Homework 4

(1) Consider the sequence of linear functionals ℓ_{n} on $L^{\infty}(\mathbb{R})$ defined by

$$
\ell_{n}(f)=\frac{1}{2 n} \int_{-n}^{n} f(x) d x
$$

(a) Show that $\left\|\ell_{n}\right\|=1$.
(b) Show that every limit point of ℓ_{n} in the weak* topology is not of the form

$$
\ell(f)=\int_{\mathbb{R}} h(x) f(x) d x, \quad h \in L^{1}(\mathbb{R}) .
$$

In particular, $L^{\infty}(\mathbb{R})^{*} \neq L^{1}(\mathbb{R})$.
(2) Let X be a compact metric space. Show that the set consisting of linear combinations of Dirac measures is dense in weak* topology in the space of all finite Borel measures, and deduce that the dual space $C(X)^{*}$ is separable (i.e., it contains a countable dense set).
(3) Let X and Y be compact metric spaces and $f: X \rightarrow Y$ a continuous surjection. Given a finite Borel measure ν on Y such that there exists a finite Borel measure μ on X such that $\nu(B)=\mu\left(f^{-1}(B)\right)$ for all Borel sets B of Y. (Hint: Use the Hahn-Banach theorem.).
(4) Let μ_{n} be sequence of finite Borel measures on a compact metric space. Assume that μ_{n} converges to μ in the weak* topology.
(a) Prove that for every closed $F \subset X$,

$$
\mu(F) \geq \limsup _{n \rightarrow \infty} \mu_{n}(F)
$$

(b) Prove that for every open $U \subset X$,

$$
\mu(U) \leq \liminf _{n \rightarrow \infty} \mu_{n}(U) .
$$

(c) Give examples where these inequalities are strict.
(5) Let I be a continuous linear functional on the space $C(X)$ of continuous functions. Show that I can be written as a difference of two positive continuous linear functional following the following steps. For a nonnegative function f, define

$$
I^{+}(f)=\sup \{I(g): 0 \leq g \leq f\}
$$

and $I^{-}=I^{+}-I$.
(a) Show that $I^{+}(f) \geq 0$ and $I^{-}(f) \geq 0$.
(b) Show that $I^{+}(f) \leq\|I\|\|f\|$.
(c) Show that I^{+}are linear on the cone of positive functions.
(d) Define $I^{+}(f)$ for all functions by setting $I^{+}(f)=I^{+}(g)-$ $I^{+}(h)$ where $f=g-h$. Show that this definition I^{+}does not depend on a choice of the decomposition for f and gives a continuous linear functional.
(6) Let $\left\{\mu_{n}\right\}$ be a sequence of probability Borel measures on a compact metric space. We say that μ_{n} converges to μ in total variation if

$$
\sup \left\{\left|\mu_{n}(B)-\mu(B)\right|: \text { Borel subset } B \subset X\right\} \rightarrow 0
$$

Compare convergence in variation to the weak* convergence. Does one implies the other?

