Functional Analysis Exercise sheet 4 - solutions

1. If $x, y \in A^{\perp}$, then for every $v \in A$,

$$
\langle\alpha x+\beta y, v\rangle=\alpha\langle x, v\rangle+\beta\langle y, v\rangle=0 .
$$

Hence, A^{\perp} is a subspace.
Let $x_{n} \in x$ and $x_{n} \in A^{\perp}$. Then for every $v \in A$,

$$
\langle x, v\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}, v\right\rangle=0 .
$$

Hence, $x \in A^{\perp}$. This shows that A^{\perp} is closed.
2. For every $x \in A$ and $y \in A^{\perp}$, we have $\langle x, y\rangle=0$, so that $A \subset\left(A^{\perp}\right)^{\perp}$. By the previous problem, $\left(A^{\perp}\right)^{\perp}$ is a closed subspace. Hence, it follows that $\operatorname{span}(A) \subset\left(A^{\perp}\right)^{\perp}$, and $\overline{\operatorname{span}(A)} \subset\left(A^{\perp}\right)^{\perp}$.

Let $V=\overline{\operatorname{span}(A)}$. It is a closed subspace. We claim that $V^{\perp}=A^{\perp}$. Since $A \subset V$, it is clear from the definition of orthogonal complement that $A^{\perp} \supset V^{\perp}$. Conversely, let $x \in A^{\perp}$. Then $\langle x, y\rangle=0$ for every $y \in A$, and it follows that also $\langle x, y\rangle=0$ for every $y \in \operatorname{span}(A)$ and for every $y \in \overline{\operatorname{span}(A)}$, that is, $x \in V^{\perp}$. This proves that $V^{\perp}=A^{\perp}$.

We have the orthogonal decomposition $H=V \oplus V^{\perp}$. Let $x \in\left(A^{\perp}\right)^{\perp}$ and $x=v+w$ with $v \in V$ and $w \in V^{\perp}=A^{\perp}$. Then

$$
0=\langle w, x\rangle=\langle w, v\rangle+\langle w, w\rangle=\langle w, w\rangle
$$

Hence, $w=0$. This shows that $\left(A^{\perp}\right)^{\perp} \subset V=\overline{\operatorname{span}(A)}$.
3. We can take M to be any proper dense subspace of ℓ^{2}. (For example, one can take to consist of sequences $\left(x_{n}\right)_{n \geq 1}$ such that $x_{n}=0$ for all but finitely many n.) Then given $x \in M^{\perp}$, we can a sequence $x_{n} \in M$ such that $x_{n} \rightarrow x$. We obtain $\langle x, x\rangle=\lim _{n \rightarrow \infty}\left\langle x, x_{n}\right\rangle=0$, so that $x=0$. This shows that $M^{\perp}=0$. Since M is proper, $M \oplus M^{\perp} \neq \ell^{2}$.
4. For every $y,\|A y\| \leq\|A\|\|y\|$. Hence,

$$
\|A(B x)\| \leq\|A\|\|B x\| \leq\|A\|\|B\|\|x\|
$$

This implies that $\|A B\| \leq\|A\|\|B\|$.
In general, it is not true that $\|A B\|=\|A\|\|B\|$. For instance, consider

$$
A: \ell^{2} \rightarrow \ell_{2}:\left(x_{1}, x_{2}, \ldots\right) \mapsto\left(x_{2}, 0, \ldots\right)
$$

Then $\|A\|=1$, but $A^{2}=0$.
5. First, we show that $\left\|T_{x}\right\|=\|x\|_{\infty}$. We have

$$
\left|T_{x}(y)\right|=\left|\sum_{n=1}^{\infty} x_{n} y_{n}\right| \leq \sum_{n=1}^{\infty}\left|x_{n}\right|\left|y_{n}\right| \leq\|x\|_{\infty} \sum_{n=1}^{\infty}\left|y_{n}\right|=\|x\|_{\infty}\|y\|_{1} .
$$

Hence, $\left\|T_{x}\right\| \leq\|x\|_{\infty}$. To prove the opposite inequality, we observe that for every $\epsilon>0$, there exists k such that $\left|x_{k}\right|>\|x\|_{\infty}-\epsilon$. Then $\left|T_{x}\left(e_{k}\right)\right|=\left|x_{k}\right|>\|x\|_{\infty}-\epsilon$ and $\left\|e_{k}\right\|_{1}=1$. Thus, $\left\|T_{x}\right\| \geq\|x\|_{\infty}-\epsilon$ for every $\epsilon>0$, which implies the claim.
Suppose that there exists $y \in \ell^{1}$ such that $\|y\|_{1}=1$ and $\left|T_{x}(y)\right|=$ $\|x\|_{\infty}$. Then in the above inequality, we must have $\left|x_{n}\right|\left|y_{n}\right|=\|x\|_{\infty}\left|y_{n}\right|$ for all n. Since $\|y\|_{1}=1, y_{n} \neq 0$ for some n. Hence, it follows that for some $n,\left|x_{n}\right|=\|x\|_{\infty}$. Conversely, suppose that $\left|x_{n}\right|=\|x\|_{\infty}$ for some n. Then $\left|T_{x}\left(e_{n}\right)\right|=\|x\|_{\infty}$.
Thus, such y exists if and only if $\sup _{n \geq 1}\left|x_{n}\right|$ is achieved.
6. Since

