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1 Matrix Lie Groups

1.1 Some notation and terminology

Let v, w ∈ Cn. The hermitian inner product of v and w, denoted 〈v, w〉, is given by

〈v, w〉 =

n∑
j=1

v∗jwj .

Recall that
〈v, λw〉 = λ〈v, w〉, 〈λv,w〉 = λ∗〈v, w〉, 〈v, w〉 = 〈w, v〉∗,

for λ ∈ C. The norm of v ∈ Cn, denoted ||v||, is given by

||v|| = 〈v, v〉1/2

Let Cn×n denote the space of complex n × n matrices. Let In denote the n × n identity matrix.
Given A ∈ Cn×n, we denote its hermitian conjugate by

A† = A∗T , i.e. A†jk = A∗kj .

If we identify Cn×n with Cn
2
, then the hermitian inner product on Cn×n may be written as

〈A,B〉 =

n∑
j,k=1

A∗jkBjk =

n∑
jk=1

A
†
kjBjk =

n∑
k=1

(
A†B

)
kk

= Tr(A†B).

The norm of A ∈ Cn×n is then given by

||A|| = 〈A,A〉1/2.

This norm on Cn×n is called the Frobenius norm, in contrast to other, different definitions of the
norm that you may have seen, e.g. ||A|| = maxv∈Cn,||v||=1 ||A · v||, or ||A|| = maxj,k |Ajk|. The Frobenius
norm satisfies the usual properties of a norm, e.g. ||λA|| = |λ| ||A|| for λ ∈ C and ||A + B|| ≤ ||A|| + ||B||
(triangle inequality) in addition to the following:

||A · v|| ≤ ||A|| ||v||,

||AB|| ≤ ||A|| ||B||,

||A†|| = ||A||,

for all A,B ∈ Cn×n and v ∈ Cn.
Given A ∈ Cn×n, we define the open δ-ball around A, denoted Bδ(A), to be

Bδ(A) = {B ∈ Cn×n | ||A−B|| < δ}.

We say that W ⊂ Cn×n is open if ∀A ∈W , ∃δ > 0 such that Bδ(A) ⊂W .

We will also have occasion to consider the subspace of real n× n matrices, denoted Rn×n.

1.2 Matrix groups.

Definition 1.1 (Matrix group). G ⊂ Cn×n is a matrix group if G is a group under matrix multiplica-
tion, i.e.

In ∈ G, A ∈ G =⇒ A−1 ∈ G, A,B ∈ G =⇒ AB ∈ G.

(Note that matrix multiplication is associative.)

Example 1.2 (Matrix groups).

a) GL(n,C), the general complex linear group, is the set of invertible complex n× n matrices. That is,

GL(n,C) = {A ∈ Cn×n | detA 6= 0}.

Similarly, GL(n,R) denotes the general real linear group of invertible real n× n matrices.
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b) SL(n,C), the special complex linear group, is the set of invertible complex n×n matrices with determinant
equal to one. That is,

SL(n,C) = {A ∈ Cn×n | detA = 1}.

Similarly, SL(n,R) denotes the special real linear group of invertible real n×n matrices with determinant
equal to one.

c) G = {In,−In} is a matrix group consisting of just two elements.

d) SO(n), the special orthogonal group, is the set of real orthogonal n× n matrices with determinant equal
to one. That is,

SO(n) = {A ∈ Rn×n |AT = A−1 and detA = 1}.

1.3 Matrix Lie groups.

Informally, a matrix Lie group is a matrix group whose members are smoothly parameterised by some
number of real coordinates. The number of coordinates in the parameterisation is the dimension of the
matrix Lie group. We proceed to formalise this idea.

Definition 1.3 (Open relative to an enclosing set). Let W ⊂ X ⊂ Cn×n. W is open with respect to X

if for all A ∈W , there exists δ > 0 such that

Bδ(A) ∩X ⊂W.

Example 1.4 (Open with respect to enclosing set). The notion of a set being open with respect to an
enclosing set is not restricted to subsets of matrices. To illustrate it is easier to take an example from
within R3. Let X ⊂ R3 be the xy-plane, i.e.

X = {r = (x, y, z) | z = 0}.

Let W ⊂ X be the open unit disk about the origin in the xy-plane, i.e.

W = {r = (x, y, z) | z = 0, x2 + y2 < 1}.

W is not open as a subset of R3, but it is open with respect to X, that is, as a subset of the xy-plane.

There is a related notion of being closed with respect to an enclosing set.

Definition 1.5 (Closed relative to an enclosing set). Let W ⊂ X ⊂ Cn×n. W is closed with respect to X

if for all sequences Am ∈ W with Am converging to a limit A ∈ Cn×n, then if A ∈ X, we must have
A ∈W .

Example 1.6 (Closed with respect to enclosing set). The notion of a set being closed with respect to
an enclosing set is also not restricted to subsets of matrices, so we will illustrate with an example in R3.
Let X ⊂ R3 be the open unit disk about the origin in the xy-plane, i.e.

X = {r = (x, y, z) | z = 0, x2 + y2 < 1}.

Let W be the open unit interval about the origin along the x-axis, i.e.

W = {r = (x, y, z) | y = z = 0, x2 < 1}.

W is not a closed subset of R3; the sequence wm = (1 − 1/m, 0, 0) converges to (1, 0, 0), which does not
belong to W . However, if a sequence in W converges to a point that belongs to X, then that point
necessarily belongs to W . Hence W is closed with respect to X.

(*) The notion of being open or closed with respect to an enclosing set has a more general formulation in the

context of general topological spaces. A topological space is a set S together with a family F of subsets designated

as open and satisfying certain properties: The empty set and S itself should be open, the union of an arbitrary

number of open subsets should be an open subset, and the intersection of a finite number of open subsets should

be an open set. A subset X of a topological space S may be regarded as a topological space in its own right. The

family of open subsets of X is given by the intersection of the open subsets of S with X itself. This topology is

called the induced topology on X; it is induced by the topology on S.
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Figure 1: W , the open unit disk about the ori-
gin in the xy-plane, is not an open subset of R3,
but it is an open subset of X, xy-plane.

Figure 2: W , the open unit interval about the
origin on the x-axis, is not a closed subset of
R3, but it is a closed subset of X, the unit disk
about the origin in the xy-plane.

Open and closed with respect to an enclosing set.

Definition 1.7 (Matrix Lie group). A matrix Lie group of dimension d is a matrix group G ⊂ Cn×n

along with the following structure:

• an open subset P ⊂ Rd containing 0,

• a subset VI ⊂ G containing the identity In which is open with respect to G,

• a map
Φ : P → VI ;x 7→ Φ(x) ∈ G

satisfying the following properties:

a) Φ is 1-1 and onto,

b) Φ(0) = In,

c) Φ is smooth, i.e. Re Φjk(x), Im Φjk(x) are smooth functions of x for all 1 ≤ j, k ≤ n,

d) the d matrices

ξα :=
∂Φ

∂xα
(0), α = 1, . . . , d

are linearly independent over R. That is, if
∑d
α=1 cαξα = 0 for cα ∈ R, then cα = 0 for all 1 ≤ α ≤ d.

The set P is called the parameter domain. The map Φ provides a smooth parameterisation of a
neighbourhood of the identity open with respect to G by points in the parameter domain. By convention,
the identity is parameterised by 0.

Example 1.8 (Matrix Lie groups).

a) GL(n,C) is a matrix Lie group of dimension 2n2 (elements depend on n2 complex parameters, hence 2n2

real parameters). We may take the parameter domain to be given by

P ⊂ Rn×n × Rn×n = {(X,Y ) | ||X||, ||Y || < 1
4}.

We take the parameterisation to be given by

Φ(X,Y ) = In +X + iY.

It is clear that Φ(X,Y ) is nonsingular, since

||Φ(X,Y ) · v|| = ||(In +X + iY ) · v|| ≥ ||Inv|| − ||X · v|| − ||Y · v|| ≥ (1− ||X|| − ||Y ||) ||v|| > 1
2 ||v||,

where we have used properties of the matrix norm including the triangle inequality. Thus, Φ(X,Y ) ∈
GL(n,C). It is also clear that Φ(0) = In and that Φ is 1-1, i.e. Φ(X1, Y1) = Φ(X2, Y2) implies that X1 = X2
and Y1 = Y2. We take the neighbourhood VI to be given by Φ(P ), i.e. the image of P under Φ, so that
Φ : P → VI is automatically onto.
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Finally, let us compute

ξ(jk) :=
∂Φ

∂Xjk
(0), ηjk :=

∂Φ

∂Yjk
(0)

(for this example, the notation ξ(jk) and η(jk) is more convenient than the generic notation ξα). Let

B(j, k) ∈ Cn×n denote the n×n matrix with a single nonzero element, namely the (j, k)th element, which
is equal to 1. Thus,

∂X

∂Xjk
=

∂Y

∂Yjk
= B(j, k).

It follows that
ξ(jk) = B(j, k), η(jk) = iB(j, k).

Clearly, the B(j, k)’s are linearly independent of each other. For fixed j, k, the two matrices B(j, k) and
iB(j, k) are clearly not linearly independent over C; indeed, if we let M1 = B(j, k) and M2 = iB(j, k), then
obviously M1 + iM2 = 0. However, M1 and M2 are linearly independent over R; for all real coefficients
c1 and c2, c1M1 + c2M2 vanishes if and only if c1 = c2 = 0.

b) G = {In,−In} is trivially a d = 0-dimensional matrix Lie group. The parameter domain P may be taken
to consist of 0 only, and VI to consist of In only.

c) SO(n). One way to demonstrate the existence of a parameterisation for SO(n) as well as other matrix
groups characterised by a set of equations among the matrix elements, is via the Implicit Function Theo-
rem. However, this approach does not yield an explicit parameterisation. A nice explicit parameterisation
for SO(n) is provided by the Cayley transform. Let

Rn×n− = {A ∈ Rn×n |AT = −A}

denote the space of antisymmetric matrices. Rn×n− is a real vector space of dimension n(n − 1)/2, and

therefore may be identified with Rd for d = n(n − 1)/2 (an antisymmetric matrix is determined by
its elements above the main diagonal, and there are n(n − 1)/2 of these). Since the eigenvalues of an
antisymmetric matrix are pure imaginary1, it follows that (In ±A) is invertible.

We define a map Φ as follows:
Φ(A) = (In −A)(In +A)−1.

Φ is called the Cayley transform. Let us show that Φ(A) ∈ SO(n). We have that

Φ(A)TΦ(A) =
(

(In −A)(In +A)−1
)T

(In −A)(In +A)−1 = (In +AT )−1(In −AT )(In −A)(In +A)−1

= (In −A)(In +A)−1(In −A)−1(In +A).

Since the matrices In +A and In −A commute (easily checked), it follows that

Φ(A)TΦ(A) = (In +AT )−1(In −A)(In −AT )(In +A)−1 = In,

so that Φ(A)−1 = Φ(A)T . Also,

det Φ(A) = det
(

(In −A)(In +A)−1
)

=
det(In −A)

det(In +A)
= 1,

since det(In −A) = det(In −A)T = det(In +A).

The Cayley transform is self-inversive. That is, Φ(Φ(A)) = A, as we now verify:

Φ(Φ(A)) = (In − Φ(A))(In + Φ(A))−1 =
(
In − (In −A)(In +A)−1

)(
(In + (In −A)(In +A)−1

)−1

= ((In+A)−(In−A))(In+A)−1
(

((In +A) + (In −A))(In +A)−1
)−1

= 2A(In+A)−1 (In+A)In/2 = A.

Thus, we may let VI be the subset of SO(n) whose elements R have no eigenvalue equal to −1, i.e.
det(In +R) 6= 0. Then Φ is a smooth, 1-1 map from Rn×n− onto VI .

1This follows from the fact that the eigenvalues of a hermitian matrix are real, and the fact that if A is antisymmetric,
then iA is hermitian.
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Finally, we should check that the matrices

ξ(jk) :=
∂Φ

∂Ajk
(0), 1 ≤ j < k ≤ n,

are linearly independent over R. We note that

∂A

∂Ajk
= B(j, k)−B(k, j),

where B(j, k) is introduced in a) above. Also, we have the following expression for the derivative of
M−1(t) with respect to t in terms of Ṁ(t) := dM/dt(t):

dM−1

dt
= −M−1ṀM−1,

which follows from differentiating the relation M(t)M−1(t) = In. It follows that

∂(I +A)−1

∂Ajk
= −(I +A)−1(B(j, k)−B(k, j))(I +A)−1,

so that
∂(I +A)−1

∂Ajk

∣∣∣∣∣
A=0

= B(k, j)−B(j, k).

Therefore,
ξjk = 2(B(k, j)−B(j, k)).

It is then clear that
n∑
k=1

k−1∑
j=1

cjkξjk = 0 ⇐⇒ cjk = 0, for all 1 ≤ j < k ≤ n.

It would be awkward always to have to produce a parameterisation of a matrix group in order
to establish that it is a matrix Lie group. The following basic result gives an independent topological
characterisation of matrix Lie groups.

Theorem 1.9 (Characterising property of matrix Lie groups). Let G ⊂ Cn×n be a matrix group. If G
is closed with respect to GL(n,C), then G is a matrix Lie group.

(*) Proof. See Problem 2.3 on Problem Sheet 1.

Note that G need not be closed in Cn×n. For example, GL(n,C) is not closed in Cn×n, since the
matrices Am = m−1In ∈ GL(n,C) converge to 0 /∈ GL(n,C).

Proposition 1.10 (Converse of Theorem 1.9.). If G ⊂ Cn×n is a matrix Lie group, then G is closed
with respect to GL(n,C).

(*) Proof. Suppose that Am ∈ G converges to A and that detA 6= 0. We must show that A ∈ G.

1) Since G is a matrix Lie group, there exists a smooth 1-1 map Φ from P ⊂ Rd, an open subset of Rd

containing 0, onto VI ⊂ G, a subset of G open with respect to GL(n,C) with In ∈ G, such that Φ(0) = In.

2) Without loss of generality, we may assume that P is bounded. If not, we can define a new parameter
domain, P ′ = Ψ−1(P ), where Ψ is the map from the unit ball about the origin in Rd onto all of Rd given
by

Ψ : B1(0)→ Rd; x 7→ x

1− ||x|| .

Ψ is invertible with smooth inverse Ψ−1 given by

Ψ−1 : Rd → B1(0); y 7→ y

1 + ||y|| .

A new parameter map Φ′ defined on the bounded domain P ′ can be taken as Φ ◦Ψ.
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3) Since VI is open with respect to GL(n,C), there exists ε > 0 such that B2ε(In) ∩G ⊂ VI . It follows that
Bε(In) ∩G is contained in VI , where

Bε(In) =
{
M ∈ Cn×n | ||M − In|| ≤ ε

}
.

Let Q = Φ−1(Bε(In)) ⊂ P . Since Φ is continuous and Bε(In) is closed, it follows that Q is closed. Since
P is bounded, so is Q.

4) First, let us suppose that Am converges to A and that ||A−In|| < ε. Then letting xm := Φ−1(Am), we must
have xm ∈ Q for m large enough. Since Q is closed and bounded, it is compact (Heine-Borel theorem).
Therefore, xm has a subsequence which converges to x ∈ Q ⊂ P (Bolzano-Weierstrass theorem). Since Φ

is continuous, it follows that Φ(x) = A. Therefore, A ∈ G, as required.

5) It remains to consider the case where the limit A of the sequence Am does not belong to Bε(In). By
assumption, A is invertible. We note that A−1

m converges to A−1. Let K = ||A−1||. We may choose M
sufficiently large so that i) ||A−1

M || < 2K and ii) for all m ≥M , ||Am −AM || < ε/(2K).

6) Let
Ãm = A−1

M Am.

We note that Ãm converges to Ã := A−1
M A We note as well that Ãm ∈ G, since Ãm is a product of

elements of G. Moreover, for m > M ,

||Ãm − In|| = ||A−1
M (Am −AM )|| ≤ ||A−1

M || ||(Am −AM )|| ≤ 2K
ε

2K
= ε.

By the argument in 4. applied to Ãm, it follows that Ã ∈ G. But Ã = A−1
M A, and since AM ∈ G, it follows

that A ∈ G, as required.

Example 1.11 (Matrix groups not closed with respect to GL(n,C)).

a) The set of complex n × n matrices with rational elements (that is, the real and imaginary parts of the
matrix elements are rational) and nonzero determinant, denoted GL(n,Q), is a group (the inverse of a
matrix with rational entries is rational, as is the product of two such matrices). Clearly GL(n,Q) is not
closed with respect to GL(n,C); sequences of rational matrices may converge to an invertible matrix with
irrational entries.

b) Let

G =

{
A(t) =

(
eit 0

0 eπit

) ∣∣∣ t ∈ R

}
.

It is easy to check that G is matrix group.

We note that

J+− :=

(
1 0

0 −1

)
/∈ G, J−+ =

(
−1 0

0 1

)
/∈ G, −I2 =

(
−1 0

0 −1

)
/∈ G,

since exp(πit) = ±1 implies that t is an integer N , but eiN is not equal to ±1 for any integer N apart
from N = 0, in which case A(t) = A(0) = I2.

(*) However, as we now argue, there is a sequence of integers Nm such that eiNm converges to one of
J+−, J−+ or −I2. ∓1. Indeed, by the Dirichlet Approximation Theorem (see below), we can find an
increasing sequence of integers Nm and Pm such that Nm/Pm is an increasingly good approximation to
π; specifically, ∣∣∣∣π − Nm

Pm

∣∣∣∣ < 1

P 2
m

Then
Nm = Pmπ + rm,

where the remainder rm satisfies |rm| < 1/Pm.
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Without loss of generality, we may assume that Nm and Pm have no common factors. In particular,
they cannot both be even. Therefore, the sequence {(Nm, Pm)} must contain at least one of the following
three types of infinite subsequences: i) Nm odd, Pm even, ii) Nm even, Pm odd, iii) Pm, Nm both odd.

In Case i), eiπNm = −1, while

lim
m→∞ eiNm = lim

m→∞ eiPmπeirm = lim
m→∞ eirm = 1,

so that
lim

m→∞A(Nm) = J+−.

In Case ii), eiπNm = 1, while

lim
m→∞ eiNm = lim

m→∞ eiPmπeirm = − lim
m→∞ eirm = −1,

so that
lim

m→∞A(Nm) = J−+.

In Case iii), eiπNm = −1, while

lim
m→∞ eiNm = lim

m→∞ eiPmπeirm = − lim
m→∞ eirm = −1,

so that
lim

m→∞A(Nm) = −I2.

Thus, at least one of J+−, J−+ or −I2 is a limit point of G. Thus, G is not closed in GL(2,C), and
therefore is not a matrix Lie group.

Figure 3: The group G as a subgroup of the group T 2 of 2× 2 complex diagonal matrices with diagonal
elements exp(iθ1) and exp(iθ2) on the unit circle complex. Elements of T 2 are parameterised by a pair of
angles (θ1, θ2) defined modulo 2π. Thus, T 2 may be identified with the two-torus (a), or with the square
with sides identified (b). G corresponds to elements of the form (θ1, θ2) = (t, πt) for −∞ < t < ∞. G

defines a line on the torus, part of which is shown above, which is dense (it passes arbitrarily close to
every point).

Dirichlet Approximation Theorem (*): We may write

mπ = qm + rm,

where qm is a positive integer and rm, the remainder, satisfies 0 ≤ rm < 1. For all m, there exists at
least one pair of positive integers n, n′ with 1 ≤ n′ < n ≤ m+ 1 such that 0 < |rn − rn′ | < 1/m (this is the
pigeon hole principle: if you have m+ 1 numbers distributed between 0 and 1, then at least two of them
must be as close as 1/m). Therefore,

0 < |rn − rn′ | =
∣∣∣(n− n′)π − (qn − qn′)

∣∣∣ < 1

m
.
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Letting Pm = n− n′ and Nm = qn − qn′ , and noting that Pm ≤ m, we get that

0 <

∣∣∣∣π − Nm
Pm

∣∣∣∣ < 1

mPm
≤ 1

P 2
m
.

We note that Pm must go to infinity as m goes to infinity. (There are a finite number of rational numbers
with denominator less than D, and as π is irrational, the distance of the closest of these to π will be
greater than 1/m for m > D).

2 The Lie algebra of a matrix Lie group

Let G ⊂ Cn×n be a matrix Lie group. By a smooth curve through the identity, we mean a nonempty
open interval (−T, T ) and a smooth map

A : (−T, T )→ G; t 7→ A(t) ∈ G

such that A(0) = In. Smooth means that Ajk(t) is a smooth (infinitely differentiable) function of t for all
1 ≤ j, k ≤ n.

Definition 2.1 (Matrix Lie algebra). The Lie algebra of a matrix Lie group G, denoted g, is the subset

of Cn×n given by matrices Ȧ(0), where A(t) is a smooth curve through identity. That is, a ∈ g if and
only if a = Ȧ(0) for some smooth curve A(t) through the identity.

Proposition 2.2 (Lie algebra as vector space). g is a vector space over R.

Proof.

i) Let a1, a2 ∈ g. We want to show that a1 + a2 ∈ g. Let a1 = Ȧ1(0) and a2 = Ȧ2(0) for two smooth curves
A1(t) and A2(t) through the identity. Let A(t) := A1(t)A2(t). Then A(t) is a smooth curve through the
identity; as a product of smooth curves, it is smooth, and A(0) = A1(0)A2(0) = In. From the product
rule (which applies to derivatives of products of matrices).

Ȧ(0) = Ȧ1(0)A2(0) +A1(0)Ȧ2(0) = a1 + a2,

so a1 + a2 ∈ g.

ii) Let a ∈ g and λ ∈ R. We want to show that λa ∈ g. Let a = Ȧ(0) for a smooth curve A(t) through the
identity. Let Ã(t) := A(λt). Then Ã(t) is a smooth curve through the identity, and

˙̃A(0) = λȦ(0) = λa,

so that a ∈ g.

Proposition 2.3 (Characterisation of the Lie algebra in terms of Lie group parameterisation). Let g be
the Lie algebra of a matrix Lie group G ⊂ Cn×n. In terms of a parameterisation Φ : P → VI of G, g is
given by the real span of the matrices ξα given by

ξα :=
∂Φ

∂xα
(0).

That is,

g =


d∑

α=1

xαξα |xα ∈ R

 .

As a vector space, g is d dimensional.

Proof. Let A(t) be a smooth curve through the identity. Without loss of generality, we may assume
that the interval of definition, (−T, T ), is sufficiently small so that A(t) ∈ VI for all t ∈ (−T, T ). Let
x(t) = Φ−1(A(t)). Clearly x(0) = 0. As shown below, x(t) is smooth. Therefore, since A(t) = Φ(x(t)), it
follows from the Chain Rule that

a = Ȧ(0) =
d

dt
Φ(x(t))

∣∣∣∣
t=0

=

d∑
α=1

ẋα(0)ξα.
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Therefore, a may be expressed as a real linear combination of the ξα’s, so that

g ⊂


d∑

α=1

xαξα |xα ∈ R

 .

Conversely, ξα belongs to g, since ξα = Ȧα(0), where Aα(t) = Φ(te(α)), and e(α) is the unit vector in

the α direction. Since g is a vector space (Proposition 2.2), it follows that

g ⊃


d∑

α=1

xαξα |xα ∈ R

 .

Thus,

g =


d∑

α=1

xαξα |xα ∈ R

 ,

as required. Since the ξα’s are linearly independent, it follows that dim g = d.

(*) Finally, we show that x(t) is smooth. Note that we cannot argue on the basis that Φ−1 is smooth, since Φ−1

is defined on G, a subset of Cn×n, and we haven’t defined what it means for such a function to be smooth (it
does make sense to say that Φ−1 is continuous, however). We have that

Φ(x(t)) = A(t),

so that
Φ(x(t+ h))− Φ(x(t)) = A(t+ h)−A(t).

By the Mean Value Theorem for maps,

A(t+ h)−A(t) = M(t, h)h,

where

M(t, h) :=

∫ 1

0

dA

dt
(t+ τh) dτ.

Clearly M(t, h) is continuous in t and h and approaches Ȧ(t) as h goes to 0. Similarly,

Φ(x(t+ h))− Φ(x(t)) =

∫ 1

0

d

dτ
Φ(τx(t+ h) + (1− τ)x(t)) dτ =

d∑
α=1

(xα(t+ h)− xα(t))ηα(t, h),

where

ηα(t, h) :=

∫ 1

0

∂Φ

∂xα
(τx(t+ h)) + (1− τ)x(t)) dτ.

ηα(t, h) is continuous in t and h and approaches ∂Φ/∂xα(x(t)) as h approaches 0. Therefore,

d∑
α=1

(xα(t+ h)− xα(t))ηα(t, h) = M(t, h)h.

For t and h sufficiently small, the ηα(t, h)’s are linearly independent (since they are close to the ξα’s, which are
linearly independent). Therefore, the relation above may be continuously inverted to obtain

xα(t+ h)− xα(t) = χα(t, h)h,

where χα(t, h) is continuous and bounded in h and t. It follows that

lim
h→0

xα(t+ h)− xα(t)

h

exists and is continuous in t, so that x(t) is continuously differentiable. The argument may be repeated to show

that x(t) is smooth, but in fact only continuous differentiability is needed.

Proposition 2.4 (Properties of matrix exponential).

In what follows, a ∈ Cn×n and s, t ∈ R

11

http://en.wikipedia.org/wiki/Mean_value_theorem#Mean_value_theorem_for_vector-valued_functions


1)
e0 = In

2)

e(s+t)a = esaeta

Note that in general, ea+b 6= eaeb.

3) If A ∈ B1/2(In), there exists a unique a ∈ Blog 2(0) such that ea = A. Indeed,

a = logA = log(I − (I −A)) = −
∞∑
j=1

(I −A)

j
.

4)

lim
m→∞

(
I +

a

m

)m
= ea.

Indeed, we have the following stronger version: If rm ∈ Cn×n and ||rm|| < k/m2 for some k > 0, then

lim
m→∞

(
I +

a

m
+ rm

)m
= ea.

5)

det ea = eTr a

Proof. 1) and 2) are elementary. 3) – 5) are dealt with in Problems 1.2 – 1.4 respectively.

Proposition 2.5 (Exponential map). If α ∈ g, then etα ∈ G for all t ∈ R.

Proof. By assumption, α = Ȧ(0), where A(t) is a smooth curve through the identity. Let

Am := A(t/m)m.

Then Am ∈ G (since A(t/m) ∈ G and G is closed under multiplication).
Since A(t) is smooth, it has a second-order Taylor polynomial,

A

(
t

m

)
= A(0) + Ȧ((0)t/m+R2(t/m) = I + tα/m+R2(t/m),

where, for |t| < T , we have that the remainder term satisfies

||R2(t/m)|| ≤ C(t/m)2,

for some C > 0. It follows that
Am = (I + tα/m+R2(t/m))m.

