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Abstract

In good statistical practice it is recommended to limit the results not only to point estimates, but
to present simultaneously interval estimates. The standard, well known and frequently taught
interval in introductory statistical classes, is the con�dence interval. It is designed to describe a
single unknown parameter of a population with some uncertainty.
Another type of interval, the prediction interval, is occasionally presented in the context of
regression analysis. The aim of the prediction interval is to predict future observation(s) in a
population with a de�ned uncertainty. In contrast to these two intervals, tolerance intervals,
capturing a speci�ed proportion P of a population with some uncertainty, are rarely presented.
Depending on the context and on the purpose of a study, di�erent intervals are recommended.
Presenting a con�dence or a prediction interval, when a tolerance interval would be appropriate,
engenders potentially a misuse of the former two intervals.
In this thesis the three di�erent types of intervals are illustrated with simulated data and two
real data sets from veterinary medicine. One data set of normally distributed data originates
from a study on body weight loss in obese dogs. The second data set of binomial data comes
from a study simulating fractures caused by horse kicks and di�erent shoeing materials.
The intervals for a normal and a binomial distribution are interpreted from both a classical and a
Bayesian perspective. Next to theoretical aspects, practical applications in R are presented. The
asymptotic behaviour of the three intervals, subject to increasing sample size, is assessed. With
increasing sample size, the width of con�dence intervals decreases and approaches 0. The widths
of the prediction and the tolerance intervals decrease initially, but will reach a stable plateau.
The magnitude of the width of these two intervals will be in�uenced by the standard deviation
and, additionally for the tolerance intervals, the captured proportion P .
It became also evident, that the assumption of normality needs to be checked carefully to avoid
erroneous intervals. For binomial distributions, Bayesian approaches were found to be superior
to Wald normal approximations which should be avoided.
As the three types of intervals serve for di�erent purposes, the decision which interval to use
should be context-driven and clearly justi�ed. In order to avoid confusion and misunderstandings,
all three types of intervals should be taught and presented in introductory statistical classes.
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Chapter 1

Introduction to classical and Bayesian

intervals

Statistics can be understood as a set of analytical tools designed to quantify uncertainty. This
uncertainty originates from the situation when inferences pertaining to a whole population are
desired, but only a subset of the population, a sample, is available to obtain such inferences.
Thus, due to sampling variation or error, solutions are needed to deal appropriately with this
uncertainty.
More precisely, in Maximum Likelihood approaches, the idea is to determine the most likely value
of the parameter of interest. Assuming the probability distribution from which the sample was
drawn, constructing a likelihood function, looking at its �rst derivative and setting this value
to zero, allows to �nd this most likely value based on the data at hand. Unfortunately, this
most likely value, the point estimate, will with high probability di�er from the true parameter
of interest of the population from which the sample was drawn. If the point estimate is unable
to catch up the true parameter value, there is a need for interval estimates.
There are three main types of intervals estimates, e.g. con�dence or credible (CI or CrI), predic-
tion (PI) and tolerance intervals (TI) which have been developed serving for di�erent purposes.
Con�dence or credible intervals are designed to describe a parameter with some uncertainty due
to sampling errors. Prediction intervals aim to predict future observation(s) including some un-
certainty. Tolerance intervals are constructed to capture a speci�ed proportion of a population
with a de�ned uncertainty.
There are two approaches in statistics: Bayesian and frequentist. Both allow providing di�erent
intervals. The �rst approach is named after Thomas Bayes who lived in the 18th century in the
Age of Enlightment. At that time, the development of the probability theory provided means to
make probabilistic statements about the likelihood of events.
In a Bayesian setting, the underlying assumption is that there is a parameter distribution, while
the data are �xed. Consequently, the parameter of interest is contained in a 95% credible interval
with a 95% probability. In addition to the likelihood, containing information about the data,
the prior information, needs to be considered. Positively formulated, it can be included as an
already existing source of information. Based on these two factors, the posterior distribution is
derived from which the credible interval can be read o�. Bayesian statistics was contested in the
19th and 20th century and gained a wider acceptance among a number of statisticians with the
recent increase in computational power.
The second approach was established about a century ago by pioneers like Ronald Fisher, Karl
and Egon Pearson, and Jerzy Neyman. The overarching idea in the classical branch of statistics
is to assume that the unknown true parameter of interest is �xed, and can be learned or approx-
imated by repeatedly (frequently) drawn samples (of identical, independent observations) from
the population. This parameter of interest could be a mean or a variance in the case of a normal,
or a probability of an event in a binomial probability distribution. A 95% classical interval will
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CHAPTER 1. INTRODUCTION TO CLASSICAL AND BAYESIAN INTERVALS 4

allude to the sampling experiment: �when sampling multiple times from ...�, �the true parameter

of interest is included in 95% of the obtained intervals�.
Frequentist reasoning ist still largely dominating medical statistics and is therefore considered
as the classical approach which is typically taught in statistics.
All three types of intervals can be described in the generic form of adding and substracting k
times the standard error from the point estimate of the parameter of interest:

̂parameter ± k · SE( ̂parameter). (1.1)

Thus the width of the interval is based on the product of �k� times the standard error SE, and
centered around the most likely value of the parameter of interest. The key di�erence for the
three intervals lies in the speci�c de�nition of k.

The main idea behind equation (1.1), is expressed by the Wald approach. This approach is
named after Abraham Wald and relies on an approximation with the normal distribution. It can
be summarised as follows:
Assume that a random variable X follows a normal probability distribution with an unknown
mean µ and a known variance σ2:

X ∼ N(µ, σ2) (1.2)

A standardized normal random variable is obtained by substracting the mean µ from X and
dividing by the standard deviation σ which in turn follows a standard normal distribution with
a mean of 0 and a variance of 1.

X − µ
σ

=
X − µ√
σ2
∼ N(0, 1) (1.3)

Consider now a sample x1, · · · , xn realisations of X1, ..., Xn
iid∼ N(µ, σ2) and a sample mean

x̄ =
1

n

n∑
i=1

xi.

Regarding the distribution of sample mean X̄, it can be shown (see Appendix 7.1) that it follows

a normal distribution with mean µ and variance σ2

n .

X̄ ∼ N
(
µ,
σ2

n

)
(1.4)

In a standardized form this can be written as

X̄ − µ
σ√
n

=
X̄ − µ√

σ2

n

∼ N(0, 1) (1.5)

Denote the 100(1 − α
2 )th percentile of the standard normal distribution by z1−α

2
-value. For

α = 5 % and a 95% con�dence level (1− α), z1−α
2
equals to 1.96. Furthermore it holds:

P
[
|N(0, 1)| ≤ z1−α

2

]
= 1− α (1.6)

If equation (1.5) is considered for a sample, then

P
[
| x̄− µ√

σ2

n

| ≤ z1−α
2

]
= 1− α (1.7)
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and

P
[
− z1−α

2
≤ x̄− µ√

σ2

n

≤ z1−α
2

]
= 1− α (1.8)

when subtracting x̄, multiplying with
√

σ2

n it is possible to obtain a (1 − α) Wald con�dence
interval with a lower and upper bound for the unknown parameter µ:

P
[
x̄− z1−α

2

√
σ2

n
≤ µ ≤ x̄+ z1−α

2

√
σ2

n

]
= 1− α (1.9)

If σ is unknown, it will be replaced by the estimate σ̂. In such a case z1−α
2
could be replaced by a

quantile of a tn−1 distribution. In order to keep the argument concise, in what follows, however,
we concentrate on the normal approximation only.
Thus, with k = z1−α

2
and SE(µ̂) = σ̂√

n
:

µ̂± k · SE(µ̂) (1.10)

In the binomial case, for a proportion p, and its sample estimate p̂, following a Bernoulli proba-
bility distribution with Ep̂ = p and V ar(p̂) = p(1−p)

n (see Appendix 7.2).

p̂ ∼ N
(
p,
p(1− p)

n

)
(1.11)

and subsequently, using the standard normal approximation:

p̂− p√
p(1−p)
n

∼ N(0, 1) (1.12)

In practice, however, one uses

p̂− p√
p̂(1−p̂)
n

∼ N(0, 1) (1.13)

Following the steps in equations (1.7) to (1.9) with equation (1.5) replaced by equation (1.12)
we arrive at a (1− α) Wald con�dence interval for p:

P
[
p̂− z1−α

2

√
p̂(1− p̂)

n
≤ p ≤ p̂+ z1−α

2

√
p̂(1− p̂)

n

]
= 1− α (1.14)

Thus
p̂± k · SE(p̂) (1.15)

with k = z1−α
2
and SE(p̂) =

√
p̂(1−p̂)
n .
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Aim of the master thesis

The aim of this master thesis is to present, from a classical and a Bayesian perspective, the
con�dence/credible, prediction and tolerance intervals for normal and binomial distributions.
Next to theoretical aspects, applied examples are presented including two real data sets from
veterinary medicine and simulated data.
The following data sets are used. The �rst one originates from the study of (Flanagan et al.,
2017) describing a weight loss program in dogs. Obesity has become a concern in dogs too,
and e�ective weight loss solutions are required to avoid negative health e�ects. In a 3-month
prospective multicenter observational cohort study, di�erent commercially available dry or wet
weight loss diets were assessed for their e�ect on the percentage weight loss per dog. In total
926 dogs from 340 veterinary practices in 27 countries were involved. The study was sponsored
by Royal Canin.
The second data set from (Sprick et al., 2017) assesses the damage in�icted by an unshod hoof
and by the horseshoe material steel on the long bones of horses. Due to welfare reasons, horses are
increasingly kept in groups. During social interactions, kicks - particularly with the hind limbs -
possibly cause fractures at the long bones, radii and tibiae, when loads are applied perpendicular
to the longitudinal axis. In group holding systems shoeing with steel is often prohibited. A
fracture of these long bones was and still is a potential reason to euthanase a horse. In the study
(Sprick et al., 2017) kicks with a comparable velocity of 8m/s were simulated using a drop impact
test setup. The data for an impactor with steel and horn are used as an applied example.
With the aim to illustrate the three types of intervals for a normal distribution, samples are
drawn from a random normal distribution with a true mean of 100 and a standard deviation of
10. Similarly, to illustrate the three types of intervals for a binomial distribution, samples are
drawn from a random binomial distribution, with a true proportion of 0.5 and of 0.1. Additionally,
simulated data originating from a normal, a bi-modal and a skewed are generated to assess the
importance of the normality assumption with regard to the obtained intervals.
The master thesis is structured as follows. In the �rst chapter classical and Bayesian intervals
are brie�y introduced. In the second chapter con�dence and credible intervals are described.
Chapter three presents prediction intervals and chapter four is dedicated to tolerance intervals.
In chapter �ve, the three types of intervals are contrasted. The �rst comparison is made with
regard to the normality assumption in the case of normal, bi-modal and skewed data. The second
focus is related to increasing sample size n as well as the number of predicted observations m. In
chapter six the �ndings are discussed. The three di�erent intervals are contrasted highlighting
their appropriate use and interpretation. In the appendix, the formula for the distribution of
sample mean and proportion, as well as the sum of variances are presented.



Chapter 2

Con�dence intervals

Con�dence intervals (CI) were �rst described by (Neyman, 1937). According to (Held and Sa-
banés Bové, 2014, p.57), the following de�nition for classical con�dence intervals for an unknown
parameter θ applies:

De�nition of a classical con�dence interval:
For identical and independent repetitions of the underlying statistical sampling experiment, a
(1− α) · 100% con�dence interval will cover θ in (1− α) · 100% of all cases.

In contrast in a Bayesian setting, a credible interval (CrI) is de�ned as (Held and Sabanés Bové,
2014, p.172):
De�nition of a Bayesian credible interval:
For a �xed (1−α) ∈ (0, 1) a (1−α) · 100% credible interval is de�ned through two real numbers
tl and tu that ful�ll: ∫ tu

tl

f(θ|x)dθ = 1− α (2.1)

with (1− α) the credible level for the interval [tl, tu].
This implies that θ is contained in the (1− α) credible interval with probability (1− α).

2.1 Con�dence intervals for a normal distribution

The de�nition of a classical con�dence interval is demonstrated for a normal distribution in
Figure 2.1. In this example, the aim is to provide a 95% con�dence interval for an unknown
mean µ. When sampling multiple times from a random normal distribution with a speci�ed
mean, e.g. of 100 and a speci�ed standard deviation of 10, the true mean of 100 is included in
95% of the obtained con�dence intervals. In 5% of the cases, the true parameter is not covered
by the 95% CI (µ).
This derivation of a (1− α) · 100% CI (µ) for the mean is based on equation (1.9) with sample
standard deviation σ̂, and reads:

P
[
x̄− z1−α

2
· SE(µ̂) ≤ µ ≤ x̄+ z1−α

2
· SE(µ̂)

]
= 1− α (2.2)

The standard error SE(µ̂) = σ̂√
n
of the sample mean depends on both the standard deviation σ̂

and the sample size n. The standard error of the mean can also be considered as the accuracy of
the sample mean x̄ estimate, indicating the uncertainty around the estimate of the mean value
(Altman and Bland, 2005).
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Figure 2.1: Illustration of con�dence intervals CI(µ) for an unkown mean parameter
µ. The con�dence intervals which do not cover the true mean are colored in red (here
5 out of 100). Similar properties apply to CI(p) discussed in section 2.2.

2.1.1 Normal distribution: example of applicability

In this example from (Flanagan et al., 2017), a multicenter study sponsored by Royal Canin, the
percentage of weight loss is evaluated in 926 dogs. The mean percentage weight loss is 11.4%
with a standard deviation of 5.84%. The data are shown in Figures 2.2 and 2.3.
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Figure 2.2: Boxplot of percentage of body weight loss in dogs based on the study of
(Flanagan et al., 2017).
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Figure 2.3: Histogram of percentage of body weight loss in dogs based on the study
of (Flanagan et al., 2017).
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Based on the above described equation (2.2) the following own function was written in R with
the arguments of the data (x) and the chosen (1− α) level for the con�dence interval.

my.CI.norm.func <- function(x, alpha){

# x = data

# 1 - alpha = confidence level

SE <- sd(x) / sqrt(length(x))

low.ci <- mean(x) - SE * qnorm((1-alpha/2),0,1)

up.ci <- mean(x) + SE * qnorm((1-alpha/2),0,1)

low.ci.f <- floor(low.ci * 100) /100

up.ci.c <- ceiling(up.ci * 100) /100

return(list(lower.ci= low.ci.f, upper.ci = up.ci.c))

}

R packages

In the following, the results of my.CI.norm.function will be compared with the functions ci.mean()

(package Publish), CI() (package Rmisc), and MeanCI() (package DescTools) for constructing
con�dence intervals.

Package Function lower bound upper bound

Wald my.CI.norm.function 10.99 11.75
Publish ci.mean() 10.99 11.74
Rmisc CI() 10.99 11.74
DescTools MeanCI() 10.99 11.74

Table 2.1: 95% CI (µ) for percentage body weight loss of 926 dogs in the (Flanagan
et al., 2017) study.

Interpretation

Thus for repeated samplings (i.e. independent, identical realisations of the experiment) of dogs
in the (Flanagan et al., 2017) study, the interval [10.99 to 11.75] according to my own function,
or [10.99 to 11.74] according to the R packages Publish, Rmisc and DescTools will contain the
(unkown) true percentage of body weight loss in 95% of the cases (see table 2.1).

2.2 Con�dence intervals for a proportion based on a binomial

distribution

The traditional (and still widely used) method for obtaining a con�dence interval for an unknown
parameter p, a proportion, based on a sample drawn from a binomial distribution, relies on a
normal approximation.
Thus, based on the idea of a con�dence interval obtained as described in the introduction, when
p̂ is a point estimator for the probability of successes in a repeated Bernoulli trial based on x
successes out of n trials

p̂ =
x

n
(2.3)

the formula for the (1− α) CI(p), similar to equation (1.9) with
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√
p̂(1− p̂)

n
= SE(p̂) (2.4)

it is possible to write

P
[
p̂− z1−α

2
· SE(p̂) ≤ p ≤ p̂+ z1−α

2
· SE(p̂)

]
= 1− α (2.5)

The k = z1−α
2
here is exactly the same as in equation (1.10).

Below is the own function providing Wald (or approximate normal) formula for a (1−α) · 100%
CI(p) implemented in R with the arguments of the data (x successes out of n trials) and the
chosen con�dence level (1 − α). The name �Wald� makes the link of the con�dence interval to
the Wald test for p obvious. The interval is the set of p0 values having a p-value exceeding α in
testing

H0 : p = p0 against HA : p 6= p0

using the test statistic

z =
p̂− p0√
p̂(1−p̂)
n

(2.6)

The Wald CI results from inverting the Wald test for p according to (Agresti and Coull, 1998).
Based on the equation in (2.5), the following formula is implemented in R, based the number of
successes x and trials n and the chosen con�dence level 1− α.

my.CI.Wald.function <- function(x, n, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# 1 - alpha = confidence level

p <- x/n

SE <- sqrt((p*(1-p))/n)

low.ci <- p - SE * qnorm((1-alpha/2),0,1)

up.ci <- p + SE * qnorm((1-alpha/2),0,1)

low.ci.f <- floor(low.ci*1000) /1000

up.ci.c <- ceiling(up.ci*1000) /1000

return(c(lower=low.ci.f, upper=up.ci.c))

}

There are cases when this normal approximation is not appropriate, for example for very small or

large proportions, i.e. when p is near the boundaries of 0 or 1. In such a case, SE(p̂) =

√
p̂(1−p̂)
n

is close to 0. This might be a consequence of using p̂ as a midpoint in the normal approximation,
when the binomial distribution is skewed. In this context, two other approaches are brie�y
mentioned: Clopper-Pearson exact and Wilson con�dence intervals.

Clopper-Pearson exact con�dence intervals

Clopper and Pearson developed a method named Clopper-Pearson method or �exact con�dence
interval� (Clopper and Pearson, 1934). In regard to the binomial distribution with the density
function:
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f(x) =

(
n

x

)
px(1− p)n−x (2.7)

The idea is to use two one-sided Binomial tests, one for the lower (PLo) and one for the upper
(PUp) con�dence bound at the desired level of con�dence. This con�dence interval is based on
inverting equal-tailed binomial tests of H0 : p = p0. The exact Clopper-Pearson CI is then the
range from the endpoints PLo to PUp satisfying the following conditions for x successes out of n
trials:

x∑
l=0

(
n

l

)
P lUp(1− PUp)n−l =

α

2
(2.8)

n∑
l=x

(
n

l

)
P lLo(1− PLo)n−l =

α

2
(2.9)

For x = 0 the lower bound will be 0 and for x = 1 the upper bound will be 1. This con�dence
interval is guaranteed to have coverage probability of at least (1 − α) for every possible value
of p. According to (Brown et al., 2001), for any �xed p, the actual coverage probability can be
much larger than (1 − α) unless n is quite large. In this sense, the con�dence interval is rather
inaccurate.

