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1 Inner Product Spaces and Normed Spaces

Inner Product Spaces

Functional analysis involves studying vector spaces where we additionally
have the notion of size of an element (the norm), such spaces are known as
normed spaces. Sometimes we will have an additional notion of an inner
product which can be informally thought of as a way of giving an angle
beteen elements. Of particular interest will be infinite dimensional spaces.

Remark. Throughout this unit we will be taking vector spaces over either
R or C. We will use F to denote a field which is either R or C.

If we consider the vector space V = Cn then we can define the dot
product for x, y ∈ V by

x · y =

n∑
k=1

xkyk.

This has the following properties for all x, y, z ∈ V and λ ∈ C.

1. (x+ y) · z = x · z + y · z.

2. λ(x.y) = (λx).y

3. x · y = y · x

4. |x| = (x · x)1/2 (where | · | denote the Euclidean distance)

5. |x · y| ≤ |x||y|.

The notion of an inner product generalises this notion to general vector
spaces.

∗This material is copyright of the University unless explicitly stated otherwise. It is
provided exclusively for educational purposes at the University and is to be downloaded
or copied for your private study only.
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Definition 1.1. Let V be a vector space over F we say that 〈·, ·〉 : V ×V → F
is an inner product if the following properties are satisfied

1. For all x, y, z ∈ V 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

2. For all x, y ∈ V and λ ∈ F we have that 〈λx, y〉 = λ〈x, y〉.

3. For all x, y ∈ V we have that 〈x, y〉 = 〈y, x〉.

4. For all x ∈ V we have that 〈x, x〉 ≥ 0 with equality if and only if x = 0.

When we have a vector space V over F with an inner product 〈·, ·〉 : V ×V →
F we’ll refer to V as an inner product space over F.

Example. We can easily check that the dot product on either Cn or Rn

satisfies these properties. However if we consider the vector spaces CN or
RN we cannot generalise this definition because we would not always have
convergence. So for either F = C or F = R let

`2 = {{xn}∞n=1 : xn ∈ F and

∞∑
n=1

|xn|2 <∞}.

We’ll leave it as an exercise to check that `2 is a supspace of FN. For x, y ∈ `2
we let

〈x, y〉 =
∞∑
n=1

xnyn.

We first have to show that this is well defined. To see this we use the
properties of the dot product on Fn. We have that for any x, y ∈ `2 and
k ∈ N that ∣∣∣∣∣

k∑
n=1

|xnyn|

∣∣∣∣∣ ≤
(

k∑
n=1

|xn|2
)1/2( k∑

n=1

|yn|2
)1/2

≤

( ∞∑
n=1

|xn|2
)1/2( ∞∑

n=1

|yn|2
)1/2

.

Thus this is bounded independently of k and so is absolutely convergent.
Thus the definition makes sense. It is now routine to check that this is an
inner product.

We can now state some simple properties of the inner product

Theorem 1.2. Let V be an inner product space over F. We have that

1. For x, y, z ∈ V that 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

2. For x, y ∈ V and λ ∈ F that 〈x, λy〉 = λ〈x, y〉
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3. For any x ∈ V we have that 〈x, 0〉 = 〈0, x〉 = 0.

4. If x, z ∈ V satisfies that 〈x, y〉 = 〈z, y〉 for all y ∈ V then x = z.

Proof. Let x, y, z ∈ V and λ ∈ F. For part 1 we have

〈x, y + z〉 = 〈y + z, x〉 = 〈y, x〉+ 〈z, x〉 = 〈x, z〉+ 〈y, z〉.

For part 2

〈x, λy〉 = 〈λy, x〉 = λ〈y, x〉 = λ〈y, x〉 = λ〈x, y〉.

For part 3 we have that

〈x, 0〉 = 〈x, 0 · x〉 = 0〈x, x〉 = 0 = 0〈x, x〉 = 〈0, x〉.

Finally 〈x, y〉 = 〈z, y〉 for all y ∈ V implies that 〈x− z, y〉 = 0 for all y ∈ V .
Thus 〈x− z, x− z〉 = 0 and so x− z = 0 which means x = z.

We can use the notion of an inner product to give a notion of size and
distance on V .

Definition 1.3. For v ∈ V we define

‖v‖ = (〈v, v〉)1/2.

Theorem 1.4 (Cauchy-Schwarz inequality). Let V be an inner product
space over F. We have that for all x, y ∈ V

|〈x, y〉| ≤ ‖x‖‖y‖.

Moreover, when x and y are linearly independent, the inequality is strict.

Proof. We first suppose there exists λ ∈ F such that x = λy. We then have
that

|〈λy, y〉| = |λ|〈y, y〉 = (λλ〈y, y〉〈y, y〉)1/2 = (〈λy, λy〉〈y, y〉)1/2 = ‖y‖‖λy‖.