By Property 4 of the matrix exponential from Proposition 2.4,

lim
m→∞Am = lim

m→∞(I + tα/m+R2(t/m))m = etα.

Note that, by Property 5 of the matrix exponential from Proposition 2.4,

det etα = et trα 6= 0.

Therefore, etα ∈ GL(n,C). Since G is closed in GL(n,C) and Am converges to eta ∈ GL(n,C), it follows
that etα ∈ G, as required.

Definition 2.6 (Exponential map). The matrix exponential restricted to the Lie algebra g of a matrix
Lie group G ⊂ Cn×n is called the exponential map,

exp : g→ G; α 7→ eα.
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The following shows that the exponential map provides a parameterisation of a neighbourhood of
the identity satisfying all requirements in our definition of a matrix Lie group.

Theorem 2.7 (Exponential map as parameterisation). Let G be a d-dimensional matrix Lie group with
Lie algebra g. Let ξµ, 1 ≤ µ ≤ d, be a basis for g. Then for some δ > 0, the map

Φ̂ : Bδ(0) ⊂ Rd → VI ; x 7→ exp(xµξµ),

where VI := Φ̂(Bδ(0)) is a neighbourhood of the identity, is smooth, 1-1 and onto, with Φ̂(0) = I. Moreover,
the d matrices

∂Φ̂

∂xµ
(0), 1 ≤ µ ≤ d,

are linearly independent (indeed, they are just the ξµ’s).

Proof. See Problem 2.2.

In the preceding, we assumed that G is a matrix Lie group. With some additional work, the expo-
nential map leads to a proof of Theorem 1.9, namely that a matrix group that is closed with respect to
GL(n,C) is a matrix Lie group – see Problem 2.3. The idea is to define a putative Lie algebra g̃ as the
set of matrices α for which exp(tα) ∈ G for all t. One then shows that either the exponential map on g̃

provides a good parameterisation of G or else G is not closed with respect to GL(n,C) .

Next, we establish the basic properties of the Lie algebra.

Proposition 2.8 (Adjoint action). If B ∈ G and α ∈ g, then BαB−1 ∈ g.

Proof. Let α = Ȧ(0), where A(t) is a smooth curve in G with A(0) = I. Let Ã(t) = BA(t)B−1. Then Ã(t)

is a smooth curve in G with Ã(0) = I. We have that

˙̃A(0) = BαB−1,

so that BαB−1 ∈ g.

Notation. Let AdB denote the map

AdB : g→ g;α 7→ BαB−1.

Ad is called the Adjoint action of G on g.
It is easy to verify that AdB is linear and that

AdB AdC = AdBC .

(We’ll use this relation in Section 3.)
Given α, β ∈ g, we define their Lie bracket, denoted [α, β], by

[α, β] = αβ − βα.

Proposition 2.9 (Lie bracket). If α, β ∈ g, then [α, β] ∈ g.

Proof. Let
β(s) = Adexp(sα) β = esαβe−sα.

Note that β(s) is a smooth curve in g (not in G, of course). Its derivative also lies in g. (The tangent to
a curve in a vector space may itself be regarded as an element of the vector space. This is seen explicitly
if one introduces a basis; β(s) = βµ(s)ξµ implies that β′(s) = βµ′(s)ξµ). We have that

β′(s) = αβ(s)− β(s)α

lies in g. In particular
β′(0) = αβ − βα ∈ g.

Proposition 2.10 (Properties of the Lie bracket).
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(i) Linearity
[α, c1β+c2β2] = c1[α, β1] + c2[α, β2], for all α, β1, β2 ∈ g and c1, c2 ∈ R.

(ii) Antisymmetry
[α, β] = −[β, α].

(iii) Jacobi identity
[α, [β, γ]] = [[α, β], γ] + [β, [α, γ]].

Proof. Properties (i) and (ii) are immediate. The Jacobi identity follows from straightforward calculation,
e.g.

[α, [β, γ]] = [α, βγ − γβ] = αβγ − βγα+ αγβ − γβα.

Expanding the other terms similarly, you can verify (iii).

The Jacobi identity will be important in what follows.

A (real or complex) vector space g satisfying the preceding properties is called a (real or complex) Lie
algebra. Matrix Lie groups lead to real Lie algebras, as we have seen, but Lie algebras can be defined
and studied in their own right. (Lie algebras do not uniquely determine corresponding Lie groups).

Notation. Given α ∈ g, let adα define the map

adα : g→ g; β 7→ [α, β].

ad is called the adjoint action of g on g.

Example 2.11. [U(n), unitary group in n dimensions.]

A matrix U ∈ Cn×n is unitary if U†U = I. Let U(n) denote the set of unitary matrices in Cn×n.

• U(n) is a matrix group.

Let U1, U2 be unitary. The U1U2(U1U2)† = U1U2U
†
2U
†
1 = I, so U(n) is closed under multiplication. Clearly

I is unitary. If U is unitary, then since U−1 = U†, it follows that U−1U−1† = U−1U = I, so that U−1 is
unitary.

• U(n) is a matrix Lie group.

It suffices to show that U(n) is closed. Suppose Um ∈ U(n), and Um converges to V . Then

V †V = lim
m→∞U

†
mUm = I,

so that V ∈ U(n).

• Lie algebra of U(n).

It is conventional to denote the Lie algebra of U(n) by u(n). Suppose that U(t) ∈ U(n) is a smooth curve
in U(n) with U(0) = I. Then

U†(t)U(t) = I.

Differentiating with respect to t, we get

U̇†(t)U(t) + U†(t)U̇(t) = 0.

Setting t = 0 and letting α = U̇(0), we have that

α† + α = 0.

A matrix a ∈ Cn×n is hermitian if a† = a, and antihermitian if a† = −a. We let Cn×n± denote the set

of hermitian (+) and antihermitian (-) matrices in Cn×n.

Thus, we have shown that u(n) consists of antihermitian matrices, so that u(n) ⊂ Cn×n− .
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Next, we show that the converse is true, i.e. Cn×n− ⊂ u(n). Let α be an antihermitian matrix, and let

U(t) = etα. Then

U†(t) = etα
†

= e−tα,

so that
U†(t)U(t) = e−tαetα = I.

Therefore, U(t) is a smooth curve in U(n). Clearly U(0) = I, Therefore, U̇(0) belongs to u(n). But
U̇(0) = α.

• Dimension of U(n)

The dimension of U(n) is the vector space dimension of its Lie algebra, the (real) vector space of an-
tihermitian matrices. An antihermitian matrix is parameterised by its n diagonal elements, which are
necessarily imaginary, and its n(n−1)/2 components above the diagonal, which can be complex (elements
below the diagonal are complex conjugates of the ones above). Therefore, the number of independent
parameters is n+ 2n(n− 1)/2 = n2, so that d = n2.

• Adjoint action.

Let U ∈ U(n) and α ∈ u(n). Then

AdU α = U†αU.

It is easy to verify that AdU α is antihermitian, since(
U†αU

)†
= U†α†U = −U†αU.

• Lie bracket.

Let α, β ∈ u(n). It is easy to verify that [α, β] ∈ u(n), i.e. that [α, β] is antihermitian. Indeed,

[α, β]† = (αβ − βα)† = (β†α† − α†β†) = (βα− αβ) = −[α, β].

• exp : u(n)→ U(n) is onto.

You can show that the matrix exponential maps u(n) onto all of U(n). In other words, every unitary
matrix has an antihermitian logarithm. See Problem 2.4 (d).

3 The Baker-Campbell-Hausdorff Theorem

So far, we started with a matrix Lie group, G, and defined its Lie algebra, g, in terms of G. We then
derived properties of g from properties of G. It turns out that this construction can be reversed in
part. That is, starting with a Lie algebra g, you can reconstruct a neighbourhood of the identity of a
corresponding Lie group, G. Note, however, that a Lie algebra does not uniquely determine a Lie group;
many Lie groups have the same Lie algebra.

(Side remark: In particular, the Lie algebra does not determine the topology of a corresponding Lie
group. Here is a very simple example (if you’re not familiar with the tensor product of matrices, just
ignore): the tensor product of a matrix Lie group with a finite group of matrices produces a new matrix
Lie group with the same Lie algebra as the original, but which by construction is not path-connected.
More interesting examples arise from quotients of matrix Lie groups by finite normal subgroups. The
quotients aren’t necessarily matrix Lie groups themselves, but in some cases they are; we’ll see some
specific examples later. With this remark I’m anticipating some things to come, so if it doesn’t make
sense, don’t worry.)

Theorem 3.1 (Baker-Campbell-Hausdorff Theorem.).
Let G be a matrix Lie group with Lie algebra g. Then there exists δ > 0 such that if α, β ∈ g and

||α||, ||β|| < δ, then there exists a unique γ ∈ g with ||γ|| < 1 such that

eαeβ = eγ .

Moreover, γ belongs to the Lie algebra generated by α and β, and is given by the following universal
formula:

γ = β +

∫ 1

0
g
(
et adαeadβ

)
αdt,

15



where

g(z) =
log z

z − 1
.

This formula may be understood as follows: We have that

g(z) = g(1− (1− z)) =

∞∑
j=0

(1− z)j

j + 1
,

which converges for |z| < 1. Therefore,

g
(
et adαeadβ

)
=

∞∑
j=0

1

j + 1

(
eadαeadβ − I

)j
.

Regarding α and β as small, this may be expanded in a formal power series in adα and adβ , and the
t-integral evaluated. For example, evaluating through terms involving up to two Lie brackets, we obtain

γ = α+ β + 1
2 [α, β] + 1

12 ([α, [α, β]] + [β, [β, α]]) +O(4).

See Problem 3.1.
First, let us derive a useful formula in its own right. Recall that for fixed α ∈ Cn×n, the differential

equation
Ȧ(t) = αA(t), A(0) = I,

has the unique solution A(t) = etα; indeed, this is one way to define the matrix exponential. Allowing
α to depend on t, there are two ways we might generalise this problem. First, we might consider the
differential equation

Ȧ(t) = α(t)A(t), A(0) = I.

This leads to the Volterra kernel or, in physics language, the time-ordered product or Born/Feynman-

diagram series. The second problem, which is the one we will consider here, is how to calculate d/dt eα(t).

Proposition 3.2 (Derivative of t-dependent exponential). Let α(t) be a smooth curve in Cn×n. Then

d

dt
eα(t) =

(∫ 1

0
esα(t)α̇(t)e−sα(t) ds

)
eα(t).

Note that if α(t) = tα, we recover the elementary case above.

Proof. We will work with formal power series. Convergence isn’t hard to establish, but we won’t do this
here. We have that

d

dt
eα(t) =

d

dt

∞∑
j=0

αj(t)

j!
.

Differentiating the jth term, we get

d

dt
αj(t) =

j−1∑
k=0

α(t)kα̇(t)αj−k−1;

note that α(t) and α̇(t) do not necessarily commute. From now on, to make the expressions more compact,
we’ll omit the argument t. Combining the preceding expansions, we get that

d

dt
eα =

∞∑
j=0

j−1∑
k=0

αkα̇αj−k−1

j!
=

∞∑
k=0

∞∑
j=k+1

αkα̇αj−k−1

j!
.

Change the summation variable, letting l = j − (k + 1) to obtain

d

dt
eα =

∞∑
k=0

∞∑
l=0

αk α̇ αl

(k + l + 1)!
.

We make use of the integral representation

k! l!

(k + l + 1)!
=

∫ 1

0
sk(1− s)l ds
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(side remark: for k, l non-integral, this is the integral representation of the β-function). Substituting
into the power series, we obtain

d

dt
eα =

∫ 1

0

 ∞∑
k=0

(sα)k

k!

 α̇

∞∑
l=0

((1− s)α)l

l!

 ds =

∫ 1

0
esα α̇ e(1−s)α ds,

which yields the required result.

The following establishes a connection between the Adjoint and adjoint actions via the matrix
exponential.

Proposition 3.3 (Adjoint and adjoint action.). Let α, β ∈ g. Then

eαβe−α = eadαβ :=

∞∑
j=0

(adα)j

j!
β,

where ad2
α β = adα(adα β) = [α, [α, β]], etc. Equivalently,

Adeα = eadα ,

or
Ad ◦ exp = exp ◦ ad .

Proof. We introduce a parameter t, and use the uniqueness of solutions to ODE’s. Let

β1(t) = etαβe−tα,

β2(t) = et adαβ.

We have that
β̇1 = [α, β1(t)], β1(0) = β,

while
β̇2 = adα β2(t) = [α, β2(t)], β2(0) = β.

Thus β1(t) and β2(t) satisfy the same ODE with the same initial condition. It follows that β1(t) =

β2(t).

Proof of Theorem 3.1. Let
C(t) = etαeβ .

By Property 2 of Proposition2.4, for ||α||, ||β|| and |t| sufficiently small, C(t) has a unique logarithm near
0, which we denote by γ(t):

γ(t) = logC(t).

Let us determine the differential equation satisfied by γ(t). From Proposition 3.2, we have that

d

dt
eγ(t) =

(∫ 1

0
esγ(t)γ̇(t)e−sγ(t) ds

)
eγ(t).

From Proposition 3.3, this may be written as

d

dt
eγ(t) =

(∫ 1

0
e
s adγ(t) γ̇(t) ds

)
eγ(t)

(note that adsγ = s adγ due to the linearity of the Lie bracket). Noting that∫ 1

0
esx ds =

ex − 1

x
:= F (x),

we may write this compactly as
d

dt
eγ(t) =

(
F (adγ(t))γ̇(t)

)
eγ(t)

From the definition of γ(t),
d

dt
eγ(t) = Ċ(t) = αC(t) = αeγ(t).
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Equating these two expressions, we get that

F (adγ(t))γ̇(t) = α.

Letting

G(x) =
1

F (x)
=

x

ex − 1
,

we obtain, on applying G(adγ(t)) to both sides of the preceding, that

γ̇(t) = G(adγ(t))α.

We would like to express the right-hand side in terms of adα and adβ . For this we will use the
relation between ad, Ad and exp given in Proposition 3.3. Define g(z) by G(x) = g(ex). Equivalently, we
have that

g(z) = G(log z) =
log z

z − 1
.

Then
G(adγ(t)) = g

(
e
adγ(t)

)
= g(Adeγ(t)),

from Proposition 3.3. But

Ad
eγ(t)

= AdC(t) = Ad
etαeβ

= Adetα Ad
eβ

= et adαeadβ ,

again using Proposition 3.3. Then

G(adγ(t)) = g
(
et adαeadβ

)
.

Substituting above, we get that

γ̇(t) = g
(
et adαeadβ

)
α.

Now we may integrate with respect to t, noting that γ(0) = β and γ(1) = γ. We obtain

γ = β +

∫ 1

0
g
(
et adαeadβ

)
αdt.

4 SU(2) and SO(3)

We will study a particular matrix Lie group, SU(2), in greater detail. In addition to its importance in
applications (it is closely related to rotations in R3), it provides useful, simple but representative exam-
ples of general results, and is a building block for the general theory, particularly the classification of
simple Lie algebras.

4.1 Parameterisation of SU(2)

SU(2) is the group of 2× 2 unitary matrices with determinant equal to 1. It is a subgroup of the group
U(2) of 2 × 2 unitary matrices. Note that the determinant of a unitary matrix necessarily has modulus
equal to 1.

Let u ∈ SU(2). We may write

u =

(
w x

y z

)
, w, x, y, z ∈ C.

The fact that u is unitary means that u† = u−1. We have that

u† =

(
w∗ y∗

x∗ z∗

)
,

u−1 =
1

detu

(
z −x
−y w

)
=

(
z −x
−y w

)
,
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where we have used the fact that detu = 1. It follows that u is of the form

u =

(
w x

−x∗ w∗

)
, w, x ∈ C.

Moreover, the fact that detu = 1 implies that

|w|2 + |x|2 = 1.

4.2 Real parameterisation. Pauli matrices.

Write w and z in terms of their real and imaginary components:

w = a0 + ia3,

x = a2 + ia1.

Then

u =

(
a0 + ia3 a2 + ia1
−a2 + ia1 a0 − ia3

)
, a0, a1, a2, a3 ∈ R,

= a0I2 + ia1

(
0 1

1 0

)
+ ia2

(
0 −i
i 0

)
+ ia3

(
1 0

0 −1

)

Here, I2 denotes the 2 × 2 identity matrix, to be distinguished from the 3 × 3 identity matrix I3, which
will appear later on. We define the matrices

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0

0 −1

)
, (1)

and use the notation σ = (σ1, σ2, σ3). These matrices are called the Pauli matrices. We note that the
Pauli matrices are hermitian and traceless;

σ
†
j = σj , trσj = 0.

We also write a = (a1, a2, a3) ∈ R3, and a = (a0,a) ∈ R4. Then we may write

u = a0I + ia · σ, ||a|| = 1. (2)

4.3 Topology of SU(2). Relation to S3

From the paramaterisation (2), it follows that SU(2) is in 1-1 correspondence with S3, the unit sphere
in R4. Moreover, the map a ∈ S3 7→ a0I + ia · σ ∈ C2×2 is smooth. Thus, we may regard SU(2) as S3

endowed with its usual topology inherited from R4 as well as a group structure.
With the identification of S3 and SU(2) in view, certain topological properties of SU(2) become

apparent. First, as S3 is a closed and bounded subset of R4, it is compact; every open cover has a finite
subcover, and every sequence has a convergent subsequence. Next, SU(2) is (path) connected; that is, any
two elements u1 and u2 in SU(2) can be joined by a continuous path in SU(2). Finally, SU(2) is simply
connected; that is, if u(t), 0 < t < 1, is a closed, continuous curve in SU(2), so that u(0) = u(1) = u∗, then
u(t) can be continuously deformed into the constant curve u(t) = u∗ while keeping its endpoints fixed
at u∗ throughout. More explicitly, there exists an SU(2)-valued function U(t, s) continuous in s, t with
0 ≤ s, t ≤ 1, such that U(t, 0) = u(t), U(0, s) = U(1, s) = u∗, U(t, 1) = u∗. These facts can be established
analytically; see Problem Sheet 2.
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Figure 4: S3 may be regarded as the union of two copies of the closed unit ball ||a|| ≤ 1 in R3 with corresponding
points on the surfaces of the two balls identified. The ball on the left corresponds to a0 =

√
1− a · a, and the ball

on the right to a0 = −
√

1− a · a. The surfaces of the two balls correspond to ||a|| = 1 and a0 = 0 – hence the
identification of corresponding points. The centres of the two balls correspond to a0 = 1,a = 0 (i.e., the identity
I2 in SU(2)) and a0 = −1,a = 0 (−I2 in SU(2)).

4.4 Product in SU(2). Relation to Quarternions.

It is straightforward to verify the following:

σ1σ2 = −σ2σ1 = iσ3, σ2σ3 = −σ3σ2 = iσ1, σ3σ1 = −σ1σ3 = iσ2,

σ2
1 = σ2

2 = σ2
3 = I2.

These can be summarised more concisely as

σjσk = δjkI2 + iεjklσl,

where the sum
∑3
l=1 is implied in the last term, or

(a · σ)(b · σ) = a · bI2 + i(a× b) · σ. (3)

These expressions allow us to write down the product of matrices in SU(2) in terms of the parame-
terisation (2). Let u = a0I2 + ia · σ and v = b0I2 + ib · σ. Then

uv = (a0b0 − a · b)I2 + i(a0b + b0a− a× b) · σ. (4)

*In the product formula (4), the fact that u, v ∈ SU(2) means that ||a||2 = ||b||2 = 1. But the formula
remains valid if the constraint on the norm of a and b is lifted. We are led to introduce the following,
larger set of matrices: Let

q(x) = x0I2 + ix · σ, x = (x0,x) ∈ R4,

and let
H = {q(x) |x ∈ R4}.

H is in fact a parameterisation (or representation) of the quarternions in C2×2. Let us record some facts
about quarternions, all of which are easily derived from (1):

(i) Product: q(x)q(y) = q(z), where z = (x · y, x0y + y0x− x× y)

(ii) Conjugate: q†(x) = q(x0,−x)

(iii) Inner product: 〈q(x), q(y)〉 = 1
2 tr

(
q(x)†q(y)

)
= x · y := x0y0 + x · y (thus, inner product on H coincides

with inner product on R4)

(iv) Norm: ||q(x)||2 =
〈
q†(x), q(x)

〉
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(v) Norm is multiplicative: ||q(x)q(y)|| = ||q(x)|| ||q(y)||

(vi) Inverse: For x 6= 0, q(x)−1 = q(x)†/||q(x)||

Note that the conjugate, inner product and norm are just as for C2×2 (apart from the factor of 1
2 in the

definition of the inner product).

SU(2) may be identified with the group of unit quarternions, i.e. quarternions with unit norm.

The quarternions are, additionally, an associative division algebra; they form an associative alge-
bra (commutative and associative addition operation, associative product, distributive law), and every
nonzero element has a multiplicative inverse). Up to isomorphism, there are just three real associative
division algebras: the real numbers, the complex numbers, and the quarternions. Note that in the first
two cases, too, the set of elements of unit norm form a multiplicative group (in the case of the R, {±};
in the case of C, {eiθ}).

4.5 Lie algebra su(2)

In Example 2.11, we found that u(2), the Lie algebra of the group U(2) of 2× 2 unitary matrices, is given
by C2×2

− , the space of 2× 2 antihermitian matrices. As SU(2) is subgroup of U(2), its Lie algebra, su(2),

must be a subspace of C2×2
− . Let us determine the constraint on elements of su(2) that follows from the

unit-determinant condition.
Let u(t) ∈ SU(2) be a smooth curve in SU(2) with u(0) = I2. Since detu(t) = 1, we have that

d

dt
detu(t) = 0.

From the general formula for the derivative of the determinant, we have that

d

dt
detu(t) = tr(u−1(t)u̇(t)) detu(t).

Evaluating at t = 0, we get that
0 = tr u̇(0).

Thus, elements of su(2), in addition to being antihermitian, must also be traceless.
Let C2×2

−0 denote the space of 2 × 2 traceless antihermitian matrices. It is easily seen that C2×2
−0

consists of linear combinations of the Pauli matrices with imaginary coefficients:

C2×2
−0 = {iα · σ |α ∈ R3}.

Therefore, we have shown that
su(2) ⊂ C2×2

−0 .

It is easy to see that the inclusion goes the other way, i.e.

su(2) ⊃ C2×2
−0 .

Indeed, let u(t) = exp(itα · σ). We saw in Example 2.11 that u(t) is unitary for all real t. We also have
that

d

dt
detu = tr

(
u−1u̇

)
detu = tr

(
u−1uiα · σ

)
detu = i tr(α · σ) detu = 0.

Thus, detu(t) is constant. Since detu(0) = 1, it follows that detu(t) = 1. Thus, u(t) ∈ su(2). Since
u̇(0) = iα · σ, it follows that all 2× 2 traceless antihermitian matrices belong to su(2).

We conclude that
su(2) = C2×2

−0 = {iα · σ |α ∈ R3}.

The Lie bracket is easily worked out from (3). We have that

[iσj , iσk] = −2iεjklσl,

or
[iα · σ, iβ · σ] = −2i(α× β) · σ.
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The Jacobi identity is equivalent to the identity

α× (β × γ) = (α× β)× γ + β × (α× γ).

4.6 Exponential map

The exponential map exp : su(2) → SU(2) can be evaluated explicitly – see Problem Sheet 2. We have
that

eiα·σ = cosαI2 + i sinα α̂ · σ,

where α = ||α|| and α̂ = α/||α||.

4.7 Inner product on su(2).

As a subspace of C2×2, su(2) is endowed with an inner product. The definition in Section 1.1 is to take
the inner product of u, v to be tr(u†v). Here, it will be convenient to introduce a factor of 1/2; we define

〈u, v〉 =
1

2
tr(u†v).

Note that with this definition, the identity has norm 1. Also, the matrices iσ form an orthonormal basis
for su(2); 〈

iσj , iσk
〉

= 1
2 tr((iσj)

†iσk) = 1
2 tr(σjσk) = 1

2 tr(δjkI + iεjklσl) = δjk.

Therefore,
〈iα · σ, iβ · σ〉 = α · β.

4.8 Adjoint action. Relation to rotations.

The Adjoint action is defined in the usual way:

Adu iα · σ = u(iα · σ)u†.

As the Adjoint action is a linear map on su(2), we may write that

Adu iα · σ = i(R(u)α) · σ,

where R(u) : R3 → R3 is a linear map on R3, i.e. a 3× 3 real matrix (since we have introduced a basis).
We want to determine the properties of R(u) and derive explicit formulas for it.

Proposition 4.1. R(u) is an orthogonal matrix.

Proof. We have that

(R(u)α) · (R(u)β) =
〈
u(iα · σ)u†, u(iβ · σ)u†

〉
= 1

2 tr
(

(u(iα · σ)u†)†(u(iβ · σ)u†)
)

= 1
2 tr(u(iα · σ)†u†u(iβ · σ)u†) = 1

2 tr
(

(iα · σ)†iβ · σ
)

= 〈iα · σ, iβ · σ〉 = α · β.

Proposition 4.2.
detR(u) = 1.

Proof. An orthogonal matrix necessarily has determinant equal to 1 or −1. Also, since R(I2) = I3, we
have that detR(I2) = 1. Take u∗ ∈ SU(2). Since SU(2) is connected, there exists a continuous curve
u(t) in SU(2) with u(0) = I2 and u(1) = u∗. det(R(u(t)) is continuous, and therefore constant (since it is
either 1 or −1), and therefore equal to 1 (since it equals 1 at t = 0). Therefore, detR(u∗) = 1 (and u∗ is
arbitrary).
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We may derive an explicit formula for R(u). Indeed, letting êj denote the jth unit vector in R3 (e.g.,

ê1 = (1, 0, 0)T , ê2 = (0, 1, 0)T , etc) we have that

Rjk(u) = êj ·R(u) êk =
〈
iσj , (i(R(u) êk) · σ

〉
= 1

2 tr
(

(iσj)
†(u iσku

†)
)
.

Writing
u = a0I2 + ia · σ,

it is straightforward to obtain (see Problem Sheet 2)

Rjk(u) = (a2
0 − a · a)δjk + 2ajak + 2a0arεrjk. (5)

Equivalently,
R(u) r = (a2

0 − a · a) r + 2(a · r)a− 2a0a× r. (6)

Recall the general fact from Section 2 (which is easily verified) that Adu Adv = Aduv. This implies
that

R(u)R(v) = R(uv).

Let SO(3) denote the set of 3 × 3 real orthogonal matrices with determinant equal to 1. It is easily
checked that SO(3) is a matrix Lie group (it forms a group and is closed in R3×3). We may summarise
the considerations so far with the observation that the map

R : SU(2)→ SO(3);u 7→ R(u)

is a homomorphism of matrix Lie groups.
Next, we show that the map R is onto. We will make use of the fact that the action of any element

of SO(3) is described by a rotation about some axis through the origin. Let R(n̂, θ) denote the rotation
about n̂ by an angle θ, where n̂ is a unit vector in R3. The convention is that the rotation is anticlockwise
with respect to n̂. We have that

R(n̂, θ) n̂ = n̂,

while if v is perpendicular to n̂, we have that

R(n̂, θ)v = cos θv + sin θn̂× v.

