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Abstract

In this paper, we will present efficient strategies how composite
finite elements can be realized for the discretization of PDEs on do-
mains containing small geometric details. In contrast to standard fi-
nite elements, the minimal dimension of this new class of finite element
spaces is completely independent of the number of geometric details
of the physical domains. Hence, it allows coarse level discretization of
PDEs which can be used, e.g., preferably for multi-grid methods and
homogenization of PDEs in non-periodic situations.

1 Introduction

In many engineering situations, the physical objects under consideration have
an extremely complicated shape containing a huge number of geometric de-
tails. Any reasonable mesh generator will produce grids where the (minimal)
number of elements is strongly related to the number of these geometric
details. As a consequence, the (minimal) dimension of the corresponding
finite element space is huge, too. This fact strongly reduces the efficiency
of fast multi-level solvers for the arising system of linear equations since no
adequate coarse discretization is available. In [9] and [10], Composite Finite
FElements have been introduced for these kinds of problems. Here, the (min-
imal) dimension of the finite element space is completely independent of the
geometric details while the asymptotic approximation property is valid also



for the very coarse discretizations. In combination with multi-grid methods,
this new class of elements provides appropriate coarse discretizations for the
so-called coarse-grid corrections.

Composite finite elements can also be applied for the homogenization of
partial differential operators in non-periodic situations. The finite element
discretization of a differential operator can be re-interpreted as a differential
operator. Studying the behaviour of these operators on coarser and coarser
levels (relative to the size and number of micro-structures) gives insights on
the behaviour of homogenized differential operators.

This paper can be interpreted as part II of [9]. In the first part, we have set
up the spaces in a theoretical way proving the basic approximation results.
Here, we will focus on the implementation details and present numerical
experiments.

In the literature, there exist several approaches for coarsening finite ele-
ment spaces and the corresponding systems of linear equations, see [1], [2],
[12], [13], [14], [3], [7]- For detailed comments on these references we refer to
part I of this paper.

2 Grid Generation

In this section, we will explain how a sequence of grids for composite finite
elements can be generated. In contrast to standard finite element grids these
grids cannot be regarded as an approximation of the domains. However,
we will not define standard finite element spaces on these grids but include
the geometric details in the definition of finite element function spaces in
an appropriate way. We assume that Q@ C R? is a domain with piecewise
smooth boundary I' := 9€). However, we have in mind that this boundary
might contain a huge number of micro-structures. We begin with outlining
the principal underlying ideas for the generation of composite finite element
grids.

In the first phase, a hierarchy of auxiliary coverings {7},/c,  of the
boundary is generated by refining only those elements of an initial covering
7o of 0 which intersect the boundary. Note that the possibly very coarse
auxiliary grid 7y cannot be regarded as an approximation of the boundary
but only has to satisfy 0 C dom 7y. Here, and in the following dom 7 denotes
the interior of the domain covered by the grid: domrt := int (UKCT K).
The finest “near-boundary” grid, 7___, should have the property that “small



distortions” of the elements and grid points results in an adapted grid 7,__,
which represents a proper resolution of the boundary. Proper resolution
means that [' can be parametrized smoothly by edges and faces of elements
of 7., lying at the boundary.

Let us assume that we want to discretize a partial differential equation
on a refinement level /. Then, in the second phase the full grids are gen-
erated up to level /. This is done by refining the initial grid 7, by using
any refinement strategy for the elements lying inside of {2 and, for the el-
ements intersecting the boundary, by using the same refinement pattern as
employed for assembling the near-boundary grids. This results in a full grid
on level ¢ covering the whole domain and a sequence of near-boundary grids
on finer levels ¢ > ( resolving the boundary. It turns out that, by using this
construction of grids, the work for assembling the system of linear equations
on level / is essentially governed by the number of grid points on level /. If
all complete grids would be generated up to the finest level (,,x > ¢, then,
the complexity of the method would be related to the number of grid points
on the finest level. The definition of the composite finite element spaces on
these grids will be given in the next section.

