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1. SO(n) and homogeneous polynomials.

Let V (d, n) denote the space of real homogeneous polynomials of degree d on Rn, with
real inner product given by

〈f, g〉 :=
1

πn/2

∫
Rn

e−x
2

f(x)g(x) dnx,

where x = ||x||.

(a) Let SO(n) denote the matrix Lie group of real orthogonal n × n matrices with
determinant equal to 1. Given R ∈ SO(n), define

Γ(R) : V (d, n)→ V (d, n)

by
(Γ(R)f)(x) = f

(
R−1x

)
for f ∈ V (d, n). Show that Γ is a representation on V (d, n), and show that Γ is
orthogonal, i.e.

〈Γ(R)f,Γ(R)g〉 = 〈f, g〉,
for all f, g ∈ V (d, n).

(b) The Lie algebra of SO(n), denoted so(n), is the space of n×n antisymmetric matrices.
Let A ∈ so(n). Define

Γ̂(A) : V (d, n)→ V (d, n)

by (
Γ̂(A)f

)
(x) :=

∂

∂t

∣∣∣∣
t=0

(Γ(exp(−tA))f) (x).

Show that

Γ̂(A)f = xtA∇f =
n∑

j,k=1

xjAjk
∂f

∂xk
.
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(c) Verify directly that
[Γ̂(A), Γ̂(B)] = Γ̂([A,B]).

2. Molien series.

Let (Γ,Rn) be a real representation of a finite group G. Let V (n, d) denote the space of
homogeneous polynomials on Rn of degree d. A homogeneous polynomial f is invariant
under G if

f(ΓT (g)x) = f(x)

for all g ∈ G. Let Nd denote the dimension of the subspace of G-invariant polynomials
V (n, d). Show that

Nd =
1

d!

d

dt

∣∣∣∣
t=0

M(t),

where

M(t) =
1

|G|
∑
g∈G

1

det(In − tΓ(g))
.

Formally, we may write that

M(t) =
∞∑
d=0

Ndt
d.

M(t) is called the Molien function. It can be defined for compact matrix Lie groups as
well. Suggested argument:

(a) Consider the representation Γd of G on (⊗Rn)d, the d-fold tensor product of Rn with
itself, given by

Γd(g) (x1 ⊗ · · · ⊗ xd) = (Γ(g)x1)⊗ · · · ⊗ (Γ(g)xd) ,

and the representation ∆d of the symmetric group Sd on (⊗Rn)d given by

∆d(σ) (x1 ⊗ · · · ⊗ xd) = xσ−1(1) ⊗ · · · ⊗ xσ−1(d).

Show that the space of G-invariant homogenous polynomials of degree d may be
identified with the subspace of (⊗Rn)d which is invariant under both Γd and ∆d.

(b) Following the example of Problem Sheet 2.11, show that the projector P d onto the
subspace of (⊗Rn)d invariant under Γd and ∆d is given by

P d =
1

|G|
∑
g∈G

1

d!

∑
σ∈Sd

Γd(g)∆d(σ).

Then argue that
Nd = TrP d.

(c) If σ has a decomposition into disjoint cycles with m1 cycles of length 1, m2 cycles of
length 2, and so on up to md cycles of length d, where mj ≥ 0, show that

Tr
(
Γd(g)∆d(σ)

)
= (Tr Γ(g))m1(Tr Γ2(g))m2 · · · (Tr Γd(g))md .

(d) Show that the number of permutations with cycle decomposition (m1, . . . ,md) is
given by

d!

1m12m2 · · · dmd m1! · · ·md!
.
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(e) Using the formula

det(I −M) = exp(Tr(log(I −M)) =
∞∏
j=1

exp

(
−TrM j

j

)
,

show that
∞∑
d=0

Ndt
d =

1

|G|
∑
g∈G

1

det(In − tΓ(g))
.

3. Show that SU(n) is not a simple group. Show that su(n) is a simple Lie algebra.

4. Suppose that H ⊂ G is a normal subgroup and that H is a matrix Lie group in its own
right, with Lie algebra h. Show that h ⊂ g is an ideal.