Proposition 4.3. Let

u = cos
θ

2
I2 − i sin

θ

2
n̂ · σ.

Then
R(u) = R(n̂, θ).

Proof. From (6), noting that

a0 = cos
θ

2
, a = − sin

θ

2
n̂,

we get that

R(u)n̂ =

(
cos2 θ

2
− sin2 θ

2

)
n̂ + 2 sin2 θ

2
n̂ = n̂,

and for v perpendicular to n̂,
R(u)v = cos θ v + sin θ n̂× v.

Another way to establish Proposition 4.3 is through Proposition 3.3 – see Problem Sheet 2.
Proposition 4.3 implies that the map u 7→ R(u) from SU(2) to SO(3) is onto, since every rotation can

be realised with appropriate choice of u.

Proposition 4.4.
SO(3) ∼= SU(2)/{I2,−I2}.

Proof. We have already shown that the map u 7→ R(u) is a surjective homomorphism of SU(2). Therefore,
SO(3) is isomorphic to the quotient of SU(2) by the kernel of R. We need to determine for which u we
have R(u) = I3. From (5), with u = a0I2 + ia ·σ, this holds if and only if a2

0 = 1, a = 0, i.e. a0 = ±1, a = 0,
or u = ±I2.

Clearly, u(−a) = −u(a). Therefore, under the map R, both u(a) and u(−a) are mapped to the same
element of SO(3).
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4.9 *Hamilton’s theory of turns

The relation between SU(2) and SO(3) provides a geometric construction for the product of two rotations,
due to Hamilton. Given rotations R(n̂1, θ1) and R(n̂2, θ2), let m̂0 denote a unit vector that lies on the
intersection of the two great circles normal to n̂1 and n̂2. Let m̂1 denote the vector obtained by rotating
m̂0 by an angle −θ1/2 about n̂1. Similarly, let m̂2 denote the vector obtained by rotating m̂0 by an
angle θ2/2 about n̂2. Let n̂ denote the unit vector normal to m̂1 and m̂2, and let θ/2 denote the angle
by which m̂1 is rotated about n̂ to get to m̂2. Then

R(n̂1, θ1)R(n̂2, θ2) = R(n̂, θ).

Figure 5:

4.10 *Topology of SO(3)

From the relationship between SU(2) and SO(3), we can deduce certain facts about the topology of SO(3)

using what we know about the topology of SU(2) ∼= S3.
First, we argue that SO(3) is path connected. Let R0,R1 ∈ SO(3), and let u0, u1 ∈ SU(2) be such

that R(u0) = R1 and R(u1) = R2. Since SU(2) is connected, there exists a continuous path u(t) in SU(2)

with u(0) = u0 and u(1) = 1. Then R(t) = R(u(t)) is a continuous path in SO(3) from R0 to R1.
From the fact that SU(2) is simply connected, one can show that SO(3) = SU(2)/{±I2} is doubly

connected; the fundamental group of SO(3) is isomorphic to {±I2} ∼= Z2. We won’t give details; the idea
is that closed loops in SO(3) can be distinguished according to whether their pre-images in SU(2) are
closed or not (if not, the endpoints of their pre-images in SU(2) differ by a sign). Under concatenation,
the two classes of closed loops in SO(3) with endpoints at I3, say, obey the group law of Z2.

This is the basis for the “belt trick”.
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5 Haar measure

5.1 Motivation – invariant measure on R
Let f be a function on R, which may be either real- or complex-valued. We define the weighted integral
of f by

〈f〉 :=

∫ ∞
−∞

f(x)ρ(x) dx,

where the real weight function ρ(x) is nonnegative (we assume throughout that f and ρ are such that
the integral converges). Given a ∈ R, we define

fa(x) := f(x− a),

which is the function obtained by translating the argument of f by a. We want to choose the weight
function ρ(x) so that 〈f〉 = 〈fa〉 for all f and for all a. That is,∫ ∞

−∞
f(x)ρ(x) dx =

∫ ∞
−∞

f(x− a)ρ(x) dx. (7)

It’s easy to determine the condition on ρ implied by this requirement, but we’ll go through it in
detail to prepare the ground for the analogous argument for functions defined on a general group (the
real numbers R under addition constitute a group, of course, so the present case is a particular example).
On the right-hand side of (7), we make the change of variables y = x− a. We get that∫ ∞

−∞
f(x− a)ρ(x) dx =

∫ ∞
−∞

f(y)ρ(y + a) dy.

On the left-hand side, we make the trivial change of variable y = x, just in order to facilitate comparison
with the left-hand side: ∫ ∞

−∞
f(x)ρ(x) dx =

∫ ∞
−∞

f(y)ρ(y) dy.

Equating the two expressions, we get that∫ ∞
−∞

f(y)ρ(y) dy =

∫ ∞
−∞

f(y)ρ(y + a) dy,

or ∫ ∞
−∞

f(y)(ρ(y + a)− ρ(y)) dy = 0.

As this relation must hold for all f , we conclude that

ρ(y + a) = ρ(y),

which in turn must hold for all a. Therefore, ρ must be constant, i.e. translation-invariant. Equivalently,

ρ(y) = ρ(0) for all y.

5.2 Invariant measure on matrix Lie group

We want to consider integration of a (real- or complex-valued) function f defined on a matrix Lie group
G ⊂ GL(n,C). To make sense of integration over G, we will make use of a parameterisation. Suppose
G is d dimensional. Then there exists an open set P ⊂ Rd containing the origin and a smooth 1-1 map
Φ : P → G with Φ(0) = In. For simplicity, we will assume that Φ is onto; that is, G is parameterised by
a single domain P . This is not generally the case. In general, Φ(P ) covers only part of G, and a number
of overlapping parameterisations are required to cover all of G. However, even with this simplifying
assumption, we can capture the main idea underlying invariant measures on a matrix Lie group. The
general case can in principle be dealt with using the similar arguments. A more natural approach is to
regard G as a differentiable manifold. While this is beyond the scope of our treatment, we give a brief
sketch in Section 5.8.

We define

〈f〉 :=

∫
P
f(Φ(x))ρ(x)dx,
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where dx denotes the d-dimensional volume element, and ρ(x) is a nonnegative weight. Given A ∈ G, we
define functions fL,A and fR,A on G by

fL,A(X) = f(A−1X), fR,A(X) = f(XA−1),

where X ∈ G. fL,A is obtained from f by multiplying its argument on the left by A−1, and fR,A is

obtained from f by multiplying its argument on the right by A−1. Note that if G is not abelian, then
fL,A and fR,A are in general different. We want to determine ρL(x) so that, for ρ = ρL,

〈f〉 = 〈fL,A〉 (8)

for all functions f and all A ∈ G (we assume the integral converges). Similarly, we want to determine
ρR(x) so that, for ρ = ρR,

〈f〉 = 〈fR,A〉 (9)

for all functions f and all A ∈ G. ρL(x) and ρR(x) are called left-invariant and right-invariant Haar
measures (with respect to the parameterisation given by Φ). We will obtain formulas for them and
determine under what circumstances they coincide.

5.3 Group multiplication in terms of parameters

As we will be working with the parameterisation (in order to define integration), we want to express
group multiplication in terms of parameters. Given A ∈ G, we define a map LA : P → P by

LA(x) = Φ−1(AΦ(x)), or Φ(LA(x)) = AΦ(x).

That is, LA is the map on the parameter domain that describes multiplication on the left by A. Given
x, LA(x) is obtained by taking the associated group element Φ(x), multiplying on the left by A, and then
determining the parameter values which correspond to AΦ(x). It can be shown that LA(x) is smooth,
1-1 and onto (given our assumption that Φ(P ) = G).

We have that
LAB(x) = LA(LB(x)), (10)

since
LAB(x) = Φ−1(ABΦ(x)) = Φ−1(AΦ(LB(x))) = LA(LB(x)).

Letting B = A−1, we conclude that
(LA)−1 = LA−1 ,

so that LA is invertible with smooth inverse. Therefore, LA is a diffeomorphism.
Let us differentiate the composition law (10). The Chain Rule gives

L′AB(x) = L′A(LB(x))L′B(x), (11)

where L′A(x) ∈ Rd×d denotes the Jacobian, i.e.

[L′A(x)]jk =
∂L

j
A

∂xk
(x).

Similarly, we can express multiplication on the right in terms of parameters. Given A ∈ G, we define
a map RA : P → P by

RA(x) = Φ−1(Φ(x)A), or Φ(RA(x)) = Φ(x)A.

That is, RA is the map on the parameter domain that describes multiplication on the right by A.
The composition law for right multiplication is given by

RAB(x) = RB(RA(x)), (12)

so that the maps RA and RB come out in the opposite order to how they appear in the product AB.
It’s easy to see why. For left multiplication, to obtain ABX from X, first we multiply on the left by B

and then by A. For right multiplication, to obtain XAB from X, first we multiply on the right by A and
then by B. To verify explicitly,

RAB(x) = Φ−1(Φ(x)AB) = Φ−1(Φ(RA(x))B) = RB(RA(x)).
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Letting B = A−1, we conclude that
(RA)−1 = RA−1 ,

so that RA is invertible with smooth inverse. Therefore, RA is a diffeomorphism.
Differentiating the composition law (12), we get

R′AB(x) = R′B(RA(x))R′A(x). (13)

5.4 Calculation of ρL and ρR

First, we consider the left-invariant weight ρL. We look for a nonnegative function ρL(x) on P such
that (8) holds for all (suitable) functions f on G and for all A ∈ G. In terms of the left-translation map
introduced above, we have that

fL,A(Φ(x)) = f(A−1Φ(x)) = f(Φ(LA−1(x))).

Therefore, the condition (8) becomes∫
P
f(Φ(x))ρL(x) dx =

∫
P
f(Φ(LA−1(x)))ρL(x) dx, (14)

On the right-hand side of (14), we make the change of variables

y = LA−1(x),

so that
x = LA(y), dx =

∣∣∣detL′A(y)
∣∣∣ dy,

where the factor
∣∣∣detL′A(y)

∣∣∣ accounts for the volume element according to the change-of-variables formula

for multidimensional integrals. The right-hand side becomes∫
P
f(Φ(y))ρL(LA(y))

∣∣∣detL′A(y)
∣∣∣ dy.

On the left-hand side, to facilitate comparison, we make the trivial change of variables y = x to obtain∫
P
f(Φ(y))ρL(y) dy.

Then (14) becomes ∫
P
f(Φ(y))ρL(y) dy =

∫
P
f(Φ(y))ρL(LA(y))

∣∣∣detL′A(y)
∣∣∣ dy.

In order for this to hold for all f and for all A ∈ G, we must have

ρL(LA(y)) =
ρL(y)∣∣∣detL′A(y)

∣∣∣ , (15)

which must hold for all y ∈ P and for all A ∈ G.
Let us see what we can learn from (15) in the special case that y = 0. Recalling our convention

Φ(0) = In, we note that Φ(LA(0)) = AΦ(0) = A. Introducing x ∈ P by the relation Φ(x) = A (in other
words, x denotes the parameter values associated with A), we may write that

ρL(LA(0)) = ρL(x),

so that (15) becomes

ρL(x) =
ρL(0)∣∣∣detL′

Φ(x)
(0)
∣∣∣ . (16)

This gives an explicit formula for ρL(x). (Note that ρL is determined up to an arbitrary multiplicative
constant, which is reflected in the fact that ρL(x) is proportional to ρL(0).)
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It remains to check that ρL(x) as given by (16) satisfies the condition (15) for all y ∈ P . Using (16),
we get for the right-hand side of (15) that

ρL(y)∣∣∣detL′A(y)
∣∣∣ =

ρL(0)∣∣∣detL′A(y)
∣∣∣ ∣∣∣detL′

Φ(y)
(0)
∣∣∣ .

From the Chain Rule (11) and the fact that y = LΦ(y)(0), we get that

L′A(y)L′Φ(y)(0) = L′A(LΦ(y)(0))L′Φ(y)(0) = L′AΦ(y)(0),

so that ∣∣∣detL′A(y)
∣∣∣ ∣∣∣detL′Φ(y)(0)

∣∣∣ =
∣∣∣detL′AΦ(y)(0)

∣∣∣ .
Therefore, the right-hand side of (15) may be written as

ρL(0)∣∣∣detL′
AΦ(y)

(0)
∣∣∣ .

On the left-hand side of (15), we have

ρL(LA(y)) = ρL(LAΦ(y)(0)) =
ρL(0)∣∣∣detL′
AΦ(y)

(0)
∣∣∣ ,

where we have used the formula (16). This coincides with the right-hand side, so that (15) is satisfied
for all y ∈ P and for all A ∈ G.

The formula (16) has a simple geometric interpretation, as illustrated in Figure 6.

Figure 6: Left-invariant weight. An (infinitesimal) volume element based on the origin in the parameter
domain P is mapped under left multiplication by Φ(y) into a volume element at y. The volume of the

mapped element changes by a factor of
∣∣∣detL′Φ(y)(0)

∣∣∣. In the invariant integral, however, we want both

volume elements weighted equally. Hence, we compensate the change of volume by taking the weight

ρL(y) to be ρL(0)/
∣∣∣detL′Φ(y)(0)

∣∣∣.
The derivation of the right-invariant weight proceeds similarly. The only small difference to note is

in the order of factors in the composition rule, RAB = RB ◦ RA. We briefly summarise the calculation.
We look for a nonnegative function ρR(x) on P such that (9) holds for all (suitable) functions f on G

and for all A ∈ G. In terms of the right-translation map introduced above, we have that

fR,A(Φ(x)) = f(Φ(x)A−1) = f(Φ(RA−1(x))).
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Therefore, the condition (9) becomes∫
P
f(Φ(x))ρR(x) dx =

∫
P
f(Φ(RA−1(x)))ρR(x) dx. (17)

On the right-hand side of (14), we make the change of variables

y = RA−1(x),

so that
x = RA(y), dx =

∣∣∣detR′A(y)
∣∣∣ dy.

The right-hand side becomes ∫
P
f(Φ(y))ρR(RA(y))

∣∣∣detR′A(y)
∣∣∣ dy.

Then (17) becomes ∫
P
f(Φ(y))ρR(y) dy =

∫
P
f(Φ(y))ρR(RA(y))

∣∣∣detR′A(y)
∣∣∣ dy.

We obtain the condition

ρR(RA(y)) =
ρR(y)∣∣∣detR′A(y)

∣∣∣ , (18)

which must hold for all y ∈ P and for all A ∈ G. For y = 0, and x = Φ−1(A), (18) yields the explicit
formula

ρR(x) =
ρR(0)∣∣∣detR′

Φ(x)
(0)
∣∣∣ . (19)

Let us check that ρR(x) as given by (19) satisfies the condition (18) for all y ∈ P . Using (19), we
get for the right-hand side of (18) that

ρR(y)∣∣∣detR′A(y)
∣∣∣ =

ρR(0)∣∣∣detR′A(y)
∣∣∣ ∣∣∣detR′

Φ(y)
(0)
∣∣∣ .

From the Chain Rule (13) and the fact that y = RΦ(y)(0), we get that

R′A(y)R′Φ(y)(0) = R′A(RΦ(y)(0))R′Φ(y)(0) = R′Φ(y)A(0),

so that ∣∣∣detR′A(y)
∣∣∣ ∣∣∣detR′Φ(y)(0)

∣∣∣ =
∣∣∣detR′Φ(y)A(0)

∣∣∣ .
Therefore, the right-hand side of (18) may be written as

ρL(0)∣∣∣detR′
Φ(y)A

(0)
∣∣∣ .

On the left-hand side of (18), we have

ρR(RA(y)) = ρR(RΦ(y)A(0)) =
ρL(0)∣∣∣detR′
Φ(y)A

(0)
∣∣∣ ,

where we have used the formula (19). This coincides with the right-hand side, so that (18) is satisfied
for all y ∈ P and for all A ∈ G.
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5.5 Example: Affine group over R
We take the affine group over R, denoted Aff(R), to be the subgroup of GL(2,R) consisting of matrices
of the form (

a b

0 1

)
, where a > 0.

It is easy to check that Aff(R) is a matrix Lie group. We take as parameterisation

Φ : R2 = {(λ, b)} → Aff(R); (λ, b) 7→ Φ(λ, b) =

(
eλ b

0 1

)
.

In this case, G is covered by the parameterisation, i.e. Φ(R2) = Aff(R). The nomenclature derives from
the fact that (

eλ b

0 1

)(
x

1

)
=

(
eλx+ b

1

)
,

so that these matrices generate the affine transformations x 7→ eλx+ b on R.
It is easy to work out that

Φ(λ1, b1)Φ(λ2, b2) = Φ(λ1 + λ2, e
λ1b2 + b1).

From this relation we can read off the left- and right-translation maps, as follows:

LΦ(λ,b)(x, y) = (λ+ x, b+ eλy),

RΦ(λ,b)(x, y) = (x+ λ, y + exb).

The Jacobians of the left- and right-translation maps are given by

L′Φ(λ,b)(x, y) =
∂(λ+ x, b+ eλy)

∂(x, y)
=

(
1 0

0 eλ

)
,

R′Φ(λ,b)(x, y) =
∂(x+ λ, y + exb)

∂(x, y)
=

(
1 0

exb 1

)
.

Their determinants are given by

detL′Φ(λ,b)(x, y) = eλ,

detR′Φ(λ,b)(x, y) = 1,

both of which are independent of x and y. Thus, from (16) and (19), the left-invariant and right-invariant
weights are given by

ρL(λ, b) = e−λρL(0, 0),

ρR(λ, b) = ρR(0, 0),

where ρL(0, 0), ρR(0, 0) are arbitrary constants. Thus, the left- and right-invariant weights for the affine
group do not coincide. Figure 7 below gives a geometrical argument.

5.6 Bi-invariant Haar measure and the modular function

From (16) and (19), we have that

ρR(x)

ρL(x)
= C

∣∣∣∣∣∣
detL′Φ(x)(0)

detR′
Φ(x)

(0)

∣∣∣∣∣∣ , (20)

where C = ρR(0)/ρL(0). The ratio of the left- and right-invariant Haar measures turns out to be related
to the Adjoint action.

As discussed in Section 2, the Adjoint action on a matrix Lie group is the linear map on its Lie
algebra g given by a 7→ AdA a = AaA−1. As the Lie algebra g is a d-dimensional real vector space, by
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Figure 7: (a) Left multiplication by Φ(λ∗, b∗) is applied to a rectangular area element based at the origin.

The image is a rectangular area element, translated by (λ∗, b∗) and scaled in the vertical direction by eλ
∗
.

Thus, the area of the image is changed by a factor of eλ∗ . (b) Right multiplication by Φ(λ∗, b∗) is applied
to a rectangular area element based at the origin. The image is translated by (λ∗, b∗) and sheared, but
its area is unchanged.

.

introducing a basis ξ1, . . . , ξd for g, we may represent AdA by a matrix MA ∈ Rd×d, as follows: Letting
AdA(

∑d
j=1 c

jξj) be given by
∑d
k=1 d

kξk, we have that

d = MA · c.

Under the change of basis
ξj 7→ ηj =

∑
k=1

Skjξk,

where S ∈ Rd×d is nonsingular, the matrix MA is replaced by

NA = S−1MAS.

However, we see that the determinants of NA and MA are the same. Therefore, the determinant of the
Adjoint map detMA is a basis independent, and may be regarded as an intrinsic function on a matrix
Lie group, called the modular function.

Definition 5.1 (Modular function). The modular function ∆ : G→ R is the function on G given by

∆(A) := detMA,

where MA is a matrix representation of the Adjoint map AdA : g→ g with respect to a basis on g.

Let us record some properties of the modular function.

Proposition 5.1 (Properties of the modular function). Let ∆ be the modular function on a d-dimensional
matrix Lie group G ⊂ GL(n,C).

(i) ∆(In) = 1

(ii) ∆(AB) = ∆(A)∆(B), for all A,B ∈ G

(iii) ∆(A) 6= 0, for all A ∈ G

(iv) If G is connected, then ∆ is nonnegative.

Proof.

(i) AdIn is the identity map in g, so that MA = Id, and ∆(In) = det Id = 1.

(ii) By Proposition 2.8, AdAB = AdA AdB . It follows that MAB = MAMB , so that

∆(AB) = detMAB = detMAMB = detMA detMB = ∆(A)∆(B).
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(iii) From the previous two results, since ∆(A)∆(A−1) = 1, it follows that ∆(A) cannot vanish.

(iv) Suppose that G is connected. Given A∗ ∈ G, and suppose that ∆(A∗) < 0. Let A(t), 0 ≤ t ≤ 1 be a
continuous curve joining In to A∗. Since ∆(A(0)) = 1, ∆(A(1)) < 0 and ∆(A(t)) is continuous in t, it
follows that ∆(A(t) must vanish for some A(t) ∈ G, contradicting the preceding result.

The parameterisation Φ provides an explicit formula for ∆(A).

Proposition 5.2.

∆(A) =
detL′A(0)

detR′A(0)
.

Proof. The parameterisation Φ provides a basis for g, namely

ξj =
∂Φ

∂xj
(0) =

d

dt

∣∣∣∣
t=0

Φ(te(j)),

where e(j) ∈ Rd is the unit vector in the jth direction. Then for x ∈ Rd, MA · x is defined by

d∑
j=1

(MA · x)jξj :=
d

dt

∣∣∣∣
t=0

AΦ(tx)A−1.

But
AΦ(tx)A−1 = Φ(RA−1(LA(tx))).

By the Chain Rule,

d

dt

∣∣∣∣
t=0

AΦ(tx)A−1 = Φ′(RA−1(LA(0)))R′A−1(LA(0))L′A(0) · x.

Since RA(0) = LA(0) = Φ−1(A), we have that RA−1(LA(0)) = 0 and

R′A−1(LA(0)) = R′A−1(RA(0)).

By the Chain Rule applied to the identity RA−1(RA(z)) = z, we get that

R′A−1(RA(0))R′A(0) = Id,

or

R′A−1(RA(0)) =
(
R′A(0)

)−1
.

Substituting above, we get that

d

dt

∣∣∣∣
t=0

AΦ(tx)A−1 =
∑
j

((
R′A(0)

)−1
L′A(0) · x

)
j
ξj ,

so that

MA =
(
R′A(0)

)−1
L′A(0).

Taking determinants, we get that

det AdA = detMA =
detL′A(0)

detR′A(0)
,

as required.

Proposition 5.3.
ρR(Φ−1(A))

ρL(Φ−1(A))
= C|∆(A)|.

Proof. This follows from (20) and Proposition 5.2.
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Definition 5.1 (Bi-invariant Haar measure). We say that a matrix Lie group G has a bi-invariant
Haar measure if there exists a weight function ρ(x) that satisfies both the conditions for left- and right-
invariance, i.e. (15) and (18).

Definition 5.2 (Unimodular group). A matrix Lie group G is unimodular if

∆(A) = 1.

Proposition 5.4. A connected matrix Lie group G has a biinvariant Haar measure if and only if G is
unimodular.

Proof. If G is unimodular, it’s clear from Proposition 5.3 that ρL/ρR is constant, so that both ρL and ρR
are left- and right-invariant. Conversely, if G has a bi-invariant Haar measure, then ρR/ρL is constant
From Proposition 5.3, this implies that |∆(A)| is constant. Since ∆(In) = 1 and G is connected, this
implies that ∆(A) = 1.

An important class of unimodular groups are compact connected groups. A matrix Lie group
G ⊂ GL(n,C) is compact if it is a closed and bounded subset of Cn×n

Proposition 5.5. A compact connected matrix Lie group is unimodular.

Proof. The argument is based on the fact that a continuous function on a compact space is bounded.
Since G is connected, it follows from Proposition 5.1(iv) that the modular function ∆ is nonneg-

ative. Suppose that G is not unimodular. Then there exists A ∈ G such that det AdA 6= 1. From
Proposition 5.1(ii), ∆(A) = 1/∆(A−1). Therefore, by replacing A with A−1 if necessary, we may assume
that ∆(A) > 1. It follows that ∆ is unbounded on G, since by Proposition 5.1(ii), ∆(An) = ∆(A)n. Since
∆ is continuous, it follows that G cannot be compact.

5.7 Haar measure on SU(2)

SU(2) is compact, so that we expect it to have a bi-invariant measure.
We take P to be the open unit ball in R3, i.e.

P = {b ∈ R3 | b < 1}.

We define Φ : P → SU(2) by

Φ(b) = aI2 + ib · σ, a = (1− b2)1/2.

In this case, Φ(P ) does not cover all of SU(2), but rather half of it, since SU(2) consists of all elements of

the form aI2 + ib · σ with a = ±(1 − b2)1/2. To compute the Haar measure, it turns out to be sufficient
to consider the contribution where a is positive; we’ll return to this point in the end.

Multiplication on SU(2) is given by

Φ(b1)Φ(b2) = Φ(c),

where
c = a1b2 + a2b1 − b1 × b2.

It follows that the left- and right-multiplication maps are given by

LΦ(b)(y) = ay + xb− b× y,

RΦ(b)(y) = xb + ay − y × b,

where
x = (1− y2)1/2.

Their Jacobians are given by

L′Φ(b)(y) =

 a− y1
x b1 −y2x b1 + b3 −y3x b1 − b2

−y1x b2 − b3 a− y2
x b2 −y3x b2 + b1

−y1x b3 + b2 −y2x b3 − b1 a− y3
x b3


R′Φ(b)(y) =

 a− y1
x b1 −y2x b1 − b3 −y3x b1 + b2

−y1x b2 + b3 a− y2
x b2 −y3x b2 − b1

−y1x b3 − b2 −y2x b3 + b1 a− y3
x b3
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This expressions look rather formidable, but they simplify when evaluated at y = 0 (in which case x = 1)
to yield

L′Φ(b)(0) =

 a b3 −b2
−b3 a b1
b2 −b1 a

 ,

R′Φ(b)(0) =

 a −b3 b2
b3 a −b1
−b2 b1 a

 ,

Taking determinants, we get

detL′Φ(b)(0) = a3 + ab2 = a(a2 + b2) = a,

detR′Φ(b)(0) = a3 + ab2 = a(a2 + b2) = a.

Thus, the left- and right-invariant weights are given by

ρL(b) =
ρL(0)√
1− b2

,

ρR(b) =
ρR(0)√
1− b2

. (21)

These differ by a constant factor, as expected.
The expressions (21) hold also for the “other half” of SU(2), i.e. elements of the form aI2 + ib · σ

with a = −(1 − b2)1/2. This can be “seen” from (15) and (18) after taking A = −I2. Note that
multiplication by −I2 on either the left or the right sends aI2 + ib · σ to −aI2 + −ib · σ, i.e. from one
half of SU(2) to the other. As L−I2(b) = R−I2(b) = −b, we have that detL′I2(b) = detR′I2(b) = −1,

and | detL′−I2(b)| = | detR′−I2(b)| = 1. Therefore, (21) holds throughout SU(2). Warning: this argument

is really a fudge, as L−I2 and R−I2 are not well defined (cf the definitions: the domain of Φ−1 is the
“positive half”, P , of SU(2)). A full and proper treatment of Haar measure on Lie groups is best carried
out within the framework of differentiable manifolds – see below. In fact, Haar measure generalises to
locally compact topological groups, which do not necessarily have a differentiable structure, but this is
definitely beyond our scope.

