We recall that for a normed space X, we introduced it’s dual space X^* which consists of bounded linear functionals $f : X \to F$. In this lecture we would in interested in how rich is the space X^*. In particular, we address the questions:

- **point separation**: for $x \neq y$ in X, can we find $f \in X^*$ such that $f(x) \neq f(y)$?
- **extension**: Suppose that $Z \subset X$ is a subspace of X and $f \in Z^*$. Can we construct a linear functional $\bar{f} \in X^*$ such that $\bar{f} = f$ on Z?

The Hahn–Banach Theorem gives an affirmative answer to these questions. It provides a powerful tool for studying properties of normed spaces using linear functionals.

The proof of the Hahn-Banach theorem is using an inductive argument. However, since we are dealing with infinite objects, we need a new tool – the Zorn Lemma – to make this induction rigorous.

Zorn Lemma

Let us begin with some standard definitions.

Definition 6.1 (partially ordered set). A partially ordered set is a set with a partial ordering, meaning a binary relation \leq which satisfies:

1. $x \leq x$,
2. if $x \leq y$ and $y \leq x$, then $x = y$,
3. if $x \leq y$ and $y \leq z$, then $x \leq z$.

It is “partial” because there may be incomparable elements.

- A chain is a totally ordered set, meaning it has no incomparable elements, that is, for all x and y either $x \leq y$ or $y \leq x$.

- Suppose S is a partially ordered set, and A is a subset of S. An upper bound for A is an element $s \in S$ satisfying $a \leq s$ for every $a \in A$.

- A maximal element of $A \subset S$ is an element $m \in A$ with the property that if $m \leq a$ for $a \in A$, then $a = m$.

Example. 1. The set \mathbb{R} of real numbers constitutes a totally ordered set, without a maximal element. Every bounded subset of \mathbb{R} has an upper bound.
2. the set \(\mathbb{R}^n \) a partially ordered set with the relation \(\mathbf{x} \leq \mathbf{y} \) (where \(\mathbf{x} = (x_1, \ldots, x_n) \)) if \(x_i \leq y_i \).

3. The power set \(\mathcal{P}(S) \) of a set \(S \) is the set of all subsets of \(S \), and is itself a partially ordered set with the binary relation \(\subseteq \) with the usual meaning. That is, \(A \subseteq B \) for \(A, B \in \mathcal{P}(S) \) if \(A \) is a subset of \(B \). Of course, \(\mathcal{P}(S) \) is not totally ordered if \(S \) has more than one element. The whole set \(S \) is of course a member of its own power set \(\mathcal{P}(S) \), and is its only maximal element.

4. On the other hand, suppose we take \(\mathcal{P}_f(S) \) to be the collection of all finite subsets of a set \(S \). If \(S \) is infinite, then \(\mathcal{P}_f(S) \) has no maximal element.

Zorn Lemma. *If \(S \) is a nonempty partially ordered set in which every chain has an upper bound, then \(S \) has a maximal element.*

We regard the Zorn Lemma as an axiom. One can show it equivalent to other axioms in set theory. In particular, it is equivalent to the axiom of choice.

Axiom of Choice. *If \(I \) is any nonempty (indexing) set and \(A_i \) is a nonempty set for all \(i \in I \), then there exists a function \(c : I \to \bigcup_{i \in I} A_i \) with the property that \(c(i) \in A_i \) for every \(i \in I \).*

Using the Zorn Lemma we can, in particular, prove existence of complete orthonormal sets:

Theorem 6.2. *Every non-trivial Hilbert space has a complete orthonormal set.*

Proof. Let \(S \) be the set of all orthonormal subsets of our non-trivial Hilbert space \(H \). The set \(S \) is nonempty: any nonzero element of \(H \) can be normalized to produce an orthonormal set containing one vector. \(S \) is partially ordered, with \(\subseteq \). Furthermore, every chain \(\mathcal{C} \subseteq S \) has an upper bound: take the union of all the orthonormal sets constituting \(\mathcal{C} \). Now Zorn’s Lemma tells us that there is a maximal element \(M \in S \). Now we only have to prove that \(M \) is complete. Suppose there is a nonzero \(z \in H \) with \(z \perp M \). Then \(M_1 = M \cup \{z/\|z\|\} \) is orthonormal, and contains \(M \). By maximality of \(M \), we must have \(M_1 = M \), which contradicts \(z \perp M \). \(\square \)

