Review Problems 2

1. The rates of escape of pollutant are given in the following table:

Day	1	2	3	4	5	6	7
Rate (gal./day)	15	13	12	11	9	7	2

- (a) Estimate the total amount of pollutant escaped using the right hand Riemann sum.
- (b) It is known that the rate is decreasing. Is your estimate in (a) an overestimate or an underestimate? Explain.
- (c) Estimate the error in (a).
- 2. #18, Ch. 5 Review.
- 3. #19, Ch. 5 Review.
- 4. The velocity of a particle moving along x-axis at the time t (in sec.) is $v(t) = t^2 + t 2$ (in meter/sec.).
 - (a) If at time t = 0, the particle is at the origin, determine the position of the particle at time t = 2. (You should be able to do this both by using calculator and by using the fundamental theorem of calculus.)
 - (b) What is the total distance traveled by the particle from t = 0 to t = 2?
- 5. Compute $\int_{-3}^{2} |x 1| dx$.
 - (a) Interpreting it as area.
 - (b) Using the fundamental theorem of calculus.
- 6. Let F(x) be an antiderivative of f(x).
 - (a) If the units x and f(x) are gallons and pounds respectively, what are the units of F(x).
 - (b) Suppose that you know that F(0) = 1, $\int_{-1}^{1} f(x)dx = 1$, and f is an even function. Determine F(1).
- 7. Using the fundamental theorem of calculus, find the area of region bounded by $y = x^2 2$ from below and by $y = 6 x^2$ from above.
- 8. Using the fundamental theorem of calculus, find the average value of $f(x) = \cos x$ for x in $[0, \pi]$.
- 9. #47, Ch. 6 Review.
- 10. #49, Ch. 6 Review.