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Abstract

Throughout the last decade, the so-called replication crisis has stimulated many researchers to
conduct large-scale replication projects. With data from four of these projects, we computed
probabilistic predictions of the replication outcomes, which we then evaluated regarding discrim-
ination, calibration and sharpness. By using a model of effect sizes which can take into account
possible inflation and heterogeneity of effects, it was possible to predict the effect estimate of
the replication study with good performance in two of the four data sets. In the other two data
sets, predictive performance could still be substantially improved compared to the naive model
which does not consider inflation and heterogeneity of effects. The results suggest that many of
the estimates from the original studies were too optimistic, possibly caused by publication bias
or questionable research practices. Moreover, the results also indicate that the use of statistical
significance as the only criterion for replication success may be questionable, since from a predic-
tive viewpoint non-significant replication results are often in agreement with significant results
from the original study. Finally, the proposed model could be used to determine the sample size
of a new replication study, considering potentially inflated and heterogeneous effect estimates,
which seems realistic in view of our results.
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Chapter 1

Introduction

Direct replication of past experiments is an essential tool in the modern scientific process for
assessing the credibility of scientific discoveries. That is, if a claimed discovery is indeed true,
a similar result should be obtained by repeating the original experiment. If the original claim
is false, however, one would expect the replication experiments to lead to contradictory results.
Moreover, replication is sometimes also a regulatory requirement. For instance, the “two piv-
otal study paradigm” of the FDA requires statistically significant results from two independent
confirmatory trials to grant drug approval (Lee, 2018).

Over the course of the last decade, concerns regarding the replicability of scientific discoveries
have increased dramatically, leading many to conclude that science is in a crisis (Ioannidis, 2005;
Gelman and Loken, 2014). For this reason, researchers in different fields, e. g . psychology or
economics, have joined forces to conduct large-scale replication projects. Usually, in such a repli-
cation project, representative original studies are carefully selected and then direct replication
studies of these original studies are carried out. In a direct replication study, the experimental
design is matched as closely as possible to the original study in order to assess the credibility of
the original study results. By now, some of these projects have been completed and their data
made available to the public, e. g . Klein et al. (2014); Open Science Collaboration (2015); Eber-
sole et al. (2016); Camerer et al. (2016, 2018); Cova et al. (2018); Klein et al. (2018). The low rate
of replication success in some of these projects has received enormous attention in the media and
science communities. Moreover, these results lead to an increased awareness of the replication
crisis as well as to increased interest in research on the scientific process itself (meta-science).

Despite the fact that most researchers agree on the importance of direct replication studies,
there is currently no agreement on a universal statistical criterion for replication success. First,
statistical significance is commonly used but criticized for many reasons. For example, non-
significant replication results are expected if the original finding was a false positive (e. g . with
95% probability if the significance level is 5%), on the other hand they are also expected with
non-negligible probability if the underlying effect is present (Goodman, 1992; Killeen, 2006; Si-
monsohn, 2015). Second, the effect estimates of original and replication study are often compared,
for instance by examining whether the replication effect estimate is within its 95% prediction
interval based on the original effect estimate (Patil et al., 2016) or whether the original effect
estimate is within the 95% confidence interval of the replication effect estimate (Open Science
Collaboration, 2015). However, for studies which are underpowered (as it is often the case), the
confidence and prediction intervals will become very wide. This in turn can lead to the very
different effect estimates being compatible, e. g . even ones that go strongly in the opposite di-
rection, ultimately providing no information about the effect (Patil et al., 2016). Third, original
and replication effect estimates can be combined using meta-analysis methods. By conducting a
replication study, however, researchers want to assess the credibility of the original study results
in light of the results from the replication study. Combining the effect estimates from both stud-
ies and treating them as exchangeable is not a sensible way to answer this question (Held, 2019a).
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Fourth, Bayesian hypothesis testing has been proposed to quantify the evidence for the existence
of the original effect estimate against the null hypothesis of no effect given the results of the
replication study (Verhagen and Wagenmakers, 2014; Ly et al., 2018). These approaches have
many attractive properties, e. g . one can quantify the evidence also in favor of the null hypothe-
sis. Although Bayesian methods have become increasingly popular in recent years, many applied
researchers lack the statistical training to confidently apply them, and therefore still prefer to
use frequentist methods for their analyses. Finally, Held (2019a) recently proposed a reverse
Bayes approach that tries to address the shortcomings of the above mentioned methods. That
is, replication success is quantified by the conflict between the replication effect estimate and a
prior predictive distribution which is determined such that after observing the original study, the
credible interval of the posterior distribution of the effect size just includes zero. This promising
method provides a theoretically sound approach to quantify replication success. However, Held
(2019a) also showed that it is a more stringent criterion compared to statistical significance and
therefore requires larger samples to achieve replication success. This could make this method
unattractive for researchers with little resources for replication studies. The discussion about a
statistical criterion for replication success is far from over, it will remain interesting to follow the
coming developments.

As already mentioned, to quantify the agreement between original and replication study, Patil
et al. (2016) introduced the approach of computing a prediction interval of the effect estimate
of the replication study based on the effect estimate from the original study and knowledge of
the sample size in both studies. Patil et al. (2016) used the data set from the replication project
psychology (Open Science Collaboration, 2015) to illustrate their method, and the same method
was again used in the analyses of the experimental economics replication project (Camerer et al.,
2016) and the social sciences replication project (Camerer et al., 2018). In all of these analyses,
the coverage of the 95% prediction intervals was examined to assess the predictive performance.
Although the assessment of prediction interval coverage may provide some clues about the cali-
bration of the predictions, there exists a whole catalogue of theoretically well-founded methods
for the evaluation of probabilistic predictions that are more suitable for this task (for an intro-
duction see e. g . Gneiting and Katzfuss, 2014).

From this starting point, this master thesis has several objectives. First, predictions of
replication study outcomes based on data from some replication projects, i. e. Open Science
Collaboration (2015); Camerer et al. (2016, 2018); Cova et al. (2018), will be computed and
systematically evaluated using established methods from the statistical prediction literature.
The second goal is then to improve these predictions. Namely, the prediction model used by
Patil et al. (2016) assumes that the original study correctly identified the underlying effect size,
but it is often likely that effect estimates of original studies are inflated, e. g . by the influence
of publication bias (Dwan et al., 2013; Kicinski et al., 2015) or questionable research practices
(Fanelli, 2009; John et al., 2012). Another concern with the model by Patil et al. (2016) is that it
also assumes the effect estimates from both studies to be realizations of the same underlying effect
size. However, it may also be the case that there is between study heterogeneity of the underlying
effects (Gilbert et al., 2016; McShane et al., 2019). This can be caused, for example, by different
populations of study participants or different laboratory equipment being used in original and
replication study. For this reason, a model of effect sizes for the setting of replication studies will
be developed which can take into account possible inflation as well as possible between study
heterogeneity of effect estimates.

The structure of this thesis is as follows. First, in the methods chapter various methods
for obtaining and evaluating probabilistic predictions in the setting of replication studies are
discussed, additionally the used data sets are described. Second, in the results chapter, descrip-
tive results about the data sets as well as results from the evaluation of the predictions are
summarized. Finally, the thesis ends with a discussion of these results and closing conclusions,
extensions, and limitations.



Chapter 2

Methods

2.1 General framework

In this section notation is introduced and some general results are established which will be used
subsequently. Unless otherwise stated, they are taken from Held and Sabanés Bové (2014).

2.1.1 Normal distribution

Let x be a realization of a random variable X that follows a normal distribution with mean
µ ∈ R and variance σ2 ∈ R>0, which is commonly abbreviated by X ∼ N(µ, σ2). The probability
density function of x is given by

f(x) =
1√

2πσ2
exp

{
−1

2

(x− µ)2

σ2

}
.

X is said to be standard normal if µ = 0 and σ2 = 1. Throughout the whole thesis, it is assumed
that after suitable transformations, an effect size θ can be modelled by a normally distributed
random variable with known variance. This framework supports a wide range of commonly used
effect sizes, for example, mean differences, odds ratios, correlations, or hazard ratios.

2.1.2 Maximum likelihood estimation

The likelihood function, L(θ), is the probability mass or probability density function of the data
x as a function of the unknown parameter θ. The maximum likelihood estimate, θ̂ML, is then
obtained by maximizing the (log-) likelihood function

θ̂ML = arg max
θ

L(θ) = arg max
θ

f(x | θ)

= arg max
θ

log f(x | θ).

If x is a realization from X ∼ N(µ, σ2) with σ2 known, the log-likelihood function, l(µ), is
given by

l(µ) = log f(x |µ) = −1

2
log
(
2πσ2

)
− 1

2

(x− µ)2

σ2
.

Differentiating with respect to µ, setting the equation to zero and solving for µ yields µ̂ML = x.

2.1.3 Bayes’ theorem and posterior distribution

In the Bayesian framework, the unknown parameter θ is not fixed but itself a random variable
following a prior distribution with probability density or mass function f(θ). After having
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observed realization x of a random variable X with density f(x | θ), the density f(θ |x) of the
posterior distribution can be computed by using Bayes’ theorem

f(θ |x) =
f(x | θ)f(θ)

f(x)
=

f(x | θ)f(θ)∫
f(x | θ)f(θ)dθ

,

where the denominator, f(x) =
∫
f(x | θ)f(θ)dθ, is known as the marginal likelihood.

For the model, where x is a realization from X ∼ N(µ, σ2) with σ2 known and prior distri-
bution µ ∼ N(µ0, σ

2
0 ), the posterior density of µ is

f(µ |x) =
f(x |µ)f(µ)∫
f(x |µ)f(µ)dµ

∝ exp

[
−1

2

{
(x− µ)2

σ2
+

(µ− µ0)
2

σ20

}]

∝ exp

−1

2

{
1

σ2
+

1

σ20

}(
µ−

{
1

σ2
+

1

σ20

}−1
·
{
x

σ2
+
µ0

σ20

})2
 ,

which, after some algebraic rearrangements, can be identified as the kernel of another normal
distribution, namely the posterior distribution of µ is

µ |x ∼ N

({
1

σ2
+

1

σ20

}−1
·
(
x

σ2
+
µ0

σ20

)
,

{
1

σ2
+

1

σ20

}−1)
. (2.1)

Similarly, the marginal likelihood is

f(x) =

∫
f(x |µ)f(µ)dµ

∝
∫

exp

[
−1

2

{
(x− µ)2

σ2
+

(µ− µ0)
2

σ20

}]
dµ

∝ exp

[
−1

2

(x− µ0)
2

σ2 + σ20

]
.

After some algebraic rearrangements and by using that for a > 0,
∫

exp(−ax2)dx =
√
π/a, the

expression can be identified as the kernel of a normal density, in particular

x ∼ N
(
µ0, σ

2 + σ20
)
. (2.2)

2.1.4 Posterior predictive distribution

If a realization x from the random variable X following a distribution with probability density
f(x | θ) is observed and the goal is to predict a new observation Y also with density f(x | θ), the
posterior predictive density f(y |x) can be derived to be

f(y |x) =

∫
f(y, θ |x)dθ =

∫
f(y | θ, x)f(θ |x)dθ

=

∫
f(y | θ)f(θ |x)dθ.

Note that this is exactly the same expression as the marginal likelihood, just with the density of
the prior distribution f(θ) replaced by the density of the posterior distribution f(θ |x).

By using (2.1) and (2.2), the posterior predictive distribution for the normal model with
known variance becomes

y |x ∼ N

({
1

σ2
+

1

σ20

}−1
·
(
x

σ2
+
µ0

σ20

)
,

{
1

σ2
+

1

σ20

}−1
+ σ2

)
. (2.3)
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2.1.5 Effect size scale

In the analysis of data from replication projects it has become common practice to transform
effect sizes to the correlation coefficient scale ρ (Open Science Collaboration, 2015; Camerer
et al., 2016, 2018; Cova et al., 2018). For an introduction to the conversion between effect
size scales, see section 12.5 in Cooper et al. (2009). An advantage of correlation coefficients
is that they are bounded to the interval between minus one and one and are thus easy to
compare and interpret. Moreover, by applying the variance stabilizing transformation, also
known as Fisher z-transformation, z(ρ) = tanh−1(ρ), the transformed correlation coefficients
become asymptotically normally distributed with their variance only being a function of the
study sample size n, i. e. Var(z(ρ̂)) = 1/(n − 3) (Fisher, 1921). The Fisher z-transformation is
shown in Figure 2.1. Throughout this thesis modelling and prediction will be carried out on the
Fisher z scale, but the results will often be backtransformed to the correlation scale by applying
the inverse Fisher z-transformation, ρ = tanh(z), for better comparability and interpretability.

−4

−2

0

2

4

−1.0 −0.5 0.0 0.5 1.0
ρ

z
(ρ

)

Figure 2.1: Fisher z-transformation.

Open Science Collaboration (2015) used the approach of computing correlation per degree of
freedom based on the test statistics of the original effect estimates (see page 74 in the supple-
mentary material of Open Science Collaboration, 2015). This is possible for z, χ2, t, and F test
statistics and can be done using the following formulas

ρ(t) =

√
t2/df2

(t2/df2) + 1

ρ(F ) =

√
F (df1/df2)

{F (df1/df2) + 1}
√

1/df1
ρ(χ2) =

√
χ2/n

ρ(z) = tanh

(
z

√
1

n− 3

)
.

The approach has become the standard for further replication projects (Camerer et al., 2016,
2018; Cova et al., 2018).

2.1.6 Notation

Throughout this thesis θ̂o and θ̂r denote the effect estimates after suitable transformation with
their subscript indicating whether they come from the original or the replication study. The
corresponding standard errors are denoted by σo and σr and assumed to be known. Similarly,
define the variance ratio as c = σ2o/σ

2
r and also define the test statistics to and tr obtained by
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dividing the effect estimate by its standard error, e. g . to = θ̂o/σo. Also let ρ denote the Pearson
correlation coefficient applied to a population, and let a sample-based estimate of it be denoted
by ρ̂ = r. Finally, let Φ(x) and ϕ(x) be the cumulative distribution and probability density
function of the standard normal distribution evaluated at x and let zα denote the 1−α quantile
thereof.

2.2 Prediction methods

In this section, methods are discussed which allow to compute probabilistic predictions of the
replication study outcome based on the original study outcome. The methods were implemented
in R and the corresponding code can be found in Appendix A.1

2.2.1 Plug-in predictive distribution

The plug-in predictive density is obtained by replacing the unknown parameter in the density
function underlying the data with its estimate, e. g . the maximum likelihood estimate θ̂ML (Held
and Sabanés Bové, 2014).

If the effect estimates are assumed to be normally distributed, e. g . θ̂r ∼ N(θ, σ2r ), the plug-in
predictive distribution of the replication study effect estimate becomes

θ̂r | θ̂o ∼ N(θ̂o, σ
2
r ).

Given this predictive model, the distribution of the test statistic of the replication study is
tr | θ̂o ∼ N(θ̂o/σr, 1). Note that θ̂o/σr = θ̂o/σo · σo/σr = to

√
c, and hence, the probability of a

statistically significant replication outcome at the α level and with the same sign as the original
effect estimate is

Pr(tr > zα/2 | θ̂o) = 1− Φ
(
zα/2 − θ̂o/σr

)
= Φ

(
to
√
c− zα/2

)
,

which in the context of sample size planning is known as the classical power (Spiegelhalter et al.,
2004). However, in this model the uncertainty with respect to estimating θ is ignored, resulting
in inferior predictive performance compared to the methods discussed further below. The plug-
in method is only mentioned, to serve as a benchmark for the other methods and because it
is commonly used for sample size calculations (despite taking the uncertainty not properly into
account).

2.2.2 Posterior predictive distribution

Flat prior If the prior distribution of θ is chosen to be flat, i. e. θ ∼ N(0,∞), with (2.1) the
posterior distribution of the effect size θ after observing the original study effect estimate θ̂o
becomes

θ | θ̂o ∼ N(θ̂o, σ
2
o).

By using (2.3), the posterior predictive distribution of θ̂r can then be identified to be

θ̂r | θ̂o ∼ N(θ̂o, σ
2
o + σ2r ). (2.4)

Hence, by using this predictive model, one assumes the original study to correctly identify the
true effect size. In contrast to the plug-in predictive distribution, the uncertainty of θ̂o is also
taken into account.
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Under this predictive distribution, the distribution of the test statistic of the replication
study is tr | θ̂o ∼ N(to

√
c, c+ 1) and hence the probability of a statistically significant replication

outcome at the α level and with the same sign as the original effect estimate is

Pr(tr > zα/2 | θ̂o) = Φ

(
to
√
c− zα/2√
c+ 1

)
.

In the context of sample size planning, this quantity is sometimes called hybrid power (Spiegel-
halter et al., 2004) or predictive power (Rufibach et al., 2016) since a Bayesian prediction for
the outcome of a frequentist analysis is performed. For brevity and in analogy to the existing
naming convention, this method will be referred to as the predictive method, although the other
methods also provide a predictive distribution.

Sceptical prior It is also possible to choose a different prior distribution for the effect size θ,
reflecting a more sceptical belief about θ. That is, if Zellner’s g-prior (Zellner, 1986) is chosen, i. e.
θ ∼ N(0, g · σ2o) with g ≥ 0, when marginalizing over θ by using (2.2), the marginal distribution
of θ̂o becomes

θ̂o ∼ N(0, (1 + g) · σ2o).

A well-founded approach to specify the parameter g when no prior knowledge is available, is to
choose it such that the marginal likelihood is maximized (known as empirical Bayes estimation).
The marginal log-likelihood is given by

l(g) = log

({
2π(1 + g)σ2o

}−1/2
exp

{
−1

2

θ̂2o
(1 + g)σ2o

})

= −1

2
log(2πσ2o)−

1

2
log(1 + g)− 1

2

t2o
(1 + g)

.