The following function implements the Clopper-Pearson approach for an exact con�dence interval
in R with the arguments of the data (x successes out of n trials) and the chosen con�dence level
(1− α).

my.CP.function <- function(x, n, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# 1 - alpha = confidence level

Lo <- function(p){pbinom(x - 1, n, p) - (1-alpha/2)}

Up <- function(p){pbinom(x, n, p) - alpha/2}

Low <- uniroot(Lo,c(.001,.999))

low.ci.f <- floor(Low$root*1000) / 1000

upper <- uniroot(Up,c(.001,.990))

upper.ci.c <- ceiling(upper$root * 1000) / 1000

return(c(lower=low.ci.f, upper=upper.ci.c))

}

Wilson con�dence intervals

To obtain con�dence intervals according to (Wilson, 1927) one starts by �rst calculating A, B
and C. Here x represents the number of successes out of n Bernoulli trials and p̂ = x/n is the
proportion of successes.

A = 2x+ z21−α
2

(2.10)

B = z1−α
2

√
z21−α

2
+ 4xq (2.11)

C = 2(n+ z21−α
2
) (2.12)

The (1− α) · 100% CI(p) is then given by:

A−B
C

to
A+B

C
(2.13)
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Je�reys Bayes methods

An alternative to the classical approach is the Bayesian one. The underlying idea is to combine
the information contained in the actual data, the likelihood, with prior information or belief to
obtain a posterior describing the parameter of interest.
Based on the conditional probability law, the probability of Y given θ is equal to the joint prob-
ability of Y and θ divided by the probability of θ:

P (Y |θ) =
P (Y, θ)

P (θ)
(2.14)

According to Bayes rule we obtain the posterior distribution f(θ|y) given the likelihood f(y|θ)
and the prior distribution f(θ) :

f(θ|y) =
f(y|θ)f(θ)∫
f(y|θ)f(θ)dθ

(2.15)

According to (Held and Sabanés Bové, 2014, p.170), the denominator can be written as∫
f(y|θ)f(θ)dθ =

∫
f(y, θ)dθ = f(y) (2.16)

When f(y), the marginal likelihood is omitted, the posterior distribution is proportional, with
proportionality constant 1

f(y) , to the product of the likelihood f(y|θ) and the density of the prior

distribution f(θ).
To calculate the posterior distribution, the concept of conjugacy is important. Choosing as prior
distribution a member of a speci�c family of distributions such that the posterior distribution
belongs to the same family is called a conjugate prior distribution (Held and Sabanés Bové, 2014,
p.179). For a binomial distribution, a beta distribution is a good choice for a conjugate prior. A
beta distribution has also a support ranging from 0 to 1, similar to the binomial distribution.
In the case of a binomial density function with

f(x|θ) =

(
n

x

)
θx(1− θ)n−x (2.17)

and a beta prior distribution θ ∼ Be(a, b) with suitably chosen parameters a, b > 1,

f(θ) =
1

B(a, b)
θa−1(1− θ)b−1 (2.18)

assuming that the posterior distribution is proportional to the product of the likelihood times
the prior distribution yields:

f(θ|x) ∝ θx(1− θ)n−xθa−1(1− θ)b−1 (2.19)

which can be simpli�ed to

= θa+x−1(1− θ)b+n−x−1 (2.20)

In (Meeker and Hahn, 2017, p. 107), Je�reys method, a Bayesian approach is proposed to
construct a con�dence or strictly speaking a credible interval for a proportion. It was shown by
(Brown et al., 2001) that the interval based on Je�reys Bayesian approach is always contained in
the exact con�dence intervals based on the Clopper-Pearson approach. This �nding highlights
that Je�reys approach is preferable because it is less conservative.
Here, the following formula for a two-sided approximate 100(1− α)% binomial credible interval
for p is proposed based on the shape parameters a and b of the beta distribution. Both are set to
0.5, thus considered to be �un-informative�, as so-called �Je�reys priors�. For equi-tailed credible
intervals, the corresponding α

2 quantiles of the beta distribution are considered. For an applied
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example, the prior (beta(0.5,0.5)), the likelihood and the posterior distributions, as well as the
limits of the credible interval are displayed in Figures 2.4.

P[qbeta(
α

2
;x+ a, n− x+ b), qbeta(1− α

2
;x+ a, n− x+ b)] = 1− α (2.21)

According to (Brown et al., 2001) both the Wilson and the Je�reys prior interval display ex-
cellence performance in terms of coverage probability. He considers the Je�reys prior interval
slightly superior with an average coverage being very close to the nominal level even for quite
small n.
The following function implements Je�reys approach for a binomial credible interval in R with
the arguments of the data (x successes out of n trials) and the chosen credible level (1− α).

my.CI.Jeffrey.function <- function(x, n, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# 1 - alpha = credible level

a <- x + 0.5

b <- n - x + 0.5

low.ci <- qbeta(alpha/2,a, b)

up.ci <- qbeta((1-(alpha/2)),a, b)

low.ci.f <- floor(low.ci*1000) /1000

up.ci.c <- ceiling(up.ci*1000) /1000

return(c(lower=low.ci.f, upper=up.ci.c))

}

R packages

In the following, the results of these functions will be compared with the functions binconf() in
the Hmisc package and the binom.test() in the stats package which uses a procedure �rst given
in (Clopper and Pearson, 1934).

2.2.1 Example of applicability

One example is obtained from (Sprick et al., 2017) with the objective to evaluate the damage
in�icted by an unshod hoof and by the horseshoe material steel on the long bones of horses,
i.e. radii and tibiae after a simulated kick. An impactor with a hoof horn or a steel head was
dropped onto 16 prepared bones with a velocity of 8 m/s. The proportion of a long bone fracture
was assessed and con�dence or credible intervals were obtained. In the case of steel 12 out 16
bones displayed a fracture, and 2 out of 16 bones with hoof horn.

Method/Package Function lower bound upper bound

Wald my.CI.Wald.function 0.537 0.963
Exact my.CP.function 0.476 0.928
stats binom.test() 0.476 0.927
Hmisc binconf() 0.505 0.898
Je�rey credible my.CI.Je�rey.function 0.509 0.91

Table 2.2: 95% CI (p) for steel
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Method/Package Function lower bound upper bound

Wald my.CI.Wald.function -0.038 0.288
Exact my.CP.function 0.015 0.384
stats binom.test() 0.016 0.383
Hmisc binconf() 0.035 0.36
Je�rey credible my.CI.Je�rey.function 0.026 0.345

Table 2.3: 95% CI (p) for horn

Interpretation of con�dence intervals

For repeated i.e. independent, identical realisations of the kick experiment with a steel impactor
at a velocity of 8 m/s, the interval [47 to 93]% will contain the (unknown) true probability of
a fracture in 95% of the cases (n=16) (see Table 2.2). Similarly, for an impactor with horn the
interval [1 to 39] will contain the (unknown) true probability of a fracture in 95% of the cases
(n=16) (see Table 2.3). The limitations of the Wald approach, relying on a normal approxima-
tion becomes evident, when looking at the lower bound, being negative which is impossible for
a proportion.

Interpretation of credible intervals

In contrast, in a Bayesian approach, i.e. Je�reys, the probability of a fracture lies between [50.9
to 91] for an impactor with steel and between [2.6 to 34.5] with horn with probability 95%.
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Figure 2.4: Density plots of the posterior distributions based the prior (Beta(0.5, 0.5))
and the data (Bin(12,16) for a steel and Bin(2,16)) for an horn impactor in the example
from (Sprick et al., 2017). This prior distribution (blue) has an equal probability at
0 and 1, therefore considered to be un-informative. The total weight of Je�reys prior
for a=0.5 and b=0.5 equals to one observation. The likelihood (dotted black) and the
posterior distribution (red) are similar. The (1−α = 0.95) credible intervals is presented
green.



Chapter 3

Prediction intervals

Prediction intervals are appropriate to predict a future mean or another value - or as a speci�c
case - a future single observation based on already observed (known) measurements. In the
classical approach, a prediction interval for a single predicted future value will cover the true
value in 95% of identical repetitions of the experiment. In a Bayesian approach, the unknown
predicted value lies in a predicted interval with a 95% probability.

3.1 Prediction intervals for a normal distribution

Assume there are x1, · · · , xn realisations from X
iid∼ N(µ, σ2). The aim is to predict a mean

ȳ = ȳnew of a future sample y1, ..., ym originating from independent additional realisations of a

random normal variable Y
iid∼ N(µ, σ2). Assume that σ2 is known and µ is estimated by x̄ = x̄old

of an already observed sample x1, ..., xn independent of yi's. In this situation, the two variances
V ar(X̄) and V ar(Ȳ ) need to be taken into consideration. While V ar(X̄) is also relevant in the
construction of a con�dence interval, for the construction of prediction intervals V ar(Ȳ ) is also
needed.
With

V ar(X̄) =
1

n
σ2 (3.1)

and

V ar(Ȳ ) =
1

m
σ2 (3.2)

it can be shown that, if X̄ and Ȳ are independent, then (see Appendix 7.3)

V ar(Ȳ − X̄) = V ar(Ȳ ) + V ar(X̄) = σ2
( 1

m
+

1

n

)
(3.3)

and

SE(ȳnew − x̄old) = σ̂

√
1

m
+

1

n
(3.4)

Then, approximately, for the new predicted mean ȳnew and the available sample mean x̄old,

ȳnew − x̄old
σ̂
√

1
n + 1

m

∼ N(0, 1) (3.5)

Thus, similar to steps in equations (1.7) to (1.9), gives a prediction interval for the mean ŷnew
of m future observations based on an already observed sample x1, · · · , xn:

17
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Figure 3.1: (1−α = 0.95) prediction intervals for a single future value (m = 1), based
on 100 random samples each with (n = 10), a true mean of 100 and a standard deviation
of 10. The prediction intervals who do not cover the ynew, a newly gerenated random
variable drawn from a normal distribution with a true mean of 100 and a standard
deviation of 10, are colored in red (here 11 out of 100)

P
[
x̄old − z1−α

2
· SE(ȳnew − x̄old) ≤ ȳnew ≤ x̄old + z1−α

2
· SE(ȳnew − x̄old)

]
= 1− α (3.6)

This corresponds to equation (1.1), for SE( ̂parameter) = σ̂
√

1
m + 1

n and k = z1−α.

If the aim is to predict a single future observation, then m = 1 and the prediction interval for a
single future observation ynew is

P

[
x̄old − z1−α

2
· σ̂
√

1 +
1

n
≤ ynew ≤ x̄old + z1−α

2
· σ̂
√

1 +
1

n

]
= 1− α (3.7)

3.1.1 Example of applicability

Based on equation (3.7), the following function can be implemented in R with the arguments
of the already observed sample (mean, standard deviation, sample size), the size of the future
sample and the chosen prediction level (1− α).

my.PI.norm.function <- function(x, s, n, m, alpha){

# x = mean of observed sample

# s = standard deviation of observed sample

# n = sample size of observed sample

# m = sample size of future observations
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# 1 - alpha = prediction level

SE <- s*sqrt((1/n) + (1/m))

low.ci <- x - SE * qnorm((1-alpha/2),0,1)

up.ci <- x + SE * qnorm((1-alpha/2),0,1)

low.ci.f <- floor(low.ci*100) /100

up.ci.c <- ceiling(up.ci*100) /100

return(c(lower=low.ci.f, upper=up.ci.c))

}

Subsequently this function is used to obtain a predicted value of the percent weight loss in one
overweight dog (see section 2.1.1) and compared to the function predict.lm() in the stats

package.

Function name lower bound upper bound

my.PI.norm.function -0.11 22.84
predict.lm -0.12 22.85

Table 3.1: (1−α = 0.95) PI(ynew) for the percentage of weight loss in one overweight
dog.

Interpretation

Based on the available sample of 926 overweight dogs, for independent and identical repetitions
of the sampling experiment, ynew, the body weight loss in percent of a single future dog, will be
covered by [-0.11 to 22.84] in 95 out of 100 cases.

3.2 Prediction intervals for a binomial distribution

We have an underlying Be(p) process of iid generated successes. Similar to con�dence intervals,
for prediction intervals of a sample following a binomial distribution, a normal distribution
approximation exists. If p̂ corresponds to the proportion in an available sample of size n, thus
n · p̂old would be the number of successes in a Bernoulli trial, m · pnew would be the number of
additionally successes generated by an independent Bernoulli trial of size m. Assuming that,

p̂new =
1

m

m∑
i=1

Ii (3.8)

V ar(mp̂new) = V ar(

m∑
i=1

Ii) = mp̂new(1− p̂new) (3.9)

If

V ar(mp̂new − np̂old) = V ar(mp̂new) + V ar(np̂old) (3.10)

then for pnew = pold = p

mp(1− p) + np(1− p) = (m+ n)p(1− p) (3.11)

Similar to equations (3.5) and (3.6),

mp̂new − np̂old√
V ar(mp̂new − np̂old)

∼ N(0, 1) (3.12)

and
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mp̂− np̂√
(m+ n)p(1− p)

∼ N(0, 1) (3.13)

A binomial prediction interval for the number of Bernoulli successes mpnew, based on the normal
approximation, can be constructed as follows (Meeker and Hahn, 2017, p.122):

npold − z1−α
2

√
(m+ n)pold(1− pold) ≤ mpnew ≤ npold + z1−α

2

√
(m+ n)pold(1− pold) (3.14)

Based on equation (3.14) the following R function was developed with the arguments of the
available data (x successes out of n trials), the sample size m of the future sample and the
chosen prediction level (1− α).

my.PI.bin.function <- function(x, n, m, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# m = sample size of future observations

# 1 - alpha = prediction level

p <- x/n

quant <- qnorm((1-alpha/2),0,1)

SE <- sqrt((m+n)*p*(1-p))

low.ci <- m*p - quant*SE

up.ci <- m*p + quant*SE

low.ci.f <- floor(low.ci)

up.ci.c <- ceiling(up.ci)

return(c(lower=low.ci.f, upper=up.ci.c))

}

Similar to relying on the normal approximation for binomial con�dence intervals, where Bayesian
credible intervals are preferable to classical approaches, Bayesian approaches exists also for the
purpose of prediction. The underlying idea of predictive distributions (prior and post) is ex-
plained as follows.

3.2.1 Prior and posterior predictive distributions

Conceptionally, the prior predictive distribution of the data corresponds to what we expect before
we actually see the data. The probability distribution f(yn), with yn being the new expected
data, is a marginal probability. It is possible to obtain it by integrating out all dependence on θ
of the joint probability of yn and θ.

f(yn) =

∫ 1

0
f(yn, θ)dθ (3.15)

This can be rewritten using the conditional probability law, with the probability of y given θ is
equal to the joint probability of y and θ divided by the probability of θ. With

P (Y |θ) =
P (Y, θ)

P (θ)
(3.16)

the prior predictive distribution is equal to the product of the likelihood f(yn|θ) times the prior
P (θ) and integrating it out over all parameter choices.

f(yn) =

∫ 1

0
f(yn|θ)f(θ)dθ (3.17)
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In the context of a binomial distribution, with conjugate beta priors, this can be expressed as

f(yn) =

∫ 1

0

(
nn
yn

)
θyn(1− θyn)nn−yn

Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1dθ (3.18)

rearranged into

=

(
nn
yn

)
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ yn)Γ(b+ nn − yn)

Γ(a+ b+ nn)

∫ 1

0

Γ(a+ b+ nn)θa+yn−1(1− θ)b+nn−yn−1

Γ(a+ yn)Γ(b+ nn − yn)
dθ

(3.19)
and simpli�ed to the prior predictive distribution

f(yn) =

(
nn
yn

)
Beta(a+ yn, b+ nn − yn)

Beta(a, b)
(3.20)

which can be directly implemented into R to calculate a prior predictive distribution as shown
in Figure 3.2.

bin.pri.pred <- function(a,b,nn,yn){

# a = shape parameter a of a beta distribution

# b = shape parameter b of a beta distribution

# nn = sample size of new, not yet observed data

# yn = successes in new, not yet observed data

return(exp(log(choose(nn, yn))+log(beta(a+yn,b+nn-yn))-log(beta(a,b))))

}

Conceptionally, once data have been observed, the posterior predictive distribution can be cal-
culated. The question is, what value of new data yn we would expect to obtain if the experiment
would be repeated after old data yo from a previous experiment have already been observed.
Thus, with f(yn|yo) being considered as a marginal probability which we could get from inte-
grating out the joint probability of yn and θ:

f(yn|yo) =

∫ 1

0
f(yn, θ|yo)dθ (3.21)

Based on Bayes rule of conditional probability, this can be rewritten as∫ 1

0
f(yn|θ, yo) · f(θ|yo)dθ (3.22)

Regarding the �rst factor of f(yn|θ, yo), when we condition on θ, the new observation yn is
independent of yo. Therefore, ∫ 1

0
f(yn|θ) · f(θ|yo)dθ (3.23)

The second factor, corresponds to the posterior distribution from the previous experiment. The
�rst factor, f(yn|θ) is the likelihood. After integrating out over all parameter choices we can
obtain the posterior predictive distribution. When implementing this into R, the trick consists
of updating the initially chosen a and b with the already observed data (yo, no).

a = ao + yo (3.24)

and
b = bo + no − yo (3.25)
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In the context of a binomial distribution, the posterior predictive distribution can be expressed
as

f(yn|yo) =

(
nn
yn

)
Γ(ao + bo + no)

Γ(ao + yo)(bo + no − yo)
Γ(ao + yo + yn)Γ(bo + no − yo + nn − yn)

Γ(ao + bo + no + nn)
(3.26)

and simpli�ed into

f(yn|yo) =

(
nn
yn

)
Beta(ao + yo + yn, bo + no − yo + nn − yn)

Beta(ao + yo, bo + no − yo)
(3.27)

This can be directly implemented into R and is illustrated in Figure 3.2:

bin.post.pred <- function(a,b,nn,yn,no,yo){

# a = shape parameter a of a beta distribution

# b = shape parameter b of a beta distribution

# nn = sample size of new, not yet observed data

# yn = successes in new, not yet observed data

# no = sample size of old, already observed data

# yo = successes in old, already observed data

return(exp(log(choose(nn, yn))

+log(beta(a+yo+yn,b+no-yo+nn-yn))

-log(beta(a+yo,b+no-yo))))

}

Je�reys Bayesian method for binomial prediction intervals

Je�reys method can be viewed as a Bayesian binomial predictive distribution (Meeker and Hahn,
2017, p. 124), based on quantiles of the beta-binomial distribution considered as a Bayesian
predictive distribution. It is an extension of the construction of a con�dence interval, including
also m, the size of the trials in a future Bernoulli experiment. Here the sample size parameter
is n, the shape parameters a and b are set to 0.5 in Je�reys approach. Similar to the posterior
predictive distribution described above, the prior information is updated by the already observed
data.

