
LECTURE 3: CONGRUENCES

1. Basic properties of congruences

We begin by introducing some definitions and elementary properties.

Definition 1.1. Suppose that a, b ∈ Z and m ∈ N. We say that a is congru-
ent to b modulo m, and write a ≡ b (mod m), when m | (a− b).
We say that a is not congruent to b modulo m, and write a 6≡ b (mod m),
when m - (a− b).

Theorem 1.2. Let a, b, c, d be integers. Then

(i) a ≡ b (mod m) ⇐⇒ b ≡ a (mod m) ⇐⇒ a− b ≡ 0 (mod m);

(ii) a ≡ b (mod m) and b ≡ c (mod m)⇒ a ≡ c (mod m);

(iii) a ≡ b (mod m) and c ≡ d (mod m) ⇒ a + c ≡ b + d (mod m) and ac ≡
bd (mod m);

(iv) If a ≡ b (mod m) and d | m with d > 0, then a ≡ b (mod d);

(v) If a ≡ b (mod m) and c > 0, then ac ≡ bc (mod mc).

Proof. Verification of these properties is straightforward. For instance, we
prove (iii). Suppose that a ≡ b (mod m) and c ≡ d (mod m). Then a−b = um
and c−d = vm for some integers u and v. Hence, (a+ c)− (b+d) = (u+v)m,
so that a + c ≡ b + d (mod m). Also, ac − bd = (b + um)(d + vm) − bd =
(ud+ bv + uvm)m which implies that ac ≡ bd (mod m). �

Corollary 1.3. When p(t) is a polynomial with integral coefficients, it follows
that whenever a ≡ b (mod m), then p(a) ≡ p(b) (mod m).

Proof. Use induction to establish that whenever a ≡ b (mod m), then an ≡
bn (mod m) for each n ∈ N. �

The above corollary also extends to polynomials in several variables. In par-
ticular, we see that if the polynomial equation p(x1, . . . xn) = 0 has an integral
solution, then the congruence p(x1, . . . xn) ≡ 0 (mod m) is also solvable for all
m ∈ N. This provides a useful test for solvability of equations in integers.

The next theorem indicates how factors may be cancelled through congru-
ences.

Theorem 1.4. Let a, x, y ∈ Z and m ∈ N. Then

(i) ax ≡ ay (mod m) ⇐⇒ x ≡ y (mod m/(a,m)).
In particular, if ax ≡ ay (mod m) and (a,m) = 1, then x ≡ y (mod m);

(ii) x ≡ y (mod mi) (1 6 i 6 r) ⇐⇒ x ≡ y (mod [m1, . . . ,mr]).
1
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Proof. Observe first that when (a,m) = 1, then m | a(x−y) ⇐⇒ m | (x−y).
Then the conclusion of whenever (a,m) = 1. When (a,m) > 1, on the other
hand, one does at least have (a/(a,m),m/(a,m)) = 1, so that

m | a(x− y) ⇐⇒ m

(a,m)

∣∣∣∣ a

(a,m)
(x− y) ⇐⇒ m

(a,m)

∣∣∣∣ (x− y).

This establishes the conclusion of part (i) of the theorem.

We now consider part (ii) of the theorem. Observe first that whenever
mi | (x − y) for (1 6 i 6 r), then [m1, . . . ,mr] | (x − y). On the other hand,
if [m1, . . . ,mr] | (x − y), then mi | (x − y) for (1 6 i 6 r). The conclusion of
part (ii) is now immediate. �

We investigate existence of multiplicative inverse modulo m.

Theorem 1.5. Suppose that (a,m) = 1. Then there exists an integer x with
the property that ax ≡ 1 (mod m). If x1 and x2 are any two such integers,
then x1 ≡ x2 (mod m). Conversely, if (a,m) > 1, then there is no integer x
with ax ≡ 1 (mod m).

Proof. Suppose that (a,m) = 1. Then by the Euclidean Algorithm, there exist
integers x and y such that ax+my = 1, whence ax ≡ 1 (mod m). Meanwhile,
if ax1 ≡ 1 ≡ ax2 (mod m), then a(x1 − x2) ≡ 0 (mod m). But (a,m) = 1,
and thus x1 − x2 ≡ 0 (mod m). We have therefore established both existence
and uniqueness of the multiplicative inverse for residues a with (a,m) = 1.
If (a,m) > 1, then (ax,m) > 1 for every integer x. But if one were to have
ax ≡ 1 (mod m), then (ax,m) = (1,m) = 1, which yields a contradiction.
This establishes the last part of the theorem. �

Now we examine the set of equivalence classes with respect to congruence
modulo m.