Differentiating l(g) with respect to g leads to

dl(g)

dg
= −1

2

{
1

1 + g
− t2o

(1 + g)2

}
=

1

2

1

1 + g

{
−1 +

t2o
(1 + g)

}
.

By equating the expression to zero and solving for g, the empirical Bayes estimate

ĝ = max
{
t2o − 1, 0

}
is obtained.

Fixing g to ĝ and using (2.1), the posterior distribution of the effect size θ after observing
the original study effect estimate θ̂o can be identified as

θ | θ̂o, ĝ ∼ N(s · θ̂o, s · σ2o),

with shrinkage factor

s =
ĝ

ĝ + 1
= max

{
1− 1

t2o
, 0

}
.

Figure 2.2 shows the shrinkage factor s as function of the test statistic respectively of the two-
sided p -value of the original study. Interestingly, this is a special case of the shrinkage factor of
the Stein-type predictor derived by Copas (1983) in a regression setting and which was shown
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0.00
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s

Figure 2.2: Shrinkage factor s as function of the test statistic to respectively of the
two-sided p -value po of the original study.

to give uniformly lower prediction mean squared error compared to least squares. The same
shrinkage factor was again discussed by Copas (1997) in the context of overcoming the effect of
regression to the mean in prediction problems. Shrinkage proved to be particularly useful when
the number of covariates in the regression model is large and/or the size of the sample used to
fit the model is small, as it is the case for the current replication setting where only one original
study is observed.

Using (2.3), the posterior predictive distribution of θ̂r is derived to be

θ̂r | θ̂o ∼ N(s · θ̂o, s · σ2o + σ2r ). (2.5)

Thus, when using this predictive model, the original study effect estimate and its variance are
shrunken towards zero depending on the amount of evidence (evidence based shrinkage). If
there was substantial evidence for an effect, i. e. to was very large or po was very small, the
shrinkage factor s ≈ 1 and hence the predictive distribution is virtually identical to the predictive
distribution when using a flat prior for θ. However, if the evidence in the original study was only
suggestive, i. e. to ≈ 2 or po ≈ 0.05, the effect estimate from the original study as well as the
corresponding variance term are shrunken towards zero, leading to a less optimistic prediction
compared to when using a flat prior for θ.

Based on this predictive distribution, the test statistic of the replication study is distributed
as tr | θ̂o ∼ N(s · to

√
c, s · c + 1), which leads to the probability of a statistically significant

replication outcome at the α level and with the same sign as the original effect estimate being

Pr(tr > zα/2 | θ̂o) =

Φ

(
to
√
c−
√
c/to − zα/2√

c+ 1− c/t2o

)
if t2o > 1

Φ (−zα/2) if t2o ≤ 1.

If there is hardly any evidence for an effect in the original study, i. e. |to| ≤ 1, the predicted
probability of a significant replication outcome is just the type I error α. On the other hand, in
the limiting case when to → ∞, this probability is the same as when using a flat prior for the
effect size θ. In the remaining part of the thesis, this prediction method will be referred to as
the shrinkage method for brevity reasons.

2.2.3 Taking into account between study heterogeneity

Even in direct replication studies, where the conditions of original and replication study are as
closely matched as possible, it is very likely that there is natural between study heterogeneity of
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the underlying effects. For example, the original and replication study might have been conducted
using slightly different populations of participants or different laboratory equipment. This is a
common objection against the validity of results from replication studies (e. g . in Gilbert et al.,
2016).

One way of incorporating between study heterogeneity into the current objective is by as-
suming a hierarchical model of the effect size parameters, i. e.

θ ∼ N(µθ, σ
2
θ )

θk | θ ∼ N(θ, τ2)

θ̂k |θk ∼ N(θk, σ
2
k),

where k ∈ {o, r} and τ2 is the heterogeneity variance (see Figure 2.3 for a graphical illustration).

θ̂o θ̂r

θo θrσ2o σ2r

θ τ2

µθσ2θ

NN

NN

N

Original study Replication study

Figure 2.3: Hierarchical model of effect size parameters.

Marginalizing over θk with (2.2) leads to the marginal distribution of θ̂k being

θ̂k | θ ∼ N(θ, σ2k + τ2),

which can be used as in the previous derivations to obtain the posterior distribution of θ and the
posterior predictive distribution of θ̂r given the observed effect estimate of the original study θ̂o.

Flat prior If a flat prior for θ is chosen, i. e. θ ∼ N(0,∞), using (2.1), the posterior distribution
of θ after observing the original study effect estimate θ̂o becomes

θ | θ̂o ∼ N(θ̂o, σ
2
o + τ2).

As before, with (2.3) the predictive distribution of θ̂r given θ̂o can be derived to be

θ̂r | θ̂o ∼ N(θ̂o, σ
2
o + σ2r + 2τ2). (2.6)

Hence, by using this predictive model, one expects the original study to identify the effect size
correctly. Furthermore, the uncertainty coming from original and replication study, as well as
the uncertainty from the between study heterogeneity is taken into account.

Given this predictive distribution, the test statistic of the replication study given the results
of the original study is distributed as tr | θ̂o ∼ N(to

√
c, c + 1 + 2τ2/σ2r ). Now define the relative

between study heterogeneity as d = τ2/σ2o , the ratio of the heterogeneity variance to the squared
standard error of the original study effect estimate, and note that τ2/σ2r = τ2/σ2o · σ2o/σ2r = d · c.
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The probability of a statistically significant replication outcome at the α level and with the same
sign as the original effect estimate is then

Pr(tr > zα/2 | θ̂o) = Φ

(
to
√
c− zα/2√

c(1 + 2d) + 1

)
.

In the case of no heterogeneity, i. e. d = 0, this probability reduces to the probability under the
standard predictive method.

Sceptical prior When choosing again the prior θ ∼ N(0, g ·σ2), marginalizing over θ by using
(2.2) leads to the marginal distribution of θ̂o being

θ̂o ∼ N(0, (1 + g) · σ2o + τ2).

Differentiating the marginal log-likelihood with respect to g results in

dl(g)

dg
=

d

dg

{
−1

2
log
{

(1 + g)σ2o + τ2
}
− 1

2

θ̂2o
(1 + g)σ2o + τ2

}

= −1

2

{
σ2o

(1 + g)σ2o + τ2
− θ̂2oσ

2
o

{(1 + g)σ2o + τ2}2

}

= −1

2

σ2o
(1 + g)σ2o + τ2

{
1− θ̂2o

(1 + g)σ2o + τ2

}
.

Equating this expression to zero and solving for g leads to the empirical Bayes estimate of g
being

ĝ = max

{
θ̂2o − τ2

σ2o
− 1, 0

}
= max

{
t2o − d− 1, 0

}
.

Using (2.1) to obtain θ | θ̂o, ĝ ∼ N(µ̃, σ̃2) the posterior distribution of θ after observing θ̂o and
setting g to ĝ, the posterior mean µ̃ can be identified to be

µ̃ =

(
1

σ2o + τ2
+

1

ĝσ2o

)−1
·

(
θ̂o

σ2o + τ2
+

0

ĝσ2o

)

=
ĝσ2o(σ

2
o + τ2)

(ĝ + 1)σ2o + τ2
· θ̂o
σ2o + τ2

=
ĝ

ĝ + 1 + d
· θ̂o = s̃ · θ̂o

and similarly the posterior variance σ̃2 becomes

σ̃2 =

(
1

σ2o + τ2
+

1

ĝσ2o

)−1
=

ĝ

ĝ + 1 + d
· (σ2o + τ2) = s̃ · (σ2o + τ2),

where s̃ is a shrinkage factor

s̃ =
ĝ

ĝ + 1 + d
= max

{
t2o − d− 1

t2o
, 0

}
= max

{
1− 1 + d

t2o
, 0

}
.

Figure 2.4 illustrates the shrinkage factor s̃ as a function of to and d. As can be seen, if there
is no between study heterogeneity, i. e. d = 0, the shrinkage factor s̃ reduces to the previously
derived shrinkage factor s. However, if there is between study heterogeneity, i. e. d > 0, shrinkage
towards zero is not only driven by the evidence in the original study (summarized by to), but
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Figure 2.4: Shrinkage factor s̃ as function of the test statistic to respectively the
two-sided p -value po of the original study and the relative between study heterogeneity
d = τ2/σ2o .

also by the ratio d/t2o. If the test statistic is large in comparison to the relative between study
heterogeneity, i. e. t2o � d, the contribution of the heterogeneity towards the shrinkage to zero
will only be very small. On the other hand, if the size of the test statistic is not substantially
larger than the relative between study heterogeneity, shrinkage will also be influenced by d.

Remarkably, when choosing instead the prior θ ∼ N(0, g · (σ2o + τ2)), which corresponds to
Zellner’s g-prior for the marginal likelihood θ̂o | θ ∼ N(θ, σ2o +τ2), the same posterior distribution
is obtained when estimating g by empirical Bayes. That is, using the results for Zellner’s g-prior
from the non-heterogeneity setting and just replacing σ2o by σ2o +τ2, leads to the empirical Bayes
estimate of g being

ĝ = max

{
θ̂2o

σ2o + τ2
− 1, 0

}
,

and thus the posterior distribution of θ after observing θ̂o turns out to be

θ | θ̂o ∼ N(s̃ · θ̂o, s̃ · (σ2o + τ2)),

with shrinkage factor

s̃ =
ĝ

1 + ĝ
= max

{
θ̂2o/(σ

2
o + τ2)− 1

θ̂2o/(σ
2
o + τ2)

, 0

}
= max

{
1− 1 + d

t2o
, 0

}
,

which is the same shrinkage factor s̃ as derived for the prior θ ∼ N(0, g ·σ2o). Hence, if estimating
the g parameter by empirical Bayes, it does not matter which of the two priors is chosen, the
same posterior distribution is obtained.

Using (2.2), the posterior predictive distribution of θ̂r under this predictive model can be
derived to be

θ̂r | θ̂o ∼ N(s̃ · θ̂o, s̃ · (σ2o + τ2) + σ2r + τ2). (2.7)

Based on this predictive distribution, the test statistic of the replication study is distributed as

tr | θ̂o ∼ N(s̃ · to
√
c, s̃ · (c+ dc) + 1 + dc),

which leads to the probability of a statistically significant replication outcome at the α level and
with the same sign as the original effect estimate being
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Pr(tr > zα/2 | θ̂o) =


Φ

( √
c(to − (1 + d)/to)− zα/2√

c(1 + 2d) + 1− c(1 + d)2/t2o

)
if

1 + d

t2o
< 1

Φ

(
−zα/2√
1 + dc

)
if

1 + d

t2o
≥ 1.

Similarly as in the non-heterogeneity case, for to →∞, this probability approaches the probability
under the flat prior. Also if there is no heterogeneity, i. e. d = 0, the probabilities reduce to the
probabilities under the standard shrinkage method.
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Figure 2.5: Comparison of the predictive densities of the discussed prediction methods.
In all examples c = 1, in the case of heterogeneity d = 1.

Figure 2.5 illustrates the predictive densities of the discussed prediction models. As can be
seen, when taking into account between study heterogeneity, the predictive densities become
wider compared to when not taking into account between study heterogeneity, reflecting the
additional uncertainty about the effect size. Furthermore, if there was no convincing evidence for
an effect in the original study, i. e. to was small, the shrinkage predictive densities are substantially
shrunken towards zero. For increasing to, on the other hand, the shrinkage predictive densities
approach the predictive densities which arise when choosing a flat prior for the effect size.

Figure 2.6 shows the probability of obtaining a significant effect estimate in the replication
study going in the same direction as the effect estimate of the original study as a function of
to and for different values of c. Focusing on c = 1, if the original study showed a p -value of
0.05, which corresponds to to ≈ 1.96, the probability of repeating a statistical significant result,
when assuming the original study correctly identified the effect size, is just about 0.5. This
counterintuitive result was already noted by Goodman (1992). For the predictions which are
subject to shrinkage, this quantity is even lower. Moreover, if the effect size of the replication
is estimated less precisely than in the original study (i. e. c < 1), the probability of significance
in the replication study becomes lower compared to when using the same precision. On the
other hand, if the precision of estimating the effect is increased, (i. e. c > 1), the probability
of significance in the replication also increases. Furthermore, for small to the probabilities are
higher for methods taking into account heterogeneity compared to their counterparts which do
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Figure 2.6: Probability of a significant replication outcome at α = 0.05 as a function
of the test statistic to or p -value po of the original study and variance ratio c. The
dashed line indicates z0.025. In the case of heterogeneity, d = 1.

not take into account heterogeneity, while the reverse is true for large to. The to at which the
change happens depends on c and also differs between the shrinkage and the predictive method.
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Figure 2.7: Required relative sample size c = nr/no to achieve a power of 80% as
a function of the test statistic to respectively the two-sided p -value po of the original
study and the relative between study heterogeneity d.

Assuming that the standard errors of the effect estimates only depend on some unit variance
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κ2 and the sample size of the study, i. e. σ2o = κ2/no and σ2r = κ2/nr, the required relative sample
size c = nr/no to achieve a statistically significant result in the replication study with a certain
power can be computed using root-finding algorithms. In Figure 2.7, the required c to achieve
80% power under the different models is shown as a function of to and the relative between study
heterogeneity d. As can be seen, the required relative sample size c decreases for increasing to,
i. e. evidence for an effect, and decreasing relative between study heterogeneity d. Furthermore,
for small to, increasing d increases the required c much stronger than for large to. Comparing the
shrinkage to the predictive model, the required c under the shrinkage model is much larger for
the same to, especially for small to. These results illustrate the fact that to achieve a reasonable
power, the sample size of the replication study needs to be massively increased compared to the
original study, when the results were only suggestive and possibly inflated and/or subject to
heterogeneity.

2.2.4 Specification of heterogeneity parameter

When taking into account between study heterogeneity, one needs to specify a value for the
heterogeneity parameter τ2 to be able to compute predictions of θ̂r. However, in the current
setting it is not possible to estimate τ2 using only data from the original study, since θ in the
marginal likelihood of θ̂o | θ ∼ N(θ, σ2o + τ2) is unknown. Therefore, a different method for
specifying τ2 is needed.

Based on the hierarchical model of effect sizes

θk | θ ∼ N(θ, τ2),

95% of the effect sizes θk should lie within the interval θ ± z0.025 · τ . For the setting where θ is a
log(odds ratio), Spiegelhalter et al. (2004) proposed to look at the ratio of the upper and lower
limit of this interval on the odds ratio scale. Namely, the ratio of the odds ratio quantiles is
exp(θk,97.5%)/ exp(θk,0.25%) ≈ exp(3.92 · τ). Spiegelhalter et al. (2004) argue that it is unlikely
for the odds ratio quantiles to vary more than an order of magnitude, i. e. exp(3.92 · τ) > 10 and
derived from this a classification, which was also used as a guideline in Neuenschwander et al.
(2018) for hazard ratio effect sizes.

However, if the effect size θ is not a log(odds ratio) but a Fisher z-transformed correlation
tanh−1(ρ) and assuming θ = 0, then the ratio tanh(1.96 · τ)/ tanh(−1.96 · τ) = −1 for all τ ,
since tanh(−x) = − tanh(x). Furthermore, this ratio is not well defined for all combinations
of quantiles, because tanh(0) = 0. A more sensible approach for effect sizes which are on
the correlation scale is to look at the difference of the quantiles instead of the ratio of quantiles.
Because correlations are bounded to the interval between minus one and one, the difference is also
bounded, everywhere defined, and easy to interpret. Hence, one can determine which value of τ
leads to the difference of the backtransformed correlation, i. e. δ = tanh(θk,97.5%)−tanh(θk,2.5%),
having a plausible value. Figure 2.8 shows the required heterogeneity τ as a function of δ and
assuming θ = 0.

However, this raises the question of how one should classify these differences and which value
should be picked for the current setting, since the classification by Spiegelhalter et al. (2004)
was not derived for differences of correlations. In the context of specifying a target effect size for
sample size calculations, Cohen (1992) proposed a classification for the magnitude of effect sizes,
such as standardized mean differences or correlation coefficients. That is, a medium effect size
should reflect an effect which is “visible to the eye”, a small effect size should be smaller but not
trivial, and finally a large effect size should have the same difference to the medium effect size
as the small effect size, but in the other direction. In the setting of direct replication studies, it
is reasonable to assume that the between study heterogeneity should not be very large, because
these kind of studies are usually matched as closely as possible to the original studies. This
suggests a τ = 0.08 leading to δ being of the size of a medium effect to be a sensible choice.
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Figure 2.8: Between study heterogeneity τ as a function of δ = tanh(θk,97.5%) −
tanh(θk,2.5%), difference between quantiles of backtransformed correlations, assuming
that θ = 0. The values corresponding to small, medium, and large effect sizes on
correlation scale according to the classification by Cohen (1992) are depicted by dotted
lines.

However, since this decision is only motivated theoretically, it is advisable to conduct a sensitivity
analysis to investigate how much the results would change when choosing different values.

For exploratory purposes it is also possible to estimate τ2 ad hoc by using the effect estimate
of the replication study in addition to the effect estimate of the original study. For instance,
one can maximize the likelihood of the predictive distribution when using a flat prior, θ̂r | θ̂o ∼
N(θ̂o, σ

2
o + σ2r + 2τ2), which leads to a estimator of τ2 being

τ̂2 = max

{
(θ̂r − θ̂o)2 − σ2o − σ2r

2
, 0

}
.