5.8 *Intrinsic definition of Haar measure

This will be a brief account without definitions – it’s intended to give an impression, and for you to
follow up independently if you are interested. We regard G as a d-dimensional differentiable manifold,
and assume that the multiplication and inversion operations are smooth. Given g ∈ G, we define diffeo-
morphisms Lg : G→ G;x 7→ gx and Rg : G→ G;x 7→ xg, which describe left and right multiplication. Let
ρe denote a d-form on the tangent space of G at the identity, TeG, which may be identified with the Lie
algebra g. We define d-forms ρL and ρR on G by the formulas

ρL(g) = L∗g−1,eρe, ρR(g) = R∗g−1,eρe,

where L∗g and R∗g denote the pullbacks by Lg and Rg. Then one can show that

L∗gρL = ρL, R∗gρR = ρR,

so that ρL and ρR are everywhere nonvanishing volume forms on G invariant respectively under left and
right multiplication.

5.9 Haar Measure on SO(n)

We compute the Haar measure on SO(n) in terms of the Cayley parameterisation given in Example 1.8
c). The calculation is adapted from a problem on the 2016 examination paper.
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The Cayley transform on n× n real matrices X is given by

Φ(X) = (I −X)(I +X)−1,

where X is restricted to have no eigenvalue equal to −1. Let Rn×n− denote the space of antisymmetric

matrices. As shown in Example 1.8 c), Φ : Rn×n− → SO(n) is a good parameterisation of SO(n), and
Φ(Φ(X)) = X. We compute the left-invariant Haar ρL(X) (it’s also right invariant, since SO(n) is compact)
according to the following plan:

• First, we get an explicit formula for LR, regarded as a map LR : Rn×n− → Rn×n− . LR is defined implicitly
by the equation Φ(LR(Y )) = RΦ(Y ). Applying Φ to both sides, we get

LR(Y ) = Φ(RΦ(Y )).

• Since the Haar measure ρL is expressed in terms of the determinant of the Jacobian L′Φ(X)(0), we compute

LΦ(X)(εY ) through first order in ε for X,Y ∈ Rn×n− . The coefficient of ε in the expansion of LΦ(X)(εY )

is then L′Φ(X)(0) · Y , ie the directional derivative of LLΦ(X)(W ) at W = 0 along Y . We have that

LΦ(X)(εY ) = Φ(Φ(X)Φ(εY )).

Noting that, for any n× n matrix W , we have that (I + εW )−1 = I − εW +O(ε2), it follows that

Φ(εY ) = (I − εY )(I + εY )−1 = (I − εY )(I − εY +O(ε2)) = I − 2εY +O(ε2).

Let
Z = Φ(X), so that Φ(Z) = Φ(Φ(X)) = X.

Then
LΦ(X)(εY ) = Φ(Z(I − 2εY +O(ε2)).

From the definition of Φ, it follows that

LΦ(X)(εY ) = (I − Z + 2εZY )(I + Z − 2εZY )−1 +O(ε2).

But
(I + Z − 2εZY ) = (I − 2εZY (I + Z)−1)(I + Z),

so that
(I + Z − 2εZY )−1 = (I + Z)−1(I + 2εZY (I + Z)−1) +O(ε2).

Neglecting terms of O(ε2), we get that

LΦ(X)(εY ) = (I − Z + 2εZY )(I + Z)−1(I + 2εZY (I + Z)−1) = Φ(Z) + 2ε(I + Φ(Z))ZY (I + Z)−1).

Recalling that Φ(Z) = X and that Z = (I −X)(I +X)−1, we get, neglecting O(ε2), that

LΦ(X)(εY ) = X + 2ε(I +X)(I −X)(I +X)−1Y (I + Z)−1) = X + 2ε(I −X)Y (I + Z)−1).

Also,
I + Z = I + (I −X)(1 +X)−1 = (I +X + I −X)(1 +X)−1 = 2(1 +X)−1,

so that
(I + Z)−1 = 1

2 (1 +X).

Finally, we obtain
LΦ(X)(εY ) = X + ε(I −X)Y 1 +X) +O(ε2).

It follows that
d

dt
LΦ(X)(tY )

∣∣∣∣
t=0

= L′Φ(X)(0) · Y = (I −X)Y (I +X).
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• We need to compute the determinant of L′Φ(X)(0). We do this by finding the eigenvectors and eigenvalues

of L′Φ(X)(0), regarded as a linear map A on Rn×n− → Rn×n− → given by

Y 7→ A · Y := (I −X)Y (I +X)

(it’s less writing to use A rather than L′Φ(X)(0)). As the eigenvalues of A may be complex (in fact, they

turn out to be imaginary), it will be convenient to extend A to act on the complexification of Rn×n− ,

namely the vector space Cn×n− of complex antisymmetric matrices.

To find eigenvectors of A (note: these eigenvectors are in fact n×n antisymmetric matrices), we note that
since X is real antisymmetric, it is diagonalisable with imaginary eigenvalues iωj Let v(j) ∈ Cn denote
the corresponding eigenvectors. Let

Y(jk) = v(j)v
T
(k) − v(k)v

T
(j), i.e., [Y(jk)]ab = v(j)av(k)b − v(k)av(j)b,

so that Y(jk) ∈ Cn×n− . Then

A · Y(jk) = (I −X)
(
v(j)v

T
(k) − v(k)v

T
(j)

)
(I +X) = (1− iωj)v(j)v

T
(k)(1− iωk)− (1− iωk)v(j)v

T
(k)(1− iωj)

= (1− iωj)(1− iωk)Y(jk).

It follows that Y(jk) is an eigenvector of A with eigenvalue (1− iωj)(1− iωk). As the v(j)’s form a basis

for Cn, the Y(jk)’s, with j < k, form a basis for Cn×n− , and exhaust the eigenvectors of A.

• detL′Φ(X)(0), or detA, is given by the product of the eigenvalues of A. Thus,

detL′Φ(X)(0) =
∏
j<k

(1− iωj)(1− iωk).

Evidently, each factor (1− iωj) appears (n− 1) times in the product on the right-hand side. (There are
n(n− 1)/2 terms in the product, and each term contains two factors, so the number of factors is n(n− 1).
The product is necessarily symmetric in the factors (1− iω1) through (1− iωn).) It follows that

∏
j<k

(1− iωj)(1− iωk) =

 n∏
j=1

(1− iωj)

n−1

.

But the (1− iωj)’s are just the eigenvalues of I −X, so that n∏
j=1

(1− iωj)

n−1

= (det(I − iX))n−1.

It follows that
ρL(X) =

C

detL′
Φ(X)

(0)
= C(det(I − iX))1−n,

where C is a constant independent of X.

6 Representations: Basic properties

6.1 Definition of representation

Let V be a complex vector space, L(V ) the space of linear maps on V , and GL(V ) ⊂ L(V ) the group of
invertible linear maps on V .

For example, we may take V = Cn, in which case L(V ) = Cn×n and GL(V ) = GL(n,C). It is useful
to keep this concrete realisation in mind, in which elements of L(V ) are n × n complex matrices and
elements of GL(V ) are invertible complex matrices. However, it is also useful to allow for a more general
point of view. There are examples where V isn’t naturally identified with Cn. For example, the set of
homogeneous polynomials of degree n in three complex variables z1, z2, z3 consists of linear combinations
with complex coefficients of the monomials zm1

1 z
m2
2 z

m3
3 with m1 + m2 + m3 = n. These form a com-

plex vector space of dimension (n+1)(n+2)/2, but there is no canonical identification with C(n+1)(n+2)/2.
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Definition 6.1 (Group representations). Let G be a group (we do not yet restrict to matrix groups, nor
matrix Lie groups), and let V be a complex vector space. A complex representation (Γ, V ) of G, or
rep’n for short, is a group homomorphism from G to GL(V ). That is, we have a map

Γ : G→ GL(V ); g 7→ Γ(g)

which satisfies
Γ(g)Γ(h) = Γ(gh).

V is often called the carrier space of the representation, dimV is the dimension of the representation.
If V is a real vector space, (Γ, V ) is said to be a real representation.

Example 6.2 (Examples of representations).

a) Natural representation. Let G ⊂ Cn×n be a matrix group. The map A ∈ G 7→ Γ(A) := A yields a
representation of G on Cn. That is, a matrix group can be regarded as a representation of itself. This is
sometimes called the natural representation.

b) Adjoint representation. Let G be a matrix Lie group. Let g denote its Lie algebra. We have seen that g

is a real vector space. Given A ∈ G, let Γ(A) = AdA. That is, for α ∈ g, we take Γ(A)α = AαA−1. We
have seen that AdA AdB = AdAB , so that Γ is a representation of G, called the Adjoint representation.
The Adjoint representation is a real representation. A particular example is the map

R : SU(2)→ SO(3);u 7→ R(u),

which we discussed in Section 4.8. R may be regarded as a real representation of SU(2) on R3.

c) Representations and group actions. Here is a very general context for representations, which helps explain
why they are important. Groups often arise as groups of bijections on some given set. For example, the
permutation group may be thought of as the group of bijections of a finite set. More generally, let G be
a group, and S as set. Let B(S) denote the set of bijections from S to itself. B(S) is itself a group under
composition of maps. An action of G on S is a homomorphism Φ : G→ B(S); g 7→ Φg. That is,

Φg ◦ Φh = Φgh.

A representation is a special kind of action, in which the set S is a vector space and the bijections on S

are restricted to be linear.

However, given any action of G, whether it is a representation or not, there is a natural way to construct
an associated (complex) representation of G. This is achieved by taking the vector space V to be the set
of complex-vaued functions on S, which we denote F(S,C) (these naturally constitute a complex vector
space). Given g ∈ G, we define Γ(g) as follows: For f ∈ F(S,C), we take

(Γ(g)f)(x) := f(Φg−1(x)), for all x ∈ S.

It is easy to see that Γ is a representation. Representations often arise in this way.

Of course, if S is infinite, then F(S,C) is infinite dimensional. One can consider infinite-dimensional
representations, too, but we shall confine our attention mostly to finite-dimensional representations.

Let (Γ, V ) be a representation, and let φ : V → W be an invertible linear map from V to another
vector space W . Let

∆(g) = φΓ(g)φ−1.

It is easy to see that (∆,W ) is also a representation, which is essentially the same as (Γ, V ) (in effect,
they differ by a change of basis). This motivates the following definition:

Definition 6.3 (Intertwining maps and equivalent representations.). Let (Γ1, V1) and (Γ2, V2) be rep-
resentations of G. An intertwining map for (Γ1, V1) and (Γ2, V2) is a linear map φ : V1 → V2 such
that

Γ2(g)φ = φΓ1(g)

for all g ∈ G. The zero map, φ = 0, is trivially an intertwining map. At the other extreme, if φ is
invertible, we say that (Γ1, V1) and (Γ2, V2) are equivalent.
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A representation Γ is faithful if Γ is 1-1; equivalently, ker Γ = e, where e ∈ G is the identity. In this
case, G is isomorphic to its image under Γ; nothing is lost, as far as the group structure is concerned, in
passing from the group to the representation. Obviously, the natural representation Example 6.2 a) is
faithful. The representation R of Example 6.2 b) is not; its kernel is {I2,−I2}.

6.2 Irreducible Representations

Let (Γ, V ) be a representation of G.

A subspace W ⊂ V is a proper subspace if W 6= {0} and W 6= V . A subspace W ⊂ V is Γ-invariant,
or invariant, if

Γ(g)W = W, for all g ∈ G.

That is, for all w ∈W ,
Γ(g)w ∈W, for all g ∈ G.

Trivially, the 0-subspace and V itself are Γ-invariant. Of more interest are proper invariant subspaces.
If W ⊂ V is a proper Γ-invariant subspace and a basis for V is chosen so that the first m elements span
W , then with respect to this basis, Γ(g) has the following form:

Γ(g) =

(
A(g) B(g)

0 C(g)

)
,

where the partition into blocks is given by n = m+ (n−m). It is straightforward to show that A(g) and
C(g) constitute representations in their own right, of dimension m and n−m respectively.

Definition 6.4 (Reducible and Irreducible representations.). Let (Γ, V ) be a real or complex represen-
tation. If there exists a proper Γ-invariant subspace W ⊂ V , then Γ is said to be reducible. Reducible
representations give rise to representations of smaller dimension, as the example above shows. If V
contains no proper invariant subspaces, then (Γ, V ) is said to be irreducible.

Irreducible representations are basic elements from which other representations may be constructed.
A particularly simple situation is the following:

Definition 6.5 (Completely reducible representation.). A (real or complex) representation (Γ, V ) is
completely reducible if there exists Γ-invariant subspaces W1, . . . ,Wr such that

i) V = W1 ⊕ · · · ⊕Wr, i.e. W1, . . . ,Wr span V and Wj ∩Wk = {0} for j 6= k,

ii) Γ restricted to Wj is irreducible.

If (Γ, V ) is completely reducible, there exists a basis for V in which Γ is block-diagonal,
Γ1(g) 0 0 0

0 Γ2(g) 0 0

0 0
. . . 0

0 0 0 Γr(g)

 ,

and Γj(g) is an irreducible representation of G.

For certain groups, every representation (including infinite-dimensional representations, properly
defined) is completely reducible. Then the study of representations is reduced to the study of (inequiv-
alent) irreducible representations. This is the case for compact matrix Lie groups, which we will define
towards the end of this set of notes. For compact groups, it turns out that the irreducible representations
are all finite dimensional.

Example 6.6.
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Here is an example of a representation which is reducible but not completely reducible. Let G = R,
the real numbers under addition. Let

Γ(t) =

(
1 t

0 1

)
, t ∈ R.

It is easy to check that Γ(s)Γ(t) = Γ(t)Γ(s) = Γ(s + t). We regard Γ(t) as a representation on V = C2.
Clearly

W1 = span{e1}, e1 = (1, 0)†

is a proper invariant subspace, since Γ(t)e1 = e1 for all t. However, Γ(t) is not completely reducible. If
it were, there would be a complementary invariant one-dimensional subspace W2, spanned by a vector
f ∈ C2. W2 invariant is equivalent to f being an eigenvector of Γ(t). But for t 6= 0, Γ(t) has just one
linearly independent eigenvector, e1 (that is, Γ(t) is not diagonalisable).

The following shows that there are no nontrivial intertwinings between irreducible representations.

Theorem 6.7 (Schur’s Lemma).

Let (Γ1, V1), (Γ2, V2) be representations of G. Let φ : V1 → V2 be an intertwining map, i.e. a linear
map satisfying

Γ2(g)φ = φΓ1(g), ∀g ∈ G.

If Γ1 is irreducible, then either φ = 0 or φ is injective. If Γ2 is irreducible, then either φ = 0 or φ is
surjective. If both Γ1 and Γ2 are irreducible, then either φ is invertible, in which case Γ1 and Γ2 are
equivalent, or else φ = 0.

Proof.

Let kerφ ⊂ V1 denote the kernel of φ. We claim that kerφ is Γ1-invariant. To see this, let v ∈ kerφ.
We need to show that Γ1(A)v ∈ kerφ for all A ∈ G, i.e. that φ(Γ1(A)v) = 0. We have that

φΓ1(A) v = Γ2(A)φ v = 0,

as required. As Γ1 is irreducible, it follows that either kerφ = {0}, in which case φ is 1-1, or else kerφ = V1,
in which case φ = 0.

Let imφ ⊂ V2 denote the image of φ. We claim that imφ is Γ2-invariant. To see this, let w ∈ imφ.
We need to show that Γ2(A)w ∈ imφ for all A ∈ G. That is, given that w = φv for some v ∈ V1 (this is
what it means for w to be in the image of φ), we need to show that Γ2(A)w = φv′ for some v′ ∈ V1 . We
have that

Γ2(A)w = Γ2(A)φ v = φΓ1(A) v = φv′,

where v′ = Γ1(A)v. Thus, imφ is Γ2-invariant, as required. As Γ2 is irreducible, it follows that either
imφ = {0}, in which case either φ = 0, or else imφ = V2, in which case φ is onto.

If both Γ1 and Γ2 are irreducible, then either φ = 0 or else φ is both 1-1 and onto, in which case φ
is invertible.

6.3 *Criteria for irreducibility

For this discussion, it will sometimes be convenient to assume that V has a hermitian inner product,
denoted 〈, 〉 (this assumption isn’t essential). Given a hermitian inner product and A ∈ L(V ), we define
A† ∈ L(V ), the hermitian conjugate of A, as follows:〈

u,A†v
〉

= 〈Au, v〉, for all u, v ∈ C.

For V = Cn, this coincides with (A†)jk = A∗kj .

A unital algebra A ⊂ L(V ) is a complex subspace of L(V ) that contains the identity IV and is
closed under multiplication. That is, Iv ∈ A and if A,B ∈ A and c ∈ C, then cA, A+B and AB all belong

39



to A.

We can define invariant subspaces and reducibility for unital algebras of L(V ) in analogy with the
definitions for representations: A subspace W ⊂ V is invariant under A if AW = W , ie

x ∈W =⇒ Ax ∈W, for all A ∈ A.

A is irreducible if it has no proper invariant subspaces.

The principal example of a unital algebra that we shall have in view is the following: Let G be a
group, and (Γ, V ) a complex representation of G. The representation algebra of Γ, denoted AΓ, is the
set of finite linear combinations of the Γ(g)’s; that is,

AΓ =


∑
gj∈G

cgjΓ(gj) | cgj ∈ C

 .

The fact that Γ(g) is a representation implies that AΓ is a unital subalgebra of L(V ) – the main point is
that Γ(gj)Γ(gk) = Γ(gjgk).

It is easy to see that W is invariant under Γ if and only if it is invariant under AΓ. Therefore, Γ is
irreducible if and only if AΓ is irreducible.

Given A ⊂ L(V ) be unital algebra, let

A† = {A† |A ∈ A}.

Proposition 6.8.

i) A† is a unital algebra of L(V ).

ii) If A is irreducible, then A† is irreducible.

Proof.

i) It is clear that A† is a vector subspace of L(V ) closed under multiplication. Indeed, suppose F,G ∈ A†,
so that F †, G† ∈ A. Then F +G ∈ A†, since F +G = (F † +G†)†, and FG ∈ A†, since FG = (G†F †)†.

ii) Suppose W ⊂ V is invariant under A†. Let W⊥ denote the orthogonal complement of W , i.e.

W⊥ = {x ∈ V | 〈x,w〉 = 0, ∀w ∈W} .

We claim that W⊥ is invariant under A. That is, if x ∈ W⊥, then Ax ∈ W⊥ for all A ∈ A. To see this,
take w ∈W , and consider

〈Ax,w〉 =
〈
x,A†w

〉
=
〈
x,w′

〉
= 0,

since w′ := A†w ∈W .
Therefore, if A is irreducible and W is invariant under A†, it follows that W⊥ is invariant under A, which
implies that W⊥ = {0} or V , which implies that W⊥ = V or {0}.

Theorem 6.9 (Critieria for irreducibility).

Let A ⊂ L(V ) be a unital algebra. Then the following are equivalent:

(a) A is irreducible.
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(b) Every v ∈ V is cyclic, i.e.
A v := {Av |A ∈ A} = V.

(c)
A = L(V ).

For the proof, it is convenient to introduce rank-one linear maps. Let r, s ∈ V , and define
Qrs ∈ L(V ) by

Qrs v = 〈s, v〉 r.

Proof.

(a) ⇐⇒ (b). If W is a proper invariant subspace under A, then vectors in W are not cyclic. Conversely,
if v is not cyclic, that A v = {Av |A ∈ A} is a proper invariant subspace of V .

(c) =⇒ (b). Let v ∈ V , v 6= 0. To show that v is cyclic, it suffices to show that, given w ∈ V , there
exists a linear map T ∈ A such that Tv = w. Such a map is given by

T =
1

〈v, v〉Qwv ,

and since A = L(V ) by assumption, it follows that T ∈ A.

(a) ⇐⇒ (c). It is clear that (c) implies (a). We show that (a) implies (c). It will be enough to show
that if A is irreducible, then A contains all rank-one linear maps Qrs for r, s ∈ V . This is because every
linear map can be expressed as a linear combination of rank-one maps. Indeed, if ej is an orthonormal
basis for V , then for M ∈ L(V ),

M =

n∑
j,k=1

〈
ej ,Mek

〉
Qekej .

We proceed by induction on dimV . If dimV = 1, then L(V ) = C, and the result is clear. Let us
suppose that dimV > 1, and that (a) implies (c) for all vector spaces of dimension less than dimV .
Suppose that A is irreducible. Then A contains elements besides those of the form cIV . Let T be such
an element.

Let λ1, . . . , λr ∈ C denote the distinct eigenvalues of T , i.e. the roots of the characteristic polynomial
of T . Since T 6= cIV , then without loss of generality, we may assume that r ≥ 2. Here is the argument : If
T 6= cIV and T has a single eigenvalue c, then T = cI +N , where N 6= 0 is nilpotent. We construct a new
map, S ∈ A, which has at least two distinct eigenvalues as follows: Choose v ∈ V so that w := Nv 6= 0.
Since A is irreducible, w is cyclic, so there exists A ∈ A such that Aw = v. Let S = AN . Since A,N ∈ A,
it follows that S ∈ A. But 0 is an eigenvalue of S, since detN = 0, and 1 is an eigenvalue of S, since Sv = v.

It is a basic result in linear algebra (primary decomposition theorem – we give details in the appendix)
that there exist maps P1, . . . , Pr ∈ L(V ) and associated subspaces Vj := PjV with the following properties:

(i) The Pj ’s are projectors, i.e. P 2
j = Pj .

(ii) PjPk = 0 for j 6= k; equivalently, Vj ∩ Vk = {0} for j 6= k.

(iii)
∑r
j=1 Pj = IV ; equivalently, V = V1 ⊕ · · · ⊕ Vr.

(iv) (T − λj)pVj = 0 for large enough p; equivalently, the Vj ’s are the generalised eigenspaces of T .

(v) The Pj ’s can be expressed as polynomials in T (this property will be crucial).

Thus, the Pj ’s are projectors onto the disjoint generalised eigenspaces Vj = Pj V of T , and the gen-
eralised eigenspaces span V .
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Since P1 is a polynomial in T , it follows that P1 ∈ A (note that a polynomial in T is a linear
combination of IV and powers of T – since A is a unital algebra, it contains such a polynomial). Consider
the subalgebra A1 of L(V1) that consists of elements of the form

A1 = {P1AP1 |A ∈ A}.

We claim that A1 is irreducible on V1. This follows from that fact that every v1 ∈ V1 is cyclic under
A1, as we now show: We have that

A1 v1 = P1AP1 v1 = P1A v1.

Since we assume A is irreducible, (b) implies that Av1 = V , so that

A1 v1 = P1V = V1,

as required.

By the induction hypothesis, it follows that A1 = L(V1). In particular, take t ∈ V1, and let Q1tt
denote the rank-one projector in L(V1),

Q1tt v = 〈t, v〉 t.

Then Q1tt ∈ A1. Q1tt can be extended to the rank-one projector Qtt defined on all of V by setting
QttVj = 0 for j 6= 1. It follows that Qtt = P1AP1 for some A ∈ A. Since by property v), P1 ∈ A, it follows
that Qtt ∈ A.

Since A is irreducible, t is cyclic. Given r ∈ V , there exists A ∈ A such that At = r. From
Proposition 6.8, A† is irreducible; therefore, there exists B ∈ A such that B†t = s. Then AQttB ∈ A.
Claim that AQttB = Trs. Indeed, we have that

AQttB v = 〈t, Bv〉At =
〈
B† t, v

〉
r = 〈s, v〉r = Qrsv.

Thus, Qrs ∈ A, as we wanted to show.

6.4 *Appendix. Primary Decomposition Theorem

The primary decomposition is a basic result in linear algebra. References may be readily found, either
in the library or on the web. Here is a brief account for the case of matrices in Cn×n. More general
versions are formulated for matrices over fields other than C. A simplifying feature of the complex case
is that C is algebraically closed; every polynomial over C has at least one root (and, therefore, as many
roots as its degree, provided roots are counted with multiplicity).

Let A ∈ Cn×n be a complex matrix. The matrices I, A, A2, . . . , Aj , . . . all belong to Cn×n, and hence
cannot all be linearly independent. Thus, there exists some linear combination of powers of A which
vanishes. Equivalently, there exists a polynomial

p(z) = c0 + c1z + · · ·+ cmz
m

such that p(A) = 0. In fact, if P (z) is the characteristic polynomial of A, i.e.

P (z) = det(A− zI),

then P (A) = 0; this is the Cayley-Hamilton theorem. Let M(z) be the monic polynomial of lowest degree
for which M(A) = 0 (monic means the coefficient of the highest-order terms is equal to one). M(z) is
called the minimum polynomial of A. Since the characteristic polynomial has degree n, it follows
that degM ≤ n. Also, P (z) must be divisible by M(z) (otherwise, we could write P (z) = f(z)M(z) + r(z),
where deg r < degM and r(A) = 0, contradicting the assumption that M is the minimum polynomial).

Let d = degM(z). Then M(z) has r ≤ d roots, λ1, . . . , λr ∈ C, with multiplicities d1, . . . , dr, such that∑
j dj = d and

M(z) =

r∏
j=1

(z − λj)
dj .
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Let

fj(z) =

r∏
k=1,k 6=j

(z − λk)dk .

It is clear that the fj(z)’s have no common root. It follows (an argument is given below) that there exist
polynomials g1, . . . , gr such that

r∑
j=1

gj(z)fj(z) = 1. (22)

Let
Pj = gj(A)fj(A).

Clearly Pj is a polynomial in A. From (22),

r∑
j=1

Pj(M) =

r∑
j=1

gj(M)fj(M) = In. (23)

Also, since fj(z)fk(z) is divisible by M(z) for j 6= k, ie fjgk = qM for some polynomial q, it follows that

PjPk = gj(A)gk(A)fj(A)fk(A) = gj(A)gk(A)q(A)M(A) = 0, if j 6= k. (24)

Multiplying by Pj in (23) and taking account of (24), we get that

P 2
j = Pj .

Since (z − λj)
dj fj(z) = M(z), it follows that

(A− λjIn)djPj = (A− λj)
dj fj(A)gj(A) = M(A)gj(A) = 0.

This establishes the results of the Primary Decomposition Theorem.
It remains to establish (22). This follows from the following fact: Let p and q be monic polynomials,

and let d denote the monic polynomial of highest degree that divides both p and q. We call d the greatest
common factor of p and q, and write

d = (p, q).

