta u_{0}+k^{2} u_{0}=0 \quad \text { in } \Omega_{0} & \Delta u_{1}+k^{2} u_{1} & =0 & \text { in } \Omega_{0} \\
u_{0}-w^{+} \text {is outgoing } & & \\
& u_{1} \text { is outgoing. }
\end{array}\right.
$$

Calculus of the differential

$\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{gathered}\Delta u_{\varepsilon}+k^{2} u_{\varepsilon}=0 \quad \text { in } \Omega_{\varepsilon} \\ \partial_{n_{\varepsilon}} u_{\varepsilon}=0 \\ u_{\varepsilon}-w^{+} \text {is outgoing }\end{gathered}\right.$

- We need to compute $d R(0)(h)$ that is the term R_{1} in the expansion

$$
R(\varepsilon h)=R_{0}+\varepsilon R_{1}+\ldots
$$

- Inserting the expansion $u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we find

$$
\begin{array}{c|l}
\Delta u_{0}+k^{2} u_{0}=0 \quad \text { in } \Omega_{0} & \Delta u_{1}+k^{2} u_{1}=0 \\
u_{0}-w^{+} \text {is outgoing } & \\
u_{1} \text { is outgoing. }
\end{array}
$$

On the top wall, we have

$$
\begin{aligned}
& n_{\varepsilon}=\frac{1}{\sqrt{1+\varepsilon^{2}\left(h^{\prime}(x)\right)^{2}}}\binom{-\varepsilon h^{\prime}(x)}{1}=\binom{0}{1}+\varepsilon\binom{-h^{\prime}(x)}{0}+\ldots \\
& \nabla u_{\varepsilon}(x, \varepsilon h(x))=\nabla u_{\varepsilon}(x, 0)+\varepsilon h(x)\binom{\partial_{x y}^{2} u_{\varepsilon}(x, 0)}{\partial_{y y}^{2} u_{\varepsilon}(x, 0)}+\ldots
\end{aligned}
$$

Calculus of the differential

$\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{array}{cc}\Delta u_{\varepsilon}+k^{2} u_{\varepsilon}=0 \quad \text { in } \Omega_{\varepsilon} \\ \partial_{n_{\varepsilon}} u_{\varepsilon}=0 & =0 \text { on } \partial \Omega_{\varepsilon} \\ u_{\varepsilon}-w^{+} & \text {is outgoing }\end{array}\right.$

- We need to compute $d R(0)(h)$ that is the term R_{1} in the expansion

$$
R(\varepsilon h)=R_{0}+\varepsilon R_{1}+\ldots
$$

- Inserting the expansion $u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we find

$$
\begin{array}{cccccc}
\Delta u_{0}+k^{2} u_{0} & =0 & \text { in } \Omega_{0} & \Delta u_{1}+k^{2} u_{1} & =0 & \text { in } \Omega_{0} \\
\partial_{y} u_{0}= & 0 \text { on } \partial \Omega_{0} & & \text { on } \partial \Omega_{0} \\
u_{0}-w^{+} \text {is outgoing } & & u_{1} \text { is outgoing. } &
\end{array}
$$

On the top wall, we have

$$
\left\lvert\, \begin{aligned}
& n_{\varepsilon}=\frac{1}{\sqrt{1+\varepsilon^{2}\left(h^{\prime}(x)\right)^{2}}}\binom{-\varepsilon h^{\prime}(x)}{1}=\binom{0}{1}+\varepsilon\binom{-h^{\prime}(x)}{0}+\ldots \\
& \nabla u_{\varepsilon}(x, \varepsilon h(x))=\nabla u_{\varepsilon}(x, 0)+\varepsilon h(x)\binom{\partial_{x y}^{2} u_{\varepsilon}(x, 0)}{\partial_{y y}^{2} u_{\varepsilon}(x, 0)}+\ldots
\end{aligned}\right.
$$

so that we get $0=n_{\varepsilon} \cdot \nabla u_{\varepsilon}(x, \varepsilon h(x))=\partial_{y} u_{0}+$

Calculus of the differential

$\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{gathered}\Delta u_{\varepsilon}+k^{2} u_{\varepsilon}=0 \quad \text { in } \Omega_{\varepsilon} \\ \partial_{n_{\varepsilon}} u_{\varepsilon}=0 \quad \text { on } \partial \Omega_{\varepsilon} \\ u_{\varepsilon}-w^{+} \text {is outgoing }\end{gathered}\right.$

