Functional Analysis Exercise sheet 5

- 1. Let $A: H \to H$ be a bounded operator on a Hilbert space H. Prove that $||A^*A|| = ||A||^2$.
- 2. Let $A, B : X \to X$ be bounded linear operators on a normed space X. Show that:
 - (a) if A and B are compact, then A + B is compact.
 - (b) if A is compact, then AB and BA are compact.
- 3. Consider the operator $f \mapsto \int_0^x f(t)dt$ on C([0,1]). What are the eigenvalues of this operator?
- 4. Consider the operator $f \mapsto xf(x)$ on C([0,1]). Show that it has no non-trivial eigenvalues. Is this operator compact? (justify)
- 5. Let A be a compact self-adjoint operator on a Hilbert space H such that $\langle Ax, x \rangle \geq 0$ for all $x \in H$. Show that all the eigenvalues of A are non-negative, and prove that there exists a self-adjoint operator B on H such that $B^2 = A$.
- 6. Let $A: H \to H$ be a compact operator on a Hilbert space H such that Ax = 0 implies that x = 0.
 - (a) Show that if A is self-adjoint, then there exists a sequence of operators A_n such that $A_nAx \to x$ for all $x \in H$.
 - (b) Show that the same claim is true for all compact A. (Hint: consider the operator A^*A .)
 - (c) Can one choose A_n 's such that $A_n A \to I$ in norm? (justify)