$$
\left\|A_{\phi} f\right\|_{2}^{2}=\int_{0}^{1}|\phi(x) f(x)|^{2} d x \leq\|\phi\|_{\infty}^{2} \int_{0}^{1}|f(x)|^{2} d x=\|\phi\|_{\infty}^{2}\|f\|_{2}^{2}
$$

it follows $\left\|A_{\phi}\right\| \leq\|\phi\|_{\infty}$.
We claim that $\left\|A_{\phi}\right\| \leq\|\phi\|_{\infty}$. Let $x_{0} \in[0,1]$ be such that $\left|\phi\left(x_{0}\right)\right|=$ $\|\phi\|_{\infty}$. For every $\epsilon>0$, there exists $\delta>0$ such that $\left|\phi(x)-\phi\left(x_{0}\right)\right|<\epsilon$ provided that $\left|x-x_{0}\right|<\delta$. We take a non-zero continuous function f supported on δ-neighbourhood of x_{0}. Then

$$
\begin{aligned}
\left\|A_{\phi} f\right\|_{2}^{2} & =\int_{0}^{1}|\phi(x) f(x)|^{2} d x \geq \int_{0}^{1}\left(\left|\phi\left(x_{0}\right)\right|-\epsilon\right)^{2}|f(x)|^{2} d x \\
& =\left(\|\phi\|_{\infty}-\epsilon\right)^{2}\|f\|_{2}^{2}
\end{aligned}
$$

for every $\epsilon>0$. This implies the claim.
7. For every $y \in \ell^{1}$, we define $f_{y}(x)=\sum_{n=1}^{\infty} y_{n} x_{n}$. Then

$$
\left|f_{y}(x)\right|=\sum_{n=1}^{\infty}\left|y_{n}\left\|x_{n} \mid \leq\right\| y\left\|_{1}\right\| x \|_{\infty}\right.
$$

Hence, the series converges absolutely, and f_{y} is well-defined. Moreover, it is clear that f_{y} is linear, and $\left\|f_{y}\right\| \leq\|y\|_{1}$.
We claim that $\left\|f_{y}\right\|=\|y\|_{1}$. For every $\epsilon>0$, there exists N such that $\sum_{n=1}^{N}\left|y_{n}\right| \geq\|y\|_{1}-\epsilon$. Let $x \in c_{0}$ be such that $x_{n}=\frac{\bar{y}_{n}}{\left|y_{n}\right|}$ for $n \leq N$ (if $y_{n}=0$, we set $x_{n}=0$), and $x_{n}=0$ for $n>N$. Then $f_{y}(x)=\sum_{n=1}^{N}\left|y_{n}\right| \geq\|y\|_{1}-\epsilon$. Also, $\|x\|_{\infty}=1$ for sufficiently large N. This implies that $\left\|f_{y}\right\| \geq\|y\|_{1}-\epsilon$ for every $\epsilon>0$.

We have a norm-preserving linear map $\ell^{1} \rightarrow c_{0}: y \mapsto f_{y}$. If $f_{y}=0$, then $\|y\|_{1}=\left\|f_{y}\right\|=0$. Hence, this map is injective. It remains to show that this map is surjective.
Given $x \in c_{0}$, we define $x^{(N)} \in c_{0}$ as follows: $x_{n}^{(N)}=x_{n}$ for $n \leq N$ and $x_{n}^{(N)}=0$ for $n>N$. Since $x_{n} \rightarrow 0$,

$$
\left\|x-x^{(N)}\right\|_{\infty}=\sup _{n>N}\left|x_{n}\right| \rightarrow 0
$$

as $N \rightarrow \infty$. In particular, it follows that the space $c_{f i n}$, the space generated by e_{n} 's, is dense in c_{0}.
Take any $f \in\left(c_{0}\right)^{*}$. Let $y_{n}=f\left(e_{n}\right)$. Given $N \geq 1$, we define $x_{n}=\frac{\bar{y}_{n}}{\left|y_{n}\right|}$ for $n \leq N$ (if $y_{n}=0$, we set $x_{n}=0$), and $x_{n}=0$ for $n>N$. Then $x=\left(x_{n}\right)_{n \geq 1}$ is in c_{0} and $\|x\|_{\infty} \leq 1$. We have

$$
f(x)=\sum_{n=1}^{N} x_{n} f\left(e_{n}\right)=\sum_{n=1}^{N}\left|y_{n}\right|,
$$

and $|f(x)| \leq\|f\|\|x\|_{\infty} \leq\|f\|$. Hence, $y=\left(y_{n}\right)_{n \geq 1} \in \ell^{1}$.
Finally, we claim that $f=f_{y}$. Indeed, $f\left(e_{n}\right)=f_{y}\left(e_{n}\right)$, so that $f=f_{y}$ on $c_{f i n}$. Hence, since $c_{f i n}$ is dense in c_{0}, it follows that $f=f_{y}$ on c_{0}.

