LECTURE 3: CONGRUENCES

1. Basic properties of congruences

We begin by introducing some definitions and elementary properties.
Definition 1.1. Suppose that $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}$. We say that a is congruent to b modulo m, and write $a \equiv b(\bmod m)$, when $m \mid(a-b)$.
We say that a is not congruent to b modulo m, and write $a \not \equiv b(\bmod m)$, when $m \nmid(a-b)$.

Theorem 1.2. Let a, b, c, d be integers. Then
(i) $a \equiv b(\bmod m) \Longleftrightarrow b \equiv a(\bmod m) \Longleftrightarrow a-b \equiv 0(\bmod m)$;
(ii) $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m) \Rightarrow a \equiv c(\bmod m)$;
(iii) $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m) \Rightarrow a+c \equiv b+d(\bmod m)$ and $a c \equiv$ $b d(\bmod m)$;
(iv) If $a \equiv b(\bmod m)$ and $d \mid m$ with $d>0$, then $a \equiv b(\bmod d)$;
(v) If $a \equiv b(\bmod m)$ and $c>0$, then $a c \equiv b c(\bmod m c)$.

Proof. Verification of these properties is straightforward. For instance, we prove (iii). Suppose that $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Then $a-b=u m$ and $c-d=v m$ for some integers u and v. Hence, $(a+c)-(b+d)=(u+v) m$, so that $a+c \equiv b+d(\bmod m)$. Also, $a c-b d=(b+u m)(d+v m)-b d=$ $(u d+b v+u v m) m$ which implies that $a c \equiv b d(\bmod m)$.

Corollary 1.3. When $p(t)$ is a polynomial with integral coefficients, it follows that whenever $a \equiv b(\bmod m)$, then $p(a) \equiv p(b)(\bmod m)$.

Proof. Use induction to establish that whenever $a \equiv b(\bmod m)$, then $a^{n} \equiv$ $b^{n}(\bmod m)$ for each $n \in \mathbb{N}$.

The above corollary also extends to polynomials in several variables. In particular, we see that if the polynomial equation $p\left(x_{1}, \ldots x_{n}\right)=0$ has an integral solution, then the congruence $p\left(x_{1}, \ldots x_{n}\right) \equiv 0(\bmod m)$ is also solvable for all $m \in \mathbb{N}$. This provides a useful test for solvability of equations in integers.

The next theorem indicates how factors may be cancelled through congruences.

Theorem 1.4. Let $a, x, y \in \mathbb{Z}$ and $m \in \mathbb{N}$. Then
(i) $a x \equiv a y(\bmod m) \Longleftrightarrow x \equiv y(\bmod m /(a, m))$.

In particular, if $a x \equiv a y(\bmod m)$ and $(a, m)=1$, then $x \equiv y(\bmod m)$;
(ii) $x \equiv y\left(\bmod m_{i}\right)(1 \leqslant i \leqslant r) \Longleftrightarrow x \equiv y\left(\bmod \left[m_{1}, \ldots, m_{r}\right]\right)$.

Proof. Observe first that when $(a, m)=1$, then $m|a(x-y) \Longleftrightarrow m|(x-y)$. Then the conclusion of whenever $(a, m)=1$. When $(a, m)>1$, on the other hand, one does at least have $(a /(a, m), m /(a, m))=1$, so that

$$
\left.m\left|a(x-y) \Longleftrightarrow \frac{m}{(a, m)}\right| \frac{a}{(a, m)}(x-y) \Longleftrightarrow \frac{m}{(a, m)} \right\rvert\,(x-y)
$$

This establishes the conclusion of part (i) of the theorem.
We now consider part (ii) of the theorem. Observe first that whenever $m_{i} \mid(x-y)$ for $(1 \leqslant i \leqslant r)$, then $\left[m_{1}, \ldots, m_{r}\right] \mid(x-y)$. On the other hand, if $\left[m_{1}, \ldots, m_{r}\right] \mid(x-y)$, then $m_{i} \mid(x-y)$ for $(1 \leqslant i \leqslant r)$. The conclusion of part (ii) is now immediate.