P[qbetabinom(
α

2
;m;x+ a, n− x+ b), qbetabinom(1− α

2
;m;x+ a, n− x+ b)] = 1− α (3.28)

dbetabinom <- function(x, size, a, b) {

if (any(size <= 0))

stop("size must be greater than 0")

if (any(a <= 0))

stop("a must be greater than 0")

if (any(b <= 0))

stop("b must be greater than 0")

if (any(x < 0) || any(x > size))

stop("x must be between 0 and size")

exp(lbeta(x + a, size - x + b) - lbeta(a, b) +

lchoose(size, x))

}
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qbetabinom <- function(p, size, a, b) {

if (any(size <= 0))

stop("size must be greater than 0")

if (any(a <= 0))

stop("a must be greater than 0")

if (any(b <= 0))

stop("b must be greater than 0")

if (any(p <= 0) || any(p >= 1))

stop("p must be between 0 and 1")

the.cumsum <- cumsum(dbetabinom(0:size, size, a, b))

sapply(p, function(x) sum(the.cumsum < x))

}

Based on equation (3.11) for Je�reys prediction interval the following R function was developed
with the arguments of the available data (x successes out of n trials), the sample size m of the
future sample and the chosen prediction level (1− α).

my.Jeffrey.PI.function <- function(x, n, m, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# m = sample size of future observations

# 1 - alpha = prediction level

a <- x + 0.5

b <- n - x + 0.5

size <- m

low.ci <- qbetabinom(alpha/2,size,a, b)

up.ci <- qbetabinom((1-(alpha/2)),size,a, b)

return(c(lower=low.ci, upper=up.ci))

}

3.2.2 Example of applicability

Applying the functions for prediction intervals based on the normal approximation and Je�reys
Bayesian approach to the bone fractures in the kick experiment with steel or horn impactor
(2.2.1) gives the following results (predicting the number of fractures).

Impactor lower bound upper bound

steel 7 17
horn -2 6

Table 3.2: (1 − α = 0.95) PI (mpnew) for number of fractures with steel and horn
impactor based on a classical approach.

Impactor lower bound upper bound

steel 7 16
horn 0 7

Table 3.3: (1 − α = 0.95) PI (mpnew) for number of fractures with steel and horn
impactor based on a Bayesian approach.
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Interpretation

In a classical approach, based on the available sample of 16 kick experiments with either an
steel or an horn impactor, for independent and identical repetitions of the sampling experiment,
mpnew will be covered by [7 to 17] and by [-2 to 6] in 95 out of 100 cases for steel and horn
respectively. For steel the larger possible bound with a possible maxiumum of 16 kicks and for
horn the lower possible bound, as a minimum of 0 kicks, are not respected. This is attributed to
the inadequate normal approximation used in the Wald appraoch.
In contrast, based on Je�reys approach for a future sample with 16 bones being used in a kick
experiment with either steel or horn, the number of predicted fractures would lie between 7 and
16 for steel and 0 and 7 for horn, respecting the possible boundaries.
The prediction intervals based on a normal approximation and Je�reys approach are rather close
for 16 future kicks with the steel impactor (see tables 3.2 and 3.3), for the steel impactor with
a proportion p being close to 0, the normal approximation is not satisfactory, as the number of
future predicted kicks cannot be negative. In general, the Bayesian prediction intervals are wider
than the classical ones.
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Figure 3.2: Density plots of the prior and posterior predictive distributions based the
prior (Betabinomial(0.5, 0.5)) and the data (Bin(12,16) for a steel and Bin(2,16)) for
an horn impactor in the example from (Sprick et al., 2017). This prior distribution has
an equal probability at 0 and n = 16, therefore considered to be un-informative. The
total weight of the prior, Je�reys prior is a = 0.5 and b = 0.5 equals to one observation.



Chapter 4

Tolerance intervals

Additional to con�dence and prediction intervals which have been presented so far, tolerance
intervals can be applied. In some contexts, tolerance intervals are more appropriate. In order to
showcase it, consider the following example: In the study from (Flanagan et al., 2017) to assess
factors in�uencing the weight loss in overweight dogs, the authors describe their primary outcome
as percentage weight loss with 11.84 ± 5.84% (indicating the mean ± SD). A 95% con�dence
interval, designed to describe the value of a parameter of interest - with some uncertainty - of the
percentage weight loss would lie between (10.99 to 11.75). But this would tell very little about
the weight loss in an individual dog. When aiming to predict the percentage weight loss in 1 or
in 100 dogs, the corresponding 95% prediction intervals would lie between [-0.11 to 22.84] and
[10.16 to 12.58]. Still for counseling, these two types of intervals, are not appropriate, since they
are heavily in�uenced by the sample size. In the Flanagan study it would be more informative
to describe an interval in the form of an upper and lower bound of a speci�ed fraction of the
studied dogs, i.e. 90 or 95%. This is a tolerance interval.
According to (Young, 2016), statistical tolerance intervals (TI) of the form (1 − α, P ) provide
bounds to capture at least a speci�ed proportion P of the samples population with a given
con�dence level (1−α). P is also called the content of the tolerance interval, and (1−α) re�ects
the sampling variability in this classical approach. Di�erent options, including non-parametric
or distribution-free and parametric approaches to obtain tolerance intervals are possible. It
is possible to construct two-sided tolerance intervals, bounded by an upper and a lower limit.
In between these, a speci�ed content or proportion is supposed to lie with a speci�ed level of
con�dence. It is also possible to create one-sided tolerance intervals, with one single bound above
or below a speci�ed content is found with a de�ned con�dence level.
According to (Young, 2010), for a continuous random variable X with a probability density
function fX(.; θ) and a cumulative distribution function FX(.; θ) and θ a vector of parameters
characterizing the distribution, then

CX(L,U, θ) = FX(U ; θ)− FX(L; θ) (4.1)

CX is the coverage, i.e. with con�dence (1 − α) of the two-sided interval with the lower bound
L and the upper bound U . Thus,

P
[
CX(L,U, θ) ≥ P

]
≥ 1− α (4.2)

4.1 Non-parametric tolerance intervals based on order statistics

Assume a random sample of ordered values ranging from X1 = x1, the lowest value to Xn = xn,
the highest value, with an underlying distribution function FX which is a continuous, non-
decreasing, probability function. The lower and upper non-parametric tolerance bounds L and
U are

26



CHAPTER 4. TOLERANCE INTERVALS 27

L = x(r) (4.3)

and

U = x(s). (4.4)

with x(j) corresponding to the j-th value from the ordered sequence of the original x1, · · · , xn
values.

In an example cited in (Young, 2010) related to the e�ects of a new drug on hours of sleep, a
researcher wishes to claim with a speci�ed con�dence level (1 − α) that a proportion P of the
subjects get sleep above a certain number of hours. The function nptol.int() in the package
tolerance allows to evaluate a (1− α = 0.95, P = 0.9) lower non-parametric tolerance interval.
In this example, data describing the duration of sleep is appropriately described by a logistic
distribution.

set.seed(100)

sleep.hours <- rlogis(n = 20, location = 5, scale = 1)

nptol.int(x = sleep.hours, alpha = 0.05, P = 0.9, side = 1)

## alpha P 1-sided.lower 1-sided.upper

## 1 0.05 0.9 2.18245 7.013099

Thus, being 95% con�dent, at least 90% of the subjects would get at least 2.18 hours of sleep.
Regarding two-sided tolerance intervals based on order statistics, an approach based on a beta
distribution is available. Otherwise, an approximation not using the beta distribution is described
by (Sche�é and Tukey, 1944).

4.2 Tolerance intervals for a normal distribution

Additional to the non-parametric, distribution-free approaches, there are also parametric ap-
proaches for one- and two-sided tolerance intervals based on the normal distribution. These
involve so-called tolerance factors, which correspond to k in equation (1.1).
To estimate the lower, L and upper, U limits of two-sided tolerance intervals for a normal
distribution, similar to equation (1.10) L = x̄ − k · σ̂ and U = x̄ + k · σ̂ (Young, 2010). Here,
according to (Young, 2010) k accounts for the sampling errors in the mean x̄, σ̂ the estimated
standard deviation, the con�dence level (1 − α) and the proportion of interest P . Solely in the
one-sided setting, there is an exact solution for k:

k =
1√
n
t∗n−1,1−α(

√
nz · z1−α

2
) (4.5)

with n being the sample size, t∗d,1−α(δ) being the (1−α)-th quantile of a non-central t distribution
with d degrees of freedom and non-centrality parameter δ, and z1−α

2
being the 100(1 − α

2 )
corresponding percentile of the standard normal distribution.
Based on (Howe, 1969), k can be de�ned for a two-sided normal tolerance interval by

k = uvw (4.6)

with n the sample size

u = z1−α
2

√
1 + n−1 (4.7)

with χ2
d;α being the α-the quantile of a χ2 distribution with d degrees of freedom
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v =

√
n− 1

χ2
n−1;α

(4.8)

w =

√
1 +

n− 3− χ2
n−1;α

2(n+ 1)2
(4.9)

4.2.1 Examples of applicability

Simulated data set

When generating a random sample of 100 observations from a normal distribution with a mean
of 0 and a standard deviation of 0.2, the package tolerance with the functions (norm.tol()),
(nptol.int()) and (bayesnormtol.int()) provides a tolerance interval based on the function argu-
ments of the data (x), the chosen (1−α) con�dence level, the proportion P of the population to
be covered, and the option of a one- or a two-sided tolerance interval. For the Bayesian approach,
additionally information on hyperparameters is required.

Approach lower bound upper bound

parametric -0.382 0.383
non-parametric -0.454 0.379
Bayes -0.44 0.441

Table 4.1: (1 − α = 0.95, P = 0.9) TI based on a classical normal, a non parametric
and a Bayesian approach.

Percentage weight loss in overweight dogs (Flanagan et al., 2017)

Approach lower bound upper bound

parametric 1.36 21.38
non-parametric 1.79 21.84

Bayesian 1.42 21.34

Table 4.2: (1 − α = 0.95, P = 0.9) classical normal, non-parametric and Bayesian
tolerance intervals of the percentage body weight loss in overweight dogs.

Interpretation

Thus, for the percentage weight loss of 926 dogs described in (Flanagan et al., 2017), for inde-
pendent and identical repetitions of the experiment, 90% of the dogs would be covered by the
TI of [1.36 to 21.38] and [1.79 to 21.84] for classical normal and non-parametric approaches in
95 out of 100 cases. From a Bayesian perspective, the tolerance interval spans [1.42 to 21.34].

4.3 Tolerance intervals for a binomial distribution

Tolerance intervals for a binomial random variable, with a probability mass functionfX(.; θ) and a
cumulative distribution function FX(.; θ) are described in (Young, 2010). The coverage Cx of the
two-sided interval [L,U ] for a discrete random variable x, the number of successes in a Bernoulli
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Figure 4.1: Illustration of (1 − α = 0.95, P = 0.9) tolerance intervals samples of size
n = 5 drawn from a random normal distribution with a true mean of 100 and a sd of
10. The tolerance intervals which do not cover the chosen content of P = 0.9 colored
in red (here 5 out of 100).

trial, when θL and θU are 100 · (1 − α)% lower and upper con�dence bounds, respectively, for
the parameter θ, is given by

CX(L,U ;m, θL, θU ) = FX(U ;m, θU )− FX(L;m, θL) (4.10)

In contrast to the situation of a normal distribution in equation (4.3), the coverage of a binomial
tolerance, depends also on m, the future sample size.
One-sided (1 − α, P ) lower or upper tolerance intervals, i.e. [L,+∞] and [−∞, U ] for a future
sample of size m, requires �nding the largest integer L or the smallest integer U such that

P
[
1− FX(L− 1;m; θL) ≥ P

]
≥ 1− α (4.11)

and

P
[
FX(U ;m; θU ) ≥ P

]
≥ 1− α (4.12)

For a two-sided interval
P
[
CX(L,U ;m; θL, θU ) ≥ P

]
≥ 1− α (4.13)

More speci�cally for a random binomial variable with a cumulative distribution function

FX(x;n; p) =
x∑
i=0

(
n

i

)
pi(1− p)(n−i) (4.14)

here x = 0, · · · , n is the number of successes in a Bernoulli trial and 0 ≤ p ≤ 1 is the proportion
p = x

n . The tolerance limits are calculated using con�dence bounds for p. A number of di�erent
approaches estimating the interval of a binomial proportion are discussed in (Brown et al., 2001).
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In the package tolerance the function (bintol.int()) provides one- and two-sided (1 − α, P )
binomial tolerance intervals.

4.3.1 Examples of applicability

Simulated data set

In the example given in the tolerance package, for x = 10 successes in a Bernoulli trial of size
n = 1000, a future sample of size m = 50, the (1−α) = 95% con�dence and P = 90% tolerance
intervals are shown.

#one-sided

bintol.int(x = 10, n = 1000, m = 50, alpha = 0.05, P = 0.9, side = 1)

## alpha P p.hat 1-sided.lower 1-sided.upper

## 1 0.05 0.9 0.01 0 2

#two-sided

bintol.int(x = 10, n = 1000, m = 50, alpha = 0.05, P = 0.9, side = 2)

## alpha P p.hat 2-sided.lower 2-sided.upper

## 1 0.05 0.9 0.01 0 2

A number of di�erent methods to calculate the con�dence bounds θL = pL and θU = pU is
available: the large-sample method (�LS�) if n ≥ 50 and np̂ and n(1 − p̂) are both ≥ 10.
For smaller sample sizes (n ≤ 40), when p is not to close to 0 or 1, Wilson's method (�WS�)
is appropriate. Another option includes the Clopper-Pearson or �exact� method. A Bayesian
approach based on Je�reys method based on a beta prior distribution for p is available.

Approach method TI lower bound

classical Large sample 7
classical Wilson 6
classical Clopper Pearson 6
Bayesian Bayesian 6

Table 4.3: One-sided (1−α = 0.95, P = 0.9) tolerance intervals for minimum number
of fractures due to the steel in 16 kick experiments.

Approach method TI lower bound

classical Large sample 0
classical Wilson 0
classical Clopper Pearson 0
Bayesian Bayesian 0

Table 4.4: One-sided (1 − α = 0.95, P = 0.9) tolerance intervals for the minimum
number of fractures due to the horn impactor in 16 kick experiments.

Fractures in a kick experiment (see section 2.2.1)

Interpretation

Thus, from a classical prespective, with a 95% con�dence, in 90% of the kick experiments with 16
kicks, there will be at least 7 fractures with steel (or no fractures with horn) for independent and
identical repetitions of the experiment. Similar results are obtained from a Bayesian approach.



Chapter 5

Contrasting di�erent types of intervals

In order to contrast con�dence, prediction and tolerance intervals, we �rst replicate the examples
suggested by (Gitlow and Awad, 2013). In this example three samples of simulated data with
equal means and standard deviations are provided. In a second step we explore the asymptotic
behaviour of the three interval types subject to growing sample size.

5.1 Simulated data sets: normality assumption

All three scenarios A, B and C are simulated to have the same mean (16) and standard deviation
(12), but Figure 5.1 shows, that only scenario A is based on a random normal sample. Scenario B
is designed to be bi-modal and scenario C to be skewed. Deviations from the normal distribution
of scenarios B and C are also evident from Table 5.1 regarding skweness and curtosis. Thus the
later two scenarios are not normally distributed.
In Table 5.2 the (1−α = 0.95) con�dence, (1−α = 0.95) prediction and the (1−α = 0.95, P = 0.9)
tolerance intervals with the latter ones based on a normal distribution and on a non-parametric
approach are shown. For the prediction intervals the size m of the predicted future observations
was chosen to be equal to the original sample size n = 300.

Interpretation

The �rst three intervals, the con�dence, prediction and tolerance intervals - obtained by the
function normtol.int() in the tolerance package - are identical for the three scenarios. This
result is not plausible as the three scenarios are clearly di�erent. This is due to the underly-
ing assumption of normality for the con�dence, prediction and tolerance intervals (based on the
function normtol.int()). Solely the non-parametric approach by the function nptol.int() allows
to discern a di�erence between the three scenarios.

Table 5.1: Descriptive statistics of the three scenarios A, B and C

A B C

n 300 300 300
mean 16 16 16
sd 12 12 12
min -12.79 -3.78 4.46
max 47.18 35.54 81.41
skewness 0.04 0.13 1.99
kurtosis 2.74 1.32 8.11
IQR 16.15 23.05 12.32

31



CHAPTER 5. CONTRASTING DIFFERENT TYPES OF INTERVALS 32

Scenario A

F
re

qu
en

cy

0 10 20 30 40 50

0
5

10
15

Scenario B

F
re

qu
en

cy

0 10 20 30 40 50

0
5

15
25

Scenario C

F
re

qu
en

cy

0 10 20 30 40 50

0
10

20
30

40

Figure 5.1: Histograms of simulated data sets: scenario A (normally distributed), B
(bimodal distribution) and C (skewed distribution).

In conclusion, it is important to check the normality assumption. Otherwise, con�dence, pre-
diction and tolerance intervals might be misleading. Presenting the three types of intervals in
Table 5.2 together helps also to highlight the di�erences between them. The con�dence and the
prediction intervals are of similar width - which might be due to choosing a sample size m of the
predicted future observations being equal to the already observed sample of size n. In contrast,
the width of the tolerance interval, for a proportion P of 0.9, is considerably larger than the
width of the other two intervals.
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Scenario Function Interval P lower bound upper bound

A my.CI.norm CI 14.64 17.36
B my.CI.norm CI 14.64 17.36
C my.CI.norm CI 14.64 17.36
A my.PI.norm PI 14.07 17.93
B my.PI.norm PI 14.07 17.93
C my.PI.norm PI 14.07 17.93
A normtol.int TI 0.9 -5.21 37.21
B normtol.int TI 0.9 -5.21 37.21
C normtol.int TI 0.9 -5.21 37.21
A nptol.int TI 0.9 -6.19 39.01
B nptol.int TI 0.9 -0.22 32.61
C nptol.int TI 0.9 4.67 44.30

Table 5.2: Comparison of con�dence, prediction and tolerance intervals for the three
scenarios A, B and C with a (1 − α = 0.95) con�dence and prediction level, and a
(1 − α = 0.95, P = 0.9) tolerance interval. The parametric normtol.int() and non-
parametric nptol.int() functions for the respective tolerance intervals originate from the
tolerance package.
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Figure 5.2: Illustration of the e�ect of sample size n on the width of (1 − α = 0.95)
con�dence intervals. The random sample was drawn from a normal distribution with a
true mean of 100 (black line) and a standard deviation of 10 and subsequently subsetted
to obtain samples ranging from n = 10 to n = 104.