On the other hand, when using a sceptical prior there is no analytical expression, but τ̂2 needs to
be obtained numerically. Moreover, instead of the likelihood also other objective functions, such
as scoring rules (discussed in the next section), which are more suited for prediction problems
can be used to estimate τ2.

2.3 Predictive evaluation methods

To assess the quality of probabilistic predictions, extensive methodology has been developed, see
for example Gneiting and Katzfuss (2014). In the following section, various methods that will
be used to evaluate the predictions of the replication studies are discussed. The R code of the
implemented evaluation methods can be found in Appendix A.1.

2.3.1 Discrimination, calibration, and sharpness

When comparing the actual observed events with their predictive distributions, one can distin-
guish different aspects of this comparison. Discrimination characterizes how well a model is
able to predict different observations with different predictions. Calibration, on the other hand,
describes the statistical agreement of the whole predictive distribution with the actual observa-
tions, i. e. they should be indistinguishable from randomly generated samples from the predictive
distribution. One can assess further the sharpness aspect of the predictions, i. e. the concentra-
tion of the predictive distribution. Under the paradigm of maximizing the sharpness subject to
calibration, for the same calibration, a predictive distribution with smaller variance should be
preferred (Gneiting et al., 2007).
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Probability integral transform

A common tool to assess the calibration of continuous predictions is the probability integral
transform (PIT) which is the value of the predictive cumulative distribution function F (y) =
Pr(Y ≤ y) evaluated at the actual observed value yo

PIT(yo) = F (yo).

If the distribution of the realizations matches the predictive distribution, i. e. Yo ∼ F , then
Yo = F−1(U), where U ∼ U(0, 1), and therefore F (Yo) ∼ U(0, 1). This result implies that the
PIT values of well calibrated predictions should follow a standard uniform distribution which
is usually assessed visually by examining a histogram of the PIT values (Held and Sabanés
Bové, 2014). If the PIT histogram looks U-shaped, the predictive distribution is likely to be
underdispersed, while hump-shaped histograms indicated overdispersed predictive distributions.
Uniformity of the PIT values can also be assessed using formal tests, e. g . a Kolmogorov-Smirnov
test for predictions with no dependence structure. Uniform PIT values are a necessary condition
for predictions to be well calibrated, however, additional methods should be used to also assess
the sharpness of the predictions (Gneiting et al., 2007).

Area under the curve

In the case of binary outcomes, area under the curve (AUC) is commonly used to assess proba-
bilistic predictions regarding their discriminative quality. Let i denote a randomly chosen event
with prediction probability Pr(Yi = 1) = πi, which did actually occur (yi = 1) and let j denote
another randomly chosen event with prediction probability Pr(Yj = 1) = πj , which did not occur
(yj = 0), then

AUC = Pr(πi > πj).

The AUC can be estimated in different ways, for instance by numerically integrating the empirical
receiver operating characteristic (ROC) curve or by dividing the Wilcoxon rank sum statistic by
the product of the number of events and the number of non-events. An AUC of 0.5 is obtained by
just randomly guessing the outcome of the event to be predicted. Therefore, only values above
0.5 indicate better than random discrimination. However, predictions which lead to AUC < 0.5
can just be inverted to obtain 1− AUC. Confidence intervals for the AUC can be computed in
various way, for instance, Wald-type confidence interval can be constructed on original or logit
scale (Held and Sabanés Bové, 2014).

Calibration slope

Originally proposed by Cox (1958), the calibration slope method can be used to assess the
calibration of predictions by regressing the actual realizations on their predictions, i. e. for con-
tinuous predictions yo = α + βŷo and for binary predictions logit(πo) = α + β logit(π̂o), where
πo = Pr(yo = 1). A well calibrated prediction model should lead to β ≈ 1, whereas β > 1 and
β < 1 indicate under- and overestimation respectively. To analyze whether the calibration slope
estimate differs statistically significantly from one, standard inferential methods for regression
models can be used. Moreover, the estimated calibration slope can also be used as a shrinkage
factor to calibrate a model for future use (Steyerberg, 2009).

2.3.2 Scoring rules

A scoring rule S(f(y), yo) assigns a real number to density or probability mass function f(y)
of a predictive distribution F (y) and the realization yo. Usually, scoring rules are negatively
oriented, i. e. smaller values of S(f(y), yo) indicate better predictive performance. Scoring rules
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are typically used to assess the performance of a predictive distribution with respect to calibration
and sharpness simultaneously. Moreover, a more unusual use case of scoring rules is parameter
estimation, i. e. if one wants to fit a parametric model Fθ(y), the optimum score estimator

θ̂OS = arg min
θ

1

n

n∑
i=1

S(fθ(y), yi),

provides a principled way to estimate θ based on a sample Y1, . . . , Yn (Gneiting et al., 2007).

Proper scoring rules

A scoring rule S(f(y), yo) is proper if the expected score with respect to the true data generating
distribution Yo ∼ Fo is minimized when the predictive distribution is equal to the data generating
distribution Fo, i. e.

Efo [S(fo(y), yo)] ≤ Efo [S(f(y), yo)]

for all f(y). The scoring rule is strictly proper if this holds with equality only if f(y) = fo(y)
(Gneiting et al., 2007).

Logarithmic score The logarithmic score (LS) is defined as

LS (f(y), yo) = − log f(yo)

and is strictly proper for binary and continuous predictions. In the case of normally distributed
predictions Y ∼ N(µ, σ2), the LS becomes

LS (f(y), yo) =
(yo − µ)2

2σ2
+ log σ +

1

2
log(2π).

Furthermore, optimum score estimation based on the logarithmic score leads to maximum like-
lihood estimation.

Quadratic score The quadratic score (QS) for continuous predictions is given by

QS (f(y), yo) = −2f(yo) +

∫
f(t)2dt

and is strictly proper. For normally distributed predictions Y ∼ N(µ, σ2), the QS reduces to

QS (f(y), yo) = − 2

σ
ϕ

(
yo − µ
σ

)
+

1

2
√
πσ

.

Continuous ranked probability score The continuous ranked probability score (CRPS) is
defined as

CRPS (f(y), yo) =

∫
[F (t)− I[yo,∞)(t)]

2dt

= EF {|Y1 − yo|} −
1

2
EF {|Y1 − Y2|} ,

where Y1 and Y2 are independent random variables with cumulative distribution function F . The
CRPS has many attractive properties, e. g . the CRPS can be used to compare point predictions
to probabilistic predictions because it is a generalization of the absolute error. Furthermore,
the CRPS uses the same units as the observations. For normally distributed predictions Y ∼
N(µ, σ2), the CRPS becomes

CRPS (f(y), yo) = σ

[
yo − µ
σ

{
2Φ

(
yo − µ
σ

)
− 1

}
+ 2ϕ

(
yo − µ
σ

)
− 1√

π

]
.
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Dawid-Sebastiani score The Dawid-Sebastiani score (DSS) is a scoring rule which only de-
pends on the first two central moments of a predictive distribution, µf(y) and σ2f(y). The DSS is
given by

DSS (f(y), yo) =
(yo − µf(y))2

σ2f(y)
+ 2 log σ2f(y)

and is also strictly proper. In the case of normally distributed predictions Y ∼ N(µ, σ2), the
DSS is the same as the logarithmic score up to an affine transformation (Gneiting and Katzfuss,
2014).

Brier score The Brier score (BS) is a scoring rule specific to binary predictions. Denote the
predictive distribution f(y) = π̂ for y = 1 and as f(y) = 1− π̂ for y = 0, then the BS is defined
as

BS (f(y), yo) = (yo − π̂)2,

and is strictly proper. To allow model comparison on data with different prevalences of events,
often BS, the mean BS of a set of predictions, is normalized by

BS∗ = (BS0 − BS)/BS0,

where BS0 =
∑n

i=1(yi− ȳ)2/n = ȳ(1− ȳ), is the BS of the prevalence prediction ȳ = n−1
∑n

i=1 yi.
Moreover, BS0 also serves as an upper bound for useful predictions (Held and Sabanés Bové,
2014).

Score based miscalibration tests

Calibration of predictive distributions can also be assessed using formal significance tests based
on the observed scores.

Spiegelhalter (1986) proposed a test based on the Brier score, which is today known as
Spiegelhalter’s z-test. First, note that the mean Brier score can be decomposed into

BS =
1

n

n∑
i=1

(yi − π̂i)(1− 2π̂i) +
1

n

n∑
i=1

π̂i(1− π̂i),

where the first term measures calibration and the second term measures sharpness. Under the
null hypothesis of perfect calibration, i. e. E(yi) = π̂i, the expectation of the first term is zero
and thus the second term corresponds to E

(
BS
)
. The variance of the mean Brier score under

the null hypothesis can be derived to be

Var(BS) =
1

n2

n∑
i=1

(1− 2π̂i)
2π̂i(1− π̂i).

Hence zBS =
{
BS− E

(
BS
)}
/Var(BS)1/2 is approximately standard normal distributed under

perfect calibration and can be used as a miscalibration test.
Held et al. (2010) proposed similar tests to assess the calibration of continuous predictions.

For normally distributed predictions under the null hypothesis of perfect calibration, expectation
and variance of the mean logarithmic and CRP scores can be derived to be

E
(
LS
)

=
1

2
+

1

n

n∑
i=1

log σi +
1

2
log(2π) Var

(
LS
)

=
1

2n

E
(
CRPS

)
=

1√
π

1

n

n∑
i=1

σi Var
(
CRPS

)
=
C

n2

n∑
i=1

σ2i ,
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where C = 1/3 − (4 −
√

12)/π ≈ 0.16275. Using these results, the test statistics zLS ={
LS− E

(
LS
)}
/Var(LS)1/2 and zCRPS =

{
CRPS− E

(
CRPS

)}
/Var(CRPS)1/2 can be constructed.

Under the null hypothesis of perfect calibration both follow asymptotically a standard normal
distribution and can therefore be used to test for miscalibration.

Moreover, Held et al. (2010) also proposed score based miscalibration tests using regression
models. By conditioning on characteristics of the predictive distribution, these approaches can
provide more powerful tools to detect miscalibration compared to unconditional tests. For a
perfectly calibrated prediction f(y), the expected DS score is E {DSS(f(y), yo)} = 1+2 log σ with
variance Var {DSS(f(y), yo)} = 1. Using these results, a regression model can be formulated,
namely

DSSi = a+ b log σi + εi,

were εi are independent errors with zero mean. Under the null hypothesis of perfect calibration,
a = a0 = 1 and b = b0 = 2. Hence, from the least-squares fit with coefficients â, b̂ and estimated
variance-covariance matrix V̂ , the test statistic

TDSS = (â− a0, b̂− b0)V̂ −1(â− a0, b̂− b0)T

follows asymptotically a χ2-distribution with two degrees of freedom. Using a similar approach,
one can define a regression model for the CRP scores

CRPSi = c+ dσi + εi.

Since Var(CRPS) ∝ σ2i , a heteroscedastic model with weights 1/σ2i should be used. Under the
null hypothesis of perfect calibration and assuming normality, c = c0 = 0 and d = d0 = 1/

√
π.

A test statistic can be constructed in in the same way as in the DSS-regression case.

2.4 Data

Several data sets were used to compare the different prediction methods. In all data sets, effect es-
timates were provided on the correlation scale. If not already present, the Fisher z-transformation
was applied to the effect estimates and the corresponding standard errors were computed. All R
code for data preprocessing can be found in Appendix A.2.

Reproducibility Project Psychology

Open Science Collaboration (2015) conducted 100 replications of studies from the field of psy-
chology. The sampling frame of the original studies was chosen to minimize potential selection
bias and maximize generalizability of the findings. Namely, the sampling frame consisted of all
articles published in the journals Psychological Science, Journal of Personality and Social Psy-
chology, and Journal of Experimental Psychology: Learning, Memory, and Cognition within the
year 2008. By default, the last experiment of a study was picked to be replicated and for each of
these experiments a key statistical inference test, such as a t-test or F -test, was selected as the
focus of the statistical comparison.

All files were downloaded from https://github.com/CenterForOpenScience/rpp/archive/
master.zip. The masterscript.R was run and the data then taken from the generated MASTER
object. The standard errors of the Fisher z-transformed correlation coefficients were obtained
by binding the final$sei.o and final$sei.r vectors with the remaining data. According to
the supplementary material, the p -values from the studies with ID’s 7, 15, 47, 94, 120, and 140
were one-sided and were therefore multiplied by two to obtain two-sided p -values. Only the
“meta-analytic subset” was used, which consists of 73 studies where the standard error of the
Fisher z-transformed effect estimates can be computed.

https://github.com/CenterForOpenScience/rpp/archive/master.zip
https://github.com/CenterForOpenScience/rpp/archive/master.zip
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Experimental Economics Replication Project

Camerer et al. (2016) conducted 18 replications of studies from the field of experimental eco-
nomics. The sampling frame consisted of all studies published between 2011 and 2015 in the
journals American Economic Review and Quarterly Journal of Economics, which reported at
least one statistically significant between subject treatment effect. If more than one statistically
significant treatment effect was reported, “the most central result” based on the extent of em-
phasis in the publication was chosen as the key statistical result. In the case of more than one
central results, Camerer et al. picked the result that was the most efficient to replicate, which
they justify by “efficiency is central to economics”. When there was still ambiguity, the procedure
of the reproducibility project psychology to pick the last result, was chosen.

For this replication project also a prediction market was conducted in order to estimate the
peer beliefs about whether a replication study will result in a statistically significant result.
Prediction markets are a tool to aggregate beliefs of market participants about the possibility of
an investigated outcome and they have been used successfully in numerous domains, e. g . sports
or politics (Dreber et al., 2015). Since the estimated peer beliefs are also probabilistic predictions,
they can be compared to the probability of significance under the discussed statistical prediction
methods.

All files were downloaded from https://osf.io/pnwuz/. However, to “generate” the data
from the file create_studydetails.do, the commercial software STATA is required. Since the
data set is very small, the required data were manually extracted from the code in the file
create_studydetails.do. To compute the standard errors of the Fisher z-transformed effect
estimates, the sample sizes reported in the effectdata.py file rather than the ones reported
in the create_studydetails.do were taken. The former correspond to the effective sample
sizes while the latter in some cases corresponds to the number of measurements, which lead to
different prediction intervals than the ones reported in the publication (however, in all tables
Camerer et al. (2016) report the larger “number of measurements” sample size). The data
regarding the prediction market and survey beliefs were also manually extracted from table
S3 in the supplementary material, which was downloaded from http://science.sciencemag.
org/content/suppl/2016/03/02/science.aaf0918.DC1.

Social Sciences Replication Project

Camerer et al. (2018) conducted 21 replications of studies from the field of social sciences. The
sampling frame consisted of all social sciences studies published in the journals Nature and
Science between 2010 and 2015. Furthermore, the studies needed to have either a within or
between subjects treatment comparison design and the included experiments had to be performed
in a standard lab using student subjects or other easily accessible adult subjects. Finally, there
had to be at least one statistically significant finding reported in the studies. The treatment
effect to be replicated was by default selected as the first experiment reported in the publications
which achieved statistical significance. In this replication project a slightly different approach
was used in the conduct of the replication studies. In a first stage, the replication studies had
90% power to detect 75% of the original effect estimate at α = 0.05 with a two-sided test. If
statistical significance of the test result was not obtained, a second data collection was carried
out with power of 90% to detect 50% of the original effect estimate. The data of both data
collections were then pooled together.

Similarly as in the experimental economics replication project, a prediction market to estimate
peer beliefs about the replicability of the original studies was conducted and the resulting belief
estimates can be used as a comparison to the statistical predictions.

The data were taken from the D3 - ReplicationResults.csv file, which was downloaded
from https://osf.io/abu7k. For replications which underwent only the first stage, the data
from the first stage were taken as the data for the replication study. For the replications which

https://osf.io/pnwuz/
http://science.sciencemag.org/content/suppl/2016/03/02/science.aaf0918.DC1
http://science.sciencemag.org/content/suppl/2016/03/02/science.aaf0918.DC1
https://osf.io/abu7k
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reached the second stage, the pooled data from both stages were taken as the data for the
replication study. Additionally, the data regarding survey and prediction market beliefs were
extracted from the D6 - MeanPeerBeliefs.csv file, which was downloaded from https://osf.
io/vr6p8/.

Experimental Philosophy Replicability Project

Cova et al. (2018) conducted 40 replications of studies from the field of experimental philosophy.
The sampling frame consisted of all studies between 2003 and 2015 which were listed on the
experimental philosophy page of the university of Yale and which were as well published in one
of 35 journals in which experimental philosophy research is usually published (a list defined by the
coordinators of this project). For each year between 2003 and 2015, three studies were selected,
one of them being the most cited of the year, while the other two were randomly selected. By
default the first experiment of a publication was selected to be replicated.

All data were taken from the XPhiReplicability_CompleteData.csv file, which was down-
loaded from https://osf.io/4ewkh. However, only a subset of 31 of these replications could be
used, since only for these data, effect estimates on correlation scale and effective sample size for
original and replication were available simultaneously. Because p -values were most of the time
reported as inequalities, they were recalculated using a normal approximation on the Fisher z
scale.