We investigate existence of multiplicative inverse modulo m.
Theorem 1.5. Suppose that $(a, m)=1$. Then there exists an integer x with the property that $a x \equiv 1(\bmod m)$. If x_{1} and x_{2} are any two such integers, then $x_{1} \equiv x_{2}(\bmod m)$. Conversely, if $(a, m)>1$, then there is no integer x with $a x \equiv 1(\bmod m)$.

Proof. Suppose that $(a, m)=1$. Then by the Euclidean Algorithm, there exist integers x and y such that $a x+m y=1$, whence $a x \equiv 1(\bmod m)$. Meanwhile, if $a x_{1} \equiv 1 \equiv a x_{2}(\bmod m)$, then $a\left(x_{1}-x_{2}\right) \equiv 0(\bmod m)$. But $(a, m)=1$, and thus $x_{1}-x_{2} \equiv 0(\bmod m)$. We have therefore established both existence and uniqueness of the multiplicative inverse for residues a with $(a, m)=1$. If $(a, m)>1$, then $(a x, m)>1$ for every integer x. But if one were to have $a x \equiv 1(\bmod m)$, then $(a x, m)=(1, m)=1$, which yields a contradiction. This establishes the last part of the theorem.

Now we examine the set of equivalence classes with respect to congruence modulo m.

Definition 1.6. (i) If $x \equiv y(\bmod m)$, then y is called a residue of x modulo m;
(ii) We say that $\left\{x_{1}, \ldots, x_{m}\right\}$ is a complete residue system modulo m if for each $y \in \mathbb{Z}$, there exists a unique x_{i} with $y \equiv x_{i}(\bmod m)$;
(iii) The set of integers x with $x \equiv a(\bmod m)$ is called the residue class, or congruence class, of a modulo m.

We also wish to consider residue classes containing integers coprime to the modulus, and this prompts the following observation.
Theorem 1.7. Whenever $b \equiv c(\bmod m)$, one has $(b, m)=(c, m)$.
Proof. If $b \equiv c(\bmod m)$, then $m \mid(b-c)$, whence there exists an integer x with $b=c+m x$. But then $(b, m)=(c+m x, m)=(c, m)$, as desired.
Definition 1.8. A reduced residue system modulo m is a set of integers r_{1}, \ldots, r_{ℓ} satisfying
(a) $\left(r_{i}, m\right)=1$ for $1 \leqslant i \leqslant \ell$,
(b) $r_{i} \not \equiv r_{j}(\bmod m)$ for $i \neq j$,
(c) whenever $(x, m)=1$, then $x \equiv r_{i}(\bmod m)$ for some i with $1 \leqslant i \leqslant \ell$.

Theorem 1.9. The number of elements in a reduced residue system is equal to the number of integers n satisfying $1 \leqslant n<m$ and $(n, m)=1$.

Proof. We observe that every integer x can be written as $x=q m+r$ with $0 \leqslant r<m$. Moreover, $(x, m)=(r, m)$. Hence, we see that

$$
\{n \in \mathbb{N}: 1 \leqslant n<m,(n, m)=1\}
$$

is a reduced residue system modulo m.
Let r_{1}, \ldots, r_{ℓ} and s_{1}, \ldots, s_{k} be reduced residue systems modulo m. Then for every $i=1, \ldots, \ell$, we have $r_{i} \equiv s_{\sigma(i)}(\bmod m)$ with some $\sigma(i)=1, \ldots, k$. Similarly, for every $j=1, \ldots, k$, we have $s_{j} \equiv r_{\theta(j)}(\bmod m)$ with some $\theta(j)=$ $1, \ldots, \ell$. We deduce that $r_{i} \equiv r_{\theta(\sigma(i))}(\bmod m)$ and $s_{j} \equiv r_{\sigma(\theta(j))}(\bmod m)$. It follows from the properties of the reduced residue systems, that $\theta(\sigma(i))=i$ and $\sigma(\theta(j))=j$. Hence, the maps σ and θ define a bijection between r_{1}, \ldots, r_{ℓ} and s_{1}, \ldots, s_{k}. In particular, reduced residue systems have the same sizes.