5.2 Behaviour subject to increasing sample size:

normal distribution

In order to assess the behaviour of the three intervals if the sample size n increases, a random
sample n = 104 was drawn from a normal distribution with a true mean of 100 and a standard
deviation of 10. Subsequently, subset samples ranging from n = 101 to n = 104 were taken.

5.2.1 Con�dence intervals

For 95% con�dence intervals, if the sample size n goes to in�nity, the sampling error se will be
close to 0 as se = σ̂√

n
. Subsequently, the width of the con�dence interval

2 · 1.96 · σ̂√
n

(5.1)

will be zero and the con�dence interval approach the (true) mean value (see Figure 5.2).

5.2.2 Prediction intervals

Similar to the con�dence intervals, the width of the prediction intervals decreases initially, but
reaches a plateau earlier, i.e. after a sample size of 500 (see Figure 5.3). When n is increasing,
the width for a (1 − α = 0.95) prediction interval for a single future observation (m = 1) is
determined by referring to equation (3.4):

2 · 1.96 · σ̂
√

1

1
+

1

n
(5.2)
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Figure 5.3: Illustration of the e�ect of sample size n on the width of (1 − α = 0.95)
prediction intervals for a single future observation (m = 1). The random sample was
drawn from a normal distribution with a true mean of 100 (black line) and a standard
deviation of 10 and subsequently subsetted to obtain samples ranging from n = 10 to
n = 104.

If n goes to in�nity, then this becomes:

2 · 1.96 · σ̂ (5.3)

Thus, for a chosen standard deviation σ of 10, the width of a (1− α = 0.95) prediction interval
will approach a minimum value of 39.2 or approximately four times the standard deviation.
When, for a �xed n = 100, the sample size m of the future predicted samples is increased (see
Figure 5.4), also a plateau is reached and the width (1−α = 0.95) is determined by referring to
equation (3.4):

2 · 1.96 · σ̂
√

1

m
+

1

n

If m goes to in�nity, for an already observed sample of size n = 100, the width of a (1−α = 0.95)
prediction interval will be

2 · 1.96 · σ̂
√

1

100
= 2 · 1.96 · 10 · 0.1

Thus for an increasing number m of predicted future observations, with a σ = 10 and n = 100,
the width of a (1 − α = 0.95) prediction interval will approach 3.92 or approximately for times
the standard deviation divided by the

√
n.
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Figure 5.4: Illustration of the e�ect of sample size m = 10 to m = 1000 on the
width of (1−α = 0.95) prediction intervals based on an observed sample with a size of
n = 100. The random sample was drawn from a normal distribution with a true mean
of 100 (black line) and a standard deviation of 10.

5.2.3 Tolerance intervals

Empirically, based on Figure 5.5 the width of (1 − α = 0.95, P = 0.9) tolerance intervals for
increasing n approaches a minimum width of 33.44. This is close to (Meeker and Hahn, 2017, p.
529), where the tabulated k factors for a tolerance interval containing a proportion of P = 0.9
is 1.64. Thus, when multiplying with 2 for the width and with 10 for σ, the minimum width of
the tolerance intervals will approach 2 ∗ 1.64 ∗ 10 = 32.8.

5.2.4 Comparison of CI, PI and TI

In Figure 5.6, the widths of all three types of intervals, subject to increasing sample size n
are displayed. In Table 5.3, the (1 − α = 0.95) con�dence, (1 − α = 0.95) prediction and
(1−α = 0.95, P = 0.9) tolerance intervals for increasing sample size n ranging from 10 to 10000
are displayed. It becomes evident that the width of con�dence intervals will be close to zero.
This �nding con�rms that con�dence, or credible intervals, are designed to describe a parameter
with some uncertainty due to sampling errors. When the sample size going to in�nity sampling
error will vanish and there will be no uncertainty left.
While the width of both the prediction and the tolerance intervals is initially decreasing, the
width will after sample sizes of approx. n = 200 or n = 500 reach a plateau. For the prediction
of the location of a single m = 1 and increasing sample sizes n, the prediction intervals will be
larger as predicting the intervals for increasing m based on a �xed sample size of n = 100. This
is due to the fact that there is a lot of uncertainty where a single future observation could lie. In
the second case, more information is already conatined in the 100 already existing observation
wich will lead to a smaller width of the prediction interval.
For the chosen (1 − α = 0.95, P = 0.9) tolerance interval, the proportion P determines if the
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Figure 5.5: Illustration of the e�ect of sample size n on the width of
(1 − α = 0.95, P = 0.9) tolerance intervals. The random sample was drawn from a
normal distribution with a true mean of 100 (black line) and a standard deviation of
10 and subsequently subsetted to obtain samples ranging from n = 10 to n = 104.

width of the tolerance interval is larger than the width of the prediction interval or not. For
all three intervals the width reduction is most important for the smaller sample sizes and then
reaches a plateau.

sample size n mean sd low ci up ci low pi up pi low ti up ti

10 101.20 12.69 93.33 109.06 75.11 127.29 64.91 137.48
25 101.01 9.99 97.09 104.93 81.04 120.99 78.88 123.14
50 102.06 9.23 99.50 104.61 83.78 120.33 83.61 120.50
75 101.31 9.44 99.17 103.44 82.67 119.94 83.19 119.42
100 101.32 9.48 99.46 103.17 82.64 119.99 83.55 119.09
250 100.24 10.31 98.96 101.52 80.00 120.48 81.89 118.59
500 100.56 10.06 99.67 101.44 80.81 120.30 83.07 118.04
750 100.53 10.04 99.81 101.25 80.82 120.23 83.26 117.80
1000 100.19 10.16 99.56 100.82 80.27 120.11 82.84 117.55
2500 100.24 10.08 99.85 100.64 80.48 120.01 83.26 117.22
5000 99.98 10.01 99.70 100.26 80.36 119.60 83.24 116.72
7500 99.94 10.06 99.71 100.17 80.21 119.67 83.16 116.72
10000 99.97 10.05 99.78 100.17 80.28 119.67 83.25 116.69

Table 5.3: Comparison of (1−α = 0.95) con�dence intervals, (1−α = 0.95) prediction
intervals for one future observation (m = 1), and (1 − α = 0.95, P = 0.9) tolerance
intervals with increasing sample size n. The samples have been drawn from a normal
distribution with a true mean of 100 and a standard deviation of 10 and subsequently
subsetted to obtain samples ranging from n = 10 to n = 104.
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Figure 5.6: Illustration of the e�ect of sample size n on the width of (1− α = 0.95)
con�dence intervals (blue), (1− α = 0.95) prediction intervals for one future observation
(m = 1) (red), and (1− α = 0.95, P = 0.9) tolerance intervals (black). The random
sample was drawn from a normal distribution with a true mean of 100 and a standard
deviation of 10 and subsequently subsetted to obtain samples ranging from n = 10 to
n = 104.
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5.3 Behaviour subject to increasing sample size:

binomial distribution

In order to assess the behaviour of the three intervals, including Bayesian approaches, if the
sample size n increases, random samples of size n = 104 with a true proportion of 0.5 and 0.1
were drawn from a binomial distribution. Subsequently, subset samples ranging from n = 10 to
n = 104 were taken. Since the results for the prediction and tolerance intervals are given in the
form of number of successes (m ∗ p), in order to allow for a comparison, the resulting lower and
upper limits were divided by the size (n = m) corresponding initial/future samples in order to
obtain a proportion.
In Figures 5.7 and 5.8, the e�ect of increasing sample size n on (1 − α = 0.95) credible, (1 −
α = 0.95) prediction intervals, a frequentist approach based on a normal approximation and a
Bayesian approach based on Je�reys, and on (1− α = 0.95, P = 0.9) tolerance intervals for the
true proportions of 0.5 and 0.1 are displayed. In Tables 5.4 to 5.7 the resulting intervals both in
the form of a proportion but also in the form of number of (predicted) successes are presented.

n x Pr low cri up cri low pi N up pi N low pi J up pi J low ti J up ti J

10 3 0.30 0.09 0.61 -0.20 0.80 0.00 0.70 0.00 1.00
25 12 0.48 0.29 0.67 0.20 0.76 0.20 0.72 0.08 0.92
50 22 0.44 0.31 0.58 0.24 0.64 0.22 0.60 0.14 0.86
75 34 0.45 0.34 0.57 0.29 0.61 0.23 0.53 0.15 0.85
100 47 0.47 0.37 0.57 0.33 0.61 0.27 0.54 0.16 0.84
250 114 0.46 0.40 0.52 0.37 0.54 0.39 0.57 0.18 0.82
500 238 0.48 0.43 0.52 0.41 0.54 0.41 0.53 0.19 0.81
750 378 0.50 0.47 0.54 0.45 0.55 0.45 0.55 0.20 0.80
1000 496 0.50 0.46 0.53 0.45 0.54 0.46 0.55 0.20 0.80
2500 1256 0.50 0.48 0.52 0.47 0.53 0.48 0.54 0.21 0.79
5000 2483 0.50 0.48 0.51 0.48 0.52 0.48 0.52 0.21 0.79
7500 3717 0.50 0.48 0.51 0.48 0.51 0.49 0.52 0.22 0.78
10000 4998 0.50 0.49 0.51 0.49 0.51 0.49 0.51 0.22 0.78

Table 5.4: Comparison of (1 − α = 0.95) credible, (1 − α = 0.95) prediction and
(1 − α = 0.95, P = 0.9) tolerance intervals with increasing sample size n(= m) for
binomial samples with a true proportion of 0.5. n and x are the number of trials and
successes, respectively. Pr is the estimated proportion, 'low and up cri' correspond to
the credible intervals based on Je�reys approach, 'low and up pi N' are the predictive
intervals based on a normal approximation, 'low and up pi J' are predictive intervals
based on Je�reys approach and 'low and up ti J' are the tolerance intervals obtained
by the function bintol.int() specifying Je�reys approach of the tolerance package.

5.3.1 Comparison of CI, PI and TI

Similar to the case of the normal distribution, the width of the credible interval approaches 0 (see
Figures 5.7 to 5.9 and Tables 5.4 to 5.7). Thus, also the credible intervals are best used to describe
the location of a single parameter of interest. Regarding the classical and the Bayesian approach
for the prediction intervals, it becomes evident that they yield similar results for larger sample
sizes, approaching the true proportion (similar to the credible intervals). When looking at the
number of future predicted successes, both from a classical and a Bayesian approach, the former
ones consists of slightly larger intervals. The di�erence is exactly 1 observation less, presumably
due to the prior information. Here to obtain the Bayesian predictive intervals, the formula of
(Meeker and Hahn, 2017, p. 335) was used. A posterior predictive distribution in combination
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Figure 5.7: Di�erent intervals for samples with a sample size n and sizem of predicted
observations ranging from 10 to 10000 drawn from a binomial distribution with true
proportion of 0.5. CrI J: (1−α = 0.95) credible intervals based on Je�reys prior. PI N:
(1−α = 0.95) prediction intervals based on a normal approximation with m = n. PI J:
(1 − α = 0.95) prediction intervals based on Je�reys approach with m = n. TI J:
(1 − α = 0.95, P = 0.9) tolerance intervals based on Je�reys approach. In order to
allow for comparisons, the prediction and tolerance intervals which predict the number
of future successes m ∗ p, the resulting intervals were divided by the corresponding
sample size m = n, to obtain p. The black line indicates the true proportion.

with a prior predictive distribution, thus including prior information on already observed data,
might further decrease the widths of the Bayesian prediction intervals. Furthermore, the lower
limit of classical approach results in negative values up to a sample size n of 75. In contrast, the
Bayesian approach is boundary respecting and therefore clearly preferable.
The width of the tolerance intervals is considerably larger, also for the number of successes
m∗p. Not surprisingly, the width of all con�dence intervals is larger for a true proportion of 0.5,
compared to a true proportion of 0.1.
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Figure 5.8: Di�erent intervals for samples with a sample size n and sizem of predicted
observations ranging from 10 to 10000 drawn from a binomial distribution with true
proportion of 0.1. CrI J: (1−α = 0.95) credible intervals based on Je�reys prior. PI N:
(1−α = 0.95) prediction intervals based on a normal approximation with m = n. PI J:
(1 − α = 0.95) prediction intervals based on Je�erys approach with m = n. TI J:
(1 − α = 0.95, P = 0.9) tolerance intervals based on Je�reys approach. In order to
allow for comparisons, the prediction and tolerance intervals which predict the number
of future successes m ∗ p, the resulting intervals were divided by the corresponding
sample size m = n, to obtain p. The black line indicates the true proportion.
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n x Pr low pi N up pi N low pi J up pi J low ti J up ti J

10 3 0.30 -2 8 0 7 0 10
25 12 0.48 5 19 5 18 2 23
50 22 0.44 12 32 11 30 7 43
75 34 0.45 22 46 17 40 11 64
100 47 0.47 33 61 27 54 16 84
250 114 0.46 92 136 98 142 45 205
500 238 0.48 207 269 203 265 97 403
750 378 0.50 340 416 337 413 149 601
1000 496 0.50 452 540 464 552 202 798
2500 1256 0.50 1186 1326 1210 1348 525 1975
5000 2483 0.50 2385 2581 2419 2615 1069 3931
7500 3717 0.50 3596 3838 3668 3908 1617 5883
10000 4998 0.50 4859 5137 4854 5132 2167 7833

Table 5.5: Comparison of (1 − α = 0.95) prediction and (1 − α = 0.95, P = 0.9)
tolerance intervals with increasing sample size n(= m) for binomial samples with a true
proportion of 0.5. Presented are the number of successes (m ∗ p).

n x Pr low cri up cri low pi N up pi N low pi J up pi J low ti J up ti J

10 1 0.10 0.01 0.38 -0.20 0.40 0.00 0.50 0.00 0.60
25 3 0.12 0.03 0.29 -0.08 0.32 0.00 0.36 0.00 0.56
50 4 0.08 0.03 0.18 -0.04 0.20 0.00 0.22 0.00 0.50
75 5 0.07 0.02 0.14 -0.01 0.15 0.01 0.17 0.00 0.48
100 8 0.08 0.04 0.15 0.00 0.16 0.02 0.17 0.00 0.46
250 23 0.09 0.06 0.13 0.04 0.14 0.05 0.15 0.00 0.43
500 53 0.11 0.08 0.14 0.07 0.15 0.07 0.15 0.00 0.42
750 79 0.11 0.08 0.13 0.07 0.14 0.08 0.14 0.01 0.41
1000 103 0.10 0.08 0.12 0.08 0.13 0.08 0.13 0.01 0.41
2500 252 0.10 0.09 0.11 0.08 0.12 0.08 0.12 0.01 0.40
5000 481 0.10 0.09 0.10 0.08 0.11 0.08 0.11 0.01 0.39
7500 732 0.10 0.09 0.10 0.09 0.11 0.09 0.11 0.01 0.39
10000 999 0.10 0.09 0.11 0.09 0.11 0.09 0.11 0.01 0.39

Table 5.6: Comparison of (1 − α = 0.95) credible, (1 − α = 0.95) prediction and
(1 − α = 0.95, P = 0.9) tolerance intervals with increasing sample size n(= m) for
binomial samples with a true proportion of 0.1. n and x are the number of trials and
successes, respectively. Pr is the estimated proportion, 'low and up cri' correspond to
the credible intervals based on Je�reys approach, 'low and up pi N' are the predictive
intervals based on a normal approximation, 'low and up pi J' are predictive intervals
based on Je�reys approach and 'low and up ti J' are the tolerance intervals obtained
by the function bintol.int() specifying Je�reys appraoch of the tolerance package.
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n x Pr low pi N up pi N low pi J up pi J low ti J up ti J

10 1 0.10 -2 4 0 5 0 10
25 3 0.12 -2 8 0 9 2 23
50 4 0.08 -2 10 0 11 7 43
75 5 0.07 -1 11 1 13 11 64
100 8 0.08 0 16 2 17 16 84
250 23 0.09 10 36 12 37 45 205
500 53 0.11 33 73 35 74 97 403
750 79 0.11 55 103 57 104 149 601
1000 103 0.10 76 130 78 131 202 798
2500 252 0.10 210 294 212 295 525 1975
5000 481 0.10 423 539 425 540 1069 3931
7500 732 0.10 660 804 662 805 1617 5883
10000 999 0.10 915 1083 917 1084 2167 7833

Table 5.7: Comparison of (1 − α = 0.95) prediction and (1 − α = 0.95, P = 0.9)
tolerance intervals with increasing sample size n(= m) for binomial samples with a true
proportion of 0.5. Presented are the number of successes (m ∗ p).
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Figure 5.9: Illustration of the e�ect of sample size n on the width of (1− α = 0.95)
con�dence intervals (blue), (1− α = 0.95) prediction intervals for one future observation
(m = 1) (red) and (1− α = 0.95, P = 0.9) tolerance intervals (black). The random
sample was drawn from a normal distribution with a true mean of 100 and a standard
deviation of 10.



Chapter 6

Discussion

In this thesis con�dence, prediction and tolerance intervals for the normal and the binomial dis-
tribution have been reviewed and illustrated with examples. All intervals have been considered
from a classical and a Bayesian prespective. A few aspects became evident.

All three types of classical intervals can be considered in the generic form of

̂parameter ± k · SE( ̂parameter).

For the con�dence intervals, it holds that k = 1.96 and se = σ̂√
n
. For large sample sizes, se

vanishes and the con�dence interval is close to the parameter of interest. Thus, the width of
a con�dence interval is mainly driven by the sample size n. This is in line with its purpose to
describe a single unknown parameter.

Similarly for the prediction intervals k = 1.96, but se = σ
√

1
m + 1

n . With larger sample sizes

n and m the prediction intervals will also decrease. Here, similar to the con�dence intervals,
the main purpose is to describe the location of a single parameter of interest. Since m and n
are positive integers, even for large sample sizes of both n (and n), se will not vanish and σ
will determine the width of the prediction interval. Thus, prediction intervals will always be
wider than con�dence intervals, because they do account for the variability in the observed and
the future predicted data. Prediction of a single observation will also be associated with more
uncertainty than predicting a large number of observations, which would be a prediction of the
mean.

Regarding the tolerance intervals, according to (Young, 2010), k accounts for the sampling er-
rors in the mean x̄, σ̂ the estimated standard deviation, the con�dence level (1 − α) and the
proportion of interest P . Even for large sample sizes, the width of the con�dence interval, for a
given P , will be determined by σ.
For tolerance intervals, an analytical solution for k is solely available for the simplest case, of a
one-sided tolerance interval for a normal distribution. For the other intervals numerical approx-
imations are needed and available in the tolerance package or tabulated for speci�c values of
n, P and α.