We claim that there exist monic polynomials a and b such that

ap+ bq = d.

We proceed using Euclid’s algorithm. Given polynomials pj and qj with deg qj ≤ pj , we may write

pj = cjqj + αjrj ,

cj is a monic polynomial, αj ∈ C, and the remainder rj is a monic polynomial of degree less than deg qj .
Define

pj+1 = qj , qj+1 = rj .

It is clear that
(pj+1, qj+1) = (pj , qj),

since any polynomial which divides pj and qj also divides pj+1 and qj+1, and vice versa. It is clear that

deg qj+1 < deg qj .

Iterating this procedure, starting with p1 = p, q1 = q (without loss of generality, we may assume that
deg q ≤ deg p), we eventually get to an iteration n where qn = 0. Then

(pn, qn) = (pn, 0) = d.

We may write that (
d

0

)
=

(
pn
qn

)
= Dn−1 · · ·D1

(
p

q

)
,
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where the Dj ’s are 2× 2 matrices with polynomial entries of the form

Dj =

(
0 1

1/αj −cj

)
.

We note that D−1
j is given by

D−1
j =

(
αjcj αj

1 0

)
,

and therefore is also a matrix with polynomial entries. Then(
p

q

)
= D−1

1 · · ·D−1
n−1

(
d

0

)

gives d = (p, q) in the form ap+ bq for some polynomials a and b.

Given a set of, say, three monic polynomials f1, f2, f3 with no common root, let d12 = (f1, f2) We
can find polynomials a1 and a2 such that

d12 = a1f1 + a2f2.

Since (d12, f3) = 1, we can also find polynomials b12 and b3 such that

1 = b12d12 + b3d3.

Then
1 = b12a1f1 + b12a2f2 + b3f3

yields the required resolution of unity. The argument generalises by induction to n monic polynomials
with no common root.

Corollary 6.10.

Let A be an irreducible subalgebra of L(V ). If M ∈ L(V ) commutes with every element of A, then
M is a multiple of the identity.

Proof.

From Theorem 7.5, A = L(V ). In particular, for arbitrary r ∈ V , Qrr ∈ A (recall that Qrs is defined
by Qrsv = 〈s, v〉r). Then MQrr = QrrM implies that Mr is proportional to r, so that every vector is an
eigenvector of M . This implies that M = cIV for some c ∈ C.

Corollary 6.11.

Let (Γ, V ) be an irreducible representation of a group G on a complex vector space V . Then the
following are equivalent:

(a) Γ is irreducible.

(b) Every v ∈ V is cyclic, i.e. {Γ(g)v | g ∈ G} spans V .

(c)
AΓ = L(V ),

where

AΓ =


∑
gj∈G

cgjΓ(gj) | cgj ∈ C

 .

Thus, if Γ is irreducible and if φ ∈ L(V ) commutes with every Γ(g), then φ is a multiple of the identity.
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Note this last result may be regarded as a strengthening of Schur’s Lemma for the particular case
of complex irreducible representations. If φ commutes with Γ(A), it may be regarded as an intertwining
map from (Γ, V ) to itself. If Γ is irreducible and φ 6= 0, then Schur’s Lemma (Theorem 6.7) implies that
φ is invertible. Corollary 6.11, which uses the fact that V is complex, implies that φ is a multiple of the
identity map. (In Schur’s Lemma, we do not assume that the vector space is complex.)

The following example shows that Corollary 6.11 need not hold for real representations (i.e., repre-
sentations defined on a real vector space).

Example 6.12. Let

SO(2) =

{
R(θ) =

(
cos θ − sin θ

sin θ cos θ

) ∣∣∣ 0 ≤ θ < 2π

}
.

SO(2) is the group of rotations in R2. It may be regarded as a one-dimensional matrix Lie group,
and as such constitutes a representation on R2. It is clear SO(2) is irreducible; there is no line through
the origin in the plane that is invariant under rotations. However, SO(2) is abelian; indeed,

R(θ1)R(θ2) = R(θ2)R(θ1) = R(θ1 + θ2).

Thus, every R(θ) commutes with all of SO(2), but clearly R(θ) is not a multiple of the identity in general.
Likewise, ASO(2) 6= L(R2). Indeed,

ASO(2) =

{
aI2 + b

(
0 −1

1 0

) ∣∣∣ a, b ∈ R

}
.

Note, too, that if SO(2) is regarded as a complex representation over V = C2, then it is reducible.
Indeed, (1,±i)† are eigenvectors of every R(θ), and therefore span invariant subspaces.

6.5 Representations of compact groups

Definition 6.13 (Compact matrix Lie groups.). A compact matrix Lie group G is compact if, for some
M > 0,

||A|| ≤M, ∀A ∈ G.

In particular, a finite matrix Lie group is compact. The unitary groups U(n) are compact, since for
u ∈ U(n),

||u||2 = Tr(u†u) = Tr(IN ) = N.

Subgroups of U(n) are also compact. These include O(n), the group of real orthogonal n × n matrices,
since O(n) may be regarded as the subgroup of real unitary matrices.

Definition 6.13 is compatible with the usual notion of compactness for a subset of a finite-dimensional vector
space (in this case, the vector space is Cn×n), namely that the subset be closed and bounded. The point is that
a matrix Lie group G whose elements are bounded in norm is automatically closed. To see this, we recall that
G is closed relative to GL(n,C), from Proposition 1.10. To show that G is closed, and not just closed relative to
GL(n,C), it suffices to show that for all A ∈ G,

1

C
≤ | detA| ≤ C (25)

for some C > 0.
We have that

| detA|2 = detA detA = detA† detA = detA†A.

The matrix A†A is hermitian and positive semidefinite, and therefore has nonnegative real eigenvalues λ1, . . . , λn.
Noting that detA†A is given by the product of the λj ’s while ||A||2 = TrA†A is given by the sum of the λj ’s, we
get that

|detA|2 =

n∏
j=1

λj ≤

(
1

n

n∑
j=1

λj

)n
=

(
1

n
||A||2

)n
≤
(
M2

n

)n
,

where we have used the inequality of arithmetic and geometric means. Since A−1 ∈ G, we also have that

| detA−1|2 ≤
(
M√
n

)2n

.
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But detA−1 = 1/detA, so that

1

|detA|2 ≤
(
M√
n

)2n

,

or

|detA|2 ≥
(√

n

M

)2n

.

So we can take C = (M/
√
n)n in (25).

There is a very nice, complete representation theory for compact groups.

The essential property of compact groups is that they have a left- and right-invariant Haar measure
that can be normalised. “Normalised” means that the measure can be chosen so that the integral of the
function which is everywhere equal to 1 can be taken to be 1. In this case, integration of a function on
the group can be viewed as computing its average value.

In what follows, we consider complex representations (Γ, V ). Without loss of generality, we may
assume that V has a hermitian inner product.

Definition 6.14 (Hermitian inner product and adjoint.). A hermitian inner product on a complex
vector space V is a sesquilinear form

〈·, ·〉 : V × V → C; (u, v) 7→ 〈u, v〉

which satisfies the following:

i) 〈u, v〉 = 〈v, u〉∗

ii) 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 if and only u = 0

Note: “Sesquilinear” means linear with respect to one argument and antilinear with respect to the other.
That is,

〈u, c1v1 + c2v2〉 = c1〈u, v1〉+ c2〈u, v2〉,
〈c1u1 + c2u2, v〉 = c∗1〈u1, v〉+ c∗2〈u2, v〉.

Given a linear map L ∈ L(V ), we define its adjoint, or hermitian conjugate, denoted L†, by

〈u, L†v〉 := 〈Lu, v〉.

It is straightforward to verify that these definitions coincide with the ones given in Section 1.1 when
V = Cn.

Definition 6.15 (Unitary representations). Let V be a complex inner product with hermitian inner
product 〈, 〉. A linear invertible map U ∈ GL(V ) is unitary if

〈Uv,Uw〉 = 〈v, w〉, for all v, w ∈ V.

It follows that
U†U = IV ,

since 〈
u, U†Uv

〉
= 〈Uu,Uv〉 = 〈u, v〉.

If V = Cn and U ∈ GL(n,C), then the definition of unitary coincides with the definition of unitary matrix.
A representation (Γ, V ) of G is unitary if Γ(A) is unitary for all A ∈ G.

Proposition 6.16. Let G be a compact matrix Lie group with representation (Γ, V ). Then Γ is equivalent
to a unitary representation.

46

https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means


Proof.

We will write the argument for finite-dimensional matrix Lie groups, but it carries over directly to
finite matrix groups (zero-dimensional matrix Lie groups) with the Haar measure

∫
G dµ(A) replaced by

|G|−1∑
A∈G.

Define

T =

∫
G

Γ†(A)Γ(A) dµ(A).

Then T ∈ GL(V ) is positive definite hermitian, i.e.

i) T † = T

ii) 〈v, Tv〉 ≥ 0,

iii) 〈v, Tv〉 = 0 ⇐⇒ v = 0.

Properties ii) and iii) follow from the fact that

〈v, Tv〉 =

∫
G

〈
v,Γ†(A)Γ(A)v

〉
dµ(A) =

∫
G
||Γ(A)v||2 dµ(A),

and Γ(A)v = 0 iff v = 0.

A positive definite hermitian element T ∈ GL(V ) has a unique positive definite square root S, i.e.

S = S†, S2 = T.

(One way to see this is to note that T has a complete set of orthonormal eigenvectors ej with positive
eigenvalues λj , so that

Tv =
∑
j=1

λj
〈
ej , v

〉
ej .

Then we take
Sv =

∑
j=1

λ
1/2
j

〈
ej , v

〉
ej .
)

Let
∆(A) = SΓ(A)S−1.

Clearly ∆(A) is a representation of G equivalent to S. Claim that ∆(A0) is unitary for all A0 ∈ G. Indeed,

∆(A0)†∆(A0)

= S−1Γ(A0)†S2Γ(A0)S−1 = S−1Γ(A0)† T Γ(A0)S−1 = S−1Γ(A0)†
(∫

G
Γ†(A)Γ(A)

)
Γ(A0)S−1 dµ(A)

= S−1
(∫

G
Γ†(AA0)Γ(AA0) dµ(A)

)
S−1(using the representation property)

= S−1
(∫

G
Γ†(A)Γ(A) dµ(A)

)
S−1 (using the invariance of the measure)

= S−1TS−1 = S−1S2S−1 = IV .

Proposition 6.17. If (Γ, V ) is a unitary representation, then Γ is completely reducible.

Proof.

We proceed by induction on dimV . The assertion is trivial for dimV = 1 (any 1-dimensional repre-
sentation is irreducible). We suppose it holds for all representations (Γ,W ) with dimW < dimV .

If (Γ, V ) is already irreducible, then there is nothing more to show. If not, let W ⊂ V be a proper
Γ-invariant subspace. Let W⊥ denote the orthogonal complement of W , i.e.

W⊥ = {x ∈ V | 〈x,w〉 = 0, ∀w ∈W.
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We claim that W⊥ is also Γ-invariant. To see this, let x ∈ W⊥. We want to show that Γ(g)x ∈ W⊥

for all g, i.e. that 〈Γ(g)x,w〉 = 0 for all w ∈ W . But, since Γ(g) is unitary, 〈Γ(g)x,w〉 =
〈
x,Γ†(g)w

〉
=〈

x,Γ−1(g)w
〉

=
〈
x,Γ(g−1)w

〉
. As W is Γ-invariant, Γ(g−1)w ∈W , hence

〈
x,Γ(g−1)w

〉
= 0, as required.

Clearly, V = W ⊕W⊥; every v ∈ V has a unique decomposition into components in W and W⊥. The
restrictions of Γ to W and W⊥ are also unitary. Since dimW, dimW⊥ < dimV , the complete reducibility
of (Γ,W ) and (Γ,W⊥), and therefore of (Γ,W ), follows by induction.

Thus, from Propositions 6.16 and 6.17, it follows that every representation of a compact matrix Lie
group is equivalent to a direct sum of irreducible unitary representations (there is an analogous decom-
position for infinite-dimensional representations). Thus, the representation theory for compact matrix
Lie groups reduces to the study of their unitary irreducible representations.

Proposition 6.18.

Let (Γ, V ) and (∆,W ) be unitary irreducible representations of a compact matrix Lie group G. Let
T : V →W be linear. Define the linear map φ : V →W by

φ =

∫
G

∆(A−1)T Γ(A) dµ(A).

If (Γ, V ) and (∆,W ) are inequivalent, then
φ = 0.

If (∆,W ) = (Γ, V ), then

φ =
TrT

dimV
IV .

Proof.
Below we show that φ is an intertwining map for (Γ, V ) and (∆,W ), i.e.

∆(A0)φ = φΓ(A0).

for all A0 ∈ G. Let us take this as given for now. By Schur’s Lemma (Theorem 6.7), it follows that φ is
either invertible or else φ = 0.

Suppose that ∆ and Γ are inequivalent. Then φ cannot be invertible, so that φ = 0.

Suppose that ∆ = Γ. Then φ commutes with Γ(A). By Corollary 6.11, φ = cIV . Taking traces, we
get that Trφ = c dimV . But

Trφ =

∫
G

Tr
(

Γ(A−1)T Γ(A)
)
dµ(A) =

∫
G

TrT dµ(A) = TrT.

It follows that
φ =

TrT

dimV
IV .

To proceed, we must establish that φ is indeed an intertwining. That is, we show that for all A0 ∈ G,

∆(A0)φ = φΓ(A0).

But

∆(A0)φ =

∫
G

∆(A0)∆(A−1)T Γ(A) dµ(A) =

∫
G

∆((AA−1
0 )−1)T Γ(A) dµ(A)

=

∫
G

∆(B−1)T Γ(BA0) dµ(B) =

∫
G

∆(B−1)T Γ(B)Γ(A0) dµ(B) = φ∆(A0).

Given u, v ∈ V , we define the matrix element Γuv(A) by

Γuv(A) = 〈u,Γ(A)v〉.

Proposition 6.18 implies that matrix elements of inequivalent unitary representations, regarded as
functions on G, are orthogonal – this is the content of the next result.

48



Corollary 6.19.

Let (Γ, V ) and (∆,W ) above be unitary. For all u, v ∈ V and x, y ∈W ,∫
G

∆∗xy(A)Γuv(A) dµ(A) =

{
0, if ∆ and Γ are inequivalent,

(dimV )−1〈x, u〉〈y, v〉, if ∆ = Γ.

Proof.

In the expression for φ in Proposition 6.18, let T = Qxu, where

Qxur = 〈u, r〉x.

Then

〈y, φ v〉 =

∫
G

〈
y,∆(A−1)Qxu Γ(A)v

〉
dµ(A).

Since ∆ is unitary, ∆(A−1) = ∆†(A), and the summand is given by〈
y,∆†(A)Qxu Γ(A)v

〉
= 〈∆(A)y,Qxu Γ(A)v〉

= 〈∆(A)y, x〉 〈u,Γ(A)v〉 = 〈x,∆(A)y〉∗ 〈u,Γ(A)v〉 = ∆∗xy(A)Γuv(A).

Thus,

〈y, φ v〉 =

∫
G

∆∗xy(A)Γuv(A) dµ(A).

Referring to Proposition 6.18, if Γ and ∆ are inequivalent, then φ = 0. On the other hand, if Γ = ∆, then

〈y, φ v〉 = 〈y, cIV v〉 =
1

dimV
〈x, u〉〈y, v〉.

since TrQxu = 〈x, u〉.

So far, we have established properties of irreducible representations assuming that they exist. But
are there any, and how would you construct them? It turns out that the inequivalent irreducible represen-
tations for a compact matrix Lie group can be constructed from polynomials in the matrix components,
and that the irreducible representations span the space of square-integrable functions on the group.

Theorem 6.20 (*Peter-Weyl).

Let G ⊂ Cn×n be a compact matrix Lie group.

a) The irreducible representations of G are finite dimensional.

b) The set of inequivalent irreducible representations of G is countable.

c) Let (Γµ, V µ), µ = 1, 2, 3, . . . denote the set of inequivalent irreducible representations, which we may take
to be unitary. Then for all u, v ∈ V µ, Γ

µ
uv(A) is a polynomial in the components of A and A†.

d) Let

Γ
µ
ij(A) =

〈
e
µ
i ,Γ

µ(A)e
µ
j

〉
.

Then the (dµ)1/2Γ
µ
ij(A)’s constitute an orthonormal basis for L2(G,C), where dµ = dimV µ.

Sketch of proof.

1. Let Vm ⊂ C(G,C) denote the set of homogenous polynomials of degree m in the components of A and
A† with complex coefficients. Vm is a finite-dimensional complex vector space. We define a hermitian
inner product on Vm using Haar measure:

〈p, q〉 =

∫
G
p(A)q(A) dµ(A).
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2. If p ∈ Vm, then Γ(A0)p ∈ Vm, where Γ(A0)p ∈ Vm is given by

(Γ(A0)p)(A) = p(AA0)

The map p 7→ Γ(A0)p defines a representation of G on Vm. (In fact, by the invariance of the Haar
measure, it is straightforward to show that Γ is unitary.)

3. By Propositions 6.16 and 6.17, (Γ, Vm) is completely reducible. Let V µ denote an irreducible subspace
of Vm of dimension d. Let pi denote an orthonormal basis for V µ. Then

Γ(A0)pi =

d∑
j=1

Γ
µ
ji(A0)pj ,

and Γµ : G→ Cd×d constitutes a representation of G on Cd.

Evaluate both sides at A to get

p
µ
i (AA0) =

d∑
j=1

Γ
µ
ji(A0)pj(A).

Since the components of AA0 are bilinear in the components of A and A0, pµi (AA0) is a homogenous

polynomial in the components of A0 and A
†
0. It follows that Γ

µ
ji(A0) is a homogenous polynomial in the

components of A0 and A
†
0. Moreover, setting A = In, we obtain

p
µ
i (A0) =

d∑
j=1

Γ
µ
ji(A0)p

µ
j (In).

Thus, the Γ
µ
ji’s span V µ. The same argument applies to the other irreducible components of Vm. Thus,

Vm is spanned by the matrix elements of (a finite number of) irreducible representations of G.

4. The fact that the (dµ)1/2Γ
µ
ij ’s form an orthonormal set follows from Proposition 6.19.

5. G ⊂ Cn×n may be regarded as a compact subset of R2n×2n. By the Weierstrass Polynomial Approxima-
tion Theorem, polynomials on a compact subset of RN are dense in the space of continuous functions
on that subset with respect to the uniform norm. (Note: it is at this point that we need to make use of
the fact that our polynomials p are allowed to be functions of the elements of both A and A†. If the p’s
were functions of elements of A only, then regarded as a functions on R2n×2n, they would not exhaust
the space of polynomials.) Continuous functions on G, in turn, are dense in L2(G,C) with respect to the
L2-norm. It follows that polynomials in A and A† are dense in L2(G,C). From the preceding, the space
of polynomials is spanned by matrix elements of irreducible representations.

6. The preceding establishes that the matrix elements of a countable set of inequivalent irreducible represen-
tations of G, which are polynomials in the matrix elements of A and A†, span L2(G). It remains to show
that there are no other inequivalent irreducible representations, either finite or infinite dimensional. This
follows by establishing that the matrix elements of such a representation would be functions in L2(G)

orthogonal to the Γ
µ
ij ’s in L2(G), and there are no such functions.

Example 6.21 (Fourier series). As a simple example, let

G = U(1) = {z ∈ C | |z| = 1}.

We have the representation of U(1) on L2(U(1)), namely

f 7→ Γ(z0)f,

where
(Γ(z0)f)(z) = f(zz0).
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For fm(z) = zm (homogeneous polynomial in z), we have that

Γ(z0)fm = zm0 fm.

Thus, we obtain a one-dimensional representation of U(1) on the subspace of L2(G) spanned by fm. On
this space, we have the irreducible representation

Γm(z0) = zm0 ,

which happens to coincide with fm.
The orthogonality and completeness of the Γm(z)’s is precisely the fact that the exponential functions

eimθ, m ∈ Z, constitute an orthonormal basis for L2(S1) with Haar measure given by dθ/(2π).

7 Representations of Lie algebras

We shall turn to consider representations of Lie algebras.

Let g ⊂ Cn×n be a matrix Lie algebra. That is, g is a real vector space under matrix addition, and
if a, b ∈ g, then [a, b] := ab − ba ∈ g. Let V be a complex finite-dimensional vector space (e.g., Cn), and
L(V ) the space of linear maps on V (e.g., Cn×n).

Definition 7.1. A representation of g is a linear map

Γ̂ : g→ L(V )

such that for all a, b ∈ g,
Γ̂([a, b]) = Γ̂(a)Γ̂(b)− Γ̂(b)Γ̂(a) = [Γ̂(a), Γ̂(b)]. (26)

Note that L(V ) is a linear space, so it makes sense to require that Γ̂ is linear. Eq.(26) means that Γ̂

is a Lie algebra homomorphism.

Example 7.2 (adjoint representation). Let V = g. Given a ∈ g, define ada ∈ L(g) by

ada(b) = [a, b].

We claim that this is a representation of g. Clearly ada is a linear map on g, and also a 7→ ada is a linear
map from g to L(g), both assertions following from the fact that the Lie bracket is linear in each of its
arguments. To verify Eq. (26), we note that

ad[a,b](c) = [[a, b], c]
Jacobi idenity

= [[a, c], b] + [a, [b, c]] =

= [ada(c), b] + [a, adb(c)] = − adb(ad a(c)) + ada(adb(c)) = (ada adb− adb ada) (c).

Since c is arbitrary, Eq. (26) follows. Thus, the fact that adjoint action gives a representation of g on
itself is essentially equivalent to the Jacobi identity.

Notions of reducibility are defined as for group representations. A representation Γ̂ of g is reducible
if there exists a proper subspace W ⊂ V that is invariant under Γ̂; that is, for all a ∈ g, Γ̂(a)W ⊂ W .
Γ̂ is irreducible if V contains no proper invariant subspaces. Γ̂ is completely reducible if V can be
expressed as a direct sum, ⊕jWj , of proper invariant subspaces Wj such that Γ̂ restricted to each Wj is
irreducible.

7.1 From group representations to algebra representations

Let G be a matrix Lie group with Lie algebra g. Let (Γ, V ) be a representation of G. We assume that
Γ is continuous. It turns out (see Problem Sheet 3) that this implies that Γ is actually smooth. More
precisely, if Γ is continuous, then if

Φ : P ⊂ Rd → VI ⊂ G
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is a smooth local parameterisation of G, then Γ ◦ Φ : P → GL(V ) is smooth.

Let A(t) be a smooth curve in G with A(0) = I, Ȧ(0) = a ∈ g. Define

Γ̂(a) :=
d

dt

∣∣∣∣
t=0

Γ(A(t)) ∈ L(V ). (27)

We will show that Γ̂ as defined by Eq. (27) is a representation of g.

Recall from Proposition 2.2 that

ξµ :=
∂Φ

∂xµ
(0)

constitutes a basis for g, and that, from the properties of the parameterisation Φ, there exists a smooth
curve x(t) ∈ P with x(0) = 0 such that A(t) = Φ(x(t)) and

a = Ȧ(0) = ẋµ(0)ξµ.

Let

ξ̂µ :=
∂

∂xµ

∣∣∣∣
x=0

Γ(Φ(x)) ∈ L(V ).

From the preceding, it follows that

Γ̂(a) =
d

dt

∣∣∣∣
t=0

Γ(Φ(x(t))) = ẋµ(0)ξ̂µ.

Thus, for arbitrary coefficients cµ ∈ R, we have that

Γ̂(cµξµ) = cµξ̂µ.

This establishes that Γ̂ is linear.

Proposition 7.3. Let a ∈ g. Then
Γ(exp(ta)) = exp(tΓ̂(a)).

Proof. We argue below that both sides of the preceding satisfying the same system of 1st-order linear
ODEs with the same initial conditions, and therefore are necessarily the same.

Let the left-hand side be given by
L(t) := Γ(exp(ta)).

Then L(0) = IV (where IV denotes the identity map on V ). Also,

L̇(t) =
d

ds

∣∣∣∣
s=0

Γ(exp((s+ t)a)) =
d

ds

∣∣∣∣
s=0

Γ(exp(sa) exp(ta)) =

(
d

ds

∣∣∣∣
s=0

Γ(exp(sa))

)
Γ(exp(ta)).

Since A(s) := exp(sa) describes a smooth curve in G with A(0) = I and A′(0) = a, it follows from Eq. (27)
that

L̇(t) = Γ̂(a)L(t).

The right-hand side is given by
R(t) = exp(tΓ̂(a)).

Then R(0) = IV , and
Ṙ(t) = Γ̂(a)R(t).

Recall the Adjoint representation of G on g (cf Proposition 3.2); for A ∈ G and b ∈ g, we define

AdA b = AbA−1.

Proposition 7.4.
Γ̂(AbA−1) = Γ(A)Γ̂(b)Γ(A−1).
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Proof. Given A ∈ G and b ∈ g, we have that

Γ
(
AetbA−1

)
= Γ(A)Γ

(
etb
)

Γ
(
A−1

)
. (28)

Since B̃(t) := A exp(tb)A−1 is a curve in G with B̃(0) = IV and ˙̃B(0) = AbA−1, differentiating the LHS of
(28) yields

d

dt

∣∣∣∣
t=0

Γ
(
AetbA−1

)
= Γ̂

(
AbA−1

)
.

Differentiating the RHS of (28) yields

d

dt

∣∣∣∣
t=0

Γ(A)Γ
(
etb
)

Γ
(
A−1

)
= Γ(A)Γ̂ (b) Γ

(
A−1

)
.

Proposition 7.5.
Γ̂([a, b]) = Γ̂(a)Γ̂(b)− Γ̂(b)Γ̂(a).

Proof. From Proposition 2.9,

[a, b] =
d

ds

∣∣∣∣
s=0

exp(sa)b exp(−sa).

Therefore

Γ̂([a, b]) = Γ̂

(
d

ds

∣∣∣∣
s=0

esabe−sa
)

=
d

ds

∣∣∣∣
s=0

Γ̂
(
esabe−sa

)
(since Γ̂ is linear, the derivative may be taken outside its argument). From Propositions 7.4 and 7.3, it
follows that

Γ̂([a, b]) =
d

ds

∣∣∣∣
s=0

Γ(exp(sa))Γ̂(b)Γ(exp(−sa))

=
d

ds

∣∣∣∣
s=0

exp
(
sΓ̂(a)

)
Γ̂(b) exp

(
−sΓ̂(a)

)
= Γ̂(a)Γ̂(b)− Γ̂(b)Γ̂(a).

We may summarise the preceding as follows:

Theorem 7.6.

Let Γ : G→ GL(V ) be a representation of a matrix Lie group G on a complex vector space V . Then
Γ̂ : g→ L(V ) given by

Γ̂(a) =
d

dt

∣∣∣∣
t=0

Γ
(
eta
)

is a representation of g on V .

