Functional Analysis Exercise sheet 4 — solutions

1. If $x, y \in A^{\perp}$, then for every $v \in A$,

$$\langle \alpha x + \beta y, v \rangle = \alpha \langle x, v \rangle + \beta \langle y, v \rangle = 0.$$

Hence, A^{\perp} is a subspace.

Let $x_n \in x$ and $x_n \in A^{\perp}$. Then for every $v \in A$,

$$\langle x, v \rangle = \lim_{n \to \infty} \langle x_n, v \rangle = 0.$$

Hence, $x \in A^{\perp}$. This shows that A^{\perp} is closed.

2. For every $x \in A$ and $y \in A^{\perp}$, we have $\langle x, y \rangle = 0$, so that $A \subset (A^{\perp})^{\perp}$. By the previous problem, $(A^{\perp})^{\perp}$ is a closed subspace. Hence, it follows that $\operatorname{span}(A) \subset (A^{\perp})^{\perp}$, and $\overline{\operatorname{span}(A)} \subset (A^{\perp})^{\perp}$.

Let $V = \overline{\operatorname{span}(A)}$. It is a closed subspace. We claim that $V^{\perp} = A^{\perp}$. Since $A \subset V$, it is clear from the definition of orthogonal complement that $A^{\perp} \supset V^{\perp}$. Conversely, let $x \in A^{\perp}$. Then $\langle x, y \rangle = 0$ for every $y \in A$, and it follows that also $\langle x, y \rangle = 0$ for every $y \in \operatorname{span}(A)$ and for every $y \in \operatorname{span}(A)$, that is, $x \in V^{\perp}$. This proves that $V^{\perp} = A^{\perp}$.

We have the orthogonal decomposition $H = V \oplus V^{\perp}$. Let $x \in (A^{\perp})^{\perp}$ and x = v + w with $v \in V$ and $w \in V^{\perp} = A^{\perp}$. Then

$$0 = \langle w, x \rangle = \langle w, v \rangle + \langle w, w \rangle = \langle w, w \rangle.$$

Hence, w = 0. This shows that $(A^{\perp})^{\perp} \subset V = \overline{\operatorname{span}(A)}$.

- 3. We can take M to be any proper dense subspace of ℓ^2 . (For example, one can take to consist of sequences $(x_n)_{n\geq 1}$ such that $x_n = 0$ for all but finitely many n.) Then given $x \in M^{\perp}$, we can a sequence $x_n \in M$ such that $x_n \to x$. We obtain $\langle x, x \rangle = \lim_{n \to \infty} \langle x, x_n \rangle = 0$, so that x = 0. This shows that $M^{\perp} = 0$. Since M is proper, $M \oplus M^{\perp} \neq \ell^2$.
- 4. For every y, $||Ay|| \le ||A|| ||y||$. Hence,

$$||A(Bx)|| \le ||A|| ||Bx|| \le ||A|| ||B|| ||x||.$$

This implies that $||AB|| \leq ||A|| ||B||$.

In general, it is not true that ||AB|| = ||A|| ||B||. For instance, consider

$$A: \ell^2 \to \ell_2: (x_1, x_2, \ldots) \mapsto (x_2, 0, \ldots)$$

Then ||A|| = 1, but $A^2 = 0$.

5. First, we show that $||T_x|| = ||x||_{\infty}$. We have

$$|T_x(y)| = \left|\sum_{n=1}^{\infty} x_n y_n\right| \le \sum_{n=1}^{\infty} |x_n| |y_n| \le ||x||_{\infty} \sum_{n=1}^{\infty} |y_n| = ||x||_{\infty} ||y||_1.$$

Hence, $||T_x|| \leq ||x||_{\infty}$. To prove the opposite inequality, we observe that for every $\epsilon > 0$, there exists k such that $|x_k| > ||x||_{\infty} - \epsilon$. Then $|T_x(e_k)| = |x_k| > ||x||_{\infty} - \epsilon$ and $||e_k||_1 = 1$. Thus, $||T_x|| \geq ||x||_{\infty} - \epsilon$ for every $\epsilon > 0$, which implies the claim.

Suppose that there exists $y \in \ell^1$ such that $||y||_1 = 1$ and $|T_x(y)| = ||x||_{\infty}$. Then in the above inequality, we must have $|x_n||y_n| = ||x||_{\infty}|y_n|$ for all n. Since $||y||_1 = 1$, $y_n \neq 0$ for some n. Hence, it follows that for some n, $|x_n| = ||x||_{\infty}$. Conversely, suppose that $|x_n| = ||x||_{\infty}$ for some n. Then $|T_x(e_n)| = ||x||_{\infty}$.

