Homework 4

- (1) Let X be a compact metric space and \mathcal{P}_1 be the family of positive continuous linear functionals ℓ on C(X) such that $\ell(1) = 1$. Show that the extreme points of \mathcal{P}_1 are given by the functionals $\ell_x(f) = f(x), x \in X$.
- (2) Let $c_0(\mathbb{N})$ denote the space of sequences convergent to zero equipped with the maximum norm. Prove that $c_0(\mathbb{N})$ cannot be isomorphic to the dual of any Banach space. (Hint: Use the Krein-Milman theorem.)
- (3) Let $T : X \to X$ be a homeomorphism of a compact metric space. We denote by $\mathcal{M}_1(X,T)$ the collection of probability Borel measures on X which are T-invariant. A measure $\mu \in$ $\mathcal{M}_1(X,T)$ is called ergodic if for every T-invariant Borel subset $B \subset X$, either $\mu(B) = 0$ or $\mu(B) = 1$.
 - (a) Check that $\mathcal{M}_1(X,T)$ is a compact (in weak* topology) convex nonempty set.
 - (b) Show that if μ is an extreme point of $\mathcal{M}_1(X,T)$, then it is ergodic.
 - (c) Deduce that there always exists an ergodic T-invariant measure.
- (4) Let X and Y be compact metric spaces. Prove that the algebra of functions generated by f(x, y) = g(x)h(y), with $g \in C(X)$ and $h \in C(Y)$, is dense in $C(X \times Y)$.
- (5) Let X be compact metric space. Show that the space C(X) of continuous functions of X contains a countable dense set. (Hint: use the functions $f_y(x) = d(x, y)$ and the Stone-Weierstrass theorem.)
- (6) Let

$$K = \{ f \in C([0,1]) : f(0) = 0, f \text{ is } 1\text{-Lipschitz} \}.$$

Show that

- (a) K is convex and compact in the norm topology.
- (b) Show that any $f \in K$ which is piecewise linear with slopes ± 1 is extremal in K.
- (c) Show that the extreme points of K are dense in K.