2.5 Software

All analyses were performed in the R programming language (R Core Team, 2019) using base
packages and the following analysis-specific packages: Packages from the tidyverse were used
for data preparation and plotting (Wickham, 2017). The formatting of the p -values as well as
the computation of the AUCs with confidence intervals were performed using the biostatUZH
package which is available on http://ebuzh.r-forge.r-project.org/. The nested tables were
generated using the tables package (Murdoch, 2018).

https://osf.io/vr6p8/
https://osf.io/vr6p8/
https://osf.io/4ewkh
http://ebuzh.r-forge.r-project.org/
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Results

3.1 Descriptive results

Figure 3.1 shows plots of the original vs. the replication effect estimate, both on the correlation
scale. Most effect estimates of the replication studies are considerably smaller than those of
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Figure 3.1: Effect estimate of original study vs. effect estimate of replication study
(on correlation scale). The color of the points indicates whether statistical significance
at the 0.05 level was achieved.

the original studies. Namely, the mean effect estimates of the replications are roughly half as
large as the mean effect estimates of the original studies. An exception are the predictions
in the philosophy data set, where the mean effect estimate only decreased from 0.39 to 0.34.
Furthermore, studies showing a comparable effect estimate in the replication and original study
usually also achieved statistical significance, while studies showing a large decrease of the effect
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estimate were less likely to achieve statistical significance in the replication.
In Figure 3.2 a comparison of the original and the replication study p -values is shown.

On average, the p -values of the original studies are much smaller than the p -values of the
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Figure 3.2: p -value of original study vs. p -value of replication study.

replication studies. Moreover, many of the replication studies show p -values above the threshold
0.05, whereas most original studies showed a p -value smaller than 0.05. In the psychology data
set only 33% of the replications achieve statistical significance, while in the social sciences and
economics data sets around 60% of the replications show significant effect estimates. Finally, in
the philosophy data set 74% of the replication studies achieve statistical significance.
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Figure 3.3: Statistical significance of replication study vs. estimated prediction market
beliefs about whether the replication studies will achieve statistical significance (at
α = 0.05).

Figure 3.3 illustrates the elicited prediction market beliefs about whether the replication
studies will achieve statistical significance. In the case of the social science data set, the elicited
beliefs show a perfect separation with respect to the statistical significance of the replication
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study. On the other hand, the distribution of the prediction market beliefs in the economics
data set is very similar for significant and non-significant replications.

3.2 Predictive evaluation

3.2.1 Continuous predictions

In the following section the predictive performance of the investigated prediction methods will
be evaluated with methods suited for continuous predictive distributions.

Prediction intervals

Figure 3.4 shows again plots of the original vs. the replication effect estimates. In addition, the
corresponding 95% prediction interval is vertically shown around each study pair. Comparing
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Figure 3.4: 95% prediction intervals of the replication effect estimates.

the different methods across data sets, the shrinkage method shows the same coverage as the
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predictive method in the economics and philosophy data sets, whereas in the psychology and
social sciences data sets the shrinkage method shows a higher coverage compared to the pre-
dictive method. As is to be expected, when taking into account heterogeneity, the prediction
intervals become wider and the coverage improves considerably in all cases. In the philosophy
and economics data sets the highest coverage is achieved for the non-shrunken predictions from
the predictive method, while in the psychology and social sciences data sets the highest coverage
is achieved for the shrinkage predictions. Moreover, in all data sets except the psychology data
set, the best method is able to achieve nominal coverage of about 95%, whereas in the psychol-
ogy data set the best method achieves slightly less. These improvements in coverage suggest
improved calibration of the predictions taking into account heterogeneity (and shrinkage in the
case of the social sciences and psychology data sets). Finally, in the psychology and social sci-
ences data sets, the replication effect estimates that are not covered by their prediction intervals
are usually smaller than the lower limits of the intervals. In the economics and philosophy data
sets, on the other hand, the non-coverage appears to be more symmetric.

Predicted means

Table 3.1 shows a comparison of the predicted and the actually observed mean of the replication
effect estimates on the correlation scale. Since the predicted mean is the same for both predictive
methods, only one number is shown. As it is to be expected, the predicted mean effect estimate

Table 3.1: Observed vs. predicted mean replication effect estimates on correlation
scale.

Project Method mean(rr) mean(r̂r)

Experimental Economics Predictive 0.28 0.47
n = 18 Shrinkage 0.28 0.42

Shrinkage and Heterogeneity 0.28 0.41
Experimental Philosophy Predictive 0.34 0.39
n = 31 Shrinkage 0.34 0.35

Shrinkage and Heterogeneity 0.34 0.34
Psychology Predictive 0.19 0.42
n = 73 Shrinkage 0.19 0.37

Shrinkage and Heterogeneity 0.19 0.36
Social Sciences Predictive 0.25 0.46
n = 21 Shrinkage 0.25 0.42

Shrinkage and Heterogeneity 0.25 0.41

under the shrinkage method is smaller than the predicted mean effect estimate under the pre-
dictive method (which is just the mean effect estimate of the original studies). Furthermore, the
shrinkage method taking into account heterogeneity shows the smallest predicted mean effect es-
timate. However, with exception of the philosophy data set, the predicted mean effect estimate
is still substantially larger than the observed mean effect estimate even for the shrinkage method
taking heterogeneity into account, suggesting overestimation.

Calibration slope

In Figure 3.5 the calibration slopes obtained by regressing the Fisher z-transformed replication
effect estimates on the mean parameter of their predictive distributions are shown with 95%
confidence intervals. Usually, within one data set the slopes do not differ very much between
the four methods. Comparing the different data sets, the social sciences and psychology data
sets show calibration slopes of around 0.7, while the calibration slopes in the economics data set
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Figure 3.5: Calibration slope for continuous predictions with 95% confidence interval.

are around 0.4, suggesting overestimation of the mean parameter of all predictive distributions.
The slopes in the philosophy data set, on the other hand, show values around one, suggesting
that the mean parameters are well calibrated. Moreover, since the sample size in most projects
is small, the confidence intervals of the calibration slopes are usually very wide.

PIT histograms

Figure 3.6 shows histograms of the PIT values of the four prediction methods, where the range
from zero to one has been divided equally into eight bins. In some of the histograms in the social
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sciences and economics data sets there are bins with zero observations, however, these data
sets also have the smallest sample sizes. Comparing the PIT histograms between the different
methods, differences in the uniformity of the PIT values are visible. In the psychology and social
sciences data sets, the predictive method not taking into account heterogeneity shows extreme
bumps in the lower range of the PIT values. On the other hand, the histograms of the predictive
method taking into account heterogeneity, and the histograms of both shrinkage methods look
flatter, suggesting less miscalibration. In the case of the economics data sets, the PIT histograms
of both shrinkage methods look uniform, while the histograms of the predictive methods look
more skewed, indicating less miscalibration of the former compared to the latter. Finally, in
the philosophy data set the histograms look acceptable for all methods, suggesting no severe
miscalibration.

Table 3.2: Kolmogorov-Smirnov tests comparing PIT values to U(0, 1) distribution.

Project Method Test statistic p -value

Experimental Economics Predictive 0.38 0.007
n = 18 Predictive and Heterogeneity 0.39 0.006

Shrinkage 0.30 0.061
Shrinkage and Heterogeneity 0.29 0.073

Experimental Philosophy Predictive 0.21 0.11
n = 31 Predictive and Heterogeneity 0.19 0.20

Shrinkage 0.18 0.26
Shrinkage and Heterogeneity 0.08 0.97

Psychology Predictive 0.48 < 0.0001
n = 73 Predictive and Heterogeneity 0.44 < 0.0001

Shrinkage 0.41 < 0.0001
Shrinkage and Heterogeneity 0.36 < 0.0001

Social Sciences Predictive 0.61 < 0.0001
n = 21 Predictive and Heterogeneity 0.54 < 0.0001

Shrinkage 0.52 < 0.0001
Shrinkage and Heterogeneity 0.42 0.0008

Table 3.2 shows the results of Kolmogorov-Smirnov tests applied to the PIT values to test
for miscalibration. In each data set, the test statistic of the shrinkage method taking into
account heterogeneity shows the smallest value, suggesting that there is the least evidence for
this method to be miscalibrated. Looking at the economics data set, the tests provide weak
evidence for miscalibration of the shrinkage methods and moderate evidence for miscalibration
of the predictive methods. In the philosophy data set, on the other hand, there is no evidence
for miscalibration of any of the methods. Finally, in the social sciences and psychology data sets,
the tests provide substantial evidence for miscalibration of all methods.

Scoring rules

Table 3.3 shows the mean of the logarithmic scores (LS), continuous ranked probability scores
(CRPS), and quadratic scores (QS) for each data set and prediction method. Additionally, the
same mean scores, as well as their standard errors are are shown in Figure 3.7. It should be noted,
that the standard errors are presented only to illustrate the spread of the individual scores and
not to compare the mean scores between the different methods (this will be done further below
using a paired test). When comparing the methods, the shrinkage method taking into account
heterogeneity shows the lowest mean score across all score types in all data sets, suggesting that
this method achieves the best predictive performance. The predictive method not taking into
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account heterogeneity, on the other hand, usually showed the highest mean score across all score
types, indicating that this method performs the worst among the four methods.

Table 3.3: Mean scores for continuous predictions.

Type

LS CRPS QS
Project Method mean mean mean

Experimental Economics Predictive 0.34 0.21 −0.83
n = 18 Predictive and Heterogeneity 0.18 0.21 −1.14

Shrinkage 0.17 0.17 −1.17
Shrinkage and Heterogeneity 0.02 0.17 −1.32

Experimental Philosophy Predictive −0.05 0.12 −1.33
n = 31 Predictive and Heterogeneity −0.18 0.12 −1.51

Shrinkage −0.06 0.12 −1.46
Shrinkage and Heterogeneity −0.20 0.11 −1.67

Psychology Predictive 0.87 0.22 −0.07
n = 73 Predictive and Heterogeneity 0.51 0.22 −0.55

Shrinkage 0.86 0.19 −0.15
Shrinkage and Heterogeneity 0.27 0.18 −0.85

Social Sciences Predictive 0.85 0.22 −0.17
n = 21 Predictive and Heterogeneity 0.55 0.21 −0.67

Shrinkage 0.54 0.19 −0.58
Shrinkage and Heterogeneity 0.25 0.18 −1.17
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Figure 3.7: Mean scores with standard errors.

Table 3.4 shows the p -values of the paired Wilcoxon rank sum tests of the scores of the
shrinkage method taking into account heterogeneity compared to the scores of the other three
prediction methods. Only these comparisons are reported since the shrinkage method taking into
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account heterogeneity achieved the lowest mean score in all score types and data sets. For the

Table 3.4: Results of paired Wilcoxon rank sum tests of the shrinkage method taking
into account heterogeneity vs. the other three methods.

Type

LS CRPS QS
Project Test p -value p -value p -value

Experimental Economics Predictive 0.016 0.007 0.038
n = 18 Predictive and Heterogeneity 0.005 0.003 0.014

Shrinkage 0.77 0.70 0.73
Experimental Philosophy Predictive 0.95 0.66 0.44
n = 31 Predictive and Heterogeneity 0.28 0.47 0.26

Shrinkage 0.79 0.95 0.36
Psychology Predictive < 0.0001 < 0.0001 < 0.0001
n = 73 Predictive and Heterogeneity < 0.0001 < 0.0001 < 0.0001

Shrinkage < 0.0001 < 0.0001 < 0.0001
Social Sciences Predictive 0.0007 0.0004 0.001
n = 21 Predictive and Heterogeneity < 0.0001 0.0005 0.0003

Shrinkage 0.07 0.001 0.018

predictions in the psychology and social sciences data sets, there is in most cases strong evidence
of a difference in scores between the shrinkage method taking into account heterogeneity and
the other methods. In the philosophy data set, on the other hand, there is no evidence for a
difference between the scores of the shrinkage method taking into account heterogeneity and the
other methods. Finally, in the economics data set there is moderate evidence for a difference of
the scores between the shrinkage method taking into account heterogeneity and the non-shrinkage
methods, however, no evidence for a difference of the scores between the two shrinkage methods.

In Table 3.5, the results of the scoring rule based miscalibration tests are shown. The results
of the four tests are often but not always in agreement. First, the unconditional test based on
the logarithmic score suggests that all methods in the psychology and social sciences data sets
are miscalibrated. The test also provides some evidence for miscalibration of the methods which
do not take into account heterogeneity in the economics and philosophy data sets. Second, the
results from the unconditional test based on the CRPS provide evidence for miscalibration of all
methods in the social sciences and psychology data sets, moderate evidence for miscalibration
of the predictive method in the economics data set, and weak evidence for miscalibration of the
predictive and shrinkage method in the case of the philosophy data set. Third, the DSS regression
test indicates miscalibration of all methods in the psychology data set and it provides weak
evidence for miscalibration of the predictive method in the social sciences data set. Furthermore,
the test does not suggest miscalibration of any method in the economics and philosophy data
sets. Finally, the results from the CRPS regression test provide strong evidence for miscalibration
of all methods in the psychology data set, no evidence for miscalibration of any method in the
philosophy data sets, weak evidence for miscalibration of the methods which do not take into
account heterogeneity in the case of the economics data set, and weak evidence for miscalibration
of all methods except the shrinkage method taking into account heterogeneity in the social
sciences data set.
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Table 3.5: Results from scoring rule based miscalibration tests.

Test type

LS CRPS DSS-Regression CRPS-Regression

Project Method Statistic p -value Statistic p -value Statistic p -value Statistic p -value

Experimental Economics Predictive 2.85 0.004 2.30 0.021 3.44 0.18 6.01 0.05
n = 18 Predictive and Heterogeneity 0.72 0.47 1.52 0.13 2.97 0.23 1.91 0.39

Shrinkage 2.11 0.035 1.23 0.22 3.40 0.18 7.01 0.03
Shrinkage and Heterogeneity 0.20 0.84 0.57 0.57 0.13 0.94 0.04 0.98

Experimental Philosophy Predictive 3.84 0.0001 2.02 0.044 3.67 0.16 3.98 0.14
n = 31 Predictive and Heterogeneity 0.48 0.63 0.19 0.85 0.19 0.91 0.13 0.94

Shrinkage 4.09 < 0.0001 2.13 0.033 3.55 0.17 3.79 0.15
Shrinkage and Heterogeneity 0.80 0.42 0.32 0.75 0.33 0.85 0.36 0.83

Psychology Predictive 12.86 < 0.0001 8.09 < 0.0001 31.13 < 0.0001 44.76 < 0.0001
n = 73 Predictive and Heterogeneity 6.25 < 0.0001 5.49 < 0.0001 16.48 0.0003 19.82 < 0.0001

Shrinkage 13.57 < 0.0001 6.68 < 0.0001 45.17 < 0.0001 80.35 < 0.0001
Shrinkage and Heterogeneity 4.28 < 0.0001 3.86 0.0001 8.18 0.017 9.56 0.008

Social Sciences Predictive 7.68 < 0.0001 6.02 < 0.0001 6.26 0.044 9.39 0.009
n = 21 Predictive and Heterogeneity 4.30 < 0.0001 4.03 < 0.0001 3.81 0.15 5.11 0.078

Shrinkage 6.00 < 0.0001 4.86 < 0.0001 4.49 0.11 6.14 0.046
Shrinkage and Heterogeneity 2.79 0.005 2.80 0.005 2.88 0.24 3.33 0.19
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A total of five miscalibration tests have been performed, a theoretically well-founded way to
summarize the p -values of these tests is to use their harmonic mean (Good, 1958; Held, 2019b).
For this reason, Table 3.5 shows the harmonic mean of the p -values from the score based tests
and the Kolmogorov-Smirnov test of the PITs. Taken together, there is strong evidence for

Table 3.6: Results from all miscalibration tests, where the p -values haven been com-
bined by the harmonic mean.

Project Method HM(p -values)

Experimental Economics Predictive 0.011
n = 18 Predictive and Heterogeneity 0.029

Shrinkage 0.057
Shrinkage and Heterogeneity 0.27

Experimental Philosophy Predictive 0.0006
n = 31 Predictive and Heterogeneity 0.51

Shrinkage 0.0002
Shrinkage and Heterogeneity 0.70

Psychology Predictive < 0.0001
n = 73 Predictive and Heterogeneity < 0.0001

Shrinkage < 0.0001
Shrinkage and Heterogeneity < 0.0001

Social Sciences Predictive < 0.0001
n = 21 Predictive and Heterogeneity < 0.0001

Shrinkage < 0.0001
Shrinkage and Heterogeneity 0.003

miscalibration of all methods in the psychology and social sciences data sets. In the economics
data set, on the other hand, there is no evidence for miscalibration of the shrinkage method
taking into account heterogeneity and weak evidence for miscalibration of the other methods.
Finally, in the philosophy data set there is moderate evidence for miscalibration of the methods
not taking into account heterogeneity and no evidence for miscalibration of the methods taking
into account heterogeneity.

3.2.2 Binary predictions

Since statistical significance of the replication study is one of the most commonly used criteria for
replication success (Klein et al., 2014; Open Science Collaboration, 2015; Camerer et al., 2016;
Ebersole et al., 2016; Camerer et al., 2018; Cova et al., 2018; Klein et al., 2018), in the following
section the probability of significance under the investigated predictive distributions will be
evaluated using methods suited for binary predictive distributions. If not explicitly mentioned,
the significance threshold α = 0.05 for a two-sided p -value will be used.