The simulation with normal, skewed and bimodal data resulted in similar results for the con-
�dence, prediction and tolerance intervals under the assumption of normality. This highlights
again the need to carefully check the assumption of normality. If violated, intervals might be
misleading. In such situations available non-parametric approaches should be used.

The usage of di�erent approaches for the binomial distribution also con�rms the stated severe
applicability limitations of the widely used Wald con�dence intervals (Brown et al., 2001). For
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the binomial distribution, the normal approximation or Wald methodology is not the best option.
This pertains particularly to situations when the proportion p is close to 0 or 1. In these situations
negative probabilities, might arise. Additionally, compared to the exact intervals based on the
Clopper-Pearson approach for con�dence intervals, a Bayesian alternative using Je�reys prior
was found to be superior. For prediction intervals, similarly, a Bayesian approach performed
better than the Wald approximation.
Frequently, a classical con�dence interval is misunderstood in the Bayesian sense. The usage
of Bayesian intervals might also be advocated on the ground that the interpretation is more
intuitive than the interpretation of the classical intervals based on repeated sampling.

Con�dence intervals are taught in statistical classes, including introductory ones and are widely
used or presumably even abused. Prediction intervals are less prominent. In most instances
they will we taught and applied in the context of regression analysis, but not to predict future
observations. In contrast, tolerance intervals are rarely presented, particularly in introductory
classes. Tolerance intervals are widely used in engineering. Still there might be situations in
medicine and veterinary medicine, when tolerance intervals are also relevant, i.e. to describe
where a speci�c proportion of a population lies with a speci�ed con�dence. This information
can only be conveyed by tolerance intervals, although in practice, con�dence intervals might be
presented as this is (not recommended) standard practice. With the advent of the tolerance

package, the existing theoretical developments about the construction of tolerance intervals are
now implemented in R.
In conclusion, as the three types of intervals serve for di�erent purposes, the decision which
interval to use should be context-driven and clearly justi�ed. In order to avoid confusion and
misunderstandings, all three types of intervals should be taught and presented.
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Appendix

7.1 Distribution of sample mean

Assume X1, · · · , Xn
iid∼ N(µ, σ2) and

X̄ =
1

n

n∑
i=1

Xi.

Then

E X̄ =
1

n2

n∑
i=1

EXi =
1

n
nµ = µ

V arX̄ =
1

n

n∑
i=1

V arXi =
nσ2

n2
=
σ2

n

7.2 Distribution of a sample proportion

Assume X1, · · · , Xn
iid∼ Be(p), a Bernoulli distribution with

Xi =

{
1 with p

0 with 1− p

EXi = p

Var Xi = p(1− p)
Then,

E X̄ =
1

n

n∑
i=1

EXi =
1

n
np = p

V arX̄ =
1

n2

n∑
i=1

V arXi =
np(1− p)

n2
=
p(1− p)

n
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7.3 Sum of variances

Proof that, if X and Y are independent*, then V ar(X − Y ) is equal to V ar(X) + V ar(Y )

V ar(X − Y ) = E((X − Y )− E(X − Y ))2

= E((X − E(X))− (Y − E(Y )))2

= E(X − E(X))2 − E
[
2(X − E(X))(Y − E(Y ))

]
+ E(Y − E(Y ))2

*
= E(X − E(X))2 + E(Y − E(Y ))2

= V ar(X) + V ar(Y ).
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R code

## R version 3.6.0 (2019-04-26)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows 7 x64 (build 7601) Service Pack 1

##

## Matrix products: default

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] cowplot_0.9.4 moments_0.14 tolerance_1.3.0

## [4] Hmisc_4.2-0 Formula_1.2-3 survival_2.44-1.1

## [7] gridExtra_2.3 ggplot2_3.1.1 DescTools_0.99.28

## [10] Rmisc_1.5 plyr_1.8.4 lattice_0.20-38

## [13] Publish_2018.04.17 prodlim_2018.04.18 xtable_1.8-4

## [16] knitr_1.22

##

## loaded via a namespace (and not attached):

## [1] rgl_0.100.19 Rcpp_1.0.1

## [3] mvtnorm_1.0-10 assertthat_0.2.1

## [5] digest_0.6.18 mime_0.6

## [7] R6_2.4.0 backports_1.1.4

## [9] acepack_1.4.1 stats4_3.6.0

## [11] evaluate_0.13 highr_0.8

## [13] pillar_1.3.1 rlang_0.3.4

## [15] lazyeval_0.2.2 miniUI_0.1.1.1

## [17] rstudioapi_0.10 data.table_1.12.2

## [19] rpart_4.1-15 Matrix_1.2-17

## [21] checkmate_1.9.3 labeling_0.3

## [23] splines_3.6.0 webshot_0.5.1

## [25] stringr_1.4.0 foreign_0.8-71

## [27] htmlwidgets_1.3 munsell_0.5.0

## [29] shiny_1.3.2 compiler_3.6.0

## [31] httpuv_1.5.1 xfun_0.6

## [33] pkgconfig_2.0.2 base64enc_0.1-3

## [35] manipulate_1.0.1 htmltools_0.3.6

## [37] nnet_7.3-12 tidyselect_0.2.5
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## [39] tibble_2.1.1 htmlTable_1.13.1

## [41] expm_0.999-4 crayon_1.3.4

## [43] dplyr_0.8.0.1 withr_2.1.2

## [45] later_0.8.0 MASS_7.3-51.4

## [47] grid_3.6.0 jsonlite_1.6

## [49] gtable_0.3.0 magrittr_1.5

## [51] scales_1.0.0 stringi_1.4.3

## [53] promises_1.0.1 latticeExtra_0.6-28

## [55] boot_1.3-22 lava_1.6.5

## [57] RColorBrewer_1.1-2 tools_3.6.0

## [59] manipulateWidget_0.10.0 glue_1.3.1

## [61] purrr_0.3.2 crosstalk_1.0.0

## [63] colorspace_1.4-1 cluster_2.0.9

## chapter 2 ##################################################################

###############################################################################

library(xtable)

library(Publish)

library(Rmisc)

library(DescTools)

library(ggplot2)

library(gridExtra)

library(Hmisc)

library(tolerance)

library(moments)

library(plyr)

library(ggplot2)

library(cowplot)

###############################################################################

prim <- read.csv("~\primary.csv", sep =";")

# Figure 2.1 #

samsize <- 100

replicates <- 100

pval <- .05

set.seed(3105)

samples <- replicate(replicates, rnorm(100,100,10))

confint <- t(apply(samples, 2, function(x)

c(mean(x)-qt(1-pval/2,

df=samsize-1)*sd(x)/sqrt(samsize),

mean(x)+qt(1-pval/2, df=samsize-1)*sd(x)/sqrt(samsize))))

# Use red if mean outside interval

outside <- ifelse(confint[,1]>100 | confint[,2]<100, 2 , 1)

plot(c(100, 100), c(1, replicates), col="black", typ="l",

main = expression(paste("100 (1- ",alpha, " = 0.95) confidence intervals")),

ylab="Samples", xlim = c(90,110),

xlab=expression(mu))

segments(confint[,1], 1:replicates, confint[,2], 1:replicates,
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col=outside)

# Figure 2.2 #

boxplot(prim$primary, ylab = "Percentage weight loss")

# Figure 2.3 #

hist(prim$primary, breaks=50, ylab = "Frequency")

# Function #

my.CI.norm.func <- function(x, alpha){

# x = data

# 1 - alpha = confidence level

SE <- sd(x) / sqrt(length(x))

low.ci <- mean(x) - SE * qnorm((1-alpha/2),0,1)

up.ci <- mean(x) + SE * qnorm((1-alpha/2),0,1)

low.ci.f <- floor(low.ci * 100) /100

up.ci.c <- ceiling(up.ci * 100) /100

return(list(lower.ci= low.ci.f, upper.ci = up.ci.c))

}

# Table 2.1 #

Package <- c("Wald", "Publish", "Rmisc", "DescTools")

Function <- c("my.CI.norm.function", "ci.mean()", "CI()", "MeanCI()")

lower <- c(my.CI.norm.func(prim$primary,0.05)$lower.ci,

round(as.numeric(ci.mean(prim$primary)[3]),2),

round(as.numeric(CI(prim$primary)[3]),2),

round(as.numeric(MeanCI(prim$primary)[2]),2))

upper <- c(my.CI.norm.func(prim$primary,0.05)$upper.ci,

round(as.numeric(ci.mean(prim$primary)[4]),2),

round(as.numeric(CI(prim$primary)[1]),2),

round(as.numeric(MeanCI(prim$primary)[3]),2))

dat.ci <- as.data.frame(cbind(Package, Function, lower, upper))

names(dat.ci) <- c("Package","Function", "lower bound", "upper bound")

dat.cit <- xtable(dat.ci,

caption= "95\\% CI ($\\mu$) for percentage body weight loss

of 926 dogs in the \\citep{Flanagan2017} study.",

label ="CI normal")

print(dat.cit, include.rownames=FALSE)

# Function #

my.CI.Wald.function <- function(x, n, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# 1 - alpha = confidence level

p <- x/n

SE <- sqrt((p*(1-p))/n)

low.ci <- p - SE * qnorm((1-alpha/2),0,1)

up.ci <- p + SE * qnorm((1-alpha/2),0,1)

low.ci.f <- floor(low.ci*1000) /1000
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up.ci.c <- ceiling(up.ci*1000) /1000

return(c(lower=low.ci.f, upper=up.ci.c))

}

# Function #

my.CP.function <- function(x, n, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# 1 - alpha = confidence level

Lo <- function(p){pbinom(x - 1, n, p) - (1-alpha/2)}

Up <- function(p){pbinom(x, n, p) - alpha/2}

Low <- uniroot(Lo,c(.001,.999))

low.ci.f <- floor(Low$root*1000) / 1000

upper <- uniroot(Up,c(.001,.990))

upper.ci.c <- ceiling(upper$root * 1000) / 1000

return(c(lower=low.ci.f, upper=upper.ci.c))

}

# Function #

my.CI.Jeffrey.function <- function(x, n, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# 1 - alpha = credible level

a <- x + 0.5

b <- n - x + 0.5

low.ci <- qbeta(alpha/2,a, b)

up.ci <- qbeta((1-(alpha/2)),a, b)

low.ci.f <- floor(low.ci*1000) /1000

up.ci.c <- ceiling(up.ci*1000) /1000

return(c(lower=low.ci.f, upper=up.ci.c))

}

# Table 2.2 #

Package <- c("Wald", "Exact", "stats", "Hmisc", "Jeffrey credible")

Function <- c("my.CI.Wald.function", "my.CP.function", "binom.test()",

"binconf()","my.CI.Jeffrey.function")

lower <- c(my.CI.Wald.function(12,16,0.05)[1],

my.CP.function(12,16,0.05)[1],

round(as.numeric(binom.test(12,16)$conf.int[1]),3),

round(as.numeric(binconf(12,16,0.05)[2]),3),

my.CI.Jeffrey.function(12,16,0.05)[1])

upper <- c(my.CI.Wald.function(12,16,0.05)[2],

my.CP.function(12,16,0.05)[2],

round(as.numeric(binom.test(12,16)$conf.int[2]),3),

round(as.numeric(binconf(12,16,0.05)[3]),3),

my.CI.Jeffrey.function(12,16,0.05)[2])

dat.steel <- as.data.frame(cbind(Package, Function, lower, upper))

names(dat.steel) <- c("Method/Package","Function", "lower bound", "upper bound")

dat.s <- xtable(dat.steel,
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caption= "95\\% CI (p) for steel",

label ="CI binomial 1")

print(dat.s, include.rownames=FALSE)

# Table 2.3 #

Package <- c("Wald", "Exact", "stats", "Hmisc", "Jeffrey credible")

Function <- c("my.CI.Wald.function", "my.CP.function", "binom.test()",

"binconf()","my.CI.Jeffrey.function")

lower <- c(as.numeric(my.CI.Wald.function(2,16,0.05)[1]),

as.numeric(my.CP.function(2,16,0.05)[1]),

(round(as.numeric(binom.test(2,16)$conf.int[1]),3)),

round(as.numeric(binconf(2,16,0.05)[2]),3),

as.numeric(my.CI.Jeffrey.function(2,16,0.05)[1]))

upper <- c(as.numeric(my.CI.Wald.function(2,16,0.05)[2]),

as.numeric(my.CP.function(2,16,0.05)[2]),

round(as.numeric(binom.test(2,16)$conf.int[2]),3),

round(as.numeric(binconf(2,16,0.05)[3]),3),

as.numeric(my.CI.Jeffrey.function(2,16,0.05)[2]))

dat.horn <- as.data.frame(cbind(Package, Function, lower, upper))

names(dat.horn) <- c("Method/Package","Function", "lower bound", "upper bound")

dat.h <- xtable(dat.horn,

caption= "95\\% CI (p) for horn",

label ="CI binomial 2")

print(dat.h, include.rownames=FALSE)

# Figure 2.4 #

par(mfrow=c(1,2))

k = 12

n = 16

## x-axis for plotting

numSteps = 200

x = seq(0, 1, 1 / numSteps)

## Likelihood function

L = x^k * (1 - x)^(n - k)

## Just normalize likelihood to integrate to one (for purposes of plotting)

L = L / sum(L) * numSteps

### Uniform Prior

## Plot likelihood

plot(x, L, type = 'l', lwd = 3, lty = 3, ylim = c(0,6),

main = "Steel impactor: Binomial (12,16)",

xlab = "P", ylab = "pdf")
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## Plot Beta(1,1) prior

lines(x, dbeta(x, 0.5, 0.5), lwd = 3, col = "blue")

## Plot posterior

lines(x, dbeta(x, k + 0.5, n - k + 0.5), lwd = 3, col = "red")

abline(v= 0.509, lwd = 2, col = "green")

abline(v= 0.91, lwd = 2, col = "green")

k = 2

n = 16

## x-axis for plotting

numSteps = 200

x = seq(0, 1, 1 / numSteps)

## Likelihood function

L = x^k * (1 - x)^(n - k)

## Just normalize likelihood to integrate to one (for purposes of plotting)

L = L / sum(L) * numSteps

### Uniform Prior

## Plot likelihood

plot(x, L, type = 'l', lwd = 3, lty = 3, ylim = c(0,6),

main = "Horn impactor: Binomial (2,16)",

xlab = "P", ylab = "pdf")

## Plot Beta(1,1) prior

lines(x, dbeta(x, 0.5, 0.5), lwd = 3, col = "blue")

## Plot posterior

lines(x, dbeta(x, k + 0.5, n - k + 0.5), lwd = 2, col = "red")

abline(v= 0.026, lwd = 2, col = "green")

abline(v= 0.345, lwd = 2, col = "green")

legend("topright", c("Likelihood", "Prior", "Posterior", "CrI"),

bty = "n", lty = c(3, 1, 1, 1), lwd = 3,

col = c("black", "blue", "red", "green"))

## chapter 3 ##################################################################

###############################################################################

# Function #

my.PI.norm.function <- function(x, s, n, m, alpha){

# x = mean of observed sample

# s = standard deviation of observed sample

# n = sample size of observed sample

# m = sample size of future observations, m=1 for a single observation

# 1 - alpha = prediction level

SE <- s*sqrt((1/n) + (1/m))

low.ci <- x - SE * qnorm((1-alpha/2),0,1)
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up.ci <- x + SE * qnorm((1-alpha/2),0,1)

low.ci.f <- floor(low.ci*100) /100

up.ci.c <- ceiling(up.ci*100) /100

return(c(lower=low.ci.f, upper=up.ci.c))

}

# Figure 3.1 #

set.seed(531051972)

M <- 100

N <- 10

mydat <- matrix(rnorm(M*N,100,10),ncol = M)

x <- apply(mydat, 2, mean)

s <- apply(mydat, 2, sd)

m <- rep(1,100)

n <- rep(10,100)

alpha <- rep(0.05,100)

for (i in 1:N){

lower <- my.PI.norm.function(x,s,n,m,alpha)[1:100]

upper <- my.PI.norm.function(x,s,n,m,alpha)[101:200]

}

PIs <- as.data.frame(cbind(lower,upper))

set.seed(3105)

ynew <- rnorm(100,100,10)

# Use red if outside interval

outside <- ifelse(!(ynew > PIs[,1] & ynew < PIs[,2]), 2 , 1)

plot(c(100, 100), c(1, 100), col="black", typ="l",

main = expression(paste("100 (1- ",alpha, " = 0.95) prediction intervals")),

ylab="Samples", xlim = c(40,160),

xlab=expression(mu))

points(ynew,1:100, pch = 17, col = outside, cex=0.8)

segments(PIs[,1], 1:100, PIs[,2], 1:100,

col=outside)

# Table 3.1 #

x <- mean(prim$primary)

s <- sd(prim$primary)

n <- length(prim$primary)

alpha <- 0.05

m <- 1

pr.m <-lm(primary ~ 1, data = prim)

prci <- predict(pr.m,interval = "prediction")

prci[1,]

Function <- c("my.PI.norm.function", "predict.lm")

lower <- c(round(as.numeric(my.PI.norm.function(x, s, n, m, alpha)[1]),2),
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round(as.numeric(prci[1,2]),2))

upper <- c(round(as.numeric(my.PI.norm.function(x, s, n, m, alpha)[2]),2),

round(as.numeric(prci[1,3]),2))

dat.pin <- as.data.frame(cbind(Function, lower, upper))

names(dat.pin) <- c("Function name", "lower bound", "upper bound")

dat.pint <- xtable(dat.pin,

caption="$(1-\\alpha=0.95)$ PI($y_{new}$) for

the percentage of weight loss in one overweight dog.",

label = "PI norm")

print(dat.pint, include.rownames=FALSE)

# Function #

my.PI.bin.function <- function(x, n, m, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# m = sample size of future observations

# 1 - alpha = prediction level

p <- x/n

quant <- qnorm((1-alpha/2),0,1)

SE <- sqrt((m+n)*p*(1-p))

low.ci <- m*p - quant*SE

up.ci <- m*p + quant*SE

low.ci.f <- floor(low.ci)

up.ci.c <- ceiling(up.ci)

return(c(lower=low.ci.f, upper=up.ci.c))

}

# Function #

bin.pri.pred <- function(a,b,nn,yn){

# a = shape parameter a of a beta distribution

# b = shape parameter b of a beta distribution

# nn = sample size of new, not yet observed data

# yn = successes in new, not yet observed data

return(exp(log(choose(nn, yn))+log(beta(a+yn,b+nn-yn))-log(beta(a,b))))

