LECTURE 3: CONGRUENCES

1. Basic properties of congruences

We begin by introducing some definitions and elementary properties.

Definition 1.1. Suppose that $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}$. We say that a is congruent to b modulo m, and write $a \equiv b \pmod{m}$, when $m \mid (a - b)$.

We say that a is **not congruent** to b modulo m, and write $a \not\equiv b \pmod{m}$, when $m \nmid (a - b)$.

Theorem 1.2. Let a, b, c, d be integers. Then

- (i) $a \equiv b \pmod{m} \iff b \equiv a \pmod{m} \iff a b \equiv 0 \pmod{m}$;
- (ii) $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$;
- (iii) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m} \Rightarrow a + c \equiv b + d \pmod{m}$ and $ac \equiv b + d \pmod{m}$ $bd \pmod{m}$;
- (iv) If $a \equiv b \pmod{m}$ and $d \mid m \text{ with } d > 0$, then $a \equiv b \pmod{d}$;
- (v) If $a \equiv b \pmod{m}$ and c > 0, then $ac \equiv bc \pmod{mc}$.

Proof. Verification of these properties is straightforward. For instance, we prove (iii). Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Then a-b=umand c-d=vm for some integers u and v. Hence, (a+c)-(b+d)=(u+v)m, so that $a+c \equiv b+d \pmod{m}$. Also, ac-bd=(b+um)(d+vm)-bd=(ud + bv + uvm)m which implies that $ac \equiv bd \pmod{m}$.

Corollary 1.3. When p(t) is a polynomial with integral coefficients, it follows that whenever $a \equiv b \pmod{m}$, then $p(a) \equiv p(b) \pmod{m}$.

Proof. Use induction to establish that whenever $a \equiv b \pmod{m}$, then $a^n \equiv a^n \equiv a^n$ $b^n \pmod{m}$ for each $n \in \mathbb{N}$.

The above corollary also extends to polynomials in several variables. In particular, we see that if the polynomial equation $p(x_1, \dots x_n) = 0$ has an integral solution, then the congruence $p(x_1, \ldots x_n) \equiv 0 \pmod{m}$ is also solvable for all $m \in \mathbb{N}$. This provides a useful test for solvability of equations in integers.

The next theorem indicates how factors may be cancelled through congruences.

Theorem 1.4. Let $a, x, y \in \mathbb{Z}$ and $m \in \mathbb{N}$. Then (i) $ax \equiv ay \pmod{m} \iff x \equiv y \pmod{m/(a,m)}$.

In particular, if $ax \equiv ay \pmod{m}$ and (a, m) = 1, then $x \equiv y \pmod{m}$;

(ii) $x \equiv y \pmod{m_i}$ $(1 \leqslant i \leqslant r) \iff x \equiv y \pmod{[m_1, \dots, m_r]}$.

2 LECTURE 3

Proof. Observe first that when (a, m) = 1, then $m \mid a(x - y) \iff m \mid (x - y)$. Then the conclusion of whenever (a, m) = 1. When (a, m) > 1, on the other hand, one does at least have (a/(a, m), m/(a, m)) = 1, so that

$$m \mid a(x-y) \iff \frac{m}{(a,m)} \left| \frac{a}{(a,m)} (x-y) \iff \frac{m}{(a,m)} \right| (x-y).$$

This establishes the conclusion of part (i) of the theorem.

We now consider part (ii) of the theorem. Observe first that whenever $m_i \mid (x-y)$ for $(1 \leq i \leq r)$, then $[m_1, \ldots, m_r] \mid (x-y)$. On the other hand, if $[m_1, \ldots, m_r] \mid (x-y)$, then $m_i \mid (x-y)$ for $(1 \leq i \leq r)$. The conclusion of part (ii) is now immediate.

We investigate existence of multiplicative inverse modulo m.

Theorem 1.5. Suppose that (a, m) = 1. Then there exists an integer x with the property that $ax \equiv 1 \pmod{m}$. If x_1 and x_2 are any two such integers, then $x_1 \equiv x_2 \pmod{m}$. Conversely, if (a, m) > 1, then there is no integer x with $ax \equiv 1 \pmod{m}$.

Proof. Suppose that (a, m) = 1. Then by the Euclidean Algorithm, there exist integers x and y such that ax + my = 1, whence $ax \equiv 1 \pmod{m}$. Meanwhile, if $ax_1 \equiv 1 \equiv ax_2 \pmod{m}$, then $a(x_1 - x_2) \equiv 0 \pmod{m}$. But (a, m) = 1, and thus $x_1 - x_2 \equiv 0 \pmod{m}$. We have therefore established both existence and uniqueness of the multiplicative inverse for residues a with (a, m) = 1. If (a, m) > 1, then (ax, m) > 1 for every integer x. But if one were to have $ax \equiv 1 \pmod{m}$, then (ax, m) = (1, m) = 1, which yields a contradiction. This establishes the last part of the theorem.

Now we examine the set of equivalence classes with respect to congruence modulo m.