- We need to compute $d R(0)(h)$ that is the term R_{1} in the expansion

$$
R(\varepsilon h)=R_{0}+\varepsilon R_{1}+\ldots
$$

- Inserting the expansion $u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we find

$$
\begin{array}{rl|rlll}
\Delta u_{0}+k^{2} u_{0} & =0 \quad \text { in } \Omega_{0} & \Delta u_{1}+k^{2} u_{1} & =0 & \text { in } \Omega_{0} \\
\partial_{y} u_{0} & =0 \quad \text { on } \partial \Omega_{0} & \partial_{y} u_{1} & =h^{\prime}(x) \partial_{x} u_{0} & \text { on } \partial \Omega_{0} \\
u_{0}-w^{+} \text {is outgoing } & & u_{1} \text { is outgoing. } &
\end{array}
$$

On the top wall, we have

$$
\left\lvert\, \begin{aligned}
& n_{\varepsilon}=\frac{1}{\sqrt{1+\varepsilon^{2}\left(h^{\prime}(x)\right)^{2}}}\binom{-\varepsilon h^{\prime}(x)}{1}=\binom{0}{1}+\varepsilon\binom{-h^{\prime}(x)}{0}+\ldots \\
& \nabla u_{\varepsilon}(x, \varepsilon h(x))=\nabla u_{\varepsilon}(x, 0)+\varepsilon h(x)\binom{\partial_{x}^{2} u_{\varepsilon}(x, 0)}{\partial_{y y}^{2} u_{\varepsilon}(x, 0)}+\ldots \quad \begin{array}{c}
\text { We use that } u_{0}=w^{+} \\
\Rightarrow \partial_{y y}^{2} u_{0}=0
\end{array}
\end{aligned}\right.
$$

so that we get $0=n_{\varepsilon} \cdot \nabla u_{\varepsilon}(x, \varepsilon h(x))=\partial_{y} u_{0}+\varepsilon\left(\partial_{y} u_{1}-\varepsilon h^{\prime}(x) \partial_{x} u_{0}\right)+\ldots$.

Calculus of the differential

- We have $u_{0}=w_{+}$and u_{1} is uniquely defined.
- Set $\Sigma_{ \pm L}=\{ \pm L\} \times(-1 ; 0)$ for L large enough. From the known formula

$$
2 i k R(\varepsilon h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{\varepsilon} w^{+}-u_{\varepsilon} \partial_{n} w^{+} d \sigma, \quad \text { where } \partial_{n}= \pm \partial_{x} \text { at } x= \pm L,
$$

Calculus of the differential

- We have $u_{0}=w_{+}$and u_{1} is uniquely defined.
- Set $\Sigma_{ \pm L}=\{ \pm L\} \times(-1 ; 0)$ for L large enough. From the known formula

$$
2 i k R(\varepsilon h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{\varepsilon} w^{+}-u_{\varepsilon} \partial_{n} w^{+} d \sigma, \quad \text { where } \partial_{n}= \pm \partial_{x} \text { at } x= \pm L,
$$

we infer that $\quad R_{0}=0, \quad 2 i k d R(0)(h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{1} w^{+}-u_{1} \partial_{n} w^{+} d \sigma$.

Calculus of the differential

- We have $u_{0}=w_{+}$and u_{1} is uniquely defined.
- Set $\Sigma_{ \pm L}=\{ \pm L\} \times(-1 ; 0)$ for L large enough. From the known formula $2 i k R(\varepsilon h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{\varepsilon} w^{+}-u_{\varepsilon} \partial_{n} w^{+} d \sigma, \quad$ where $\partial_{n}= \pm \partial_{x}$ at $x= \pm L$, we infer that $\quad R_{0}=0, \quad 2 i k d R(0)(h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{1} w^{+}-u_{1} \partial_{n} w^{+} d \sigma$.