5. Let Γ : G→ GL(V ) be a representation of a matrix Lie group G ⊂ GL(n,C) on a vector
space V . Show that if Γ is continuous, then it is also smooth (i.e., infinitely differentiable).
More explicitly, if Φ : U ⊂ Rd → VI is a smooth parameterisation of a neighbourhood VI
of the identity in GL(n,C), then Γ ◦ Φ : U → GL(V ) is smooth.

(Suggested plan: Introduce a basis on V and use the matrix exponential and logarithm
to define a map Γ̂ : g→ Cr×r, where r = dimV . Then show that

(a) for all t, Γ(exp ta) = exp(tΓ̂(a)) (you may want to show that matrices close to the
identity have a unique qth root that is also close to the identity).

(b) Using the result of (a) along with the Baker-Campbell-Hausdorff theorem, show that
Γ̂ is linear (and therefore smooth).

(c) The fact that Γ ◦ Φ : U → GL(V ) is smooth is then a more or less immediate
consequence of the preceding results.)

6. Let (Γ, V ) be a representation of a matrix Lie group G on a vector space V , and let
Γ̂ : g→ L(V ) be the representation of its Lie algebra given by (cf Theorem 7.6)

Γ̂(a) =
d

dt

∣∣∣∣
t=0

Γ(exp ta).

Prove Proposition 7.8: Show that if Γ is reducible, so is Γ̂.

7. As in the previous problem, let (Γ, V ) be a representation of a matrix Lie group G, and
let (Γ̂, V ) denote the representation of its Lie algebra given by (cf Theorem 7.6)

Γ̂(a) =
d

dt

∣∣∣∣
t=0

Γ(exp ta).

Suppose that G is connected. Show that Γ may be expressed in terms of Γ̂. Then show
that if Γ̂ is reducible, then Γ is reducible.

8. Prove Theorem 9.10: Let g be a compact simple Lie algebra of a matrix Lie group G.
Show that all Cartan subalgebras of g are conjugate; that is, if h1 and h2 are Cartan
subalgebras, then

h2 = AdA h1 = Ah1A
−1

for some A ∈ G. (Note: it is not the case that individual elements of h1 and h2 are
necessarily conjugate. Indeed, a necessary condition for h1 = AdA h2 is that h1 and h2
have the same eigenvalues.)

Remarks: Here is an outline of a proof:
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(a) Show that if h is a Cartan subalgebra, there exists h∗ ∈ h such that h = ker adh∗ .
In other words, a ∈ h if and only if [a, h∗] = 0. (Note: this is clearly not true for all
h ∈ h. Trivially it is not true if h = 0, but it also fails to hold for certain nonzero
(degenerate) elements of h.)

(b) With h1∗ ∈ h1 chosen as in (a) above, show that there exists an A∗ ∈ G such that
AdA∗ h1∗ ∈ h2. Suggestion: consider the following variational argument. Choose
h2∗ ∈ h2 as in (a) above, and consider the squared distance (defined with respect to
the standard inner product) between AdA h1∗ and h2∗, which is given by

s2(A) = 〈AdA h1∗ − h2∗,AdA h1∗ − h2∗〉.

Explain why s2 has a minimum, say at A = A∗, and show that AdA∗ h1∗ ∈ h2.

(c) Using the results of (a) and (b), show that AdA∗ h1 = h2.

9. Let B(j, k) denote the n× n matrix with a single nonzero element, the (j, k)th element,
which is equal to one. That is, if [M ]rs denotes the (r, s)th element of M , then

[B(j, k)]rs = δjrδks.

Show that the B(j, k)’s form an orthonormal basis for Cn×n, and that

B(j, k)B(l,m) = δklB(j,m).

10. Dynkin diagram for su(n)

su(n) is the Lie algebra of n× n traceless antihermitian matrices.

(a) Show that a Cartan subalgebra h ⊂ su(n) may taken to be the set of n×n traceless,
diagonal purely imaginary matrices. Verify that the rank of su(n) is n− 1.

(b) Show that an orthonormal basis for h is given by

[h(m) = iNm

(
m∑
a=1

B(a, a)−mB(m+ 1,m+ 1)

)
, Nm = (m(m+ 1))−1/2.