Hahn-Banach theorems

We would like to extend linear functionals from subspaces to whole spaces. Moreover, we would like to do it in a way that respects the ‘boundedness’ properties of the given functional. The Hahn–Banach Theorem articulates this ‘boundedness’ via *sublinear functionals*. We note norms give the most standard example of sublinear functionals, but for many applications it is convenient to consider more general objects.
Definition 6.3. A sublinear functional is a real-valued function p on a vector space X which satisfies

$$p(x + y) \leq p(x) + p(y) \quad \text{for all } x, y \in X,$$
(subadditivity)

and

$$p(ax) = ap(x) \quad \text{for all } a \geq 0, x \in X.$$
(positive homogeneity)

Example 6.4. For a linear map $f : X \to \mathbb{R}$, the map $x \mapsto |f(x)|$ is a sublinear functional.

Theorem 6.5 (Hahn–Banach Theorem for real vector spaces). Let X be a real vector space and p a sublinear functional on X. Let f be a linear functional defined on a subspace $Z \subset X$, and satisfying $f(z) \leq p(x)$ for all $z \in Z$. Then there exists a linear functional \bar{f} on X satisfying

- $\bar{f}(z) = f(z)$ for all $z \in Z$; and,
- $\bar{f}(x) \leq p(x)$ for all $x \in X$.

Proof. We want to use Zorn’s Lemma, so we must find a partially ordered set where a maximal element would be relevant to us. Let S be the set of all linear extensions of f that are dominated by p. Those are linear maps $\phi : D_\phi \to \mathbb{R}$, where D_ϕ is a subspace containing Z, such that $\phi = f$ on Z and $\phi \leq p$ on D_ϕ. We consider the set

$$S = \{ \phi : \phi : D_\phi \to \mathbb{R} \text{ is linear}, D_\phi \supset Z, \phi = f \text{ on } Z, \phi \leq p \text{ on } D_\phi \}.$$

The binary relation \prec is ‘extension’: We say $\phi_1 \prec \phi_2$ if ϕ_2 is an extension of ϕ_1, that is, $D_{\phi_1} \subset D_{\phi_2}$ and $\phi_1 = \phi_2$ on D_{ϕ_1}. One easily sees that it is a partial ordering.

We claim that every chain $C \subset S$ has an upper bound. Define $\tilde{\phi}$ by setting $\tilde{\phi}(x) = \phi(x)$ whenever $x \in D_\phi$ for some $\phi \in C$. This definition is consistent because C is a chain. Then $\tilde{\phi}$ is a linear functional on the domain

$$D_{\tilde{\phi}} = \bigcup_{\phi \in C} D_\phi,$$

which is a vector space.\(^1\) It is clear that $f \prec \tilde{\phi}$, hence $\tilde{\phi} \in S$, and that $\tilde{\phi}$ is an upper bound for the chain C. Therefore, by Zorn’s Lemma, S has a maximal element, $\bar{f} \in S$.

We now have a linear extension \bar{f} of f satisfying $\bar{f}(x) \leq p(x)$ for all $x \in D_{\bar{f}}$ and which is not extendible by any other linear functional also