Integrating by parts, finally we get the final result:

Proposition:

$$
d R(0)(h)=-\frac{1}{2} \int_{-L}^{L} \partial_{x} h(x)\left(w^{+}(x, 0)\right)^{2} d x=-\frac{1}{2} \int_{-L}^{L} \partial_{x} h(x) e^{2 i k x} d x
$$

Calculus of the differential

- We have $u_{0}=w_{+}$and u_{1} is uniquely defined.
- Set $\Sigma_{ \pm L}=\{ \pm L\} \times(-1 ; 0)$ for L large enough. From the known formula

$$
2 i k R(\varepsilon h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{\varepsilon} w^{+}-u_{\varepsilon} \partial_{n} w^{+} d \sigma, \quad \text { where } \partial_{n}= \pm \partial_{x} \text { at } x= \pm L,
$$

we infer that $\quad R_{0}=0, \quad 2 i k d R(0)(h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{1} w^{+}-u_{1} \partial_{n} w^{+} d \sigma$.
Integrating by parts, finally we get the final result:
Proposition:

$$
d R(0)(h)=-\frac{1}{2} \int_{-L}^{L} \partial_{x} h(x)\left(w^{+}(x, 0)\right)^{2} d x=-\frac{1}{2} \int_{-L}^{L} \partial_{x} h(x) e^{2 i k x} d x
$$

- Working with symmetries, one checks that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto .
- Error estimates allow one to prove that G^{ε} is a contraction of any closed ball for ε small enough.

Calculus of the differential

- We have $u_{0}=w_{+}$and u_{1} is uniquely defined.
- Set $\Sigma_{ \pm L}=\{ \pm L\} \times(-1 ; 0)$ for L large enough. From the known formula

$$
2 i k R(\varepsilon h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{\varepsilon} w^{+}-u_{\varepsilon} \partial_{n} w^{+} d \sigma, \quad \text { where } \partial_{n}= \pm \partial_{x} \text { at } x= \pm L,
$$

we infer that $\quad R_{0}=0, \quad 2 i k d R(0)(h)=\int_{\Sigma_{ \pm L}} \partial_{n} u_{1} w^{+}-u_{1} \partial_{n} w^{+} d \sigma$.
Integrating by parts, finally we get the final result:

Proposition:

$$
d R(0)(h)=-\frac{1}{2} \int_{-L}^{L} \partial_{x} h(x)\left(w^{+}(x, 0)\right)^{2} d x=-\frac{1}{2} \int_{-L}^{L} \partial_{x} h(x) e^{2 i k x} d x
$$

- Working with symmetries, one checks that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$ is onto .
- Error estimates allow one to prove that G^{ε} is a contraction of any closed ball for ε small enough.
\Rightarrow Thus we can construct geometries Ω_{ε} where $R_{\varepsilon}=0$.

Comments

- The invisible perturbation coincides with the graph of the function

$$
\varepsilon\left(h_{0}+\tau_{1}^{\mathrm{sol}} h_{1}+\tau_{2}^{\mathrm{sol}} h_{1}\right)
$$

where $h_{0} \in \operatorname{ker} d R(0)$ (remind that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$).
\Rightarrow There exist an infinite number of non reflecting geometries.

Comments

- The invisible perturbation coincides with the graph of the function

$$
\varepsilon\left(h_{0}+\tau_{1}^{\text {sol }} h_{1}+\tau_{2}^{\text {sol }} h_{1}\right)
$$

where $h_{0} \in \operatorname{ker} d R(0)$ (remind that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$).
\Rightarrow There exist an infinite number of non reflecting geometries.

- We can show that $\left|\tau_{1}^{\text {sol }}\right|+\left|\tau_{2}^{\text {sol }}\right|=O(\varepsilon)$. Therefore we can choose the principal form of the non reflecting perturbation.

Comments

- The invisible perturbation coincides with the graph of the function

$$
\varepsilon\left(h_{0}+\tau_{1}^{\mathrm{sol}} h_{1}+\tau_{2}^{\mathrm{sol}} h_{1}\right)
$$

where $h_{0} \in \operatorname{ker} d R(0)$ (remind that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$).
\Rightarrow There exist an infinite number of non reflecting geometries.

- We can show that $\left|\tau_{1}^{\text {sol }}\right|+\left|\tau_{2}^{\text {sol }}\right|=O(\varepsilon)$. Therefore we can choose the principal form of the non reflecting perturbation.
- We can iterate the process to construct larger non reflecting defects.

Comments

- The invisible perturbation coincides with the graph of the function

$$
\varepsilon\left(h_{0}+\tau_{1}^{\mathrm{sol}} h_{1}+\tau_{2}^{\mathrm{sol}} h_{1}\right)
$$

where $h_{0} \in \operatorname{ker} d R(0)$ (remind that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$).
\Rightarrow There exist an infinite number of non reflecting geometries.

