
               

LAPLACE APPROXIMATIONS FOR LARGE

DEVIATIONS OF NON-REVERSIBLE MARKOV

PROCESSES ON COMPACT STATE SPACES

PART II: THE DEGENERATE HESSIAN CASE

Erwin Bolthausen, Jean-Dominique Dueschel and Yozo Tamura

Abstract. Let LT be the empirical measrue of a uniformly ergodic nonreversible

Markov process on a compact metric space and U be a smooth functional. We

give the long time asymptotic evaluation of the form of E[exp(TLT )] in the case

where the Hessian of J −U may be degenerate, where J is a rate function of the

large deviations of empirical measure.

0. Introduction.
In our previous article [3], we obtained the Laplace approximation based on

non-reversible Markov processes on compact metric spaces in the case where the
Hessian of the free energy is non-degenerate. In this paper, we investigate the
same asymptotics in the case where the Hessian of free energy may be degenerate.
Namely, let E be a compact metric space and {Px}x∈E be probability measures
of a Markov process on Ω = D([0,∞);E) satisfying an appropriate condition
(see Ass. 1 in §1). Let LT be an empirical probability mersure on Ω (see (1.25))
and U be a bounded and smooth function on the probability measures on E in
suitable sense (see Ass. 2 in §1). The purpose of this paper is to obtain the
asymptotic behavior of ef0TPx[exp(TU(LT ))] in general framework as T goes to
∞ where f0 = − limT→∞ T−1 logPx[exp(TU(LT ))].

Laplace approximations in degenerate Hessian case were investigated by
Bolthausen [1] and by Chiyonobu [4] for i.i.d. random variables and in [7] for
symmetric Markov processes. Here we treat this asymptotics for non-symmetric
Markov processes by using the same idea as in [4] and [7] which was first used
in Kusuoka and Stroock [6]. Key points to obtain this asymptotics in this way
are to determine a finite dimensional submanifold whose tangent spaces include
the whole directions in which the Hessian is degenerate and to obtain a uniform
estimate for uniform integrability.

Here we state our result briefly. Let the Markov process {Px}x∈E satisfy a
strong ergodicity condition (Ass. 1) and U satisfy a smoothness conditon (Ass.
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2). Then, there exist a finite dimensional manifold N and bounded continuous
functions f, g : N → [0, ∞) such that

Px[exp(TU(LT ))] ∼ e−f0T (
T

2π
)(dimN )/2

∫

N
g(ξ)e−f(ξ)Tn0(dξ)

as T →∞, where n0 is the Riemannian volume onN and f(T ) ∼ g(T ) as T →∞
means that limT→∞ f(T )/g(T ) = 1. This implies that ef0TPx[exp(TU(LT ))] =
O(ndim(N )/2) (see Th.4.1).

In §1 we explain the setting and problem exactly and in §2 we study about
uniformity of some estimates and Gaussian behavior treated in [3]. We will treat
a finite dimensional submanifold refrecting singularities in §3 and in §4 we state
our main theorem. In §5 we give the proof of Lem.2.1.

1. Setting and preliminaries.
The setting is almost the same as in [3], but we state here again to fix the no-

tation. Let E be a compact metric space. C(E) is a Banach space of continuous
functions on E with values in R with the supremum norm ‖ · ‖∞ and C+(E) is
the set of strictly positive continuous functions on E. M =M(E) is the set of
signed measures on E with finite total variations and M+

1 =M+
1 (E) is the set

of probability measures on E with weak topology.
Let {Px, x ∈ E} be a family of time homogeneous Markov probability mea-

sures on the path space Ω = D([0,∞);E) with Px{ω(0) = x} = 1. We denote by
{Pt}t≥0 the corresponding semigroup on (C(E), ‖·‖∞) and impose the following
assumption.

Assumption 1 (Strong uniform ergodicity). There exists a (Pt)-invariant
probability measure µ on E with supp(µ) = E and for any t > 0, there exists a
continuous function p(t, ·, ·) : E × E −→ (0,∞) such that

Ptϕ(x) =

∫

E

p(t, x, y)ϕ(x)µ(dy), µ-a.a x ∈ E for all ϕ ∈ C(E).

For T > 0 and ω ∈ Ω, let LT (ω)(·) ∈M+
1 be the empirical measure given by

(1.1)

∫

E

ϕ(x)LT (ω)(dx) =
1

T

∫ T

0

ϕ(ω(t))dt for ϕ ∈ C(E).

It is known (see Deuschel and Stroock [5]) that under Ass. 1, {Px ◦ L−1
T }T≥0

satisfy a strong uniform large deviation principle with rate function J :M+
1 →

[0,∞],

(1.2) J(λ) = sup{−
∫

E

Lϕ

ϕ
dλ;ϕ ∈ C+(E) ∩ Dom(L)},
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where L is the infinitesimal generator of {Pt}t≥0 on C(E) and Dom(L) is the
domain of L in C(E).

Let {ψk}∞k=1 ⊂ C(E) be a complete orthonormal basis in L2(E, dµ) and
Span{ψk, k ≥ 1} is dense in C(E) and let a = {ak}∞k=1 be a sequence of positive
numbers which satisfy the following:

(1) {ak}∞k=1 is monotone decreasing and

lim
k→∞

ak = 0,

(2)
∑∞
k=1 ak‖ψk‖2∞ = 1.

We fix {ψk}∞k=1 and {ak}∞k=1 throughout this paper. For λ and ν ∈M, we set

(λ, ν)a =

∞∑

k=1

ak(

∫

E

ψkdλ)(

∫

E

ψkdν) and(1.3)

‖λ‖a = (λ, λ)1/2.

We denote by Ma the completion of M with respect to ‖ · ‖a. Note that

‖λ‖a ≤ ‖λ‖var for any λ ∈M.(1.4)

The following lemma is easily obtained.

Lemma 1.1. Let νn, ν ∈ M+
1 ,n = 1, 2, . . . . Then, νn → ν, n→∞, weakly if

and only if ‖νn − ν‖a → 0, n→∞.

Let U be a continuous function on MA satisfying the following smoothness
assumption.

Assumption 2 (Smoothness of U). U is bounded continuous and has third
bounded continuous derivatives in Frechet sense.

Lemma 1.2. For any ν ∈ M+
1 , there exist U

(1)
ν ∈ C(E) and U

(2)
ν ∈ C(E × E)

such that

(1)

M+
1 3 ν 7→ U

(1)
ν ∈ C(E) is continuous,

M+
1 3 ν 7→ U

(2)
ν ∈ C(E × E) is continuous and

(2) for any λ ∈M+
1 ,

U(λ) = U(ν) +

∫

E

U (1)
ν (x)(λ− ν)(dx) +

1

2

∫∫

E×E
U (2)
ν (x)(λ− ν)(dx)

(λ− ν)(dy) +O(‖λ− ν‖3a).
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Proof. By Ass. 2,

U(λ) = U(ν) +DU(ν)[λ− ν] +
1

2
D2U(ν)[λ− ν, λ− ν]

+O(‖λ− ν‖3a).

Set

U (1)
ν (x) = DU(ν)[δx] and

U (2)
ν (x, y) = D2U(ν)[δx, δy].

Suppose xn → x in E. Then, δxn → δx in Ma, hence U
(1)
ν ∈ C(E) and

U
(2)
ν ∈ C(E × E).
Suppose νn → ν weakly in M+

1 . Then,

sup
x∈E
|DU(νn)[δx]−DU(ν)[δx]|

≤ sup
x∈E
‖δx‖−1

a |DU(νn)[δx]−DU(ν)[δx]|

≤ sup
h∈Ma,h 6=0

‖h‖−1
a |DU(νn)[h]−DU(ν)[h]|

→ 0 as n→∞,

This means the continuity of U
(1)
· and the continuity of U

(2)
· is proved simi-

larly. ¤
Since E is compact and U

(2)
ν ∈ C(E × E), we have

Lemma 1.3. C(E) 3 ϕ 7→
∫
E
U

(2)
ν (·, y)ϕ(y)ν(dy) ∈ C(E) is a trace class oper-

ator.

For V ∈ C(E), we set

PV (t, x, A) = Px[exp(

∫ t

0

V (ω(s))ds)1A(ω(t))], A ∈ B(E),(1.5)

PVt ϕ(x) =

∫

E

ϕ(y)PV (t, x, dy), ϕ ∈ C(E), and(1.6)

αV = lim
t→∞

1

t
log ‖PVt ‖op.(1.7)

Then the following duality relations hold:

αV = sup{
∫

E

V dλ− J(λ); λ ∈M+
1 },(1.8)

J(λ) = sup{
∫

E

V dλ− αV ; V ∈ C(E)}.(1.9)

The following is proved in Bolthausen, Deuschel and Schmock [2].



            

LAPLACE APPROXIMATIONS IN DEGENERATE CASE 5

Proposition 1.1. For V ∈ C(E), there uniquely exist uV and `V ∈ C+(E)
with ‖uV ‖L1(dµ) = 1 and (uV , `V )L2(dµ) = 1 such that

PVt u
V = eα

V tuV , and
∫

E

µ(dy)`V (y)PV (t, y, dz) = eα
V t`V (z)µ(dz).

Set

νV (x) = `V (x)uV (x) ∈ C+(E),(1.10)

νV (dx) = νV (x)µ(dx) ∈M+
1 .(1.11)

Furthermore we set

(1.12) QV (t, x, dy) = e−α
V t 1

uV (x)
PV (t, x, dy)uV (y).

Then, {QV (t, x, dy)} are transition probabilities of a Markov process with the

generator LV given by

(1.13) LV =
1

uV (x)
(L+ V − αV )(uV ·).

The following is also proved in Bolthausen, Deaschel and Schmock [2].

Proposition 1.2. Let V ∈ C(E).

(i) νV is a unique invariant probability measure of {QVt }t≥0 and for any
t > 0 there exists a probability density qV (t, x, y) of QVt with respect to
dνV and qV (t, ·, ·) ∈ C+(E × E).

(ii) There exist an αV1 > 0 and cV1 <∞ such that

sup
x∈E
‖qV (t, x, ·)− 1‖∞ ≤ cV1 e−α

V
1 t.

Set

gV (x, y) =

∫ ∞

0

(qV (t, x, y)− 1)dt,(1.14)

gV ′(x, y) = gV (y, x),(1.15)

gV (x, y) = gV (x, y) + gV ′(y, x).(1.16)
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For ϕ ∈ C(E), set

GV ϕ(x) =

∫

E

gV (x, y)ϕ(y)νV (dy),(1.17)

GV ′ϕ(x) =

∫

E

gV ′(x, y)ϕ(y)νV (dy),(1.18)

GV ϕ(x) =

∫

E

gV (x, y)ϕ(y)νV (dy).(1.19)

Note that GV , GV ′ and GV are bounded linear operators on C(E). Furthermore,
note that for any ϕ ∈ C(E),

(1.20) (ϕ,GV ϕ)νV ≥ 0.

Actually,

0 ≤ QVνV [(

∫

E

ϕd(
√
T (LT − νV )))2]→ (ϕ,GV ϕ)νV as T →∞.

For ϕ ∈ C(E), if M 3 λ 7→
∫
E
ϕdλ is continuous on Ma, then we write∫

E
ϕdλ in the form (ϕ̂, λ)a by appropriate ϕ̂ ∈Ma. For ψn, ψ̂n is given by

ψ̂n =
1

an
ψnµ.

We write C0(E) the set of finite linear combinations of ψn. For V ∈ C(E), we
define the bounded linear operator SV on Ma by

SV ek =
∞∑

j=1

√
akaj(ψk, GV ψj)νV ej

here we abbreviate (·, ·)L2(dνV ) as (·, ·)νV and put

ek =
1√
ak
ψkµ,

then, {ek}∞k=1 is a complete orthonormal basis in Ma.

Then we have the following (see Lem.2.30 in [3]).
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Lemma 1.4.

(i) SV is a symmetric non-negative definite trace class operator on Ma.

(ii) If ϕ ∈ C(E), then SV ϕ̂ = (GV ϕ)νV and therfore

(ϕ,GV ϕ)νV = (ϕ̂, SV ϕ̂)a.

Set

(1.24) M+
1,0 = {ν ∈M+

1 ; there exists a V ∈ C(E) such that ν = νV }.
The following proposition in our previous paper [3] is essential for our argument.

Proposition 1.3. Let ν ∈M+
1,0 and ν = νV , V ∈ C(E). Then,

J(ν) = −(`V , LuV )µ.

Proof. ¿From the definition,

J(ν) ≥ −
∫

E

LuV

uV
dν = −(`V , LuV )µ.

On the other hand, letting H(QV |P ) be the process level entropy of QV with
respect to P , we have

H(QV |P ) = QVνV [log
dQVω(0)

dPω(0)
|F1

0
]

= −(`V , LuV )µ.

By contraction principle, J(ν) ≤ H(QV |P ). Then we have our assertion. ¤
Set

ZT,x = Px[exp(TU(LT ))],

f0 = inf{F (λ); λ ∈M+
1 },(1.25)

where F :M+
1 → R ∪ {∞} is given by

F (λ) = J(λ)− U(λ).(1.26)

Then, by Varadhan’s theorem

lim
T→∞

1

T
logZT,x = −f0.

We set

(1.27) V = {ν ∈M+
1 ;F (ν) = f0}.

Our problem is to get the asymptotics of ef0TZT,x as T goes to ∞.

2. Uniform Gaussian behavior near limiting point.
First we quote the following proposition from Bolthausen, Deuschel and

Schmock [2].



             

8 ERWIN BOLTHAUSEN, JEAN-DOMINIQUE DUESCHEL AND YOZO TAMURA

Proposition 2.1.

(i) Tere exists a c1 ∈ [1,+∞) such that for any x ∈ E,

1

c1
exp(−6‖V ‖∞t) ≤ νV (x) ≤ c1 exp(6‖V ‖∞t).

(ii) For any a > 0, there exist an α1(a) > 0 and an M(a) <∞ such that for
any V ∈ C(E) with ‖V ‖∞ ≤ a and any t ≥ 1/2,

sup
x,y∈E

|qV (t, x, y)− 1| ≤M(a)e−α1(a)t.

We can prove the following lemma in a way similar to Lem. 2.8 in [3]. The
proof of this lemma is given in Appendix.

Lemma 2.1. Let V ∈ C(E).

(1) For any ϕ ∈ C(E),ε ∈ [−1, 1] and any T > 0,

| logQVx [exp(ε

∫ T

0

(ϕ(ω(s))− (ϕ, 1)νV )ds)|ω(T ) = y]− T

2
ε2(ϕ,GV ϕ)νV |

≤ B1|ε|‖ϕ‖∞ +B2|ε|2‖ϕ‖2∞ +B3,1|ε|3‖ϕ‖3∞ +B3,2|ε|3‖ϕ‖3∞T

(2) For any ϕ ∈ C(E), any ξ ∈ C with |ξ| < 4‖ϕ‖∞/α1 and any T > 1,

|qV (T, x, y)QVx [exp(ξ

∫ T

0

ϕ(ω(s))ds)|ω(T ) = y]

− exp(ξ2 1

2
(ϕ,GV ϕ)νV )|

≤ |ξ|2 8‖ϕ‖2∞
α1

exp(
8‖ϕ‖2∞
α1

|ξ|2T ) + exp(
4‖ϕ‖2∞
α1

|ξ|2T )

× {exp(
4‖ϕ‖2∞
α1

|ξ|2T ((1− 4|ξ|‖ϕ‖∞
α1

)−1 − 1))− 1}

+ 2|ξ|M 4‖ϕ‖∞
α1

(1− 4|ξ|‖ϕ‖∞
α1

)−1 exp(
8‖ϕ‖2∞
α1

T |ξ|2

1− 4|ξ|‖ϕ‖∞
α1

)

+ |ξ|2M2(
4‖ϕ‖2∞
α1

)2(1− 4|ξ|‖ϕ‖∞
α1

)−2 exp(
8‖ϕ‖2∞
α1

T |ξ|2

1− 4|ξ|‖ϕ‖∞
α1

)

+ |ξ|M2 4‖ϕ‖2∞
α1

(1− 4|ξ|‖ϕ‖∞
α1

)−1,
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where

B1 =
1

1−Me−α1T
A1

4

α1
,

B2 = (
1

1−Me−α1T
A2 +

1

2
(

1

1−Me−α1T
)2)(

4

α1
)2 +

M

2

1

1−Me−α1T

M

α1
,

B3,1 = (
1

1−M ′e−α′1T A
′
3,1 +

1

2
(

1

1−M ′e−α′1T )2A′2A
′
1

+
1

3
(

1

1−M ′e−α′1T )3(A′1)3)(
4

α′1
)3,

B3,2 =
1

1−M ′e−α′1T A
′
3,2(

4

α′1
)3,

A1 = M2 + 2M, A′1 = (M ′)2 + 2M ′,

A2 = 3M2 + 2M +
1

4
, A′2 = 3(M ′)2 + 2M ′ +

1

4
,

A′3,1 =
13

2
(M ′)2 + 2M ′, A′3,2 =

1

2
M ′α′1 +

1

8
α′1,

M = M(V ), M ′ = M(V + θεϕ),

α1 = α1(V ), α1 = α′1(V + θεϕ),

α1(·) and M(·) are given in Prop.2.1.

Here we notice that Bi’s and Bi,j ’s are uniformly bounded on {V ∈ C(E);
‖V ‖∞ ≤ a} and T ≥ T0 for any fixed a <∞ and T0 ≥ 1.

Let K be a compact metric space. Let U : Ma × K → R be a continuous
function which satisfies the following assumption.

Assumption 2′ (Smoothness of U).

(U-1) sup{U(λ, ξ);λ ∈M+
1 , ξ ∈ K} <∞.

(U-2) U(·, ξ) : Ma → R is three times bounded differentiable in Freche sense
for any ξ ∈ K.

(U-3)

U :Ma ×K → R is continuous,

DU :Ma ×K → L(MA; R) is continuous and

D2U :Ma ×K → L(MA ×MA; R) is continuous.

Let us define a function F :Ma ×K → R ∪ {∞} by

(2.1) F (m, ξ) = J(m)− U(m, ξ).

Set

(2.2) f0(ξ) = inf{F (λ, ξ);λ ∈M+
1 }.

¿From Ass. 2′ and Lem. 1.2, we have
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Lemma 2.2. For any ν ∈ M+
1 , there exist U

(1)
ν ∈ C(E × K) and U

(2)
ν ∈

C(E × E ×K) such that

(i)

M+
1 3 ν 7→ U (1)

ν ∈ C(E ×K) is continuous,

M+
1 3 ν 7→ U (2)

ν ∈ C(E × E ×K) is continuous and

(ii) for any λ ∈M+
1 ,

U(λ, ξ) = U(ν, ξ) +

∫

E

U (1)
ν (x, ξ)(λ− ν)(dx)

+
1

2

∫∫

E×E
U (2)
ν (x, y, ξ)(λ− ν)(dx)(λ− ν)(dy) +O(‖λ− ν‖3a).

The following proposition was proved in [3].

Proposition 2.2. Fix ξ ∈ K. Suppose that νξ ∈M+
1 satisfies F (νξ, ξ) = f0(ξ).

Then, νξ ∈M+
1,0 and the Vξ ∈ C(E) which satisfies νξ = νVξ is given by

(2.3) Vξ(x) = U (1)
νξ

(x, ξ) + const.

Furthermore we assume

Assumption 3 (Uniqueness of the minimum point). For any ξ ∈ K there
exists a unique νξ ∈M+

1 such that F (νξ, ξ) = f0(ξ).

Lemma 2.3.

(1) K 3 ξ 7→ f0(ξ) ∈ R is continuous.
(2) K 3 ξ 7→ νξ ∈M+

1 is continuous.

Proof. Suppose ξn ∈ K,n ≥ 1 and ξn → ξ∞ as n → ∞. By Ass.2′(1), we see
that

sup{J(νξn);n ∈ N} <∞.
Then, by taking a subsequence if necessary, we can assume that there exists a
ν∞ ∈M+

1 and νξn → ν∞ weakly. Then,

J(ν∞)− U(ν∞, ξ∞)

= lim
n→∞

{J(ν∞)− U(ν∞, ξn)}

≥ lim
n→∞

{J(νξn)− U(νξn , ξn)}
≥ lim
n→∞

{J(νξn)− U(νξn , ξn)}

≥ J(ν∞)− U(ν∞, ξ∞).

This implies that ν∞ = νξ∞ and f0(ξn)→ f0(ξ∞) as n→∞. ¤
This lemma and Lem. 2.2 imply
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Proposition 2.3. K 3 ξ 7→ U
(1)
νξ (·, ξ) ∈ C(E) is continuous.

We write G(ξ), α(ξ), . . . instead of GVξ , αVξ , . . . . From Lem. 2.3 and Lem.
2.19 in Bolthausen, Deuschel and Schmock [2] , we have the following.

Proposition 2.4.

(1) K 3 ξ 7→ α(ξ) ∈ R is continuous.
(2) K 3 ξ 7→ u(ξ) ∈ C+(E) is continuous.
(3) K 3 ξ 7→ `(ξ) ∈ C+(E) is continuous.
(4) K 3 ξ 7→ νξ ∈ C+(E) is continuous.

(5) K 3 ξ 7→ Q(ξ) ∈M+
1 (Ω) is continuous.

(6) K 3 ξ 7→ q(ξ)(t, ·, ·) ∈ C+(E × E) is continuous.

For x ∈Ma and ξ ∈ K, let

Γ(ξ)(x) = inf{‖y‖2a;x =
√
S(ξ)y} and let

MΓ(ξ) = {x ∈Ma; Γ(ξ)(x) <∞}.

Then Γ(ξ) :Ma → [0,∞] is convex, lower semi-continuous and {x ∈Ma; Γ(ξ)(x)
≤ c} is compact for any c > 0. Since νξ attains the minimum of F (·, ξ), we have

(2.4) (ϕ,GV ϕ)νξ ≥ D2U(νξ, ξ)[(GV )νξ, (GV )νξ]

(see Prop.2.23 in [3]). Then for x ∈Ma,

(2.5) Γ(ξ)(x) ≥ (x,D2U(νξ, ξ)x)a.

We impose the following assumption.

Assumption 4 (Non-degenerate Hessian). For any ξ ∈ K there exists a
c(ξ) ∈ (0, 1) such that for any ϕ ∈ C(E) with (ϕ, 1)νξ = 0,

D2U(νξ)[(G(ξ)ϕ)νξ, (G(ξ)ϕ)νξ] ≤ (1− c(ξ))(ϕ,G(ξ)ϕ)νξ .

Let α1(·) be the positive constant appeared in Prop. 2.1 (ii). Then, we have

(2.6) α1 ≡ inf{α1(‖Vξ‖∞); ξ ∈ K} > 0.

Proposition 2.5. For any ϕ ∈ C(E), K 3 ξ 7→ (ϕ,G(ξ)ϕ)νξ ∈ R is continuous.

Proof.

|(ϕ,G(ξ)ϕ)νξ −
∫ T

0

(ϕ, (Q
(ξ)
t −Πϕ)νξdt| ≤

1

α1
e−α1T ‖ϕ‖2∞

and K 3 ξ 7→ (ϕ, (Q
(ξ)
t −Π)ϕ)νξ ∈ R is uniformly cotinuous in t ∈ (0, T ]. ¤

¿From Ass. 4 and continuity of νξ, (ϕ,G(ξ)ϕ)νξ and U
(2)
νξ (·, ·, ξ), we have
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Proposition 2.6. There exists a c0 > 0 such that for any ξ ∈ K and any
ϕ ∈ C(E),

D2U(νξ)[(G(ξ)ϕ)νξ, (G(ξ)ϕ)νξ] ≤ (1− c0)(ϕ,G(ξ)ϕ)νξ .

¿From Lem. 2.1 (1), we have

Proposition 2.7. For any a > 0 there exists a constant C < ∞ such that for
any T ≥ 1, any ϕ ∈ C(E) with ‖ϕ‖∞ ≤ a, any ξ ∈ K and any ε ∈ (0, 1],

Q(ξ)
x [exp(εT

∫

E

ϕd(LT − νξ))] ≤ exp(ε2T

2
(ϕ,G(ξ)ϕ)νξ)

× exp(C(ε‖ϕ‖∞ + ε2‖ϕ‖2∞ + ε3‖ϕ‖3∞ + Tε3‖ϕ‖3∞))

Set

(2.7) `
(ξ)
T =

√
T (LT − νξ).

Then from Lem.2.1 (2) we have

Proposition 2.8. (`
(ξ)
T , ω(T )) under Q

(ξ)
x converges weakly to γ(ξ)⊗ νξ as T →

∞ uniformly in ξ ∈ K, where γ(ξ) is a unique centered Gaussian measure on
Ma satisfying ∫

Ma

(x, z)a(y, z)aγ
(ξ)(dz) = (x, S(ξ)y)a.

The following proposition is the uniform estimate in ξ ∈ K corresponding to
Prop.3.2 in [3].

Proposition 2.9. Let K be a set of all compact sets in Ma. Suppose that the
mapping K 3 ξ 7→ Aξ ∈ K is continuous and that infξ∈K Γ(ξ)(Aξ) > 0 . Then,

lim
c→∞

inf
ξ∈K
{−1

2
Γ(ξ)(Aξ)− sup

t,T
(

1

t2
logQ(ξ)

x (`
(ξ)
T ∈ tAξ); c ≤ t

≤
√
T

c
)} ≥ 0.

where Γ(ξ)(Aξ) = inf
x∈Aξ

Γ(ξ)(x).

Proof. ¿From the assumptions ∪ξ∈KAξ is a compact set inMa. Then there exist
open balls Vi = {y ∈ Ma; ‖y − pi‖a < ri}, i = 1, . . . ,m, such that ∪ξ∈KAξ ⊂
∪mi=1Vi. If 0 < ε < infξ∈K Γ(ξ)(Aξ), then V (ξ) = {x ∈Ma; Γ(ξ)(x) > Γ(ξ)(Aξ)

−ε
2
} is an open set since Γ(ξ) is lower semicontinuous. Set V

(ξ)
i = Vi ∩ V (ξ). As

Γ(ξ) is convex, there exist open convex sets U
(ξ)
i , i = 1, . . . ,m, with ∪mi=1U

(ξ)
i ⊃
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∪ξ∈KAξ and U
(ξ)
i ⊂ V (ξ)

i . Let x
(ξ)
i ∈ ∂U

(ξ)
i satisfy Γ(ξ)(x

(ξ)
i ) = Γ(ξ)(U

(ξ)
i ). Then,

there exist y
(ξ)
i ∈Ma, i = 1, . . . ,m, such that

U
(ξ)
i ⊂ {x ∈Ma; (x, y

(ξ)
i )a ≥ 1},(2.8)

(y
(ξ)
i , S(ξ)y

(ξ)
i )a =

1

Γ(ξ)(x
(ξ)
i )

=
1

Γ(ξ)(U
(ξ)
i )

,(2.9)

sup
ξ∈K
‖y(ξ)
i ‖a <∞.(2.10)

Actually we can choose y
(ξ)
i such that S(ξ)y

(ξ)
i = Γ(ξ)(x

(ξ)
i )−1x

(ξ)
i . Since C0(E)

is dense in Ma, for any ε′ > 0 there exist ϕ
(ξ)
i ∈ C0(E), i = 1, . . . ,m such that

U
(ξ)
i ⊂ {x ∈Ma; (x, ϕ̂

(ξ)
i )a ≥ 1− ε′},(2.11)

‖y(ξ)
i − ϕ̂

(ξ)
i ‖a < ε′,(2.12)

sup
ξ∈K
‖ϕ(ξ)

i ‖∞ <∞.(2.13)

Set v
(ξ)
i = (ϕ̂

(ξ)
i , S(ξ)ϕ̂

(ξ)
i )a. Then,

1

t2
logQ(ξ)

x (`
(ξ)
T ∈ tU

(ξ)
i )

≤ 1

t2
logQ(ξ)

x

(∫

E

ϕ
(ξ)
i d`

(ξ)
T ≥ t(1− ε′)

)
(by (2.11))

by using the usual exponential inequality

≤ − (1− ε′)2

v
(ξ)
i

+
1

t2
logQ(ξ)

x

[
exp

(
(1− ε′)t
v

(ξ)
i

∫

E

ϕ
(ξ)
i d`

(ξ)
T

)]

≤ − (1− ε′)2

v
(ξ)
i

+ C(
1− ε′

v
(ξ)
i

√
Tt
‖ϕ(ξ)

i ‖∞ +
(1− ε′)2

v
(ξ)
i

2
T
‖ϕ(ξ)

i ‖2∞

+
(1− ε′)3t(1 + T )

v
(ξ)
i

3
T 3/2

‖ϕ(ξ)
i ‖3∞) (by (2.13) and Prop.2.7)

= − (1− ε′)2

2v
(ξ)
i

+ o(1),

where o(1) is a general term that tends to 0 as c → ∞ uniformly in ξ ∈ K for

any t, T with c ≤ t ≤
√
T/c.
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Choosing ε′ > 0 sufficiently small, by (2.9) we have

1

t2
logQ(ξ)

x (`
(ξ)
T ∈ tU

(ξ)
i ) ≤ −1

2
(Γ(ξ)(U

(ξ)
i )− ε

2
) + o(1),

and therefore, for sufficiently large c > 0 we have

sup

{
1

t2
logQ(ξ)

x (`
(ξ)
T ∈ tAξ) , c ≤ t ≤

√
T

c

}

≤ sup

{
1

t2
log

m∑

i=1

Q(ξ)
x (`

(ξ)
T ∈ tU

(ξ)
i ), c ≤ t ≤

√
T

c

}

≤ −1

2
min

1≤i≤m
(Γ(ξ)(U

(ξ)
i )− ε

2
) + o(1)

≤ −1

2
(Γ(ξ)(Aξ)− ε) + o(1),

which completes the proof. ¤
Let b = {bk}∞k=1 be a sequence of strictly positive real numbers satisfying

(1) limk→∞ bk = 0, limk→∞ bk/ak =∞,
(2)

∑∞
k=1 bk‖ψk‖2∞ = 1.

We define the Hilbert space Mb in the same way as Ma. Then the imbedding
Mb ⊂ Ma is compact. We can prove the following uniform estimate in ξ ∈ K
in a way similar to Lem.3.4 in [3].

Lemma 2.4.

ρ(b) ≡ − lim
c→∞

sup
ξ∈K

sup
t,T
{ 1

t2
log sup

x∈E
Q(ξ)
x (‖`(ξ)T ‖b > t);

c ≤t ≤
√
T

c
} > 0.

Theorem 2.1. Let us assume Ass. 1, Ass. 2′, Ass. 3, and Ass. 4. Then, for
any T0 > 0 and any FT0

0 -measurable function Φ : Ω→ R,

eTf0(ξ)Px[Φ exp(TU(LT , ξ))]→ g(ξ)Q(ξ)
x [Φ]

as T →∞ uniformly in ξ ∈ K, where

g(ξ) = u(ξ)(x)(

∫

E

`(ξ)(y)µ(dy)){det(I −D2U(νξ, ξ) ◦ S(ξ))}−1/2.
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Proof. We will prove the case of Φ ≡ 1 for simplicity. Set

(2.14) Ũ(λ, ξ) = U(λ, ξ)− U(νξ, ξ)−DU(νξ, ξ)[λ− νξ].

Then from the definition, we have

eTf0(ξ))Px[exp(TU(LT , ξ)]

= u(ξ)(x)Q(ξ)
x [exp(T Ũ(LT , ξ))

1

u(ξ)(ω(T ))
]

= u(ξ)(x)(I
(ξ)
1 (c1, T ) + I

(ξ)
2 (c1, c2, T ) + I

(ξ)
3 (c2, T )),

where

c1, c2 > 0,

I
(ξ)
1 (c1, T ) = Q(ξ)

x [exp(T Ũ(LT , ξ))
1

u(ξ)(ω(T ))
, ‖`(ξ)T ‖a ≤ c1],

I
(ξ)
2 (c1, c2, T ) = Q(ξ)

x [exp(T Ũ(LT , ξ))
1

u(ξ)(ω(T ))
, c1 ≤ ‖`(ξ)T ‖a ≤ c2

√
T ],

I
(ξ)
3 (c2, T ) = Q(ξ)

x [exp(T Ũ(LT , ξ))
1

u(ξ)(ω(T ))
, c2
√
T ≤ ‖`(ξ)T ‖a].

By the following lemmas 2.5, 2.6 and 2.7, we complete the proof of Theorem
2.1. ¤

¿From the large deviation principle, we have

Lemma 2.5. For any c2 > 0,

lim
T→∞

sup
ξ∈K

I
(ξ)
3 (c2, T ) = 0.

¿From Prop.2.8, we see that

Lemma 2.6. For all but countablly many c1 > 0, there exists

Î
(ξ)
1 (c1) = lim

T→∞
I

(ξ)
1 (c1, T ) and

lim
c1→∞

Î
(ξ)
1 (c1) = {det(I −D2U(νξ, ξ) ◦ S(ξ)}−1/2(

∫

E

1

u(ξ)(y)
νξ(dy))

uniformly in ξ ∈ K
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Lemma 2.7. If c2 > 0 is small enough, then

lim
c1→∞

lim
T→∞

sup
ξ∈K

I
(ξ)
2 (c1, c2, T ) = 0.

Proof. For ε > 0 set

C(ξ)
ε = {x ∈Ma;

1

2
(D2U(νξ, ξ)x, x)a +

1

2
ε‖x‖2a ≥ 1}.

By Prop.2.6, we see that if ε > 0 is sufficiently small, then Γ(ξ)(C
(ξ)
ε ) > 2

uniformly in ξ ∈ K. If c2 > 0 is small enough and ‖`(ξ)T ‖a ≤ c2
√
T , then

T Ũ(LT , ξ) ≤
1

2
(D2(νξ, ξ)`

(ξ)
T , `

(ξ)
T )a +

1

2
ε‖`(ξ)T ‖2a.

Therefore

I
(ξ)
2 (c1, c2, T )

≤ Q(ξ)
x [exp(

1

2
(D2(νξ, ξ)`

(ξ)
T , `

(ξ)
T )a +

1

2
ε‖`(ξ)T ‖2a), c1 < ‖`(ξ)T ‖a ≤ c2

√
T ]

= Q(ξ)
x (c1 < ‖`(ξ)T ‖a ≤ c2

√
T )

+

∫ ∞

0

etQ(ξ)
x (

1

2
(D2(νξ, ξ)`

(ξ)
T , `

(ξ)
T )a +

1

2
ε‖`(ξ)T ‖2a) ≥ t, c1 < ‖`(ξ)T ‖a ≤ c2

√
T )dt

= Q(ξ)
x (c1 < ‖`(ξ)T ‖a ≤ c2

√
T )

+

∫ ∞

0

etQ(ξ)
x (`

(ξ)
T ∈

√
tC(ξ)

ε , c1 < ‖`(ξ)T ‖a ≤ c2
√
T )dt.

Here we take b = {bk}∞k=1 as before and set

Dt = {x ∈Ma; ‖x‖b > t}.

Then Dc
t is a compact set in Ma.

1

t
logQ(ξ)

x (`
(ξ)
T ∈

√
tC(ξ)

ε , c1 < ‖`(ξ)T ‖a ≤ c2
√
T )

=
1

t
log 2 +

1

t
logQ(ξ)

x (‖`(ξ)T ‖b > r
√
t, c1 < ‖`(ξ)T ‖a ≤ c2

√
T )

∨ 1

t
logQ(ξ)

x (`
(ξ)
T ∈

√
t(C(ξ)

ε ∩Dc
r), c1 < ‖`(ξ)T ‖a ≤ c2

√
T ).

By Lem.2.4, for any ε′ > 0 there exists a c′0 > 0 such that

sup
ξ∈K

sup
t,T
{1

t
log sup

x∈E
Q(ξ)
x (‖`(ξ)T ‖b > r

√
t), c ≤

√
t ≤
√
T

c
}

≤ −r2ρ(b) + ε′
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for any c ≥ c0 and any r > 0.

By Prop.2.9, we see that for any 0 < ε′ < 1
2Γ(ξ)(C

(ξ)
ε )− 1, there exists a c′′0 > 0

such that for any c ≥ c′′0 and any ξ ∈ K

sup
t,T
{1

t
logQ(ξ)

x (`
(ξ)
T ∈

√
t(C(ξ)

ε ∩Dc
r), c ≤

√
t ≤
√
T

c
}

< −1

2
Γ(ξ)(C(ξ)

ε ∩DC
r ) + ε′

≤ −1

2
Γ(ξ)(C(ξ)

ε ) + ε′ < −1.

Therefore there exist an ε1 > 0 and a c0 > 0 such that for any c ≥ c0 and any
ξ ∈ K

sup
t,T
{Q(ξ)

x (`
(ξ)
T ∈

√
tC(ξ)

ε ), c ≤
√
t ≤
√
T

c
} ≤ 2 exp(−(1 + ε1)t).

Let k = supξ∈K sup{8D2(νξ, ξ)x, x)a; ‖x‖a = 1}. Then inf{‖x‖a; x ∈ C(ξ)
ε } ≥√

2

k + ε
. Therefore for c > 0, if c2 <

1

c

√
2

k + ε
, then

√
tC

(ξ)
ε ∩ {x; ‖x‖a ≤

c2
√
T} = ∅ for

√
t ≥
√
T/c. Then for any d > c,

I
(ξ)
2 (c1, c2, T ) ≤ Q(ξ)

x (c1 < ‖`(ξ)T ‖a) +

∫ d

0

etQ(ξ)
x (c1 < ‖`(ξ)T ‖a)dt

+

∫ √T/c

d

etQ(ξ)
x (`

(ξ)
T ∈

√
tC(ξ)

ε )dt

≤ edQ(ξ)
x (c1 < ‖`(ξ)T ‖a) +

2

ε1
e−ε1d.

By Prop.2.8, we complete the proof. ¤

3. Manifold reflecting singularities.
In [3], we proved the following proposition (Lemma 2.17. in [3]).

Proposition 3.1. Let V ,ϕ ∈ C(E) and
∫
E
ϕdνV = 0. Then, for ε ∈ R, |ε| is

sufficiently small

(i) νV+εϕ = νV (1 + εGV ϕ+ ε2νV2 + rν(V, ε)),

(ii) J(νV+εϕ) = J(ν) + ε(V ,GV ϕ)νV + ε2 1
2 (ϕ,GV ϕ)νV + ε2(V, νV2 )νV

+ rJ(V, ε),
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where

V = V − αV ,
νV2 = GV ϕGV ϕ+ (GV )′ϕ(GV )′ϕ+GV ϕ · (GV )′ϕ− (GV ϕ · (GV )′ϕ, 1)νV ,

|rν(V, ε)| ≤M(‖V ‖∞)|ε|3, |rJ(V, ε)| ≤M(‖V ‖∞)|ε|3

and M(x) is increasing in x.

Here we rewrite Prop. 2.2 as follows.

Proposition 3.2. Let ν ∈ V. Then, ν ∈ M+
1,0 and V in ν = νV is given by

V = U
(1)
ν + const.

where V and M+
1,0 were given in (1.27) and (1.24), respectively.

Let us define C2 mapping F : C(E) −→ R ∪ {∞} and C1mapping G :
C(E) −→ C(E) by

F(V ) = J(νV )− U(νV ),(3.1)

G(V ) = U
(1)

νV
+ J(νV )−

∫

E

U
(1)

νV
(x)νV (dx),(3.2)

respectively. We define a set V in C(E) by

(3.3) V = {V ∈ C(E); νV ∈ V and αV = 0}.

Furthermore we set

V̂ = {(V, ϕ) ∈ C(E)× C(E);V ∈ V, (ϕ, 1)νV = 0 and

d2

dε2
F(V + εϕ)|ε=0 = 0}.

(3.4)

Then, we have

Proposition 3.3.

(1) If V ∈ V , then V = G(V ).

(2) Let V ∈ V. Then, (V, ϕ) ∈ V̂ if and only if ϕ = DG(V )[ϕ], (ϕ, 1)νV =
0.

Here the derivative DG of G is given by

DG(V )[ϕ](x) =

∫

E

U
(2)

νV
(x, y)GV ϕ(y)νV (dy)(3.5)

−
∫

E

νV (dx)

∫

E

U
(2)

νV
(x, y)GV ϕ(y)νV (dy),
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where U
(2)

νV
(x, y) = D2U(νV )[δx, δy].

Proof. For ϕ ∈ C(E) with
∫
E
ϕdνV = 0,

d

dε
F(V + εϕ)|ε=0 = (V − U (1)

νV
, GV ϕ)νV = 0.

Then, we have (1). By Prop.3.1,

d2

dε2
F(V + εϕ)|ε=0 = (ϕ,GV ϕ)νV + 2(V , νV2 )νV

−
∫∫

E×E
U

(2)

νV
(x, y)GV ϕ(x)GV ϕ(y)νV (dx)νV (dy)

− 2(U
(1)

νV
, νV2 )νV .(3.6)

By using (1) and the fact that (1, νV2 )νV = 0, we see that (3.6) is equal to
∫

E

νV (dx)GV ϕ(x){ϕ(x)−
∫

E

U
(2)

νV
(x, y)GV ϕ(y)νV (dy)}

Thus ϕ = DG(V )[ϕ] implies d2

dε2F(V + εϕ)|ε=0 = 0

Since F attains the minimum at V , for any ϕ ∈ C(E) with
∫
E
ϕdνV = 0,

(ϕ,GV ϕ)νV − (U
(2)

νV
, GV ϕ×GV ϕ)νV ⊗νV ≥ 0.

Therefore, for any ϕ, ψ ∈ C(E) with
∫
E
ϕdνV =

∫
E
ψdνV = 0, and t ∈ R,

0 ≤ (ϕ+ tψ,GV (ϕ+ tψ))− (U
(2)

νV
, GV (ϕ+ tψ)×GV (ϕ+ tψ))νV ⊗νV

= {(ϕ,GV ϕ)νV − (U
(2)

νV
, GV ϕ×GV ϕ)νV ⊗νV }

+ 2t{(ϕ,GV ψ)νV − (U
(2)

νV
, GV ϕ×GV ψ)νV ⊗νV }

+ t2{(ψ,GV ψ)νV − (U
(2)

νV
, GV ψ ×GV ψ)νV ⊗νV }.

Then we have

{(ϕ,GV ψ)νV − (U
(2)

νV
, GV ϕ×GV ψ)νV ⊗νV }2

− {(ϕ,GV ϕ)νV − (U
(2)

νV
, GV ϕ×GV ϕ)νV ⊗νV }

× {(ψ,GV ψ)νV − (U
(2)

νV
, GV ψ ×GV ψ)νV ⊗νV } ≤ 0

Therefore, if d2

dε2F(V +εϕ)|ε=0 = 0 , then (ϕ,GV ϕ)νV −(U
(2)

νV
, GV ϕ×GV ψ)νV ⊗νV

= 0 for any ψ ∈ C(E),
∫
E
ψdνV = 0. Hence ϕ(x) =

∫
E
U

(2)

νV
(x, y)GV ϕ(y)νV (dy)

+const. ¤
Note that DG : C(E) −→ C(E) is a compact operator by Lem. 1.3.
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Proposition 3.4. V ⊂ C(E) is a non-void compact set.

Proof. Let {Vn}∞n=1 ⊂ V. We denote νVn by νn. Then, {Vn}∞n=1 ⊂ V. Since V
is compact with respect to the weak topology in M+

1 , there exist ν ∈ V and a
subsequence {Vn′}∞n=1 of {Vn}∞n=1 such that νn′ → ν weakly as n → ∞. This

implies that U
(1)
νn′ → U

(1)
ν in C(E) by Lem. 1.2 (2). Then, by noting that

J(νn′) = f0 + U(νn′) and J(ν) = f0 + U(ν), we see that the weak convergence
of νn′ to ν implies that J(νn′)→ J(ν) as n′ →∞. From Prop. 3.3, we see that

Vn = U (1)
νn + J(νn)−

∫

E

U (1)
νn dνn, V = U (1)

ν + J(ν)−
∫

E

U (1)
ν dν.

and V ∈ V. Then, Vn′ → V in C(E). ¤

Let X be a Banach space.
We say that X has the approximation property if there exists a set {Πn} of
operators of finite rank such that limn Πn = I, I is the identity map on X, and
this convergence is uniform on any totally bounded set in X.
Then, the following proposition is known.

Proposition 3.5. If E is a compact metric space, then (C(E), ‖ · ‖∞) has the
approximation property.

Lemma 3.1. There exists a sequence {Πn}∞n=1, such that Πn : C(E)→ C(E) is
an operator of finite rank for any n, Πn converges to I uniformly on any totally
bounded set in C(E) and Πn|V : V→ Πn(V) is injective.

Proof. Let us assume that Πn|V is not injective for any n. Then, there exist
Vn,Wn ∈ V such that ΠnVn = ΠnWn and Vn 6= Wn. Since V is a compact set,
we can assume that Vn → V and Wn → W , V,W ∈ V as n → ∞, by taking
a subsequence if necessary. Since V is campact, Πn converges to I uniformly on
V. Then, we have ‖Wn − Vn‖∞ → 0 as n→∞, and hence W = V .

On the other hand, by Prop. 3.3,

Wn − Vn = G(Wn)− G(Vn)

= DG(V )[Wn − Vn] +

∫ 1

0

dt{DG(Vn + t(Wn − Vn))

−DG(V )}[Wn − Vn]

Let hn = (Wn − Vn)/‖Wn − Vn‖∞. Then,

hn = DG(V )[hn] + rn,

rn =

∫ 1

0

dt{DG(Vn + t(Wn − Vn))−DG(V )}[hn].
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¿From Lem. 1.2 and Prop. 3.3 (2), we see that ‖rn‖∞ → 0 as n → ∞. Since
DG(V ) : C(E) → C(E) is a compact operator and ‖hn‖∞ = 1, there exists
an h ∈ C(E) such that DG(V )[hn] → h, n → ∞ by taking a subsequence if
necessary. Then we have ‖h‖∞ = 1. On the other hand,

‖h‖∞ ≤ ‖h− hn‖∞ + ‖hn −Πnhn‖∞
≤ ‖h− hn‖∞ + ‖DG(V )[hn]−ΠnDG(V )[hn]‖∞
+ ‖rn −Πnrn‖∞
−→ 0 as n→∞

Then, h = 0. This is a contradiction. ¤

For n, we define Φn : C(E)→ C(E) by

(3.7) Φn(V ) = V − (I −Πn)G(V ).

Lemma 3.2. There exists an n ∈ N such that DΦn(V ) is invertible for any
V ∈ V.

Proof. Let V ∈ V and let us assume that DΦn(V ) is not invertible for any
n ∈ N. Then, for any n there exist a Vn ∈ V and a ϕn ∈ C(E) with ‖ϕ‖∞ = 1
such that

(3.8) ϕn = (I −Πn)DG(Vn)[ϕn].

Since V is compact, we can assume that there exists a V ∈ V such that Vn → V
by taking a subsequence if necessary. We rewrite (3.8) to

(3.9) ϕn = (I −Πn)DG(V )[ϕn]− (I −Πn)(DG(V )−DG(Vn))[ϕn].

The second term of the right hand side of (3.9) converges to 0 as n→∞ by (3.5)
and Lem. 1.2. Since DG(V ) is a compact operator, {DG(V )[ϕ]; ‖ϕ‖∞ = 1} is a
totally bounded set in C(E). Then, the first term of the right hand side of (3.9)
converges to 0 as n→∞. This contradicts that ‖ϕ‖∞ = 1. ¤

Since (I−Πn)DG(V ) is a compact operator, DΦn(V )−1 is a bounded operator.

Corollary. There exists an open neighborhood U(1)
n of V such that

Φn : U(1)
n → Φn(U(1)

n ) is local diffeomorphism.
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Proposition 3.6. There exists an n ∈ N such that

(i) Πn|V : V→ Πn(V) is injective,
(ii) for any V ∈ V, DΦn(V ) is invertible and

(iii) there exists an open neighborhood U(2)
n of V such that Φn|U(2)

n
: U(2)

n →
C(E) is injective.

Proof. ¿From the proofs of Lem.3.1 and Lem.3.2, we see that there exist infinitely
many n ∈ N for which (i) and (ii) hold. We assume that (iii) does not hold for
any n ∈ N for which (i) and (ii) hold. Then, there exist ϕn and ψn ∈ C(E)
such that ϕn 6= ψn, dist∞(ϕn,V) + dist∞(ψn,V) converges to 0 as n → ∞ and
Φn(ϕn) = Φn(ψn). Since V is compact, we can assume that there exist ϕ and
ψ ∈ C(E) such that ϕn → ϕ and ψn → ψ as n→∞ by taking a subsequence if
necessary.

Fix n1 ∈ N such that Πn1
|V : V→ Πn(V) is injective. Then, for any n ≥ n1

Πn1Φn(V ) = Πn1V for any V ∈ C(E).

If Φn(ϕn) = Φn(ψn) and n ≥ n1, then

Πn1
ϕn = Πn1

ψn.

Then, Πn1
ϕ = Πn1

ψ, and this implies ϕ = ψ.
On the other hand, if Φn(ϕn) = Φn(ψn), then by taking hn = (ϕn−ψn)/‖ϕn−

ψn‖∞ we have

hn = (I −Πn)DG(ϕ)[hn] +

∫ 1

0

dt(I −Πn){DG(ψn + t(ϕn − ψn))

−DG(ϕ)}[hn].

(3.10)

The right hand side of (3.10) goes to 0 as n→∞, and this contradicts ‖hn‖∞ = 1
for any n. ¤

Set Un = U(1)
n ∩ U(2)

n . Then we have

Corollary. Φn|Un : Un → Φn(Un) is a diffeomorphism.

Definition 3.1. N ⊂ C(E) is called a manifold reflecting singularities if

(i) N is a finite dimensional submanifold in C(E),
(ii) V ⊂ N and

(iii) if (V, ϕ) ∈ V̂, then ϕ ∈ TV (N).
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Theorem 3.1. There exists a manifold reflecting singularities in C(E).

Proof. Let n be the number which appears in Prop. 3.6. Set

(3.11) W = Πn(C(E)) ∩ Φn(Un).

Then, W is a finite dimensional subspace in C(E). Let us define Ψ : W→ C(E)
by

(3.12) Ψ(V ) = (Φn|Un)−1(V ).

Then, V ⊂ Ψ(W). Actually, for any V ∈ V, Φn(V ) ∈ Φn(Un) and Φn(V ) =
V − (I −Πn)G(V ) = Πn(V ) by Prop. 3.3 (1).

Set N = Ψ(W). Let (V, ϕ) ∈ V̂. Then,

d

dt
Φn(V + tϕ)|t=0 = ϕ− (I −Πn)DG(V )[ϕ] = Πnϕ

by Prop. 3.3 (2). This implies that d
dtΨ(ΠnV +tΠnϕ)|t=0 = ϕ. Then ϕ ∈ Tv(N)

and N is a manifold refrecting singularities. ¤

4. Main theorem.

By Th. 3.1, we get a manifold reflecting singularities N0 in C(E). We denote
ν· : C(E)→Ma by ν̂(·). Set

(4.1) N0 = ν̂(N0).

Then, N0 ⊃ V and by Prop. 3.1, N0 is a finite dimensional submanifold in Ma.
We can choose a relatively compact neighborhood N of V in N0 and an open
neighborhood U of N in Ma such that the following conditions are satisfied.

(1) For any m ∈ U there exists a unique Ψ(m) ∈ N such that

‖m−Ψ(m)‖a = inf{‖m− n‖a;n ∈ N0}.

(2) Coose a χ :Ma → R such that

0 ≤ χ ≤ 1,
χ(m) = 0, if m ∈ Uc,
χ(m) = 1, if m ∈ N .
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Define W0 :Ma ×N → R by

(4.2) W0(m, ξ) =
1

2
χ(m)‖Ψ(m)− ξ‖2a.

Then,

(4.3) (
T

2π
)d/2

∫

N0

exp(−TW0(m, ξ))n0(dξ)→ 1 as T →∞

uniformly in m ∈ U , where n0 is the Riemannian volume in N0. Set

W (m, ξ) = U(m)−W0(m, ξ),(4.4)

F (m, ξ) = J(m)−W (m, ξ),(4.5)

f0(ξ) = inf{F (λ, ξ);λ ∈M+
1 }.(4.6)

Then, there exists a unique νξ ∈ M+
1 such that F (νξ, ξ) = f0(ξ) and Ass. 4

holds. Note that if ξ ∈ V, then νξ = ξ.
The following is our main theorem.

Theorem 4.1. Suppose that Ass. 1 and Ass. 2 are satisfied. Then,

(1) V = {ξ ∈ N ; f0(ξ) = f0}.
(2) For any Φ : Ω → R which is bounded continuous and FT0

0 -measurable
for some T0 > 0,

eTf0Px[Φ exp(TU(LT ))]

∼ (
T

2π
)d/2

∫

N
e−(f0(ξ)−f0)T g(ξ)Q(ξ)

x [Φ]n0(dξ)

as T →∞, where n0 is the Riemannian volume of N0, d is a dimension
of N0 and

g(ξ) = u(ξ)(x)(

∫

E

`(ξ)dµ){det(I −D2W (νξ, ξ) ◦ S(ξ))}−1/2.

Proof. Note that W :Ma ×N → R satisfies the assumptions Ass. 2’ ∼ Ass. 4
in §2. By the large deviation principle,

(4.7) lim
T→∞

1

T
logPx[Φ exp(TU(LT )), LT ∈Ma ∩ Uc] < −f0.

Then,

ef0TPx[Φ exp(TU(LT ))]

∼ ef0TPx[Φ exp(TU(LT )), LT ∈ U ]
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using (4.3) we get

∼ (
T

2π
)d/2

∫

N0

ef0TPx[Φ exp(TW (LT , ξ))]n0(dξ)

= (
T

2π
)d/2

∫

N
e−(f0(ξ)−f0)T ef0(ξ)TPx[Φ exp(TW (LT , ξ))]n0(dξ)

by using Th. 2.1, we get

∼ (
T

2π
)d/2

∫

N
e−(f0(ξ)−f0)T g(ξ)Q(ξ)

x [Φ]n0(dξ).

¤

5. Appendix.
In this section we give the proof of Lem.2.1. Let ϕ̃(x) = ϕ(x) −

∫
E
ϕdν,

q̃(t, x, y) = q(t, x, y)− 1, and Q̃t = Qt −Πν , where Πνϕ = (ϕ, 1)ν . Set

an(τ1, · · · , τn) = (ϕ̃, Q̃τ1 ϕ̃Q̃τ2 · · · Q̃τn ϕ̃)ν ,

bn(x; τ1, · · · , τn) = (q̃(τ1, x, ·), ϕ̃Q̃τ2 ϕ̃ · · · Q̃τn ϕ̃)ν ,

cn(y; τ1, · · · , τn) = (ϕ̃, Q̃τ1 ϕ̃ · · · Q̃τn−1
q̃(τn, ·, y)ν ,

dn(x, y; τ1, · · · , τn) = (q̃(τ1, x, ·), ϕ̃Q̃τ2 ϕ̃ · · · Q̃τn−1
q̃(τn, ·, y)ν .

Then we have the following lemma (see Prop.1.3 in [7]).

Lemma. 5.1.

(i)

(5.1) |
∫∫

0<τ1,τ2
τ1+τ2<t

a1(τ1)dτ1dτ2 −
t

2
(ϕ,Gνϕ)ν | ≤ (

2

α1
)2‖ϕ‖2∞

(ii)

|an(τ1, · · · , τn)| ≤ 2n+1‖ϕ‖n+1
∞ exp(−α1

n∑

i=1

τi),(5.2)

|bn(x; τ1, · · · , τn)| ≤Mxeα14n‖ϕ‖n∞ exp(−α1

n∑

i=1

τi),(5.3)

|cn(y; τ1, · · · , τn)| ≤ Nyeα14n‖ϕ‖n∞ exp(−α1

n∑

i=1

τi),(5.4)

|dn(x, y; τ1, · · · , τn)| ≤MxNye−2α14n−1‖ϕ‖n−1
∞(5.5)

× exp(−α1

n∑

i=1

τi), for
n∑

i=1

τi > 2.
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where

Mx(s) = sup{q(t, x, ·); t ≥ s} (< +∞), Mx = Mx(1),

Ny(s) = sup{q(t, ·, y); t ≥ s} (< +∞), Ny = Ny(1).

Proof. (i) Note that
t

2
(ϕ,Gνϕ)ν =

∫ ∞

0

dτ1a1(τ1)

∫ t

0

dτ2. Then we have

|
∫∫

0<τ1,τ2
τ1+τ2<t

a1(τ1)dτ1dτ2 −
t

2
(ϕ,Gνϕ)ν | ≤

∫ t

0

dτ2

∫ ∞

t−τ2
|a1(τ1)|dτ1

≤ 1

α2
1

22‖ϕ‖2∞.

(ii) Since for h ∈ C(E),‖Q̃th‖ν ≤ e−α1t‖h‖∞ and ‖ϕ̃‖∞ ≤ 2‖ϕ‖∞, we have
(5.2).

Let h ∈ C(E). Then

|(q̃(τ1, x, ·), ϕ̃Q̃τ2 ϕ̃ · · · Q̃τnh)ν |

= lim
T→∞

|
∫
· · ·
∫

E×···×E
(q(τ1, x, z1)− q(T, x, z1))ϕ̃(z1)(q(τ1, z1, z2)

− q(T, z1, z2))ϕ̃(z2) · · · ϕ̃(zn−1)(q(τn, zn−1, zn)− q(T, zn−1, zn))h(zn)

ν(dz1) · · · ν(dzn)

≤ ‖ϕ̃‖n−1
∞ lim

T→∞

∫
· · ·
∫

E×···×E
(q(τ1, x, z1) + q(T, x, z1))(q(τ1, z1, z2)

+ q(T, z1, z2)) · · · (q(τn, zn−1, zn) + q(T, zn−1, zn))|h(zn)|ν(dz1) · · · ν(dzn)

= 2n−1‖ϕ‖n−1
∞ lim

T→∞

∑

i=1,··· ,n
σi=τi or T

∫

E

q(σ1 + · · ·+ σn, x, zn)|h(zn)|ν(dzn)

≤ 2n−1‖ϕ‖n−1
∞ A,

where A = sup{
∫
E
q(t, x, z)|h(z)|ν(dz); t ≥∑n

i=1 τi}. Since A ≤ ‖h‖∞ we have

that if
∑n
i=1 τi ≤ 1 then |bn(x, τ1, · · · , τn) ≤ 4n‖ϕ‖n∞. It is also easy to see that

(5.6) A ≤Mx(
n∑

i=1

τi)‖h‖ν .

Let
∑n
i=1 τi > 1. Then there exists an m such that

∑m−1
i=1 τi < 1 ≤ ∑m

i=1 τi.

Setσ = 1−∑m−1
i=1 τi and h = Q̃τm−σϕ̃Q̃τm+1

ϕ̃ · · · Q̃τn ϕ̃. Then bn(x, τ1, · · · , τn) =

(q̃(τ1, x, ·), ϕ̃Q̃τ1 · · · Q̃τm−1
ϕ̃Q̃σh)ν . By (5.6) and

‖h‖ν ≤ 2n−m+1‖ϕ‖n−m+1
∞ exp(−α1(

n∑

i=1

τi − 1)),
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we have

|bn(x; τ1, · · · , τn)| ≤ 2n‖ϕ‖n∞2mMx(1)eα1 exp(−α1

n∑

i=1

τi)

≤Mxeα14n‖ϕ‖n∞ exp(−α1

n∑

i=1

τi).

(5.4) and (5.5) can be shown in a similar way. ¤

Let ϕ ∈ C(E) and Φ =
∫ T

0
ϕ̃(ω(s))ds. Then we see that for A ∈ FT0 ,

(5.7) Qεϕx (A|ω(T ) = y) =
Qx[eεΦ1A|ω(T ) = y]

Qx[eεΦ|ω(T ) = y]
.

Set

(5.8) f(ε) = logQx[eεΦ|ω(T ) = y].

Then by (5.7), we have

f ′(ε) = QεΦx [Φ|ω(T ) = y],

f ′′(ε) = QεΦx [(Φ− (QεΦx [Φ|ω(T ) = y])2|ω(T ) = y],

f ′′′(ε) = QεΦx [(Φ− (QεΦx [Φ|ω(T ) = y])3|ω(T ) = y].

There exists a θ ∈ (0, 1) such that

f(ε)− T

2
ε2(ϕ,Gνϕ)ν(5.9)

= f ′(0)ε+
1

2
(f ′′(0)− T

2
ε2(ϕ,Gνϕ)ν)ε2 +

1

3!
f ′′′(θε)ε3

By Prop.2.1.(ii),q(T, x, y)−1 ≤ (1−Me−α1T )−1 and T (q(T, x, y)−1−1) ≤M/(1−
Me−α1T )α1e. These and (5.8) and the following Lem.5.2 imply (i) of Lem.2.1.

Lemma 5.2. Let f be as in (5.8). Then,

|f ′(0)| ≤ 1

q(T, x, y)
A1

4

α1
‖ϕ‖∞,(5.10)

|f ′′(0)− T

2
(ϕ,Gνϕ)ν | ≤ |

1

q(T, x, y)
− 1|T

2
(ϕ,Gνϕ)ν(5.11)

+ (
1

q(T, x, y)
A2 +

1

2
(

1

q(T, x, y)
)2)(

4

α1
)2‖ϕ‖2∞
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|f ′′′(ε)| ≤ 1

qεϕ(T, x, y)
(Aεϕ3,1 +Aεϕ3,2T )(

4

αεϕ1
)3‖ϕ‖3∞(5.12)

+
1

2
(

1

qεϕ(T, x, y)
)2Aεϕ2 Aεϕ1 (

4

αεϕ1
)3‖ϕ‖3∞

+ (
1

qεϕ(T, x, y)
)3(Aεϕ1 )3(

4

αεϕ1
)3‖ϕ‖3∞,

where

Aϕ1 = (Mϕ
x +Nϕ

y ) exp(−αϕ1 ) + e−1Mϕ
xN

ϕ
y exp(−2αϕ1 ),

Aϕ2 =
1

4
+ (Mϕ

x +Nϕ
y ) exp(−αϕ1 ) + (2e−2 + 1)Mϕ

xN
ϕ
y exp(−2αϕ1 ),

Aϕ3,1 = (Mϕ
x +Nϕ

y ) exp(−αϕ1 ) + (
9

2
e−3 + 2)Mϕ

xN
ϕ
y exp(−2αϕ1 ),

Aϕ3,2 =
αϕ1
4

(Mϕ
x +Nϕ

y ) exp(−αϕ1 ) +
1

8
αϕ1 .

Proof. Since

|f ′(0)| = 1

q(T, x, y)
|
∫ T

0

(q(s, x, ·), ϕ̃q(t− s, ·, y))νds|

=
1

q(T, x, y)
|
∫ T

0

{b1(x; s) + c1(y; t− s) + d2(x, y; s, t− s)}ds|,

we have (5.10) by Lem.5.1 (ii).
Since

1

2
f ′′(0) =

1

2
Qx[(

∫ T

0

ϕ̃(ω(s))ds)2|ω(T ) = y]− 1

2
(Qx[

∫ T

0

ϕ̃(ω(s))ds|ω(T ) = y])2

=
1

q(T, x, y)

∫∫
0<τ1,τ2
τ1+τ2<T

(q(τ1, x, ·), ϕ̃Qτ2 ϕ̃q(τ3, ·, y))νdτ1dτ2

− 1

2
(Qx[

∫ T

0

ϕ̃(ω(s))ds|ω(T ) = y])2

=
1

q(T, x, y)

∫∫
0<τ1,τ2
τ1+τ2<T

dτ1dτ2{a1(τ2) + b2(x; τ1, τ2) + c2(y; τ2,

T − (τ1 + τ2)) + d3(x, y; τ1, τ2, T − (τ1 + τ2)) + b1(x, τ2)c1(y, T − (τ1

+ τ2))} − 1

2
(

1

q(T, x, y)

∫ T

0

{b1(x; s) + c1(y; t− s) + d2(x, y;

s, t− s)}ds)2,

we have (5.11) by Lem.5.1 (i) and (ii).
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1

3!
f ′′′(ε) = I + II + III,

I =
1

3!
Qεϕx [

∫ T

0

(ϕ̃(ω(s))ds)3|ω(T ) = y],

II =
1

2
Qεϕx [

∫ T

0

(ϕ̃(ω(s))ds)2|ω(T ) = y]Qεϕx [

∫ T

0

ϕ̃(ω(s))ds|ω(T ) = y],

III =
1

3
(Qεϕx [

∫ T

0

ϕ̃(ω(s))ds|ω(T ) = y])3.

Then by Lem 5.1 (ii), we have

|I| = 1

qεϕ(T, x, y)
|
∫∫∫

τ1,τ2,τ3>0
τ1+τ2+τ3<T

dτ1dτ2dτ3{d4(x, y; τ1, τ2, τ3, T − (τ1 + τ2

+ τ3)) + b3(x; τ1, τ2, τ3) + c3(y; τ2, τ3, T − (τ1 + τ2 + τ3)) + b1(x; τ1)c2(y; τ3,

T − (τ1 + τ2 + τ3)) + b2(x; τ1, τ2)c1(y;T − (τ1 + τ2 + τ3)) + a1(τ3)b1(x; , τ1)

+ a1(τ2)c1(y;T − (τ1 + τ2 + τ3)) + a2(τ2, τ3)}|

≤ 1

qεϕ(T, x, y)
{Mϕ

xN
ϕ
y e2αϕ1 43‖ϕ‖3∞e−αϕ1 T

T 3

3!
+ (Mϕ

x +Nϕ
y )ealp(

4

αεϕ1
)

× 3‖ϕ‖3∞ + 2Mϕ
x eα

ϕ
1

4

αεϕ1
‖ϕ‖∞Nϕ

y eα
ϕ
1 (

4

αεϕ1
)2‖ϕ‖2∞ + 22‖ϕ‖2∞(Mϕ

x +Nϕ
y )

× 4‖ϕ‖∞
T

αϕ1
+ 23‖ϕ‖3∞

T

αϕ1
},

|II| ≤ 1

2
(

1

qεϕ(T, x, y)
)2Aεϕ2 Aεϕ1 (

4

αεϕ1
)3‖ϕ‖3∞,

|III| ≤ 1

3
(

1

qεϕ(T, x, y)
)3(Aεϕ1 )3(

4

αεϕ1
)3‖ϕ‖3∞.

These imply Lem.5.2. ¤

(ii) of Lem.2.1 can be proved in the following way.

Qx[eξΦ|ω(T ) = y]

= Qx[

∞∑

n=0

1

n!
(ξΦ)n|ω(T ) = y]

=
1

q(T, x, y)
{1 +

∞∑

n=1

ξn
∫
· · ·
∫

τ1,··· ,τn
τ1+···+τn<T

dτ1 · · · dτn(I + II + III + IV )},
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where

I = (ϕ̃, (Q̃τ2 + Πν)ϕ̃ · · · ϕ̃(Q̃τn + Πνϕ̃)ν ,

II = (q̃(τ1, x, ·), ϕ̃(Q̃τ2 + Πν)ϕ̃ · · · ϕ̃(Q̃τn + Πνϕ̃)ν ,

III = (ϕ̃, (Q̃τ2 + Πν)ϕ̃ · · · ϕ̃(Q̃τn + Πνϕ̃q̃(T − (τ1 + · · ·+ τn), ·, y))ν ,

IV = (q̃(τ1, x, ·), ϕ̃(Q̃τ2 + Πν)ϕ̃ · · · ϕ̃(Q̃τn + Πνϕ̃q̃(T − (τ1 + · · ·+ τn), ·, y))ν

Using Lem.5.1 (ii), we can estimate II, III and IV in the same way as in the
proof of Lem1.1 in [7] to get

|
∞∑

n=1

ξn
∫
· · ·
∫

τ1,··· ,τn
τ1+···+τn<T

dτ1 · · · dτnII|

≤ |ξ|Mxeα1

4
α1
‖ϕ‖∞

1− 4‖ϕ‖∞|ξ|/α1
exp(

T |ξ|28‖ϕ‖2∞
α1

1

1− 4‖ϕ‖∞|ξ|/α1
),

|
∞∑

n=1

ξn
∫
· · ·
∫

τ1,··· ,τn
τ1+···+τn<T

dτ1 · · · dτnIII|

≤ |ξ|Nyeα1

4
α1
‖ϕ‖∞

1− 4‖ϕ‖∞|ξ|/α1
exp(

T |ξ|28‖ϕ‖2∞
α1

1

1− 4‖ϕ‖∞|ξ|/α1
),

|
∞∑

n=1

ξn
∫
· · ·
∫

τ1,··· ,τn
τ1+···+τn<T

dτ1 · · · dτnIV |

≤ |ξ|2MxNye2α1(
4
α1
‖ϕ‖∞

1− 4‖ϕ‖∞|ξ|/α1
)2 exp(

T |ξ|28‖ϕ‖2∞
α1

1

1− 4‖ϕ‖∞|ξ|/α1
)

+ |ξ|MxNye2α1
4‖ϕ‖∞/α1

1− |ξ|4‖ϕ‖∞/α1
.

On the other hand,

1 +

∞∑

n=1

ξn
∫
· · ·
∫

τ1,··· ,τn
τ1+···+τn<T

dτ1 · · · dτnI = I1 + I2,

where

I1 = 1 +

∞∑

`=1

ξ2`

∫
· · ·
∫

τ1,··· ,τ2`
τ1+···+τ2`<T

dτ1 · · · dτ2`a1(τ2)a2(τ4) · · · a1(τ2`),

I2 =
∞∑

`=1

∞∑

n=2`+1

ξn
∑

k1,··· ,k`≥1
k1+···+k`=n−`

∫
· · ·
∫

τ1,··· ,τn
τ1+···+τn<T

dτ1 · · · dτnak1(τ2, · · · , τ1+k1)

· · · ak`(τ`+1+k1+···+k`−1
, · · · , τn).
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By Lem.5.1 (i) and (ii), we see that

|I1 − exp(ξ2T

2
(ϕ,Gνϕ)ν)| ≤ |ξ|22

4

α1
‖ϕ‖2∞ exp(|ξ|2T2

4

α1
‖ϕ‖∞) and

|I2| ≤ exp(|ξ|2T 4

α1
‖ϕ‖∞){exp(|ξ|2T 4

α1
(

1

1− 4‖ϕ‖∞|ξ|/α1
− 1))− 1},

and this completes the proof of Lem.2.1 (ii). ¤
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