Bayesian inference for general Gaussian graphical models with application to multivariate lattice data

Alex Lenkoski

Institut für Angewandte Mathematik
Universität Heidelberg

Joint work with Adrian Dobra and Abel Rodriguez

February 4, 2011
Let Y_i be the count of lung cancer deaths in each state and W the state adjacency matrix

\[
Y_i \sim \mathcal{P}(\eta_i)
\]

\[
\log(\eta_i) = \mu + \log(\text{Pop}_i) + X_i
\]

\[
X \sim N(0, K^{-1})
\]

\[
K \in P_{GW}
\]

where P_{GW} is the cone of positive definite matrices according to the spatial graph G_W.
To ensure $\mathbf{K} \in P_{G_W}$ we may consider the following Conditional Autoregressive (CAR) Model

$$
\mathbf{K} = \tau^{-2}(E_W - \rho W)
$$

posterior estimates focus on two hyperparameters.

“CAR models should most naturally appear as priors for the parameters in a model, not as a model for the observations themselves” (Banerjee, Carlin and Gelfand, 2004).
The G-Wishart Distribution

For $K \in P_G$ we consider the G-Wishart prior $\text{Wis}_G(\delta, D)$

$$pr \left(K \mid G, \delta, D \right) = \frac{1}{l_G(\delta, D)} (\det K)^{(\delta-2)/2} \exp \left\{ -\frac{1}{2} \langle K, D \rangle \right\} 1_{K \in P_G}.$$

Note if $Q'Q = D^{-1}$, then the decomposition,

$$K = Q'\Psi'\Psi Q,$$

requires for $(r, s) \notin G$ that

$$\Psi_{rs} = -\sum_{j=r}^{s-1} \Psi_{rj} \frac{Q_{js}}{Q_{ss}} - \sum_{i=1}^{r-1} \left\{ \sum_{j=i}^{r} \frac{\Psi_{ij} Q_{jr}}{\Psi_{rr} Q_{rr}} \right\} \left[\sum_{j=i}^{s} \frac{\Psi_{ij} Q_{js}}{Q_{ss}} \right].$$

We may therefore focus on the incomplete matrix $\Psi^{(G)}$.

Let \((K^s, G^s)\) be a current state of our model. If the candidate \(G'\) has the additional edge \((i_0, j_0)\) we first extract

\[
\left(\psi^s \right)^\nu(G^s)
\]

and create \(\Psi'\) such that

\[
\psi'_{ij} = \psi^{s}_{ij} \text{ for } (i, j) \in \nu(G^s)
\]

sample

\[
\gamma \sim N \left(\psi^{s}_{i_0 j_0}, \sigma^2_g \right)
\]

set \(\psi'_{i_0 j_0} = \gamma\) and complete relative to \(G'\).
Acceptance Probabilities

We then take

\[K' = Q^T \left((\psi')^T \psi' \right) Q \]

and are guaranteed \(K' \in P_{G'} \). The chain moves to \((K', G')\) with probability \(\min \{ R_g^+, 1 \} \), where

\[
R_g^+ = \frac{\text{pr}(D|K')}{\text{pr}(D|K[s])} \frac{\text{pr}(K'|G', \delta_0, D_0)}{\text{pr}(K[s]|G[s], \delta_0, D_0)} \times
\]

\[
J \left(K' \to (\psi')^\nu(G') \right) \frac{J \left(\left((\psi[s])^\nu(G[s]), \gamma \right) \to (\psi')^\nu(G') \right)}{J \left(K[s] \to (\psi[s])^\nu(G[s]) \right)} \frac{1}{\sigma_g \sqrt{2\pi}} \exp \left(-\frac{\left(\psi'_{i0j0} - \psi_{i0j0}^{[s]} \right)^2}{2\sigma_g^2} \right).
\]
Regional Patterns of Cancer Mortality

(a) Colon
(b) Lung
(c) Breast
(d) Prostate
We extend our framework to the case when the observed data x are associated with a $p_R \times p_C$ random matrix $X = (X_{ij})$ for which

$$\text{vec} \left(X^T \right) | K_R, K_C \sim N_{p_Rp_C} \left(0, [K_R \otimes K_C]^{-1} \right)$$

Here K_R is a $p_R \times p_R$ row precision matrix and K_C is a $p_C \times p_C$ column precision matrix.
The MCAR and MGGM models

Gelfand and Vounatsou (2003) propose an extension of the CAR model (MCAR) to this data type

\[
K_R = V(\rho) \\
K_C \sim \text{Wis}(\delta, D_C) \\
\rho \sim \text{pr}(\rho)
\]

Where \(V(\rho) = E_W - \rho W \). Using our methods we can generalize this to the framework

\[
K_R \sim \text{Wis}_{GW}(\delta_R, (\delta_R - 2)V^{-1}(\rho)) \\
K_C \sim \text{Wis}_{GC}(\delta_C, D_C) \\
G_C \sim \text{pr}(G_C) \\
\rho \sim \text{pr}(\rho)
\]
Predictive Performance Results

Rank Probability Scores (RPS) from a 10-fold cross validation exercise

<table>
<thead>
<tr>
<th></th>
<th>RPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGGM</td>
<td>65.4</td>
</tr>
<tr>
<td>Full Cancer Graph</td>
<td>67.6</td>
</tr>
<tr>
<td>MCAR</td>
<td>76.4</td>
</tr>
</tbody>
</table>
Conclusions

Paper on the arXiv

- Dobra, Lenkoski and Rodriguez. *Bayesian inference for general Gaussian graphical models with application to multivariate lattice data*

For an example of an upcoming application please see the poster:

- Möller, Lenkoski & Thorarinsdottir. *Multivariate Probabilistic Weather Forecasting using Graphical Models*

Later today.