- We can show that $\left|\tau_{1}^{\text {sol }}\right|+\left|\tau_{2}^{\text {sol }}\right|=O(\varepsilon)$. Therefore we can choose the principal form of the non reflecting perturbation.
- We can iterate the process to construct larger non reflecting defects.
- The fixed point problem can be solved very classically by an iterative procedure. \Rightarrow We can construct numerically non reflecting defects.

Comments

- The invisible perturbation coincides with the graph of the function

$$
\varepsilon\left(h_{0}+\tau_{1}^{\mathrm{sol}} h_{1}+\tau_{2}^{\mathrm{sol}} h_{1}\right)
$$

where $h_{0} \in \operatorname{ker} d R(0)$ (remind that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$).
\Rightarrow There exist an infinite number of non reflecting geometries.

- We can show that $\left|\tau_{1}^{\text {sol }}\right|+\left|\tau_{2}^{\text {sol }}\right|=O(\varepsilon)$. Therefore we can choose the principal form of the non reflecting perturbation.
- We can iterate the process to construct larger non reflecting defects.
- The fixed point problem can be solved very classically by an iterative procedure. \Rightarrow We can construct numerically non reflecting defects.
- Can we use the technique to construct Ω such that $T=1$?

Comments

- The invisible perturbation coincides with the graph of the function

$$
\varepsilon\left(h_{0}+\tau_{1}^{\mathrm{sol}} h_{1}+\tau_{2}^{\mathrm{sol}} h_{1}\right)
$$

where $h_{0} \in \operatorname{ker} d R(0)$ (remind that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$).
\Rightarrow There exist an infinite number of non reflecting geometries.

- We can show that $\left|\tau_{1}^{\text {sol }}\right|+\left|\tau_{2}^{\text {sol }}\right|=O(\varepsilon)$. Therefore we can choose the principal form of the non reflecting perturbation.
- We can iterate the process to construct larger non reflecting defects.
- The fixed point problem can be solved very classically by an iterative procedure. \Rightarrow We can construct numerically non reflecting defects.
- Can we use the technique to construct Ω such that $T=1$? We obtain

$$
T(\varepsilon h)-1=0+\varepsilon 0+O\left(\varepsilon^{2}\right) .
$$

Comments

- The invisible perturbation coincides with the graph of the function

$$
\varepsilon\left(h_{0}+\tau_{1}^{\mathrm{sol}} h_{1}+\tau_{2}^{\mathrm{sol}} h_{1}\right)
$$

where $h_{0} \in \operatorname{ker} d R(0)$ (remind that $d R(0): \mathscr{C}_{0}^{\infty}(\mathbb{R}) \rightarrow \mathbb{C}$).
\Rightarrow There exist an infinite number of non reflecting geometries.

- We can show that $\left|\tau_{1}^{\text {sol }}\right|+\left|\tau_{2}^{\text {sol }}\right|=O(\varepsilon)$. Therefore we can choose the principal form of the non reflecting perturbation.
- We can iterate the process to construct larger non reflecting defects.
- The fixed point problem can be solved very classically by an iterative procedure. \Rightarrow We can construct numerically non reflecting defects.
- Can we use the technique to construct Ω such that $T=1$? We obtain

$$
T(\varepsilon h)-1=0+\varepsilon 0+O\left(\varepsilon^{2}\right) .
$$

Δ
$d T(0)$ is not onto \Rightarrow the approach fails to impose $T=1$.

A perturbative method to get $T=1$

- We study the same problem in the geometry Ω_{ε}

Singular perturbation of the geometry!

- We obtain $\quad R_{\varepsilon}=0+\varepsilon\left(i k \sum_{n=1}^{3}\left(w^{+}\left(M_{n}\right)\right)^{2} \tan \left(k h_{n}\right)\right)+O\left(\varepsilon^{2}\right)$

$$
T_{\varepsilon}=1+\varepsilon\left(i / 2 \sum_{n=1}^{3} \tan \left(k h_{n}\right)\right)+O\left(\varepsilon^{2}\right)
$$

A perturbative method to get $T=1$

- We study the same problem in the geometry Ω_{ε}

Singular perturbation of the geometry!

