LECTURE 3: CONGRUENCES

1. BASIC PROPERTIES OF CONGRUENCES
We begin by introducing some definitions and elementary properties.

Definition 1.1. Suppose that a,b € Z and m € N. We say that a is congru-
ent to b modulo m, and write a = b (mod m), when m | (a — b).

We say that a is not congruent to b modulo m, and write a # b (mod m),
when m 1 (a — b).

Theorem 1.2. Let a, b, ¢, d be integers. Then

(i) a=b(mod m) <= b=a (mod m) <= a—b=0 (mod m);

(i) a = b (mod m) and b = ¢ (mod m) = a = ¢ (mod m);

(#ii) a = b (mod m) and ¢ = d (mod m) = a+ ¢ =b+d (mod m) and ac =
bd (mod m);

(iv) If a = b (mod m) and d | m with d > 0, then a = b (mod d);

(v) If a = b (mod m) and ¢ > 0, then ac = be (mod mc).

Proof. Verification of these properties is straightforward. For instance, we
prove (iii). Suppose that a = b (mod m) and ¢ = d (mod m). Then a—b = um
and ¢ —d = vm for some integers u and v. Hence, (a+¢) — (b+d) = (u+v)m,
so that a + ¢ = b+ d (mod m). Also, ac — bd = (b + um)(d + vm) — bd =
(ud + bv + uwvm)m which implies that ac = bd (mod m). O

Corollary 1.3. When p(t) is a polynomial with integral coefficients, it follows
that whenever a = b (mod m), then p(a) = p(b) (mod m).

Proof. Use induction to establish that whenever a = b (mod m), then a”
b" (mod m) for each n € N.

il

The above corollary also extends to polynomials in several variables. In par-
ticular, we see that if the polynomial equation p(z1,...z,) = 0 has an integral
solution, then the congruence p(z1,...z,) =0 (mod m) is also solvable for all
m € N. This provides a useful test for solvability of equations in integers.

The next theorem indicates how factors may be cancelled through congru-
ences.

Theorem 1.4. Let a,x,y € Z and m € N. Then
(i) ax = ay (mod m) <= z =y (mod m/(a,m)).
In particular, if ax = ay (mod m) and (a,m) =1, then v =y (mod m);
(i) =y (mod m;) (1 <i<r) <= x=y (mod [my,...,m,]).
1
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Proof. Observe first that when (a,m) =1, then m | a(x —y) <= m | (x —vy).
Then the conclusion of whenever (a,m) = 1. When (a, m) > 1, on the other
hand, one does at least have (a/(a,m), m/(a,m)) = 1, so that

m a m
(r—y) <=

m|a(r —y) <= (z —y).

(a,m) | (a,m) (a,m)

This establishes the conclusion of part (i) of the theorem.

We now consider part (i) of the theorem. Observe first that whenever
m; | (x —y) for (1 <i < r), then [my,...,m,| | (x —y). On the other hand,
if [my,...,m;] | (x —y), then m; | (x —y) for (1 < i < r). The conclusion of
part (ii) is now immediate. O

We investigate existence of multiplicative inverse modulo m.

Theorem 1.5. Suppose that (a,m) = 1. Then there exists an integer x with
the property that ax = 1 (mod m). If z1 and x5 are any two such integers,
then x1 = x9 (mod m). Conversely, if (a,m) > 1, then there is no integer
with ax = 1 (mod m).

Proof. Suppose that (a,m) = 1. Then by the Euclidean Algorithm, there exist
integers = and y such that ax +my = 1, whence ax = 1 (mod m). Meanwhile,
if axr; = 1 = azy (mod m), then a(x; — x3) = 0 (mod m). But (a,m) = 1,
and thus z; — x9 = 0 (mod m). We have therefore established both existence
and uniqueness of the multiplicative inverse for residues a with (a,m) = 1.
If (a,m) > 1, then (ax,m) > 1 for every integer x. But if one were to have
ax = 1 (mod m), then (az,m) = (1,m) = 1, which yields a contradiction.
This establishes the last part of the theorem. O

Now we examine the set of equivalence classes with respect to congruence
modulo m.