\(^1\)This is because C is a chain, so that whenever $x, y \in D_\phi$, we know that there is some $\phi \in C$ for which x, y are in the vector space D_ϕ, hence $ax + \beta y$ is also. The linearity of $\tilde{\phi}$ follows from linearity of ϕ’s.
dominated by \(p \) (by its maximality in \(S \)). It is only left to show that \(D_f = X \). Suppose that \(D_f \neq X \) and choose some \(y_1 \notin D_f \). We note that \(y_1 \) together with \(D_f \) span a subspace \(Y_1 \) containing \(D_f \) properly. Any element \(x \in Y_1 \) can be written \(x = y + t y_1 \) where \(y \in D_f \) and \(t \in \mathbb{R} \), in exactly one way.\(^2\) Now define \(F : Y_1 \to \mathbb{R} \) by \(F(x) = F(y + t y_1) = \bar{f}(y) + a t \) where \(a \in \mathbb{R} \). The parameter \(a \) will be chosen later. It is clear that \(F \) is a linear extension of \(\bar{f} \) and that \(F \neq \bar{f} \). So, if we are able to show that \(F(x) \leq p(x) \) for all \(x \in D_F \), then we will have contradicted \(\bar{f} \)'s maximality in \(S \), implying that \(D_f = X \) and proving the theorem.

To arrange that \(F \) is dominated by \(p \), we choose the parameter \(a \) in a suitable way. More precisely we have to choose \(a \) such that for all \(u \in D_f \) and all \(t \in \mathbb{R} \),

\[
F(u + ty_1) = \bar{f}(u) + ta \leq p(u + ty_1).
\]

In particular, these inequalities imply that for all \(u_1, u_2 \in D_f \),

\[
\bar{f}(u_1) + a \leq p(u_1 + y_1) \quad \text{and} \quad \bar{f}(u_2) - a \leq p(u_2 - y_1).
\]

Hence, \(a \) must satisfy

\[
\bar{f}(u_2) - p(u_2 - y_1) \leq a \leq p(u_1 + y_1) - \bar{f}(u_1). \tag{2}
\]

for all \(u_1, u_2 \in D_f \). We observe that by subadditivity of \(p \),

\[
\bar{f}(u_1) + \bar{f}(u_2) = \bar{f}(u_1 + u_2) \leq p(u_1 + u_2) \leq p(u_1 + y_1) + p(u_2 - y_1),
\]

and re-arranging terms we find that

\[
\bar{f}(u_2) - p(u_2 - y_1) \leq p(u_1 + y_1) - \bar{f}(u_1).
\]

for all \(u_1, u_2 \in D_f \). Therefore, taking a supremum of the left-hand side over \(u_2 \) to obtain \(m \), and an infimum over the right-hand side over \(u_1 \) to obtain \(M \), we find that \(m \leq M \). Taking \(a \in [m, M] \), we deduce that (2) holds. It follows from (2) that

\[
F(u + y_1) = \bar{f}(u) + a \leq p(u + y_1) \quad \text{and} \quad F(u - y_1) = \bar{f}(u) - a \leq p(u - y_1).
\]

Multiplying these inequalities by \(t > 0 \) and using positive homogeneity of \(p \), we deduce that (1) holds. That is \(F \leq p \) on \(D_F \). As it was noted above this gives the contradiction, and implies that \(D_f = X \). Hence, \(\bar{f} \) gives the required extension.

Now we proved several other versions of the Hahn-Banach theorems which are consequences of Theorem (6.5).

\(^2\)For if there were another way, say \(y + t y_1 = \bar{g} + s y_1 \), then we would have that \(y - \bar{g} = (s - t) y_1 \). The left-hand side is in \(D_f \) and the right-hand side is a multiple of \(y_1 \notin D_f \), meaning that they both must be 0.
Definition 6.6. A **seminorm** on a vector space X is simply a map $p : X \to \mathbb{R}$ that satisfies all the defining properties of a norm except

$$p(x) = 0 \iff x = 0.$$

Theorem 6.7 (Hahn–Banach Theorem for seminorms). Let f be a linear functional on a subspace Z of a normed linear space X. Suppose $p : X \to \mathbb{R}$ is a seminorm on X and that $|f(z)| \leq p(z)$ for all $z \in Z$. Then there is a linear functional \tilde{f} on X satisfying $\tilde{f}(z) = f(z)$ for all $z \in Z$ and $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

Proof. If X is a real vector space, then this follows easily from Theorem 6.5. The assumption that $|f(z)| \leq p(z)$ implies that $f(z) \leq p(z)$, so Theorem 6.5 implies that there is a functional \bar{f} on X that extends f and satisfies $\bar{f}(x) \leq p(x)$ for all $x \in X$. In particular, we have $\bar{f}(-x) \leq p(-x)$, which implies by linearity of \bar{f} and homogeneity of p that $-\bar{f}(x) \leq |-1|p(x)$, for all x. Therefore, $|\bar{f}(x)| \leq p(x)$ for all x.

