Homework 4

(1) Consider the sequence of linear functionals ℓ_n on $L^{\infty}(\mathbb{R})$ defined by

$$\ell_n(f) = \frac{1}{2n} \int_{-n}^n f(x) \, dx$$

- (a) Show that $\|\ell_n\| = 1$.
- (b) Show that every limit point of ℓ_n in the weak^{*} topology is not of the form

$$\ell(f) = \int_{\mathbb{R}} h(x)f(x) \, dx, \quad h \in L^1(\mathbb{R}).$$

In particular, $L^{\infty}(\mathbb{R})^* \neq L^1(\mathbb{R})$.

- (2) Let X be a compact metric space. Show that the set consisting of linear combinations of Dirac measures is dense in weak^{*} topology in the space of all finite Borel measures, and deduce that the dual space $C(X)^*$ is separable (i.e., it contains a countable dense set).
- (3) Let X and Y be compact metric spaces and $f : X \to Y$ a continuous surjection. Given a finite Borel measure ν on Y such that there exists a finite Borel measure μ on X such that $\nu(B) = \mu(f^{-1}(B))$ for all Borel sets B of Y. (Hint: Use the Hahn-Banach theorem.).
- (4) Let μ_n be sequence of finite Borel measures on a compact metric space. Assume that μ_n converges to μ in the weak^{*} topology.
 - (a) Prove that for every closed $F \subset X$,

$$\mu(F) \ge \limsup_{n \to \infty} \mu_n(F).$$

(b) Prove that for every open $U \subset X$,

$$\mu(U) \le \liminf_{n \to \infty} \mu_n(U)$$

- (c) Give examples where these inequalities are strict.
- (5) Let I be a continuous linear functional on the space C(X) of continuous functions. Show that I can be written as a difference of two positive continuous linear functional following the following steps. For a nonnegative function f, define

$$I^+(f) = \sup\{I(g) : 0 \le g \le f\}$$

and $I^{-} = I^{+} - I$.

- (a) Show that $I^+(f) \ge 0$ and $I^-(f) \ge 0$.
- (b) Show that $I^+(f) \le ||I|| ||f||$.
- (c) Show that I^+ are linear on the cone of positive functions.

- (d) Define $I^+(f)$ for all functions by setting $I^+(f) = I^+(g) I^+(h)$ where f = g h. Show that this definition I^+ does not depend on a choice of the decomposition for f and gives a continuous linear functional.
- (6) Let $\{\mu_n\}$ be a sequence of probability Borel measures on a compact metric space. We say that μ_n converges to μ in total variation if

 $\sup\{|\mu_n(B) - \mu(B)| : \text{Borel subset } B \subset X\} \to 0.$

Compare convergence in variation to the weak^{*} convergence. Does one implies the other?