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Abstract

In many cases� boundary value problems on a domain � can be rewrit�
ten as integral equations on the boundary of �� The discretization of this
integral equation leads to a system of linear equations with a dense coef�
�cient matrix of dimension N � In this paper� we will present the panel
clustering algorithm which avoids the generation of the N� matrix en�
tries by representing the integral operator on the discrete level by only
O �N log�N� quantities� Thus� a matrix vector multiplication as a basic
step in every iterative solver can be performed by O�N log�N� operations�
This method can be applied to all kinds of integral equations discretized
by� e�g�� the Nystr�om� the collocation or the Galerkin method�

� Introduction

In this paper� we will present the panel�clustering method to solve boundary
integral equations �BIE� arising from elliptic boundary value problems in three
space dimensions� Elliptic boundary value problems can be rewritten as integral
equations on the boundary of the domain in various ways� The common proper�
ties of all these integral equations are that they are pseudo�di�erential operators
of integer order� The arising orders are

� �� hypersingular equations of �rst kind�

� 	� second kind integral equations or

� ��� weakly singular equations of �rst kind�

To discretize these equations three methods are used

� the Nystr
om method�

� the collocation method and

� the Galerkin method�

�



From the theoretical point of view the Galerkin BEM applied to the hyper�
singular integral equation is the method of choice� because stability is ensured
independent of the smoothness of the domain� convergence in weaker norms can
be proven and observed� e�g�� the high order convergence in interior points of the
domain� In addition� fast solvers for the linear system as the multi�grid method
or the CG�algorithm can be applied e�ciently and robustly� independent of the
smoothness of the domain� In contrast to this� it is very hard to prove stability
�meaning existence and boundedness of the inverse of the discrete operator� for
the collocation or the Nystr
om method on ��d surfaces� Elschner and Raths�
feld proved in 
���
���� 
��� stability for second kind integral equations with the
double layer potential operator on polyhedral domains� provided graded meshes
are used� Stability is still an open problem for more general problems as� e�g��
the Lam�e�equations in linear elasticity for both the Nystr
om method and the
collocation method� The applications of these methods to hypersingular equa�
tion are not developed and analyzed� For example nodal point collocation is
not applicable to hypersingular formulations on non�smooth domains� Therefore�
in complicated situations� like e�g� equations on domains with only piecewise
smooth surfaces� systems of equations� nonlinear integral equations or equations
with mixed boundary conditions� the Galerkin method should be applied� On the
other hand� if the problem is simpler and it is possible to apply the collocation
or Nystr
om method� it turns out that these methods give the same accuracy as
the Galerkin method with a substantially lower amount of CPU�time�

We will present here the panel clustering method which is applicable for all
kinds of integral equations� The idea is to approximate the kernel function on the
continuous level and then to discretize by any of the three discretization methods�

We restrict in this paper to the three dimensional case� i�e�� the boundary of
the domain is a piecewise smooth surface in R�� The application of the presented
methods to ��d problems is straightforward�

A method which is based on a similar idea is the multipole method introduced
by Rokhlin in 
���� This method can be used to accelerate particle simulation
problems� For boundary integral equations� however� this technique is restricted
to Nystr
om discretizations� since the multipole technique is applied after the
discretization of the integral equation�

A further sparse technique for integral equations is presented by Brandt and
Lubrecht� Here� the multi�grid technique is used to avoid the full system matrix�
The kernel function is evaluated in smooth regions on the coarse grid and then
interpolated to �ner grid by high�order interpolation� The application of the
method to Nystr
om discretization is obvious� while the realization for Galerkin
discretizations of general ��d integral equations having piecewise smooth kernels
on non�smooth surfaces seems to be possible but is not worked out yet� There�
fore� a comparison of the complexity of this method with panel�clustering is not
possible�

�



� Preliminaries

��� Fredholm integral equations

Let � denote a piecewise smooth surface in R�� On �� we consider a Fredholm
integral equation of the form

�u �x� �K 
u� �x� � r �x� � �x � � ���

with the integral operator K

K 
u� �x� � p�f�
Z
�
k �x� y�u �y�doy

and the kernel function k �x� y� having a singular behavior only for y � x� If
� � 	� the integral equation is of first kind� while� for � �� 	� we have an
integral equation of second kind� The kernel function may have a non�integrable
singularity and the integral has to be understood in the sense of Hadamard�

De�nition � Let k �x� y� be singular for x � y and regular otherwise� De�ne the
function J ��� x� by

J ��� x� ��
Z
��B��x�

k �x� y�u �y� doy �

where B� �x� denotes a ball with radius � about x� If the integral equation corre�
sponds to an elliptic boundary value problem it can be shown �see ����� ����	 that
J ��� x� admits an uniquely determined expansion of the form

