Functional Analysis Exercise sheet 3

1. Give an example of a closed convex set C and a point x in ℓ^{∞} such that the closest point in C to x is not unique.
2. Define $f: \ell^{1} \rightarrow \mathbb{R}$ by $f(x)=\sum_{n=1}^{\infty}(1-1 / n) x_{n}$.
(a) Show that $C=\left\{x \in \ell^{1}: f(x)=1\right\}$ is a closed convex set.
(b) Show that there is no closest point to 0 in C.
3. Let V be an inner product space and A be an orthonormal subset of V. Show that elements of A is linearly independent.
4. Let V be an inner prouct space and let x_{1}, x_{2}, \ldots be a sequence of linearly independent vectors in V. Let $e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}$, and define inductively for $n \geq 2, f_{n}=x_{n}-\sum_{k=1}^{n-1}\left\langle x_{n}, e_{k}\right\rangle e_{k}$ and $e_{n}=f_{n} /\left\|f_{n}\right\|$. Show that e_{1}, e_{2}, \ldots is an orthonormal sequence with the same span as x_{1}, x_{2}, \ldots This is known as the Gram-Schmidt process.
5. Let H and K be Hilbert spaces over the same field \mathbb{F}. A mapping $U: H \rightarrow K$ is said to be unitary if it is a bijective linear map and it preserves inner products (that is, $\langle U(x), U(y)\rangle_{K}=\langle x, y\rangle_{H}$ for all $x, y \in$ $H)$. Two Hilbert spaces are said to be isomorphic if there exists an unitary operator bewtween them. Show that if H and K both contain complete orthonormal sequences, then H and K are isomorphic.
6. Compute the value of the sum $\sum_{n \geq 1} \frac{1}{n^{2}}$. (Hint: use the Fourier expansion of the function $f(x)=x$.)
Aside: Interestingly, the exact value of $\sum_{n \geq 1} \frac{1}{n^{3}}$ is not known, and it is unlikely that an exact formula for this sum exists. Can you compute $\sum_{n \geq 1} \frac{1}{n^{4}}$? (You are not expected to hand this in.)
