Institute of Mathematics

Professor

Dr. Julia Lieb

Institut für Mathematik
Universität Zürich
Winterthurerstrasse 190
CH-8057 

E-Mail:
Phone: +41 44 635 60 57
Fax: +41 44 635 57 06
Office: Y27H06

Vita

CV
Spring 20

Seminars & Lectures


Lectures
Finite Fields - Theory and Applications
Di
10.15-12.00

Exercises Finite Fields - Theory and Applications
Di
08.00-09.45
Do
10.00-12.00
Y13K05

Publications

Journal publications

G. Alfarano, J. Lieb
On the left primeness of some polynomial matrices with applications to convolutional codes
Journal of Algebra and Its Applications, doi:10.1142/S0219498821502078 (2020)    https://www.worldscientific.com/doi/10.1142/S0219498821502078

P. Almeida, J. Lieb
Complete j-MDP convolutional codes
IEEE Transactions on Information Theory, doi: 10.1109/TIT.2020.3015698 (2020)    https://ieeexplore.ieee.org/document/9163387?denied=

J. Lieb, R. Pinto
Constructions of MDS convolutional codes using superregular matrices
J. Algebra Comb. Discrete Appl. 7:1 (2020), p. 71-82.    http://jm.jacodesmath.com/index.php/jacodesmath/article/view/292

J. Lieb
Necessary field size and probability for MDP and complete MDP convolutional codes
Des. Codes Cryptogr. 87:12 (2019), p. 3019-3043    https://doi.org/10.1007/s10623-019-00661-6

J. Lieb
Complete MDP convolutional codes
Journal of Algebra and Its Applications, 8(6) (2019) 1950105 (13 pages).    https://www.worldscientific.com/doi/abs/10.1142/S0219498819501056

J. Lieb
Uniform probability and natural density of mutually left coprime polynomial matrices over finite fields
Lin. Alg. Appl. 539 (2018), p. 134-159.    https://www.sciencedirect.com/science/article/abs/pii/S0024379517306341

J. Lieb
The probability of primeness for specially structured polynomial matrices over finite fields with applications to linear systems and convolutional codes
Math. Control Signals Syst. 29:8 (2017)    https://link.springer.com/article/10.1007/s00498-017-0191-z

U. Helmke, J Jordan, J. Lieb
Probability estimates for reachability of linear systems defined over finite fields
Advances in Mathematics of Communications 10 No. 1 (2016), p. 63-78.    https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=12285

Chapters of books

J. Lieb, R. Pinto, J. Rosenthal
Convolutional codes
to be published in A Concise Encyclopedia of Coding Theory (eds. Huffman, C; Kim, J.; Sole, P.), CRC Press, 2020, arXiv:2001.08281.   

Conference proceedings

G. Alfarano, J. Lieb, J. Rosenthal
Construction of rate (n-1)/n non-binary LDPC convolutional codes via difference triangle sets
IEEE International Symposium on Information Theory (ISIT), 2020.   

U. Helmke, J Jordan, J. Lieb
Reachability of random linear systems over finite fields
in Coding Theory and Applications, 4th International castle Meeting, Palmela Castle, Portugal (eds. Pinto, R.; Malonek, P.R.; Vettori, P.), Springer- Verlag (2014), p. 217-225.