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This paper contains five questions
The best FOUR. answers will be used for assessment.

Calculators are not permitted in this examination.

Do not turn over until instructed.
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1. Let H be a Hilbert space over R.

(a) (5 marks)
State and prove the Cauchy-Schwarz inequality for vectors z,y in H.

(b) (5 marks)
Suppose that x, — x and y,, — y in H. Show that (z,,y,) — (z,y).

(¢) (5 marks)
Let z,y be linearly independent vectors in H such that ||z| = ||y|| = 1. Show that for
every 0 < t < 1 we have |tz + (1 —t)y|| < 1.

(d) Let zg be a non-zero element in H.
(i) (2 marks)
Show that Hy = {x € H : (x,x¢) = 0} is a closed subspace of H.
(ii) (3 marks)
Given an element y in H, compute the distance from y to H.
(e) (i) (2 marks)
State the Bessel inequality.
(ii) (3 marks)
Let (en)n>1 be any collection of unit vectors in H such that the Bessel inequality
holds for (e,),>1. Prove that the vectors e, must be orthonormal.

2. (a) (4 marks)
Show that the normed space (> is complete.

(b) (5 marks)
Show that a subspace of a Banach space is complete if and only if it is closed.

(c) Let X be the subspace of £*° consisting of infinite sequences = = (x,,) of real numbers
such that x,, = 0 for all but finitely many n’s.
(i) (4 marks)
Show that X is not a complete subspace of £>°.
(ii) (5 marks)
What is the closure of X in ¢>*7 (Justify your answer.)
(iii) (4 marks)
Let T : X — X be the linear operator defined by (z,) — (27"x,). Show that
T~! exists, but ||T7}| = oo.

(d) (3 marks)
State the Bounded Inverse Theorem. Why does (c)(iii) not contradict the Bounded
Inverse Theorem?

3. Let X be a Banach space.

(a) (2 marks)
Give the definition of the dual space X*.

(b) (4 marks)
Determine the dual space of ¢!, justifying your answer carefully.

Continued...
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(¢) (3 marks)
Let x, be a sequence in X such that Y _, |z,| < co. Show that the sum Y>> x,
converges in X. -

(d) (3 marks)
Let x be an element in X such that ||z]| = 1, and B = {|ly|| < 1} is the closed unit
ball in X. Show that there exists f in X* such that f(z) =1 and |f| <1 on B.

(e) (5 marks)
We say that a sequence x,, in X is a weak Cauchy sequence if for every f in X* the
sequence f(x,) is Cauchy. Show that a weak Cauchy sequence is bounded.
(f) (1) (3 marks)
Let A, : X — X be a sequence of bounded linear operators. Define what it means
that A, — A in norm topology, in strong topology, in weak topology.
(ii) (5 marks)
Let S : ' — ¢! be the operator defined by (z1,2s,...) — (29, x3,...). Show that
S™ — 0 in strong topology, but not in norm topology.

4. Let H be a Hilbert space.

(a) (2 marks)
State the Riesz-Frechet theorem.

(b) (2 marks)
State what it means that a sequence z,, in H converges weakly in H.

(¢) (3 marks)
Suppose that x,, — y; and x,, — y» weakly. Show that y; = ys.
(d) (i) (4 marks)
Show that if x,, — x weakly and A : H — H is a bounded linear operator, then
Ax, — Ax weakly.
(ii) (5 marks)
Let A: H — H be a linear map with the following property: if x, — x weakly,
then Az, — Az weakly. Show using the uniform boundedness principle that A is
bounded.

(e) (4 marks)
Let A: H — H be a bounded linear operator. Show that if A has bounded inverse,
then so does the adjoint operator A* and (A*)~! = (A71)*.

(f) (5 marks)
Let H = L*([0,1]). For a continuous function ¢ : [0,1] — C, consider the linear
operator Ag : H — H defined by f ~ ¢f. Compute |[Ay[| and Aj.

5. (a) (3 marks)
Let X be a complete metric space. Define what it means for a subset of X to be
meager and state the Baire Category Theorem.

(b) (3 marks)
Let ¢, : [0,1] — C be a sequence of continuous functions such that ||¢,|l2 — oo.
Show that there exists a function f in L?([0,1]) and a subsequence nj such that

fol G, (@) f(2)dr — 0.

Continued...
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(¢) (i) (3 marks)
Show that ¢! is a dense subset of /2.
(ii) (4 marks)
Let Br = {(zk)k>1: Doy |2k] < R}. Show that Bpg is closed in (2.
(iii) (4 marks)
Show that ¢! has empty interior in ¢? and that ¢! is a meager subset of (2.

1/2
(d) Consider the space H = C([0, 1]) with the norm || f|js = (fol |f($)|2dx> and the
sequence f,(z) = cos(2mnz) in H.

(i) (4 marks)
Does it converge in H? (Justify your answer.)

(ii) (4 marks)
Show that for every g € H, (f,.,g) — 0.

End of examination.
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