Definition 1.6. (i) If x ≡ y (mod m), then y is called a residue of x modulo
m;

(ii) We say that {x1, . . . , xm} is a complete residue system modulo m if for
each y ∈ Z, there exists a unique xi with y ≡ xi (mod m);

(iii) The set of integers x with x ≡ a (mod m) is called the residue class, or
congruence class, of a modulo m.

We also wish to consider residue classes containing integers coprime to the
modulus, and this prompts the following observation.

Theorem 1.7. Whenever b ≡ c (mod m), one has (b,m) = (c,m).

Proof. If b ≡ c (mod m), then m | (b − c), whence there exists an integer x
with b = c+mx. But then (b,m) = (c+mx,m) = (c,m), as desired. �

Definition 1.8. A reduced residue system modulo m is a set of integers
r1, . . . , r` satisfying

(a) (ri,m) = 1 for 1 6 i 6 `,

(b) ri 6≡ rj (mod m) for i 6= j,
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(c) whenever (x,m) = 1, then x ≡ ri (mod m) for some i with 1 6 i 6 `.

Theorem 1.9. The number of elements in a reduced residue system is equal
to the number of integers n satisfying 1 6 n < m and (n,m) = 1.

Proof. We observe that every integer x can be written as x = qm + r with
0 6 r < m. Moreover, (x,m) = (r,m). Hence, we see that

{n ∈ N : 1 6 n < m, (n,m) = 1}
is a reduced residue system modulo m.

Let r1, . . . , r` and s1, . . . , sk be reduced residue systems modulo m. Then
for every i = 1, . . . , `, we have ri ≡ sσ(i) (mod m) with some σ(i) = 1, . . . , k.
Similarly, for every j = 1, . . . , k, we have sj ≡ rθ(j) (mod m) with some θ(j) =
1, . . . , `. We deduce that ri ≡ rθ(σ(i)) (mod m) and sj ≡ rσ(θ(j)) (mod m). It
follows from the properties of the reduced residue systems, that θ(σ(i)) = i
and σ(θ(j)) = j. Hence, the maps σ and θ define a bijection between r1, . . . , r`
and s1, . . . , sk. In particular, reduced residue systems have the same sizes. �

The number of elements in a reduced residue system modulo m is denoted
by φ(m) (Euler’s totient, or Euler’s φ-function).

2. Euler and Fermat theorems

Theorem 2.1 (Euler, 1760). If (a,m) = 1 then

aφ(m) ≡ 1 (mod m).

In the proof we use the following lemma

Lemma 2.2. Suppose that (a,m) = 1. Then whenever {r1, . . . , r`} is a reduced
residue system modulo m, the set {ar1, . . . , ar`} is also a reduced residue system
modulo m.

Proof. Since (a,m) = 1, it follows that whenever (ri,m) = 1 one has (ari,m) =
1. If ari ≡ arj (mod m), then it follows from Theorem 1.4(i) that ri ≡
rj (mod m). Hence we deduce that ari 6≡ arj (mod m) for i 6= j.

It remains to verify property (c). Take x with (x,m) = 1. By Theorem
1.5, there exists an integer a′ such that aa′ ≡ 1 (mod m). Since {r1, . . . , r`}
is a reduced residue system modulo m, a′x ≡ ri (mod m) for some i. Then
ari ≡ (aa′)x ≡ x (mod m). This shows that {ar1, . . . , ar`} is a reduced residue
system modulo m. �

Proof of Theorem 2.1. Let {r1, r2, . . . , rφ(m)} be any reduced residue system
modulom, and suppose that (a,m) = 1. By Lemma 2.2, the system {ar1, . . . , arφ(m)}
is also a reduced residue system modulo m. Then there is a permutation σ of
{1, 2, . . . , φ(m)} with the property that ri ≡ arσ(i) (mod m) for 1 6 i 6 φ(m).
Consequently, one has

φ(m)∏
i=1

ri ≡
φ(m)∏
i=1

(arσ(i)) =

φ(m)∏
j=1

(arj) = aφ(m)

φ(m)∏
j=1

rj (mod m).
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But (r1 · · · rφ(m),m) = 1, and thus aφ(m) ≡ 1 (mod m). �

Corollary 2.3 (Fermat’s Little Theorem, 1640). Let p be a prime number,
and suppose that (a, p) = 1. Then one has

ap−1 ≡ 1 (mod p).