Predicted probability of statistical significance

Figure 3.8 shows the probabilities of a statistically significant test statistic in the replication
study under the investigated predictive distributions, grouped by whether or not the replications
actually achieved significance. When looking at the statistical methods, the predicted proba-
bilities of significance are generally high, even for many of the studies where the replications
did not achieve significance. Comparing the different replication projects, in the social science
data set the distributions of the predicted probabilities among all methods are virtually identi-
cal between the significant and non-significant replication studies, suggesting low discriminatory
power of all methods. In the economics, philosophy, and psychology data sets, on the other
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Figure 3.8: Probabilities of statistically significant replication outcome under predic-
tive distributions (at α = 0.05).

hand, the predicted probabilities of the non-significant replications are in most cases slightly
smaller, indicating some discriminatory power of the predictions. Looking at the different pre-
diction methods, the predicted probabilities are generally smaller for the shrinkage compared to
the predictive methods, and similarly for methods taking into account heterogeneity compared
to methods not taking into account heterogeneity. Moreover, in the social sciences data set the
probabilities from the non-statistical prediction market method are much lower for non-significant
replications compared to the probabilities of the significant replications, suggesting substantial
discriminatory power of this method. In the economics data set, however, the prediction market
probabilities are high for both significant and non-significant replications, indicating only low
discriminatory power.

Figure 3.9 shows plots of the proportion of actually significant replications within the quartiles
of the empirical distribution of predicted probabilities for significance. A loess smoother is
underlaid to facilitate visual comparison. Ideally, the empirical proportions would monotonically
increase from zero to one, however, in the economics, social sciences, and philosophy data sets,
for certain methods there are lower quartiles with larger proportions of significant replications
than higher quartiles. In the psychology data set, where the sample size is also much bigger than
in the other data sets, the proportions look much more stable. Nevertheless, the proportion of
significant replications is quite low even in the highest quartile, suggesting miscalibration.

Expected number of statistically significant replication studies

By summing up all probabilities within one data set and method, the expected number of statis-
tically significant replication outcomes is obtained and can be compared to the observed number,
e. g . by using a χ2-goodness-of-fit test, as is shown in Table 3.7. In general, the observed number
of significant replication studies is smaller than the expected number for all methods in all data
sets, yet the amount of overestimation differs between the methods. Looking at the statisti-
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Figure 3.9: Calibration plot for binary predictions where α = 0.05.

Table 3.7: Expected and observed number of statistically significant replication studies
(at α = 0.05).

Project Method Observed Expected p -value

Experimental Economics Predictive 11 15.0 0.012
n = 18 Predictive and Heterogeneity 11 14.3 0.057

Shrinkage 11 13.6 0.16
Shrinkage and Heterogeneity 11 12.4 0.49
Prediction Market 11 13.6 0.16

Experimental Philosophy Predictive 23 27.8 0.004
n = 31 Predictive and Heterogeneity 23 26.5 0.076

Shrinkage 23 26.2 0.11
Shrinkage and Heterogeneity 23 24.1 0.65

Psychology Predictive 24 55.4 < 0.0001
n = 73 Predictive and Heterogeneity 24 53.5 < 0.0001

Shrinkage 24 49.2 < 0.0001
Shrinkage and Heterogeneity 24 45.9 < 0.0001

Social Sciences Predictive 13 19.9 < 0.0001
n = 21 Predictive and Heterogeneity 13 18.9 < 0.0001

Shrinkage 13 19.2 < 0.0001
Shrinkage and Heterogeneity 13 17.6 0.006
Prediction Market 13 13.3 0.89

cal prediction methods, the overestimation is the smallest for the shrinkage method taking into
account heterogeneity and the largest for the predictive method across all data sets. When com-
paring the different data sets, in the economics and philosophy data sets there is no evidence for
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a difference between expected and observed under the shrinkage methods, whereas there is weak
to moderate evidence of a difference for the predictive methods, suggesting better calibration of
the former compared to the latter. In the social sciences and psychology data sets, on the other
hand, there is strong evidence for a difference between the expected from the observed number of
significant replications for all methods. Furthermore, the expected number under the prediction
market method in the economics and social sciences data sets do not differ substantially from
what was actually observed.

Propositions have been made recently for lowering the significance threshold for the claim
of new scientific discoveries (Benjamin et al., 2017). For this reason, it is also interesting to
compare the expected and observed number of statistically significant replication outcomes for
smaller significance thresholds than 0.05, as shown in Figure 3.10. For all values of α, the expected
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Figure 3.10: Expected and observed number of statistically significant replication
studies as function of α.

number is smaller for the shrinkage methods than for the predictive methods, and it is also smaller
when taking into account heterogeneity compared to when not taking heterogeneity into account.
These results indicate again that the shrinkage method taking into account heterogeneity leads to
more realistic predictions. Comparing the different data sets, in the psychology and social sciences
data sets the difference between the expected and observed number of significant replications is
large across the whole range of possible significance thresholds for all four prediction methods.
In the philosophy and the economics data set, on the other hand, the expected number is much
closer to the observed number, especially for the shrinkage methods.

Brier scores

In Table 3.8 the mean (normalized) Brier scores are shown for each data set and prediction
method. In addition, in Figure 3.11 the Brier scores are shown visually with the corresponding
standard errors. Note that the standard errors are only shown to illustrate the spread of the
individual scores and not to compare the mean scores between the methods. Comparing
the different data sets, in the social sciences and psychology data sets the binary predictive
performance is poor for all statistical methods. Namely, the mean Brier scores of all statistical
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Table 3.8: Mean (normalized) Brier scores of binary predictions, where α = 0.05.

Type

BS normalized BS
Project Method mean mean

Experimental Economics Predictive 0.27 −0.14
n = 18 Predictive and Heterogeneity 0.26 −0.10

Shrinkage 0.23 0.05
Shrinkage and Heterogeneity 0.23 0.05
Prediction Market 0.24 −0.02

Experimental Philosophy Predictive 0.19 −0.01
n = 31 Predictive and Heterogeneity 0.17 0.11

Shrinkage 0.17 0.10
Shrinkage and Heterogeneity 0.15 0.23

Psychology Predictive 0.39 −0.78
n = 73 Predictive and Heterogeneity 0.36 −0.64

Shrinkage 0.34 −0.52
Shrinkage and Heterogeneity 0.29 −0.31

Social Sciences Predictive 0.35 −0.47
n = 21 Predictive and Heterogeneity 0.31 −0.32

Shrinkage 0.32 −0.37
Shrinkage and Heterogeneity 0.27 −0.16
Prediction Market 0.11 0.52
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Figure 3.11: Mean Brier scores.

methods are larger than 0.25, a score that can be obtained by simply using 0.5 every time as
prediction probability. Looking at the mean normalized Brier score, performance is even worse
because a useful prediction must be at least as good as using the prevalence of the binary event
as its prediction probability. It should be noted, however, that this comparison is in some
sense unfair, since a prediction is based only on one original study and not on an entire sample
of studies. In the economics data set, on the other hand, both shrinkage methods achieve a
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positive mean normalized Brier score, while it is negative for the predictive methods. Finally,
the predictions in the philosophy data set show the best performance, i. e. all methods except
the predictive method achieve a positive mean normalized Brier score with the shrinkage method
taking into account heterogeneity showing the largest value, suggesting that this method provides
the best predictions. Moreover, in the economics data set the prediction market method shows
a normalized score of about zero, which is comparable with the statistical prediction methods.
The prediction market predictions in the social sciences data set, however, show an extremely
good performance, far better than all statistical methods in this data set.

It is also possible to compute the mean Brier scores for binary predictions at other significance
thresholds α than 0.05, as shown in Figure 3.12. Across the whole range of α values, the shrinkage
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Figure 3.12: Mean Brier score as function of α.

method taking into account heterogeneity shows the smallest mean Brier scores in all data sets,
indicating the superiority of this method. However, the mean Brier scores increase with lower
values of α for all methods, suggesting that they overestimate the probability of significance also
for lower thresholds. Only in the philosophy data set, the mean Brier scores remain below 0.25
for all but the predictive method. In the other data sets the mean Brier scores exceed or never
reach values below 0.25.

Table 3.9 shows the results of Spiegelhalter’s z-test. In the psychology and social sciences
data sets the tests provide strong evidence for miscalibration of all statistical prediction methods,
but no evidence for miscalibration of the prediction market method in the social sciences data
set. In the economics data set, on the other hand, there is no evidence for miscalibration
of both shrinkage and the prediction market method and weak evidence for miscalibration of
the predictive methods. Finally, in the philosophy data set there is moderate evidence for
miscalibration of the predictive method and weak evidence for miscalibration of the shrinkage
method not taking into account heterogeneity, but no evidence for miscalibration of both methods
taking into account heterogeneity.
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Table 3.9: Results from Brier score based miscalibration tests (Spiegehalter’s z-test).

Project Method z p -value

Experimental Economics Predictive 2.49 0.013
n = 18 Predictive and Heterogeneity 2.03 0.042

Shrinkage 1.15 0.25
Shrinkage and Heterogeneity 0.79 0.43
Prediction Market 0.70 0.48

Experimental Philosophy Predictive 3.31 0.0009
n = 31 Predictive and Heterogeneity 1.60 0.11

Shrinkage 2.07 0.039
Shrinkage and Heterogeneity 0.21 0.83

Psychology Predictive 10.00 < 0.0001
n = 73 Predictive and Heterogeneity 8.50 < 0.0001

Shrinkage 7.81 < 0.0001
Shrinkage and Heterogeneity 5.17 < 0.0001

Social Sciences Predictive 7.20 < 0.0001
n = 21 Predictive and Heterogeneity 4.89 < 0.0001

Shrinkage 5.46 < 0.0001
Shrinkage and Heterogeneity 3.42 0.0006
Prediction Market − 1.14 0.25

Calibration slope

Figure 3.13 shows the calibration slopes obtained by logistic regression of the outcome whether
the replication achieved statistical significance on the logit transformed predicted probabilities.
In all data sets except the psychology one, the confidence intervals are very wide due to the small
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Figure 3.13: Calibration slope for binary predictions with 95% confidence interval (at
α = 0.05).

sample size. Also note that the prediction market method in the social science data set had
numerical problems because of perfect separation, which is why the corresponding calibration
slope is not shown. Looking at the psychology and social sciences data sets, the calibration
slopes of all methods are considerably below the nominal value of one, suggesting that the
predicted probabilities are too high. However, the shrinkage and predictive methods which take
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into account heterogeneity show values closer to one than the methods that do not take into
account heterogeneity, suggesting better calibration of the former compared to the latter. In
the economics data set the methods not taking into account heterogeneity show slightly larger
values than one, while the methods which do not take into account heterogeneity as well as the
prediction market method show smaller values than one. On the other hand, in the philosophy
data set the reverse is visible, i. e. heterogeneity methods show larger values than one, whereas
the methods not taking into account heterogeneity shows smaller values than one.

For the statistical prediction methods it is also possible to compute calibration slopes for other
significance thresholds α, as shown in Figure 3.14. Looking at the psychology and social sciences
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Figure 3.14: Calibration slopes with 95% confidence intervals as function of α.

data sets, all calibration slopes increase slightly for lower values of α, with the heterogeneity
methods showing the highest values, yet all still remain below the nominal value of one. In the
the economics data set, one the other hand, the calibration slopes become smaller with decreasing
α for all methods, the predictive methods show even negative values. Furthermore, for decreasing
values of α the confidence intervals of the calibration slope become extremely wide. Finally, in
the philosophy data set the slopes of all methods increase with decreasing α until α = 0.002,
where they start to decrease again to values close to one.

Area under the curve

Figure 3.15 shows the area under the curve (AUC) of the binary predictions under the respective
predictive distributions. The 95% Wald type confidence intervals were computed on the logit
scale and then backtransformed. Note that in the social sciences data set for the prediction
market method, an AUC of one was obtained because the predictions were able to perfectly
separate non-significant and significant replications. For this reason, it was also not possible to
compute a confidence interval with the method used. The statistical prediction methods in the
social sciences data set, on the other hand, show AUCs between 0.5 and 0.6 with wide confidence
intervals, suggesting no discriminatory power. In the philosophy and psychology data sets the
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Figure 3.15: Area under the curve (AUC) with 95% confidence interval (at α = 0.05).

methods that take into account heterogeneity show the highest AUCs. The AUCs of the former
are around 0.8, while they are about 0.7 for the latter, indicating some discriminatory power
of the predictions in both data sets. Finally, in the economics data set the non-heterogeneity
methods achieve the highest AUCs with values of around 0.75, but with very wide confidence
intervals.
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Figure 3.16: Area under the curve with 95% confidence intervals as function of α.

Figure 3.16 shows the AUC as a function of the significance threshold α. Due to fewer
replications that are significant for small α, the confidence intervals become wider as α decreases.
In the philosophy, social sciences, and psychology data sets, the AUCs of all methods stay more
or less constant over the entire range of α. Namely, the AUCs of all methods remain around 0.5
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to 0.6 in the social sciences data set, while they remain around 0.7 to 0.8 in the psychology and
philosophy data sets. In the economics data set, on the other hand, for all methods the AUCs
also decrease with decreasing α to values of around 0.5.

3.3 Sensitivity analysis of heterogeneity parameter choice

For the methods which take into account between study heterogeneity, the heterogeneity param-
eter τ was set to a value of 0.08 through theoretical considerations. For this reason, it is advisable
to perform a sensitivity analysis to investigate how much the results change when other values
for τ are selected. In this section, the change in predictive performance for other values of τ will
be primarily investigated using the mean score, since it provides a good summary measure for
calibration and sharpness of a predictive distribution (Gneiting and Katzfuss, 2014).

Assuming that the between study heterogeneity for studies within one field is similar, one
can look at the mean score as a function of τ when setting τ to the same value for all studies
within a project, as shown in Figure 3.17. In each plot, the minimum values are indicated by
a cross and are also displayed numerically. In general, many of the mean score functions look
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Figure 3.17: Mean scores as a function of τ for each score type and project. The
dashed line indicates the chosen value of 0.08.

rather flat, suggesting large uncertainty about the τ parameter. Comparing the two models, for
the same value of τ , the shrinkage model shows smaller mean scores over the entire range of τ
than the predictive model in all but the philosophy data set. In the philosophy data set, on the
other hand, both models usually show comparable mean scores. This suggests that shrinkage
leads to a better (or at least equal) predictive performance across all data sets, regardless of the
choice of τ . Looking at the different score types, the shape of the quadratic and logarithmic
mean score functions looks very similar within each data set. The mean CRP score functions,
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however, usually look flatter and their minima differ in some cases from the other two score types.
Namely, in the social sciences and psychology data sets the τ values which minimize the mean
CRP score functions of the shrinkage model are substantially larger compared to the predictive
model as well as to the other score types. When comparing the minima across data sets, in
the economics and philosophy data sets all minima are slightly below 0.1, which is close to the
theoretically motivated value of 0.08 that was chosen. In the psychology and social sciences data
sets, on the other hand, most of the minima are slightly below 0.2, which is much higher than
the chosen value of 0.08.

Figure 3.18 shows the PIT histograms of the predictions using the τ̂ that minimize the mean
logarithmic score for each project. The logarithmic score was selected because it is a local

Predictive + Heterogeneity Shrinkage + Heterogeneity

E
xperim

ental
E

conom
ics

E
xperim

ental
P

hilosophy
P

sychology
S

ocial
S

ciences

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0
1
2
3
4
5

0
2
4
6

0
5

10
15
20

0
2
4
6
8

PIT(θ̂r)

C
ou

nt

Figure 3.18: PIT histograms of predictions using τ̂ that minimize the mean score per
project.

scoring rule, which is the preferred type of scoring rule for inference of a parameter (see p. 72
in Bernardo and Smith, 2000). Compared to the PIT histograms in Figure 3.6, the distribution
of the PIT values did not change much for the economics and philosophy data sets, since the
τ̂ which minimize the logarithmic mean score are almost identical to the initially chosen value
of 0.08. However, the histograms of the predictions in the psychology and social sciences data
sets look flatter, especially the ones where the shrinkage method was used, suggesting improved
calibration compared to the predictions using the initially chosen values of τ .

Miscalibration of the predictions using the τ̂ which minimize the logarithmic mean score
was also investigated using miscalibration tests. Table 3.10 shows the harmonic mean of the
p -values from the four scoring rule based miscalibration test (unconditional LS and CRPS tests,
regression based DSS and CRPS tests) and the Kolmogorov-Smirnov test of the PITs. There is
only evidence for miscalibration of the predictive methods in the psychology and social sciences
data sets and weak evidence for miscalibration of the shrinkage method in the psychology data set
and the predictive method in the economics data set. Thus, by increasing the value of τ for the
predictions in the social sciences and psychology data sets, miscalibration could be drastically
reduced, especially for the shrinkage predictions. Nevertheless, it should be noted that these
results are purely exploratory and should be viewed with caution since the same data have been
used twice.

One can go one step further and estimate τ for each study pair individually, as shown in
Figure 3.19. However, the uncertainty with these estimates is large, because for each estimate
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Table 3.10: Harmonic mean of p -values from miscalibration tests of predictions using
τ̂ that minimize the mean score per project.