As mentioned above, for the grid generation, the decision whether an
element intersects the boundary plays an important role. This information
can be generated in various ways and strongly depends on how the geometric
information is supplied by the user. Since the generation of this information
is independent of the definition of composite finite elements, we will explain
appropriate search algorithms in the appendix. In the following, we will
formulate the algorithms for the grid generation in an algorithmic way using
a pseudo computer language similar to PASCAL. We will need the following
definitions.

Definition 1 Let 7 denote a finite element grid. The neighbourhood of an
element K € 1 is defined by N (K) := {K’ cT| K NK # @} The set of
vertices of a finite element K € 7 is denoted by V (K) and the set of edges
by E(K).

Let Ty be a possibly very coarse, user-supplied coarse grid satisfying ) C
dom 7. We assume that, for any element K', there exists a reqular refinement
pattern defined on an affine equivalent reference element in a coordinate-free
way (cf. [4, Section 3.4]). The set of children o (K) consists of finite elements
(on the finer level) satisfying K’NK" = () for all non-identical K, K" € o (K)



and dom K = domo (K). For a triangle K, the set of children is given by
the four triangles arising by connecting the midpoints of the edges.

Let tol denote a tolerance which is user-supplied and characterizes the
required resolution of the boundary. To be more concrete we assume that
the geometric details can be resolved by elements having diameter O (tol)
and the refinement near the boundary can be stopped for elements satisfying
diam K < tol. The formal definition of the near-boundary grids is given by
the following recursion

Tivip i={K € 7 | IK' e N (K) : diam K’ > tol N K'NT # 0},
7~—i—|—1 = {0’ ([() K € 7N'Z'_|_1/2} .

Since we will investigate the work needed for realizing composite finite ele-
ments, we formulate this definition also in an algorithmic way. The procedure
refine is called by

Umax = —1; refine(tol, (pax) ;
and defined by

procedure refine(tol; /) ;
begin
while 7/, # ) do begin
(:=04+1;
for all K € 7, do begin
if {K' e N(K): K'NT #0Adiam K’ > tol} # () then begin
refine K regularly and generate set of children o (K);
for all A" € o (K) do begin
7~'g_|_1 = 7~'g_|_1 U [(/;
parent (K') := K
end end end end end;
A typical hierarchy of near-boundary grids is depicted in Figure 1.
Note that this refinement algorithm can easily be generalized to the case
where the tolerance tol is varying over the domain.
In the next step the finest near-boundary grid is adapted to the boundary
by small distortions of the elements and grid points. Let K € 7 denote a
finite element and E (K') the set of edges. For e = XY € E (K), we define
the function v (e) by

0 otherwise.

v(e) = { boundary if dxy,ay e {X, Y}z € QA2y ¢ 0



Figure 1: The first row shows a sequence of near-boundary grids on different
levels. Only those triangles are refined which intersect the boundary. In the
second row the adapted near-boundary grid on level /. is depicted which
properly resolves the boundary. Then, a full grid 7, is depicted which will be
used to define the degrees of freedom of the finite element space on level /.
Finally, in the last row, a CFE-mesh of the domain is presented which later
is referred to as 25.

For elements K, the function is defined analogously by

(1)

0 otherwise.

b (K) = { boundary if 3e € E(K) : v (e) = boundary

This function is depicted in Figure 2.

To adapt the finest grid to the boundary one has to investigate all edges
having the attribute boundary. For such an edge e = XY, we assume that
there exists a point Z € I' having the property that, if either X or YV is
replaced by Z, then, the diameters of the elements touching Z are increased at
most by a moderate factor and are still shape-regular. For example Z € enl’



Figure 2: Illustration of the functions v,r and p. In the depicted case,
there holds v (e;) = v (K3) = boundary and v(ez) = v(es) = v(Ky) =
v(Ky) = v (K4) =0. However, all triangles intersect the boundary implying
v (K;) = boundary for all 1 <i < 4. The triangle Ky lies essentially outside
the domain, p (K N Q) < &, and can be rejected.

might be a good choice or the orthogonal projection of X onto I'. This
replacement can formally be expressed by employing a function A mapping
an edge e = XY with v (¢) = boundary onto R* x R?

