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Abstract

In many cases, boundary value problems on a domain {2 can be rewrit-
ten as integral equations on the boundary of €. The discretization of this
integral equation leads to a system of linear equations with a dense coef-
ficient matrix of dimension N. In this paper, we will present the panel
clustering algorithm which avoids the generation of the N? matrix en-
tries by representing the integral operator on the discrete level by only
O (N log" N) quantities. Thus, a matrix vector multiplication as a basic
step in every iterative solver can be performed by O(N log" N) operations.
This method can be applied to all kinds of integral equations discretized
by, e.g., the Nystrom, the collocation or the Galerkin method.

1 Introduction

In this paper, we will present the panel-clustering method to solve boundary
integral equations (BIE) arising from elliptic boundary value problems in three
space dimensions. Elliptic boundary value problems can be rewritten as integral
equations on the boundary of the domain in various ways. The common proper-
ties of all these integral equations are that they are pseudo-differential operators
of integer order. The arising orders are

o 1: hypersingular equations of first kind,
e 0: second kind integral equations or

o -1: weakly singular equations of first kind.
To discretize these equations three methods are used

e the Nystrom method,
e the collocation method and

o the Galerkin method.



From the theoretical point of view the Galerkin BEM applied to the hyper-
singular integral equation is the method of choice, because stability is ensured
independent of the smoothness of the domain, convergence in weaker norms can
be proven and observed, e.g., the high order convergence in interior points of the
domain. In addition, fast solvers for the linear system as the multi-grid method
or the CG-algorithm can be applied efficiently and robustly, independent of the
smoothness of the domain. In contrast to this, it is very hard to prove stability
(meaning existence and boundedness of the inverse of the discrete operator) for
the collocation or the Nystrom method on 3-d surfaces. Elschner and Raths-
feld proved in [2],[13], [14] stability for second kind integral equations with the
double layer potential operator on polyhedral domains, provided graded meshes
are used. Stability is still an open problem for more general problems as, e.g.,
the Lamé-equations in linear elasticity for both the Nystrom method and the
collocation method. The applications of these methods to hypersingular equa-
tion are not developed and analyzed. For example nodal point collocation is
not applicable to hypersingular formulations on non-smooth domains. Therefore,
in complicated situations, like e.g. equations on domains with only piecewise
smooth surfaces, systems of equations, nonlinear integral equations or equations
with mixed boundary conditions, the Galerkin method should be applied. On the
other hand, if the problem is simpler and it is possible to apply the collocation
or Nystrom method, it turns out that these methods give the same accuracy as
the Galerkin method with a substantially lower amount of CPU-time.

We will present here the panel clustering method which is applicable for all
kinds of integral equations. The idea is to approximate the kernel function on the
continuous level and then to discretize by any of the three discretization methods.

We restrict in this paper to the three dimensional case, i.e., the boundary of
the domain is a piecewise smooth surface in R®. The application of the presented
methods to 2-d problems is straightforward.

A method which is based on a similar idea is the multipole method introduced
by Rokhlin in [15]. This method can be used to accelerate particle simulation
problems. For boundary integral equations, however, this technique is restricted
to Nystrom discretizations, since the multipole technique is applied after the
discretization of the integral equation.

A further sparse technique for integral equations is presented by Brandt and
Lubrecht. Here, the multi-grid technique is used to avoid the full system matrix.
The kernel function is evaluated in smooth regions on the coarse grid and then
interpolated to finer grid by high-order interpolation. The application of the
method to Nystrom discretization is obvious, while the realization for Galerkin
discretizations of general 3-d integral equations having piecewise smooth kernels
on non-smooth surfaces seems to be possible but is not worked out yet. There-
fore, a comparison of the complexity of this method with panel-clustering is not
possible.



2 Preliminaries

2.1 Fredholm integral equations

Let T' denote a piecewise smooth surface in R>. On I', we consider a Fredholm
integral equation of the form

Au(x) + K [u] () =r(z), Vaeel (1)

with the integral operator K
K [l (2) = p.f. [ k(2.y)uly)do,

and the kernel function k(x,y) having a singular behavior only for y = x. If
A = 0, the integral equation is of first kind, while, for A # 0, we have an
integral equation of second kind. The kernel function may have a non-integrable
singularity and the integral has to be understood in the sense of Hadamard.

Definition 1 Let k (x,y) be singular for x = y and regular otherwise. Define the
function J (e,x) by

Tewy= [ ky)uly)doy,

where B, (x) denotes a ball with radius € about x. If the integral equation corre-
sponds to an elliptic boundary value problem it can be shown (see [11], [18]) that
J (€, ) admits an uniquely determined expansion of the form

J(e,2) = Ag (x) +A1 (x)loge + Z Aje_j"'l +o(l).
7=2

The part-fini integral is defined by
p.f. /F k(x,y)u(y)do, := Ao (x).