Thus, such y exists if and only if $\sup_{n>1} |x_n|$ is achieved.

6. Since

$$||A_{\phi}f||_{2}^{2} = \int_{0}^{1} |\phi(x)f(x)|^{2} dx \le ||\phi||_{\infty}^{2} \int_{0}^{1} |f(x)|^{2} dx = ||\phi||_{\infty}^{2} ||f||_{2}^{2},$$

it follows $||A_{\phi}|| \leq ||\phi||_{\infty}$.

We claim that $||A_{\phi}|| \leq ||\phi||_{\infty}$. Let $x_0 \in [0, 1]$ be such that $|\phi(x_0)| = ||\phi||_{\infty}$. For every $\epsilon > 0$, there exists $\delta > 0$ such that $|\phi(x) - \phi(x_0)| < \epsilon$ provided that $|x - x_0| < \delta$. We take a non-zero continuous function f supported on δ -neighbourhood of x_0 . Then

$$||A_{\phi}f||_{2}^{2} = \int_{0}^{1} |\phi(x)f(x)|^{2} dx \ge \int_{0}^{1} (|\phi(x_{0})| - \epsilon)^{2} |f(x)|^{2} dx$$
$$= (||\phi||_{\infty} - \epsilon)^{2} ||f||_{2}^{2}$$

for every $\epsilon > 0$. This implies the claim.

7. For every $y \in \ell^1$, we define $f_y(x) = \sum_{n=1}^{\infty} y_n x_n$. Then

$$|f_y(x)| = \sum_{n=1}^{\infty} |y_n| |x_n| \le ||y||_1 ||x||_{\infty}$$

Hence, the series converges absolutely, and f_y is well-defined. Moreover, it is clear that f_y is linear, and $||f_y|| \leq ||y||_1$.

We claim that $||f_y|| = ||y||_1$. For every $\epsilon > 0$, there exists N such that $\sum_{n=1}^{N} |y_n| \ge ||y||_1 - \epsilon$. Let $x \in c_0$ be such that $x_n = \frac{\bar{y}_n}{|y_n|}$ for $n \le N$ (if $y_n = 0$, we set $x_n = 0$), and $x_n = 0$ for n > N. Then $f_y(x) = \sum_{n=1}^{N} |y_n| \ge ||y||_1 - \epsilon$. Also, $||x||_{\infty} = 1$ for sufficiently large N. This implies that $||f_y|| \ge ||y||_1 - \epsilon$ for every $\epsilon > 0$.

We have a norm-preserving linear map $\ell^1 \to c_0$: $y \mapsto f_y$. If $f_y = 0$, then $||y||_1 = ||f_y|| = 0$. Hence, this map is injective. It remains to show that this map is surjective.

Given $x \in c_0$, we define $x^{(N)} \in c_0$ as follows: $x_n^{(N)} = x_n$ for $n \leq N$ and $x_n^{(N)} = 0$ for n > N. Since $x_n \to 0$,

$$||x - x^{(N)}||_{\infty} = \sup_{n > N} |x_n| \to 0$$

as $N \to \infty$. In particular, it follows that the space c_{fin} , the space generated by e_n 's, is dense in c_0 .

Take any $f \in (c_0)^*$. Let $y_n = f(e_n)$. Given $N \ge 1$, we define $x_n = \frac{\bar{y}_n}{|y_n|}$ for $n \le N$ (if $y_n = 0$, we set $x_n = 0$), and $x_n = 0$ for n > N. Then $x = (x_n)_{n\ge 1}$ is in c_0 and $||x||_{\infty} \le 1$. We have

$$f(x) = \sum_{n=1}^{N} x_n f(e_n) = \sum_{n=1}^{N} |y_n|,$$

and $|f(x)| \le ||f|| ||x||_{\infty} \le ||f||$. Hence, $y = (y_n)_{n \ge 1} \in \ell^1$.

Finally, we claim that $f = f_y$. Indeed, $f(e_n) = f_y(e_n)$, so that $f = f_y$ on c_{fin} . Hence, since c_{fin} is dense in c_0 , it follows that $f = f_y$ on c_0 .