Example 7.7.

i) The Adjoint and adjoint representations of G and g respectively on V = g are related as in Theorem 7.6.

ii) Let z = (z1, z2)T ∈ C2 and consider the representation Γ of SU(2) on C∞(C2,C), the space of smooth,
complex-valued functions on C2, defined as follows:

(Γ(u)f)(z) := f
(
u−1z

)
.

The Lie algebra su(2) consists of matrices of the form ia · σ (cf Lecture 5), where a ∈ R3 and

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0

0 −1

)
.

We have that

(
Γ̂(ia · σ)f

)
(z) =

(
d

dt

∣∣∣∣
t=0

Γ
(
eita·σ

)
f

)
(z) =

d

dt

∣∣∣∣
t=0

f
(
e−ita·σz

)
= −i

2∑
j,k=1

(a · σ)jkzk
∂f

∂zj
(z).
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It particular,

Γ̂(iσ1) = iz1
∂

∂z2
+ iz2

∂

∂z1
, Γ̂(iσ2) = z1

∂

∂z2
− z2

∂

∂z1
, Γ̂(iσ3) = −iz1

∂

∂z1
+ iz2

∂

∂z2
.

Thus, the representation Γ̂ is by linear differential operators. One can verify directly that, for example,

[Γ̂(iσ1), Γ̂(iσ2)] = 2Γ̂(iσ3).

Proposition 7.8.

Let Γ and Γ̂ be related as in Theorem 7.6. Then if Γ̂ is irreducible, so is Γ.

The argument is straightforward and is an Exercise in Problem Sheet 3.

7.2 *From algebra representation to group representation

Proposition 7.8 provides a link from the representations of a group to representations of its Lie algebra.
The converse association, from a representation of a Lie algebra to a representation of a group, is

not as straightforward. Note that a matrix Lie group (trivially a representation of itself) is not uniquely
determined by its matrix Lie algebra (also trivially a representation of itself); for example, SO(3) and
SU(2) have the same Lie algebra, but are not themselves the same (nor are they isomorphic).

The question of whether a representation of a Lie algebra determines a representation of its asso-
ciated Lie group involves the topology of the group. We shall confine ourselves here to the following
remarks (some related material is developed in Problem Sheet 3, and is discussed in more detail Brian
Hall’s book in the references).

A matrix Lie group G is connected if every element A ∈ G can be connected to the identity by
a continuous curve A(t) ∈ G, with, say A(0) = I and A(1) = A (if this is the case, we can assume that
A(t) is smooth). Examples of matrix Lie groups that are not connected are finite matrix groups (whose
connected components are singletons), and direct products of a matrix Lie group G with a finite matrix
group. A matrix Lie group G is simply connected if every continuous closed curve A(t) ∈ G based at
the identity, so that A(0) = A(1) = I, can be continuously contracted to the constant curve A0(t) = I.
That is, there exists a continuous family of matrices (a homotopy) H(s, t), defined for 0 ≤ s, t ≤ 1, such
that H(s, 0) = H(s, 1) = H(0, t) = I and H(1, t) = A(t). Note that these definitions are not specific to
matrix Lie groups; they apply to more general topological spaces.

The Lie algebra g determines a unique Lie group (though not necessarily a matrix Lie group) called
the universal covering of G, denoted Ḡ, which is simply connected and which has g as its Lie algebra.
For example, the universal covering of SO(3) is SU(2) (recall that SU(2) may be identified with the three-
sphere S3 ⊂ R4, and is therefore simply connected). Ḡ can be regarded as the space of continuous curves
A(t) ∈ G, 0 ≤ t ≤ 1, with A(0) = I, modulo an equivalence relation; A(t) and B(t) are equivalent if
A(1) = B(1) and if the concatenation of A(t) and B(1− t) is contractible.

If G is connected, one can show that G = Ḡ/π1(G), where π1(G) is the fundamental group of G,
i.e. the set of closed continuous curves in G based at the identity with product given by concatenation,
and with curves which may be continuously deformed into each other regarded as equivalent. The
fundamental group π1(G) may be regarded as a normal subgroup of Ḡ. In particular, if G is simply
connected, then π1(G) is trivial, and Ḡ = G.

A representation Γ̂ of g determines a representation Γ̄ of Ḡ, and Γ̄ and Γ̂ are related as in Theorem 7.6.
If π1(G) is contained in the kernel of Γ̄, then Γ̂ determines a representation Γ of G, with Γ and Γ̂

related as in Theorem 7.6. In particular, if G is simply connected, then this is always the case. For
example, since SU(2) is simply connected, every representation of su(2) determines a representation
of SU(2), and irreducible representations of SU(2) and su(2) are in 1-1 correspondence. On the other
hand, as SO(3) is isomorphic to SU(2)/{I,−I} (the fundamental group of SO(3) is isomorphic to Z2), a
representation Γ̂ of so(3) ' su(2) determines a representation of SO(3) if and only if the corresponding
representation Γ of SU(2) satisfies Γ(−I) = IV . Such a representation is called a tensor representation. By
contrast, representations of SU(2) for which Γ(−I) = −IV are called spinor representations. In a tensor
representation, rotations through 2π are represented by the identity I, and for spinor representations, by
−I. We compute the irreducible representations of su(2) in the next section. One can show that even
dimensional representations are tensor representations, and odd dimensional representations are spinor
representations.
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8 Representations of su(2)

We computed the Lie algebra su(2) in Lecture 5 and found that

su(2) = {traceless antihermitian 2× 2 matrices}
= span(iσ1, iσ2, iσ3),

where the Pauli matrices, σj , are given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

and span the space of traceless hermitian 2× 2 matrices. Let

ej = −1
2 iσj .

Then ej ’s constitute a basis for su(2), and their Lie brackets are given by

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2. (29)

In what follows we calculate explicitly all the inequivalent irreducible representations of su(2). The
basic idea is to choose a set of basis vectors for the Lie algebra su(2) and a set of basis vectors for the
representation space V in terms of which the representation takes a simple canonical form. In fact, the
same idea works more generally for compact semi-simple Lie algebras, as we shall see.

First, we note that we can always choose a basis for the carrier space V with respect to which the
representation of a particular element of su(2), say e3, is diagonal (it turns out that representations of
su(2) can be taken to be antihermitian, so that Γ̂(a) is antihermitian, and therefore diagonalisable, for all
a ∈ su(2)). The trick is to choose a set of elements in su(2) that, together with e3, span su(2) and which
lead to representations of a simple form. The clue comes from considering the adjoint representation,
where su(2) is both the Lie algebra and the carrier space. A judicious choice of basis for the adjoint
representation leads to a canonical presentation for every irreducible representation.

8.1 Canonical form for the adjoint representation

We look for eigenvectors of ade3 . That is, we look for solutions of

[e3, a] = λa,

where a ∈ su(2).

Clearly, one solution is a = e3 and λ = 0.

Therefore, we may take the remaining eigenvectors to be of the form a = c1e1 +c2e2. The eigenvector
equation becomes [

e3, c1e1 + c2e2
]

= c1e2 − c2e1 = λ(c1e1 + c2e2),

where we have used (29) for the Lie brackets [ej , ek]. Equating coefficients, we get that

c2 = −λc1, c1 = λc2

which implies that λ2 = −1, or λ = ±i. It follows that c1 = ±ic2. We take c2 = −i/
√

2 (this choice is
convenient, but not necessary). Then the eigenvectors are given by

e± =
1√
2

(±e1 − ie2) .

Thus,
[e3, e±] = ±ie±.
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Now we must address the fact that e± do not belong to su(2); e± consist of complex, rather than
real, linear combinations of e1 and e2. To proceed, we introduce the complexification of su(2), which we
denote by su(2)C, and which we may take to consist of all complex linear combinations of e1, e2 and e3:

su(2)C =
{
c1e1 + c2e2 + c3e3 | cj ∈ C

}
⊂ C2×2,

We extend the Lie bracket to su(2)C in the obvious way:∑
j

cjej ,
∑
k

dkek

 =
∑
j,k

cjdk[ej , ek],

and it is obvious that su(2)C forms a complex Lie subalgebra of C2×2. That is, su(2)C is a complex vector
subspace of C2×2 that is closed under the Lie bracket (the Jacobi identity is automatically satisfied for
Lie algebras of matrices).

Since e†j = −ej (the ej ’s are antihermitian), it follows that

e
†
+ = e−.

We will regard e±, e3 as a basis for su(2)C. We know the Lie brackets of e3 with e±. Let us calculate
[e+, e−], as follows:

[e+, e−] = 1
2 [e1 − ie2,−e1 − ie2] = −ie3.

To summarise, we regard e±, e3 as a canonical basis for su(2)C. In terms of this basis, the Lie bracket
is given by

[e3, e±] = ±ie±, [e+, e−] = −ie3. (30)

We have that
e
†
± = e∓, e

†
3 = −e3. (31)

The real Lie algebra su(2) consists of the antihermitian subspace of su(2)C, and is given by

su(2) = {ze+ − z̄e− + c3e3 | z ∈ C, c3 ∈ R} . (32)

8.2 Irreducible representations of su(2)

Let (Γ̂, V ) denote an irreducible representation of su(2) on a finite-dimensional vector space V . Without
loss of generality, it turns out we may assume that V is an inner product space, and that Γ̂(a) is antiher-
mitian for all a ∈ su(2) . (We have not shown this explicitly, but it follows from arguments in Section 7.2.)

Let Êj := Γ̂(ej) denote the representatives of the ej ’s. Let

Ê± :=
1√
2

(
±Ê1 − iÊ2

)
. (33)

From the representation property, in particular

[Ê1, Ê2] = Ê3, [Ê2, Ê3] = Ê1, [Ê3, Ê1] = Ê2,

it follows that
[Ê3, Ê±] = ±iÊ±, [Ê+, Ê−] = −iÊ3. (34)

Also, since Ê†j = −Êj , we have that

Ê
†
± = Ê∓, Ê

†
3 = −Ê3. (35)

In analogy with our treatment of the adjoint representation, we seek a basis for V in which Ê3 is
diagonal. Since V is complex and Ê3 is antihermitian, this can be found. Note that the eigenvalues of
an antihermitian matrix are pure imaginary.

For µ ∈ R, let W (µ) denote the subspace of eigenvectors of Ê3 with eigenvalue iµ, i.e.

W (µ) = {v ∈ V | (Ê3 − iµ)v = 0}.
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Of course, if iµ is not an eigenvalue of Ê3, then W (µ) consists only of the zero vector. Let iµ1, . . . , iµs
denote the (imaginary) eigenvalues of Ê3. Then

V = ⊕sr=1W (µr).

In fact, since Ê3 is antihermitian, the subspaces W (µr) are orthogonal to each other. Note that any
one of the eigenvalues iµr could be degenerate, in which case the corresponding eigenspace would have
dimension greater than one. (In fact, we will show below that because Γ̂ is irreducible, the eigenspaces
W (µr) are necessarily one dimensional.)

Proposition 8.1.
Ê±W (µ) ⊂W (µ± 1).

Proof. If W (µ) = {0}, i.e. if iµ is not an eigenvalue of Ê3, the statement is trivial. Therefore, we may
assume that iµ is an eigenvalue of Ê3. Let v ∈ W (µ) be a nonzero eigenvector of Ê3 with eigenvalue iµ.
We need to show that Ê± v ∈W (µ±1), i.e.

Ê3Ê± v = i(µ± 1)Ê± v.

From the Lie brackets (34), in particular [Ê3, Ê±] = ±iÊ±, it follows that

Ê3Ê± = Ê±Ê3 ± iÊ±.

Then
Ê3Ê± v =

(
Ê±Ê3 ± iÊ±

)
v = Ê±(Ê3 ± i)v = i(µ± 1)Ê± v,

as required.

Let iµ∗ be an eigenvalue of Ê3, and let v∗ ∈ W (µ∗) be a nonzero eigenvector of Ê3 with eigenvalue
iµ∗. From Proposition 8.1, either Êk+v∗ is a nonzero eigenvector of Ê3 with eigenvalue i(µ∗ + k), or else

Êk+v∗ = 0. Since Ê3 can have only a finite number of eigenvalues (as V is finite dimensional), it follows

that Êk+v∗ must vanish for sufficiently large k. Let p ≥ 0 denote the smallest nonnegative integer for
which

Ê
p
+ v∗ 6= 0, Ê

p+1
+ v∗ = 0. (36)

v(p) := Ê
p
+ v∗. (37)

Without loss of generality, we may assume that

||v(p)|| = 1

(just multiply v∗ by the appropriate scalar factor to ensure this is the case). Then v(p) ∈W (µ∗ + p).

Next, we repeatedly apply Ê− to v(p), generating a sequence of vectors in V . Since, from Proposi-
tion 8.1, Êk−v(p) ∈ W (µ∗ + p − k), these vectors are orthogonal to each other. The following establishes
that the first p+ 1 vectors in this sequence (including v(p) itself) are nonzero.

Proposition 8.2. For 0 ≤ k ≤ p,
Êk−v(p) 6= 0.

Proof. We will show that the inner product of Êk−v(p) with some given vector u does not vanish, which

will imply that Êk−v(p) itself cannot vanish. Indeed, let

u = Ê
p−k
+ v∗.

From the definition of p, it follows that u 6= 0. Note that u belongs to W (µ∗+p−k). Since Êk−v(p) belongs

to W (µ∗ + p− k) as well, it is at least possible that
〈
u, Êk−v(p)

〉
6= 0.

In fact, we have that 〈
u, Êk−v(p)

〉
=
〈
Ê
p−k
+ v∗, Êk−v(p)

〉
.

Recalling that Ê†− = Ê+, we get that〈
u, Êk−v(p)

〉
=
〈
Êk+Ê

p−k
+ v∗, v(p)

〉
=
〈
Ê
p
+v∗, v(p)

〉
= 〈v(p), v(p)〉 = 1,

as required.
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Since Êp+r− v(p) ∈ W (µ∗ − r), it follows that Êp+r− v(p) must vanish for some r > 0. Let q ≥ 0 be the
smallest integer for which

Ê
p+q
− v(p) 6= 0, Ê

p+q+1
− v(p) = 0. (38)

Define a sequence of vectors v(a) inductively as follows. v(p) is given by (37). Given v(a), define
v(a− 1) by

v(a− 1) =
1

N(a)
Ê− v(a), N(a) =

(〈
Ê−v(a), Ê−v(a)

〉)1/2
. (39)

By construction, the v(a)’s are normalised. From the definition of q, v(a) 6= 0 for −q ≤ a ≤ p. From
Proposition 8.1, v(a) ∈W (µ∗ + a). Therefore,

Ê3v(a) = i(µ∗ + a)v(a),

Ê−v(a) = N(a)v(a− 1).

Thus, we have constructed a set of p+ q + 1 orthonormal vectors in V whose span is invariant under Ê3
and Ê−, and with respect to which Ê3 and Ê− assume a canonical form. By convention, we define

v(p+ 1) := 0, N(p+ 1) := 0.

It remains to consider the action of Ê+ on the v(a)’s. This is given by the following:

Proposition 8.3. For −q ≤ a ≤ p,

Ê+v(a) = N(a+ 1)v(a+ 1).

Note that Proposition 8.3 does not follow automatically from Proposition 8.1, which implies only
that Ê+ v(a) belongs to W (µ∗ + a + 1), and does not imply that Ê+ v(a) is proportional to v(a + 1) (a
priori, W (µ∗ + a+ 1) may have dimension greater than 1).

Proof. There are two things to show, namely that (i) Ê+ v(a) is proportional to v(a+ 1) and that (ii) the
constant of proportionality is given by N(a+ 1). First, we show that (ii) follows from (i). Suppose that

Ê+ v(a) = C(a+ 1) v(a+ 1)

for some scalar factor C(a + 1). Taking the inner product of the preceding with v(a + 1) and using the
fact that the v(a)’s are normalised, we have that

C(a+ 1) =
〈
v(a+ 1), Ê+ v(a)

〉
.

Since Ê†+ = Ê−, we get

C(a+ 1) =
〈
Ê−v(a+ 1), v(a)

〉
= N(a+ 1)〈v(a), v(a)〉 = N(a+ 1), (40)

where we have used the definition (39) of v(a).

To establish (i), we proceed by backward induction on a. The assertion holds trivially for a = p,
since Ê+v(p) = 0. Let us assume that (i) holds for a . We show that it holds for a− 1, i.e.

Ê+ v(a− 1) = C(a)v(a).

From the definition (39) of v(a− 1), we have that

Ê+ v(a− 1) = Ê+

(
1

N(a)
Ê− v(a)

)
=

1

N(a)
Ê+Ê− v(a).

From the Lie bracket relation
[Ê+, Ê−] = −iÊ3,

it follows that
Ê+ v(a− 1) =

1

N(a)

(
Ê−Ê+ − iÊ3

)
v(a).

But
Ê3 v(a) = i(µ∗ + a)v(a),
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and by the induction hypothesis and the definition of the v(a)’s,

Ê−Ê+ v(a) = N(a+ 1)Ê− v(a+ 1) = N2(a+ 1) v(a).

Combining these results, we obtain
Ê+ v(a− 1) = C(a) v(a),

where

C(a) =
N2(a+ 1) + (µ∗ + a)

N(a)
(41)

which shows that Ê+v(a− 1) is indeed proportional to v(a), as required.

Comparison of (40) and (41) gives

C(a) = N(a) =
N(a+ 1)2 + µ∗ + a

N(a)
,

or
N2(a+ 1)−N2(a) = −(µ∗ + a).

This is a first-order difference equation for N2(a) with two boundary conditions, since we know that
N(a) vanishes for a = p + 1 and a = −q. Therefore, in order for a solution to exist, there is necessarily
a constraint on the (single) parameter ′mu∗ in the equation. The solution is necessarily inhomogeneous
quadratic in a. The boundary conditions are conveniently incorporated by taking N2(a) to be of the
form

N2(a) = A(p+ 1− a)(a+ q).

Substituting this form into the recurrence relation, we get that

A(p− q − 2a) = −µ∗ − a

which implies that

A = 1
2 , (42)

µ∗ = 1
2 (q − p). (43)

The vector space spanned by the v(a)’s, −q ≤ a ≤ p, is invariant under Ê3 and Ê±, and therefore is
invariant under Γ̂. Since Γ̂ is irreducible, it follows that V = span{v(a)}, and that

n = dimV = p+ q + 1.

The largest eigenvalue of Ê3 is given by µ∗ + p = (p + q)/2 = (n − 1)/2, and the smallest is given by
µ∗ − q = −(p+ q)/2 = −(n− 1)/2. Without loss of generality, we may take µ∗ = −(n− 1)/2 (after all, µ∗
is only required to be one of the eigenvalues of Ê3). Then q = 0, p = n− 1, and

N2(a) = 1
2a(n− a).

The index a takes values between 0 and n− 1. The actions of Ê3 and Ê± on v(a) are given by

Ê3 v(a) =
(
−1

2 (n− 1) + a
)
v(a),

Ê+ v(a) =
(

1
2 (a+ 1)(n− 1− a)

)1/2
v(a+ 1), (44)

Ê− v(a) =
(

1
2a(n− a)

)1/2
v(a− 1).

We note that the actions in (44) are determined entirely by n, the dimension of the carrier space. We
may summarise as follows:

Theorem 8.4 (Irreducible representations of su(2)). Up to equivalence, there is precisely one irreducible
representation Γ̂n of su(2) of dimension n for n ≥ 0. The linear maps Ê3 = Γ̂n(e3) and Ê± = Γ̂n(e±),
which determine the representation, are given by (44), where v(a), 0 ≤ a ≤ (n − 1), denotes a basis for
the carrier space. Ê1 and Ê2 are given by (cf (33))

Ê1 =
1√
2

(
Ê+ − Ê−

)
, Ê2 = − 1√

2i

(
Ê+ + Ê−

)
.
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9 Compact simple Lie algebras and Cartan subalgebras

Let G be a group. A subgroup H ⊂ G is normal if ∀g ∈ G, h ∈ H, we have that

ghg−1 ∈ H.

{I} and G are trivially normal subgroups of G. G is simple if it has no nontrivial normal subgroups.
Let G be a matrix Lie group with matrix Lie algebra g. An ideal I ⊂ g is a subspace of g such that

∀a ∈ g, b ∈ I, we have that
[a, b] ∈ I.

{0} and g are trivial ideals of g. g is simple if it has no nontrivial ideals.

Example 9.1. U(n), the unitary group, is not simple. The subgroup of multiples of the identity, eiθIn, is
a normal subgroup. u(n), the Lie algebra of U(n), is given by Cn×n− , the space of antihermitian matrices.
u(n) is not simple, as the subspace {iθIn}, is a nontrivial ideal.

Exercise 9.2.

i) Show that SU(n) is a not simple group, but su(n) is a simple Lie algebra.

ii) Suppose that H ⊂ G is a normal subgroup and that H is a matrix Lie group in its own right, with Lie
algebra h. Then show that h ⊂ g is an ideal.

Proposition 9.3. Simple properties of simple Lie algebras

a) If g is simple, then [g, g] = g, where

[g, g] := span
{

[a, b]
∣∣∣ a, b ∈ g

}
.

b) If g is simple, then Ad : G→ GL(g) is irreducible.

c) If g is simple and (Γ̂, V ) is a nontrivial representation of g (i.e., Γ̂(a) 6= 0 for some a), then ker Γ̂ = 0, and
g is isomorphic to its image in L(V ). In particular, g is isomorphic to its adjoint representation.

Proof.

a) [g, g] is an ideal.

b) An Ad-invariant subspace I is an ideal, since for all a ∈ g and b ∈ I, [a, b] = ċ(0), where

c(t) = etabe−ta.

c(t) is a curve in I, since I is Ad-invariant.

c) The kernel of any Lie algebra homomorphism Γ̂ : g→ h is an ideal, since for all a ∈ g, n ∈ ker Γ̂, we have
that

Γ̂([a, n]) = [Γ̂(a), Γ̂(n)] = 0.

If G ⊂ GL(n,C) is a compact matrix Lie group, we say that its Lie algebra, g, is compact. From
Proposition 6.16 (representations of compact matrix Lie groups are equivalent to unitary representa-
tions), without loss of generality (applying a conjugation if necessary) we may assume that G ⊂ U(n)

(since G may be regarded as a representation of itself). Then g ⊂ u(n) = Cn×n− ; that is, g is comprised of
antihermitian matrices. This fact makes the study of compact simple Lie algebras a bit simpler.

We introduce the usual inner product on Cn×n and restrict to g. That is, given a, b ∈ g, we define

〈a, b〉 := Tr(a†b) = −Tr(ab).
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Proposition 9.4 (Ad and ad invariance of inner product).

a) For all C ∈ G, AdC : g→ g is real orthogonal, ie

〈AdC a,AdC b〉 = 〈a, b〉

for all a, b ∈ g.

b) For all c ∈ g, adc a : g→ g is real antisymmetric, ie

〈adc a, b〉+ 〈a, adc b〉 = 0

for all a, b ∈ g,

Proof.

a) We show that Ad preserves the (real) inner product 〈·, ·〉. Since C is unitary,

AdC b = CbC−1 = CbC†.

Then
〈AdC a,AdC b〉 =

〈
CaC†, CbC†

〉
= Tr(Ca†C†CbC†) = Tr(a†b) = 〈a, b〉.

b) Let C = etc in the preceding and differentiate with respect to t at t = 0.

*There is an intrinsic real bilinear form on a Lie algebra, called the Killing form, denoted K :

g× g→ R. The Killing form is defined by

K(a, b) := Tr(ada adb).

Proposition 9.5 (Ad and ad invariance of Killing form ).

a) For all C ∈ G and all a, b ∈ g,
K(AdC a,AdC b) = K(a, b).

b) For all c ∈ g and all a, b ∈ g,
K(adc a, b) +K(a, adc b) = 0.

Proof.

a) Since adAdC a
= AdC ada AdC−1 (check!), we have that

K(AdC a,AdC b) = Tr(adAdC a
adAdC b

) = Tr(AdC ada AdC−1 AdC adb AdC−1) = Tr(ada adb) = 〈a, b〉.

b) Set C = exp(tc) and differentiate at t = 0.

Proposition 9.6. If g is compact simple, then its Killing form is negative definite. In fact,

K(a, b) = λ〈a, b〉

for some λ < 0.

Proof. Ad is irreducible, from Proposition 9.3. K commutes with Ad. Therefore, K is multiple of the
identity.
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9.1 Cartan subalgebra

The Cartan subalgebra generalises the role played by e3 in our discussion of su(2).
A subalgebra of g is a subspace h which is itself a Lie algebra, i.e. it is closed under the Lie bracket

(ideals are subalgebras, but subalgebras are not necessarily ideals). A subalgebra is abelian if all of its
elements commute; that is, the Lie bracket between its elements vanishes.

Given a subset S ⊂ g, the commutant of S, denoted S′, is the set of all elements of g that commute
with S; that is, a ∈ S′ if and only if [a, s] = 0 for all s ∈ S. Clearly, if a is an abelian subalgebra, then
a ⊂ a′.

Definition 9.7. Let g ⊂ Cn×n− by a compact simple Lie algebra. A Cartan subalgebra h is an abelian
subalgebra of g such that

h′ = h.

That is, a Cartan subalgebra is a maximal abelian subalgebra; if [h∗, h] = 0 for all h ∈ h, then h∗ ∈ h

(maximality).

Example 9.8. For su(n), the Lie algebra of traceless antihermitian matrices, a Cartan subalgebra is
given by the subset of traceless imaginary diagonal matrices.

A Cartan subalgebra may be constructed as follows. Let a denote a nontrivial abelian subalgebra
of g of dimension m; for example we could take a = span(a), for some nonzero a ∈ g, in which case m = 1.
If a = a′, then a is a Cartan subalgebra. Otherwise, choose b ∈ a′ − a. Then b = span(a, b) is an abelian
subalgebra of dimension m + 1. We may repeat this procedure until we obtain an abelian subalgebra h

with h = h′, i.e. a Cartan subalgebra.

Let g be a compact simple Lie algebra, and let h ⊂ g be a Cartan subalgebra. Clearly h 6= g;
otherwise, g would be abelian, and therefore not simple.

Proposition 9.9. If g is simple and h is a Cartan subalgebra, then so is AdA h. The Cartan subalgebra
is not unique.

Proof. See exercises. First show that if h is a Cartan subalgebra, then so is AdA h for all A ∈ G. Then
show that if AdA h = h for all A ∈ G, then h is a nontrivial ideal.

However, for compact simple Cartan subalgebras, the Cartan subalgebra is determined up to the
Adjoint action:

Theorem 9.10. Let g be simple compact. If h1 and h2 are two Cartan subalgebras of g, then h1 = AdA h2
for some A ∈ G.

Proof. See Problem Sheet 3, where a variational argument is outlined; one can establish that AdA h1∩h2 6=
0 for some A ∈ G (which in turn implies that AdA h1 = h2) by minimising the distance ||AdA h2 − h1||2

over A for appropriately chosen nonzero h1 ∈ h and h2 ∈ h2.