Project Method HM(p -values)

Experimental Economics Predictive and Heterogeneity 0.03
n = 18 Shrinkage and Heterogeneity 0.24
Experimental Philosophy Predictive and Heterogeneity 0.54
n = 31 Shrinkage and Heterogeneity 0.84
Psychology Predictive and Heterogeneity < 0.0001
n = 73 Shrinkage and Heterogeneity 0.027
Social Sciences Predictive and Heterogeneity 0.0003
n = 21 Shrinkage and Heterogeneity 0.23

there is only one study pair. Moreover, in the case of the shrinkage predictive distribution,
numerical optimization is not guaranteed to identify the global minimizer τ̂ since the objective
is generally not convex (the score functions would have to be visually assessed for each study
pair and each score type to confirm the identification of the global minimum). It is nevertheless
interesting to compare the study pair specific estimates to their project wise counterparts. In
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Figure 3.19: Estimates τ̂ which minimize score for each study pair and score type. The
value of τ which minimizes the mean score project-wise is depicted by a red diamond.

most projects, there are some study pairs whose estimates are exactly zero or extremely large,
but most of the estimates are scattered around the values which minimize the project-wise mean
scores. Using these estimates to compute predictions, of course, the mean scores become even
lower compared to the project-wise estimates. However, reasonable improvements in calibration
could already be achieved using the project-wise estimates, which is why further evaluations of
the study pair specific estimates are not shown.
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Discussion

This thesis addressed the question to what extent it is possible to predict the effect estimate
of a replication study using the effect estimate from the original study and knowledge of the
sample size in both studies. For this purpose, several models of effect sizes were discussed
and adapted to the setting of replication studies. In all models it was assumed that after a
suitable transformation an effect can be modelled by a normally distributed random variable.
Furthermore, the models either assumed that the original study had identified the effect correctly
(predictive model), or they shrunk the effect towards zero based on the evidence in the original
study (shrinkage model). In a Bayesian framework, the former can be achieved by a flat prior
distribution of the effect, while the latter is achieved by using a zero-mean normal prior and
estimating the variance parameter by empirical Bayes. Finally, the models also differed in terms
of whether between study heterogeneity of the effects was taken into account or not, which was
achieved by a hierarchical model structure of the effect sizes.

Patil et al. (2016) examined a similar research question and computed predictions of repli-
cation effect estimates using the data set from the replication project psychology (Open Science
Collaboration, 2015). The model used by Patil et al. (2016) was derived in a non-Bayesian frame-
work, but corresponds to the most basic model derived in this thesis (i. e. the effect identified
in the original study is correct, no between study heterogeneity). The same method was also
used in the analyses of the experimental economics replication project (Camerer et al., 2016) and
the social sciences replication project (Camerer et al., 2018). In all of these analyses, however,
apart from examining the coverage of the prediction intervals, no systematic evaluation of the
predictive distributions was conducted, even though there exist many well established methods
for evaluating probabilistic predictions (for an overview see e. g . Gneiting and Katzfuss, 2014).

Therefore, using the four different prediction models, the corresponding predictive distribu-
tions were calculated for the three aforementioned data sets and for the data from the experimen-
tal philosophy replicability project (Cova et al., 2018). Calibration, sharpness, and discrimination
of these predictions were then evaluated using established methodology, such as proper scoring
rules, probability integral transform, calibration slope, and area under the curve.

4.1 Predictive evaluation

By taking into account between study heterogeneity and/or evidence based shrinkage, calibration
and sharpness could be improved compared to the predictive method. That is, the predictions
obtained with the shrinkage and heterogeneity method usually showed a higher coverage of the
prediction intervals, more uniformly distributed PIT values, substantially lower mean scores, and
less or no evidence of miscalibration. The improvements in predictive performance by using the
shrinkage and heterogeneity method were usually the largest in the social sciences and psychology
and the smallest in the economics and philosophy data sets. However, in the psychology and
social sciences data sets, the tests still suggest some miscalibration, even for the heterogeneity

44
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and shrinkage model which performed the best, while there is less evidence for miscalibration in
the philosophy and economics data sets.

Since statistical significance of the replication study is a commonly used criterion for replica-
tion success, the probability of significance under the investigated prediction models was specifi-
cally evaluated. In general, predictive performance under the shrinkage and heterogeneity model
improved compared to the predictive model also when the objective was to predict significance.
Namely, in the economics and philosophy data set, the expected number of significant replication
studies was reasonably close to the observed number, the mean Brier scores were lower, less or
no miscalibration could be detected, and area under the curve and calibration slope indicate
some predictive power. Similarly, for the psychology and social sciences data sets, the evalu-
ation methods mostly indicate improvements in discrimination and sharpness of the shrinkage
and heterogeneity models compared to the predictive model. Despite these improvements, how-
ever, the methods still showed miscalibration and the predictive performance was generally worse
compared to the economics and philosophy data sets. Furthermore, in the social sciences and
economics data sets, the predictions could be compared to the non-statistical prediction market
method which provides an estimate of the peer-beliefs about the probability of significance. In
the economics data set, the shrinkage methods showed equal performance compared to the pre-
diction market, while in the social sciences data set, the prediction market method performed
better than any of the statistical methods. Finally, the evaluation of the binary predictions was
also conducted for smaller significance thresholds than the conventional 0.05 level. The results
do not indicate better predictive performance for lower thresholds, but the evaluation methods
often become unstable, which may be due to the smaller number of studies that are significant
at lower thresholds.

To conclude, it seems likely that in many of the investigated data there is between study
heterogeneity present, since the models that take heterogeneity into account always showed
equal or better performance compared to their non-heterogeneity counterparts. This is not
surprising, as many of the replications used samples from different populations and/or different
materials than those in the original studies. Evidence based shrinkage also improved predictive
performance in most cases, suggesting that many of the effect estimates from the original studies
were either inflated or false positives. Possible reasons for this might be publication bias or the
use of questionable research practices.

4.2 Sensitivity analysis of heterogeneity parameter choice

It is not possible to estimate the heterogeneity parameter τ using only data from one original
study. For this reason, a sensible value of τ had to be determined on the basis of theoretical
arguments. Namely, τ was specified such that the difference of the 97.5% to the 2.5% quantile
of a correlation effect size with mean zero is approximately the size of a medium effect size
according to the Cohen (1992) classification. This classification is established in practice, but
also sometimes criticized, e. g . recently in Funder and Ozer (2019).

A sensitivity analysis was conducted to examine the impact of this decision on the results.
The relatively flat mean score functions indicate that there is a lot of uncertainty about the
between study heterogeneity parameter. However, the chosen value of 0.08 seems plausible
for the economics and philosophy data sets, as it was close to the minima of all mean score
functions. On the other hand, the values of τ , which minimized the mean score functions in the
social sciences and psychology data sets were substantially larger than 0.08. Nevertheless, for the
same value of τ , the mean scores under the shrinkage method were smaller or equal compared to
the predictive method across most score types and data sets. This suggests that the comparison
of the methods is not severely influenced by the choice of τ . Furthermore, when choosing higher
values of τ for the predictions in the social sciences and psychology data sets, calibration could
still be improved, illustrating the high flexibility of the shrinkage and heterogeneity model.
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4.3 Differences between replication projects

The predictive performance of the investigated methods varied between the data sets. Usually,
the performance was the best in the philosophy and economics data sets and the worst in the
psychology and social sciences data sets.

There are several possible explanations for this phenomenon. The number of studies within
a replication project could be one possible reason for the differences in the results of some of the
evaluation methods, e. g . miscalibration tests. That is, the psychology data set consists of many
more study pairs, which leads to higher power to detect miscalibration in this data set compared
to the other data sets. However, the social sciences data set only consists of a small number of
studies and the tests still suggested miscalibration of all methods.

A further explanation might be that differences in the study selection process of the replication
projects lead to the differences in predictive performance. For instance, the original studies in
the philosophy, economics, and psychology projects were selected from ordinary journals from
their respective fields. In the social sciences project, on the other hand, they were selected from
the journals Nature and Science, which are known to mainly promote “innovative and exciting”
research. Furthermore, if an original study contained several experiments, the rules to select the
experiment to be replicated differed between the projects. In the psychology project, by default
the last experiment was selected, whereas in the social sciences and philosophy projects by default
the first experiment was selected. In the economics project, however, “the most central result”
according to the judgement of the replicators was selected by default. If on average researchers
report more robust findings at the first position and more exploratory findings at the last position
of a publication (or the other way around), this might have systematically influenced the outcome
of the replication studies. Similarly, when replicators can decide for themselves which experiment
they want to replicate, they might systematically choose experiments with more robust effects
that are easier to replicate.

Another possibility might be that the degree of inflation of the original study effect estimates
varies between the different fields and leading to differences in overall predictive performance. In
particular, in the economics, social sciences, and psychology data sets, the predictive performance
was more substantially improved through evidence based shrinkage than in the philosophy data
set. Cova et al. (2018) argue that the smaller inflation of effect estimates in experimental phi-
losophy research may be caused by differences in academic culture between the fields. Namely,
experimental philosophy is a much younger field where there is higher acceptance for negative
or null results, which might make it less susceptible to publication bias than fields with more
traditional “publish-or-perish” cultures, such as psychology.

4.4 Conclusions

The systematic evaluation of predictions of replication study outcomes provided new insights.
Namely, by using a model of effect sizes which can take into account inflation of original study
effect estimates and between study heterogeneity, it was possible to predict the effect estimate of
the replication study with good predictive performance in two of the four data sets. In the other
two data sets, predictive performance could still be drastically improved compared to the model
proposed by Patil et al. (2016), which assumes that the effect estimate of the original study is
not inflated and that there is no between study heterogeneity.

These results have various implications. First, for the assessment of probabilistic predictions
of replication outcomes, data analysts should use more appropriate methods. For continuous pre-
dictions they should not only examine the coverage of prediction intervals as it was done in Patil
et al. (2016); Camerer et al. (2016, 2018), but evaluate calibration and sharpness specifically.
Similarly, for the evaluation of binary predictions, such as peer-beliefs estimated through pre-
diction markets, methods to assess discrimination, calibration, and sharpness can provide more
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valuable insights compared to the correlation tests used in Camerer et al. (2016, 2018). Second,
the developed model could also be used to determine the sample size of a new replication study,
considering potentially inflated and heterogeneous effect estimates, which seems realistic in view
of the found results. This method would provide a more justified approach in comparison to
just shrinking the target effect size ad hoc by an arbitrary amount as it was often done in the
planning of previous replication studies (e. g . in Camerer et al., 2018). Furthermore, in contrast
to the classical power, the developed method also takes into account the uncertainty of the ef-
fect estimate from the original study. A ready to use R function is available in Appendix A.1.
Finally, it is not a good idea to reduce replication success solely to whether a replication study
achieves statistical significance or not. From a predictive point of view, it is often very likely that
non-significance will occur, even if the underlying effect is not zero. Researchers should instead
adopt more quantitative and probabilistic reasoning to assess replication success. Methods such
as replication Bayes factors (Ly et al., 2018) or the sceptical p -value (Held, 2019a) are promising
approaches to replace statistical significance as the main criterion for replication success.

Moreover, these results offer interesting insights about the predictability of replication out-
comes in four different fields. However, they should not be interpreted in such a way that research
from one field is more credible than research from another. There are many other factors which
could explain the observed differences in predictive performance, e. g . selection bias or small
sample size. The complexity underlying any replication project is enormous, we should applaud
to all the researchers involved for investing their limited resources in this endeavours. There is
an urgent need to develop new methods for the design and analysis of replication studies, these
data sets will be particularly useful for these purposes.

The approach used in this thesis also has some limitations. In all models, the simplifying
assumption of normally distributed likelihood and prior has been made, which of course can
be questionable for smaller sample sizes. It would be interesting to generalize the methods to
other settings, for instance the t-distribution. Furthermore, the data sets used come all from
relatively similar fields of academic science. It would also be of interest to perform the same
analysis on data from “harder” scientific fields, such as physics, chemistry, or biology, as well as
for non-academic research. Also the data from the three “Many Labs” projects (Klein et al., 2014;
Ebersole et al., 2016; Klein et al., 2018) were not considered, because the design of these projects
differs drastically from the other four projects. Namely, in the “Many Labs” projects a smaller
number of original studies were selected, the experiments of these studies were then combined
into a single experiments, of which replications were conducted by multiple collaborators across
the globe. It would be interesting to conduct the analyses also on these data, especially for the
assessment of heterogeneity. Finally, the data from the prediction market of the reproducibility
project psychology (Dreber et al., 2015) were not evaluated. This was done because these data
included only a subset of 44 studies that different from the meta-analytic subset used for this
thesis and because they were not straightforward to combine with the other data about the effect
estimates and sample sizes of the corresponding studies. It would also be of interest to compare
these prediction market data with the statistical methods.
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R code

A.1 Prediction and evaluation methods

# ==============================================================================
# Compute sample size under predictive/shrinkage & heterogeneity model
# ==============================================================================
sampleSizeReplication <- function(t_o, d = 0, power = 0.8, level = 0.05,

alternative = "two.sided", prior = "flat") {

## Specify direction and critical value
direction <- ifelse(t_o >= 0, 1, -1)
alt <- ifelse(alternative == "two.sided", 2, 1)
critical_value <- direction*qnorm(1 - level/alt)

## Define power function depending on prior
if (prior == "flat") {

s <- 1
}
if (prior == "sceptical") {

s <- pmax(1 - (1 + d)/t_o^2, 0)
}
powerFun <- function(c) {

power <- pnorm(q = critical_value,
mean = s*t_o*sqrt(c),
sd = sqrt(s*(c + d*c) + 1 + d*c),
lower.tail = ifelse(direction == 1, FALSE, TRUE))

return(power)
}

## Find required relative sample size (upper limit c = 100)
c <- try(uniroot(f = function(c) powerFun(c) - power,

lower = 0, upper = 100)$root)
if (class(c) == "try-error") return(NA)
return(c)

}

# ==============================================================================
# Parameters of gaussian predictive distributions

48
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# ==============================================================================
# Default value for tau = 0.08, corresponding to difference of 0.975 and
# 0.025 quantiles of effects on correlation scale with zero mean being the same
# as a medium effect size (r = 0.3), using the classification from Cohen (1992)
tau_default <- 0.08

predictive_flatprior_params <- function(theta_o, sigma_o, sigma_r,
tau = tau_default) {

mu <- theta_o
sigma <- sqrt(sigma_o^2 + sigma_r^2 + 2*tau^2)
return(data.frame("mu" = mu, "sigma" = sigma))

}

predictive_shrinkageprior_params <- function(theta_o, sigma_o, sigma_r,
tau = tau_default) {

z <- theta_o/sigma_o
s <- pmax(1 - 1/z^2 - tau^2/theta_o^2, 0)
mu <- s*theta_o
sigma <- sqrt(s*(sigma_o^2 + tau^2) + sigma_r^2 + tau^2)
return(data.frame("mu" = mu, "sigma" = sigma))

}

params_methods_list <- list(
"Predictive" = function(theta_o, sigma_o, sigma_r, tau) {
predictive_flatprior_params(theta_o, sigma_o, sigma_r, tau = 0)
},
"PredictiveHeterogeneity" = predictive_flatprior_params,
"Shrinkage" = function(theta_o, sigma_o, sigma_r, tau) {

predictive_shrinkageprior_params(theta_o, sigma_o, sigma_r, tau = 0)
},
"ShrinkageHeterogeneity" = predictive_shrinkageprior_params
)

params_predictive_distribution <- function(theta_o, sigma_o, sigma_r,
tau = tau_default,
methods = params_methods_list) {

params <- lapply(methods, function(f) f(theta_o = theta_o, sigma_o = sigma_o,
sigma_r = sigma_r, tau = tau))

return(params)
}

# ==============================================================================
# Binary prediction based on parameters of predictive gaussian distribution
# ==============================================================================
significance_gaussian_params <- function(mu, sigma, sigma_r, alpha = 0.05) {

direction <- ifelse(mu >= 0, 1, -1)
p_significant <- pnorm(direction*qnorm(1 - alpha/2), mean = mu/sigma_r,

sd = sigma/sigma_r,
lower.tail = ifelse(direction == 1, FALSE, TRUE))

return(p_significant)
}
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predict_significance_params <- function(theta_o, sigma_o, sigma_r,
tau = tau_default, alpha = 0.05) {

params <- params_predictive_distribution(theta_o = theta_o, sigma_o = sigma_o,
sigma_r = sigma_r, tau = tau)

p_significant <- lapply(params, function(method) {
significance_gaussian_params(mu = method$mu, sigma = method$sigma,

sigma_r = sigma_r, alpha = alpha)
})

return(p_significant)
}

# ==============================================================================
# PIT values of replication studies outcomes
# ==============================================================================
pit <- function(theta_o, theta_r, sigma_o, sigma_r, tau = tau_default) {

params <- params_predictive_distribution(theta_o = theta_o, sigma_o = sigma_o,
sigma_r = sigma_r, tau = tau)

pit_values <- lapply(params, function(method) {
pnorm(q = theta_r, mean = method$mu, sd = method$sigma)
})

return(pit_values)
}

# ==============================================================================
# Proper scoring rules for gaussian predictive distribution
# (Gneiting & Katzfuss (2014))
# ==============================================================================
quadr_score_gaussian <- function(mu, sigma, y) {

score <- -2/sigma*dnorm(x = (y - mu)/sigma) + 1/(2*sqrt(pi)*sigma)
return(score)

}

log_score_gaussian <- function(mu, sigma, y) {
score <- (y - mu)^2/(2*sigma^2) + log(sigma) + 0.5*log(2*pi)
return(score)

}

crp_score_gaussian <- function(mu, sigma, y) {
score <- sigma*((y - mu)/sigma*(2*pnorm(q = (y - mu)/sigma) - 1) +

2*dnorm(x = (y - mu)/sigma) - 1/sqrt(pi))
return(score)

}

ds_score_gaussian <- function(mu, sigma, y) {
score <- (y - mu)^2/sigma^2 + 2*log(sigma)
return(score)

}

gaussian_scoring_rules <- list("QS" = quadr_score_gaussian,
"LS" = log_score_gaussian,
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"CRPS" = crp_score_gaussian,
"DSS" = ds_score_gaussian)

gaussian_scores <- function(theta_o, theta_r, sigma_o, sigma_r,
tau = tau_default,
scoring_rules = gaussian_scoring_rules) {

params <- params_predictive_distribution(theta_o = theta_o, sigma_o = sigma_o,
sigma_r = sigma_r, tau = tau)

results_list <- lapply(seq(scoring_rules), function(i) {
scores <- lapply(params, function(method) {

scoring_rules[[i]](mu = method$mu, sigma = method$sigma, y = theta_r)
})
data.frame(scores, Type = names(scoring_rules)[i])