2.2 Kernel properties of boundary integral operators

The kernel functions which arise in boundary integral equations are suitable
Gateau derivatives of the singularity function of the underlying elliptic boundary
value problem. If the differential equation is elliptic of even order 2m in R? with
constant coefficients, the singularity function can be written in the form

flz—y)

s(z,y) = o=



The function f(z) can be expanded as a Taylor series of the form
f(Z) = Z ca?”,
|or|=t¢
while ¢ is even. The order of the singularity s is given by
s =3 —2m.

Here and in the following, we are using the conventions for multi-indices o € IN3:

la] = a1+ oy + as,
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ol = ay!-ag! - azl,
v v!
= 2
p (v — )t
m m s s—1n
20 = 20 2 G,
|l/|:0 s=0 l/1:0 112:0

H1 H2 H3

n
DIEAETED DD D) DL
v=0

V1 =0 v =0 V3 =0

We restrict our presentation to the case that the kernel function is given by
normal derivatives of the singularity function, i.e.,

ten = () (o) st o)

while more general cases can be treated analogously. The order of the arising

derivatives satisfies a1 + ay < 2m. We assumed that I' is piecewise smooth,
therefore, all kernel functions can be written in the form

f Y, Y — &
ble,y) = TBT2D), )
ly — ||
where f can be expanded as a Taylor series with respect to the third variable:
f(:z;,y,z) = Z o (T,y) 27,
|or|=t¢

The coefficients ¢, (x,y) are piecewise smooth, dependent on the smoothness of
the surface. If the surface is piecewise flat, i.e. a polygon, then, these coefficients
are piecewise constant. The order of the singularity s in (3) satisfies

s < 3.

Remark 1 We state that the panel-clustering algorithm, which will be presented
below, can be applied also to kernels containing logarithmic singularities and to
systems of integral equations as well.



2.3 Discretization of boundary integral equations

Let T := {A1,A,,..., Axp} denote a panelization of the surface I' which has to
be regular in the sense that all A; are smooth images of an open triangular or
square master element A C R? and the following conditions are fulfilled. If 7 # j

the intersection A; N A; is either empty, an edge or a vertex and U;V:]i A;=T.
Let S¥» C C* (T') be the usual finite element space of dimension N consisting

of polynomials of degree p on the master element which are lifted on the surface

I' by the local parametrization. Let © := {J}j}1<j<N be a set of unisolvent nodal

points meaning that the interpolation problem:
find v € S such that u(z;) = f; for all x; € ©
has a unique solution for all f € RY. Let further {¢;}1<;<n denote the local

nodal basis of S**.
The collocation method to solve (1) is given by seeking uy € S** such that

AMaj)un () — K [un] (zj) = r(x;), VI <5 < N. (4)
The Galerkin method is defined by finding uy € S¥? such that
(Aun, @)y — (K [un], @)y = (r05)y, Y1 <5 <N, (5)

The symbol (-,-), denotes the L*-scalar product on the surface I'. For the
Nystrom method the integral is replaced by a quadrature method, yielding

Au () = ;wi7jk(xi,xj)u(xj) =r(x;), Yo, € O. (6)

If the kernel function contains singularities suitable modifications are necessary.

3 The panel clustering method for Fredholm in-
tegral equations
3.1 Standard matrix technique to solve the discrete equa-
tions

For functions u € S*?, we introduce the basis representation

u(e) =2 wipi (). (7)

The discrete problems (4), (5) and (6) are equivalent to solve the system of linear
equations

Ku=r



and identifying the solution u with u («) by (7). For the collocation method, the
system matrix is given by

Kij; = Aai)gj (i) + K @] (2:)

and the right hand side by

r, = T(J}Z)

For the Galerkin method the coefficient matrix is defined by

K ;= (i, dp; + K [g5]),

and the right hand side by
r, = (T, g@i)o .
Finally, for the Nystrom method the system matrix is given by

K= A(@) 6+ wi jk (@i, 25),

where suitable modifications apply if k is singular for x; = ;.

Here, we will not work out the panel clustering algorithm for the Nystrom
method. The application of this technique for Nystrom discretization is straight-
forward. In this case, also the multipole algorithm of Rokhlin [15] or the interpo-
lation technique of Brand and Lubrecht [1] could be used. As pointed out in the
introduction, a drawback of Nystrom’s method is that the stability (invertibility)
is not guaranteed, if systems of integral equations, mixed boundary conditions,
non-linear integral equations or hypersingular formulations are considered.

From the numerical point of view the main properties of integral equations
are:

e the system matrix is full,

e the condition number of the coefficient matrix is usually small.

For iterative solvers, the matrix K; ; is not required explicitly, but only the

result of
K [u] (x;) (collocation)

(8)
(i, K [u]), (Galerkin).

It follows that, in order to obtain a fast solver for BEM-equations, it is necessary
to

o develop efficient cubature methods for singular and nearly singular surface
integrals,

e adapt iterative solvers (e.g. multi-grid) to solve the linear system,



e apply sparse matrix techniques to approximate (8).

The general properties of kernel functions arising in boundary integral equa-
tions are developed in [18]. Efficient cubature techniques for singular integrals
arising in collocation BEM are presented in [19], [4] and [3]. The nearly singular
case is treated in [9]. For the Galerkin method in 3-d, efficient cubature tech-
niques were developed in [17] and [10]. Iterative solvers for integral equations are
presented in [5] and [6].