If X is a complex vector space, then f is a complex-valued functional on the subspace $Z \subset X$, hence is expressible as $f(x) = f_1(x) + if_2(x)$, where f_1 and f_2 are real-valued. The remaining steps are:

1. Show that f_1 and f_2 are linear functionals on $Z_{\mathbb{R}}$, where $Z_{\mathbb{R}}$ is just Z, thought of as a real vector space, and show that $f_1(z) \leq p(z)$ for all $z \in Z_{\mathbb{R}}$. Deduce from Theorem 6.5 that there is a linear extension \bar{f}_1 of f_1 from $Z_{\mathbb{R}}$ to $X_{\mathbb{R}}$.

2. Show that $f_2(z) = -f_1(iz)$ for all $z \in Z$, and that if we set

$$\tilde{f}(x) = \bar{f}_1(x) - i\bar{f}_1(ix),$$

then $\tilde{f}(z) = f(z)$ for all $z \in Z$, hence is an extension.

3. Show that \tilde{f} as defined above is complex-linear.

4. Show that $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

These steps are set as exercises.

Theorem 6.8 (Hahn–Banach Theorem for normed spaces). Let f be a bounded linear functional on a non-trivial subspace Z of a normed space X. Then there is a bounded linear functional \tilde{f} on X which is an extension of f to X and has the same norm: $\|\tilde{f}\|_X = \|f\|_Z$.

Proof. The idea is to use Theorem 6.7, so we need to find our seminorm p. But this is easy, since we have started with a bounded linear functional f on a normed space Z, meaning that for all $z \in Z$, we have that

$$|f(z)| \leq \|f\|_Z \|z\|.$$
Let us define for \(x \in X \), the map \(p(x) = \|f\|_Z \|x\| \). It is routine to check that \(p \) is a seminorm on \(X \). We can therefore use Theorem 6.7 to assert that there is a linear extension \(\bar{f} \) of \(f \) to all of \(X \) that satisfies

\[
|\bar{f}(x)| \leq p(x) = \|f\|_Z \|x\|
\]

for all \(x \in X \). This implies that \(\|\bar{f}\|_X \leq \|f\|_Z \). On the other hand, it is clear that an extension cannot have smaller norm, so that we also have \(\|\bar{f}\|_X \geq \|f\|_Z \), implying the equality \(\|\bar{f}\|_X = \|f\|_Z \).

Using Theorem 6.8 we construct \(f \in X^* \) with prescribed values.

Theorem 6.9. Let \(X \) be a normed space and \(x_0 \neq 0 \) an element of \(X \). Then there exists a bounded linear functional \(f \) on \(X \) such that \(\|f\| = 1 \) and \(f(x_0) = \|x_0\| \).

Proof. We will use Theorem 6.8. Notice that we only need to find a subspace \(Z \subset X \) containing the element \(x_0 \), and a linear functional \(f \in Z^* \) with \(f(x_0) = \|x_0\| \) and \(\|f\|_Z = 1 \). This way, Theorem 6.8 will imply the existence of \(\bar{f} \in X^* \) with \(\bar{f}(x_0) = f(x_0) = \|x_0\| \) and \(\|\bar{f}\|_X = \|f\|_Z = 1 \), as desired. The most natural choices turn out to be suitable. Let \(Z = \{a x_0 \mid a \in \mathbb{F}\} \) be the one-dimensional subspace of \(X \) spanned by \(x_0 \), and let \(f : Z \to \mathbb{F} \) be the functional defined by \(f(a x_0) = a \|x_0\| \).