J ��� x� � A� �x�
A� �x� log ��
mX
j��

Aj�
�j�� � o ��� �

The part��ni integral is de�ned by

p�f�
Z
�
k �x� y�u �y� doy �� A� �x� �

��� Kernel properties of boundary integral operators

The kernel functions which arise in boundary integral equations are suitable
G�ateau derivatives of the singularity function of the underlying elliptic boundary
value problem� If the di�erential equation is elliptic of even order �m in R� with
constant coe�cients� the singularity function can be written in the form

s �x� y� �
f �x� y�

kx� yks�t �

�



The function f �z� can be expanded as a Taylor series of the form

f �z� �
�X
j�j�t

c�z
��

while t is even� The order of the singularity s is given by

s � � � �m�

Here and in the following� we are using the conventions for multi�indices � � N�
��

j�j � �� � �� � ���

z� � z��� z��� z��� �

�� � a�� � ��� � �����
�
�

�
�

��

�� � �����
�

mX
j�j��

c� �
mX
s��

sX
����

s���X
����

c������s������ �

�X
���

c� �
��X

����

��X
����

��X
����

c���������

We restrict our presentation to the case that the kernel function is given by
normal derivatives of the singularity function� i�e��

k �x� y� ��

�
�

�nx

��� � �

�ny

���

s �x� y� � ���

while more general cases can be treated analogously� The order of the arising
derivatives satis�es �� � �� � �m� We assumed that � is piecewise smooth�
therefore� all kernel functions can be written in the form

k �x� y� �
�f �x� y� y � x�

ky � xks�t � ���

where �f can be expanded as a Taylor series with respect to the third variable�

�f �x� y� z� �
�X
j�j�t

c� �x� y� z
��

The coe�cients c� �x� y� are piecewise smooth� dependent on the smoothness of
the surface� If the surface is piecewise �at� i�e� a polygon� then� these coe�cients
are piecewise constant� The order of the singularity s in ��� satis�es

s � ��

Remark � We state that the panel�clustering algorithm� which will be presented
below� can be applied also to kernels containing logarithmic singularities and to
systems of integral equations as well�
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��� Discretization of boundary integral equations

Let T �� f������ � � � ��NPg denote a panelization of the surface � which has to
be regular in the sense that all �j are smooth images of an open triangular or

square master element �� � R� and the following conditions are ful�lled� If i �� j

the intersection ��i 	 ��j is either empty� an edge or a vertex and
SNP
j�� �j � ��

Let Sk�p � Ck ��� be the usual �nite element space of dimension N consisting
of polynomials of degree p on the master element which are lifted on the surface
� by the local parametrization� Let � �� fxjg��j�N be a set of unisolvent nodal
points meaning that the interpolation problem�

�nd u � Sk�p such that u �xj� � fj for all xj � �
has a unique solution for all f � RN � Let further f�jg��j�N denote the local

nodal basis of Sk�p�
The collocation method to solve ��� is given by seeking uN � Sk�p such that

� �xj� uN �xj��K 
uN � �xj� � r �xj� � �� � j � N � ���

The Galerkin method is de�ned by �nding uN � Sk�p such that

��uN � �j�� � �K 
uN � � �j�� � �r� �j�� � �� � j � N� ���

The symbol ��� ��� denotes the L��scalar product on the surface �� For the
Nystr�om method the integral is replaced by a quadrature method� yielding

�u �xi� �
NX
j��

	i�jk �xi� xj�u �xj� � r �xi� � �xi � �� ���

If the kernel function contains singularities suitable modi�cations are necessary�

� The panel clustering method for Fredholm in�

tegral equations

��� Standard matrix technique to solve the discrete equa�

tions

For functions u � Sk�p� we introduce the basis representation

u �x� �
NX
i��

ui�i �x� � ���

The discrete problems ���� ��� and ��� are equivalent to solve the system of linear
equations

Ku � r

�



and identifying the solution u with u �x� by ���� For the collocation method� the
system matrix is given by

Ki�j � � �xi��j �xi� �K 
�j� �xi�

and the right hand side by
ri � r �xi� �

For the Galerkin method the coe�cient matrix is de�ned by

Ki�j �� ��i� ��j �K 
�j���

and the right hand side by
ri � �r� �i�� �

Finally� for the Nystr
om method the system matrix is given by

Ki�j � � �xi� 
i�j � 	i�jk �xi� xj� �

where suitable modi�cations apply if k is singular for xi � xj�
Here� we will not work out the panel clustering algorithm for the Nystr
om

method� The application of this technique for Nystr
om discretization is straight�
forward� In this case� also the multipole algorithm of Rokhlin 
��� or the interpo�
lation technique of Brand and Lubrecht 
�� could be used� As pointed out in the
introduction� a drawback of Nystr
om�s method is that the stability �invertibility�
is not guaranteed� if systems of integral equations� mixed boundary conditions�
non�linear integral equations or hypersingular formulations are considered�

From the numerical point of view the main properties of integral equations
are�

� the system matrix is full�

� the condition number of the coe�cient matrix is usually small�

For iterative solvers� the matrix Ki�j is not required explicitly� but only the
result of

K 
u� �xi� �collocation�

��i�K 
u��� �Galerkin��
� �

It follows that� in order to obtain a fast solver for BEM�equations� it is necessary
to

� develop e�cient cubature methods for singular and nearly singular surface
integrals�

� adapt iterative solvers �e�g� multi�grid� to solve the linear system�

�



� apply sparse matrix techniques to approximate � ��

The general properties of kernel functions arising in boundary integral equa�
tions are developed in 
� �� E�cient cubature techniques for singular integrals
arising in collocation BEM are presented in 
�!�� 
�� and 
��� The nearly singular
case is treated in 
!�� For the Galerkin method in ��d� e�cient cubature tech�
niques were developed in 
��� and 
�	�� Iterative solvers for integral equations are
presented in 
�� and 
���

In our paper� we will concentrate on sparse matrix techniques for boundary
element methods�

��� The Panel Clustering Method

����� Preliminaries

The panel clustering algorithm was developed by Hackbusch and Nowak for the
collocation method �see 
���� A complete analysis of this algorithm was presented
in 
 �� In 
���� the procedure was optimized depending on the magnitude of the
considered problem� This algorithm was generalized for the Galerkin method in

��� and 
�	��

The idea is the following� The kernel function behaves singularly only in the
near�eld meaning dist �x� y� is "small# and has an increasingly simpler behavior
in the far�eld� i�e�� dist �x� y� is "large#� Nonetheless the formal description of
the kernel function in the far�eld is still rather involved� Thus� we may approx�
imate the kernel function by a function having a preferable numerical behavior
compared to k �x� y�� In view of the explanations in Section ���� we assume that
the singularity function in R� of the di�erential operator can be written in the
form

s �y � x� �
X
j�j�t

c�
�y � x��

ky � xks�t �

Let us assume that z� � y��x� is large� Consequently� s �z� � s �y � x� is smooth
in a neighborhood z � U �z��� We expand s �z� as a series of order m about z� �

s �z� �
m��X
j�j��

�X
���

������ �z�� �� �x� ���� �y� �Rm �z�� z� � �!�

Here� ���� denote the expansion coe�cients and f��g��N�

�

the expansion system�

From �!�� one obtains expansions of the kernel function which appears in the
boundary integral operators described in Section ����

k �x� y� �
m��X
j�j��

�X
���

������ �z��

�
�

�nx

���

�� �x�

�
�

�ny

���

���� �y�

� �z �
�	km�x�y�

�
������

�n��x �n��y
Rm �z�� y � x� �

�



Example � Let s �z� � �
kzk

which is �up to a constant factor	 the singularity
function of the ��d Laplace operator� Taylor expansion about z� � y� � x� yields

s �y � x� � s �z� �
m��X
j�j��

�

��

� j�j

�z�
�

kzk

�����
z�z�� �z �

���z��

�y � x� z��
� �Rm �z�� z� �

The sum can be reordered as

m��X
j�j��

�X
���

������ �z�� y
�x���� ��	�

resulting in an expansion of the form �
	�
The expansion for the kernel function k �x� y � x� �� �

�ny
s �y � x� would be

k �x� y � x� �
m��X
j�j��

�X
���

������ �z�� hn �y� � �i y���x��� � �

�ny
Rm �z�� y � x� � ����

Remark � �a	 Expansion ���	 is six�dimensional containing m�


��
� O �m�� in�

dices� We state that the expansion order will be typically very small m � f�� �� �� �g�
The following table shows the number of summation terms in these cases�

m � � � �
$ indices � � �� ��

�b	 In the case of the collocation method� the expansion can be simpli�ed�
resulting in a three�dimensional expansion of the form�

s �z� �
m��X
j�j��

�� �xi� z�� y
� �Rm �z�� y � xi� � ����

The number of summation terms are given by

m � � � �
� indices � � �� ��

�

Remark � �a	 If the direct method is used to transfer a boundary value prob�
lem of second order into an integral equation� the equation can be written in the
following from

u �x� �
Z
�
��s �x� y�

�

�n
u �y� � ��u �y�

�

�ny
s �x� y� dy� �x � �

with some constants ��� ��� Therefore� one has to discretize both the singularity
function and the G�ateau derivative of it� In view of ���	 and ���	� it is obvious

 



that one has to compute and store only the expansion coe�cients ������ � which
correspond to the singularity function� Then� the coe�cients of the G�ateau deriva�
tive can be computed with only a few multiplications� This remark applies also
for the potential ansatz method and for general elliptic boundary value problems�

�b	 For systems of integral equations� it is su�cient in many cases� to compute
the expansion coe�cients of scalar kernel functions to derive the coe�cients for
the arising kernel matrix� For the Lam�e equations the fundamental matrix is
given by

S �z� �
�� ��

 
 ��� ���

�
�

kzkI �
� � �

� � ��
D� kzk

�
�

Here� D� denote the Hesse matrix� �D��i�j �
��

�zi�zj
� Therefore� it is su�cient to

compute �and to store	 the expansions of �
kzk

and kzk�

In order to explain the panel clustering technique� we have to introduce the
following de�nitions�

De�nition � Let Th �� f������ � � � ��NPg denote a partitioning of the boundary
� into panels� A �cluster� is the union of one or more panels�

� �
q�

j��

�nj �

The size of a cluster is given by the �cluster radius� � �� � which is de�ned by the
radius of the minimal ball which contains � � The center z� of this ball is called
�cluster center��

De�nition � Let the relative distance of a cluster from the singularity be de�ned
by

di �� � ��

���	
��


����
dist�xi�z� �

collocation�

����
dist�supp	i�z� �

Galerkin�

Let the kernel function satisfy

jk �x� y�j � C kx� yk�s �

For given � � 	 and expansion order m� a cluster � is called �admissible� with
respect to an index i if

jk �x� y�� km �x� y�j � �
�

kx� yks � �y � � and x

�
� xi collocation�
� supp�i Galerkin�

����
We recall here that the expansion km depend on � and xi �resp� �i��

!