Example 9.11. For su(n), the Cartan subalgebras are unitary conjugates of traceless diagonal imaginary

matrices; that is, they are sets of matrices of the form U0dU
†
0 , where U0 ∈ SU(n) is fixed and d ranges

over the set of traceless diagonal imaginary matrices.

Definition 9.12. The rank of a compact simple Lie algebra is the dimension of its Cartan subalgebra.

Clearly, if r is the rank of g and d is the dimension of g, then r < d (otherwise, g would be abelian).

10 Weights and roots

10.1 Definitions and basic properties

Let (Γ̂, V ) denote a representation of a compact simple Lie algebra g ⊂ Cn×n− . It turns out that without

loss of generality, we may assume that V is an inner product space and that Γ̂ is antihermitian. (We
won’t prove this, but it can be shown by constructing a corresponding representation of a compact group.
We know that representations of compact groups are equivalent to unitary representations, and therefore
representations of the Lie algebra are equivalent to antihermitian representations.) Let d denote the
dimension of g, and let r denote its rank.
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Let h ⊂ g be a Cartan subalgebra of g. It is convenient to introduce a basis h1, . . . , hr that is
orthonormal with respect to the inner product on Cn×n :

tr
(
h
†
jhk

)
= − tr

(
hjhk

)
= δjk. (45)

Let
Ĥj = Γ̂(hj). (46)

We will use the fact that if a set of diagonalisable matrices commute with each other, then they
can be simultaneously diagonalised. That is, there exists a basis in which the matrices are all diagonal.
Moreover, if the matrices are antihermitian, the basis can be taken to be orthonormal. We will apply
this result to the basis hj for the Cartan subalgebra and to its representations Ĥj , but we will state it a
bit more neutrally, and generally, as follows.

Proposition 10.1. Let a1, . . . , an ∈ L(V ) be antihermitian maps on a complex inner product space V ,
and suppose that

[aj , ak] = 0, for all 1 ≤ j, k ≤ n.

Let µ ∈ Rn, and let W (µ) ⊂ V be the subspace of simultaneous eigenvectors of the aj ’s with eigenvalues
iµj . That is,

W (µ) = {v ∈ V | ajv = iµjv}.

Note that if iµj is not an eigenvalue of aj for some j, then W (µ) is the trivial subspace consisting of 0.
Then

V =
∑
µ

⊕W (µ),

where the sum is taken over µ’s for which iµj is an eigenvalue of aj for all j. Morever, the distinct W (µ)’s
are orthogonal.

Proof. By induction on n. For n = 1, this is just the statement that eigenvectors of an antihermitian
map a1 can be chosen to form an orthogonal basis for V . Suppose it holds for n− 1, and let

V =
∑
ν

⊕X(ν),

where ν ∈ Rn−1 and ajv = iνjv for v ∈ X(ν) and 1 ≤ j ≤ n− 1. The distinct X(ν)’s are orthogonal.
Let v ∈ X(ν). Claim that anv ∈ X(ν). To verify, we check that

ajanv = anajv = iνjanv,

as required. Then X(ν) is invariant under an, so that an ∈ L(X(ν)). As an is antihermitian on V ,
it follows that 〈u, anv〉 = −〈anu, v〉, and this relation continues to hold if u, v ∈ X(ν), so that an is
antihermitian on X(ν). Therefore, X(ν) can be decomposed into a direct sum of orthogonal eigenspaces
of an, as follows:

X(ν) =
∑
µn

⊕X(ν;µn),

so that anv = iµnv for v ∈ X(ν;µn). Let µ := (ν, µn) and W (µ) := X(ν;µn), and the result follows.

We may apply this to the representation of the Cartan subalgebra. For µ ∈ Rr, let

W (µ) = {v ∈ V | Ĥjv = iµjv}. (47)

If W (µ) 6= {0}, we say that µ is a weight of the representation Γ̂.
Let us consider in particular the adjoint representation. In this case, we denote the representatives

of the Cartan subalgebra basis by ĥj , and the weights by α ∈ Rr. Clearly, 0 ∈ Rr is a weight of the
adjoint representation, since hj ∈ W (0). Nonzero weights of the adjoint representation are called roots.

Let us denote eigenvectors of the ĥj ’s by eα. These satisfy

ĥjeα = [hj , eα] = iαjeα. (48)

In general, the eα’s do not belong to g, but rather to the complexification of g, which we denote
by gC. We can see this as follows: Taking hermitian conjugates in the preceding, and noting that hj is
antihermitian, we get that

[hj , e
†
α] = −iαje

†
α, (49)
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which implies that e†α is an eigenvector of the adjoint representation of the Cartan subalgebra with root

−α, and is therefore orthogonal to eα. Thus e†α 6= −eα. Without loss of generality, we may normalise
the eα’s so that

||eα||2 = ||e†α||
2 = Tr(e

†
αeα) = 1.

The following shows that the Lie bracket of eα and e
†
α belongs to the Cartan subalgebra, and

provides an explicit formula:

Proposition 10.2.

[eα, e
†
α] = −iα · h.

Proof. From the Jacobi identity,

[hj , [eα, e
†
α]] = [[hj , eα]e

†
α] + [eα, [hj , e

†
α]] = iαj [eα, e

†
α]− iαj [eα, e

†
α] = 0.

Since [eα, e
†
α] commutes h, it must belong to h. We may write that

[eα, e
†
α] =

∑
j

cjhj .

Taking inner products with hk, we obtain

ck =
〈
hk, [eα, e

†
α]
〉

= −Tr
(
hk[eα, e

†
α]
)

= −Tr([hk, eα]e
†
α) = −iαk.

Let us return to considering a general representation Γ̂. Let Êα denote the representative of eα
(obtained from the complexification of Γ̂ – that is, if a, b ∈ g, we define Γ̂(a+ ib) := Γ̂(a) + iΓ̂(b)). Then

[Ĥj , Êα] = iαjÊα, (50)

and
[Êα, Ê

†
α] = −iα · Ĥ. (51)

Proposition 10.3.
ÊαW (µ) ⊂W (µ + α)

Proof. Let v ∈W (µ). Then

ĤjÊαv =
([
Ĥj , Êα

]
+ ÊαĤj

)
v =

(
iαjÊα + Êαiµj

)
v = i(αj + µj)Êαv, (52)

which implies that v ∈W (µ + α).

Note: It could be that ÊαW (µ) = {0}, even if W (µ) 6= {0} and W (µ + α) 6= {0}.

Corollary 10.4.

Ê
†
αW (µ) ⊂W (µ−α) (53)

Proof. This follows from taking hermitian conjugates in Proposition 10.3.

Proposition 10.3 has the following consequence when applied to the adjoint representation:

Corollary 10.5. If α, β are roots of a compact simple Lie algebra g, then either α + β is also a root of
g, or else

[eα, eβ] = êα(eβ) = 0.

Proof. We give a direct argument as follows:

[hj , [eα, eβ]] = [[hj , eα], eβ] + [eα, [hj , eβ]] = i(αj + βj)[eα, eβ].

Thus, if [eα, eβ] is nonvanishing, then α + β is a root.
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For fixed α, the three elements of the representation, Êα, Ê†α, and α · Ĥ, form a subalgebra of Γ̂(g)

isomorphic to su(2). Explicitly, if we let α = ||α|| and define

Ê+ :=
1

α
Êα, Ê− :=

1

α
Ê
†
α, Ê3 :=

1

α2
α · Ĥ, (54)

then it is straightforward to show that

[Ê3, Ê±] = ±iÊ±, [Ê+, Ê−] = −iÊ3. (55)

Therefore, by following the construction of irreducible representations of su(2) in Section 8, we can

decompose V into a direct sum of subspaces each of which is invariant under Êα, Ê†α, and α · H, as
follows: Take nonvanishing v∗ ∈W (µ). Then Ê3v∗ = iµ∗v∗, where

µ∗ =
α · µ
α2

.

Let p be the smallest nonnegative integer for which Ê
p+1
+ v∗ = 0, and let v(p) = Ê

p+1
+ v∗, which we may

assume to have unit norm. From Proposition 8.2, Êj−v(p) 6= 0 for 0 ≤ j ≤ p. Let q be the smallest

nonnegative integer for which Ê
p+q+1
− v(p) = 0. We define v(a), −q ≤ a ≤ p inductively, starting with v(p),

by

v(a− 1) =
1

N(a)
Ê−v(a), N(a) :=

(〈
Ê−v(a), Ê−v(a)

〉)1/2
,

where N(a) is chosen so that v(a) is normalised. Then from Proposition 8.3

Ê−v(a) = N(a)v(a− 1),

Ê+v(a) = N(a+ 1)v(a+ 1),

Ê3v(a) =
α · µ + aα2

α2
v(a).

The coefficients N2(a) satisfy the recurrence relation

N2(a+ 1) = N2(a)− µ∗ − a.

A necessary condition for this relation to have a solution is that

q − p = 2
α · µ
α2

. (56)

Eq. (56) turns out to be very important, as it leads to strong constraints on the structure of compact
simple Lie algebras and their representations. Given Eq. (56) , N2(a) is given by

N2(a) = 1
2 (p+ 1− a)(q + a). (57)

One consequence of Eq. (56) is the following:

Proposition 10.6. The roots of a compact simple Lie algebra g are nondegenerate. That is, if α is
a root of g and W (α) ⊂ gC is the corresponding eigensubspace of the complexified Lie algebra, then
dimW (α) = 1.

Proof. Suppose to the contrary that dimW (α) > 1. Then we may choose linearly independent vectors
eα and v∗ in W (α). Without loss of generality we may assume that eα and v∗ are orthogonal. Choose
p ≥ 0 such that

ê
p
αv∗ 6= 0, ê

p+1
α v∗ = 0,

and let
fα =

(
ê
†
α

)p
ê
p
αv∗.

By Proposition 8.2, fα ∈W (α) and fα 6= 0. Also,

〈eα, fα〉 =
〈
ê
p
α eα, ê

p
α v∗

〉
= 0, (58)
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since, if p = 0, this follows from the assumption that eα and v∗ are orthogonal, while if p > 0, this follows
from the fact that êα(eα) = [eα, eα] = 0. Choose q ≥ 0 so that(

ê
†
α

)q
(fα) 6= 0,

(
ê
†
α

)q+1
(fα) = 0.

Then from (56) with µ = α, we get that
q − p = 2.

In what follows, we show that q = 0, which yields the contradiction that establishes the required result.
Let

a = [e
†
α, fα].

Noting that

[hj , e
†
α] = −iαje

†
α,

which follows from simple calculation, we can use the Jacobi identity to show that

[hj , a] = 0,

which holds for all j. Indeed,

[hj , a] = [hj , [e
†
α, fα]] = [[hj , e

†
α], fα] + [e

†
α, [hj , fα]] = iαj [e

†
α, fα]− iαj [e

†
α, fα] = 0.

This implies that a commutes with all elements of the Cartan subalgebra h, which in turn implies that
a belongs to h, i.e.

a = c · h

for some c ∈ Rr. Since the hj ’s constitute an orthonormal basis for h, it follows that

cj =
〈
hj , a

〉
= − tr(hja) = − tr

(
hj [e
†
α, fα]

)
= − tr

(
e
†
α[hj , fα]

)
= iαj tr(e

†
αfα) = iαj〈eα, fα〉 = 0,

since, from (58), eα and fα are orthogonal. Thus,

[e
†
α, fα] = ê

†
α(fα) = 0,

or q = 0, as claimed.

Thus, given a root α, the associated eigenvector eα ∈ gC is unique up to a scalar multiple. It follows

that e†α and e−α are proportional. Without loss of generality, we may assume that

e−α = e
†
α. (59)

Finally, suppose α and β are distinct roots of a compact simple Lie algebra. Let p, q be the smallest
nonnegative integers such that

(êα)p+1eβ = 0, (ê
†
α)q+1eβ = 0.

From (56),

m := q − p =
2α · β
α2

. (60)

Similarly, let p′, q′ ≥ 0 be the smallest nonnegative integers such that

(êβ)p
′+1eα = 0, (ê

†
β)q
′+1eα = 0,

From (56),

n := q′ − p′ =
2β ·α
β2

. (61)

From the product of (60) and (61), we get

(α · β)2

α2β2
=

(q − p)(q′ − p′)
4

. (62)

This may be understood to say that cos2 θ, where θ denotes the angle between α and β, is constrained
to be an integer multiple mm′ of 1/4. The possible values of cos θ and θ are summarised in Table 1.
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Table 1: Angles between roots

mn cos θ θ

0 0 π/2

1 ±1/2 π/3 or 2π/3

2 ±1/
√

2 π/4 or 3π/4

3 ±
√

3/2 π/6 or 5π/6

4 ±1 0 or π

Example 10.7 (Roots of su(3)). su(3) is the space of traceless antihermitian 3 × 3 matrices. We may
take a Cartan subalgebra, h, to consist of traceless imaginary diagonal 3× 3 matrices. The space of such
matrices is two dimensional, so that the rank r of su(3) is equal to 2. An orthonormal basis is given by

h1 =
i√
6

 1 0 0

0 1 0

0 0 −2

 , h2 =
i√
2

 1 0 0

0 −1 0

0 0 0

 .

Then 〈
hj , hk

〉
= δjk.

su(3) may be regarded as a representation of itself on V = C3; this is the natural, or fundamental
representation. The simultaneous eigenvectors of h1 and h2 are just the basis vectors

v1 =

 1

0

0

 , v2 =

 0

1

0

 , v3 =

 0

0

1

 .

The weights µ ∈ R2 are obtained from the diagonal elements of h1 and h2:

µ1 =

(
1√
6
,

1√
2

)
, µ2 =

(
1√
6
,− 1√

2

)
, µ3 =

(
− 2√

6
, 0

)
.

Next, we consider the adjoint representation of su(3). Eigenvectors of the adjoint representation of
h are traceless 3× 3 matrices eαp ∈ suC(3) which satisfy

ĥjeαp = [hj , eαp ] = iαpjeαp . (63)

Since hj is diagonal, the (r, s)th element of the preceding equation has the following simple form:(
(hj)rr − (hj)ss − iαpj

) (
eαp

)
rs = 0.

As this must hold for all 1 ≤ r, s ≤ 3, we may conclude that solutions eαp are either diagonal matrices (in
which case, αp = 0 and eαp belongs to hC), or else eαp contains a single nonzero off-diagonal element.
Three solutions – the upper triangular ones – with nonzero eigenvalues (i.e. roots) are therefore given by

eα1 =

 0 0 0

0 0 1

0 0 0

 , eα2 =

 0 0 1

0 0 0

0 0 0

 , eα3 =

 0 1 0

0 0 0

0 0 0

 .

The associated roots are

α1 = µ2 − µ3 =

(√
3

2
,− 1√

2

)
,

α2 = µ1 − µ3 =

(√
3

2
,

1√
2

)
,

α3 = µ1 − µ2 =
(

0,
√

2
)
.

The lower triangular matrices e†α1
, e†α2

, e†α3
are also solutions of (63) with roots α1, −α2 and −α3.

The roots of the adjoint representation and the weights of the fundamental representation are shown
below.
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Figure 8: Weights of the fundamental representation and roots of the adjoint representation of su(3).
The differences (dotted red) between pairs of weights (blue) gives the roots (black).

10.2 Simple roots

We recall that if α is a root, then so is −α (since if eα is an eigenvector of ĥj with eigenvalue iαj , then

e
†
α is an eigenvector of ĥj with eigenvalue −iαj). Thus, roots come in signed pairs.

We introduce a lexicographic ordering on the roots as follows. Given α ∈ Rr, we say that α is
positive if the first nonzero component of α is positive. α is negative if −α is positive. We say that
α > β if α− β is positive.

Note that the definition of positivity depends on the choice of basis for h. Nevertheless, using this
definition, we can derive intrinsic (i.e., basis-independent) properties of g.

We note that since roots are nonzero, they are either positive or negative; from the observation
above, they come in positive/negative pairs.

Definition 10.8 (Simple root). A root α is simple if α is positive and α cannot be expressed as the
some of positive roots.

It is easily seen that every positive root can be expressed as a sum of simple roots. For suppose α is
positive. If α is simple, we are done. If not, α = α1 +α2, where α1, α2 are positive. Then α1,α2 < α. If
either α1 or α2 are not simple, we may express them as sums of smaller, positive roots. This reduction
must terminate with simple roots.

Example 10.9 (Simple roots of su(3)). Referring to Example 10.9, α1, α2 and α3 are the positive roots
of su(3). α1 and α3 are simple, while α2 = α1 + α3, so that α2 is not simple.

Proposition 10.10. If α and β are simple, then α− β and β −α are not roots.

Proof. Since roots come in signed pairs, if either α− β or β −α is a root, then so is the other, and one
of them will be positive. Suppose for definiteness that α−β is positive (otherwise, interchange α and β

in the following). Then α is given by the sum of positive roots, namely β and α − β. This contradicts
the assumption that α is simple.

Proposition 10.11. If α and β are distinct simple roots, then

[eα, e−β] = [e−α, eβ] = 0.

Proof.
ê−αeβ = [e−α, eβ] ∈W (β −α).

From Proposition 10.10, W (β −α) = {0}. A similar argument shows that [eα, e−β] = 0.

Proposition 10.12. If α and β are distinct simple roots, then

α · β ≤ 0.
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Proof. Let p be the smallest nonnegative integer for which e
p+1
α eβ = 0, and q the smallest nonnegative

integer for which ê
q+1
−α eβ = 0. From (56),

α · β = α2 q − p
2

.

But since α and β are simple, it follows from Proposition 10.11 that q = 0. The result follows.

Proposition 10.13. The simple roots are linearly independent.

Proof. Suppose that ∑
α

cαα = 0

for cα ∈ R. We can partition the sum into terms with positive and negative coefficients cα. Let

P =
∑
β

cβ>0

cββ, N =
∑
γ

cγ<0

|cγ |γ.

Then P −N = 0, or
P = N.

It follows that
P 2 = N · P =

∑
β

cβ>0

∑
γ

cγ<0

cβ |cγ |β · γ.

The left-hand side is nonnegative, while the right-hand side is nonpositive. It follows that both must
vanish. But a linear combination of positive roots with positive coefficients cannot vanish, since each
term has its first nonzero element positive, so that cβ = 0 and |cγ | = 0.

Proposition 10.14. The simple roots span Rr.

Proof. Suppose the contrary. Let γ ∈ Rr be a nonzero vector orthogonal to all the simple roots. Since
all roots can be written as linear combinations of simple roots, it follows that γ is orthogonal to every
root. Consider the element h∗ in the Cartan subalgebra given by

h∗ = γ · h =
∑
j

γjhj .

We have that
[h∗, eα] = iγ ·α = 0,

for all α. Since gC is spanned by the eα’s and hj ’s, it follows that

[ξ, h∗] = 0,

for all ξ ∈ g. Therefore, the one-dimensional subspace spanned by h∗ is a nontrivial ideal in g, which
contradicts the assumption that g is simple.

It follows that the number of simple roots coincides with the rank r of g.

It turns out that the structure of g is determined by the simple roots.

Proposition 10.15. Let γ be a positive root of g. Then

eγ = Nêαj1
· · · êαjs−1 eαjs (64)

for some sequence of simple roots αj1 , . . . ,αjs and some coefficient N , which will depend on the αjl ’s.
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Proof. Every positive root may be expressed as a sum of simple roots, so that

γ =

s∑
l=1

αjl . (65)

Moreover, since simple roots are linearly independent, the expression (65) is unique up to reordering.

We claim that (65) implies (64) up to a reordering of the roots in (65) (since, in (64), the order
matters).

We proceed by induction on s. Clearly (64) holds if s = 1; in this case, γ is simple.

Take s > 1 and suppose the claim holds for s− 1. Let γ satisfy (65). We must have

ê−β eγ 6= 0

for some simple root β. For if not, we would have, from Eq. (15.21), that

β · γ
β2

= −1
2p

for some nonnegative p. Recalling the argument in Proposition 10.13, this would imply that γ is linearly
independent of the simple roots, which cannot be.

Choose β so that
ê−β eγ = Ceγ−β 6= 0.

Thus, γ −β is a root, and since s > 1, it is a positive root. (Note that roots are either positive, in which
case they can be expressed as a sum of simple roots with positive integral coefficients, or else negative,
in which case they can be expressed as a sum of simple roots with negative integral coefficients. Thus,
s > 1 rules out γ − β being negative.) It follows that γ − β has a unique expression as a sum of t simple
roots. Since (γ − β) + β = γ, and γ is a sum of s simple roots, it follows that t = s− 1.

By the induction hypothesis, we may write eγ−β as

eγ−β = N−êβj1
· · · êβjs−2

eαjs−1
.

We claim that
êβeγ−β 6= 0.

Indeed, the inner product of êβeγ−β and eγ is nonzero, as the following shows:〈
eγ , êβeγ−β

〉
=
〈
ê−βeγ , eγ−β

〉
= C

〈
eγ−β, eγ−β

〉
= C.

Since by Proposition 10.6, roots are nondegenerate, it follows that

eγ = Cêβeγ−β = CN−êβ êβj1
· · · êβjs−2

eαjs−1
.

Thus, the structure of g is determined by the simple roots.

10.3 *Highest weight

We return to considering a general representation (Γ̂, V ) of a compact simple Lie algebra g. We assume
that V has a hermitian inner product, and that Γ̂ is antihermitian with respect to this inner product.
We let

Ĥj = Γ̂(hj),

Êα = Γ̂(eα).
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Then
Ê
†
α = Ê−α.

Let α1, . . . ,αr denote simple roots. From Proposition 10.15, since g is generated by brackets of simple
roots, it follows that Γ̂ is completely determined by the representatives Γ̂αj of the simple roots.

Let
V = ⊕µW (µ)

denote the decomposition of V into weight spaces W (µ). Thus, Ĥj restricted to W (µ) is just multiplica-

tion by iµj , and ÊαW (µ) ⊂ W (µ + α). We can order weights lexicographically, as we order roots. That

is, µ is positive if its first nonzero component is positive. Let µ∗ denote the highest weight of (Γ̂, V ).
That is, µ∗ − µ is positive for all µ 6= µ∗ (it is clear that µ∗ exists and is unique).

Let v∗ ∈ W (µ∗). Let W∗s denote the subspace spanned by vectors obtained by applying up to s

linear maps Ê−αjm (that is, hermitian conjugates of the representatives of the simple roots) to v∗. That
is,

W∗s = span
{
E−αj1

· · ·E−αjt v∗ | 0 ≤ t ≤ s
}
. (66)

Clearly, W∗s is a subspace of W∗(s+1). For sufficiently large s, we must have W∗s = W∗(s+1) (otherwise,

V would be infinite dimensional). Let W∗ denote the space so obtained for large enough s.

We claim that W∗ is invariant under Γ̂. It suffices to show that W∗ is invariant under Êαj , Ĥj and

Ê−αj . By construction, W∗ is invariant under Ê−αj . To establish invariance under Ĥj and Êαj , we

proceed by induction on s. We have that Êαj v∗ = 0 (since µ∗ is the highest weight) while Ĥjv∗ = iµ∗jv∗.

Therefore, W∗s is invariant under Ĥj and Êαj for s = 0. Suppose this holds for s. Elements of W∗(s+1)

not in W∗s are of the form w = Ê−αkv for some v ∈Ws∗. We have that

Êαjw = Êαj Ê−αkv = Ê−αk Êαj v +
[
Êαj , Ê−αk

]
v.

In the first term on the right-hand side, we note that by the induction hypothesis, Êαj v ∈ W∗s, so that

Ê−αk Êαj v ∈W∗(s+1). In the second term, we note that

[
Êαj , Ê−αk

]
= −iδjkαj · Ĥ = −iδjk

r∑
m=1

αjmĤm.

(cf Proposition 10.2). By the induction hypothesis, Ĥmv ∈W∗s, so that the second term belongs to Ws∗,
and hence to W∗(s+1). The argument that Ĥjw belongs to W∗(s+1) is similar; we have that

Ĥjw = ĤjÊ−αkv = Ê−αk Ĥjv +
[
Ĥj , Ê−αk

]
v.

In the first term on the right-hand side, the induction hypothesis gives Ĥjv ∈ W∗s, so that Ê−αk Ĥjv ∈
W∗(s+1). In the second term, we note that[

Ĥj , Ê−αk

]
= −iαjkÊ−αk .

We have that Ê−αkv ∈W∗(s+1), so that the second term belongs to W∗(s+1), too.

Thus, W∗ is invariant under Γ̂. If Γ̂ is irreducible, it follows that V = W∗. In this case, it is straight-
forward to show the highest weight µ∗ is nondegenerate (if the highest weight were degenerate, W would
be reducible), and that Êαj can be explicitly determined from µ∗ (along with knowledge of the simple
roots) using Equations (56) and (56).

The highest weight µ∗ may be characterised as follows. Since Êαj v∗ = 0, it follows from (56) that

αj · µ∗ =
α2
j

2
qj .

where qj is a nonnegative integer. Since the simple roots form a basis, µ∗ is uniquely determined by the
inner products αj · µ∗, and hence by (q1, . . . , qr). Thus, the irreducible representations of g are in 1-1
correspondence with r-tuples of nonnegative integers, and may be constructed explicitly.
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10.4 Dynkin diagrams

The set of simple roots of a compact Lie algebra can be described by a graph, or really a multigraph,
called a Dynkin diagram (a multigraph is a graph with multiple edges between pairs of nodes). The
nodes of a Dynkin diagram correspond to the simple roots of the Lie algebra. The edges between pairs
of nodes are determined by the angles between the corresponding simple roots. Recall that the angle
between two simple roots can be 90◦ = π/2, 120◦ = 2π/3, 135◦ = 3π/4 or 150◦ = 5π/6. If the angle
between two simple roots is 90◦, the corresponding nodes are not connected in the Dynkin diagram. If
the angle is 120◦ = 2π/3, 135◦ = 3π/4 or 150◦ = 5π/6, the nodes are connected by one, two or three edges
respectively.

In addition to the angles between simple roots, we would like to encode information about their
lengths in the Dynkin diagram. Information about ratios of lengths can be deduced, like information
about angles, from Eq. (62). Let α and β be simple roots. We have that

α · β
α2

= −m
2
,

α · β
β2

= −n
2
,

where m, n are nonnegative integers such that 0 ≤ mn ≤ 3. We have that

cos θ = −
√
mn

2
,

where θ is the angle between α and β, and

α2

β2
=

n

m
,

provided mn 6= 0 (if mn = 0, we cannot deduce anything about α2/β2).

The possible values of m and n along with the associated values of θ and α2/β2 are shown in the
table below. We also indicate the link in the Dynkin diagram between the nodes corresponding to α

(left) and β (right). We follow the convention of colouring the node corresponding to the longer of the
two simple roots.

mn m n θ α2/β2
Dynkin diagram

α · · ·β
0 0 0 π/2 – ◦ ◦
1 1 1 2π/3 1 ◦ − ◦
2 1 2 3π/4 2 • = ◦
2 2 1 3π/4 1/2 ◦ = •
3 1 3 5π/6 3 • ≡ ◦
3 3 1 5π/6 1/3 ◦ ≡ •

Table 2: Relations between pairs of simple roots.

