Functional Analysis Exercise sheet 5

1. Let $A: H \rightarrow H$ be a bounded operator on a Hilbert space H. Prove that $\left\|A^{*} A\right\|=\|A\|^{2}$.
2. Let $A, B: X \rightarrow X$ be bounded linear operators on a normed space X. Show that:
(a) if A and B are compact, then $A+B$ is compact.
(b) if A is compact, then $A B$ and $B A$ are compact.
3. Consider the operator $f \mapsto \int_{0}^{x} f(t) d t$ on $C([0,1])$. What are the eigenvalues of this operator?
4. Consider the operator $f \mapsto x f(x)$ on $C([0,1])$. Show that it has no non-trivial eigenvalues. Is this operator compact? (justify)
5. Let A be a compact self-adjoint operator on a Hilbert space H such that $\langle A x, x\rangle \geq 0$ for all $x \in H$. Show that all the eigenvalues of A are non-negative, and prove that there exists a self-adjoint operator B on H such that $B^{2}=A$.
6. Let $A: H \rightarrow H$ be a compact operator on a Hilbert space H such that $A x=0$ implies that $x=0$.
(a) Show that if A is self-adjoint, then there exists a sequence of operators A_{n} such that $A_{n} A x \rightarrow x$ for all $x \in H$.
(b) Show that the same claim is true for all compact A. (Hint: consider the operator $A^{*} A$.)
(c) Can one choose A_{n} 's such that $A_{n} A \rightarrow I$ in norm? (justify)