The number of elements in a reduced residue system modulo m is denoted by $\phi(m)$ (Euler's totient, or Euler's ϕ-function).

2. Euler and Fermat theorems

Theorem 2.1 (Euler, 1760). If $(a, m)=1$ then

$$
a^{\phi(m)} \equiv 1(\bmod m)
$$

In the proof we use the following lemma
Lemma 2.2. Suppose that $(a, m)=1$. Then whenever $\left\{r_{1}, \ldots, r_{\ell}\right\}$ is a reduced residue system modulo m, the set $\left\{a r_{1}, \ldots, a r_{\ell}\right\}$ is also a reduced residue system modulo m.

Proof. Since $(a, m)=1$, it follows that whenever $\left(r_{i}, m\right)=1$ one has $\left(a r_{i}, m\right)=$ 1. If $a r_{i} \equiv a r_{j}(\bmod m)$, then it follows from Theorem 1.4(i) that $r_{i} \equiv$ $r_{j}(\bmod m)$. Hence we deduce that $a r_{i} \not \equiv a r_{j}(\bmod m)$ for $i \neq j$.

It remains to verify property (c). Take x with $(x, m)=1$. By Theorem 1.5, there exists an integer a^{\prime} such that $a a^{\prime} \equiv 1(\bmod m)$. Since $\left\{r_{1}, \ldots, r_{\ell}\right\}$ is a reduced residue system modulo $m, a^{\prime} x \equiv r_{i}(\bmod m)$ for some i. Then $a r_{i} \equiv\left(a a^{\prime}\right) x \equiv x(\bmod m)$. This shows that $\left\{a r_{1}, \ldots, a r_{\ell}\right\}$ is a reduced residue system modulo m.
Proof of Theorem 2.1. Let $\left\{r_{1}, r_{2}, \ldots, r_{\phi(m)}\right\}$ be any reduced residue system modulo m, and suppose that $(a, m)=1$. By Lemma 2.2, the system $\left\{a r_{1}, \ldots, a r_{\phi(m)}\right\}$ is also a reduced residue system modulo m. Then there is a permutation σ of $\{1,2, \ldots, \phi(m)\}$ with the property that $r_{i} \equiv a r_{\sigma(i)}(\bmod m)$ for $1 \leqslant i \leqslant \phi(m)$. Consequently, one has

$$
\prod_{i=1}^{\phi(m)} r_{i} \equiv \prod_{i=1}^{\phi(m)}\left(a r_{\sigma(i)}\right)=\prod_{j=1}^{\phi(m)}\left(a r_{j}\right)=a^{\phi(m)} \prod_{j=1}^{\phi(m)} r_{j} \quad(\bmod m)
$$

But $\left(r_{1} \cdots r_{\phi(m)}, m\right)=1$, and thus $a^{\phi(m)} \equiv 1(\bmod m)$.
Corollary 2.3 (Fermat's Little Theorem, 1640). Let p be a prime number, and suppose that $(a, p)=1$. Then one has

$$
a^{p-1} \equiv 1(\bmod p) .
$$

Moreover, for all integers a one has

$$
a^{p} \equiv a(\bmod p)
$$

Proof. Note that the set $\{1,2, \ldots, p-1\}$ is a reduced residue system modulo p. Thus $\phi(p)=p-1$, and the first part of the theorem follows from Theorem 2.1. When $(a, p)=1$, the second part of the theorem is immediate from the first part. Meanwhile, if $(a, p)>1$, one has $p \mid a$, so that $a^{p} \equiv 0 \equiv a(\bmod p)$. This completes the proof of the theorem.