Definition 1.6. (i) If $x \equiv y \pmod{m}$, then y is called a **residue** of x modulo m:

- (ii) We say that $\{x_1, \ldots, x_m\}$ is a **complete residue system** modulo m if for each $y \in \mathbb{Z}$, there exists a unique x_i with $y \equiv x_i \pmod{m}$;
- (iii) The set of integers x with $x \equiv a \pmod{m}$ is called the **residue class**, or **congruence class**, of a modulo m.

We also wish to consider residue classes containing integers coprime to the modulus, and this prompts the following observation.

Theorem 1.7. Whenever $b \equiv c \pmod{m}$, one has (b, m) = (c, m).

Proof. If $b \equiv c \pmod{m}$, then $m \mid (b-c)$, whence there exists an integer x with b = c + mx. But then (b, m) = (c + mx, m) = (c, m), as desired. \square

Definition 1.8. A reduced residue system modulo m is a set of integers r_1, \ldots, r_ℓ satisfying

- (a) $(r_i, m) = 1$ for $1 \leq i \leq \ell$,
- (b) $r_i \not\equiv r_j \pmod{m}$ for $i \neq j$,

LECTURE 3 3

(c) whenever (x, m) = 1, then $x \equiv r_i \pmod{m}$ for some i with $1 \leqslant i \leqslant \ell$.

Theorem 1.9. The number of elements in a reduced residue system is equal to the number of integers n satisfying $1 \le n < m$ and (n, m) = 1.

Proof. We observe that every integer x can be written as x = qm + r with $0 \le r < m$. Moreover, (x, m) = (r, m). Hence, we see that

$$\{n \in \mathbb{N} : 1 \leqslant n < m, \ (n, m) = 1\}$$

is a reduced residue system modulo m.

Let r_1, \ldots, r_ℓ and s_1, \ldots, s_k be reduced residue systems modulo m. Then for every $i = 1, \ldots, \ell$, we have $r_i \equiv s_{\sigma(i)} \pmod{m}$ with some $\sigma(i) = 1, \ldots, k$. Similarly, for every $j = 1, \ldots, k$, we have $s_j \equiv r_{\theta(j)} \pmod{m}$ with some $\theta(j) = 1, \ldots, \ell$. We deduce that $r_i \equiv r_{\theta(\sigma(i))} \pmod{m}$ and $s_j \equiv r_{\sigma(\theta(j))} \pmod{m}$. It follows from the properties of the reduced residue systems, that $\theta(\sigma(i)) = i$ and $\sigma(\theta(j)) = j$. Hence, the maps σ and θ define a bijection between r_1, \ldots, r_ℓ and s_1, \ldots, s_k . In particular, reduced residue systems have the same sizes. \square

The number of elements in a reduced residue system modulo m is denoted by $\phi(m)$ (Euler's totient, or Euler's ϕ -function).

2. Euler and Fermat Theorems

Theorem 2.1 (Euler, 1760). If
$$(a, m) = 1$$
 then $a^{\phi(m)} \equiv 1 \pmod{m}$.

In the proof we use the following lemma

Lemma 2.2. Suppose that (a, m) = 1. Then whenever $\{r_1, \ldots, r_\ell\}$ is a reduced residue system modulo m, the set $\{ar_1, \ldots, ar_\ell\}$ is also a reduced residue system modulo m.

Proof. Since (a, m) = 1, it follows that whenever $(r_i, m) = 1$ one has $(ar_i, m) = 1$. If $ar_i \equiv ar_j \pmod{m}$, then it follows from Theorem 1.4(i) that $r_i \equiv r_j \pmod{m}$. Hence we deduce that $ar_i \not\equiv ar_j \pmod{m}$ for $i \neq j$.

It remains to verify property (c). Take x with (x, m) = 1. By Theorem 1.5, there exists an integer a' such that $aa' \equiv 1 \pmod{m}$. Since $\{r_1, \ldots, r_\ell\}$ is a reduced residue system modulo m, $a'x \equiv r_i \pmod{m}$ for some i. Then $ar_i \equiv (aa')x \equiv x \pmod{m}$. This shows that $\{ar_1, \ldots, ar_\ell\}$ is a reduced residue system modulo m.

Proof of Theorem 2.1. Let $\{r_1, r_2, \ldots, r_{\phi(m)}\}$ be any reduced residue system modulo m, and suppose that (a, m) = 1. By Lemma 2.2, the system $\{ar_1, \ldots, ar_{\phi(m)}\}$ is also a reduced residue system modulo m. Then there is a permutation σ of $\{1, 2, \ldots, \phi(m)\}$ with the property that $r_i \equiv ar_{\sigma(i)} \pmod{m}$ for $1 \leq i \leq \phi(m)$. Consequently, one has

$$\prod_{i=1}^{\phi(m)} r_i \equiv \prod_{i=1}^{\phi(m)} (ar_{\sigma(i)}) = \prod_{j=1}^{\phi(m)} (ar_j) = a^{\phi(m)} \prod_{j=1}^{\phi(m)} r_j \pmod{m}.$$

4 LECTURE 3

But
$$(r_1 \cdots r_{\phi(m)}, m) = 1$$
, and thus $a^{\phi(m)} \equiv 1 \pmod{m}$.