- We obtain $\quad R_{\varepsilon}=0+\varepsilon\left(i k \sum_{n=1}^{3}\left(w^{+}\left(M_{n}\right)\right)^{2} \tan \left(k h_{n}\right)\right)+O\left(\varepsilon^{2}\right)$

$$
T_{\varepsilon}=1+\varepsilon\left(i / 2 \sum_{n=1}^{3} \tan \left(k h_{n}\right)\right)+O\left(\varepsilon^{2}\right)
$$

1) We can find M_{n}, h_{n} such that $R_{\varepsilon}=O\left(\varepsilon^{2}\right)$ and $T_{\varepsilon}=1+O\left(\varepsilon^{2}\right)$.

A perturbative method to get $T=1$

- We study the same problem in the geometry Ω_{ε}

Singular perturbation of the geometry!

- We obtain $\quad R_{\varepsilon}=0+\varepsilon\left(i k \sum_{n=1}^{3}\left(w^{+}\left(M_{n}\right)\right)^{2} \tan \left(k h_{n}\right)\right)+O\left(\varepsilon^{2}\right)$

$$
T_{\varepsilon}=1+\varepsilon\left(i / 2 \sum_{n=1}^{3} \tan \left(k h_{n}\right)\right)+O\left(\varepsilon^{2}\right)
$$

1) We can find M_{n}, h_{n} such that $R_{\varepsilon}=O\left(\varepsilon^{2}\right)$ and $T_{\varepsilon}=1+O\left(\varepsilon^{2}\right)$.
2) Then changing h_{n} into $h_{n}+\tau_{n}$, and choosing a good $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \in \mathbb{R}^{3}$ (fixed point), we can get $R_{\varepsilon}=0$ and $\Im m T_{\varepsilon}=0$.

A perturbative method to get $T=1$

- We study the same problem in the geometry Ω_{ε}

Singular perturbation of the geometry!

- We obtain $\quad R_{\varepsilon}=0+\varepsilon\left(i k \sum_{n=1}^{3}\left(w^{+}\left(M_{n}\right)\right)^{2} \tan \left(k h_{n}\right)\right)+O\left(\varepsilon^{2}\right)$

$$
T_{\varepsilon}=1+\varepsilon\left(i / 2 \sum_{n=1}^{3} \tan \left(k h_{n}\right)\right)+O\left(\varepsilon^{2}\right)
$$

1) We can find M_{n}, h_{n} such that $R_{\varepsilon}=O\left(\varepsilon^{2}\right)$ and $T_{\varepsilon}=1+O\left(\varepsilon^{2}\right)$.
2) Then changing h_{n} into $h_{n}+\tau_{n}$, and choosing a good $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right) \in \mathbb{R}^{3}$ (fixed point), we can get $R_{\varepsilon}=0$ and $\Im m T_{\varepsilon}=0$.
3) Energy conservation $+\left[T_{\varepsilon}=1+O(\varepsilon)\right] \quad \Rightarrow \quad T_{\varepsilon}=1$.

Numerical results

- Perturbed waveguide $\left(\Re e\left(u_{\varepsilon}(x, y) e^{-i \omega t}\right)\right)$

- Reference waveguide $\left(\Re e\left(u_{i}(x, y) e^{-i \omega t}\right)\right)$

Comments

- We could also have hidden gardens of flowers!

- For the second type of perturbations, the asymptotic analysis is quite different (singular perturbed problem).

For the two problems, we use the first term in the asymptotic whose dependence with respect to the perturbation is explicit and linear to cancel the whole expansion by solving a fixed point problem.
A.-S. Bonnet-Ben Dhia and S. A. Nazarov. Obstacles in acoustic waveguides becoming "invisible" at given frequencies, Acoustical Physics, 59(6), 633-639, 2013.
居 A.-S. Bonnet-Ben Dhia, L. Chesnel and S. A. Nazarov. Perfect transmission invisibility for waveguides with sound hard walls, J. Math. Pures Appl., vol. 111, 79-105, 2018.

