FLOWS ON HOMOGENEOUS SPACES. TECHNION. AUGUST 2012.

Problems

- (1) Let Γ be a lattice in $SL(n, \mathbb{R})$, and let N be a finite normal subgroup of Γ . Prove that $N < \langle \pm I \rangle$.
- (2) Let H be a closed subgroup of $SL(n, \mathbb{R})$ with finite covolume. Prove that H is discrete.
- (3) Show that nonabelian free group is not amenable.
- (4) Show that there are infinitely many different invariant means on $L^{\infty}(\mathbb{Z})$.
- (5) (a) Show that a closed subgroup H of amenable group G is amenable.
 - (b) Is it true when the subgroup is not closed?
- (6) Let Γ be a lattice subgroup in a locally compact group G. Prove that if Γ is amenable, then G is also amenable.
- (7) (a) Show that SL₂(ℤ) does not have property T.
 (b) Deduce that SL(2, ℝ) does not have property T.

FLOWS ON HOMOGENEOUS SPACES. TECHNION. AUGUST 2012.

Hints

- (1) Use the Borel density theorem.
- (2) Show that the Lie algebra of H is an ideal in the Lie algebra of G.
- (3) Construct an action on \mathbb{P}^1 without an invariant measure.
- (4) Use construction of the means as averages over sequences of intervals I_n .
- (5) Given an affine action of H on Ω , consider the space $L^{\infty}_{H}(G, \Omega)$ consisting of equivariant measurable maps.
- (6) Show that $L^2(G)$ contains an almost invariant vector.
- (7) Use that for property-T groups $\Gamma/[\Gamma, \Gamma]$ is finite.