})
results_df <- do.call(rbind, results_list)
return(results_df)

}

# ==============================================================================
# Proper scoring rules for binary prediction (Held (2014))
# ==============================================================================
brier_score <- function(y, p) {

score <- (y - p)^2
return(score)

}

binary_scoring_rules <- list("BS" = brier_score)

binary_scores_params <- function(theta_o, sigma_o, sigma_r, tau = tau_default,
pval_r, alpha = 0.05,
scoring_rules = binary_scoring_rules) {

y <- as.integer(pval_r < alpha)
p <- predict_significance_params(theta_o = theta_o, sigma_o = sigma_o,

sigma_r = sigma_r, tau = tau)
p_df <- data.frame(p)
results_list <- lapply(seq(scoring_rules), function(i) {

scores <- scoring_rules[[i]](y = y, p = p_df)
data.frame(scores, "Type" = names(scoring_rules)[i])

})
results_df <- do.call(rbind, results_list)
return(results_df)

}

# ==============================================================================
# (Mis-) Calibration tests (Held, Rufibach, Balabdaoui (2010))
# ==============================================================================
# Note: LS an DSS Scoring rules without constant terms were used in paper,
# whereas the definitions in Gneiting & Katzfuss involve also constants

# Unconditional miscalibration tests
score_calib_test <- function(theta_o, theta_r, sigma_o, sigma_r,
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tau = tau_default) {
# scoring rules according to definitions in paper
scoring_rules_test <- list("LS" = function(mu, sigma, y) {

0.5*(log(sigma^2) + ((y - mu)/sigma)^2)
},

"CRPS" = crp_score_gaussian)
scores <- gaussian_scores(theta_o = theta_o, theta_r = theta_r,

sigma_o = sigma_o, sigma_r = sigma_r,
tau = tau, scoring_rules = scoring_rules_test)

params <- params_predictive_distribution(theta_o = theta_o, sigma_o = sigma_o,
sigma_r = sigma_r, tau = tau)

n <- length(theta_o)

test_log <- lapply(seq(ncol(scores) - 1), function(i) {
mean_LS <- mean(scores[scores$Type == "LS",i])
expectation <- 0.5 + mean(log(params[[i]]$sigma))
variance <- 1/(2*n)
test_statistic <- (mean_LS - expectation)/sqrt(variance)
test_pvalue <- 2*pnorm(q = abs(test_statistic), lower.tail = FALSE)
data.frame("t" = test_statistic, "pvalue" = test_pvalue, "Test" = "LS",

"Method" = colnames(scores)[i])
})
test_crps <- lapply(seq(ncol(scores) - 1), function(i) {

mean_CRPS <- mean(scores[scores$Type == "CRPS",i])
expectation <- 1/sqrt(pi)*mean(params[[i]]$sigma)
variance <- 0.1627516/n^2 * sum(params[[i]]$sigma^2)
test_statistic <- (mean_CRPS - expectation)/sqrt(variance)
test_pvalue <- 2*pnorm(q = abs(test_statistic), lower.tail = FALSE)
data.frame("t" = test_statistic, "pvalue" = test_pvalue, "Test" = "CRPS",

"Method" = colnames(scores)[i])
})
tests_df <- do.call(rbind, c(test_log, test_crps))
return(tests_df)

}

# Score regression calibration tests
# 1) DSS_i = a + b*log(sigma_i) + e_i
# ===> e_i homoscedastic, H0: a = 0.5, b = 1
# 2) CRPS_i = c + d*sigma_i + e_i
# ===> e_i heteroscedastic (w_i = 1/sigma^2_i), H0: c = 0, d = 1/sqrt(pi)
score_calib_regr_test <- function(theta_o, theta_r, sigma_o, sigma_r,

tau = tau_default) {
# scoring rules according to definitions in paper
scoring_rules_test <- list("DSS" = function(mu, sigma, y) {

0.5*(log(sigma^2) + ((y - mu)/sigma)^2)
},

"CRPS" = crp_score_gaussian)
scores <- gaussian_scores(theta_o = theta_o, theta_r = theta_r,

sigma_o = sigma_o, sigma_r = sigma_r,
tau = tau, scoring_rules = scoring_rules_test)

params <- params_predictive_distribution(theta_o = theta_o, sigma_o = sigma_o,



A.1. PREDICTION AND EVALUATION METHODS 53

sigma_r = sigma_r, tau = tau)

test_dss <- lapply(seq(ncol(scores) - 1), function(i) {
dss_i <- scores[scores$Type == "DSS",i]
sigma_i <- params[[i]]$sigma
fit_dss_i <- lm(dss_i ~ 1 + log(sigma_i))
ab_diff_i <- matrix(coef(fit_dss_i) - c(0.5, 1))
statistic <- t(ab_diff_i) %*% solve(vcov(fit_dss_i)) %*% ab_diff_i
test_pvalue <- pchisq(q = statistic, 2, lower.tail = FALSE)
data.frame("t" = statistic, "pvalue" = test_pvalue,

"Test" = "DSS-Regression", "Method" = colnames(scores)[i])
})
test_crps <- lapply(seq(ncol(scores) - 1), function(i) {

crps_i <- scores[scores$Type == "CRPS",i]
sigma_i <- params[[i]]$sigma
fit_crps_i <- lm(crps_i ~ 1 + sigma_i, weights = 1/sigma_i^2)
cd_diff_i <- matrix(coef(fit_crps_i) - c(0, 1/sqrt(pi)))
statistic <- t(cd_diff_i) %*% solve(vcov(fit_crps_i)) %*% cd_diff_i
test_pvalue <- pchisq(q = statistic, 2, lower.tail = FALSE)
data.frame("t" = statistic, "pvalue" = test_pvalue,

"Test" = "CRPS-Regression", "Method" = colnames(scores)[i])
})
tests_df <- do.call(rbind, c(test_dss, test_crps))
return(tests_df)

}

# Spiegelhalter's z-statistic (Spiegelhalter, 1986)
brier_z_test_params <- function(theta_o, sigma_o, sigma_r, tau = tau_default,

pval_r, alpha = 0.05) {
p <- predict_significance_params(theta_o = theta_o, sigma_o = sigma_o,

sigma_r = sigma_r, tau = tau, alpha = alpha)
y <- as.integer(pval_r < alpha)
tests <- lapply(seq(p), function(i) {

z <- sum((y - p[[i]])*(1 - 2*p[[i]]))/sqrt(sum((1 - 2*p[[i]])^2*
p[[i]]*(1 - p[[i]])))

pval <- 2*pnorm(q = abs(z), lower.tail = FALSE)
data.frame("z" = z, "pvalue" = pval, "Method" = names(p)[i])

})
tests_df <- do.call(rbind, tests)
return(tests_df)

}

# ==============================================================================
# Area und the curve (AUC)
# ==============================================================================
auc_analysis_params <- function(theta_o, sigma_o, sigma_r, tau = tau_default,

pval_r, alpha = 0.05) {
p <- predict_significance_params(theta_o = theta_o, sigma_o = sigma_o,

sigma_r = sigma_r, tau = tau, alpha = alpha)
y <- as.integer(pval_r < alpha)
ind_cases <- y == 1
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result <- lapply(names(p), function(method) {
auc <- biostatUZH::confIntAUC(cases = p[[method]][ind_cases],

controls = p[[method]][!ind_cases],
conf.level = 1 - alpha)

data.frame("CI lower" = auc$lower[2],
"AUC" = auc$AUC[2],
"CI upper" = auc$upper[2],
"Method" = method)

})
result_df <- do.call(rbind, result)
return(result_df)

}

# ==============================================================================
# Calibration slope
# ==============================================================================
calib_slope_continuous <- function(theta_o, theta_r, sigma_o, sigma_r,

tau = tau_default) {
params <- params_predictive_distribution(theta_o = theta_o, sigma_o = sigma_o,

sigma_r = sigma_r, tau = tau)
result <- lapply(names(params), function(method) {

tmp_data <- data.frame(y = theta_r,
yhat = params[[method]]$mu,
v = sigma_r^2 + sigma_o^2)

fit <- lm(y ~ yhat, data = tmp_data)
slope_ci <- confint(fit)
data.frame("CI lower" = slope_ci[2,1], "Slope" = unname(coef(fit)[2]),

"CI upper" = slope_ci[2,2], "Method" = method)
})
result_df <- do.call(rbind, result)
return(result_df)

}

calib_slope_binary_params <- function(theta_o, sigma_o, sigma_r,
tau = tau_default, pval_r,
alpha = 0.05) {

p <- predict_significance_params(theta_o = theta_o, sigma_o = sigma_o,
sigma_r = sigma_r, tau = tau, alpha = alpha)

y <- as.integer(pval_r < alpha)

result <- lapply(names(p), function(method) {
tmp_data <- data.frame(p = p[[method]],

logit_p = qlogis(p = p[[method]]),
y = y)

logist_fit <- try(glm(y ~ logit_p, family = "binomial", data = tmp_data))
if(inherits(logist_fit, "try-error")) {

NA_df <- data.frame("CI lower" = NA, "Slope" = NA,
"CI upper" = NA, "Method" = method)

return(NA_df)
} else {
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slope_ci <- confint.default(logist_fit)
data.frame("CI lower" = slope_ci[2,1],

"Slope" = unname(coef(logist_fit)[2]),
"CI upper" = slope_ci[2,2], "Method" = method)

}
})
result_df <- do.call(rbind, result)
return(result_df)

}

# ==============================================================================
# Expected vs. observed number of statistically significant replications
# ==============================================================================
expected_significant_params <- function(theta_o, sigma_o, sigma_r,

tau = tau_default,
pval_r, alpha = 0.05) {

n <- length(sigma_o)
observed <- sum(as.integer(pval_r < alpha))
p <- predict_significance_params(theta_o = theta_o, sigma_o = sigma_o,

sigma_r = sigma_r, tau = tau, alpha = alpha)
expected <- sapply(p, sum)
result <- lapply(seq(length(p)), function(i) {

X <- (observed - expected[i])^2/expected[i] +
((n - observed) - (n - expected[i]))^2/(n - expected[i])

pval <- pchisq(q = X, df = 1, lower.tail = FALSE)
data.frame("N" = n, "Observed" = observed, "Expected" = expected[i],

"pvalue" = pval, "Method" = names(p)[i])
})
result_df <- do.call(rbind, result)
return(result_df)

}

# ==============================================================================
# Prediction intervals
# ==============================================================================
prediction_intervals <- function(theta_o, sigma_o, sigma_r, tau = tau_default,

gamma = 0.95) {
params <- params_predictive_distribution(theta_o = theta_o, sigma_o = sigma_o,

sigma_r = sigma_r, tau = tau)
result <- lapply(seq(params), function(i) {

data.frame("PI lower" = qnorm(p = (1 - gamma)/2, mean = params[[i]]$mu,
sd = params[[i]]$sigma),

"y hat" = params[[i]]$mu,
"PI upper" = qnorm(p = (1 + gamma)/2, mean = params[[i]]$mu,

sd = params[[i]]$sigma),
"Method" = names(params)[i])

})
result_df <- do.call(rbind, result)

return(result_df)
}
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A.2 Data preprocessing

# ==============================================================================
# Reproducibility project Psychology (rpp)
# ==============================================================================
library(tidyverse)
url_master <- "https://github.com/CenterForOpenScience/rpp/archive/master.zip"
download.file(url = url_master, destfile = "rpp_git_repo.zip")
download.file(url = "https://osf.io/kn7f4/download",

destfile = "rpp_prediction_markets.csv")
unzip("rpp_git_repo.zip" )
rpp_prediction_market <- read.csv("rpp_prediction_markets.csv")

# ATTENTION: if running on linux: comment out the windows command
# "choose.dir" at beginning of masterscript.R !
setwd("rpp-master/")
source("masterscript.R")
setwd("../")

MASTER_cleaned <- MASTER %>%
mutate(FZ_OS = atanh(T_r..O.),

FZ_RS = atanh(T_r..R.),
Actual.Power..O. = as.double(as.character(Actual.Power..O.)),
Power..R. = as.double(Power..R.)) %>%

select(ID, Authors..O., Journal..O., Discipline..O.,
T_Test.Statistic..O., T_df1..O., T_df2..O., T_Test.value..O.,
Type.of.analysis..O., Effect.size..O., Actual.Power..O., T_N..O.,
T_r..O., T_pval_USE..O., FZ_OS, T_Test.Statistic..R., T_df1..R.,
T_df2..R., T_Test.value..R., Type.of.analysis..R., Power..R.,
Effect.Size..R., T_N..R., T_r..R., T_pval_USE..R., FZ_RS,
Meta.analytic.estimate..Fz.) %>%

rename(Study_ID = ID, Authors_OS = Authors..O., Journal_OS = Journal..O.,
Discipline = Discipline..O.,
Type_Test_Statistic_OS = T_Test.Statistic..O., DF1_OS = T_df1..O.,
DF2_OS = T_df2..O., Test_Statistic_OS = T_Test.value..O.,
N_OS = T_N..O., r_OS = T_r..O., pval_OS = T_pval_USE..O.,
Analysis_Type_OS = Type.of.analysis..O.,
Effect_Size_OS = Effect.size..O., Power_OS = Actual.Power..O.,
Type_Test_Statistic_RS = T_Test.Statistic..R., DF1_RS = T_df1..R.,
DF2_RS = T_df2..R., Test_Statistic_RS = T_Test.value..R.,
N_RS = T_N..R., r_RS = T_r..R., pval_RS = T_pval_USE..R.,
Analysis_Type_RS = Type.of.analysis..R.,
Effect_Size_RS = Effect.Size..R., Power_RS = Power..R.,
FZ_meta = Meta.analytic.estimate..Fz.)

MASTER_cleaned$FZ_se_OS[!is.na(MASTER_cleaned$FZ_meta)] <- final$sei.o
MASTER_cleaned$FZ_se_RS[!is.na(MASTER_cleaned$FZ_meta)] <- final$sei.r
MASTER_cleaned %>%

mutate(pval_OS = ifelse(Study_ID %in% c(7, 15, 47, 94, 120, 140),
pval_OS*2, pval_OS), # these were one-sided p-values

pval_RS = ifelse(Study_ID %in% c(7, 15, 47, 94, 120, 140),
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pval_RS*2, pval_RS), # according supplementary
pvalFZ_OS = 2*pnorm(FZ_OS/FZ_se_OS, lower.tail = FALSE),
pvalFZ_RS = 2*pnorm(FZ_RS/FZ_se_RS, lower.tail = FALSE))

write_csv(MASTER_cleaned, path = "RPP.csv")

# ==============================================================================
# Experimental economics replication project (eerp)
# ==============================================================================
# - All files downloaded from https://osf.io/pnwuz/
# - Unfortunately this data had to be manually recorded from the file
# "create_studydetails.do" since I do not own the commercial software stata
# which is required to run the .do file and generate .dat file (economists ..)
# - Similarly, effective sample size taken from "effectstandardization.py" file
# - Prediction market infos taken from table S3 in Supplementary of Article
# http://science.sciencemag.org/content/sci/suppl/2016/03/02/
# science.aaf0918.DC1/aaf0918-Camerer-SM.pdf

library(tidyverse)
Study <- c("Abeler et al. (AER 2011)",

"Ambrus and Greiner (AER 2012)",
"Bartling et al. (AER 2012)",
"Charness and Dufwenberg (AER 2011)",
"Chen and Chen (AER 2011)",
"de Clippel et al. (AER 2014)",
"Duffy and Puzzello (AER 2014)",
"Dulleck et al. (AER 2011)",
"Fehr et al. (AER 2013)",
"Friedman and Oprea (AER 2012)",
"Fudenberg et al. (AER 2012)",
"Huck et al. (AER 2011)",
"Ifcher and Zarghamee (AER 2011)",
"Kessler and Roth (AER 2012)",
"Kirchler et al (AER 2012)",
"Kogan et al. (AER 2011)",
"Kuziemko et al. (QJE 2014)",
"Ericson and Fuster (QJE 2011)")

Market_Belief <- c(0.696, 0.692, 0.805, 0.695, 0.778, 0.759, 0.806, 0.738, 0.629,
0.833, 0.933, 0.920, 0.588, 0.937, 0.712, 0.802, 0.632, 0.622)

Survey_Belief_premarket <- c(0.696, 0.542, 0.807, 0.715, 0.682, 0.730, 0.685,
0.807, 0.674, 0.863, 0.790, 0.749, 0.542, 0.837,
0.704, 0.748, 0.568, 0.658)

Survey_Belief_postmarket <- c(0.697, 0.620, 0.733, 0.708, 0.692, 0.716, 0.694,
0.744, 0.666, 0.817, 0.770, 0.730, 0.566, 0.825,
0.728, 0.752, 0.582, 0.650)

pval_OS <- c(0.046, 0.057, 0.007, 0.01, 0.033, 0.001, 0.01, 0.0001, 0.011,
4*10^(-11), 0.001, 0.0039, 0.031, 1.631*10^(-18), 0.0163, 0.000026,
0.07, 0.03)

# session numbers, not effective sample size!
# N_OS <- c(120, 117, 216, 162, 72, 158, 54, 168, 60, 78, 124,120, 58, 288, 120,
# 126, 42, 112)
# these are effective sample size:
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N_OS <- c(120, 39, 12, 43, 6, 790, 9, 21, 30, 78, 124, 12, 58, 288, 12, 160,
42, 104)

r_OS <- c(0.182821975588, 0.310518647505, 0.719849875686, 0.383943377571,
0.842508557739, 0.117768981826, 0.761510174904, 0.722509234548,
0.453281944406, 0.642590125822, 0.303741608956, 0.832065702534,
0.282103220856, 0.486223364603, 0.664409308738, 0.323896842962,
0.282261740933, 0.212921823047)

pval_RS <- c(0.16, 0.012, 0.001, 0.003, 0.571, 4*10^(-10), 0.674, 0.0008,
0.026, 0.004276, 0.0001506473, 0.1415, 0.933, 0.016, 0.0095,
0.001, 0.154, 0.0546)