(1) Perturbation in the equation

(2) Smooth perturbation of the domain

(3) Application to invisibility in acoustic waveguides

4 An example of singularly perturbed problem

An example of singularly perturbed problem

- For $a>0, a \neq 1$, consider the 1D problem

$$
\left(\begin{array}{l|l}
\left(\mathscr{P}_{\varepsilon}\right) & \varepsilon u_{\varepsilon}^{\prime \prime}(x)+u_{\varepsilon}^{\prime}(x)-a=0 \text { in } \Omega:=(0 ; 1) \\
u_{\varepsilon}(0)=0, \quad u_{\varepsilon}(1)=1 .
\end{array}\right.
$$

An example of singularly perturbed problem

- For $a>0, a \neq 1$, consider the 1D problem

$$
\left(\begin{array}{l|l}
\left(\mathscr{P}_{\varepsilon}\right) & \varepsilon u_{\varepsilon}^{\prime \prime}(x)+u_{\varepsilon}^{\prime}(x)-a=0 \text { in } \Omega:=(0 ; 1) \\
u_{\varepsilon}(0)=0, \quad u_{\varepsilon}(1)=1 .
\end{array}\right.
$$

- Its solution is given by $u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}}$.

An example of singularly perturbed problem

- For $a>0, a \neq 1$, consider the 1D problem

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{aligned}
& \varepsilon u_{\varepsilon}^{\prime \prime}(x)+u_{\varepsilon}^{\prime}(x)-a=0 \text { in } \Omega:=(0 ; 1) \\
& u_{\varepsilon}(0)=0, \quad u_{\varepsilon}(1)=1 .
\end{aligned}\right.
$$

- Its solution is given by $u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}}$.
- Let us try to write a representation of u_{ε} as before:

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{0}+\varepsilon u_{1}(x)+\ldots \tag{*}
\end{equation*}
$$

An example of singularly perturbed problem

- For $a>0, a \neq 1$, consider the 1D problem

$$
\left(\begin{array}{l|l}
\left(\mathscr{P}_{\varepsilon}\right) & \varepsilon u_{\varepsilon}^{\prime \prime}(x)+u_{\varepsilon}^{\prime}(x)-a=0 \text { in } \Omega:=(0 ; 1) \\
u_{\varepsilon}(0)=0, \quad u_{\varepsilon}(1)=1 .
\end{array}\right.
$$

- Its solution is given by $u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}}$.
- Let us try to write a representation of u_{ε} as before:

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{0}+\varepsilon u_{1}(x)+\ldots . \tag{*}
\end{equation*}
$$

Inserting $(*)$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we find $u_{0}^{\prime}=a$ in $\Omega, u_{0}(0)=0, u_{0}(1)=1$. Impossible.

An example of singularly perturbed problem

- For $a>0, a \neq 1$, consider the 1D problem

$$
\left(\begin{array}{l|l}
\left(\mathscr{P}_{\varepsilon}\right) & \varepsilon u_{\varepsilon}^{\prime \prime}(x)+u_{\varepsilon}^{\prime}(x)-a=0 \text { in } \Omega:=(0 ; 1) \\
u_{\varepsilon}(0)=0, \quad u_{\varepsilon}(1)=1 .
\end{array}\right.
$$

- Its solution is given by $u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}}$.
- Let us try to write a representation of u_{ε} as before:

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{0}+\varepsilon u_{1}(x)+\ldots \tag{*}
\end{equation*}
$$

Inserting $(*)$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we find $u_{0}^{\prime}=a$ in $\Omega, u_{0}(0)=0, u_{0}(1)=1$. Impossible.

- On the other hand, for $x \in(0 ; 1]$, we have

$$
\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}(x)=\hat{u}_{0}(x) \quad \text { with } \quad \hat{u}_{0}(x)=a x+(1-a) .
$$

But since $\left\|u_{\varepsilon}(x)-\hat{u}_{0}(x)\right\|_{\mathrm{L}^{\infty}(\bar{\Omega})}=|1-a|,\left(u_{\varepsilon}\right)$ does not cv to \hat{u}_{0} in $\mathrm{H}^{1}(\Omega)$.

An example of singularly perturbed problem

- For $a>0, a \neq 1$, consider the 1D problem

$$
\left(\mathscr{P}_{\varepsilon}\right) \left\lvert\, \begin{aligned}
& \varepsilon u_{\varepsilon}^{\prime \prime}(x)+u_{\varepsilon}^{\prime}(x)-a=0 \text { in } \Omega:=(0 ; 1) \\
& u_{\varepsilon}(0)=0, \quad u_{\varepsilon}(1)=1
\end{aligned}\right.
$$

- Its solution is given by $u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}}$.
- Let us try to write a representation of u_{ε} as before:

$$
\begin{equation*}
u_{\varepsilon}(x)=u_{0}+\varepsilon u_{1}(x)+\ldots \tag{*}
\end{equation*}
$$

Inserting $(*)$ in $\left(\mathscr{P}_{\varepsilon}\right)$, we find $u_{0}^{\prime}=a$ in $\Omega, u_{0}(0)=0, u_{0}(1)=1$. Impossible.