Now we suppose that x and y are linearly independent. So for all λ ∈ F we
have that 〈y + λx, y + λx〉 > 0. We can write

0 < 〈y + λx, y + λx〉
= ‖y‖2 + 〈λx, y〉+ 〈y, λx〉+ |λ|2‖x‖2

= ‖y‖2 + 2Re(〈λx, y〉) + |λ|2‖x‖2

= ‖y‖2 + 2Re(λ〈x, y〉) + |λ|2‖x‖2

We now let λ = tu where t ∈ R and u = |〈x,y〉|
〈x,y〉 , note that |u| = 1. Substi-

tuting this in gives that

0 > ‖y‖2 + 2t|〈x, y〉|+ t2‖x‖2.
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Thus the quadratic ‖y‖2 + 2t|〈x, y〉|+ t2‖x‖2 has no roots and so must have
discriminant less than 0. Thus

4|〈x, y〉|2 < 4‖x‖2‖y‖2

and the result follows.

We now can deduce that ‖·‖ has the properties we would wish a notion
of size to have.

Theorem 1.5. Let V be an inner product space over F. For v ∈ V let
‖v‖ = (〈v, v〉)1/2. We have that

1. For all v ∈ V ‖v‖ > 0 unless v = 0.

2. For all v ∈ V and λ ∈ F we have ‖λv‖ = |λ|‖v‖.

3. For all x, y, z ∈ V we have that

‖x+ y‖ ≤ ‖x‖+ ‖y‖

4. If we define d(x, y) = ‖x− y‖ then this gives a metric on V .

Proof. The first and fourth parts are obvious. For the second part write

‖λv‖ = (〈λv, λv〉)1/2 = (λλ〈v, v〉)1/2 = λ‖v‖.

Finally for the third part we use Cauchy-Schwarz. We fix x, y ∈ V and
write

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈y, y〉+ 2Re(〈x, y〉)
≤ 〈x, x〉+ 〈y, y〉+ 2|〈x, y〉|
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

Example. Let V be the vector space of all continuous functions f : [0, 1]→
F. We can define

〈f, g〉 =

∫ 1

0
fgdx.

This gives an inner product space (see exercises).

We have seen that an inner product gives a way of definining a size and a
distance between elements. This means inner product spaces give examples
of what are called normed spaces, however not all normed spaces come from
inner products.
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Normed spaces

Definition 1.6. Let V be a vector space over F we say that ‖·‖ : V → R is
a norm if

1. ‖v‖ ≥ 0 for all v ∈ V with equality if and only if v = 0.

2. For all v ∈ V and λ ∈ F we have that ‖λv‖ = |λ|‖v‖.

3. For all x, y ∈ V we have that

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We then call V a normed space with respect to ‖·‖.

Example. Consider C([0, 1]) the space of real valued continuous functions
(we could also take complex valued functions). We define

‖f‖ = sup
x∈[0,1]

{|f(x)|}.

We can easily see this gives a norm. Note that if we use the inner product

〈f, g〉 =

∫ 1

0
fgdx

then we get a different norm

‖f‖2 = (

∫ 1

0
|f(x)|2)1/2.

Definition 1.7 (`p space). We now consider certain spaces of sequences on
which there will be a natural definition of a norm. Let 1 ≤ p <∞ and define

`p = {{xn}n∈N : xn ∈ F and

∞∑
n=1

|xn|p <∞} ⊂ `p.

For x ∈ `p we define

‖x‖p =

( ∞∑
n=1

|xn|p
)1/p

.

Note that for p = 2 this agrees with the norm induced by the inner product.
We can also define

`∞ = {{xn}n∈N : xn ∈ F and sup
n∈N
|xn| <∞}

and
|x‖∞ = sup

n∈N
{‖xn|}.
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Theorem 1.8. For all 1 ≤ p ≤ ∞ we have that `p is a normed space.

Proof. It is an exercise to show that `p is a subspace of FN. It is clear that
for all 1 ≤ p ≤ ∞ that for nonzero x ∈ `p, ‖x‖ > 0 and that for all λ ∈ F we
have ‖λx‖ = |λ|‖x‖. So we need to show the triangle inequality. For p = 1
and p =∞ it is easy to show.

So now let 1 < p < ∞ and q = p
p−1 . We have Young’s inequality (see

exercise sheet) that for all A,B ≥ 0 that

AB ≤ Ap

p
+
Bq

q
.

Hölder’s inequality

We now show that for x,∈ `p and y ∈ `q that
∞∑
k=1

|xkyk| ≤ ‖x‖p‖y‖q.