}

# Function #

bin.post.pred <- function(a,b,nn,yn,no,yo){

# a = shape parameter a of a beta distribution

# b = shape parameter b of a beta distribution

# nn = sample size of new, not yet observed data

# yn = successes in new, not yet observed data

# no = sample size of old, already observed data

# yo = successes in old, already observed data

return(exp(log(choose(nn, yn))

+log(beta(a+yo+yn,b+no-yo+nn-yn))

-log(beta(a+yo,b+no-yo))))

}



CHAPTER 9. R CODE 57

# Function #

dbetabinom <- function(x, size, a, b) {

if (any(size <= 0))

stop("size must be greater than 0")

if (any(a <= 0))

stop("a must be greater than 0")

if (any(b <= 0))

stop("b must be greater than 0")

if (any(x < 0) || any(x > size))

stop("x must be between 0 and size")

exp(lbeta(x + a, size - x + b) - lbeta(a, b) +

lchoose(size, x))

}

# Function #

qbetabinom <- function(p, size, a, b) {

if (any(size <= 0))

stop("size must be greater than 0")

if (any(a <= 0))

stop("a must be greater than 0")

if (any(b <= 0))

stop("b must be greater than 0")

if (any(p <= 0) || any(p >= 1))

stop("p must be between 0 and 1")

the.cumsum <- cumsum(dbetabinom(0:size, size, a, b))

sapply(p, function(x) sum(the.cumsum < x))

}

# Function #

my.Jeffrey.PI.function <- function(x, n, m, alpha){

# x = number of successes of an observed sample

# n = number of trials in observed sample

# m = sample size of future observations

# 1 - alpha = prediction level

a <- x + 0.5

b <- n - x + 0.5

size <- m

low.ci <- qbetabinom(alpha/2,size,a, b)

up.ci <- qbetabinom((1-(alpha/2)),size,a, b)

return(c(lower=low.ci, upper=up.ci))

}

# Table 3.2 #

Impactor <- c("steel", "horn")

lower <- c(as.numeric(my.PI.bin.function(12,16,16,0.05)[1]),

as.numeric(my.PI.bin.function(2,16,16,0.05)[1]))

upper <- c(as.numeric(my.PI.bin.function(12,16,16,0.05)[2]),

as.numeric(my.PI.bin.function(2,16,16,0.05)[2]))
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dat.pis <- as.data.frame(cbind(Impactor, lower, upper))

names(dat.pis) <- c("Impactor", "lower bound", "upper bound")

dat.pist1 <- xtable(dat.pis,

caption= "$(1-\\alpha=0.95)$ PI $(mp_{new})$

for number of fractures with steel and horn

impactor based on a classical approach.",

label ="PI bin Wald")

Impactor <- c("steel", "horn")

lower <- c(as.numeric(my.Jeffrey.PI.function(12,16,16,0.05)[1]),

as.numeric(my.Jeffrey.PI.function(2,16,16,0.05)[1]))

upper <- c(as.numeric(my.Jeffrey.PI.function(12,16,16,0.05)[2]),

as.numeric(my.Jeffrey.PI.function(2,16,16,0.05)[2]))

print(dat.pist1, include.rownames=FALSE)

# Table 3.3 #

dat.pis <- as.data.frame(cbind(Impactor, lower, upper))

names(dat.pis) <- c("Impactor", "lower bound", "upper bound")

dat.pist2 <- xtable(dat.pis,

caption= "$(1-\\alpha=0.95)$ PI $(mp_{new})$

for number of fractures with steel and horn

impactor based on a Bayesian approach.",

label ="PI bin Bayesian")

print(dat.pist2, include.rownames=FALSE)

# Figure 3.2 #

# prior parameters of beta-distribution

prior.1 <- list(a = 0.5, b = 0.5)

## (n.a stands for the number of additional data that have to be observed)

n.a<-16

yn.a<-c(0:n.a)

data.t.i <- list(n = 16, r = 12)

par(mfrow=c(1,2))

# prior predictive distribution

plot(yn.a, bin.pri.pred(prior.1$a, prior.1$b, n.a, yn.a), type="n",

xlab = "number of events", ylab = "predictive distribution",

ylim=c(0,0.2))

lines(yn.a, bin.pri.pred(prior.1$a, prior.1$b, n.a, yn.a),col="blue",

lwd = 2)

lines(yn.a, bin.post.pred(prior.1$a, prior.1$b, n.a, yn.a, data.t.i$n,

data.t.i$r),col="red", lwd = 2)
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abline(v= 7, lwd = 2, col = "green")

abline(v= 16, lwd = 2, col = "green")

data.t.i <- list(n = 16, r = 2)

plot(yn.a, bin.pri.pred(prior.1$a, prior.1$b, n.a, yn.a), type="n",

xlab = "number of events", ylab = "predictive distribution",

ylim=c(0,0.25))

lines(yn.a, bin.pri.pred(prior.1$a, prior.1$b, n.a, yn.a),col="blue",

lwd = 2)

lines(yn.a, bin.post.pred(prior.1$a, prior.1$b, n.a, yn.a, data.t.i$n,

data.t.i$r),col="red", lwd = 2)

abline(v= 0, lwd = 2, col = "green")

abline(v= 7, lwd = 2, col = "green")

legend("topright",c("pri pred", "post pred", "PI"),

col=c("blue", "red","green"),

bty="n",lty=c(1),lwd=c(2))

## chapter 4 ##################################################################

###############################################################################

str(prim)

mean(prim$primary)

sd(prim$primary)

my.CI.norm.func(prim$primary, 0.05)

my.PI.norm.function(11.36778, 5.848243, 926, 100, 0.05)

my.PI.norm.function(11.36778, 5.848243, 926, 1, 0.05)

normtol.int(prim$primary, alpha = 0.05, P = 0.90, side = 2)

set.seed(100)

sleep.hours <- rlogis(n = 20, location = 5, scale = 1)

nptol.int(x = sleep.hours, alpha = 0.05, P = 0.9, side = 1)

# Table 4.1

set.seed(100)

xt <- rnorm(100,0,0.2)

para <- normtol.int(xt, alpha = 0.05, P = 0.9, side = 2)

notp <- nptol.int(xt, alpha = 0.05, P = 0.9, side = 2, method = "WALD")

bayesn <- bayesnormtol.int(xt, alpha = 0.05, P = 0.9,

side = 2, method = "EXACT",

hyper.par = list(mu.0 = 0,

sig2.0 = 0.2, n.0 = 100, m.0 = 10))

approach <- c("parametric", "non-parametric", "Bayes")

lowert <- c(round(as.numeric(para[4]),3),

round(as.numeric(notp[1,3]),3),

round(as.numeric(bayesn[3]),3))
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uppert <- c(round(as.numeric(para[5]),3),

round(as.numeric(notp[1,4]),3),

round(as.numeric(bayesn[4]),3))

dat.tol <- as.data.frame(cbind(approach,lowert, uppert))

names(dat.tol) <- c("Approach", "lower bound", "upper bound")

dat.toll <- xtable(dat.tol,

caption= "$(1-\\alpha = 0.95, P = 0.9)$

TI based on a classical normal, a non parametric

and a Bayesian approach.",

label ="TI com")

print(dat.toll, include.rownames=FALSE)

# Figure 4.1 #

set.seed(4120191)

M <- 100

N <- 5

mydat <- matrix(rnorm(M*N,100,10),ncol = M)

TIs <- data.frame(matrix(nrow = 100, ncol = 2))

colnames(TIs) <- c("low.ti", "high.ti")

for (i in 1:100) {

low.ti <- as.numeric(normtol.int(mydat[,i], 0.05, 0.9, side = 2)[4])

high.ti <- as.numeric(normtol.int(mydat[,i], 0.05, 0.9, side = 2)[5])

TIs[i,1] <- low.ti

TIs[i,2] <- high.ti

}

content <- pnorm(TIs[,2],100,10) - pnorm(TIs[,1],100,10)

outside <- ifelse(content<0.9, 2 , 1)

plot(c(100, 100), c(1, 100), col="black", typ="l",

main = expression(paste("100 (1- ",alpha, " = 0.95) tolerance intervals")),

ylab="Samples", xlim = c(20,180),

xlab=expression(mu))

segments(TIs[,1], 1:100, TIs[,2], 1:100,

col=outside)

# Figure 4.2

prim.n <- normtol.int(prim$primary, 0.05, 0.9, 2, method = "HE")

prim.np <- nptol.int(prim$primary, 0.05, 0.9, 2)

prim.b <- bayesnormtol.int(prim$primary, alpha = 0.05, P = 0.9,

side = 2, method = "EXACT",

hyper.par = list(mu.0 = 11.4,

sig2.0 = 5.8, n.0 = 926, m.0 = 10))

approach <- c("parametric", "non-parametric", "Bayesian")

lower <- c(as.numeric(prim.n[4]),

(prim.np[3]),
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as.numeric(prim.b[3]))

upper <- c(as.numeric(prim.n[5]),

(prim.np[4]),

as.numeric(prim.b[4]))

dat.tolbmi <- as.data.frame(cbind(approach,lower, upper))

names(dat.tolbmi) <- c("Approach", "lower bound", "upper bound")

dat.tolbmis <- xtable(dat.tolbmi,

caption= "$(1-\\alpha = 0.95, P=0.9)$

classical normal, non-parametric and

Bayesian tolerance intervals of the

percentage body weight loss in overweight dogs.",

label ="TI com")

print(dat.tolbmis, include.rownames=FALSE)

#one-sided

bintol.int(x = 10, n = 1000, m = 50, alpha = 0.05, P = 0.9, side = 1)

#two-sided

bintol.int(x = 10, n = 1000, m = 50, alpha = 0.05, P = 0.9, side = 2)

# Table 4.3 and Table 4.4 #

bint1s1 <- bintol.int(x = 12, n = 16, m = 16, alpha = 0.05, P = 0.9, side = 1,

method = "LS")

bint2s1 <- bintol.int(x = 12, n = 16, m = 16, alpha = 0.05, P = 0.9, side = 1,

method = "WS")

bint3s1 <- bintol.int(x = 12, n = 16, m = 16, alpha = 0.05, P = 0.9, side = 1,

method = "CP")

bint4s1 <- bintol.int(x = 12, n = 16, m = 16, alpha = 0.05, P = 0.9, side = 1,

method = "JF")

bint1h1 <- bintol.int(x = 2, n = 16, m = 16, alpha = 0.05, P = 0.9, side = 1,

method = "LS")

bint2h1 <- bintol.int(x = 2, n = 16, m = 16, alpha = 0.05, P = 0.9, side = 1,

method = "WS")

bint3h1 <- bintol.int(x = 2, n = 16, m = 16, alpha = 0.05, P = 0.9, side = 1,

method = "CP")

bint4h1 <- bintol.int(x = 2, n = 16, m = 16, alpha = 0.05, P = 0.9, side = 1,

method = "JF")

Approach <- c (rep("classical",3), rep("Bayesian",1))

Function <- c("Large sample", "Wilson", "Clopper Pearson", "Bayesian")

lower <- c(round(as.numeric(bint1s1[4]),2),

round(as.numeric(bint2s1[4]),2),

round(as.numeric(bint3s1[4]),2),

round(as.numeric(bint4s1[4]),2))



CHAPTER 9. R CODE 62

dat.bint <- as.data.frame(cbind(Approach,Function,lower))

names(dat.bint) <- c("Approach","method TI", "lower bound")

dat.bints <- xtable(dat.bint,

caption= "One-sided $(1-\\alpha = 0.95, P=0.9)$

tolerance intervals for minimum number of fractures

due to the steel in 16 kick experiments.",

label ="TI steel")

print(dat.bints, include.rownames=FALSE)

Approach <- c (rep("classical",3), rep("Bayesian",1))

Function <- c("Large sample", "Wilson", "Clopper Pearson", "Bayesian")

lower <- c(round(as.numeric(bint1h1[4]),2),

round(as.numeric(bint2h1[4]),2),

round(as.numeric(bint3h1[4]),2),

round(as.numeric(bint4h1[4]),2))

dat.binh <- as.data.frame(cbind(Approach,Function,lower))

names(dat.binh) <- c("Approach","method TI", "lower bound")

dat.binhs <- xtable(dat.binh,

caption= "One-sided $(1-\\alpha = 0.95, P=0.9)$

tolerance intervals for the minimum number of

fractures due to the horn impactor in 16

kick experiments.",

label ="TI horn")

print(dat.binhs, include.rownames=FALSE)

## chapter 5 ##################################################################

###############################################################################

# Table 5.1, Figure 5.1, Table 5.2

# to generate a random normal sample

set.seed(12345)

a <- rnorm(300, 5.901, 4.2)

# to generate a bimodal random sample

set.seed(12345)

N <- 300

components <- sample(1:3,prob=c(0.3,0.5,0.2),size=N,replace=TRUE)

mus <- c(1,10,3)

sds <- sqrt(c(1,1,0.1))

b <- rnorm(n=N,mean=mus[components],sd=sds[components])

# to generate a skewed random sample

set.seed(12345)

c <- rexp(N,rate= 1)

# to obtain a standardized vector

my.x2z <- function(x){
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return((x-mean(x))/sd(x))

}

# from standardized to normal with mu and sigma vector

my.z2y <- function(z,mu,sigma){

return(mu+sigma*z)

}

az <- my.x2z(a)

a2y <- my.z2y(az,mu = 16,sigma = 12)

mean(a2y);sd(a2y)

bz <- my.x2z(b)

b2y <- my.z2y(bz,mu = 16,sigma = 12)

mean(b2y);sd(b2y)

cz <- my.x2z(c)

c2y <- my.z2y(cz,mu = 16,sigma = 12)

mean(c2y);sd(c2y)

# Table 5.1 #

A <- c(N, mean(a2y), sd(a2y),round(min(a2y),2), round(max(a2y),2),

round(skewness(a2y),2), round(kurtosis(a2y),2), round(IQR(a2y),2))

B <- c(N, mean(b2y), sd(b2y),round(min(b2y),2), round(max(b2y),2),

round(skewness(b2y),2), round(kurtosis(b2y),2), round(IQR(b2y),2))

C <- c(N, mean(c2y), sd(c2y),round(min(c2y),2), round(max(c2y),2),

round(skewness(c2y),2), round(kurtosis(c2y),2), round(IQR(c2y),2))

Func <- c("n", "mean", "sd", "min", "max", "skewness", "kurtosis", "IQR")

descr <- as.data.frame(cbind(Func,A, B, C))

names(descr) <- c("", "A","B", "C")

descrt <- xtable(descr, caption= " Descriptive statistics of the

three scenarios A, B and C",

label ="descr scenario")

print(descrt, include.rownames= F, table.placement = "b",

caption.placement = "top")

# Figure 5.1 #

par(mfrow=c(3,1))

hist(a2y, breaks = 50, xlim = c(0,50), main ="Scenario A", xlab = "")

hist(b2y, breaks = 50, xlim = c(0,50), main ="Scenario B", xlab = "")

hist(c2y, breaks = 50, xlim = c(0,50), main ="Scenario C", xlab = "")

lower <- c(my.CI.norm.func(a2y,0.05)[1],

my.CI.norm.func(b2y,0.05)[1],

my.CI.norm.func(c2y,0.05)[1],
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my.PI.norm.function(mean(a2y),sd(a2y),300,300,0.05)[1],

my.PI.norm.function(mean(b2y),sd(b2y),300,300,0.05)[1],

my.PI.norm.function(mean(c2y),sd(c2y),300,300,0.05)[1],

as.numeric(normtol.int(a2y, 0.05, 0.9, side = 2)[4]),

as.numeric(normtol.int(b2y, 0.05, 0.9, side = 2)[4]),

as.numeric(normtol.int(c2y, 0.05, 0.9, side = 2)[4]),

as.numeric(nptol.int(a2y, 0.05, 0.9, 2)[3]),

as.numeric(nptol.int(b2y, 0.05, 0.9, 2)[3]),

as.numeric(nptol.int(c2y, 0.05, 0.9, 2)[3]))

upper <- c(my.CI.norm.func(a2y,0.05)[2],

my.CI.norm.func(b2y,0.05)[2],

my.CI.norm.func(c2y,0.05)[2],

my.PI.norm.function(mean(a2y),sd(a2y),300,300,0.05)[2],

my.PI.norm.function(mean(b2y),sd(b2y),300,300,0.05)[2],

my.PI.norm.function(mean(c2y),sd(c2y),300,300,0.05)[2],

as.numeric(normtol.int(a2y, 0.05, 0.9, side = 2)[5]),

as.numeric(normtol.int(b2y, 0.05, 0.9, side = 2)[5]),

as.numeric(normtol.int(c2y, 0.05, 0.9, side = 2)[5]),

as.numeric(nptol.int(a2y, 0.05, 0.9, 2)[4]),

as.numeric(nptol.int(b2y, 0.05, 0.9, 2)[4]),

as.numeric(nptol.int(c2y, 0.05, 0.9, 2)[4]))

# Tabl3 5.2 #

Scenario <- rep(c("A","B","C"),4)

Interval <- c("CI", "CI", "CI", "PI", "PI", "PI",

"TI","TI","TI","TI","TI","TI")

Function <- c("my.CI.norm", "my.CI.norm", "my.CI.norm",

"my.PI.norm", "my.PI.norm", "my.PI.norm",

"normtol.int", "normtol.int", "normtol.int",

"nptol.int", "nptol.int", "nptol.int")

P <- c(rep("",6), rep(0.9,6))

diff.int <- as.data.frame(cbind(Scenario, Function, Interval, P,

lower, upper))

names(diff.int) <- c("Scenario", "Function","Interval", "P",

"lower bound", "upper bound")

diff.ints <- xtable(diff.int,

caption= "Comparison of confidence, prediction and

tolerance intervals for the three scenarios A, B and

C with a $(1-\\alpha = 0.95)$ confidence and prediction

level, and a $(1-\\alpha = 0.95, P = 0.9)$ tolerance

interval. The parametric \\textit{normtol.int()}

and non-parametric \\textit{nptol.int()} functions

for the respective tolerance intervals originate

from the \\texttt{tolerance} package.",

label ="CI.ABC")

print(diff.ints, include.rownames=F)
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# Figure 5.2 to 5.6, Table 5.3 #

set.seed(707)

a.6 <- rnorm(10000,100,10)

a.10000 <- a.6[1:10000]

a.7500 <- a.6[1:7500]

a.5000 <- a.6[1:5000]

a.2500 <- a.6[1:2500]

a.1000 <- a.6[1:1000]

a.750 <- a.6[1:750]

a.500 <- a.6[1:500]

a.250 <- a.6[1:250]

a.100 <- a.6[1:100]

a.75 <- a.6[1:75]

a.50 <- a.6[1:50]

a.25 <- a.6[1:25]

a.10 <- a.6[1:10]

samples <- factor(c(rep(10, 10),

rep(25, 25),

rep(50, 50),

rep(75, 75),

rep(100, 100),

rep(250, 250),

rep(500, 500),

rep(750, 750),

rep(1000, 1000),

rep(2500, 2500),

rep(5000, 5000),

rep(7500, 7500),

rep(10000, 10000)))

numbers <- c(a.10,a.25,a.50,a.75,a.100,a.250,a.500,a.750,

a.1000,a.2500,a.5000,a.7500,a.10000)

samples <- data.frame(samples)

dat <- data.frame(numbers)

mydats <- data.frame(c(samples,dat))

cdata <- ddply(mydats, "samples", summarise,

N = as.integer(length(numbers)),

mean = mean(numbers),

sd = sd(numbers),

se = sd(numbers) / sqrt(N),

qts = qnorm(.975, 0,1),

low.ci = mean - (sd(numbers) / sqrt(N))*(qnorm(.975, 0,1)),

up.ci = mean + (sd(numbers) / sqrt(N))*(qnorm(.975, 0,1)))

cdata$low.pim <- my.PI.norm.function(mean(a.100),sd(a.100),100,
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c(10,25,50,75,100,250,500,750,1000,