The situation described above is illustrated in the following �gure�

z τ

ρτ

τ

x ||x-z   ||τ

The dotted lines show the triangles which are clustered together� The cluster
center is z� and the "singular# point x�

Assumption � For given � and expansion order m� there exists 	 � � � � such
that� for all � � i � N � the condition

di �� � � � � � ����

implies that � is admissible with respect to i�

De�nition � Let � and an expansion order m � N be given� Let the relative size
of the admissible clusters � be determined as explained above� A set of clusters
f��� ��� � � � � �kg with disjoint interiors is called a covering of � if ��
��
 � � �
�k �
��

A covering is called admissible with respect to an index i � f�� �� � � � � Ng if
either

di �� � � � �admissible cluster	

or
� is a panel�

The admissible covering which contains a minimal number of clusters is called
minimal admissible covering Ci� The near�eld Cnear

i and the far�eld Cfar
i are

de�ned by

Cnear
i �� f� � Ci j � is non�admissible with respect to "i#g �

Cfar
i �� f� � Ci j � �� Cnear

i g �

�	



����� The Algorithm

For the collocation method� a matrix vector multiplication can be written in the
form

NX
j��

Ki�juj � K 
uN � �xi� �
Z
�
k �xi� y� y � xi� uN �y� d�y � ����

In the following � we will use the summation convention�X
j�Cnear

i

cj ��
X

j	supp	j�C
near
i ���

cj

Splitting the surface in the near�eld and far�eld part and using ���� shows that
���� equals

X
j�Cnear

i

uj

Z
Cnear
i

k �xi� y� y � xi��j �y� dy� �z �
�	Knear

i�j

�

�
X

��Cfar
i

Z
�
k �xi� y� y � xi�uN �y� dy

� X
j�Cnear

i

Knear
i�j uj

�
X

��Cfar
i

m��X
j�j��

�� �xi� z��
Z
�

����� �y�

��ny�
�� uN �y� dy� �z �

�	J�� �uN �

�

We summarize that a matrix vector multiplication is approximated with panel
clustering by

NX
j��

Ki�juj �
X

j�Cnear
i

Knear
i�j uj �

X
��Cfar

i

m��X
j�j��

�� �xi� z��J
�
� �uN � � ����

The matrix Knear is called "near�eld matrix# and is sparse in the sense that
supp�j 	Cnear

i � � implies that Knear
i�j � 	� The coe�cients �� are called expan�

sion coe�cients and J� �uN� denote the "far�eld coe�cients#�
For the Galerkin method� a matrix vector multiplication is approximated by

the panel clustering method in the following way�

NX
j��

Ki�juj � �K 
un� � �i�� �
Z
�
�i �x� p�f�

Z
�
k �x� y� y � x�uN �y� dydx

�
Z
supp	i

�i �x� p�f�
Z
Cnear
i

k �x� y� y � x�uN �y� dydx

�
Z
supp	i

�i �x�
Z
Cfar
i

k �x� y� y� x�uN �y� dydx

��



� X
j�Cnear

i

uj

Z
supp	i

�i �x� p�f�
Z
Cnear
i

k �x� y� y� x��j �y�dydx� �z �
�	Knear

i�j

�
X

��Cfar
i

m��X
���

�X
���

������ �z� � xi�
Z
supp	i

�i �x�
������� �x�

��nx�
�� dx

Z
�
uN �y�

����� �y�

��ny�
�� dy

� �
X

j�Cnear
i

Knear
i�j uj �

X
��Cfar

i

m��X
���

�X
���

�������iJ
�
� �uN � �

The form of the Galerkin version of the panel clustering method looks very sim�
ilar as the collocation version� However� asymptotically� it is obvious that the
Galerkin version is more expensive� The second sum contains O

�
m� �$Cfar

i



summation terms� while the sum for the collocation version only containsO

�
m� �$Cfar

i



terms�

����� Structuring of the algorithm

The algorithm consists of three phases� First� one has to choose the param�
eters which determine the accuracy of the panel clustering algorithm� namely�
the expansion order m and the relative size of the admissible clusters �� These
quantities has to be chosen such that the consistency error is adapted to the
consistency requirement �approximation quality� of the whole discretization pro�
cess� The details will be explained later� Phase II replaces the generation of the
system matrix for the standard matrix algorithms� Here� the near�eld matrix
and the expansion coe�cients are computed and stored� Finally� in Phase III�
a matrix vector multiplication is approximated by the panel clustering method
as explained above� For the collocation method� this results in the following
algorithm�

Collocation Version

Phase I�

� Choose the accuracy � of the kernel approximation in ���� according to the
required precision�

� Choose the expansion order m and relative size of the cluster � ���m� such
that � is satis�ed and the storage%computational consumptions are minimal�

� Organize the cluster in a binary tree structure�

� For each index i � f�� �� � � � � Ng� compute the near� and far�eld of the
minimal coverings�

Phase II�

��



� Compute the near�eld matrix Knear
i�j

� Compute the expansion coe�cients �� �xi� z� ��

� Compute the basis far�eld coe�cients for all � � T

J�

 ��j� ��

Z


�j �y�

����� �y�

��ny�
�� d�y�

Phase III�

� Compute the far�eld coe�cients

J�
� �uN� �

Z
�
uN �y�

����� �y�

��ny�
�� d�y

� Approximate a matrix vector multiplication by ����

For the Galerkin version� Phase I coincides with the collocation version� Phase
II and III take the following form�

Galerkin Version

Phase II�

� Compute the near�eld matrix Knear
i�j

� Compute the basis far�eld coe�cients

J�

 ��j� ��

Z


�j �y�

����� �y�

��ny�
�� dy

�J�

 ��j� ��

Z


�j �x�

����� �x�

��nx�
�� dx�

� Compute the expansion coe�cients ������ �z� � xi��

Phase III�

� Compute the far�eld coe�cients

J�
� �uN� �

Z
�
uN �y�

����� �y�

��ny�
�� d�y �

�������i �� ������ �z� � xi�
X


�supp	i

�J���

 ��i�

� Approximate a matrix vector multiplication by

NX
j��

Ki�juj �
X

j�Cnear
i

Knear
i�j uj �

X
��Cfar

i

m��X
���

�X
���

�������iJ
�
� �uN� �

Remark � If the Galerkin method is employed� we recommend to use� if possible�
an integral equation with a symmetric kernel� i�e�� �� � �� in ��	� Then J�


 ��i� �
�J�

 ��i� and the computation and storage amount is considerably smaller�

��



� E�cient algorithms for the micro steps of the

Panel Clustering algorithm

In order to make the panel clustering e�cient� fast micro algorithms have to
be developed for the di�erent steps in the algorithms described above� We will
present here some of them exemplarily� while a detailed description could be
found in 
��� and 
����

��� Construction of the cluster tree� minimal coverings

and the cluster radius

In Phase I of the algorithm� one has to compute minimal coverings� Hence� one
has to organize the clusters in a tree structure which allows to choose minimal
coverings e�ciently out of this reservoir� From the viewpoint of the complexity�
binary trees are optimal� In this case� the numbers of cluster is bounded by
�NP � where NP denotes the number of panels� In many cases �ne grids are
generated by re�ning coarser grids� resulting in a nested hierarchy of grids� These
grids can directly be used as a cluster tree� Using this strategy� every triangle
�cluster�� usually� has four sons� In order to obtain a binary grid� one can de�ne
intermediate grids� where always two of the four sons a clustered together�

It also possible to construct a cluster tree directly from the �ne grid in an
e�cient way �see 
 ���

We state that� for the construction of the clusters� no regularity assumptions
apply� as� e�g�� for the generation of triangulations� Clusters are allowed to be
neither connected nor of regular shape�

After the cluster tree is generated� it is possible to construct for every matrix
line "i# minimal coverings by the following procedure "Divide# �cf� 
 ���

Cnear
i � �&Cfar

i � �&
Divide

�
�� Cnear

i � Cfar
i



& comment result is near� and far�eld w�r�t� "i#�

procedure Divide
�
�� Cnear

i � Cfar
i



begin

if � is admissible w�r�t "i# then Cfar
i �� Cfar

i 
 � else

if � is a panel then Cnear
i �� Cnear

i 
 � else

begin determine sons f�nig��i�q of �

for i �� � to q do Divide
�
�q� C

near
i � Cfar

i



end end&
We readily state that� due to the assumption that the cluster tree is binary�

the complexity of the algorithm is �
�
$Cnear

i �$Cfar
i



arithmetic operations� In

order to check� whether a cluster is admissible with respect to an index i� we need
the radius and the center of every cluster �cf� De�nition ��� The de�nition of the

��



cluster radius can be written in the form

��� ��min
z�R�

max
��n�q

n
kz � xnk� &xn is a vertix of the convex hull of �

o
� �z �

F��z�

�

To compute the minimum above we replace F� by

Fp �z� ��

�
qX

n��

kz � xnkp
��
p

The minimum of ��� ��min
z�R�

Fp �z� can be computed easily and robust by means

of Newton�s method� since Fp is convex and smooth� Note that the cluster center
is computed by this method� too�

��� Computation of the far�eld coe�cients

The far�eld coe�cients are de�ned by

J�
� �uN� ��

Z
�
uN �y�

���� �y�

��ny�
� d�y�

We �rst compute the basis far�eld coe�cients

J�

 ��i� ��

Z
�
�i �y�

���� �y�

��ny�
� d�y� ����

There are several strategies to compute these integrals� Usually� there are re�
cursion formulae for the function system �� and �����y�

��ny�
� � Computing ���� for

the "lower indices# by some quadrature method� the recursion could be used�
Asymptotically� i�e�� if the number of multi indices � is large� this formulae are
of optimal complexity� because each index � requires O ��� operations�

An alternative to this method will be explained in the following� For triangles
or quadrilaterals� there are quadrature formulae which integrate polynomials up
to a certain degree exactly using a minimal number of function evaluation �cf�

�	��� These formulae can be used to approximate the integrals ����� It turns
out that this method is much cheaper for practical problem sizes� where the
expansion order m is small and far away from the asymptotically gain of the
recursive method�

The derivatives of the kernel function for the computations of the expansion
coe�cients � can be done recursively� The amount per multi�index is O �m�� with
m denoting the expansion order� To avoid here too many technicalities� we refer
for an explicit description to 
��� and 
����

��



� Error Analysis for the Panel ClusteringMethod

Using the panel clustering method to approximate a matrix vector multiplication�
introduces an additional error in the discretization of the continuous problem�
The parameters which determines the precision of the panel clustering have to
be adapted to the required asymptotic accuracy of the approximation� The error
analysis consists of two parts� First� one has to choose a suitable expansion system
to approximate the kernel function� We have to check� how the approximation
of the kernel function ���� depends on the size of the cluster and the expansion
order� Then� we need an abstract error estimate ot the form that

jk �x� y�� km �x� y�j � �
�

kx� yk�
implies a consistency error estimate of the form���K 
u�� �K 
u�

��� � 
 juj� �

Here�K denotes the original integral operator and �K the integral operator� where
the kernel function is replaced on every cluster by the expansion km�

We restrict our presentation to the case that the kernel function is the singu�
larity function corresponding to the Laplacian �up to a constant factor�� i�e��

s �x� y� �
�

kx� yk� �� �

An error analysis of Taylor based expansions of general kernel functions can be
found in 
 �� 
���� 
��� and 
�	��

Theorem � Let Tm �z�� denote the ��d Taylor expansion of �
kzk

about z � z�
with z� �� 	�

Tm �z�� �z� �
m��X
j�j��

�

��

�j�j

�z�
�

kzk

�����
z�z�

�z � z��
� �

Let � denote the relative distance of z from the singularity� i�e�� � � kz�z�k
kz�k

�
Then� ����� �

kzk � Tm �z��

����� � �m

kzk �

Proof� The proof is given in 
��� Theorem ��������
Using this Theorem� we know that� for given � and expansion order m� the

choice of � �� m
p
� has the consequence that condition ����� i�e��

di �� � � �

with di from De�nition �� implies the estimate ���� for the kernel approximation�
We proceed here with an estimate of the consistency error caused by the panel

clustering algorithm�

��



Theorem 	 Let the kernel function k �x� y� be singular of order s�

jk �x� y�j � C

kx� yks � �x� y � �� x �� y�

We assume that k is approximated by an expansion which satis�es ���	� Let all
coverings be admissible and the panelization be quasi�uniform�

h � � max

�T

diam��� �

h � Cu� ��� �

where � ��� denotes the radius of a panel � �see De�nition �	� Then� for the
collocation method� we get the error estimate�

jK 
uN � �xi��Km 
uN � �xi�j � �CCs �h� kuNkL� �

The operator Km is de�ned by replacing the kernel function on each admissible
cluster by the expansion of order m� For the Galerkin method� we obtain

j��i�K 
uN ��Km 
uN ���j � �CCs �h� � �supp�i� kuNkL�
with the area measure � �	� ��

R
� �dx� The size of the constant Cs is related to

the order s of the singularity�

Cs �h� � C �
��	
�


�� if s � ��
log �h� if s � ��
h�� if s � ��

��!�

Proof� The proof for the collocation method is given in 
 � Lemma ����� while
the proof for the Galerkin method can be found in 
��� Theorem ������� In both
cases the constant Cs �h� is given by the integral

Cs �h� � sup
x��

Z
��BCh�x�

�

kx� yks dy�

where Br �x� denotes a ball with radius r about x� By introducing polar coordi�
nates it is easy to show that this integral leads to the formula ��!��

This theorem shows that the additional error� introduced by the panel cluster�
ing method� can be adapted to any desired accuracy� by choosing the admissible
size of the clusters and the expansion order in an appropriate way� Usually� the
consistency requirement is of the form

� � Ch��

If the kernel function k is given by �� �� the condition above would imply that �
and m has to be chosen such that

�m � Ch�� ��	�

��



This means that� for each expansion order m � N� we can �nd an � such that
��	� is satis�ed� Hence� we have the freedom to choose the pair �m� �� such that
the CPU�time and the storage assumption is minimal� In 
 � it is shown that the
choice of

m �
�
�

�
logN

�
����

� � C�
mh�
m � const

is asymptotically optimal� In the following Section we will use these Theorems
to derive estimates for the complexity of the panel clustering algorithm�

� Asymptotic Complexity of the Panel Cluster�

ing Algorithm

The estimate of the complexity of the algorithm consists of two steps� First� we
have to estimate the number of clusters in the admissible coverings� dependent
on the choice of the precision � and the expansion order m� Furthermore� we need
estimates for the computational work of all micro steps in the algorithm� e�g�� the
number of operations to compute the size of a cluster� the expansion coe�cients
and the far�eld coe�cients of a cluster� etc�

In this Section we will use the notation introduced in the previous one� First�
we will consider the asymptotic complexity� As explained in ����� we choose

m �
�
�

�
logN

�
� � const�

It turns out that� under natural conditions on the surface �� which are described
in detail in 
 �� the number of far�eld panels per matrix line can be bounded by

$Cfar
i � CN logN�

while the number of near�eld panels does not increase with smaller values of h

$Cnear
i � C�

This implies that the number of non�zero entries per line of the near�eld matrix
does not increase with increasing number of unknowns�

A thoroughly investigation of the micro steps of the panel clustering algorithm
shows that each far�eld coe�cient can be computed in O ��� arithmetical oper�
ations and each expansion coe�cient by O �m� operations� Furthermore� each
near�eld matrix elements can be computed for all integral operators which arise

� 



for elliptic boundary value problems by O
�
log�N



operations� This can be found

in detail in 
��� Chapter ��� 
��� Chapter �� and 
!��
For the collocation method� a matrix vector multiplication was approximated

by X
j�Cnear

i

Knear
i�j uj �

X
��Cfar

i

m��X
j�j��

�� �xi� z�� J
�
� �uN� �

The number of expansion coe�cients per matrix line is bounded by

$
n
�� �xi� z�� � 	 � j�j � m� �� � � Cfar

i

o
� C log�N�

Here� we made use of m � O �logN�� Thus�we obtain that the amount of work

to compute these coe�cients behaves asymptotically as O
�
log�N



� The number

of far�eld coe�cient is bounded by

$ fJ� �uN � � � is a cluster in the cluster treeg � O
�
N log�N



�

thus the computational amount and the storage requirements are of orderN log�N �
Since the number of non�zero entries per matrix line of Knear is independent of
N � the computing time can be estimated by

O
�
log�N



per matrix line�

The only di�erence between the Galerkin method and the collocation method
from the view point of the complexity is that representation of a matrix vector
multiplication takes the form

X
j�Cnear

i

Knear
i�j uj �

X
��Cfar

i

m��X
j�j��

�X
���

�������iJ
�
� �uN�

and consequently the number of expansion coe�cients �������i per matrix line is

of order O
�
log
N



� It is too expensive to store all of these coe�cients� The

computations of these coe�cients can be split in two parts� First� one computes
and stores O �logN�auxiliary quantities� say ��� which are costly to compute� since
the evaluation the �complicated� kernel function is involved� The coe�cients
�������i can be computed from ��� very cheaply� because only a few additions
and multiplications are necessary per coe�cient� Obviously� this reduces the
storage amount of the algorithm but increase the CPU�time of a matrix vector
multiplication� The following table shows the asymptotic complexity of the panel
clustering algorithm for the Galerkin and the collocation method�

computing time storage amount
Collocation Galerkin Collocation Galerkin

Generation of system N log�N N log�N N log�N N log�N
Matrix vector mult� N log�N N log
N 	 	

�!



The asymptotical gain of the panel�clustering method is obvious� compared to
the standard matrix technique� where both the CPU�time and the storage con�
sumption behaves like O �N��� Nevertheless� it is by no means clear� whether
the asymptotic gain is visible for practical problem sizes� The constants in the
O ����estimates plays here an important role� To study this theoretically� we have
counted in detail the arithmetic operations which are necessary for the panel clus�
tering dependent on the parameters m and �� The result is depicted in Figures
� and ��
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Figure �� Comparision of the CPU time per matrix line with and without panel
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Figure �� Comparision of the storage consumption per matrix line with and
without panel clustering

The pictures underpins the e�ciency of the presented method� if the dimen�
sion of the problem is large� On the other hand� it turns out that� if the number
of unknowns is smaller than �			� the standard matrix technique should be used�
In complicated engineering application the number of unknowns ranges between
�			 and �				� Sometimes� even more unknowns would be adequate for the
considered problem� In that cases� the panel clustering technique could reduce
the CPU�time and the storage requirement considerably�

� Numerical Examples

Let B� �� fx � R� j kxk � �g be the unit ball� As a test problem we consider

�u � 	 in R�nB��
�u

�n
�

�

�n

�

kx� x�k �� g �y� on �B��

lim
kxk	�

u �x� � 	

with x� � �	�!� 	� 	�T � The solution to this problem is given by u �x� � �
kx�x�k

�
This function is smooth on the surface but "nearly# singular near the surface
point x � ��� 	� 	�T � The solution is depicted in Figure ��

��



Figure �� Solution u of the numerical test problem� It behaves nearly singular
at the surface point x � ��� 	� 	�T

We write this equation as a Fredholm integral equation of second kind using
the direct method

��
u �x� �
Z
�

�

�ny

u �y�

kx� ykd�y �
Z
�

g �y�

kx� ykd�y�

��



For the discretization we have approximated the surface by a polygon consisting
of plane triangles which interpolates the surface in the vertices� We have used a
hierarchy of �ve grids� The details can be found in the following table�

Level 
 of triangles 
 of vertices

� �� �	
� �� ��
� ��� ��	
� �	�� ���
� �	!� �	�	

We have measured the error in the L��norm� Let uh denote the BEM�solution
without panel clustering and eh �� ku� uhk� the corresponding error� Since
we are using piecewise linear elements we expect that the method converges
quadratically in the L��norm� This means that

eh � e�h
�
�

The panel clustering method introduces an additional error in the discretization
process� The parameters m and � which controls the size of this error should be
tuned in such a way that the solution uPCh with panel�clustering di�ers only by
a constant factor from eh� This factor has to be smaller than �� otherwise we
would get the same accuracy with the standard matrix method using the grid of
the coarser level� Let the ratio f be de�ned by

f �
ePCh
eh

�

We have considered the cases that m and � have been chosen such that f �
f�� ���� �� �g� The panel clustering method which corresponds to f � � results in
the standard matrix method� i�e�� m � 	 and � � 	� The following tables shows
the storage amount and CPU�time for the di�erent values of the ratio f � Table �
corresponds to the Galerkin method� while Table � corresponds to the collocation
method� We see that� using the panel�clustering method� the CPU time for this
problem size can be reduced up to factor � � ��� and the storage amount up to
a factor �� We expect that for larger problem sizes this e�ect increases� This
problem was chosen such that the exact solution is nearly singular� Compared to
practical engineering problems� the solution is still quite unrealistic smooth� It
is clear that� if the solution has a less smooth behavior� the discretization error
for this problem size �about �			 unknowns� will be substantially larger� Then�
one can choose larger clusters or lower expansion orders in order to get the same
additional error� The reason is that the panel clustering method replaces the
kernel function by a ��d expansion� which does not depend on the smoothness of
the surface and the smoothness of the solution�

��



no PC f � ��� f � � f � �
eh ��� ���� ���� ����
ePCh �eh ��	 	�!� 	�!� 	�!�

Level CPU�time 	��� 	��	 	��	 	��	
� CPU���%CPU�f� ��	 ��	 ��	 ��	

MEM 	�	� 	�	 � 	�	 � 	�	 �
MEM���%MEM�f� ��	 	��� 	��� 	���

eh ���� ��� ��� ���
ePCh �eh ��	 ��	� ��	� ��	�

Level CPU�time  ��� ��	! ��	! ��	!
� CPU���%CPU�f� ��	 ���� ���� ����

MEM 	���� 	��	 	��	 	��	
MEM���%MEM�f� ��	 ��	� ��	� ��	�

eh ���� E�� ��� E�� ���� E�� ���	 E��
ePCh �eh ��	 ���� ��	 ����

Level CPU�time ���� �!�� ����� �����
� CPU���%CPU�f� ��	  ��� !��� �	��

MEM �� � ��!� ���	 ����
MEM���%MEM�f� ��	 ��	 ��� ���

eh ��� E�� ���� E�� ��� E�� ��� E��
ePCh �eh ��	 ���! ��	! ��! 

Level CPU�time �	�	 !���� ��� �	���
� CPU���%CPU�f� ��	 ���� ���� ����

MEM !	�� ���� ���� ����
MEM���%MEM�f� ��	 ���� ���� ��	

Table �� Consumptions of the Galerkin method with and without panel cluster�
ing� CPU�f� denotes the CPU�time� where the panel clustering parameters are
chosen such that f is the relative error ratio� MEM stands for "memory amont#
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no PC PCf��
� PCf�� PCf��

eh ��!� ���� ���� ����
ePCh �eh ��	 ��� ��� ��� 

Level CPU�time 	�	� 	�	� 	�	� 	�	� 
� CPU���%CPU�f� ��	 ��	� ��	� ��	�

MEM 	�	� 	�	�! 	�	�! 	�	�!
MEM���%MEM�f� ��	 	��� 	��� 	���

eh 	�  � ��� ��� ���
ePCh �eh ��	 ���� ���� ����

Level CPU�time 	��� 	��� 	��� 	���
� CPU���%CPU�f� ��	 ���� ���� ����

MEM 	���� 	��	� 	��	� 	��	�
MEM���%MEM�f� ��	 ���� ���� ����

eh ���� E�� ���� E�� ���� E�� ���� E��
ePCh �eh ��	 ���� ��!� ��!!

Level CPU�time ���� �� � ���� ���!
� CPU���%CPU�f� ��	 ���� ��	� ���!

MEM �� � ��� ���� ����
MEM���%MEM�f� ��	 ���� ���! ����

eh ���� E�� ���� E�� ��!� E�� ��� E��
ePCh �eh ��	 ��� ��!� ��!�

Level CPU�time ���	 ���� ���� � ��
� CPU���%CPU�f� ��	 ���! �� � ��!�

MEM !	�� �	� ���� ����
MEM���%MEM�f� ��	 ���� ���! �� 

Table �� Consumptions of the collocation method with and without panel clus�
tering� CPU�f� denotes the CPU�time� where the panel clustering parameters are
chosen such that f is the relative error ratio� MEM stands for "memory amont�

��



For this test problem� both� the Galerkin and the collocation method can
be applied� Then it is clear that the collocation method is the faster method�
The situation would change� if we would consider negative norms or evaluate the
potential in interior grid points� As pointed out in the previous sections� for more
complicated equations and domains one should use the hypersingular formulation
together with the Galerkin method� A numerical comparison of the e�ciency of
di�erent formulations of integral equations will be addressed in a forthcoming
paper �see 
�����
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