- On the other hand, for $x \in(0 ; 1]$, we have

$$
\lim _{\varepsilon \rightarrow 0} u_{\varepsilon}(x)=\hat{u}_{0}(x) \quad \text { with } \quad \hat{u}_{0}(x)=a x+(1-a) .
$$

But since $\left\|u_{\varepsilon}(x)-\hat{u}_{0}(x)\right\|_{\mathrm{L}^{\infty}(\bar{\Omega})}=|1-a|,\left(u_{\varepsilon}\right)$ does not cv to \hat{u}_{0} in $\mathrm{H}^{1}(\Omega)$.
The expansion $(*)$ does not provide a good representation of u_{ε}.

An example of singularly perturbed problem

$$
u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}} \quad \hat{u}_{0}(x)=a x+(1-a)
$$

- What happens is that the function u_{ε} has a rapid variation near the origin when $\varepsilon \rightarrow 0$:

An example of singularly perturbed problem

$$
u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}} \quad \hat{u}_{0}(x)=a x+(1-a)
$$

- What happens is that the function u_{ε} has a rapid variation near the origin when $\varepsilon \rightarrow 0$:

An example of singularly perturbed problem

$$
u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}} \quad \hat{u}_{0}(x)=a x+(1-a)
$$

- What happens is that the function u_{ε} has a rapid variation near the origin when $\varepsilon \rightarrow 0$:

An example of singularly perturbed problem

$$
u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}} \quad \hat{u}_{0}(x)=a x+(1-a)
$$

- What happens is that the function u_{ε} has a rapid variation near the origin when $\varepsilon \rightarrow 0$:

An example of singularly perturbed problem

$$
u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}} \quad \hat{u}_{0}(x)=a x+(1-a)
$$

- What happens is that the function u_{ε} has a rapid variation near the origin when $\varepsilon \rightarrow 0$:

An example of singularly perturbed problem

$$
u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}} \quad \hat{u}_{0}(x)=a x+(1-a)
$$

- What happens is that the function u_{ε} has a rapid variation near the origin when $\varepsilon \rightarrow 0$:

- Our expansion fails to provide a good representation of u_{ε} due to this boundary layer phenomenon. We say that $\left(\mathscr{P}_{\varepsilon}\right)$ is a singularly perturbed problem.

An example of singularly perturbed problem

$$
u_{\varepsilon}(x)=a x+(1-a) \frac{1-e^{-x / \varepsilon}}{1-e^{-1 / \varepsilon}} \quad \hat{u}_{0}(x)=a x+(1-a)
$$

- What happens is that the function u_{ε} has a rapid variation near the origin when $\varepsilon \rightarrow 0$:

- Our expansion fails to provide a good representation of u_{ε} due to this boundary layer phenomenon. We say that $\left(\mathscr{P}_{\varepsilon}\right)$ is a singularly perturbed problem.
- To approximate correctly u_{ε} near the origin, we will have to incorporate terms which depend on the rapid variable x / ε.
(1) Perturbation in the equation
(2) Smooth perturbation of the domain
(3) Application to invisibility in acoustic waveguides

4 An example of singularly perturbed problem

Conclusion of session 1

What we did

1) Smooth perturbation in the PDE. Recall the standard scheme

Step I: ansatz and identification of the terms of the ansatz; Step II: error estimates (stability estimate + consistency result).
2) Smooth perturbation of the geometry.

- Use a change of variable to show error estimates in a fixed geometry.
- For the eigenvalue problem, write the compatibility condition to get the corrector term.

3) Application to invisibility in acoustic waveguides.
4) We saw an example of singularly perturbed problem where the expansion $u_{\varepsilon}=u_{0}+\varepsilon u_{1}+\ldots$ is not adapted.

Next session

© We will study in detail a singularly perturbed problem with a PDE set in a domain with a small obstacle.