2500,5000,7500,10000),0.05)[1:13]

cdata$up.pim <- my.PI.norm.function(mean(a.100),sd(a.100),100,

c(10,25,50,75,100,250,500,750,1000,

2500,5000,7500,10000),0.05)[14:26]

cdata$low.pi <- my.PI.norm.function(cdata$mean,cdata$sd,cdata$N,1,0.05)[1:13]

cdata$up.pi <- my.PI.norm.function(cdata$mean,cdata$sd,cdata$N,1,0.05)[14:26]

lt1 <- as.numeric(normtol.int(a.10, alpha = 0.05, P = 0.9, side = 2)[4])

lt2 <- as.numeric(normtol.int(a.25, alpha = 0.05, P = 0.9, side = 2)[4])

lt3 <- as.numeric(normtol.int(a.50, alpha = 0.05, P = 0.9, side = 2)[4])

lt4 <- as.numeric(normtol.int(a.75, alpha = 0.05, P = 0.9, side = 2)[4])

lt5 <- as.numeric(normtol.int(a.100, alpha = 0.05, P = 0.9, side = 2)[4])

lt6 <- as.numeric(normtol.int(a.250, alpha = 0.05, P = 0.9, side = 2)[4])

lt7 <- as.numeric(normtol.int(a.500, alpha = 0.05, P = 0.9, side = 2)[4])

lt8 <- as.numeric(normtol.int(a.750, alpha = 0.05, P = 0.9, side = 2)[4])

lt9 <- as.numeric(normtol.int(a.1000, alpha = 0.05, P = 0.9, side = 2)[4])

lt10 <- as.numeric(normtol.int(a.2500, alpha = 0.05, P = 0.9, side = 2)[4])

lt11 <- as.numeric(normtol.int(a.5000, alpha = 0.05, P = 0.9, side = 2)[4])

lt12 <- as.numeric(normtol.int(a.7500, alpha = 0.05, P = 0.9, side = 2)[4])

lt13 <- as.numeric(normtol.int(a.10000, alpha = 0.05, P = 0.9, side = 2)[4])

ut1 <- as.numeric(normtol.int(a.10, alpha = 0.05, P = 0.9, side = 2)[5])

ut2 <- as.numeric(normtol.int(a.25, alpha = 0.05, P = 0.9, side = 2)[5])

ut3 <- as.numeric(normtol.int(a.50, alpha = 0.05, P = 0.9, side = 2)[5])

ut4 <- as.numeric(normtol.int(a.75, alpha = 0.05, P = 0.9, side = 2)[5])

ut5 <- as.numeric(normtol.int(a.100, alpha = 0.05, P = 0.9, side = 2)[5])

ut6 <- as.numeric(normtol.int(a.250, alpha = 0.05, P = 0.9, side = 2)[5])

ut7 <- as.numeric(normtol.int(a.500, alpha = 0.05, P = 0.9, side = 2)[5])

ut8 <- as.numeric(normtol.int(a.750, alpha = 0.05, P = 0.9, side = 2)[5])

ut9 <- as.numeric(normtol.int(a.1000, alpha = 0.05, P = 0.9, side = 2)[5])

ut10 <- as.numeric(normtol.int(a.2500, alpha = 0.05, P = 0.9, side = 2)[5])

ut11 <- as.numeric(normtol.int(a.5000, alpha = 0.05, P = 0.9, side = 2)[5])

ut12 <- as.numeric(normtol.int(a.7500, alpha = 0.05, P = 0.9, side = 2)[5])

ut13 <- as.numeric(normtol.int(a.10000, alpha = 0.05, P = 0.9, side = 2)[5])

cdata$low.ti <- c(lt1,lt2,lt3,lt4,lt5,lt6,lt7,lt8,lt9,lt10,lt11,lt12,lt13)

cdata$up.ti <- c(ut1,ut2,ut3,ut4,ut5,ut6,ut7,ut8,ut9,ut10,ut11,ut12,ut13)

cdata <- as.data.frame(cdata)

cdata$width.ci <- cdata$up.ci - cdata$low.ci

cdata$width.pi <- cdata$up.pi - cdata$low.pi

cdata$width.ti <- cdata$up.ti - cdata$low.ti

pd <- position_dodge(0.78)

plot1 <- ggplot(cdata, aes(x=samples, y = mean, group = samples)) +

#draws the means

geom_point(position=pd) +

#draws the CI error bars



CHAPTER 9. R CODE 67

geom_errorbar(data=cdata,

aes(ymin= low.ci, ymax=up.ci,

color=samples), width=.5, position=pd)

h <- 100

plot2 <- plot1 + geom_hline(aes(yintercept=h))

plot2 + labs(x = "sample size (n)") + annotate(geom="text",

label="truth",

x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

pd <- position_dodge(0.78)

plot3 <- ggplot(cdata, aes(x=samples, y = mean, group = samples)) +

#draws the means

geom_point(position=pd) +

#draws the CI error bars

geom_errorbar(data=cdata,

aes(ymin= low.pi, ymax=up.pi,

color=samples), width=.5, position=pd)

h <- 100

plot4 <- plot3 + geom_hline(aes(yintercept=h))

plot4 + labs(x = "sample size (n)") + annotate(geom="text",

label="truth",

x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

pd <- position_dodge(0.78)

plot5 <- ggplot(cdata, aes(x=samples, y = mean, group = samples)) +

#draws the means

geom_point(position=pd) +

#draws the CI error bars

geom_errorbar(data=cdata,

aes(ymin= low.pim, ymax=up.pim,

color=samples), width=.5, position=pd)

h <- 100

plot6 <- plot5 + geom_hline(aes(yintercept=h))

plot6 + labs(x = "sample size (m)") + annotate(geom="text",

label="truth",

x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

pd <- position_dodge(0.78)

plot7 <- ggplot(cdata, aes(x=samples, y = mean, group = samples)) +

#draws the means

geom_point(position=pd) +

#draws the CI error bars

geom_errorbar(data=cdata,

aes(ymin= low.ti, ymax=up.ti,

color=samples), width=.5, position=pd)
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h <- 100

plot8 <- plot7 + geom_hline(aes(yintercept=h))

plot8 + labs(x = "sample size (n)") + annotate(geom="text",

label="truth",

x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

par(mfrow=c(1,1))

red.cdata <- subset(cdata, N<2500)

plot(width.ti ~ N, type = "b", col = "white",

ylab = "width of CI, Pi and TI",

xlab = "sample size (n)",

#main = "Width of intervals as a function of sample size",

data =red.cdata,

ylim = c(0,80) )

points(cdata$N,cdata$width.ti, col = "black")

lines(cdata$N,cdata$width.ti, col = "black")

points(cdata$N,cdata$width.pi, col = "red")

lines(cdata$N,cdata$width.pi, col = "red")

points(cdata$N,cdata$width.ci, col = "blue")

lines(cdata$N,cdata$width.ci, col = "blue")

legend("topright", c("TI", "PI", "CI"), bty = "n",

lty = c(1, 1, 1), lwd = 3, col = c("black", "red", "blue"))

contri <- as.data.frame(cbind(cdata$N,cdata$mean,cdata$sd,

cdata$low.ci,cdata$up.ci,

cdata$low.pi,cdata$up.pi,

cdata$low.ti,cdata$up.ti))

names(contri) <- c("sample size n", "mean", "sd",

"low ci", "up ci",

"low pi", "up pi",

"low ti", "up ti")

contrit <- xtable(contri, caption= "Comparison of $(1-\\alpha = 0.95)$

confidence intervals, $(1-\\alpha = 0.95)$ prediction

intervals for one future observation $(m=1)$, and

$(1-\\alpha = 0.95, P = 0.9)$ tolerance intervals

with increasing sample size $n$. The samples have

been drawn from a normal distribution with a true

mean of 100 and a standard deviation of 10 and

subsequently subsetted to obtain samples ranging

from $n=10$ to $n=10^4$.",label ="contrast",

digits = c(0, 0, 2, 2, 2, 2, 2, 2, 2, 2))

print(contrit, include.rownames=F)

set.seed(3105)

b.6 <- rbinom(1000000,1,0.5)
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b.10000 <- b.6[1:10000]

b.7500 <- b.6[1:7500]

b.5000 <- b.6[1:5000]

b.2500 <- b.6[1:2500]

b.1000 <- b.6[1:1000]

b.750 <- b.6[1:750]

b.500 <- b.6[1:500]

b.250 <- b.6[1:250]

b.100 <- b.6[1:100]

b.75 <- b.6[1:75]

b.50 <- b.6[1:50]

b.25 <- b.6[1:25]

b.10 <- b.6[1:10]

samples <- factor(c(rep(10, 10),

rep(25, 25),

rep(50, 50),

rep(75, 75),

rep(100, 100),

rep(250, 250),

rep(500, 500),

rep(750, 750),

rep(1000, 1000),

rep(2500, 2500),

rep(5000, 5000),

rep(7500, 7500),

rep(10000, 10000)))

numbers <- c(b.10,b.25,b.50,b.75,b.100,b.250,b.500,b.750,

b.1000,b.2500,b.5000,b.7500,b.10000)

samples <- data.frame(samples)

dat <- data.frame(numbers)

mydats <- data.frame(c(samples,dat))

head(mydats)

bdata <- ddply(mydats, "samples", summarise,

N = as.integer(length(numbers)),

R = as.integer(sum(numbers)),

Pr = R/N)

bdata$low.cri <- my.CI.Jeffrey.function(bdata$R, bdata$N, 0.05)[1:13]

bdata$up.cri <- my.CI.Jeffrey.function(bdata$R, bdata$N, 0.05)[14:26]

lbl <- c(as.numeric(my.PI.bin.function(bdata$R,bdata$N,

bdata$N,0.05)))[1:13]

bdata$low.b.pi <- lbl/bdata$N

lbu <- c(as.numeric(my.PI.bin.function(bdata$R,bdata$N,

bdata$N,0.05)))[14:26]
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bdata$up.b.pi <- lbu/bdata$N

bdata$low.bnorm.pi <- lbl

bdata$up.bnorm.pi <- lbu

l1 <- as.numeric(my.Jeffrey.PI.function(3,10,10,0.05)[1])/10

l2 <- as.numeric(my.Jeffrey.PI.function(11,25,25,0.05)[1])/25

l3 <- as.numeric(my.Jeffrey.PI.function(20,50,50,0.05)[1])/50

l4 <- as.numeric(my.Jeffrey.PI.function(28,75,75,0.05)[1])/75

l5 <- as.numeric(my.Jeffrey.PI.function(40,100,100,0.05)[1])/100

l6 <- as.numeric(my.Jeffrey.PI.function(120,250,250,0.05)[1])/250

l7 <- as.numeric(my.Jeffrey.PI.function(234,500,500,0.05)[1])/500

l8 <- as.numeric(my.Jeffrey.PI.function(375,750,750,0.05)[1])/750

l9 <- as.numeric(my.Jeffrey.PI.function(508,1000,1000,0.05)[1])/1000

l10 <-as.numeric(my.Jeffrey.PI.function(1279,2500,2500,0.05)[1])/2500

l11 <-as.numeric(my.Jeffrey.PI.function(2517,5000,5000,0.05)[1])/5000

l12 <-as.numeric(my.Jeffrey.PI.function(3788,7500,7500,0.05)[1])/7500

l13 <-as.numeric(my.Jeffrey.PI.function(4993,10000,10000,0.05)[1])/10000

u1 <- as.numeric(my.Jeffrey.PI.function(3,10,10,0.05)[2])/10

u2 <- as.numeric(my.Jeffrey.PI.function(11,25,25,0.05)[2])/25

u3 <- as.numeric(my.Jeffrey.PI.function(20,50,50,0.05)[2])/50

u4 <- as.numeric(my.Jeffrey.PI.function(28,75,75,0.05)[2])/75

u5 <- as.numeric(my.Jeffrey.PI.function(40,100,100,0.05)[2])/100

u6 <- as.numeric(my.Jeffrey.PI.function(120,250,250,0.05)[2])/250

u7 <- as.numeric(my.Jeffrey.PI.function(234,500,500,0.05)[2])/500

u8 <- as.numeric(my.Jeffrey.PI.function(375,750,750,0.05)[2])/750

u9 <- as.numeric(my.Jeffrey.PI.function(508,1000,1000,0.05)[2])/1000

u10 <-as.numeric(my.Jeffrey.PI.function(1279,2500,2500,0.05)[2])/2500

u11 <-as.numeric(my.Jeffrey.PI.function(2517,5000,5000,0.05)[2])/5000

u12 <-as.numeric(my.Jeffrey.PI.function(3788,7500,7500,0.05)[2])/7500

u13 <-as.numeric(my.Jeffrey.PI.function(4993,10000,10000,0.05)[2])/10000

bdata$prJ.l <- c(l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12,l13)

bdata$prJ.u <- c(u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,u13)

l1n <- as.numeric(my.Jeffrey.PI.function(3,10,10,0.05)[1])

l2n <- as.numeric(my.Jeffrey.PI.function(11,25,25,0.05)[1])

l3n <- as.numeric(my.Jeffrey.PI.function(20,50,50,0.05)[1])

l4n <- as.numeric(my.Jeffrey.PI.function(28,75,75,0.05)[1])

l5n <- as.numeric(my.Jeffrey.PI.function(40,100,100,0.05)[1])

l6n <- as.numeric(my.Jeffrey.PI.function(120,250,250,0.05)[1])

l7n <- as.numeric(my.Jeffrey.PI.function(234,500,500,0.05)[1])

l8n <- as.numeric(my.Jeffrey.PI.function(375,750,750,0.05)[1])

l9n <- as.numeric(my.Jeffrey.PI.function(508,1000,1000,0.05)[1])

l10n <-as.numeric(my.Jeffrey.PI.function(1279,2500,2500,0.05)[1])

l11n <-as.numeric(my.Jeffrey.PI.function(2517,5000,5000,0.05)[1])

l12n <-as.numeric(my.Jeffrey.PI.function(3788,7500,7500,0.05)[1])

l13n <-as.numeric(my.Jeffrey.PI.function(4993,10000,10000,0.05)[1])

u1n <- as.numeric(my.Jeffrey.PI.function(3,10,10,0.05)[2])
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u2n <- as.numeric(my.Jeffrey.PI.function(11,25,25,0.05)[2])

u3n <- as.numeric(my.Jeffrey.PI.function(20,50,50,0.05)[2])

u4n <- as.numeric(my.Jeffrey.PI.function(28,75,75,0.05)[2])

u5n <- as.numeric(my.Jeffrey.PI.function(40,100,100,0.05)[2])

u6n <- as.numeric(my.Jeffrey.PI.function(120,250,250,0.05)[2])

u7n <- as.numeric(my.Jeffrey.PI.function(234,500,500,0.05)[2])

u8n <- as.numeric(my.Jeffrey.PI.function(375,750,750,0.05)[2])

u9n <- as.numeric(my.Jeffrey.PI.function(508,1000,1000,0.05)[2])

u10n <-as.numeric(my.Jeffrey.PI.function(1279,2500,2500,0.05)[2])

u11n <-as.numeric(my.Jeffrey.PI.function(2517,5000,5000,0.05)[2])

u12n <-as.numeric(my.Jeffrey.PI.function(3788,7500,7500,0.05)[2])

u13n <-as.numeric(my.Jeffrey.PI.function(4993,10000,10000,0.05)[2])

bdata$prJ.ln <- c(l1n,l2n,l3n,l4n,l5n,l6n,l7n,l8n,l9n,l10n,l11n,l12n,l13n)

bdata$prJ.un <- c(u1n,u2n,u3n,u4n,u5n,u6n,u7n,u8n,u9n,u10n,u11n,u12n,u13n)

b2 <- bintol.int(x = 5, n = 10, bdata$N, alpha = 0.05, P = 0.9, side = 2,

method = "JF")

bdata <- as.data.frame(bdata)

lt <- b2[1:13,4]

ut <- b2[1:13,5]

bdata$low.ti <- lt/bdata$N

bdata$up.ti <- ut/bdata$N

bdata$lt <- b2[1:13,4]

bdata$ut <- b2[1:13,5]

plot10 <- ggplot(bdata, aes(x=samples, y = Pr, group = samples))

+ ggtitle("CrI J") +

#draws the means

geom_point() +

#draws the CI error bars

geom_errorbar(data=bdata,

aes(ymin= low.cri, ymax=up.cri,

color=samples), width=.5) + ylim(-0.25, 1.25)

h <- 0.5

plot20 <- plot10 + geom_hline(aes(yintercept=h))

pa <- plot20 + labs(x = "sample size (n)") + annotate(geom="text",

label="", x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

plot11 <- ggplot(bdata, aes(x=samples, y = Pr, group = samples))

+ ggtitle("PI N") +

#draws the means

geom_point() +

#draws the CI error bars

geom_errorbar(data=bdata,

aes(ymin= low.b.pi, ymax=up.b.pi,

color=samples), width=.5) + ylim(-0.25, 1.25)
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h <- 0.5

plot21 <- plot11 + geom_hline(aes(yintercept=h))

pb <- plot21 + labs(x = "sample size (n,m)") + annotate(geom="text",

label="", x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

plot12 <- ggplot(bdata, aes(x=samples, y = Pr, group = samples))