In our paper, we will concentrate on sparse matrix techniques for boundary
element methods.

3.2 The Panel Clustering Method
3.2.1 Preliminaries

The panel clustering algorithm was developed by Hackbusch and Nowak for the
collocation method (see [7]). A complete analysis of this algorithm was presented
in [8]. In [16], the procedure was optimized depending on the magnitude of the
considered problem. This algorithm was generalized for the Galerkin method in
[17] and [10].

The idea is the following. The kernel function behaves singularly only in the
nearfield meaning dist (x,y) is “small” and has an increasingly simpler behavior
in the farfield, i.e., dist (x,y) is “large”. Nonetheless the formal description of
the kernel function in the farfield is still rather involved. Thus, we may approx-
imate the kernel function by a function having a preferable numerical behavior
compared to k (x,y). In view of the explanations in Section 2.2, we assume that
the singularity function in R? of the differential operator can be written in the
form ( v

y—x
s(y—x) = C,——".
(y ) |%t ly — st-l—t
Let us assume that zo = yo— ¢ is large. Consequently, s (z) = s (y — ) is smooth
in a neighborhood z € U (z9). We expand s(z) as a series of order m about zy :

m—1 v
S = X3 Ko (20)% () Y () + o (20,2). )
|v|=0 u=0
Here, x,, denote the expansion coeflicients and {%}ueNg the expansion system.

From (9), one obtains expansions of the kernel function which appears in the
boundary integral operators described in Section 2.2.

£ =5 3 s Co) (o) 300 () s ) s o oy )
'Y _|U|ZOM:0 v,u—v \~0 angg v any Tu—v \Y 8n§,‘18n32 m \ 20, Y .

=km(z,y)



Example 2 Let s(z) = ﬁ which is (up to a constant factor) the singularity
function of the 3-d Laplace operator. Taylor expansion about zo = yo — xo yields

mlp g
5(?1—51?):5(2):'2': e (y — 2 —20)" + R (20,2) -
v|=0 " 2=z
kv (20)

The sum can be reordered as
Z Z/@W v (z0) ytat ™", (10)
|v|=0 =0

resulting in an expansion of the form (9).
The expansion for the kernel function k(x,y — x) := ais (y — x) would be
Ty

0
Fony =)= 5 3 ms () (n (3,9 " ‘4 o Ru oy — ). (1)
|v|=0 u=0 My

Remark 2 (a) Expansion (10) is siz-dimensional containing %Z + O (m®) in-
dices. We state that the expansion order will be typically very smallm € {1,2,3,4}.
The following table shows the number of summation terms in these cases.

m 11213 | 4
# indices | 1| 7| 28| 84

(b) In the case of the collocation method, the expansion can be simplified,
resulting in a three-dimensional expansion of the form:

m—1
= Z Ry (51?2'720) yy—I'Rm (207y_xi)- (12)

|v|=0

The number of summation terms are given by

m 11213 | 4
# indices | 1] 4| 10| 20

Remark 3 (a) If the direct method is used to transfer a boundary value prob-
lem of second order into an integral equation, the equation can be written in the
following from

W)= [ (=) a4 ) s (o - )y, VaeT

with some constants ~,7,. Therefore, one has to discretize both the singularity
function and the Gateau derivative of it. In view of (10) and (11), it is obvious

8



that one has to compute and store only the expansion cocfficients k, ,_,, which
correspond to the singularity function. Then, the coefficients of the Gateau deriva-
tive can be computed with only a few multiplications. This remark applies also
for the potential ansatz method and for general elliptic boundary value problems.

(b) For systems of integral equations, it is sufficient in many cases, to compute
the expansion cocfficients of scalar kernel functions to derive the coefficients for
the arising kernel matriz. For the Lamé equations the fundamental matriz is

given by
A+ 3p 1 A+ p
S(z) = I+ Dzl ].
)= 5o 2 (qu TR ”)
Here, Dy denote the Hesse matriz: (Dz)m = aza';z . Therefore, it s sufficient to

compute (and to store) the expansions of ﬁ and || z||.

In order to explain the panel clustering technique, we have to introduce the
following definitions.

Definition 3 LetT), := {Ay, Ay, ..., Axp} denote a partitioning of the boundary
I' into panels. A “cluster” is the union of one or more panels:

q
T = U Anj.
=1

The size of a cluster is given by the “cluster radius” p (1) which is defined by the
radius of the minimal ball which contains 7. The center z, of this ball is called
“cluster center”.

Definition 4 Let the relative distance of a cluster from the singularity be defined

by
p(7)

BT p— collocation,

d; (1) :=
r(7) Galerkin.

dist(supp ¢;,27)

Let the kernel function satisfy
[z y)l < Clle =yl

For given € > 0 and expansion order m, a cluster 7 is called “admissible” with
respect to an index v if

1
— Vyer and:z;{
yl|

[ —

= collocation
_ < ’ ’
|k (2,y) = b (2, y)| < € € suppy; Galerkin.