(c) Show that suC(n), the complexification of su(n), is the space of n × n traceless
complex matrices.

(d) Show that

ĥ(m)B(j, k) = iNm

{
m∑
a=1

(δja − δka)−m (δj,m+1 − δk,m+1)

}
B(j, k).

Hence show that the B(j, k)’s with j 6= k together with the h(m)’s form a complete
set of orthonormal eigenvectors of the adjoint representation of h, and that the roots
of su(n) are given

α(j, k) = −
(
j − 1

j

)1/2

ĵ− 1,+
k−2∑
l=j

N(l) l̂ +

(
k

k − 1

)1/2

k̂− 1, j < k,

where l̂ denotes the lth coordinate unit-vector in Rd, and 0̂ is defined to be 0.

α(j, k) = −α(k, j), j > k.
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(e) Let us introduce a different convention for positivity of roots in the case of su(n).
We will say that α is positive if the last nonzero element of α is positive. Thus,
α(j, k) is positive if and only if j < k. Show that the simple roots are given by

α(j, j + 1) = −
(
j − 1

j

)1/2

ĵ− 1,+

(
j + 1

j

)1/2

ĵ, 1 ≤ j ≤ n− 1.

(f) Show that

α(j, j + 1) ·α(k, k + 1) =


2, j = k,

−1, |j = k| = 1,

0, otherwise

.

(g) Hence show that the angle between consecutive simple roots is 120◦, and that all
simple roots have the same length. Thus, the Dynkin diagram of su(n) is given by
Figure 1.

Figure 1: Dynkin diagram for su(n).

11. Dynkin diagram for so(2n)

so(2n) is the Lie algebra of 2n× 2n real antisymmetric matrices.

It is convenient to represent R2n as the tensor product Rn⊗R2. Then R2n×2n corresponds
to the tensor product Rn×n ⊗ R2×2. For M ⊗ S ∈ Rn×n ⊗ R2×2, the transpose is defined
by

(M ⊗ S)T = MT ⊗ ST .

The trace is given by
tr (M ⊗ S) = (trM)(trS).

The inner product is given by

〈M ⊗ S,N ⊗ T 〉 = 〈M,N〉 〈S, T 〉.

A basis for Rn×n ⊗ R2×2 is given by

B(j, k)⊗ I2, B(j, k)⊗ σ1, B(j, k)⊗ iσ2, B(j, k)⊗ σ3, where 1 ≤ j, k ≤ n,

where B(j, k) is defined in Question 9. It follows that

(B(j, k)⊗ I2)T = B(k, j)⊗ I2,
(B(j, k)⊗ σ1)T = B(k, j)⊗ σ1,

(B(j, k)⊗ iσ2)T = −B(k, j)⊗ iσ2,
(B(j, k)⊗ σ3)T = B(k, j)⊗ σ3.
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(a) Show that a real orthonormal basis for so(2n) is given by the following:

a1(j, k) =
1

2
(B(j, k)−B(k, j))⊗ σ3, 1 ≤ j < k ≤ n,

a2(j, k) =
1

2
(B(j, k)−B(k, j))⊗ σ1, 1 ≤ j < k ≤ n,

b1(j, k) =
1

2
(B(j, k) +B(k, j))⊗ iσ2, 1 ≤ j < k ≤ n,

b2(j, k) =
1

2
(B(j, k)−B(k, j))⊗ I2, 1 ≤ j < k ≤ n,

h(m) =
1√
2
B(j, j) ⊗ iσ2, 1 ≤ j ≤ n,

(b) Show that a Cartan subalgebra for so(2n) may be taken to be the span of the
elements h(m). Thus, so(2n) has rank n.

(c) Show that simultaneous eigenvectors of ĥ(m) with nonzero eigenvalues are given by

a±(j, k) = a1(j, k)± ia2(j, k), 1 ≤ j < k ≤ n,

b±(j, k) = b1(j, k)± ib2(j, k), 1 ≤ j < k ≤ n,

and that these, together with the h(m)’s, span soC(2n). Show that the corresponding
roots are

α±(j, k) = ± 1√
2

(
̂+ k̂

)
,

β±(j, k) = ± 1√
2

(
̂− k̂

)
,

(d) Show that the simple roots of so(2n) are given by

α+(n− 1, n) =
1√
2

(
n̂− 1 + n̂

)
,

β+(j, j + 1) =
1√
2

(
̂− ĵ + 1

)
, 1 ≤ j ≤ n− 1.