+ ggtitle("PI J") +

#draws the means

geom_point(position=pd) +

#draws the CI error bars

geom_errorbar(data=bdata,

aes(ymin= prJ.l, ymax=prJ.u,

color=samples), width=.5) + ylim(-0.25, 1.25)

h <- 0.5

plot22 <- plot12 + geom_hline(aes(yintercept=h))

pc <- plot22 + labs(x = "sample size (n,m)") + annotate(geom="text",

label="", x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

plot13 <- ggplot(bdata, aes(x=samples, y = Pr, group = samples))

+ ggtitle("TI J") +

#draws the means

geom_point() +

#draws the CI error bars

geom_errorbar(data=bdata,

aes(ymin= low.ti, ymax=up.ti,

color=samples), width=.5) + ylim(-0.25, 1.25)

h <- 0.5

plot23 <- plot13 + geom_hline(aes(yintercept=h))

pd <- plot23 + labs(x = "sample size (n)") + annotate(geom="text",

label="", x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

grid.arrange(pa + theme(axis.text.x = element_blank()),

pb + theme(axis.text.x = element_blank()),

pc + theme(axis.text.x = element_blank()),

pd + theme(axis.text.x = element_blank()),

ncol = 2, nrow = 2)

set.seed(3105)

b.6 <- rbinom(1000000,1,0.1)

b.10000 <- b.6[1:10000]

b.7500 <- b.6[1:7500]

b.5000 <- b.6[1:5000]

b.2500 <- b.6[1:2500]
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b.1000 <- b.6[1:1000]

b.750 <- b.6[1:750]

b.500 <- b.6[1:500]

b.250 <- b.6[1:250]

b.100 <- b.6[1:100]

b.75 <- b.6[1:75]

b.50 <- b.6[1:50]

b.25 <- b.6[1:25]

b.10 <- b.6[1:10]

samples <- factor(c(rep(10, 10),

rep(25, 25),

rep(50, 50),

rep(75, 75),

rep(100, 100),

rep(250, 250),

rep(500, 500),

rep(750, 750),

rep(1000, 1000),

rep(2500, 2500),

rep(5000, 5000),

rep(7500, 7500),

rep(10000, 10000)))

numbers <- c(b.10,b.25,b.50,b.75,b.100,b.250,b.500,b.750,

b.1000,b.2500,b.5000,b.7500,b.10000)

samples <- data.frame(samples)

dat <- data.frame(numbers)

mydats <- data.frame(c(samples,dat))

head(mydats)

ddata <- ddply(mydats, "samples", summarise,

N = as.integer(length(numbers)),

R = as.integer(sum(numbers)),

Pr = R/N)

ddata

ddata$low.cri <- my.CI.Jeffrey.function(ddata$R, ddata$N, 0.05)[1:13]

ddata$up.cri <- my.CI.Jeffrey.function(ddata$R, ddata$N, 0.05)[14:26]

lbl <- c(as.numeric(my.PI.bin.function(ddata$R,ddata$N,

ddata$N,0.05)))[1:13]

ddata$low.b.pi <- lbl/ddata$N

lbu <- c(as.numeric(my.PI.bin.function(ddata$R,ddata$N,

ddata$N,0.05)))[14:26]
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ddata$up.b.pi <- lbu/ddata$N

ddata$low.bnorm.pi <- lbl

ddata$up.bnorm.pi <- lbu

ddata

l1 <- as.numeric(my.Jeffrey.PI.function(1,10,10,0.05)[1])/10

l2 <- as.numeric(my.Jeffrey.PI.function(3,25,25,0.05)[1])/25

l3 <- as.numeric(my.Jeffrey.PI.function(4,50,50,0.05)[1])/50

l4 <- as.numeric(my.Jeffrey.PI.function(5,75,75,0.05)[1])/75

l5 <- as.numeric(my.Jeffrey.PI.function(8,100,100,0.05)[1])/100

l6 <- as.numeric(my.Jeffrey.PI.function(23,250,250,0.05)[1])/250

l7 <- as.numeric(my.Jeffrey.PI.function(53,500,500,0.05)[1])/500

l8 <- as.numeric(my.Jeffrey.PI.function(79,750,750,0.05)[1])/750

l9 <- as.numeric(my.Jeffrey.PI.function(103,1000,1000,0.05)[1])/1000

l10 <-as.numeric(my.Jeffrey.PI.function(252,2500,2500,0.05)[1])/2500

l11 <-as.numeric(my.Jeffrey.PI.function(481,5000,5000,0.05)[1])/5000

l12 <-as.numeric(my.Jeffrey.PI.function(732,7500,7500,0.05)[1])/7500

l13 <-as.numeric(my.Jeffrey.PI.function(999,10000,10000,0.05)[1])/10000

u1 <- as.numeric(my.Jeffrey.PI.function(1,10,10,0.05)[2])/10

u2 <- as.numeric(my.Jeffrey.PI.function(3,25,25,0.05)[2])/25

u3 <- as.numeric(my.Jeffrey.PI.function(4,50,50,0.05)[2])/50

u4 <- as.numeric(my.Jeffrey.PI.function(5,75,75,0.05)[2])/75

u5 <- as.numeric(my.Jeffrey.PI.function(8,100,100,0.05)[2])/100

u6 <- as.numeric(my.Jeffrey.PI.function(23,250,250,0.05)[2])/250

u7 <- as.numeric(my.Jeffrey.PI.function(53,500,500,0.05)[2])/500

u8 <- as.numeric(my.Jeffrey.PI.function(79,750,750,0.05)[2])/750

u9 <- as.numeric(my.Jeffrey.PI.function(103,1000,1000,0.05)[2])/1000

u10 <-as.numeric(my.Jeffrey.PI.function(252,2500,2500,0.05)[2])/2500

u11 <-as.numeric(my.Jeffrey.PI.function(481,5000,5000,0.05)[2])/5000

u12 <-as.numeric(my.Jeffrey.PI.function(732,7500,7500,0.05)[2])/7500

u13 <-as.numeric(my.Jeffrey.PI.function(999,10000,10000,0.05)[2])/10000

ddata$prJ.l <- c(l1,l2,l3,l4,l5,l6,l7,l8,l9,l10,l11,l12,l13)

ddata$prJ.u <- c(u1,u2,u3,u4,u5,u6,u7,u8,u9,u10,u11,u12,u13)

l1n <- as.numeric(my.Jeffrey.PI.function(1,10,10,0.05)[1])

l2n <- as.numeric(my.Jeffrey.PI.function(3,25,25,0.05)[1])

l3n <- as.numeric(my.Jeffrey.PI.function(4,50,50,0.05)[1])

l4n <- as.numeric(my.Jeffrey.PI.function(5,75,75,0.05)[1])

l5n <- as.numeric(my.Jeffrey.PI.function(8,100,100,0.05)[1])

l6n <- as.numeric(my.Jeffrey.PI.function(23,250,250,0.05)[1])

l7n <- as.numeric(my.Jeffrey.PI.function(53,500,500,0.05)[1])

l8n <- as.numeric(my.Jeffrey.PI.function(79,750,750,0.05)[1])

l9n <- as.numeric(my.Jeffrey.PI.function(103,1000,1000,0.05)[1])

l10n <-as.numeric(my.Jeffrey.PI.function(252,2500,2500,0.05)[1])

l11n <-as.numeric(my.Jeffrey.PI.function(481,5000,5000,0.05)[1])

l12n <-as.numeric(my.Jeffrey.PI.function(732,7500,7500,0.05)[1])
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l13n <-as.numeric(my.Jeffrey.PI.function(999,10000,10000,0.05)[1])

u1n <- as.numeric(my.Jeffrey.PI.function(1,10,10,0.05)[2])

u2n <- as.numeric(my.Jeffrey.PI.function(3,25,25,0.05)[2])

u3n <- as.numeric(my.Jeffrey.PI.function(4,50,50,0.05)[2])

u4n <- as.numeric(my.Jeffrey.PI.function(5,75,75,0.05)[2])

u5n <- as.numeric(my.Jeffrey.PI.function(8,100,100,0.05)[2])

u6n <- as.numeric(my.Jeffrey.PI.function(23,250,250,0.05)[2])

u7n <- as.numeric(my.Jeffrey.PI.function(53,500,500,0.05)[2])

u8n <- as.numeric(my.Jeffrey.PI.function(79,750,750,0.05)[2])

u9n <- as.numeric(my.Jeffrey.PI.function(103,1000,1000,0.05)[2])

u10n <-as.numeric(my.Jeffrey.PI.function(252,2500,2500,0.05)[2])

u11n <-as.numeric(my.Jeffrey.PI.function(481,5000,5000,0.05)[2])

u12n <-as.numeric(my.Jeffrey.PI.function(732,7500,7500,0.05)[2])

u13n <-as.numeric(my.Jeffrey.PI.function(999,10000,10000,0.05)[2])

ddata$prJ.ln <- c(l1n,l2n,l3n,l4n,l5n,l6n,l7n,l8n,l9n,l10n,l11n,l12n,l13n)

ddata$prJ.un <- c(u1n,u2n,u3n,u4n,u5n,u6n,u7n,u8n,u9n,u10n,u11n,u12n,u13n)

d2 <- bintol.int(x = 1, n = 10, ddata$N, alpha = 0.05, P = 0.9,

side = 2,

method = "JF")

d2

lt <- d2[1:13,4]

ut <- d2[1:13,5]

ddata <- as.data.frame(ddata)

ddata$low.ti <- lt/ddata$N

ddata$up.ti <- ut/ddata$N

ddata$lt <- b2[1:13,4]

ddata$ut <- b2[1:13,5]

plot10 <- ggplot(ddata, aes(x=samples, y = Pr, group = samples))

+ ggtitle("CrI J") +

#draws the means

geom_point() +

#draws the CI error bars

geom_errorbar(data=ddata,

aes(ymin= low.cri, ymax=up.cri,

color=samples), width=.5) + ylim(-0.25, 1.25)

h <- 0.1

plot20 <- plot10 + geom_hline(aes(yintercept=h))

pf <- plot20 + labs(x = "sample size (n)") + annotate(geom="text",

label="", x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")
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plot11 <- ggplot(ddata, aes(x=samples, y = Pr, group = samples))

+ ggtitle("PI N") +

#draws the means

geom_point() +

#draws the CI error bars

geom_errorbar(data=ddata,

aes(ymin= low.b.pi, ymax=up.b.pi,

color=samples), width=.5) + ylim(-0.25, 1.25)

h <- 0.1

plot21 <- plot11 + geom_hline(aes(yintercept=h))

pg <- plot21 + labs(x = "sample size (n,m)") + annotate(geom="text",

label="", x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

plot12 <- ggplot(ddata, aes(x=samples, y = Pr, group = samples))

+ ggtitle("PI J") +

#draws the means

geom_point() +

#draws the CI error bars

geom_errorbar(data=ddata,

aes(ymin= prJ.l, ymax= prJ.u,

color=samples), width=.5) + ylim(-0.25, 1.25)

h <- 0.1

plot22 <- plot12 + geom_hline(aes(yintercept=h))

ph <- plot22 + labs(x = "sample size (n,m)") + annotate(geom="text",

label="", x=1.5, y=h, vjust=-0.2) + theme(legend.position="none")

plot13 <- ggplot(ddata, aes(x=samples, y = Pr, group = samples)) +

ggtitle("TI J") +

#draws the means

geom_point() +

#draws the CI error bars

geom_errorbar(data=ddata,

aes(ymin= low.ti, ymax=up.ti,

color=samples), width=.5) + ylim(-0.25, 1.25)

h <- 0.1

plot23 <- plot13 + geom_hline(aes(yintercept=h))

pi <- plot23 + labs(x = "sample size (n)") + annotate(geom="text",

label="", x=1.5, y=h, vjust=-0.2)

+ theme(legend.position="none")

grid.arrange(pf + theme(axis.text.x = element_blank()),

pg + theme(axis.text.x = element_blank()),

ph + theme(axis.text.x = element_blank()),

pi + theme(axis.text.x = element_blank()),
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ncol = 2, nrow = 2)

contri2 <- as.data.frame(cbind(bdata$N,bdata$R,bdata$Pr,

bdata$low.cri,bdata$up.cri,

bdata$low.b.pi,bdata$up.b.pi,

bdata$prJ.l,bdata$prJ.u,

bdata$low.ti,bdata$up.ti))

names(contri2) <- c("n", "x", "Pr",

"low cri", "up cri",

"low pi N", "up pi N",

"low pi J", "up pi J",

"low ti J", "up ti J")

contrit2 <- xtable(contri2, caption= "Comparison of $(1-\\alpha = 0.95)$

credible, $(1-\\alpha = 0.95)$ prediction and

$(1-\\alpha = 0.95, P = 0.9)$ tolerance intervals

with increasing sample size $n (= m)$ for binomial

samples with a true proportion of 0.5. $n$ and $x$

are the number of trials and successes, respectively.

$Pr$ is the estimated proportion, 'low and up cri'

correspond to the credible intervals based on

Jeffreys approach, 'low and up pi N' are the

predictive intervals based on a normal approximation,

'low and up pi J' are predictive intervals based on

Jeffreys approach and 'low and up ti' are the

tolerance intervals obtained by the function

\\textit{bintol.int()} specifying Jeffreys

approach of the \\texttt{tolerance} package.",

label ="contrast2",

digits = c(0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2))

print(contrit2, include.rownames=F)

contri2a <- as.data.frame(cbind(bdata$N,bdata$R,bdata$Pr,

bdata$low.bnorm.pi,bdata$up.bnorm.pi,

bdata$prJ.ln,bdata$prJ.un,

bdata$lt,bdata$ut))

names(contri2a) <- c("n", "x", "Pr",

"low pi N", "up pi N",

"low pi J", "up pi J",

"low ti J", "up ti J")

contrit2a <- xtable(contri2a, caption= "Comparison of $(1-\\alpha = 0.95)$

prediction and $(1-\\alpha = 0.95, P = 0.9)$

tolerance intervals with increasing sample size

$n (= m)$ for binomial samples with a true

proportion of 0.5. Presented are the number of

successes $(m*p)$.",label ="contrast2a",
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digits = c(0, 0, 0, 2, 0, 0, 0, 0, 0, 0))

print(contrit2a, include.rownames=F)

contri3 <- as.data.frame(cbind(ddata$N,ddata$R,ddata$Pr,

ddata$low.cri,ddata$up.cri,

ddata$low.b.pi,ddata$up.b.pi,

ddata$prJ.l,ddata$prJ.u,

ddata$low.ti,ddata$up.ti))

names(contri3) <- c("n", "x", "Pr",

"low cri", "up cri",

"low pi N", "up pi N",

"low pi J", "up pi J",

"low ti J", "up ti J")

contrit3 <- xtable(contri3, caption= "Comparison of $(1-\\alpha = 0.95)$

credible, $(1-\\alpha = 0.95)$ prediction and

$(1-\\alpha = 0.95, P = 0.9)$ tolerance intervals

with increasing sample size $n (= m)$ for binomial

samples with a true proportion of 0.1. $n$ and $x$

are the number of trials and successes, respectively.

$Pr$ is the estimated proportion, 'low and up cri'

correspond to the credible intervals based on

Jeffreys approach, 'low and up pi N' are the predictive

intervals based on a normal approximation, 'low and up pi J'

are predictive intervals based on Jeffreys approach

and 'low and up ti' are the tolerance intervals obtained

by the function \\textit{bintol.int()} specifying

Jeffreys appraoch of the \\texttt{tolerance} package.",

label ="contrast3",

digits = c(0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2))

print(contrit3, include.rownames=F)

contri3a <- as.data.frame(cbind(ddata$N,ddata$R,ddata$Pr,

ddata$low.bnorm.pi,ddata$up.bnorm.pi,

ddata$prJ.ln,ddata$prJ.un,

ddata$lt,ddata$ut))

names(contri3a) <- c("n", "x", "Pr",

"low pi N", "up pi N",

"low pi J", "up pi J",

"low ti J", "up ti J")

contrit3a <- xtable(contri3a, caption= "Comparison of $(1-\\alpha = 0.95)$

prediction and $(1-\\alpha = 0.95, P = 0.9)$ tolerance

intervals with increasing sample size $n (= m)$ for

binomial samples with a true proportion of 0.5. Presented

are the number of successes $(m*p)$.",
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label ="contrast3a",

digits = c(0, 0, 0, 2, 0, 0, 0, 0, 0, 0))

print(contrit3a, include.rownames=F)

bdata <- as.data.frame(bdata)

bdata$width.ci <- bdata$up.cri - bdata$low.cri

bdata$width.pin <- bdata$up.b.pi - bdata$low.b.pi

bdata$width.piJ <- bdata$prJ.u - bdata$prJ.l

bdata$width.ti <- bdata$up.ti - bdata$low.ti

ddata <- as.data.frame(ddata)

ddata$width.ci <- ddata$up.cri - ddata$low.cri

ddata$width.pin <- ddata$up.b.pi - ddata$low.b.pi

ddata$width.piJ <- ddata$prJ.u - ddata$prJ.l

ddata$width.ti <- ddata$up.ti - ddata$low.ti

par(mfrow=c(2,1))

red.bdata <- subset(bdata, N<2500)

plot(width.ti ~ N, type = "b", col = "white",

ylab = "width of CrI, PI and TI",

xlab = "sample size (n)",

main = "Samples based on a binomial distribution with a

true proportion of 0.5",

data =red.bdata,

ylim = c(-0.125,1.125) )

points(bdata$N,bdata$width.ti, col = "black")

lines(bdata$N,bdata$width.ti, col = "black")

points(bdata$N,bdata$width.pin, col = "red")

lines(bdata$N,bdata$width.pin, col = "red")

points(bdata$N,bdata$width.piJ, col = "green")

lines(bdata$N,bdata$width.piJ, col = "green")

points(bdata$N,bdata$width.ci, col = "blue")

lines(bdata$N,bdata$width.ci, col = "blue")

red.ddata <- subset(ddata, N<2500)

plot(width.ti ~ N, type = "b", col = "white",

ylab = "width of CrI, PI and TI",

xlab = "sample size (n)",

main = "Samples based on a binomial distribution with a

true proportion of 0.1",

data =red.ddata,

ylim = c(-0.125,1.125) )

points(ddata$N,ddata$width.ti, col = "black")

lines(ddata$N,ddata$width.ti, col = "black")

points(ddata$N,ddata$width.pin, col = "red")

lines(ddata$N,ddata$width.pin, col = "red")

points(ddata$N,ddata$width.piJ, col = "green")

lines(ddata$N,ddata$width.piJ, col = "green")
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points(ddata$N,ddata$width.ci, col = "blue")

lines(ddata$N,ddata$width.ci, col = "blue")

legend("topright", c("TI Jeffreys", "PI norm", "PI Jeffreys", "CrI Jeffreys"),

bty = "n",

lty = c(1, 1, 1,1), lwd = 3, col = c("black", "red", "green", "blue"))
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