Definition 1.6. (i) If x = y (mod m), then y is called a residue of x modulo
m;

(ii) We say that {z1,...,z,,} is a complete residue system modulo m if for
each y € Z, there exists a unique x; with y = x; (mod m);

(iii) The set of integers x with z = a (mod m) is called the residue class, or
congruence class, of ¢ modulo m.

We also wish to consider residue classes containing integers coprime to the
modulus, and this prompts the following observation.

Theorem 1.7. Whenever b = ¢ (mod m), one has (b,m) = (¢, m).

Proof. If b = ¢ (mod m), then m | (b — ¢), whence there exists an integer x
with b = ¢ + ma. But then (b,m) = (¢ + ma, m) = (¢, m), as desired. O

Definition 1.8. A reduced residue system modulo m is a set of integers
r1,...,r satisfying

(a) (r;,m) =1for 1 <i </,

(b) r; # r; (mod m) for i # j,
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(c) whenever (x,m) = 1, then x = r; (mod m) for some i with 1 < i < £.

Theorem 1.9. The number of elements in a reduced residue system is equal
to the number of integers n satisfying 1 < n < m and (n,m) = 1.

Proof. We observe that every integer x can be written as = gm + r with
0 < r < m. Moreover, (x,m) = (r,m). Hence, we see that

{neN:1<n<m, (n,m)=1}

is a reduced residue system modulo m.

Let r1,...,7, and sq,...,s; be reduced residue systems modulo m. Then
for every i = 1,...,¢, we have i = S4(;) (mod m) with some o(z) = 1,... k.
Similarly, for every j = 1,...,k, we have s; = ry(;y (mod m) with some 9( )

., £. We deduce that Ti = To(o()) (mod m) and s; = r4g(;)) (mod m). It
follows from the properties of the reduced residue systems, that 6(o(i)) = i
and (0(j)) = j. Hence, the maps ¢ and 6 define a bijection between 1, ..., 7,
and sq,...,s,. In particular, reduced residue systems have the same sizes. [

The number of elements in a reduced residue system modulo m is denoted
by ¢(m) (Euler’s totient, or Euler’s ¢-function).

2. EULER AND FERMAT THEOREMS
Theorem 2.1 (Euler, 1760). If (a,m) = 1 then
a®™ =1 (mod m).

In the proof we use the following lemma

Lemma 2.2. Suppose that (a,m) = 1. Then whenever {ry,...,r¢} is a reduced
residue system modulo m, the set {ary, ..., ar.} is also a reduced residue system
modulo m.

Proof. Since (a,m) = 1, it follows that whenever (r;, m) = 1 one has (ar;, m) =
1. If ar; = ar; (mod m), then it follows from Theorem 1.4(i) that r; =
r; (mod m). Hence we deduce that ar; # ar; (mod m) for i # j.

It remains to verify property (c). Take x with (x,m) = 1. By Theorem
1.5, there exists an integer a’ such that aa’ = 1 (mod m). Since {ry,...,7r¢}
is a reduced residue system modulo m, a’z = r; (mod m) for some . Then
ar; = (aad’)x = x (mod m). This shows that {ary,...,ar,} is a reduced residue
system modulo m. O

Proof of Theorem 2.1. Let {ry,r2,...,7¢m)} be any reduced residue system
modulo m, and suppose that (a, m) = 1. By Lemma 2.2, the system {ary, ..., argmm }
is also a reduced residue system modulo m. Then there is a permutation o of
{1,2,...,¢(m)} with the property that r; = ar,u (mod m) for 1 <7 < ¢(m).
Consequently, one has

d(m)

B(m) #(m)
H T, = H (are@)) = H ar;) —a¢(m H r; (mod m)
i=1
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But (r1 -+ rg(m),m) = 1, and thus a®™ =1 (mod m). O
Corollary 2.3 (Fermat’s Little Theorem, 1640). Let p be a prime number,
and suppose that (a,p) = 1. Then one has
a?~' =1 (mod p).
Moreover, for all integers a one has
a’ = a (mod p).