We note that roots with an angle of 120◦ between them (corresponding to m = n = 1 above) have
the same length. It will turn out that compact simple Lie algebras contain simple roots of at most two
different lengths. Hence, two colours will suffice.

10.5 The classical Lie algebras

• su(n)

su(n) is the Lie algebra of traceless antihermitian n×n matrices. The real dimension of su(n) (its dimension
as a real vector space) is n2−1. One can take the Cartan subalgebra to consist of diagonal matrices. The
rank of su(n) is equal to n− 1. The eigenvectors of the adjoint representation of the Cartan subalgebra
with nonzero eigenvalues may be taken to be off-diagonal matrices with a single nonzero element. Details
are given in Problem 3.10. The Dynkin diagram is shown in Figure 10.5.
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• so(2n)

so(2n) is the Lie algebra of real antisymmetric matrices of even dimension, which we take to be 2n. The
real dimension of so(2n) is n(2n− 1). It is convenient to partition elements of so(2n) into n× n matrices
of 2 × 2 blocks (this is equivalent to taking R2n to be the tensor product Rn ⊗ R2). One can take the
Cartan subalgebra to be spanned by block-diagonal matrices with a single nonzero 2× 2 block equal to
iσ2. The rank of so(2n) is equal to n. Details are given in Problem 3.11. The Dynkin diagram is shown
in Figure 10.5.

• so(2n+ 1)

so(2n+ 1) is the Lie algebra of real antisymmetric matrices of odd dimension, which we take to be 2n+ 1.
The real dimension of so(2n + 1) is n(2n + 1). It is convenient to identify so(2n + 1) with the subset of
so(2n+2) consisting of real antisymmetric matrices of dimension (2n+2)×(2n+2) whose last column and
last row are both equal to zero. One can take the Cartan subalgebra to be spanned by block-diagonal
matrices with a single nonzero 2× 2 block equal to iσ2, where

iσ2 =

(
0 1

−1 0

)
.

The rank of so(2n + 1) is equal to n. Details are given in Problem 3.12. The Dynkin diagram is shown
in Figure 10.5.

• usp(2n)

The unitary group is the group of linear transformations which preserve a hermitian inner product on
a complex vector space. The orthogonal group is the group of linear transformations which preserve
a real inner product on a real vector space. The complex symplectic group, SpC(2n), is the group of
linear transformations which preserve a real antisymmetric nondegenerate bilinear form on a complex
vector space of even dimension 2n. By way of explanation, a bilinear form B : V × V → C is real if
B(u∗, v∗) = (B(u, v))∗, antisymmetric if B(u, v) = −B(v, u), and nondegenerate if B(u, v) = 0 for all v
implies that u = 0. Equivalently, SpC(2n) consists of complex 2n× 2n matrices S for which

ST JS = J,

where J is the 2n× 2n matrix, which, when decomposed into 2× 2 blocks, is block diagonal with iσ2 as
its diagonal blocks. As a matrix Lie group, SpC(2n) has dimension 2n(2n+ 1).

Two important subgroups of SpC(2n) are i) the real symplectic group, SpR(2n) and ii) the unitary
symplectic group USp(2n). The real symplectic group is the subgroup of linear transformations in SpC(2n)

which preserves the complex structure on the underlying complex vector space V ; that is, if v ∈ V and v∗

denotes its complex conjugate, then S ∈ SpC(2n) is real if (Sv)∗ = Sv∗. Equivalently, in terms of matrices,
the real symplectic group is just the subgroup of real matrices in SpC(2n). The real symplectic group
is basic to symplectic geometry, which underlies the theory of Hamiltonian systems. The dimension of
SpR(2n) is n(2n+ 1).

The unitary symplectic group USp(2n) is the group of linear transformations on a complex vector space
V which preserve both a hermitian inner product and a real antisymmetric bilinear form. Equivalently,
USp(2n) consists of 2n× 2n matrices U which satisfy

U†U = I2n, UT JU = J.

Its dimension is n(2n+ 1). USp(2n) can also be regarded as n×n matrices over the quarternions H which
preserve the quarternionic inner product on Hn. As it is a closed subgroup of U(2n), USp(2n) is compact.

The Lie algebra of USp(2n), denoted usp(2n), may be regarded as the space of (2n × 2n)-dimensional
traceless antihermitian matrices s which satisfy

sT J + Js = 0.

Its dimension is n(2n+ 1). Equivalently, usp(2n) may be regarded as the space of n× n matrices Q over
the quaternions which satisfy Qab = Qab, where q denotes the quaternion conjugate; if q = aI2 + ib · σ,
then q = aI2 − ib · σ. The rank of usp(2n) is n, and its Dynkin diagram is shown in Figure 10.5. Details
are given in Problem 3.13.
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Figure 9: (a) Dynkin diagram for su(n) (b) Dynkin diagram for so(2n) (c) Dynkin diagram for so(2n+ 1)

(d) Dynkin diagram for usp(2n).

11 *Classification of compact simple Lie algebras

We begin with a simple observation, another consequence of Equation (60)

Proposition 11.1. Let β and γ be simple roots of a compact simple Lie algebra. If β · γ = 0, then

[eβ, eγ ] = [e
†
β, eγ ] = [eβ, e

†
γ ] = [e

†
β, e
†
γ ] = 0.

Proof. The fact that

[e
†
β, eγ ] = 0

is essentially Proposition 10.11, with e−β replaced by e
†
β; this is really a consequence of the roots being

simple. From Eq. (60), we have the general relation

β · γ
β2

=
q − p

2
,

where p is the smallest positive integer such that êp+1
β eγ = 0 and q is the smallest positive integer such

that
(
ê
†
β

)q+1
eγ = 0. Setting q = 0 (as the roots β and γ are simple) and β · γ = 0 (by assumption), we

conclude that p = 0, i.e.
[eβ, eγ ] = 0.

The remaining relations follow by taking hermitian conjugates of the preceding two.

Definition 11.2. A set of vectors α1, . . . ,αr ∈ Rn is decomposable if it can be decomposed into two
nonempty subsets of mutually orthogonal vectors. If such a decomposition does not exist, the set is
indecomposable.

Proposition 11.3. The set of simple roots of a compact simple Lie algebra is indecomposable.

Proof. Suppose the simple roots of g are decomposable. We will show that g contains a nontrivial ideal,
and therefore is not simple.

Let β1, · · · ,βs,γ1, . . .γt denote the simple roots of g, and suppose that βj · γk = 0 for all 1 ≤ j ≤ s

and 1 ≤ k ≤ t. Let IC denote the subalgebra of gC generated by the eβj ’s and the e†βj
’s. That is, IC is

the smallest set containing complex linear combinations of the eβj ’s and the e†βj
’s that is closed under

74



the Lie bracket; equivalently, it is the span of repeated Lie brackets of the eβj ’s and the e†βj
’s).

We claim that IC is an ideal. That is, for all a ∈ gC and for all b ∈ IC,

[a, b] ∈ IC. (67)

It suffices to show this for b equal to eβl or e†βl
, and for a to be one of eβj , e

†
βj

, eγk , or e†γk . This follows

from the fact that IC is generated by the eβj ’s and e
†
βj

’s, while gC is generated by the eβk ’s, e†βk
’s, eγk ’s

and e
†
γk

. From the Jacobi identity, it follows that if (67) holds for the generators of gC and IC, then it
holds for all a ∈ gC and b ∈ IC.

By definition, [eβj
, eβl

], [e
†
βj
, eβl

], [eβj
, e
†
βl

] and [e
†
βj
, e
†
βl

] all belong to I. From Proposition 11.1,

the remaining brackets of the generators, in which eβj
is replaced by eγk , all vanish.

Thus, IC is a nontrivial ideal in gC. Let I denote the subalgebra of g generated by brackets of

the antihermitian elements (eαj − e
†
αj ) and i(eαj + eαj )†. The preceding argument shows that I is a

nontrivial ideal in g.

Definition 11.4. A set of vectors α1, . . . ,αr ∈ Rn is a Π-system if it satisfies the following:

i) the set of αj ’s is indecomposable

ii) the αj ’s are linearly independent

iii) 2αj ·αk = −mα2
j , m ∈ {0, 1, 2, 3}

It is clear that any indecomposable subset of a Π-system is itself a Π-system. We will use this fact
often below. A typical argument is to establish that a class of sets of vectors cannot be a Π-system by
showing that a certain small, indecomposable subset of the sets in this class cannot be a Π-system.

Proposition 11.5. The simple roots of a compact simple Lie algebra g is a Π-system.

Proof. Property i) follows from Proposition 10.13; ii) was noted in Section 10.4; iii) follows from Propo-
sition 11.3.

We may represent Π-systems by Dynkin diagrams, as for the simple roots of the classical Lie algebras
in Figures 10.5–10.5.

Proposition 11.6. The only 3-element Π-systems are as follows:

#−#−# #−# =   − = #

Proof. Let θ12, θ23 and θ31 denote the angles between the vectors Let α1,α2,α3 ∈ Rn denote the vectors
in the Π-system, and let

α̂ =
αj
αj

denote the associated unit vectors. Let

θjk = cos−1 (α̂j · α̂k)
denote the angle between α̂j and α̂k, with 0 < θjk < π.

A simple geometric argument shows that θ12 +θ23 +θ31 < 2π. Indeed, we can choose an orthonormal
basis for Rn so that only the first three components of the α̂j ’s are nonvanishing. Then the α̂j ’s may be
regarded as points on the two-sphere comprising the vertices a spherical triangle, whose sides are arcs of
great circles with arc lengths given by the θjk’s. The sum of the arc lengths is maximised if the vertices
are coplanar, in which case the sum is 2π. But if the vertices were coplanar, the α̂j ’s would be linearly
dependent, which would contradict the fact that they comprise a Π-system. Therefore,

θ12 + θ23 + θ31 < 360◦.

This argument is elaborated in Figure 10
The allowed values of θjk (in degrees) are 90◦, 120◦, 135◦ and 150◦. We cannot have two of the θjk’s

being orthogonal, for then the corresponding Π-system would be decomposable, with one vector being
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Figure 10: Pictorial proof of the fact that the sum of the angles between three linearly independent unit
vectors must be less than 360◦. Without loss of generality, we may take two of the vectors to lie on the
equator of the sphere, and the third to lie in the northern hemisphere. If the third vector is rotated
toward the equator, the sum of the three angles increases (this can be shown analytically, too). When
the third vector lies on the equator, the sum of the three angles is 360◦.

orthogonal to the other two. Therefore, the allowed values of the θjk’s are (90◦, 120◦, 120◦), whose sum
is 330◦; (90◦, 120◦, 135◦), whose sum is 345◦. But these values correspond precisely to the three Dynkin
diagrams shown above.

Corollary 11.7. The only Π-system with a triple edge contains two elements, and has Dynkin diagram

# ≡  (68)

Proof. The pair of vectors described by the Dynkin diagram above is clearly a Π-system, and no Π-system
with more than two elements can have a Dynkin diagram with a triple edge.

The simple Lie algebra associated with (68) is denoted G2. It is one of the five so-called exceptional
Lie algebras, the first we have encountered. The subscript 2 refers to the fact that G2 has rank 2. Its
structure is obtained in Problem Sheet 3.14.

Proposition 11.8 (Reduction I). In the Dynkin diagram of a Π-system, a pair of nodes connected to
each other by a single edge and with no common neighbours can be contracted to a single node. See
Figure 11 below.

Figure 11: Original Dynkin diagram. Figure 12: Reduced Dynkin diagram

A pair of nodes, α and β, connected by an edge replaced by a single node, α + β.

Proof. The Dynkin diagram in Figure 11 describes a Π-system of the form S = A ∪ {α,β} ∪B, where α

is orthogonal to the vectors in B and β is orthogonal to the vectors in A (note that A and B need not
be disjoint). We claim that S′ = A ∪ {α + β} ∪ B is also a Π-system. Note that the Dynkin diagram of
S′ is given in Figure 12.

It is clear that if S is indecomposable, then so is S′, and that if the elements of S are linearly
independent, then so are those of S′.
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It remains to verify property iii) in Definition 11.4 for inner products involving α+β (inner products
which don’t involve α + β already satisfy property iii), since S is a Π-system). We observe that

||α + β|| = α = β.

Indeed, the fact that α = β follows from the fact that α · β = −α2 = −β2. This in turn implies that

(α + β) · (α + β) = α2 + 2α · β + β2 = α2 = β2.

Therefore, if u ∈ A and 2u ·α = −mα2 = −nu2 for some m,n with 0 ≤ m,n ≤ 3, it follows that

2u · (α + β) = 2u ·α = −m||α + β||2 = −nu2,

since u · β = 0. Similarly, if v ∈ B and 2v · β = −mβ2 = −nv2 for some m,n with 0 ≤ m,n ≤ 3, it follows
that

2v · (α + β) = 2v · β = −m||α + β||2 = −nv2,

since v ·α = 0.

Proposition 11.8 has the following consequences:

Proposition 11.9. The Dynkin diagram of a Π-system

a) can contain at most one double edge, and

b) cannot contain any cycles.

Proof.
We argue by contradiction.

a) Suppose the Dynkin diagram of a Π-system S contains two or more pairs of nodes with the nodes in each
pair connected by a double edge. Consider two such pairs of nodes. Since S is indecomposable, the Dynkin
diagram is connected, and there exists a path joining one pair of double-bonded nodes to another such
pair. Without loss of generality, we may assume that this path consists of a sequence of nodes connected
by single edges (starting from one double-bonded pair of nodes, we terminate the path as soon as we
reach another pair of double-bonded nodes). Let S′ denote the subset whose nodes belong to this path.
S′ is clearly indecomposable, so it constitutes a Π-system in its own right. By Proposition 11.8, the
single bonds from S′ can be contracted to produce a Π-system of 3 nodes containing two double bonds.
But this contradicts the classification of 3-node Π-systems given in Proposition 11.6. This is illustrated
by the following symbolic reduction, in which we do not need to distinguish nodes of different length by
colourings.

# = #−#− · · · −# = # =⇒ # = # = #.

b) Suppose the Dynkin diagram of a Π-system S contains a cycle C. By the previous result, there is at
most one double edge in this cycle. By contracting single edges, we can, according to Proposition 11.8,
produce a Π-system which is a cycle of just 3 nodes, with either all single edges or a single double edge.
But this contradicts the classification of 3-node Π-systems given in Proposition 11.6. See Figure 13.

Proposition 11.10 (Reduction II). In the Dynkin diagram of a Π-system, a pair of nodes connected by
single edges to a third node and with no other neighbours can be replaced by a single node connected
by a double edge to that third node. See Figure 11.

Proof. The Dynkin diagram in Figure 14 describes a Π-system of the form S = {α,β,γ} ∪ C, where α

and β are orthogonal to the vectors in C. We claim that S′ = {α + β,γ} ∪ C is also a Π-system. Note
that the Dynkin diagram of S′ is given in Figure 15.

It is clear that if S is indecomposable, then so is S′, and that if the elements of S are linearly
independent, then so are those of S′.
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Figure 13: An n-cycle can be contracted to a 3-cycle, which cannot be the Dynkin diagram of a Π-system.

Figure 14: Original Dynkin diagram.

Figure 15: Reduced Dynkin diagram

A pair of nodes connected by single edges to a third node replaced by a single node connected to the
third node by a double edge.

It remains to verify property iii) in Definition 11.4 for inner products involving α+β (inner products
which don’t involve α+β already satisfy property iii), since S is a Π-system). We observe that α = γ = β,
as α and β are connected to γ by a single edge. Therefore

||α + β||2 = 2α2 = 2β2,

since α · β = 0. We have that 2(α + β) · γ = −α2 − β2 = −||α + β||2 = −2γ2, which shows that property
iii) is satisfied. If u ∈ C, then u · (α + β) = 0, which satisfies also property iii).

The degree of a node in a graph is the number of its neighbours. Proposition 11.10 has the following
consequences for the degrees of nodes in a Dynkin diagram:

Proposition 11.11.

In the Dynkin diagram of a Π-system,

a) every node has degree less than 4,

b) there cannot be a node of degree 3 and a double edge,

c) there is at most one node of degree 3.

Proof. We argue by contradiction.

a) Suppose the Dynkin diagram D of a Π-system S contains a node of degree 4 or more, and let α denote
the vector in S associated to that node. Let β1, . . . ,βd, where d ≥ 4, denote the vectors of S whose
inner product with α is nonzero (thus, d is the degree of the node corresponding to α). Then S′ =

{α,β1, . . . ,βd} is a Π-system. Consider its Dynkin diagram D′. By Proposition 11.8, D′ contains either
all single edges or one double edge with the rest single edges. Suppose the former. Then there are at least
4 single edges, which may be taken as two pairs of edges. By Proposition 11.10, these two pairs of single
edges can be reduced to two double edges and still constitute the Dynkin diagram of a Π-system. But
this contradicts the fact (Proposition 11.8) that such a Dynkin diagram cannot contain two double edges.
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For the other case, suppose D′ contains a double edge. Then it contains at least 3 single edges. Two of
these can be reduced to a single double edge. As with the preceding case, this leads to a contradiction:
the Dynkin diagram of a Π-system cannot contain two double edges.

Figure 16:

b) Suppose the Dynkin diagram D of a Π-system S contains a node α of degree 3 as well as a double edge
between nodes β and γ. Since the Dynkin diagram is connected (a Π-system is indecomposable), there
is a path from α to β and γ. The subset S′ containing this path as well as all vectors in S which are
not orthogonal to α is itself a Π-system. Let D′ denote its Dynkin diagram. By assumption, the node
corresponding to α in D′ has degree at least 3. Therefore, there are at least two edges not contained
in the path to β and γ . By Proposition 11.10, these can be reduced to a double edge. The resulting
Dynkin diagram contains two double edges, which contradicts Proposition 11.8.

c) The argument that there can be at most one node of degree 3 in the Dynkin diagram of a Π-system
is similar to the preceding two arguments, and is indicated in Figure 17. By reducing pairs of nodes
connected by a single edge as in Proposition 11.8, a Dynkin diagram with two nodes of degree 3 can be
reduced to a Dynkin diagram with a node of degree 4.

Figure 17:

Propositions 11.9 and 11.11 drastically constrain the Dynkin diagrams that correspond to Π-systems.
Indeed, apart from G2, there are just three cases, namely III. Dynkin diagrams which contain a degree-3
node, II. Dynkin diagrams which contain a double edge, and I. Dynkin diagrams which contain neither.
This leaves the following possibilities for Dynkin diagrams of Π-systems, apart from G2.

I. No double edge or degree-three node

In this case, the Dynkin diagram consists of a single chain of n nodes connected by single edges – this is
just the Dynkin diagram of su(n), as shown in Figure 10.5.
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Figure 18:

II. Double edge

In this case, the Dynkin diagram F (m,n) consists of a two chains of nodes, say of length m and n,
connected by a double edge. The number of nodes is m+n. Let α1, . . . ,αm denote the vectors associated
with one chain, and β1, . . . ,βn denote the vectors associated with the other. Without loss of generality,
we may assume that the βk’s are longer than the αj ’s, by a factor of

√
2. We then have the following

inner products:

αj ·αj′ =


L2, j = j′,

−1
2L

2, |j − j′| = 1,

0, otherwise,

βk · βk′ =


2L2, k = k′,

−L2, |k − k′| = 1,

0, otherwise,

αj · βk =

{
−L2, j = m, k=n

0, otherwise.

(69)

Proposition 11.12. The Dynkin diagram F (m,n) corresponds to a Π-system if and only if either m or
n =1, or else m = n = 2.

Proof. From (69), the set
S = {α1, . . . ,αm,β1, . . . ,βn}

satisfies properties i) and iii) of Definition 11.4. We will show that property ii) is satisfied, i.e. that the
αj ’s and βk’s are linearly independent, if and only if either m or n =1, or else m = n = 2.

Suppose
m∑
j=1

cjαj +

n∑
k=1

dkβk = 0 (70)

for cj , dk ∈ R. We take the inner product of the preceding relations with the vectors α1 through αm−1
to obtain

−cj−1 + 2cj − cj+1 = 0, 1 ≤ j < m,

where we take c0 := 0 and we have multiplied through by 2/L2. This two-term recurrence relation has
as its solution

cj = Aj

for some undetermined constant A. Similarly, we take the inner product of the preceding relations with
the vectors β1 through βn−1 to obtain the

−dk−1 + 2dk − dk+1 = 0, 1 ≤ k < n,

where we take d0 := 0. This two-term recurrence relation has as its solution

dk = Bk

for some undetermined constant B.

Finally, we take the inner product of (70) with αm to obtain

−cm−1 + 2cm − 2dn = 0,

and with βn to obtain
−dn−1 + 2dn − cm = 0.

Substituting cj = Aj and dk = Bk as above, we get a pair of homogeneous equations for A and B, which
may be written in matrix form as (

m+ 1 −2n

−m n+ 1

)(
A

B

)
= 0.
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This system has a nontrivial solution if and only if the determinant of the 2× 2 matrix in the preceding
vanishes, i.e.

mn−m− n− 1 = 0. (71)

If m = 1 or n = 1, (71) has no solutions. In this case, the vectors αj ’s and βk’s are linearly independent,
and S is a Π-system. F (m, 1) corresponds to the Dynkin diagram of so(2m+ 1), and F (1, n) corresponds
to the Dynkin diagram of usp(2n+ 1).

If m = 2, (71) becomes
n− 3 = 0.

Therefore, for n = 1 or n = 2, the vectors αj ’s and βk’s are linearly independent, while for n = 3, they
are not.

For n > 3, F (n, 2) cannot be a Π-system, since F (n, 2) contains F (3, n) as an indecomposable subset, and
F (3, n) is not a Π-system. Likewise, F (m,n) for n ≥ m > 2 cannot be a Π-system, since it contains F (3, n)

as an indecomposable subset.

The case n = 1 corresponds to F (2, 1), or usp(2). The case n = 2 corresponds to F (2, 2), which has Dynkin
diagram

#−# =  − .

This is usually denoted as F4. It is one of the five exceptional Lie algebras, the second we have encoun-
tered. The subscript 4 indicates that the Lie algebra is four simple roots, or has rank 4.

III. Degree-three node

Figure 19:

In this case, the Dynkin diagram E(m,n, p) consists of a three chains of nodes lengths m, n, p connected
to a central node. All edges are single edges. The number of nodes is m + n + p + 1. Without loss of
generality, we may assume that

m ≤ n ≤ p.

Let α1, . . . ,αm, β1, . . . ,βn and γ1, . . . ,γp denote the vectors in the three chains, and let δ denote the
vector associated with the central node.
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We then have the following inner products:

αj ·αj′ =


L2, j = j′,

−1
2L

2, |j − j′| = 1,

0, otherwise,

αj · δ =

{
−1

2L
2, j = m,

0, otherwise,

βk · βk′ =


L2, k = k′,

−1
2L

2, |k − k′| = 1,

0, otherwise,

βk · δ =

{
−1

2L
2, k = n,

0, otherwise,

γl · γl′ =


L2, l = l′,

−1
2L

2, |l − l′| = 1,

0, otherwise,

γl · δ =

{
−1

2L
2, l = p,

0, otherwise,

αj · βk = βk · γl = γl ·αj = 0,

δ · δ = L2.

(72)

Proposition 11.13. The Dynkin diagram E(m,n, p) corresponds to a Π-system if and only if either
m = p = 1 and n ≥ 1, or else m = 1, n = 2 and p = 2, 3 or 4.

Proof. From (72), the set
S = {α1, . . . ,αm,β1, . . . ,βn,γ1, . . . ,γp}

satisfies properties i) and iii) of Definition 11.4. We will show that property ii) is satisfied, i.e. that the
αj ’s, βk’s and γl’s are linearly independent, if and only if either m or n = 1, or else m = 1, n = 2 and
2 ≤ p ≤ 4.

Suppose
m∑
j=1

cjαj +

n∑
k=1

dkβk +

p∑
l=1

elγl +Dδ = 0 (73)

for cj , dk, el, D ∈ R. We take the inner product of the preceding relations with the vectors α1 through
αm−1 to obtain

−cj−1 + 2cj − cj+1 = 0, 1 ≤ j ≤ m− 1,

where we take c0 := 0 and we have multiplied through by 2/L2. This two-term recurrence relation has
as its solution

cj = Aj

for some undetermined constant A. Similarly, we take the inner product of the preceding relations with
the vectors β1 through βn−1 to obtain

dk = Bk

for some undetermined constant B, and the inner product with the vectors γ1 through γp−1 to obtain

el = Cl

for some undetermined constant C.

Next, we take the inner product of (73) with αm to obtain

−cm−1 + 2cm −D = 0.

Substituting cm = Am, this yields
(m+ 1)A−D = 0.

Similarly, taking the inner product with βn yields

(n+ 1)B −D = 0,

and with γn yields
(p+ 1)C −D = 0.
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Finally, taking the inner product with δ yields

−cm − dn − el + 2D = 0,

or
−Am−Bn− Cl + 2D = 0.

In this way, we obtain four homogeneous equations for A, B, C and D, which we may write in matrix
form as 

m+ 1 0 0 −1

0 n+ 1 0 −1

0 0 p+ 1 −1

m n p −2




A

B

C

D

 = 0.

This system has a nontrivial solution if and only if the determinant of the 4× 4 matrix in the preceding
vanishes. A straightforward calculation yields the condition

mnp− (m+ n+ p)− 2 = 0. (74)

If m = n = 1, then (74) has no solutions for any p. In this case, the vectors α1, β1, γ1, . . . ,γp and δ are
linearly independent, and S is a Π-system. If m = 1 and n = 2, (74) becomes

p− 5 = 0.

Therefore, for 2 ≤ p ≤ 4, the vectors α1, β1, β2, γl’s, and δ are linearly independent, while for p = 5,
they are not. For p > 5, F (1, 2, p) cannot be a Π-system, since it contains E(1, 2, 5) as an indecomposable
subset, and E(1, 2, 5) is not a Π-system.

For m = n = 2, (74) becomes 3p−6 = 0. p = 1 corresponds to E(1, 2, 2), which we have considered already,
while for p = 2, E(2, 2, 2) is not a Π-system. It follows that E(2, 2, p) is not a Π-system for p ≥ 2, since it
contains E(2, 2, 2) as an indecomposable subset.

From the preceding, it is clear that there can be no Π systems E(m,n, p) with 2 ≤ m ≤ n ≤ p, since these
contain E(2, 2, 2) as an indecomposable subset.

E(1, 1, p) corresponds to the Dynkin diagram of so(2p). E(1, 2, 2), E(1, 2, 3) and E(1, 2, 4) are usually
denoted E6, E7 and E8, and correspond to the remaining three exceptional Lie algebras, shown in
Figure III.–III..
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Figure 20: (a) Dynkin diagram for E6 (b) Dynkin diagram for E7 (c) Dynkin diagram for E8
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