To do this fix x, y ∈ `p and k ∈ N. We use A = |xk|
‖x‖p and B = |yk|

‖y‖ in Young’s

inequality to get
|xk||yk|
‖x‖p‖y‖q

≤ 1

p

|xk|p

‖x‖pp
+

1

q

|yk|q

‖y‖qq
.

We can now sum over all k ∈ N to get

1

‖x‖p‖y‖q

∞∑
k=1

|xkyk| ≤
1

p
+

1

q

and finally
∞∑
k=1

|xkyk| ≤ ‖x‖p‖y‖q.

Minkowski’s inequality

We can now prove the triangle inequality for `p also known as Minkowski’s
inequality. That is for all x, y ∈ `p

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

To do this, we first prove this inequality in FN . Using the Hölder inequality,

N∑
k=1

|xk + yk|p =

N∑
k=1

|xk + yk||xk + yk|p−1

≤
N∑
k=1

|xk||xk + yk|p−1 +

N∑
k=1

|yk||xk + yk|p−1

≤

(
N∑
k=1

|xk + yk|p
)1/q

(‖x‖p + ‖y‖p) .
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We can now rearrange this and use that p− p/q = 1 to get(
N∑
k=1

|xk + yk|p
)1/p

≤

(
N∑
k=1

|xk|p
)1/p

+

(
N∑
k=1

|yk|p
)1/p

.

Now we take N →∞.

Remark. `p space will be one of the main examples of a normed space we’ll
use. For p = 2 we have already seen that it is also an inner product space.

Remark. On a normed space V , we have a metric given by d(x, y) = ‖x−y‖.
When we refer to concepts from metric spaces it is with respect to this metric
(e.g. continuity, convergence (you’ll see other notions of this later on), open
and closed sets).

Example. Let V be a normed space, x ∈ V and define fx : V → R by

fx(y) = ‖x+ y‖.

fx is a continuous map on V since if we fix y ∈ V , ε > 0 and choose δ = ε.
We then have that if ‖z − y‖ ≤ δ then

|fx(y)− fx(z)| = |‖y + x‖ − ‖x+ z‖|.

Using the triangle inequality we have that for any a, b ∈ V

‖a‖ − ‖b‖ ≤ ‖a− b‖,

and
−(‖a‖ − ‖b‖) = ‖b‖ − ‖a‖ ≤ ‖b− a‖.

Hence,
|‖a‖ − ‖b‖| ≤ ‖a− b‖.

Thus combining this inequality with the triangle inequality

|fx(y)− fx(z)| = |‖y + x‖ − ‖x+ z‖| ≤ ‖y − z‖ ≤ ε.

Subspaces and closed subspaces

If we take Rn or Cn with the Euclidean norm it is straightforward to see that
any subspace is closed. However this is not the case for infinite dimensional
normed spaces.

Example. Take V = `2 and let A ⊂ `2 consider of all sequence where only
finitely many terms are nonzero. We can easily see that A is a subspace of

`2. However let xn ∈ A be written x
(1)
n , x

(2)
n , . . . with x

(k)
n = 1

k if k ≤ n and
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x
(k)
n = 0 otherwise. Let y ∈ `2 satisfy yk = 1

k for all k ∈ N. We can see that
y /∈ A but

‖xn − y‖2 =
∞∑

k=n+1

1

k2
→ 0 as n→∞.

So A is not a closed subspace of `2.

Theorem 1.9. Let V be a normed space and A be a subspace of V . The
closure of A is a subspace of V .

Proof. Let A be a subspace of V and let A denote the closure of A. We let
x, y ∈ A and λ ∈ F\{0}. Thus there exist sequences {xn}n∈N and {yn}n∈N
in A such that limn→∞ xn = x and limn→∞ yn = y. Let ε > 0 and choose N
such that for all n ≥ N we have that max{‖xn − x‖, ‖yn − y‖} ≤ ε/2. Thus
for n ≥ N we have that

‖xn + yn − x+ y‖ ≤ ‖xn − x‖+ ‖yn − y‖ ≤ 2.

Thus limn→∞ xn + yn = x + y and so x + y ∈ A. Finally if we choose N
such that for n ≥ N we have ‖xn − x‖ ≤ ε/|λ| then for n ≥ N ,

‖λ(xn − x)‖ = |λ|‖xn − y‖ ≤ ε.

Thus λx ∈ A and we can conclude that A is a subspace of V .

We finish this section by defining the closed (linear) span of any subset
of a normed space.

Definition 1.10. Let V be a normed space and A ⊂ V . We define the
closed (linear) span of A to be the closure of the (linear) span of A. The
closed span of A will be a closed subspace of V .
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