Functional Analysis Exercise sheet 4 — selected solutions

6. Let V = C([0, 1]) equipped with the norm $||f||_2 = \sqrt{\int_0^1 |f(x)|^2 dx}$. For $\phi \in V$, consider the multiplication operator $A_{\phi}(f) = \phi \cdot f$. Show that A_{ϕ} is bounded and compute its norm.

For every $f \in V$,

$$\begin{split} \|A_{\phi}(f)\|_{2}^{2} &= \int_{0}^{1} |\phi(x)f(x)|^{2} dx \leq \left(\max_{x \in [0,1]} |\phi(x)|\right)^{2} \int_{0}^{1} |f(x)|^{2} dx \\ &= \|\phi\|_{\infty}^{2} \|f\|_{2}^{2}. \end{split}$$

This implies that $||A_{\phi}|| = \sup\left\{\frac{||A_{\phi}(f)||_2}{||f||_2} : f \neq 0\right\} \leq ||\phi||_{\infty}$. In particular, A_{ϕ} is bounded.

We claim that in fact $||A_{\phi}|| = ||\phi||_{\infty}$. Let $m = ||\phi||_{\infty}$. Since $|\phi|$ is continuous, there exists $x_0 \in [0, 1]$ such that $|\phi(x_0)| = m$, and for every $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in B_{\delta}(x_0)$, we have $|\phi(x)| \ge m - \epsilon$. Let f be a non-zero continuous function such that f = 0 outside of $B_{\delta}(x_0)$. Then

$$\begin{split} \|A_{\phi}(f)\|_{2}^{2} &= \int_{0}^{1} |\phi(x)f(x)|^{2} dx = \int_{B_{\delta}(x_{0})} |\phi(x)f(x)|^{2} dx \\ &\geq (m-\epsilon)^{2} \int_{B_{\delta}(x_{0})} |f(x)|^{2} dx = (m-\epsilon)^{2} \|f\|_{2}^{2}. \end{split}$$

Hence, $||A_{\phi}|| = \sup \left\{ \frac{||A_{\phi}(f)||_2}{||f||_2} : f \neq 0 \right\} \ge m - \epsilon$ for every $\epsilon > 0$. This proves that $||A_{\phi}|| = ||\phi||_{\infty}$.