Corollary 2.3 (Fermat's Little Theorem, 1640). Let p be a prime number, and suppose that (a, p) = 1. Then one has

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Moreover, for all integers a one has

$$a^p \equiv a \pmod{p}$$
.

Proof. Note that the set $\{1, 2, \ldots, p-1\}$ is a reduced residue system modulo p. Thus $\phi(p) = p-1$, and the first part of the theorem follows from Theorem 2.1. When (a, p) = 1, the second part of the theorem is immediate from the first part. Meanwhile, if (a, p) > 1, one has $p \mid a$, so that $a^p \equiv 0 \equiv a \pmod{p}$. This completes the proof of the theorem.

Fermat's Little Theorem, and Euler's Theorem, ensure that the computation of powers is very efficient modulo p (or modulo m).

Example 2.4. Compute 5^{2016} (mod 41). Observe first that $\phi(41) = 40$, and so it follows from Fermat's Little Theorem that $5^{40} \equiv 1 \pmod{41}$, and hence

$$5^{2016} = 5^{40 \cdot 50 + 16} = (5^{40})^{50} 5^{16} \equiv 5^{16} \pmod{41}.$$

Note next that powers which are themselves powers of 2 are easy to compute by repeated squaring (the "divide and conquer" algorithm). Thus one finds that

$$5^2 = 25 \equiv -16 \pmod{41},$$

 $5^4 = (5^2)^2 \equiv (-16)^2 = 256 \equiv 10 \pmod{41},$
 $5^8 = (5^4)^2 \equiv (10)^2 = 100 \equiv 18 \pmod{41},$
 $5^{16} = (5^8)^2 \equiv (18)^2 = 324 \equiv 37 \pmod{41}.$

Thus $5^{2016} \equiv 37 \pmod{41}$.

Theorem 2.5 (Wilson's Theorem; Waring, Lagrange, 1771). For each prime number p, one has

$$(p-1)! \equiv -1 \pmod{p}.$$

Proof. The proof for p=2 and 3 is immediate, so suppose henceforth that p is a prime number with $p \geqslant 5$. Observe that when $1 \leqslant a \leqslant p-1$, one has (a,p)=1, so there exists an integer \overline{a} unique modulo p with $a\overline{a}\equiv 1\pmod{p}$. Moreover, there is no loss in supposing that \overline{a} satisfies $1\leqslant \overline{a}\leqslant p-1$, and then \overline{a} is a uniquely defined integer. We may now pair off the integers a with $1\leqslant a\leqslant p-1$ with their counterparts \overline{a} with $1\leqslant \overline{a}\leqslant p-1$, so that $a\overline{a}\equiv 1\pmod{p}$ for each pair. Note that $a\neq \overline{a}$ so long as $a^2\not\equiv 1\pmod{p}$. But $a^2\equiv 1\pmod{p}$ if and only if $(a-1)(a+1)\equiv 0\pmod{p}$, and the latter is possible only when $a\equiv \pm 1\pmod{p}$. Thus we find that

$$\prod_{a=2}^{p-2} a = \prod_{a} (a\overline{a}) \equiv 1 \pmod{p},$$

LECTURE 3

whence

$$\prod_{a=1}^{p-1} a \equiv (p-1) \equiv -1 \pmod{p}.$$

The proof of Wilson's Theorem motivates a proof of a criterion for the solubility of the congruence $x^2 \equiv -1 \pmod{p}$.

Theorem 2.6. When p = 2, or when p is a prime number with $p \equiv 1 \pmod{4}$, the congruence

$$x^2 \equiv -1 \pmod{p}$$

is soluble.

When $p \equiv 3 \pmod{4}$, the latter congruence is not soluble.

Proof. When p=2, x=1 provides a solution. Assume next that $p\equiv 1\pmod 4$, and write r=(p-1)/2, x=r!. Then since r is even, one has

$$x^{2} = r! \cdot (-1)^{r} r! = (1 \cdot 2 \cdots r)((-1) \cdot (-2) \cdots (-r))$$

$$\equiv (1 \cdot 2 \cdots r)((p-1) \cdot (p-2) \cdots (p-r)) = (p-1)! \equiv -1 \pmod{p}.$$

Thus, when $p \equiv 1 \pmod{4}$, the congruence $x^2 \equiv -1 \pmod{p}$ is indeed soluble.

Suppose then that $p \equiv 3 \pmod{4}$. If it were possible that an integer x exists with $x^2 \equiv -1 \pmod{p}$, then one finds that

$$(x^2)^{(p-1)/2} \equiv (-1)^{(p-1)/2} \equiv -1 \pmod{p},$$

yet by Fermat's Little Theorem, one has

$$(x^2)^{(p-1)/2} = x^{p-1} \equiv 1 \pmod{p}$$

whenever (x, p) = 1. We therefore arrive at a contradiction, and this completes the proof of the theorem.

5