Proof. Note that the set {1,2,...,p—1} is a reduced residue system modulo p.
Thus ¢(p) = p—1, and the first part of the theorem follows from Theorem 2.1.
When (a,p) = 1, the second part of the theorem is immediate from the first
part. Meanwhile, if (a,p) > 1, one has p | a, so that a”? =0 = a (mod p). This
completes the proof of the theorem. O

Fermat’s Little Theorem, and Euler’s Theorem, ensure that the computation
of powers is very efficient modulo p (or modulo m).

Example 2.4. Compute 526 (mod 41). Observe first that ¢(41) = 40, and
so it follows from Fermat’s Little Theorem that 5 = 1 (mod 41), and hence

52016 — 540~50+16 — (540)50516 = 516 (mod 41)

Note next that powers which are themselves powers of 2 are easy to compute
by repeated squaring (the “divide and conquer” algorithm). Thus one finds
that

5% =25 = —16 (mod 41),

5 = (5%)? = (—16)* = 256 = 10 (mod 41),

5% = (5%)? = (10)* = 100 = 18 (mod 41),

510 = (5%)? = (18)? = 324 = 37 (mod 41).
Thus 52916 = 37 (mod 41).

Theorem 2.5 (Wilson’s Theorem; Waring, Lagrange, 1771). For each prime
number p, one has

(p—1)!'=—1 (mod p).

Proof. The proof for p = 2 and 3 is immediate, so suppose henceforth that p
is a prime number with p > 5. Observe that when 1 < a < p — 1, one has
(a,p) = 1, so there exists an integer @ unique modulo p with aa =1 (mod p).
Moreover, there is no loss in supposing that @ satisfies 1 < @ < p — 1, and
then @ is a uniquely defined integer. We may now pair off the integers a
with 1 < a < p — 1 with their counterparts @ with 1 < @ < p — 1, so that
aa = 1 (mod p) for each pair. Note that a # @ so long as a*> # 1 (mod p).
But a*> = 1 (mod p) if and only if (a — 1)(a + 1) = 0 (mod p), and the latter
is possible only when a = £1 (mod p). Thus we find that

Ha = H(aa) =1 (mod p),
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whence

ﬁa =(p—1)=-1 (mod p).
a=1 .

The proof of Wilson’s Theorem motivates a proof of a criterion for the
solubility of the congruence z? = —1 (mod p).

Theorem 2.6. When p = 2, or when p is a prime number withp = 1 (mod 4),
the congruence
r? = —1 (mod p)
1s soluble.
When p = 3 (mod 4), the latter congruence is not soluble.

Proof. When p = 2, x = 1 provides a solution. Assume next that p =
1 (mod 4), and write r = (p — 1)/2, x = rl. Then since r is even, one has

:l32 =rl. (—1)TT! _ (1-2~~~T)((—1) . (_2)...(_7n))
=1-2---r)((p—=1)-(p—2)---(p—71)) =(p— 1) = —1 (mod p).

Thus, when p = 1 (mod 4), the congruence 2> = —1 (mod p) is indeed soluble.
Suppose then that p = 3 (mod 4). If it were possible that an integer x exists
with 22 = —1 (mod p), then one finds that

(2%)P~V/2 = (—1)P=1D/2 = _1 (mod p),
yet by Fermat’s Little Theorem, one has
(2%)P=1/2 = 2771 =1 (mod p)

whenever (z,p) = 1. We therefore arrive at a contradiction, and this completes
the proof of the theorem. O