(e) Show that the inner products of the simple roots are given by

β+(j, j + 1) · β+(k, k + 1) =


1, j = k

−1/2, |j − k| = 1,

0, otherwise,

,

α+(n− 1, n) ·α+(n− 1, n) = 1,

α+(n− 1, n) · β+(j − 1, j) =

{
−1/2, j = n− 1,

0, otherwise.

(f) Show that the Dynkin diagram for so(2n) is given by Figure 2.

12. Dynkin diagram for so(2n+ 1)

so(2n+ 1) is the Lie algebra of (2n+ 1)× (2n+ 1) real antisymmetric matrices.
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Figure 2: Dynkin diagram for so(2n)

(a) Let f(1), . . . , f(2n+2) denote the standard orthonormal basis on R2n+2. Show that
so(2n+ 1) may be identified with the subset of so(2n+ 2) which has f(2n+2) as a null
vector.

(b) Show that the space of real 2×2 matrices that have (0, 1)T as a null vector is spanned
by

P =

(
1 0
0 0

)
,

Q =

(
0 0
1 0

)
,

Show that

P iσ2 = QT ,

Q iσ2 = −P,

so that

iσ2 P = −Q,
iσ2Q

T = P.

(c) With reference to the preceding identification, show that a real orthonormal basis
for so(2n+ 1) is given by the following:

a1(j, k) =
1

2
(B(j, k)−B(k, j))⊗ σ3, 1 ≤ j < k ≤ n,

a2(j, k) =
1

2
(B(j, k)−B(k, j))⊗ σ1, 1 ≤ j < k ≤ n,

b1(j, k) =
1

2
(B(j, k) +B(k, j))⊗ iσ2, 1 ≤ j < k ≤ n,

b2(j, k) =
1

2
(B(j, k)−B(k, j))⊗ I2, 1 ≤ j < k ≤ n,

c1(j) =
1√
2

(B(j, n+ 1)−B(n+ 1, j))⊗ P, 1 ≤ j ≤ n,

c2(j) =
1√
2

(
B(j, n+ 1)⊗Q−B(n+ 1, j)⊗QT

)
, 1 ≤ j ≤ n,

h(m) =
1√
2
B(j, j) ⊗ iσ2, 1 ≤ j ≤ n.

(d) Show that a Cartan subalgebra for so(2n + 1) may be taken to be the span of the
elements h(m). Thus, so(2n+ 1) has rank n.
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(e) Show that simultaneous eigenvectors of ĥ(m) with nonzero eigenvalues are given by

a±(j, k) = a1(j, k)± ia2(j, k), 1 ≤ j < k ≤ n,

b±(j, k) = b1(j, k)± ib2(j, k), 1 ≤ j < k ≤ n,

c±(j) = c1(j)± ic2(j), 1 ≤ j ≤ n,

and that these, together with the h(m)’s, span soC(2n + 1). Show that the corre-
sponding roots are

α±(j, k) = ± 1√
2

(
̂+ k̂

)
,

β±(j, k) = ± 1√
2

(
̂− k̂

)
,

γ±(j) = ± 1√
2
̂.

(f) Show that the simple roots of so(2n+ 1) are given by

β+(j, j + 1) =
1√
2

(
̂− ĵ + 1

)
, 1 ≤ j ≤ n− 1,

γ+(n) =
1√
2
n̂.

(g) Show that the inner products of the simple roots are given by

β+(j, j + 1) · β+(k, k + 1) =


1, j = k

−1/2, |j − k| = 1,

0, otherwise,

,

γ+(n) · γ+(n) = 1/2,

γ+(n) · β+(j − 1, j) =

{
−1/2, j = n− 1,

0, otherwise.

(h) Show that the Dynkin diagram for so(2n+ 1) is given by Figure 3.