# session numbers, not effective sample size!
# N_RS <- c(318, 357, 360, 264, 168, 156, 96, 128, 102, 40, 128, 160, 131, 48,
# 220, 90, 144, 262)
# these are effective sample size:
N_RS <- c(318, 119, 20, 65, 14, 780, 16, 16, 51, 40, 128, 16, 131, 48, 22,

112, 144, 248)
r_RS <- c(0.0790703532018, 0.229536356959, 0.657411288278, 0.363002684809,

0.170189166838, 0.266538269195, -0.11596300548, 0.731605727911,
0.311199311719, 0.437953607707, 0.326573539422, 0.367593525514,
-0.00701629144787, 0.34463841128, 0.533556821497, 0.304223231247,
-0.119848901099, 0.122871403263)

Power_RS <- c(0.9, 0.91, 0.94, 0.9, 0.9, 0.9, 0.93, 0.92, 0.91, 0.99, 0.92,
0.91, 0.9, 0.95, 0.9, 0.94, 0.92, 0.91)

tibble(Study, r_OS, N_OS, pval_OS, r_RS, N_RS, pval_RS, Power_RS,
Market_Belief, Survey_Belief_premarket, Survey_Belief_postmarket) %>%

mutate(FZ_OS = atanh(r_OS),
FZ_se_OS = 1/sqrt(N_OS - 3),
pvalFZ_OS = 2*pnorm(FZ_OS/FZ_se_OS, lower.tail = FALSE),
pvalFZ_OS = ifelse(pvalFZ_OS > 1, 1, pvalFZ_OS),
FZ_RS = atanh(r_RS),
FZ_se_RS = 1/sqrt(N_RS - 3),
pvalFZ_RS = 2*pnorm(FZ_RS/FZ_se_RS, lower.tail = FALSE),
pvalFZ_OS = ifelse(pvalFZ_RS > 1, 1, pvalFZ_RS)) %>%

write_csv(path = "EERP.csv")

# ==============================================================================
# Social sciences replication project (ssrp)
# ==============================================================================
library(tidyverse)
names <- c("Ackerman et al. (2010), Science",

"Aviezer et al. (2012), Science",
"Balafoutas and Sutter (2012), Science",
"Derex et al. (2013), Nature",
"Duncan et al. (2012), Science",
"Gervais and Norenzayan (2012), Science",
"Gneezy et al. (2014), Science",
"Hauser et al. (2014), Nature",
"Janssen et al. (2010), Science",
"Karpicke and Blunt (2011), Science",
"Kidd and Castano (2013), Science",
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"Kovacs et al. (2010), Science",
"Lee and Schwarz (2010), Science",
"Morewedge et al. (2010), Science",
"Nishi et al. (2015), Nature",
"Pyc and Rawson (2010), Science",
"Ramirez and Beilock (2011), Science",
"Rand et al. (2012), Nature",
"Shah et al. (2012), Science",
"Sparrow et al. (2011), Science",
"Wilson et al. (2014), Science")

download.file(url = "https://osf.io/abu7k/download",
destfile = "SSRP_Data_Processed.csv")

download.file(url = "https://osf.io/vr6p8/download",
destfile = "SSRP_Data_Peer_Beliefs_Processed.csv")

ssrp <- read_csv("SSRP_Data_Processed.csv")
ssrp_pmarket <- read_csv("SSRP_Data_Peer_Beliefs_Processed.csv")
prediction_markets <- ssrp_pmarket %>%

select(m3_p, m3_b) %>%
rename(Market_Belief = m3_p,

Survey_Belief = m3_b) %>%
filter(!is.na(Market_Belief))

ssrp %>%
mutate(Name_OS = names,

FZ_OS = atanh(r_os),
FZ_se_OS = 1/sqrt(n_os - 3),
FZ_RS1 = atanh(r_rs1),
FZ_se_RS1 = 1/sqrt(n_rs1 - 3),
FZ_RS2 = atanh(r_rs2),
FZ_se_RS2 = 1/sqrt(n_rs2 - 3)) %>%

select(study, Name_OS, sref, type_os, stat_os, n_os, in_os, r_os, r95l_os,
r95u_os, p_os, FZ_OS, FZ_se_OS, type_rs1, stat_rs1, n_rs1, in_rs1,
r_rs1, r95l_rs1, r95u_rs1, p_rs1, pow_rs1, FZ_RS1, FZ_se_RS1,
type_rs2, stat_rs2, n_rs2, in_rs2, r_rs2, r95l_rs2,
r95u_rs2, p_rs2, pow_rs2, FZ_RS2, FZ_se_RS2) %>%

rename(Study = study, Sref = sref, Type_OS = type_os, Stat_OS = type_os,
N_OS = n_os, In_OS = in_os, r_OS = r_os, r95l_OS = r95l_os,
r95u_OS = r95u_os, pval_OS = p_os, Type_RS1 = type_rs1,
Stat_RS1 = stat_rs1, N_RS1 = n_rs1, In_RS1 = in_rs1, r_RS1 = r_rs1,
r95l_RS1 = r95l_rs1, r95u_RS1 = r95u_rs1, pval_RS1 = p_rs1,
Power_RS1 = pow_rs1, Type_RS2 = type_rs2, Stat_RS2 = stat_rs2,
N_RS2 = n_rs2, In_RS2 = in_rs2, r_RS2 = r_rs2, r95l_RS2 = r95l_rs2,
r95u_RS2 = r95u_rs2, pval_RS2 = p_rs2, Power_RS2 = pow_rs2) %>%

mutate(r_RS = ifelse(!is.na(r_RS2), r_RS2, r_RS1),
FZ_RS = ifelse(!is.na(FZ_RS2), FZ_RS2, FZ_RS1),
FZ_se_RS = ifelse(!is.na(FZ_se_RS2), FZ_se_RS2, FZ_se_RS1),
pval_RS = ifelse(!is.na(FZ_se_RS2), pval_RS2, pval_RS1),
N_RS = ifelse(!is.na(FZ_se_RS2), N_RS2, N_RS1)) %>%

bind_cols(., prediction_markets) %>%
write_csv(path = "SSRP.csv")
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# ==============================================================================
# Experimental philosophy replicability project (rpphi)
# ==============================================================================
library(tidyverse)
download.file(url = "https://osf.io/4ewkh/download",

destfile = "XPhiReplicability_CompleteData.csv")
rpphi <- read.csv("XPhiReplicability_CompleteData.csv", stringsAsFactors = FALSE)
rpphi %>%

mutate(FZ_OS = atanh(OriginalRES),
FZ_RS = atanh(ReplicationRES),
FZ_se_OS = 1/sqrt(OriginalN_Effect - 3),
FZ_se_RS = 1/sqrt(ReplicationN_Effect - 3),
pval_RS = 2*pnorm(abs(FZ_RS/FZ_se_RS), lower.tail = FALSE),
pval_RS = ifelse(pval_RS > 1, 1, pval_RS),
pval_OS = 2*pnorm(abs(FZ_OS/FZ_se_OS), lower.tail = FALSE),
pval_OS = ifelse(pval_OS > 1, 1, pval_OS)) %>%

select(PAPER_ID, OriginalN_Effect, OriginalTEST, OriginalEFFECTSIZE,
OriginalANALYSIS, OriginalRES, OriginalPOWER, OriginalR95CI,
FZ_OS, FZ_se_OS, pval_OS, ReplicationN_Effect, ReplicationTEST,
ReplicationANALYSIS, ReplicationEFFECTSIZE, ReplicationRES,
ReplicationR95CI, FZ_RS, FZ_se_RS, pval_RS, ReplicationSUCCESS, OSF) %>%

rename(Study = PAPER_ID, Type_Test_OS = OriginalTEST,
Test_Statistic_OS = OriginalANALYSIS, N_OS = OriginalN_Effect,
r_OS = OriginalRES, r_CI_OS = OriginalR95CI,
Effect_Size_OS = OriginalEFFECTSIZE, Power_OS = OriginalPOWER,
Type_Test_RS = ReplicationTEST, Test_Statistic_RS = ReplicationANALYSIS,
N_RS = ReplicationN_Effect, r_RS = ReplicationRES,
r_CI_RS = ReplicationR95CI, Effect_Size_RS = ReplicationEFFECTSIZE,
Replication_Success = ReplicationSUCCESS) %>%

write_csv(path = "RPPHI.csv")

# ==============================================================================
# Combining all data sets
# ==============================================================================
library(tidyverse)
rpp <- read_csv("RPP/RPP.csv")
rpphi <- read_csv("RPPHI/RPPHI.csv")
ssrp <- read_csv("SSRP/SSRP.csv")
eerp <- read_csv("EERP/EERP.csv")

# Subsets of data where effect sizes transformed to correlations available
rpp_correlations_subset <- rpp %>%

filter(!is.na(r_OS) & !is.na(r_RS)) %>%
mutate(Project = "Psychology",

Study = Authors_OS,
Survey_Belief_Premarket = NA,
Survey_Belief_Postmarket = NA,
Market_Belief = NA) %>%

select(Study, r_OS, r_RS, FZ_OS, FZ_RS, FZ_se_OS, FZ_se_RS, pval_RS,
N_OS, N_RS, pval_OS, Project, Survey_Belief_Premarket,
Survey_Belief_Postmarket, Market_Belief)
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eerp_correlations_subset <- eerp %>%
mutate(Project = "Experimental Economics",

Stuy = Study,
Survey_Belief_Premarket = eerp$Survey_Belief_premarket,
Survey_Belief_Postmarket = eerp$Survey_Belief_postmarket,
Market_Belief = eerp$Market_Belief) %>%

select(Study, r_OS, r_RS, FZ_OS, FZ_RS, FZ_se_OS, FZ_se_RS, pval_RS,
N_OS, N_RS, pval_OS, Project, Survey_Belief_Premarket,
Survey_Belief_Postmarket, Market_Belief)

ssrp_correlations_subset <- ssrp %>%
mutate(Project = "Social Sciences",

Study = Name_OS,
Survey_Belief_Premarket = ssrp$Survey_Belief,
Survey_Belief_Postmarket = NA,
Market_Belief = ssrp$Market_Belief) %>%

select(Study, r_OS, r_RS, FZ_OS, FZ_RS, FZ_se_OS, FZ_se_RS, pval_RS,
N_OS, N_RS, pval_OS, Project, Survey_Belief_Premarket,
Survey_Belief_Postmarket, Market_Belief)

rpphi_correlations_subset <- rpphi %>%
filter(!is.na(r_OS) & !is.na(r_RS) & !is.na(pval_RS)) %>%
mutate(Project = "Experimental Philosophy",

Study = Study,
Survey_Belief_Premarket = NA,
Survey_Belief_Postmarket = NA,
Market_Belief = NA) %>%

select(Study, r_OS, r_RS, FZ_OS, FZ_RS, FZ_se_OS, FZ_se_RS, pval_RS,
N_OS, N_RS, pval_OS, Project, Survey_Belief_Premarket,
Survey_Belief_Postmarket, Market_Belief)

data_correlations_subset <- rbind(rpp_correlations_subset,
eerp_correlations_subset,
ssrp_correlations_subset,
rpphi_correlations_subset) %>%

mutate(pval_RS_significant = factor(pval_RS < 0.05,
labels = c("Not Significant",

"Significant")))

write_csv(data_correlations_subset,
path = "Data_Final/replications_correlation_subset.csv")

# Subset of data where standard error of Fisher z-transformed
# correlations available (Meta analytic subset)
data_ma_subset <- data_correlations_subset %>%

filter(!is.na(FZ_se_OS) & !is.na(FZ_se_RS))

write_csv(data_ma_subset, path = "Data_Final/replications_ma_subset.csv")
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sessionInfo()

## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=de_CH.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=de_CH.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=de_CH.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=de_CH.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] tables_0.8.7 Hmisc_4.2-0 Formula_1.2-3
## [4] survival_2.43-3 lattice_0.20-38 forcats_0.4.0
## [7] stringr_1.4.0 dplyr_0.8.0.1 purrr_0.3.2
## [10] readr_1.3.1 tidyr_0.8.3 tibble_2.1.1
## [13] ggplot2_3.1.1.9000 tidyverse_1.2.1 knitr_1.22
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.1 lubridate_1.7.4 assertthat_0.2.1
## [4] digest_0.6.18 plyr_1.8.4 R6_2.4.0
## [7] cellranger_1.1.0 backports_1.1.4 acepack_1.4.1
## [10] evaluate_0.13 httr_1.4.0 highr_0.8
## [13] pillar_1.3.1 rlang_0.3.4 lazyeval_0.2.2
## [16] readxl_1.3.1 rstudioapi_0.10 data.table_1.12.2
## [19] rpart_4.1-15 Matrix_1.2-17 checkmate_1.9.1
## [22] labeling_0.3 splines_3.6.1 foreign_0.8-70
## [25] htmlwidgets_1.3 biostatUZH_1.8.0 munsell_0.5.0
## [28] broom_0.5.2 compiler_3.6.1 modelr_0.1.4
## [31] xfun_0.6 pkgconfig_2.0.2 base64enc_0.1-3
## [34] htmltools_0.3.6 nnet_7.3-12 tidyselect_0.2.5
## [37] gridExtra_2.3 htmlTable_1.13.1 codetools_0.2-16
## [40] viridisLite_0.3.0 crayon_1.3.4 withr_2.1.2
## [43] grid_3.6.1 nlme_3.1-140 jsonlite_1.6
## [46] gtable_0.3.0 magrittr_1.5 scales_1.0.0
## [49] cli_1.1.0 stringi_1.4.3 reshape2_1.4.3
## [52] latticeExtra_0.6-28 xml2_1.2.0 generics_0.0.2
## [55] boot_1.3-23 RColorBrewer_1.1-2 tools_3.6.1
## [58] glue_1.3.1 hms_0.4.2 colorspace_1.4-1
## [61] cluster_2.1.0 rvest_0.3.3 haven_2.1.0



Bibliography

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R.,
Bollen, K. A., Brembs, B., Brown, L., Camerer, C., Cesarini, D., Chambers, C. D., Clyde,
M., Cook, T. D., Boeck, P. D., Dienes, Z., Dreber, A., Easwaran, K., Efferson, C., Fehr, E.,
Fidler, F., Field, A. P., Forster, M., George, E. I., Gonzalez, R., Goodman, S., Green, E.,
Green, D. P., Greenwald, A. G., Hadfield, J. D., Hedges, L. V., Held, L., Ho, T. H., Hoijtink,
H., Hruschka, D. J., Imai, K., Imbens, G., Ioannidis, J. P. A., Jeon, M., Jones, J. H., Kirchler,
M., Laibson, D., List, J., Little, R., Lupia, A., Machery, E., Maxwell, S. E., McCarthy, M.,
Moore, D. A., Morgan, S. L., Munafó, M., Nakagawa, S., Nyhan, B., Parker, T. H., Pericchi,
L., Perugini, M., Rouder, J., Rousseau, J., Savalei, V., Schönbrodt, F. D., Sellke, T., Sinclair,
B., Tingley, D., Zandt, T. V., Vazire, S., Watts, D. J., Winship, C., Wolpert, R. L., Xie, Y.,
Young, C., Zinman, J., and Johnson, V. E. (2017). Redefine statistical significance. Nature
Human Behaviour, 2, 6 – 10. 35

Bernardo, J. M. and Smith, A. F. M. (2000). Bayesian Theory. John Wiley & Sons, Inc. 42

Camerer, C., Dreber, A., Holzmeister, F., Ho, T., Huber, J., Johannesson, M., Kirchler, M.,
Nave, G., Nosek, B., Pfeiffer, T., Altmejd, A., Buttrick, N., Chan, T., Chen, Y., Forsell,
E., Gampa, A., Heikenstein, E., Hummer, L., Imai, T., Isaksson, S., Manfredi, D., Rose, J.,
Wagenmakers, E., and Wu, H. (2018). Evaluating the replicability of social science experiments
in nature and science between 2010 and 2015. Nature Human Behavior, 2, 637 – 644. 2, 3, 6,
21, 32, 44, 46, 47

Camerer, C. F., Dreber, A., Forsell, E., Ho, T., Huber, J., Johannesson, M., Kirchler, M.,
Almenberg, J., Altmejd, A., Chan, T., Heikensten, E., Holzmeister, F., Imai, T., Isaksson, S.,
Nave, G., Pfeiffer, T., Razen, M., and Wu, H. (2016). Evaluating replicability of laboratory
experiments in economics. Science, 351, 1433 – 1436. 2, 3, 6, 21, 32, 44, 46, 47

Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155 – 159. 15, 16, 45

Cooper, H., Hedges, V., and Valentine, J. C. (2009). The Handbook of Research Synthesis and
Meta-Analysis. Russel Sage Foundation New York. 6

Copas, J. B. (1983). Regression, prediction and shrinkage. Journal of the Royal Statistical
Society, 45, 311 – 354. 8

Copas, J. B. (1997). Using regression models for prediction: shrinkage and regression to the
mean. Statistical Methods in Medical Research, 6, 167 – 183. 9

Cova, F., Strickland, B., Abatista, A., Allard, A., Andow, J., Attie, M., Beebe, J., Berniūnas,
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