Corollary 6.10. Let \(X \) and \(Y \) be normed spaces and \(A : X \to Y \) a linear map. Then \(\|A^*\| = \|A\| \).

Proof. The inequality \(\|A^*\| \leq \|A\| \) has already been proven in a previous lecture. To prove the opposite inequality, we use the above result. Let \(x \in X \). Take \(f \in Y^* \) such that \(\|f\| = 1 \) and \(f(Ax) = \|Ax\| \). Then

\[
\|Ax\| = |f(Ax)| = |(A^* f)(x)| \leq \|A^* f\| \|x\| \leq \|A^*\| \|f\| \|x\| = \|A^*\| \|x\|.
\]

This implies that \(\|A\| \leq \|A^*\| \).

Many features of a normed space can be obtained from looking on its dual space. For example, we can compute norms of elements.

Corollary 6.11. For every \(x \) in a normed space \(X \) we have

\[
\|x\| = \sup \left\{ \frac{|f(x)|}{\|f\|} \mid f \in X^*, f \neq 0 \right\}.
\]

Proof. Theorem 6.9 implies that there is some functional \(f \in X^* \) with norm 1 and taking \(x \) to \(\|x\| \), which implies that \(\sup \frac{|f(x)|}{\|f\|} \geq \|x\| \). The other inequality follows from \(|f(x)| \leq \|f\| \|x\| \).

Often, the Hahn–Banach Theorem is phrased as “there are enough linear functionals to separate points of a normed space.” Indeed, if \(f(x) = f(y) \) for all bounded linear functionals \(f \), this implies that \(f(x - y) = 0 \) for every \(f \in X^* \). Corollary 6.11 then implies that \(x - y = 0 \).
Bounded linear functional on $C([a,b])$

To give another application of the Hahn-Banach theorem, we describe the dual space $C([a,b])^*$. For this we need to introduce the notion of the Riemann–Stieltjes integral which generalises the Riemann integral.

We define the total variation of a function w on $[a,b]$ as

$$\text{Var}(w) = \sup \sum_{j=1}^{n} |w(t_j) - w(t_{j-1})|,$$

where the supremum is taken over partitions $a = t_0 < t_1 < \cdots < t_n = b$ of the interval $[a,b]$. We denote by $BV([a,b])$ the set of functions with $\text{Var}(w) < \infty$. Clearly, this is a vector space, which is called the space of functions with bounded variation. We equip this space with the norm $\|w\| = |w(a)| + \text{Var}(w)$.

Given a function $w \in BV([a,b])$, we now define the Riemann–Stieltjes integral $\int_a^b \phi(t)dw(t)$. For a partition $P = \{t_0 < t_1 < \cdots < t_n\}$ of $[a,b]$, we denote by $|P|$ the length of its largest interval and set

$$S(\phi,P) = \sum_{j=1}^{n} \phi(t_j)(w(t_j) - w(t_{j-1}))$$

Suppose that there exists a number I with the property: for every $\epsilon > 0$ there exists $\delta > 0$ such that for all partitions P_n satisfying $|P| < \delta$,

$$|I - S(\phi,P)| < \epsilon.$$

Then we call I the Riemann–Stieltjes integral which is denoted by $\int_a^b \phi(t)dw(t)$.

It follows from the uniform continuity property that the Riemann–Stieltjes integral exists for continuous ϕ. It is clear from the definition that it is a linear map on $C([a,b])$ and $\left| \int_a^b \phi(t)dw(t) \right| \leq \|\phi\| \text{Var}(w)$. So that it defines a linear functional on $C([a,b])$ with norm $\leq \text{Var}(w)$. Remarkably, it turns out that every element of $C([a,b])^*$ is of this form.