Figure 3: Dynkin diagram for so(2n+ 1)

13. Dynkin diagram for usp(2n)

It is convenient to represent C2n as the tensor product Cn⊗C2. Then C2n×2n corresponds
to the tensor product Cn×n ⊗ C2×2. For M ⊗ S ∈ Cn×n ⊗ C2×2, the hermitian conjugate
is defined by

(M ⊗ S)† = M † ⊗ S†.

The transpose is defined by
(M ⊗ S)T = MT ⊗ ST .
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The trace is given by by
tr (M ⊗ S) = (trM)(trS).

The inner product is given by

〈M ⊗ S,N ⊗ T 〉 = 〈M,N〉 〈S, T 〉.

A basis for Cn×n ⊗ C2×2 is given by

B(j, k)⊗ I2, B(j, k)⊗ σt, where 1 ≤ j, k ≤ n, 1 ≤ t ≤ 3,

where B(j, k) is defined in Question 9. It follows that

(B(j, k)⊗ I2)† =
(
B(j, k)T ⊗ IT2

)
= B(k, j)⊗ I2,

(B(j, k)⊗ σt)† =
(
B(j, k)T ⊗ σ†t

)
= B(k, j)⊗ σt.

Let J ∈ Cn×n ⊗ C2×2 be given by

J = In ⊗ iσ2 = In ⊗
(

0 1
−1 0

)
.

The unitary symplectic Lie algebra, usp(2n), consists of antihermitian matrices s ∈
Cn×n ⊗ C2×2 that satisfy

sJ + JsT = 0,

(a) Let a ∈ C2×2. Show that a(iσ2) + (iσ2)a
T = 0 if and only if a is traceless, while

a(iσ2)− (iσ2)a
T = 0 if and only if a is a multiple of the identity.

(b) Show that a (real) orthonormal basis for usp(2n) is given by the following:

1

2
(B(j, k) +B(k, j))⊗ iσt, 1 ≤ j < k ≤ n, 1 ≤ t ≤ 3,

1√
2
B(m.m)⊗ iσt, 1 ≤ m ≤ n, 1 ≤ t ≤ 3,

1

2
(B(j, k)−B(k, j))⊗ I2 1 ≤ j < k ≤ n.

(c) Show that a Cartan subalgebra for usp(2n) may be taken to be the span of the
elements

h(m) =
1√
2
B(m,m)⊗ iσ3, 1 ≤ m ≤ n,

so that the rank of usp(2n) is n. Verify that the h(m)’s are orthonormal.

(d) Show that simultaneous eigenvectors of ĥ(m) with nonzero eigenvalues are given by

a±(j, k) =
1

2
√

2
(B(j, k) +B(k, j))⊗ (iσ1 ∓ σ2) , 1 ≤ j < k ≤ n,

b±(j, k) =
i

2
√

2
(B(j, k)⊗ (iσ3 ± I2) +B(k, j)⊗ (iσ3 ∓ I2)) , 1 ≤ j < k ≤ n,

c±(j) =
i

2
B(j, j)⊗ (iσ1 ∓ σ2) ,
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and that these, together with the h(m)’s, span uspC(2n). Show that the correspond-
ing roots

α±(j, k) = ± 1√
2

(
̂+ k̂

)
,

β±(j, k) = ± 1√
2

(
̂− k̂

)
,

γ±(j) = ±
√

2̂.

(e) Show that the simple roots of usp(2n) are given by

β+(j, j + 1) = ± 1√
2

(
̂− ĵ + 1

)
, 1 ≤ j ≤ n− 1,

γ+(n) =
√

2n̂.

(f) Show that the inner products of the simple roots are given by

β+(j, j + 1) · β+(k, k + 1) =


1, j = k

−1/2, |j − k| = 1,

0, otherwise,

,

β+(j, j + 1) · γ+(n) =

{
−1, j = n− 1

0, otherwise,
,

γ+(n) · γ+(n) = 2.

(g) Show that the Dynkin diagram for usp(2n) is as shown in Figure 4.

Figure 4: Dynkin diagram for usp(2n)

14. The exceptional Lie algebra G2 has two simple roots, α and β, which satisfy

(α · β)2

α2 β2
=

3

4
.

Determine the positive roots of G2 and show that G2 has dimension equal to 14.
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