DYNAMICAL SYSTEMS IN NUMBER THEORY. AUTUMN 2010.

Homework 3

(1) (well approximable vectors \leftrightarrow excursions to the cusp) A vector xin \mathbb{R}^d is called well approximable if for some $\epsilon > 0$, the inequality $||x - p/q|| < q^{-1-1/d-\epsilon}$ has infinitely many solutions $p \in \mathbb{Z}^d$ and $q \in \mathbb{N}$. Let

$$\Lambda_x = \mathbb{Z}^{d+1} \begin{pmatrix} id & 0\\ x & 1 \end{pmatrix}, \quad x \in \mathbb{R}^d$$
$$a_t = \operatorname{diag}(e^t, \dots, e^t, e^{-dt}) \in \operatorname{SL}_{d+1}(\mathbb{R}),$$
$$\Delta(\Lambda) = \min\{ \|v\| : v \in \Lambda, v \neq 0 \}, \quad \Lambda \in \mathcal{L}^1_{d+1}$$

Prove that a vector x is well approximable if and only if there exists $\delta > 0$ such that the inequality $\Delta(\Lambda_x a_t) \leq e^{-\delta t}$ has solutions $t \to \infty$ (i.e., the flow visits exponentially shrinking neighbourhoods of ∞).

- (2) Show that if $\alpha\beta < 2\alpha 1$, then in the Schmidt game, Bob has a strategy to force the end point of the game to be any preassigned point.
- (3) Let $x_1, x_2, x_3...$ denote the sequence of the top digits of the numbers $2, 2^2, 2^3, ...$ in the decimal expansion. Compute the frequences

$$\lim_{N \to \infty} \frac{1}{N} |\{i = 1, \dots, N : x_i = d\}|.$$

(Hint: use rotations on the circle.) Which of the digits is most likely to appear?

- (4) Show that every closed set invariant under the horocycle flow is either the whole space or consists of periodic orbits.
- (5) Consider a sequence $P_i = x_i U$ of periodic orbits of the horocycle flow $U = \{u_s\}$ with the periods going to ∞ . Prove that this sequence becomes dense as $i \to \infty$. (Hint: imitate the "thickening" argument from the class and use mixing.)
- (6) Give an example of a sequence of probability measures μ_n on [0,1] and a set $B \subset [0,1]$ such that $\mu_n \to \mu$, $\mu_n(B) = 1$, and $\mu(B) = 0$.
- (7) Let $L(x, y) = \alpha x + \beta y$ with $\alpha, \beta \in \mathbb{R}, \alpha/\beta \in \mathbb{R} \setminus \mathbb{Q}$. Using the properties of the horocycle flow, show that the set

$$\{L(p,q): p,q \in \mathbb{Z}, \gcd(p,q) = 1\}$$

is dense in \mathbb{R} .