Theorem 6.12 (Riesz). Every bounded linear functional f on $C([a,b])$ can be represented as

$$f(\phi) = \int_a^b \phi(t)dw(t)$$

for some $w \in BV([a,b])$. Moreover, $\|f\| = \text{Var}(w)$.

Proof. Let $B([a,b])$ be the space of all bounded functions on $[a,b]$ equipped with the maximum norm. By the Hahn-Banach theorem, f could be extended to a bounded linear functional on $B([a,b])$ such that $\|F\| = \|f\|$.
We define the function w as follows. Let ρ_t be the function on $[a, b]$ such that $\rho_t = 1$ on $[a, t]$ and $\rho_t = 0$ on $(t, b]$. We set

$$w(a) = 0 \quad \text{and} \quad w(t) = F(\rho_t) \text{ for } t \in (a, b].$$

We claim that w has bounded variation. For a partition $P = \{t_0 < t_1 < \cdots < t_n\}$ of $[a, b]$,

$$\sum_{j=1}^n |w(t_j) - w(t_{j-1})| = |F(\rho_{t_1})| + \sum_{j=2}^n |F(\rho_{t_j}) - F(\rho_{t_{j-1}})|$$

$$= a_1 F(\rho_{t_1}) + \sum_{j=2}^n a_j (F(\rho_{t_j}) - F(\rho_{t_{j-1}}))$$

for some constants a_j such that $|a_j| = 1$. Then

$$\sum_{j=1}^n |w(t_j) - w(t_{j-1})| = F \left(a_1 \rho_{t_1} + \sum_{j=2}^n a_j (\rho_{t_j} - \rho_{t_{j-1}}) \right)$$

$$\leq \|F\left\|_{\infty} \left(a_1 \rho_{t_1} + \sum_{j=2}^n a_j (\rho_{t_j} - \rho_{t_{j-1}}) \right) \leq \|F\|$$

since $\rho_{t_j} - \rho_{t_{j-1}} = 1$ only on $(t_{j-1}, t_j]$ and is zero otherwise. This proves that $\text{Var}(\rho) \leq \|F\| = \|f\|$.

Now we show that

$$f(\phi) = \int_a^b \phi(t) dw(t) \quad \text{for } \phi \in C([a, b]). \quad (3)$$

Given a partition $P = \{t_0 < t_1 < \cdots < t_n\}$ of $[a, b]$, we define a piecewise constant approximation to ϕ by

$$\psi_P = \phi(a) \rho_{t_1} + \sum_{j=2}^n \phi(t_{j-1}) (\rho_{t_j} - \rho_{t_{j-1}}).$$

It follows from uniform continuity of ϕ that for every $\epsilon > 0$ there exists $\delta > 0$ such that if $|s - t| < \delta$, then $|\phi(s) - \phi(t)| < \epsilon$. This implies that for every partition P such that $|P| < \delta$, we have $\|\phi - \psi_P\|_{\infty} < \epsilon$. Then

$$|F(\phi) - F(\psi_P)| \leq \|F\| \epsilon.$$
On the other hand,

\[
F(\psi P) = \phi(a)F(\rho_1) + \sum_{j=2}^{n} \phi(t_{j-1})(F(\rho_j) - F(\rho_{j-1})) \\
= \phi(a)w(t_1) + \sum_{j=2}^{n} \phi(t_{j-1})(w(t_j) - w(t_{j-1})) \\
= \sum_{j=1}^{n} \phi(t_{j-1})(w(t_j) - w(t_{j-1})).
\]

So by the definition of the Riemann-Stieltjes integral,

\[
F(\psi P) \rightarrow \int_{a}^{b} \phi(t)dw(t) \quad \text{as} \quad |P| \rightarrow 0.
\]

This implies (3).

Finally, for every \(\phi \in C([a, b]) \),

\[
|f(\phi)| = \left| \int_{a}^{b} \phi(t)dw(t) \right| \leq \|\phi\|_{\infty} \text{Var}(w).
\]

So \(\|f\| \leq \text{Var}(w) \), and we conclude that \(\|f\| = \text{Var}(w) \). \(\square \)