(13)

We recall here that the expansion k,, depend on 7 and x; (resp. ;).



The situation described above is illustrated in the following figure.

The dotted lines show the triangles which are clustered together. The cluster
center is z, and the “singular” point .

Assumption 5 For given ¢ and expansion order m, there exists 0 < n < 1 such
that, for all 1 <1 < N, the condition

di (1) <np<1 (14)
implies that T is admissible with respect to 1.

Definition 6 Let ¢ and an expansion order m € N be given. Let the relative size
of the admissible clusters n be determined as explained above. A set of clusters

{T1, 72, ..., Tk} with disjoint interiors is called a covering of I' if U U...UTp =
r.
A covering is called admissible with respect to an index 1 € {1,2,...,N} if
either

d; (1) <n (admissible cluster)

or
T 18 a panel.

The admissible covering which contains a minimal number of clusters is called
mainimal admissible covering C;. The nearfield C*" and the farfield Cifm are
defined by

Creri={r € C; | 7 is non-admissible with respect to “i”}

Cl"={reC;i|r¢Cro}.

10



3.2.2 The Algorithm

For the collocation method, a matrix vector multiplication can be written in the
form

SUKou; = K [uy] (a1) = /Fk (25,1, y — i) un (y) dT,. (15)

i=1

In the following , we will use the summation convention:

Z cj 1= Z c;

Jeorear Jisupp @;NCTT£D

Splitting the surface in the nearfield and farfield part and using (12) shows that
(15) equals

>y / k(iy,y — i) (y) dy +

jeclnear
=KJor

+ > /k(xi,y,y—xi)ujv(y)dy

TCC{M i

~ Y Ky,
jeclnear
m—1
9%y, (y)

+ > > A (fiazf)/WuN(y)dy-

TCC{M |V|:0 i Y

=:JY (un)

We summarize that a matrix vector multiplication is approximated with panel
clustering by

N m—1
Z Kmuj = Z K?;Mu]‘ —|— Z Z Ry (l‘i, ZT) J: (UN) . (16)
j:l jeclnear chifar |l/|:0

The matrix K" is called “nearfield matrix” and is sparse in the sense that
supp ; NCT" = ) implies that K72 = 0. The coefficients «, are called expan-
sion coefficients and .J; (uy) denote the “farfield coefficients”.

For the Galerkin method, a matrix vector multiplication is approximated by
the panel clustering method in the following way.

N

= / wi (z)p.f. k(z,y,y —x)un (y)dyde
supp ¢; opear

+ wi () /Of k(x,y,y —a)un (y) dydax

supp @5

11



%

> uy/ x)p.f. k(x,y,y — )¢, (y)dyda

]Ecnear supp @z Cinear

—.Knear
7

m—1 v aal . .
* Z Z Z/{W/ M xz) /suppw v (l') (éYT;LE)dx/Tu

Tecfar v=0 u=0

m—1 v
= 2 KiTwit 3 3> mpwwidf (un)
JeECET TECfM v=0 pu=0

The form of the Galerkin version of the panel clustering method looks very sim-
ilar as the collocation version. However, asymptotically, it is obvious that the
Galerkin version is more expensive. The second sum contains O (m6 : #Cifm)

0°*,, (y)d

(Ony)"?

summation terms, while the sum for the collocation version only contains O (m3 : #Cifm)

terms.

3.2.3 Structuring of the algorithm

The algorithm consists of three phases. First, one has to choose the param-
eters which determine the accuracy of the panel clustering algorithm, namely,
the expansion order m and the relative size of the admissible clusters . These
quantities has to be chosen such that the consistency error is adapted to the
consistency requirement (approximation quality) of the whole discretization pro-
cess. The details will be explained later. Phase II replaces the generation of the
system matrix for the standard matrix algorithms. Here, the nearfield matrix
and the expansion coefficients are computed and stored. Finally, in Phase 1II,
a matrix vector multiplication is approximated by the panel clustering method
as explained above. For the collocation method, this results in the following
algorithm:

Collocation Version

Phase I:

e Choose the accuracy e of the kernel approximation in (13) according to the
required precision.

e Choose the expansion order m and relative size of the cluster n (e, m) such
that 5 is satisfied and the storage/computational consumptions are minimal.

o Organize the cluster in a binary tree structure.

o For each index ¢ € {1,2,..., N}, compute the near- and farfield of the
minimal coverings.

Phase II:

12



e Compute the nearfield matrix K7
e Compute the expansion coefficients &, (z;, z,).

o Compute the basis farfield coefficients for all A € T'
6“2%
Ja(p)) / v ( )dA

Phase I11:

e Compute the farfield coefficients

927, (y)
7 (un) ; un (y) (On,)* Ty
e Approximate a matrix vector multiplication by (16)

For the Galerkin version, Phase I coincides with the collocation version. Phase
IT and IIT take the following form.