Fermat's Little Theorem, and Euler's Theorem, ensure that the computation of powers is very efficient modulo p (or modulo m).
Example 2.4. Compute $5^{2016}(\bmod 41)$. Observe first that $\phi(41)=40$, and so it follows from Fermat's Little Theorem that $5^{40} \equiv 1(\bmod 41)$, and hence

$$
5^{2016}=5^{40 \cdot 50+16}=\left(5^{40}\right)^{50} 5^{16} \equiv 5^{16}(\bmod 41)
$$

Note next that powers which are themselves powers of 2 are easy to compute by repeated squaring (the "divide and conquer" algorithm). Thus one finds that

$$
\begin{aligned}
5^{2} & =25 \equiv-16(\bmod 41) \\
5^{4} & =\left(5^{2}\right)^{2} \equiv(-16)^{2}=256 \equiv 10(\bmod 41) \\
5^{8} & =\left(5^{4}\right)^{2} \equiv(10)^{2}=100 \equiv 18(\bmod 41) \\
5^{16} & =\left(5^{8}\right)^{2} \equiv(18)^{2}=324 \equiv 37(\bmod 41)
\end{aligned}
$$

Thus $5^{2016} \equiv 37(\bmod 41)$.
Theorem 2.5 (Wilson's Theorem; Waring, Lagrange, 1771). For each prime number p, one has

$$
(p-1)!\equiv-1(\bmod p)
$$

Proof. The proof for $p=2$ and 3 is immediate, so suppose henceforth that p is a prime number with $p \geqslant 5$. Observe that when $1 \leqslant a \leqslant p-1$, one has $(a, p)=1$, so there exists an integer \bar{a} unique modulo p with $a \bar{a} \equiv 1(\bmod p)$. Moreover, there is no loss in supposing that \bar{a} satisfies $1 \leqslant \bar{a} \leqslant p-1$, and then \bar{a} is a uniquely defined integer. We may now pair off the integers a with $1 \leqslant a \leqslant p-1$ with their counterparts \bar{a} with $1 \leqslant \bar{a} \leqslant p-1$, so that $a \bar{a} \equiv 1(\bmod p)$ for each pair. Note that $a \neq \bar{a}$ so long as $a^{2} \not \equiv 1(\bmod p)$. But $a^{2} \equiv 1(\bmod p)$ if and only if $(a-1)(a+1) \equiv 0(\bmod p)$, and the latter is possible only when $a \equiv \pm 1(\bmod p)$. Thus we find that

$$
\prod_{a=2}^{p-2} a=\prod_{a}(a \bar{a}) \equiv 1(\bmod p)
$$

whence

$$
\prod_{a=1}^{p-1} a \equiv(p-1) \equiv-1(\bmod p)
$$

The proof of Wilson's Theorem motivates a proof of a criterion for the solubility of the congruence $x^{2} \equiv-1(\bmod p)$.

Theorem 2.6. When $p=2$, or when p is a prime number with $p \equiv 1(\bmod 4)$, the congruence

$$
x^{2} \equiv-1(\bmod p)
$$

is soluble.
When $p \equiv 3(\bmod 4)$, the latter congruence is not soluble.
Proof. When $p=2, x=1$ provides a solution. Assume next that $p \equiv$ $1(\bmod 4)$, and write $r=(p-1) / 2, x=r!$. Then since r is even, one has

$$
\begin{aligned}
x^{2} & =r!\cdot(-1)^{r} r!=(1 \cdot 2 \cdots r)((-1) \cdot(-2) \cdots(-r)) \\
& \equiv(1 \cdot 2 \cdots r)((p-1) \cdot(p-2) \cdots(p-r))=(p-1)!\equiv-1(\bmod p) .
\end{aligned}
$$

Thus, when $p \equiv 1(\bmod 4)$, the congruence $x^{2} \equiv-1(\bmod p)$ is indeed soluble.
Suppose then that $p \equiv 3(\bmod 4)$. If it were possible that an integer x exists with $x^{2} \equiv-1(\bmod p)$, then one finds that

$$
\left(x^{2}\right)^{(p-1) / 2} \equiv(-1)^{(p-1) / 2} \equiv-1(\bmod p),
$$

yet by Fermat's Little Theorem, one has

$$
\left(x^{2}\right)^{(p-1) / 2}=x^{p-1} \equiv 1(\bmod p)
$$

whenever $(x, p)=1$. We therefore arrive at a contradiction, and this completes the proof of the theorem.