Moreover, for all integers a one has

ap ≡ a (mod p).

Proof. Note that the set {1, 2, . . . , p−1} is a reduced residue system modulo p.
Thus φ(p) = p−1, and the first part of the theorem follows from Theorem 2.1.
When (a, p) = 1, the second part of the theorem is immediate from the first
part. Meanwhile, if (a, p) > 1, one has p | a, so that ap ≡ 0 ≡ a (mod p). This
completes the proof of the theorem. �

Fermat’s Little Theorem, and Euler’s Theorem, ensure that the computation
of powers is very efficient modulo p (or modulo m).

Example 2.4. Compute 52016 (mod 41). Observe first that φ(41) = 40, and
so it follows from Fermat’s Little Theorem that 540 ≡ 1 (mod 41), and hence

52016 = 540·50+16 = (540)50516 ≡ 516 (mod 41).

Note next that powers which are themselves powers of 2 are easy to compute
by repeated squaring (the “divide and conquer” algorithm). Thus one finds
that

52 = 25 ≡ −16 (mod 41),

54 = (52)2 ≡ (−16)2 = 256 ≡ 10 (mod 41),

58 = (54)2 ≡ (10)2 = 100 ≡ 18 (mod 41),

516 = (58)2 ≡ (18)2 = 324 ≡ 37 (mod 41).

Thus 52016 ≡ 37 (mod 41).

Theorem 2.5 (Wilson’s Theorem; Waring, Lagrange, 1771). For each prime
number p, one has

(p− 1)! ≡ −1 (mod p).

Proof. The proof for p = 2 and 3 is immediate, so suppose henceforth that p
is a prime number with p > 5. Observe that when 1 6 a 6 p − 1, one has
(a, p) = 1, so there exists an integer a unique modulo p with aa ≡ 1 (mod p).
Moreover, there is no loss in supposing that a satisfies 1 6 a 6 p − 1, and
then a is a uniquely defined integer. We may now pair off the integers a
with 1 6 a 6 p − 1 with their counterparts a with 1 6 a 6 p − 1, so that
aa ≡ 1 (mod p) for each pair. Note that a 6= a so long as a2 6≡ 1 (mod p).
But a2 ≡ 1 (mod p) if and only if (a − 1)(a + 1) ≡ 0 (mod p), and the latter
is possible only when a ≡ ±1 (mod p). Thus we find that

p−2∏
a=2

a =
∏
a

(aa) ≡ 1 (mod p),
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whence
p−1∏
a=1

a ≡ (p− 1) ≡ −1 (mod p).

�

The proof of Wilson’s Theorem motivates a proof of a criterion for the
solubility of the congruence x2 ≡ −1 (mod p).

Theorem 2.6. When p = 2, or when p is a prime number with p ≡ 1 (mod 4),
the congruence

x2 ≡ −1 (mod p)

is soluble.

When p ≡ 3 (mod 4), the latter congruence is not soluble.

Proof. When p = 2, x = 1 provides a solution. Assume next that p ≡
1 (mod 4), and write r = (p− 1)/2, x = r!. Then since r is even, one has

x2 = r! · (−1)rr! = (1 · 2 · · · r)((−1) · (−2) · · · (−r))
≡ (1 · 2 · · · r)((p− 1) · (p− 2) · · · (p− r)) = (p− 1)! ≡ −1 (mod p).

Thus, when p ≡ 1 (mod 4), the congruence x2 ≡ −1 (mod p) is indeed soluble.

Suppose then that p ≡ 3 (mod 4). If it were possible that an integer x exists
with x2 ≡ −1 (mod p), then one finds that

(x2)(p−1)/2 ≡ (−1)(p−1)/2 ≡ −1 (mod p),

yet by Fermat’s Little Theorem, one has

(x2)(p−1)/2 = xp−1 ≡ 1 (mod p)

whenever (x, p) = 1. We therefore arrive at a contradiction, and this completes
the proof of the theorem. �


