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ABSTRACT. Let L7 be the empirical measrue of a uniformly ergodic nonreversible
Markov process on a compact metric space and U be a smooth functional. We
give the long time asymptotic evaluation of the form of E[exp(TL)] in the case
where the Hessian of J — U may be degenerate, where J is a rate function of the
large deviations of empirical measure.

0. Introduction.

In our previous article [3], we obtained the Laplace approximation based on
non-reversible Markov processes on compact metric spaces in the case where the
Hessian of the free energy is non-degenerate. In this paper, we investigate the
same asymptotics in the case where the Hessian of free energy may be degenerate.
Namely, let £ be a compact metric space and { P, },cr be probability measures
of a Markov process on 2 = D([0,00); E) satisfying an appropriate condition
(see Ass. 1in §1). Let Ly be an empirical probability mersure on € (see (1.25))
and U be a bounded and smooth function on the probability measures on E in
suitable sense (see Ass. 2 in §1). The purpose of this paper is to obtain the
asymptotic behavior of e/o” P, [exp(TU(Lr))] in general framework as T goes to
oo where fo = —limp_, o T~ log Pylexp(TU (Lt))].

Laplace approximations in degenerate Hessian case were investigated by
Bolthausen [1] and by Chiyonobu [4] for i.i.d. random variables and in [7] for
symmetric Markov processes. Here we treat this asymptotics for non-symmetric
Markov processes by using the same idea as in [4] and [7] which was first used
in Kusuoka and Stroock [6]. Key points to obtain this asymptotics in this way
are to determine a finite dimensional submanifold whose tangent spaces include
the whole directions in which the Hessian is degenerate and to obtain a uniform
estimate for uniform integrability.

Here we state our result briefly. Let the Markov process {P,}.cr satisfy a
strong ergodicity condition (Ass. 1) and U satisfy a smoothness conditon (Ass.
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2). Then, there exist a finite dimensional manifold A" and bounded continuous
functions f,g: N — [0, oco) such that

PLesp(TU (L)) ~ e 7 () @0/ | gle)e O ng(a)

as T — oo, where ng is the Riemannian volume on N and f(T') ~ g(T) as T — oo
means that limy .o f(T')/g(T) = 1. This implies that e/o” P, [exp(TU(Lt))] =
O (ndmWN)/2) (see Th.4.1).

In §1 we explain the setting and problem exactly and in §2 we study about
uniformity of some estimates and Gaussian behavior treated in [3]. We will treat
a finite dimensional submanifold refrecting singularities in §3 and in §4 we state
our main theorem. In §5 we give the proof of Lem.2.1.

1. Setting and preliminaries.

The setting is almost the same as in [3], but we state here again to fix the no-
tation. Let E be a compact metric space. C(F) is a Banach space of continuous
functions on E with values in R with the supremum norm || - ||, and CT(F) is
the set of strictly positive continuous functions on £. M = M(FE) is the set of
signed measures on E with finite total variations and M; = M7 (E) is the set
of probability measures on E with weak topology.

Let {P,,z € E} be a family of time homogeneous Markov probability mea-
sures on the path space Q = D([0, 00); E') with P,{w(0) = 2} = 1. We denote by
{P, }+>0 the corresponding semigroup on (C(E), || ||« ) and impose the following
assumption.

Assumption 1 (Strong uniform ergodicity). There exists a (P;)-invariant
probability measure p on E with supp(u) = E and for any t > 0, there exists a
continuous function p(t,-,-): E x E — (0,00) such that

Pplr) = /E p(t, 2, 9)p(@)u(dy), p-a.az € E for all g € C(E).

For T > 0 and w € , let Ly (w)(+-) € M7 be the empirical measure given by

1

T
(1.1) /Ego(x)LT(w)(da:) = T/o o(w(t))dt for p € C(E).

It is known (see Deuschel and Stroock [5]) that under Ass. 1, {P, o L7 }r>0
satisfy a strong uniform large deviation principle with rate function J : M} —
[0, oo,

(1.2) J(\) = sup{— /E %d)\; o € C*(E) N Dom(L)},
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where L is the infinitesimal generator of {P;}:>9 on C(E) and Dom(L) is the
domain of L in C(F).

Let {41}, C C(E) be a complete orthonormal basis in L?*(F,du) and
Span{ty, k > 1} is dense in C(F) and let a = {ax}72; be a sequence of positive
numbers which satisfy the following:

(1) {ax}g2, is monotone decreasing and

lim ax =0,
k—o0

(2) 2o%2; anllvnll = 1.
We fix {9 }72, and {ay}72, throughout this paper. For A and v € M, we set

(1.3) Mv)a = o / D) / Vrdv) and
k=1 2 E
IAlla = (A, )2,
We denote by M, the completion of M with respect to | - ||,. Note that
(1.4) IMle < IA||var  for any A € M.

The following lemma is easily obtained.

Lemma 1.1. Let v,,v € M ,n=1,2,.... Then, v, — v, n — oo, weakly if
and only if ||vy — v]|a — 0, n — oc.

Let U be a continuous function on M4 satisfying the following smoothness
assumption.

Assumption 2 (Smoothness of U). U is bounded continuous and has third
bounded continuous derivatives in Frechet sense.

Lemma 1.2. For any v € M7, there ewist Uit e C(E) and Ul? e C(E x E)
such that

(1)
M sv— Ul e C(E) is continuous,
M v Uul? e C(E x E) is continuous and

(2) for any A\ € M7,

) =00+ [ U @0 -+ [ v @0 -y
(A= v)(dy) + O(IA — 2.
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Proof. By Ass. 2,

UM =U(v)+DUW)[A—v]+ %DZU(V)[)\ — v, A — ]

O(IIx = vI2)-
Set
UV (z) = DU(v)[0,] and
U (x,y) = D*U(v)[6s, ).
Suppose z,, — « in E. Then, 6,, — J, in M,, hence Uﬁ” € C(F) and

Ul? € C(E x E).
Suppose v, — v weakly in M7. Then,

sup|DU (v,)[0z] — DU (v)[0]]

zelE
< sup 16211z | DU (v2)[02] — DU (v) 32|
< sup |BlIZHDU(va)[h] — DU@)[A]]
heM,,h#0

— 0 asn — oo,

This means the continuity of UM and the continuity of U® s proved simi-
larly. [

Since E is compact and US? € C (E x E), we have

Lemma 1.3. C(E)> ¢+~ [, U,EQ)(-,y)gp(y)V(dy) € C(E) is a trace class oper-
ator.

For V € C(F), we set

(15)  PY(t,z,A) = Pyexp / V(w(s))ds)Law(®)], A c B(E),
(1.6) PYo(z) = /E o) PV (t, 2, dy), e C(E), and

(1.7) o¥ = lim 105 |2 oy

Then the following duality relations hold:

(1.8) oV = sup{/E Vd\—J(\); Ae M},

(1.9) J(\) = Sup{/E Vdx—aY; VeC(E)}.

The following is proved in Bolthausen, Deuschel and Schmock [2].
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Proposition 1.1. For V € C(E), there uniquely exist v and (V € C*(E)
with |u" || 11 @u =1 and (u¥,€V)12(4,) = 1 such that

PYuY =e* 'Y, and

Set
(1.10) VW) =0V(x)u(z) €CT(B),
(1.11) vV (dz) = vV (z)u(dzx) € M

Furthermore we set

(1.12) QY (t,x,dy) = e PY(t,, dy)u” (y).

u¥ (x)

Then, {QV (t,x,dy)} are transition probabilities of a Markov process with the

generator LY given by

(1.13) LV = (L+V —a")(u").

The following is also proved in Bolthausen, Deaschel and Schmock [2].

Proposition 1.2. Let V € C(E).

(i) vV is a unique invariant probability measure of {QY }i>0 and for any
t > 0 there exists a probability density qV (t,x,y) of QY with respect to
dvV and ¢V (t,-,-) € CT(E x E).

(ii) There exist an af > 0 and ¢{ < oo such that

sup [lg¥ (8,2, ) = 1o < e} emed ",
xeER
Set
(1.14) 9" (z,y) = / (q" (t, 2z, y) — 1)dt,
0
(1.15) 9" (z,y) = 9" (y,z),

(1.16) 9V (z,y) = 9" (z,9) + ¢ (y,2).
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For ¢ € C(E), set

(1.17) Gvso(fc)Z/Egv(x,y)sf)(y)vv(dy),
(1.18) GV p(x) = /E 9" (@, y)e(y)v" (dy),
(1.19) GV (r) = /E a7 (2, 1)) (dy).

Note that GV, GV’ and GV are bounded linear operators on C(E). Furthermore,
note that for any ¢ € C(E),

(1.20) (0, GV),v > 0.
Actually,

0< QY ( /E od(VT(Ly — V)% = (.G )v a5 T — co.

For ¢ € C(E), if M 3 X — [, @d)\ is continuous on M,, then we write
[ ¢dX in the form (@, A), by appropriate ¢ € M. For i, ,@n is given by

~ 1
wn = _¢nﬂ-
Qn

We write Cy(F) the set of finite linear combinations of v,,. For V € C(E), we
define the bounded linear operator S¥ on M, by

SVer = Z Vara; (Y, Wl/’j)u‘fej

j=1

here we abbreviate (-,-)r2(a,v) as (+,-),v and put

1
er = ——Yrp,

Jar

then, {er}32, is a complete orthonormal basis in M,,.

Then we have the following (see Lem.2.30 in [3]).
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Lemma 1.4.

(i) SV is a symmetric non-negative definite trace class operator on M,.
(ii) If ¢ € C(E), then SV = (GV)vY and therfore

(2, GV)ov = (5,5 P)a-
Set
(1.24) ./\/lfo = {v € M{; there exists a V € C(E) such that v = vV}

The following proposition in our previous paper [3] is essential for our argument.
Proposition 1.3. Let v € Mio andv =v",V € C(E). Then,

J(w) = —(¢V, Lu¥),..

Proof. ;From the definition,

LuY
J(v) > —/E v dv=—(", Lu"),.

On the other hand, letting H(Q"'|P) be the process level entropy of Q" with
respect to P, we have

v
v AV w(0)
H(QYIP) = QU llog 5%

= _(gV’ Luv)ﬂ'

By contraction principle, J(v) < H(QY|P). Then we have our assertion. [
Set
21,2 = Pelexp(TU(L1))],
(1.25) fo=1inf{F(\); A € M{},
where F : M — R U {oo} is given by
(1.26) FA)=JW\) —=U(N).
Then, by Varadhan’s theorem

1
lim T 10g ZT,:U = —fo.

T—oo

We set
(1.27) V={veM{;F{v)=fo}.

Our problem is to get the asymptotics of efoTZTyx as T' goes to oo.

2. Uniform Gaussian behavior near limiting point.
First we quote the following proposition from Bolthausen, Deuschel and
Schmock [2].
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Proposition 2.1.
(i) Tere exists a c1 € [1,400) such that for any v € E,

1
o eP(=6lVlet) < v () < c1exp(6]|V ] sot)-

(ii) For any a > 0, there exist an aq(a) > 0 and an M (a) < oo such that for
any V € C(E) with [|V]e < a and any t > 1/2,

sup ]qv(t,x,y) -1 < M(a)e—al(a)t‘
z,yeE

We can prove the following lemma in a way similar to Lem. 2.8 in [3]. The
proof of this lemma is given in Appendix.

Lemma 2.1. Let V € C(E).
(1) For any ¢ € C(E),e € [-1,1] and any T > 0,

T
T -
105QY lexp(e | (#((5)) ~ (9 Do )DI(T) = 3] = 526, GV )
0
< Bilelllpllc + Balel ol + ByaleP s, + B alelPlol%T

(2) For any ¢ € C(E), any § € C with || < 4||¢|loc/a1 and any T > 1,

¥ (T2, 1)QY [exp(¢ / o(w(3))ds)|w(T) = 1]
0

~ exp(€5 (9, TV ) )]

8llll3
(0%

8|l
< ¢ 2E L e B2

4 2
7) + exp(LEL= g2

oL o )1y

Aol Aelllellos—1 8llellz,  TIE?
20610 T (1 = = ) exp (< )
ay
4lelI? 41¢]llelloo | — 8llell2, T¢I
2772 50\2/1 00\ —2 5o
+ €7 M3 ( o )4 (1 T )2 exp( o 1_4|£|Hq,”oo)
Allell% 41€] 1l oo

03] aq
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where
1 4
P T e gy
B = (e A 5310 5 T e
Bos = (g s+ 3T Ao
S Dy rir= S CIIC o
2= 1 Al )

Ay = M?*+2M, A} =(M)*+2M,
1 1
A2:3M2+2M+Z, A’2:3(M’)2+2M’+Z,
13 1 1
Ag,l = 7(M/)2 + 2]\4’7 Ag’2 - §M/O/1 + go/l,
M=MV), M =MV +0sp),

a; =a1(V), a1 =a)(V+0ep),

a1(+) and M(-) are given in Prop.2.1.

Here we notice that B;’s and B; ;’s are uniformly bounded on {V € C(E);
|V]|eo < a} and T > Tj for any fixed a < oo and T > 1.
Let K be a compact metric space. Let U : M, x K — R be a continuous
function which satisfies the following assumption.
Assumption 2’ (Smoothness of U).
(U-1) sup{U\,&); ) € MT, € € K} < .
(U-2) U(+,&) : My — R is three times bounded differentiable in Freche sense
for any £ € K.
(U-3)
U: M,x K —R is continuous,
DU : M, x K — L(Ma;R) s continuous and

DU : My x K — L(Ma x Mg;R) s continuous.

Let us define a function F': M, x K — R U {co} by

(2.1) F(m, &) = J(m) — U(m,).
Set
(2.2) fol€) = nf{F(\,€); A € M{}.

JFrom Ass. 2’ and Lem. 1.2, we have
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Lemma 2.2. For any v € M, there emist Ut e C(E x K) and Ul? e
C(FE x E x K) such that

(i)
MUY e C(ExK) s continuous,
MI s —=UP eC(ExExK) is continuous and

(ii) for any)\ej\/lf,
U\ €) =U(v,€) + /E U (2,€)(\ — v)(dz)
1 (2) X — UV X — UV — UV 3
5 [ UP @0 =)t + or-vid.

The following proposition was proved in [3].
Proposition 2.2. Fir ¢ € K. Suppose that ve € M satisfies F(ve, &) = fo(€).
Then, ve € Mfo and the Ve € C(E) which satisfies ve = vVe is given by
(2.3) Ve(z) = Uﬁ?(az,f) + const.

Furthermore we assume

Assumption 3 (Uniqueness of the minimum point). For any £ € K there
exists a unique ve € M7 such that F(ve, &) = fo(€).

Lemma 2.3.

(1) K 3¢~ fo(§) € R is continuous.
(2) K 3¢ ve € MY is continuous.

Proof. Suppose &, € K,n > 1 and &, — £, as n — 0o. By Ass.2/(1), we see
that
sup{J(vg,);n € N} < oo.

Then, by taking a subsequence if necessary, we can assume that there exists a
Voo € MT and vg, — vs, weakly. Then,

J(Voo) = U(Veos €c0)

= lim {J(vee) = U(vso: €n)}
TIim {J(ve,) = Uve,, &)}
> h—)_m {J(l/gn) — U(Vgn,§n)}

2 J(Voo) - U(VOO7§OO)
This implies that ve, = ve and fo(&,) — fo(és) asn — o0, O

v

This lemma and Lem. 2.2 imply
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Proposition 2.3. K 3¢ — Uy(?(-,ﬁ) € C(FE) is continuous.

We write G©,a®, ... instead of GV, a'%,.... From Lem. 2.3 and Lem.
2.19 in Bolthausen, Deuschel and Schmock [2] , we have the following.

Proposition 2.4.

(

(2) K3>¢&—u® e OH(E) s continuous.

(3) K2 ¢w 08 e CH(E) s continuous.

(4) K>&—ve € CT(E) s continuous.

(5) K2¢&—Q® e M (Q) s continuous.

(6) K 3¢ q¥(t,-,-) € CH(E x E) s continuous.

For x € M, and € € K, let
F(ﬁ)(x) — 1nf{”y”2’x =/ S(f)y} and let
Mre = {z € My;T®(2) < oo}

Then I'€) : M, — [0, c0] is convex, lower semi-continuous and {z € M,; T ()
< ¢} is compact for any ¢ > 0. Since v¢ attains the minimum of F'(-,§), we have

(2.4) (¢, GV @)e = DU (ve, )[(GV )ve, (GV )]
(see Prop.2.23 in [3]). Then for x € M,,
(2.5) 1) (z) > (x, D?U(ve, €)z)a.

We impose the following assumption.

Assumption 4 (Non-degenerate Hessian). For any { € K there exists a
c(&) € (0,1) such that for any ¢ € C(E) with (p,1),, =0,

ve
D2U () [(GOp)ve, (GO p)re] < (1= () (0, GO )y
Let a1 (+) be the positive constant appeared in Prop. 2.1 (ii). Then, we have
(2.6) ay = inf{oq (|| Ve|leo); € € K} > 0.

Proposition 2.5. Foranyp € C(E), K 3£ — (¢,G® ), € R is continuous.
Proof.

T
1 —
(0,G ), / (.(QF ~ Tp)edt] < e T,

and K 3 & (i, ( EE) —I)g),, € R is uniformly cotinuous in ¢t € (0,7]. O

;From Ass. 4 and continuity of v¢, (¢, G(@(p)yé and U,Sg)(-, -, &), we have
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Proposition 2.6. There exists a cg > 0 such that for any £ € K and any
p e C(E),

DU (ve) (GO p)ve, (GO p)re] < (1 - co)(p, GO ),

¢From Lem. 2.1 (1), we have

Proposition 2.7. For any a > 0 there exists a constant C' < co such that for
any T > 1, any ¢ € C(E) with ||¢|leo < a, any £ € K and any € € (0,1],

T [—
QOep(eT [ pd(Lr — ve))) < (e (0. GT)s,)
E
x exp(Clellello + e loll5 + llell + Te?llell)
Set
(2.7) 08 = VT(Ly — ve).
Then from Lem.2.1 (2) we have

Proposition 2.8. (Eg),w(T)) under Q% converges weakly to v(& @ ve as T —
oo uniformly in & € K, where &) is a unique centered Gaussian measure on
M, satisfying

y (x,2)a(y, 2)ay O (d2) = (x,5y),.

The following proposition is the uniform estimate in £ € K corresponding to
Prop.3.2 in [3].

Proposition 2.9. Let K be a set of all compact sets in M. Suppose that the
mapping K 2 &€ — A¢ € K is continuous and that infecre T (Ag) > 0 . Then,

1
lim gm}f({——l“(£ (Ae) — Sup( 2 log Q') (€§§) €tAe);c <t
c—o0 §€

where F(g)(Ag) = inf T©(z).
:I:EA&

Proof. (From the assumptions Ugc g A¢ is a compact set in M. Then there exist
open balls V; = {y € Mg;lly — pilla < ri},i = 1,...,m, such that Ugeg Ae C
U Vi TE0 < e < infeere DO (Ag), then V) = {2 € M,; T (2) > TE (Ag)

_%} is an open set since I'(¢) is lower semicontinuous. Set Vi(g) =V,NnV®, As

I'(®) is convex, there exist open convex sets Ui(g),z' =1,...,m, with U?;lUi(f) D
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Ugex Ae and U(g) C V(f) Let x(G) € 8Ui(§) satisfy F(ﬁ)(xgg)) = I‘(g)(Ui(g)). Then,
there exist y(f) € My, i=1,...,m, such that

(2.8) U € {2 € Ma; (2,9)a > 1},
© g, ©y -1 1
2.9 ; 78 - )
29 W T L6 6E) T T )
(2.10) sup [y la < oo
(eEK

Actually we can choose y(@ such that S(f)y(g) =T (g 55))_15055). Since Cy(E)
is dense in M, for any ¢’ > 0 there exist ¢ ( ) ¢ Co(E),i=1,...,m such that

(2.11) U® ¢ [z € My; (z, (5)) >1-—¢'},
(2.12) 159 — 6O < &
(2.13) sup [0 ||oo < 0.

EeK

Set v = (p; o S(g)go(g)) . Then,
1
5 108 (65 € tU;)

1
< 105 ([ 00t = 11-2) (v 20)
E

by using the usual exponential inequality

(1-¢)* 1 (©) (L=€V [ © 0

(1-¢)? 1—¢ (1—¢")?
s——wm 0=l (g)”%* 2

||s0§£)||?c’>o) (by (2.13) and Prop.2.7)

[k
(1—e)3(1+7T)
U££)3T3/2

(1-¢)’
= — g +olb),
20

where o(1) is a general term that tends to 0 as ¢ — oo uniformly in £ € K for
any t,T with ¢ <t < \/T/c
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Choosing &’ > 0 sufficiently small, by (2.9) we have
1 1
5 log QO () € 1Y) < S (T OU) = 0) +o(1),

and therefore, for sufficiently large ¢ > 0 we have

1 T
sup{ﬁlogQ;@(ﬁg?) €tAe), c<t< \/—_}

C
1 - VT
< sup {t_2 1og;Q§§)(£§§) ctU®), e<t< T}
<1 i O@O) - Sy 4 o)
- 21<i<m 2

< 5 (MO (4¢) — <) + o)

which completes the proof. [J

Let b = {by}72, be a sequence of strictly positive real numbers satisfying

(1) limg—oo b =0, limg_o bi/ag = 00,

(2) 2opty bellvwll3 =
We define the Hilbert space M in the same way as M,. Then the imbedding
My € M, is compact. We can prove the following uniform estimate in £ € K
in a way similar to Lem.3.4 in [3].

Lemma 2.4.

p(b) = — Tim sup sup{— log sup Q& (|1£49 ]}, > 1):
c—ooeck T L z€E

VT

c<t<—1}>0.
c

Theorem 2.1. Let us assume Ass. 1, Ass. 2/, Ass. 3, and Ass. 4. Then, for
any Ty > 0 and any fgo -measurable function ® : Q — R,

T P& exp(TU (Lr, )] — g(€)QY[®]

as T — oo uniformly in £ € K, where

£) = u®(z /g({f) u(dy)){det(I — DU (vg, &) 0 S©)}~1/2,
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Proof. We will prove the case of ® =1 for simplicity. Set
(2.14) U\ &) = U\ €)= Ulve, &) — DU (ve, )\ — vel.
Then from the definition, we have

eTfo(ﬁ))Px lexp(TU (L, &)]
1
WO (D)
= u(g) (,’L') (I{g) (Cl, T) + 12(5) (Cla C2, T) + Iég) <627 T))7

= 9 (2)QO [exp(TU (L, £))

where

C1,Co > 0,
~ 1
1{5)(01,T) =Q¥ [GXP(TU(LTﬁ))Wa ||€§§)||a < al,
~ 1
17 (ex 02, 7) = QF lexpTU (L, O) oy o < I o < VT
G NG - 1 ©)
13 (627T) - Qa} [eXp(TU(LT7£))u(§) (U.)(T))’ 02\/T g HeT HCL]‘

By the following lemmas 2.5, 2.6 and 2.7, we complete the proof of Theorem
2.1. O

.From the large deviation principle, we have

Lemma 2.5. For any co > 0,

lim sup 13(6)(C2, T) =0.
T—o0 ceK

JFrom Prop.2.8, we see that

Lemma 2.6. For all but countablly many c; > 0, there exists

ffg)(cl) = Tlim Il(g)(cl, T) and

lim 119 (cy) = {det(I — DU (v, €) os@}—l/?(/ U(%(y)l/g(dy))
c1—00 E

uniformly in £ € K
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Lemma 2.7. If co > 0 is small enough, then

lim lim sup Iég)(01,CQ,T) =0.

c1—00 T —o0 ¢eK

Proof. For € > 0 set

1 1
C®) = {z € M,; §(D2U(V£7€)w,w)a + §€||33Hi > 1}

(\V]

By Prop.2.6, we see that if ¢ > 0 is sufficiently small, then F(g)(Ce(g)) >
uniformly in £ € K. If ¢ > 0 is small enough and ||€§,§) e < c2V/T, then

TO(Lr,6) < (D (ve, O, 690 + 5l 62

Therefore

12(5) (c1,c2,T)

< QW lexp (5 (D76, L 69 )0 + 5ol 612), 1 < P lla < e2VT]

= Q¥ (cr < 65 ]la < 2VT)

+ [ QG 49 690, + PR 2 s < 169 < oV T

= Q9 (1 < |6l < c2V'T)

+ /00 ethf)(Egg) e VIC® ¢ < ||€g§)||a < ¢oVT)dt.

0
Here we take b = {by }?° , as before and set
Dy = {w € Myi|z]ls > t}.

Then Dy is a compact set in M,,.
%long)(ﬁgﬁ) e VICO ¢ < 694 < oVT)
= S1og2 4+ 108 QO(IAY ] > rv,e1 < 149 < e2VT)
v %mg QI e VHCE N D) er < [0 ]|a < VT,

By Lem.2.4, for any ¢’ > 0 there exists a ¢{, > 0 such that

1 VT
sup sup{ - log sup QL) (167 [y > rv), e < Vi< =}
EEK t,T z€EFE C

< —r2p(b) + ¢’
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for any ¢ > ¢p and any r > 0.

By Prop.2.9, we see that for any 0 < &’ < %F(f)(Cg(g)) — 1, there exists a ¢f >0
such that for any ¢ > ¢j and any € € K

1 T
sup{ Mo QIO € Vi(C® 1 D) e < i< YT

1
< —§F<€>(C§> NDEY) + ¢
< —%r@)(q@) +¢ < 1.

Therefore there exist an €; > 0 and a ¢y > 0 such that for any ¢ > ¢y and any
EeK

sup QU9 € Vic®),e < vi < YT} < 2exp(—(1+ 1))
T

Let k = supee e sup{8D*(ve, §)a, 2)a o = 1}. Then inf{||z]o; @ € C2¥} >
2 1 2
P Therefore for ¢ > 0, if ¢ < E“—k+6’ then v#C N {z; |lz|l. <

02\/7} = () for \/t > \/T/c Then for any d > ¢,
d

191,00 1) < Q9er < 691 + [ '@ er < 149 )t
0

VT /e
+ / ' QW (Y e Vi)t
d

2
< QI (er < I la) + Zem

By Prop.2.8, we complete the proof. [J

3. Manifold reflecting singularities.
In [3], we proved the following proposition (Lemma 2.17. in [3]).

Proposition 3.1. Let Vo € C(E) and [, edvY = 0. Then, fore € R, |e| is
sufficiently small
(i) Ve =V (1 +eGVo+ei +1,(Vie),
(i) J@Vr?) = Jw) + e(V,GVo),v + 22 (0, GV),v + 2(V,1),v
+r7(V,e),
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where
V=V-d",
vy =G oG o+ (GV)o(GV) o+ G - (GV)o—(GVe - (GV)p,1),v,
Ir(V,e)| < M(||V]le)el?, rs(V,e)| < M(|V o) lel?

and M(x) is increasing in x.
Here we rewrite Prop. 2.2 as follows.

Proposition 3.2. Let v € V. Then, v € Mio and V in v = vV is given by

V =UM + const.
where V and M{  were given in (1.27) and (1.24), respectively.

Let us define C? mapping F : C(E) — R U {oo} and C'mapping G :
C(E) — C(E) by

(3.1) FV)=J")-U@"),

(3.2) Gy =UW 4 IV - / UD (@) (da),
E

v

respectively. We define a set V in C(FE) by

(3.3) V={VeC(E);vW €¢Vanda" =0}.
Furthermore we set

(3.4) V={(V,p) € C(E) x C(E);V €V, (¢,1),v =0 and

—]-"(V + 590)|5:0 = 0}

Then, we have

Proposition 3.3.
(1) If VeV, thenV =G(V).
(2) Let V € V. Then, (V,p) €V if and only if p = DG(V)[¢], (p,1),v =
0.

Here the derivative DG of G is given by
35 DAWIRl@) = [ UD @G e (i)

—/Eyv(dx)/EU,E?/)(%Z/)W@(?J)VV(CZZ‘/)»
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where Uf)(az,y) = D?UW")[6z,6,)].
Proof. For ¢ € C(E) with [, ¢dv" =0,

d _ _
TF(V +ep)leo = (V - U, GVp),v = 0.

Then, we have (1). By Prop.3.1,

2 __ _
d_€2]:(v + 590)|€=0 = (907 GVQO)I/V + 2(V7 V;/)I/V
- / / U (@, )GV p(2) GV o) (da)” (dy)
ExE
(3.6) —2(US) ).

By using (1) and the fact that (1,24 ),v = 0, we see that (3.6) is equal to
| @ et o)~ [ U (@ n)G o )
E E

Thus ¢ = DG(V)[p] implies %}"(V +e9)|e=0 =0
Since F attains the minimum at V, for any ¢ € C(E) with [, odvY =0,
(907W90)VV - (Uigf)?WSO X WSD)V‘/@Z/V > 0.
Therefore, for any ¢, € C(E) with [, edvY = [ dvY =0, and t € R,

0 < (¢ + 1, GV (¢ + 1)) — (UL, GV (0 + ty) x GV (¢ + 1)) ,v v
= {(¢,GV9)v — (UR, GV x GV) v v }
+2t{(0, GVY),v — (U, GV o x GVY),v g, }
+ {1, GVY),v — (US, GV x GV),v g ).
Then we have
{0, GV)v — (U, GV x GV) v v }
—{(p, GV )v — (UD, GV x GV ) v}
< {(, GV )v — (UR, GV x GV ) v v} <0

Therefore, if %}"(‘H—g@ﬂg:o =0, then (¢, GV ), v —(Uﬁ),Wg;wa),,v@VV

=0 for any ¢ € C(E), [, ¢¥dvY = 0. Hence p(z) = [, Ui%)(:z:,y)ﬁgo(y)l/v(dy)
+const. U

Note that DG : C(E) — C(F) is a compact operator by Lem. 1.3.



20 ERWIN BOLTHAUSEN, JEAN-DOMINIQUE DUESCHEL AND YOZO TAMURA

Proposition 3.4. V C C(FE) is a non-void compact set.

Proof. Let {V,,}5; C V. We denote v¥" by v,,. Then, {Via}oe, C V. Since V
is compact with respect to the weak topology in M , there exist v € V and a
subsequence {V,, }52, of {V,,}22; such that v,y — v Weakly as n — oo. This

implies that U,EB UsY in C(E) by Lem. 1.2 (2). Then, by noting that
J(vp) = fo+ U(vn) and J(v) = fo + U(v), we see that the weak convergence
of v,y to v implies that J(v,,/) — J(v) as n’ — oo. From Prop. 3.3, we see that

Vi, =UL + J(v, /U(l)dun, V=UY+J®) /U(l)dzj

and V € V. Then, V,y — V in C(F). O

Let X be a Banach space.
We say that X has the approximation property if there exists a set {IL,,} of
operators of finite rank such that lim, I1,, = I, I is the identity map on X, and
this convergence is uniform on any totally bounded set in X.
Then, the following proposition is known.

Proposition 3.5. If E is a compact metric space, then (C(E),| - ||s) has the
approzximation property.

Lemma 3.1. There exists a sequence {I1,,}2°,, such thatI1,, : C(E) — C(E) is
an operator of finite rank for any n, Il,, converges to I uniformly on any totally
bounded set in C(FE) and IL,|y : V — 1L, (V) is injective.

Proof. Let us assume that II,|y is not injective for any n. Then, there exist
Vi, Wy, € V such that I1,,V,, = 1L, W,, and V,, # W,,. Since V is a compact set,
we can assume that V,, = Vand W,, = W [ V.W €V as n — oo, by taking
a subsequence if necessary. Since V is campact, II,, converges to I uniformly on

V. Then, we have [|[W,, — V,,]|cc — 0 as n — oo, and hence W = V.
On the other hand, by Prop. 3.3,

= DG(V)[W,, — V,,] + /1 dt{ DGV, + t(Wy, — Vi)
0
— DG(V)} Wy, — V)]

Let h, = (W, — Vo) /I|Whn — V|| oo Then,
hy, = DG(V)[hyn] + 7,

ro = / 1 dt{DG(V,, + t(Wy — Vi) — DG(V )} hn]-
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¢From Lem. 1.2 and Prop. 3.3 (2), we see that ||r,||cc — 0 as n — oco. Since
DG(V) : C(E) — C(E) is a compact operator and ||h,|lcc = 1, there exists
an h € C(F) such that DG(V)[h,] — h,n — oo by taking a subsequence if
necessary. Then we have ||h]| = 1. On the other hand,

HhHoo < Hh - hnHoo + th - thnHoo
< [ = hnlloo + [[DG(V)[An] = In DG(V)[han]l|
+ llrn = Hnrn |l
—0 asn — 0o

Then, h = 0. This is a contradiction. []

For n, we define ®,, : C(F) — C(E) by
(3.7) e, (V)=V -1 -11,)G(V).

Lemma 3.2. There ezists an n € N such that D®,, (V) is invertible for any
Vev.

Proof. Let V€ V and let us assume that D®, (V) is not invertible for any
n € N. Then, for any n there exist a V,, € V and a ¢,, € C(E) with [|¢[ =1
such that

(3.8) on = (I —11,) DG(Vy,)[#n]-

Since V is compact, we can assume that there exists a V' € V such that V,, — V
by taking a subsequence if necessary. We rewrite (3.8) to

(3.9) on = (I =) DG(V)lpn] — (I = ) (DG(V) = DG(Vn))[ipn]-

The second term of the right hand side of (3.9) converges to 0 as n — oo by (3.5)
and Lem. 1.2. Since DG(V') is a compact operator, {DG(V)[¢]; [[¢]lcc = 1} is a
totally bounded set in C'(E). Then, the first term of the right hand side of (3.9)
converges to 0 as n — 0o. This contradicts that ||¢]lcc = 1. O

Since (I—11,,) DG (V) is a compact operator, D®,,(V)~! is a bounded operator.

Corollary. There exists an open neighborhood Ug) of V such that

®,, : IU;U — @n(Ui})) is local diffeomorphism.
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Proposition 3.6. There exists an n € N such that
(i) Hply : V= I01,,(V) is injective,
(ii) for any V €V, D®,, (V) is invertible and
(iii) there exists an open neighborhood U of V such that ®,[,e) : U® -
C(E) is injective. !

Proof. jFrom the proofs of Lem.3.1 and Lem.3.2, we see that there exist infinitely
many n € N for which (i) and (ii) hold. We assume that (iii) does not hold for
any n € N for which (i) and (ii) hold. Then, there exist ¢, and ¢, € C(E)
such that ¢, # 1y, disteo (@n, V) + disteo (¢, V) converges to 0 as n — oo and
D, (¢n) = Pn(),). Since V is compact, we can assume that there exist ¢ and
Y € C(F) such that ¢, — ¢ and 1, — 1 as n — oo by taking a subsequence if
necessary.
Fix n; € N such that IT,,, |y : V — I1,,(V) is injective. Then, for any n > n4

I1,,®,(V) =1,V for any V € C(E).
If ¢,(on) = P, (¢,) and n > nq, then

Hn1 Pn = Hn1 wn'

Then, II,,, ¢ = II,,, %, and this implies ¢ = ).
On the other hand, if ®,,(¢,) = ®,,(¢,,), then by taking h,, = (©n—1Un)/llon—
Y|l We have

(3.10)
b = (I — T0,)DG(2) ] + / 0t(1 — L) (DG + (o — )
~DG(2)} ).

The right hand side of (3.10) goes to 0 as n — oo, and this contradicts ||h,||eo = 1
for any n. 0O

Set U,, = US) N U,(f). Then we have
Corollary. ®,|y, : U, — ®,(U,) is a diffeomorphism.

Definition 3.1. N C C(E) is called a manifold reflecting singularities if

(i) N is a finite dimensional submanifold in C(E),
(i) VC N and
(iii) of (V,) €V, then v € Ty (N).
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Theorem 3.1. There exists a manifold reflecting singularities in C(E).

Proof. Let n be the number which appears in Prop. 3.6. Set
(3.11) W =1L,(C(E)) N ®,(U,).

Then, W is a finite dimensional subspace in C(E). Let us define ¥ : W — C(FE)
by

(3.12) V(V) = (Dulu,)H(V).

Then, V. C ¥(W). Actually, for any V € V, &,(V) € ¢,(U,) and ®,(V) =
V—-({U-1I,)G(V)=11,(V) by Prop. 3.3 (1).
Set N = ¥(W). Let (V,¢) € V. Then,

SOV + 1)l = ¢ — (T~ TL)DG(V)[e] = oo

by Prop. 3.3 (2). This implies that £ (IL,V +tI1,¢)|1=o = ¢. Then ¢ € T,(N)
and N is a manifold refrecting singularities. [

4. Main theorem.
By Th. 3.1, we get a manifold reflecting singularities Ny in C'(E). We denote
v :C(E) — M, by v(-). Set

(4.1) No = 7(No).

Then, My D V and by Prop. 3.1, A is a finite dimensional submanifold in M.
We can choose a relatively compact neighborhood N of V in Ny and an open
neighborhood U of N in M, such that the following conditions are satisfied.

(1) For any m € U there exists a unique ¥(m) € N such that
I — m)lla = inf{{lm — nllain € o}

(2) Coose a x : M, — R such that
O0<x=1,
x(m) =0, it meue,
x(m) =1, if meN.
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Define Wy : M, x N' — R by

(42) Wo(m, €) = 5 x(m)|[¥(m) — €]2
Then,
(4.3) (%)d/z/ exp(—TWy(m,&))nog(d§) — 1 asT — oo

uniformly in m € U, where ng is the Riemannian volume in Nj. Set

W(m7£) = U(m) - WO(mJ 5)7
F(maf) = J(m) - W(m7£)7
fo(€) = nf{F (X §); X € M{}.
Then, there exists a unique v € M; such that F(vg, &) = fo(€) and Ass. 4

holds. Note that if £ € V, then vg = &.
The following is our main theorem.

Theorem 4.1. Suppose that Ass. 1 and Ass. 2 are satisfied. Then,
(1) V={§ e N; fo(§) = fo}-

(2) For any ® : Q — R which is bounded continuous and F°-measurable
for some Ty > 0,

"1 Py [® exp(TU(Lr))]

T

~ ()P [ PO ) Q0 ()

as T — oo, where ng is the Riemannian volume of Ny, d is a dimension

of Ny and

9(€) = u® (@) /E (€ dp){det(I — D*W (e, €) 0 S©)}~1/2,

Proof. Note that W : M, x N — R satisfies the assumptions Ass. 2’ ~ Ass. 4
in §2. By the large deviation principle,

— 1
(4.7) lim 7 log P,[® exp(TU(L7)), LT € M, NU| < — fo.

T—o0

Then,

e/ P, [® exp(TU (L7))]
~ /T P [® exp(TU (L)), LT € U]
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using (4.3) we get

T
N(%
T
_(%

2 [ M P exp(TW (L €))ofde)
No

)d/2/ e~ JoO=f)Tefo(OT p (& exp(TW (L, £))]no(d€)
N

by using Th. 2.1, we get

T _ _
~ (G [ e O () QL0 @l ).
T N
0J
5. Appendix.

In this section we give the proof of Lem.2.1. Let @(x) = ¢(x) — [, pdv,
qt,z,y) = q(t,z,y) — 1, and Q; = Q¢ — II,,, where I1,p = (p,1),. Set
an(T1, 0+ 3 ) = (B, Qr $Qry ++ Qr P
ba(:71, ) = (@71, 2,), QB+ Qr, D)o
(i1 3 T0) = (3, Qn @ Qr 1 @(Tns Y
(@, 71,0+ 3 70) = (@71, 2,), GQr, @+ QAT > )
Then we have the following lemma (see Prop.1.3 in [7]).

Lemma. 5.1.

(i)

t 2
(5.1) | / croims @1 (M)dT1dT — S (0, Co)u] < (Pl
7’1+7’2<t Qg
(i)
(5.2) Jan(T1,- - 7)) < 2"l exp(—an Y 7),
=1
(5.3) b (2371, -, 7n)| < Mae™ 47 |||l exp(—ar Y i),
=1
(5.4) len(ys T, 3 Ta)| < Nye® ™[5 exp(—a1 Y 7),
=1
(5.5) | (2,55 71, - )| £ MaNyem 204"l 55

n n
X exp(—aq Zn), for Zn > 2.
i=1 i=1
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where

M (s) =sup{q(t,z, )it > s} (< +00), My = M,(1),
Ny (s) =sup{q(t,-,y);t > s} (< +o0), N, = N,(1).

t - oo t
Proof. (i) Note that 5(90, Gup), = / dTlal(Tl)/ dry. Then we have
0 0

t
| ﬁ)«lm (71)dmdr —5(90, vP) |</ dTa/ lay(m1)|dm

T1+72<¢
1

< —2%)o|%
1

(e
(ii) Since for h € C(E),|Qihll, < e |[hlloc and [Pl < 2], we have

(5.2).
Let h € C(FE). Then

|( (Tl7 SOQT290 QTn ) |
— lim | / / (a(ry 2, 21) — a(Ty 2, 22))3(=1) (s 21, 22)
Ex--

T—oo
—q(T, 21, 22))p(22) - - SO(Zn (@(Trs Zn—1,2n) — (T, 2n—1, 2n) ) 1 (20)
v(dzy) - v(dzy,)
<1l g [ [ (atmm ) T ) ol

+4(T' 21, 22)) -+ (4T 2 1,zn)+q(T Zn—1,%n))[M(zn) [V (dz1) - - v(dzp)

= 2" ||t hm Z / (014 -+ 0on, T, 2n)|h(2n) |V (dzy)

1=1,-
Oi=T; or T

< 2" el A,
where A = sup{ [ q(t,z, 2)|h(2)|v(dz); t > 3" | 7;}. Since A < ||hl|o we have
that if Y1, 7 <1 then |b,(z, 71, - ,7n) < 4™[Jp||. It is also easy to see that

(5.6) A< M m) Bl

Let > 7, > 1. Then there exists an m such that Y ;- <1< S T
Setoc = 1— Zz_l 7, and h = QTm_GgpQTmHgo QTngo Then b, (z, 71, - ,Tp) =
(Q(Tl, X, )790627'1 : QTmflthU )V' By (56) and

Rl < 277" gl exp(—an (Y 7 — 1)),
1=1
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we have

|bn (571, )| < 27|l 2™ My (1)e™ exp( alzﬂ

< Mpe® 4" ||| 5 exp(—a Z Ti)-

i=1
(5.4) and (5.5) can be shown in a similar way. O
Let ¢ € C(E) and ® = f ))ds. Then we see that for A € FI
Qe 1 alw(T) = y]
5.7 QF (Alw(T) =y) =
5.7) A =0 =70, etlum) =]
Set
(5.8) f(e) =1og Q. [e*®|w(T) = y].

Then by (5.7), we have

f'(e) = Q7 [®lw(T) = ],
f(e) = Q7 [(® — (R [®|w(T) =
f"(e) = Q7 1(@ — (Q7[Plw(T)

There exists a # € (0,1) such that

D?|w(T) =

)
)

(69 S - 5. T
/ 1 " T 2 2l 2 1 " 3
f (0)5 §(f (0) - 56 (907 Gl/<p)l/)€ + §f (06)5

27

By Prop.2.1.(ii),q¢(T, z,y) " < (1-Me~ ")~ and T(q(T, z,y) ' ~1) < M/(1~
Me=*1T)aqe. These and (5.8) and the following Lem.5.2 imply (i) of Lem.2.1.

Lemma 5.2. Let f be as in (5.8). Then,

, 1
(5.10) 1f(0)] < mAla—lu@Hw
LT 1 T
(5.11) |f"(0) — 5 (¢, Grp)| < |m — 1|§(¢7Gu90)y
1 11,4 )
+(m 2t 5 m) )( ) llolls
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1

4
" ep ep 3 3
G12) 1) € s (45 + 4557 ) el
1 1 4
—(————)7 AP AT 3
+ 3 gy A AT (e el
AESO 3 3 3
gy A o) el
where
Af = (Mg + N?)exp(—af) + e ' MY NY exp(—2a5),
1
AY = 1+ (Mf + NY) exp(—a ?) + (2672 + 1)MENY exp(—2a5),
9
Ag@ = (Mf + N7) exp(—af) + (56_3 +2)MFNY exp(—2ay),
@ af © © © L
AS 2 = I(Mx + Ny )eXp(_al) + gal
Proof. Since
1 T
f(0)] = —— / q(s,z,),0q(t — s,-,y)),ds
|/ (0)] q(Txy)l (a(s,z, ), paq( ))vds|

_ Wl/ (by(2; 8) + c1(yst — 8) + do(z,y; 5, ¢ — 5)}ds,

we have (5.10) by Lem.5.1 (ii).
Since

T

5 (0) = SQul( / B () ds)lT) = 3] = 5(Qul | Fu()dsko(T) = 1]
- Tl‘ YY) // o<rm (A(T1,2,7), §Qr (T3, -, y))wdT1dTs

1+T2<T

Q[ Baslr) =

= T //0<n,72 dridre{ai(re) + ba(z; 11, T2) + c2(y; T2,
r,y)

T1+12<T
T— (11 +72)) +d3(x,y; 71,72, T — (11 + 72)) + bi(z, 72)c1(y, T — (11
1
+72))} — Q(W/ {b1(x38) + 1yt — s) + da(x, y;
s,t — s)}ds)?,

we have (5.11) by Lem.5.1 (i) and (ii).
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g/ (@) =T+ 11 +111,

1= Q| / (F(w(s))ds)*|w(T) = 9]

- o] / (B(w(s))ds)?w(T) = 4] Q=] / B(w(s))ds|w(T) = o],

0

11 = S (Q5] / $))ds|w(T) = y))°

Then by Lem 5.1 (ii), we have

1
1| = —|///T rams>0 ATidredrs{dy(z,y; T, T2, 73, T — (T1 + T2
qago (T7 xz, y) T —1|—7'22—|—7?:3><T

+73)) 4 b3(x; 11,72, 73) + c3(y; T2, 73, T — (11 + T2 + 73)) + b1 (w; 1) ca(y; 73,

— (1 + 712+ 713)) + ba(x; T, 7)1 (y; T — (11 + 72+ 73)) + a1 (13)b1 (25, 71)
+ay(me)er(y; T — (11 + T2 + 73)) + az(72, 73) }
1 o 3

4
P NPa2ag 43 3 - ) p\alp
< gy MENTO T gl e T o+ (M + N (2)

4 o, 4
el NS (—5)2llellZ, + 22 lellZ (M7 + NY)
Q a

x 3% +2M7e

T T
xAllpllo =5 + 2%l 51}
oy o

1 1 4
IT| < = (——=———)2A5P A5
11| < 2(qw(T - y)) (O[1 el

1 4
ITI| < —(————)3(A%%)3 3l .
11| < 3(q,ggo(T”,z’y)) (A77) (a?p) lella

These imply Lem.5.2. [
(ii) of Lem.2.1 can be proved in the following way.
Qule*?|w(T) = y]
[&.9] 1 .
= Qx[z —1(62)"|w(T) =y

{1+Z£"/ / A7y dr (T4 T+ TIT 4+ 1V},

1+ +Tn<T
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where
= (3 (Qr, + )3+ 3(Qr,, + L)y,
= (@(r1,7,), 3(Qr, + )G+~ 3(Qr,, + 11, 3),,
ITT = (3, (Qr, + )G+ $(Qr,, + TLGGT — (114 -+ + ), )
IV = @1, 2,), (Qry + L)+ B(Qr, + ILGGT — (11 + -+ Ta), -, y))w

Using Lem.5.1 (ii), we can estimate 17,111 and IV in the same way as in the
proof of Lem1.1 in [7] to get

IZH‘/ / - drgll]|
T1+ +Tn<T

Lol T1€128]¢]|2 1
<l exp TRl \
¢l o0 l€]/ 1 o 1 — 4l |&]/ar
\Zf [ v dndni
T1+-- +Tn<T
2ol TI€128]| |2 1
o « o (10 o0
<IN op DBl ,
ol ool€l /1 1 lellool€l/an
3 [ [ iy
2lello T|€)28) 0|2 1
§|€|2MmNy62al( (31 )2€Xp( ‘5‘ ”SOHOO )
1 — 4ol €]/ a1 1 — 4ol €]/
Aol o /a1
M, Nye** > :
N T el ol fan
On the other hand,
1+Z£n/ / Ty drd = Iy + I,
7'1+ +7'n<T
where
11_1+Z§2£/ /T oo ATy dTogar (T2)ag(T4) - - - a1 (Tae),
T1+- +Tzz<T
S 3 ST DI F [ R IRy
(=1 n=20+1 i, ke>1 Tit +Tn<T

ki+-- +kg n—~
--ak@(7-£+1+k‘1+--~+lcg,1, . 7Tn)-
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By Lem.5.1 (i) and (ii), we see that

yAp— 4 4
11— eXp(ﬁzg(%Gw)u)l =< |€|22a—1|190\|§o eXp(!£|2T2a—1||90Hoo) and

2] < exp(I€PT ol {exp(6PT - (e ) -1,

ar 1= 4l lél/ar

and this completes the proof of Lem.2.1 (ii). O

o
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