Galerkin Version

Phase II:

e Compute the nearfield matrix K75

e Compute the basis farfield coefficients

8“2 v
JX (¢5) : /‘P] 873 )dy
y

aoq 711 )
: / ©; ( (On.)° ——dzx.

e Compute the expansion coefficients &, ,—, (z; — ;).
Phase III:
e Compute the farfield coefficients

2 tu) = [ (o) G

Rupv—pi = Ruyv—p (ZT - xl) Z ‘]Z—M (S‘Ql)

ACsupp ;i

e Approximate a matrix vector multiplication by

N m—1 v
YKwa Y Kt Y Y s ().
71=1 ecnear 7_ec,far v=0 pu=0

Remark 4 If the Galerkin method is employed, we recommend to use, if possible,
an integral equation with a symmetric kernel, i.e., ax = ay in (2). Then JX (¢i) =
JX (@) and the computation and storage amount is considerably smaller.

13



4 Efficient algorithms for the micro steps of the
Panel Clustering algorithm

In order to make the panel clustering efficient, fast micro algorithms have to
be developed for the different steps in the algorithms described above. We will
present here some of them exemplarily, while a detailed description could be

found in [16] and [17].

4.1 Construction of the cluster tree, minimal coverings
and the cluster radius

In Phase I of the algorithm, one has to compute minimal coverings. Hence, one
has to organize the clusters in a tree structure which allows to choose minimal
coverings efficiently out of this reservoir. From the viewpoint of the complexity,
binary trees are optimal. In this case, the numbers of cluster is bounded by
2N P, where NP denotes the number of panels. In many cases fine grids are
generated by refining coarser grids, resulting in a nested hierarchy of grids. These
grids can directly be used as a cluster tree. Using this strategy, every triangle
(cluster), usually, has four sons. In order to obtain a binary grid, one can define
intermediate grids, where always two of the four sons a clustered together.

It also possible to construct a cluster tree directly from the fine grid in an
efficient way (see [8]).

We state that, for the construction of the clusters, no regularity assumptions
apply, as, e.g., for the generation of triangulations. Clusters are allowed to be
neither connected nor of regular shape.

After the cluster tree is generated, it is possible to construct for every matrix

line “2” minimal coverings by the following procedure “Divide” (cf. [8]).

Cpm = 0,01 =y
Drvide (F, creer, Cifm) ; comment result is near- and farfield w.r.t. “¢”.

procedure Divide (T, creer, Cifm)
begin
if 7 is admissible w.r.t 7 then ¢/ :=C/"Ur else
if 7 is a panel then C7*" := C7*" Ut else
begin determine sons {7, }, ;. of 7
for 2:=1 to g¢do Divide (Tq, creer, szw)
end end;
We readily state that, due to the assumption that the cluster tree is binary,
the complexity of the algorithm is 2 (#Cﬁe‘” + #Cifm) arithmetic operations. In
order to check, whether a cluster is admissible with respect to an index 7, we need
the radius and the center of every cluster (cf. Definition 4). The definition of the

14



cluster radius can be written in the form

. 2 . .
p? :=min max {HZ — &,||" 5 2, is a vertix of the convex hull of T} )
zeR?*1<n<q

Foo (2)

To compute the minimum above we replace F., by

g 2/p
- {Z I - xnup}
n=1

The minimum of p, ::m]iirgl) F,(z) can be computed easily and robust by means
z€

of Newton’s method, since F}, is convex and smooth. Note that the cluster center
is computed by this method, too.

4.2 Computation of the farfield coefficients
The farfield coefficients are defined by

JY (uy) = /TUN (y) %y(;i)d@-

We first compute the basis farfield coefficients

()
JX (i) - /c,oZ any ———=dA,. (17)

There are several strategies to compute these integrals. Usually, there are re-
cursion formulae for the function system =, and 8(217’;()32). Computing (17) for
the “lower indices” by some quadrature method, the recursion could be used.
Asymptotically, i.e., if the number of multi indices v is large, this formulae are
of optimal complexity, because each index v requires O (1) operations.

An alternative to this method will be explained in the following. For triangles
or quadrilaterals, there are quadrature formulae which integrate polynomials up
to a certain degree exactly using a minimal number of function evaluation (cf.
[20]). These formulae can be used to approximate the integrals (17). It turns
out that this method is much cheaper for practical problem sizes, where the
expansion order m is small and far away from the asymptotically gain of the
recursive method.

The derivatives of the kernel function for the computations of the expansion
coefficients x can be done recursively. The amount per multi-index is O (m), with
m denoting the expansion order. To avoid here too many technicalities, we refer
for an explicit description to [16] and [17].

15



5 Error Analysis for the Panel Clustering Method

Using the panel clustering method to approximate a matrix vector multiplication,
introduces an additional error in the discretization of the continuous problem.
The parameters which determines the precision of the panel clustering have to
be adapted to the required asymptotic accuracy of the approximation. The error
analysis consists of two parts. First, one has to choose a suitable expansion system
to approximate the kernel function. We have to check, how the approximation
of the kernel function (13) depends on the size of the cluster and the expansion
order. Then, we need an abstract error estimate ot the form that

1
|k (xvy) - km (l’,y)| < €2
= =yl

implies a consistency error estimate of the form

K [u] = K [u]| < 6 ul.,

Here, K denotes the original integral operator and K the integral operator, where
the kernel function is replaced on every cluster by the expansion £,,.

We restrict our presentation to the case that the kernel function is the singu-
larity function corresponding to the Laplacian (up to a constant factor), i.e.,

1
V=T

An error analysis of Taylor based expansions of general kernel functions can be

found in [8], [16], [17] and [10].

(18)

Theorem 7 Let T, (20) denote the 3-d Taylor expansion of - IE about z = z
with zo # 0:

m—1 1
T —
v!

|1/|:0

1/|1

— (z —20)”.
EAE

Z=Z0

Let o denote the relative distance of z from the singularity, i.e., o = |

Then,
1

Proof.  The proof is given in [16, Theorem 3.2.11]. W
Using this Theorem, we know that, for given e and expansion order m, the
choice of 1 := ¥/¢ has the consequence that condition (14), i.e

di(t) <n

with d; from Definition 4, implies the estimate (13) for the kernel approximation.
We proceed here with an estimate of the consistency error caused by the panel
clustering algorithm.

16



Theorem 8 Let the kernel function k(x,y) be singular of order s:
C
|k($,y)|§75, \v’x,yEF,x%y.
[l =yl

We assume that k is approximated by an expansion which satisfies (13). Let all
coverings be admissible and the panelization be quasi-uniform:

h : = maxdiam(A),
AeT
h < Cup(A),

where p(A) denotes the radius of a panel A (see Definition 3). Then, for the

collocation method, we get the error estimate:
[ K [un] (i) = Ko [un] (2i)] < €CC, (h) lun|] zoo -

The operator K, is defined by replacing the kernel function on each admissible
cluster by the expansion of order m. For the Galerkin method, we obtain

(@i K [un] = Ko [un])o| < CCy (h) p(supp @) [|un |l oo

with the area measure y(w) := [, 1dx. The size of the constant Cy is related to
the order s of the singularity:

1, of s <1,
Cs(h)=C log(h) if s=2, (19)
Rt if s=3.

Proof.  The proof for the collocation method is given in [8, Lemma 5.1], while
the proof for the Galerkin method can be found in [17, Theorem 2.2.1]. In both
cases the constant C; (h) is given by the integral

1
Cs (h) = sup

T s
vel JT-Bey(@) ||z — 9|

dy,

where B, (x) denotes a ball with radius r about x. By introducing polar coordi-
nates it is easy to show that this integral leads to the formula (19). B

This theorem shows that the additional error, introduced by the panel cluster-
ing method, can be adapted to any desired accuracy, by choosing the admissible
size of the clusters and the expansion order in an appropriate way. Usually, the
consistency requirement is of the form

e < Ch".

If the kernel function k is given by (18), the condition above would imply that n
and m has to be chosen such that

n™ < Ch" (20)
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This means that, for each expansion order m € N, we can find an 7 such that
(20) is satisfied. Hence, we have the freedom to choose the pair (m,n) such that
the CPU-time and the storage assumption is minimal. In [8] it is shown that the
choice of

m = {Zlog NJ
(21)
n = CHmpEl™ = const

is asymptotically optimal. In the following Section we will use these Theorems
to derive estimates for the complexity of the panel clustering algorithm.

6 Asymptotic Complexity of the Panel Cluster-
ing Algorithm

The estimate of the complexity of the algorithm consists of two steps. First, we
have to estimate the number of clusters in the admissible coverings, dependent
on the choice of the precision ¢ and the expansion order m. Furthermore, we need
estimates for the computational work of all micro steps in the algorithm, e.g., the
number of operations to compute the size of a cluster, the expansion coefficients
and the farfield coefficients of a cluster, etc.

In this Section we will use the notation introduced in the previous one. First,
we will consider the asymptotic complexity. As explained in (21), we choose

m = {ZlogNJ
n = const.

It turns out that, under natural conditions on the surface I', which are described
in detail in [8], the number of farfield panels per matrix line can be bounded by

#07 < CNlog N,
while the number of nearfield panels does not increase with smaller values of A
#ngar S C.

This implies that the number of non-zero entries per line of the nearfield matrix
does not increase with increasing number of unknowns.

A thoroughly investigation of the micro steps of the panel clustering algorithm
shows that each farfield coefficient can be computed in O (1) arithmetical oper-
ations and each expansion coefficient by O (m) operations. Furthermore, each
nearfield matrix elements can be computed for all integral operators which arise
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for elliptic boundary value problems by O (10g3 N) operations. This can be found
in detail in [16, Chapter 4], [17, Chapter 4] and [9].
For the collocation method, a matrix vector multiplication was approximated

by
m—1
> KIwi Y Y sy (i zr) JY (un).

jeareer recior [v|=0
The number of expansion coefficients per matrix line is bounded by

#{m(:pi,%),og V| <m—1,7 € Cifm} < C'log* N.

Here, we made use of m = O (log N). Thus,we obtain that the amount of work

to compute these coefficients behaves asymptotically as O (10g5 N). The number
of farfield coefficient is bounded by

#{J; (uy), 7 is a cluster in the cluster tree} = O (N log® N) ,

thus the computational amount and the storage requirements are of order N log® N.
Since the number of non-zero entries per matrix line of K™**" is independent of
N, the computing time can be estimated by

@) (log3 N)

per matrix line.

The only difference between the Galerkin method and the collocation method
from the view point of the complexity is that representation of a matrix vector
multiplication takes the form

m—1 v
> Kiwit > D0 > Ruwwidf (un)
0

jeclnear Tecifar |l/|:0 pn=

and consequently the number of expansion coefficients x,,_,; per matrix line is

of order O (10g7 N). It is too expensive to store all of these coefficients. The
computations of these coefficients can be split in two parts. First, one computes
and stores O (log N )auxiliary quantities, say &, which are costly to compute, since
the evaluation the (complicated) kernel function is involved. The coefficients
Kuv—pi can be computed from &, very cheaply, because only a few additions
and multiplications are necessary per coefficient. Obviously, this reduces the
storage amount of the algorithm but increase the CPU-time of a matrix vector
multiplication. The following table shows the asymptotic complexity of the panel
clustering algorithm for the Galerkin and the collocation method.

computing time storage amount

Collocation | Galerkin | Collocation | Galerkin
Generation of system | Nlog® N Nlog® N | Nlog* N Nlog® N
Matrix vector mult. | Nlog* N Nlog" N[0 0
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The asymptotical gain of the panel-clustering method is obvious, compared to
the standard matrix technique, where both the CPU-time and the storage con-
sumption behaves like O (N?). Nevertheless, it is by no means clear, whether
the asymptotic gain is visible for practical problem sizes. The constants in the
O ()-estimates plays here an important role. To study this theoretically, we have
counted in detail the arithmetic operations which are necessary for the panel clus-
tering dependent on the parameters m and 7. The result is depicted in Figures

2 and 3.

CPU time
10000 T T T T T T
without Panel-Clustering —<—
with Panel-Clustering -+--

8000 | B
(8]
[}
2]
£ 6000 | i
[}
£
@
Qo
(]
£
5 4000 g
o
O

A
2000 N
7
T
- -t
0 4= gl 1 1 1 1
0 500 1000 2000 4000 6000 8000 10000

number of unknowns

Figure 2: Comparision of the CPU time per matrix line with and without panel
clustering
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storage amount

10000 T T T T T T
without Panel-Clustering —<—
with Panel-Clustering -+~

8000 —
(]
£
5 6000 [ .
o
Q
s,
)
£
Py
g 4000 | -
(]
=

+ -
2000 | i
.
/+////
0 ! | | | | |
0 500 1000 2000 4000 6000 8000 10000

number of unknowns

Figure 3: Comparision of the storage consumption per matrix line with and
without panel clustering

The pictures underpins the efficiency of the presented method, if the dimen-
sion of the problem is large. On the other hand, it turns out that, if the number
of unknowns is smaller than 1000, the standard matrix technique should be used.
In complicated engineering application the number of unknowns ranges between
2000 and 10000. Sometimes, even more unknowns would be adequate for the
considered problem. In that cases, the panel clustering technique could reduce
the CPU-time and the storage requirement considerably.

7 Numerical Examples

Let By :={z € R? | ||z|| = 1} be the unit ball. As a test problem we consider

Au =0 in R\ By,
Ju 0 1
— = = oB
an aon_xOH g(y) on 1,
| 1|i|m u(z)=0
with xg = (0.9,0,0)T. The solution to this problem is given by u (x) = ”x_l—m”

This function is smooth on the surface but “nearly” singular near the surface
point « = (1,0, O)T. The solution is depicted in Figure 4.
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ond kind usin

We write this equation as a Fredholm integral equation of sec
the direct method

d ul(y) q(y)
—92 — dl’, = dr.,.
IR Bt rr Ll e LY
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For the discretization we have approximated the surface by a polygon consisting
of plane triangles which interpolates the surface in the vertices. We have used a
hierarchy of five grids. The details can be found in the following table.

Level | # of triangles | # of vertices
1 16 10

2 64 34

3 256 130

4 1024 514

5 4096 2050

We have measured the error in the £?—norm. Let u;, denote the BEM-solution
without panel clustering and e, := ||u — uy||, the corresponding error. Since
we are using piecewise linear elements we expect that the method converges
quadratically in the £2—norm. This means that

€ah

~

Cp ~ 1 .
The panel clustering method introduces an additional error in the discretization
process. The parameters m and 1 which controls the size of this error should be
tuned in such a way that the solution uf'® with panel-clustering differs only by
a constant factor from e;. This factor has to be smaller than 4, otherwise we
would get the same accuracy with the standard matrix method using the grid of
the coarser level. Let the ratio f be defined by

ehe

=t
We have considered the cases that m and 5 have been chosen such that f €
{1,1.5,2,3}. The panel clustering method which corresponds to f = 1 results in
the standard matrix method, i.e., m = 0 and n = 0. The following tables shows
the storage amount and CPU-time for the different values of the ratio f. Table 1
corresponds to the Galerkin method, while Table 2 corresponds to the collocation
method. We see that, using the panel-clustering method, the CPU time for this
problem size can be reduced up to factor 4 — 7.5 and the storage amount up to
a factor 7. We expect that for larger problem sizes this effect increases. This
problem was chosen such that the exact solution is nearly singular. Compared to
practical engineering problems, the solution is still quite unrealistic smooth. It
is clear that, if the solution has a less smooth behavior, the discretization error
for this problem size (about 2000 unknowns) will be substantially larger. Then,
one can choose larger clusters or lower expansion orders in order to get the same
additional error. The reason is that the panel clustering method replaces the
kernel function by a 3-d expansion, which does not depend on the smoothness of
the surface and the smoothness of the solution.
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no PC | f=15 f=2 f=3
€n 3.38 3.21 3.21 3.21
) 1.0 0.95 0.95 0.95
Level | CPU-time 0.61 0.20 0.20 0.20
2 CPU(1)/CPU(f) 1.0 3.0 3.0 3.0
MEM 0.038 0.087 0.087 0.087
MEM(1)/MEM(f) 1.0 0.43 0.43 0.43
en 1.14 1.2 1.2 1.2
) 1.0 1.05 1.05 1.05
Level | CPU-time 8.42 1.09 1.09 1.09
3 CPU(1)/CPU(f) 1.0 7.71 7.71 7.71
MEM 0.414 0.40 0.40 0.40
MEM(1)/MEM(f) 1.0 1.04 1.04 1.04
ex 1.63 E-1 | 2.38 E-1 | 3.27 E-1 | 3.50 E-1
el /ey 1.0 1.46 2.0 2.14
Level | CPU-time 162.8 19.7 15.73 15.21
4 CPU(1)/CPU(f) 1.0 3.26 9.16 10.7
MEM 5.85 2.94 2.70 2.67
MEM(1)/MEM(f) 1.0 2.0 2.2 2.2
en 1.1E-2 | 1.64 E-2 | 23 E-2 | 3.28 E-2
) 1.0 1.49 2.09 2.98
Level | CPU-time 3030 962.7 643 407.7
5 CPU(1)/CPU(f) 1.0 3.15 4.71 7.43
MEM 90.5 35.7 26.5 22.6
MEM(1)/MEM(f) 1.0 2.53 3.41 4.0

Table 1: Consumptions of the Galerkin method with and without panel cluster-
ing. CPU(f) denotes the CPU-time, where the panel clustering parameters are
chosen such that f is the relative error ratio. MEM stands for “memory amont”
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no PC | PCs_ 5 | PCs—y, | PCy_3
ex 1.97 2.72 2.72 2.72
) 1.0 1.38 1.38 1.38
Level | CPU-time 0.038 0.038 0.038 0.038
2 CPU(1)/CPU(f) 1.0 1.01 1.01 1.01
MEM 0.038 0.069 0.069 0.069
MEM(1)/MEM(f) 1.0 0.55 0.55 0.55
€n 0.883 1.3 1.3 1.3
) 1.0 1.47 1.47 1.47
Level | CPU-time 0.34 0.14 0.14 0.14
3 CPU(1)/CPU(f) 1.0 2.51 2.51 2.51
MEM 0.414 0.307 0.307 0.307
MEM(1)/MEM(f) 1.0 1.35 1.35 1.35

ex 1.15 E-1 | 1.75 E-1 | 2.26 E-1 | 3.44 E-1
el /ey 1.0 1.52 1.97 2.99
Level | CPU-time 4.63 1.87 1.53 1.29
4 CPU(1)/CPU(f) 1.0 2.47 3.02 3.59
MEM 5.85 2.48 2.26 2.14
MEM(1)/MEM(f) 1.0 2.36 2.59 2.73

ex 1.51 E-2 | 2.25 E-2 | 2.96 E-2 | 4.48 E-2
) 1.0 1.5 1.96 2.97
Level | CPU-time 72.0 42.7 25.3 18.1
5 CPU(1)/CPU(f) 1.0 1.69 2.85 3.97
MEM 90.5 20.8 16.2 13.3
MEM(1)/MEM(f) 1.0 4.35 5.59 6.8

Table 2: Consumptions of the collocation method with and without panel clus-
tering. CPU(f) denotes the CPU-time, where the panel clustering parameters are
chosen such that f is the relative error ratio. MEM stands for “memory amont’
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For this test problem, both, the Galerkin and the collocation method can
be applied. Then it is clear that the collocation method is the faster method.
The situation would change, if we would consider negative norms or evaluate the
potential in interior grid points. As pointed out in the previous sections, for more
complicated equations and domains one should use the hypersingular formulation
together with the Galerkin method. A numerical comparison of the efficiency of
different formulations of integral equations will be addressed in a forthcoming
paper (see [12]).
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