Ae) = (X,7) if Y is replaced by 7,
©= (Z,Y) if X is replaced by Z.

The procedure adapt is called by

for all K € 7, with v (K) = boundary do adapt(K);

and defined by

procedure adapt(K);
begin
for all e = XY € E(K) do begin
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if v(e) = boundary then begin
replace the vertices X, Y by A(e);
Comment: Note that this replacement changes the shape of K and all
other elements which have this point as a vertex on all levels.
end
end end;

Remark 2 Note that, for quadrilateral elements, the algorithm adapt could
result in the following situation (see the element Ky in Figure 2). Let K be a
quadrilateral with vertices {X;}, ., in counter-clockwise ordering satisfying
X, €Q, Xs ¢ Q, and Xy, X4 € I'. Then, v(e) # boundary holds for all
edges e € E(K) and, hence, the procedure adapt does not move any point
X;. The situation can easily be remedied by subdividing K into two triangles.
Similar constructions can be applied in 3-d as well.

In the second row of Figure 1, the result of the adaptation procedure is
depicted applied to the near-boundary grid shown in the first row of the same
figure.

It is important that, by this adaptation process, the logical parent/child
relations are preserved. However, the physical nestedness of the grids is vio-
lated, i.e., domo (K) C dom K is not valid in general. The computation of
the set I'N e in the algorithm adapt strongly depends on how the boundary
' is prescribed by the user. Appropriate search algorithms will be presented
in the appendix. We assume that the given tolerance tol is small enough such
that the mesh 7,___is non-degenerate, i.e., the interior angles of the elements
are not too large. Now, we will diminish the number of elements of the grid
Tr... by rejecting elements lying essentially outside of €2. This is done by
the procedure reduce_mesh. In the following, the function p denotes the
area measure of a set. Furthermore, we assume that a user-specified tolerance
(depending on the required degree of approximation), say d, is given to deter-
mine whether an element lying essentially outside of 2, i.e., u (K N Q) < 4,
can be rejected from a grid without reducing the approximation order.

procedure reduce_mesh;
begin
for all K € 7, do begin
if V(K) £Qor u(KNQ) <6 then

szax :: 7—ZIH€‘LX\]:X ;



end;

for { = /,.x — 1 downto 0 do begin
m:={Ke€n|o(K)N14 #0}
U< K € 7 | there exists a vertex x in 7oy with z E[i’}

end end;

The element K4 in Figure 2 is an example of a triangle which satisfies
V (K4) C Qbut p(KyN Q) < §. In the appendix, we will discuss strategies
for the computation of u (K NT).

This completes the generation of the hierarchy of near-boundary meshes.
We come now to the second phase of the algorithm where the full grid on
level 7 is generated. The full grids are generated by refining sequentially the
initial grid 7y using, for the elements which intersects the boundary, the same
refinement pattern as for the generation of the “near-boundary” grids. Let
{ < lyax. The procedure for generating 7, is defined by

procedure generate_full_grid(/);
begin
for m =0to /-1 do begin
for all K’ € 7, do begin
if o (K) =10 do begin
refine K" and generate the set of children o (K);
for all K’ C o (K) do parent (K') = K;
end;
Tl 1= Tmp1U o (K)
end end end;

The final grids 7, are given by replacing those grid points of 7, which
were adapted to the boundary in procedure adapt by the modified grid
points. This step can conveniently be included in the procedure gener-
ate_full_grid such that 7, is obtained in one stroke. We omit here the
algorithmic details.

The result of these algorithms is a hierarchy of near-boundary grids where
the finest grid, 7,_, represents a proper resolution of the boundary. Further-
more, full grids up to a level ¢ are generated by refining an initial coarse
grid 79. We emphasize that, for / < (., the grids 7, cannot be regarded as
approximations of the domain but simply satisfy

Q C dom, 0<m</,
dom 7, C dom 74 0 <V <0< /lpax.



However, we assume that the grid 7, properly resolves the boundary which,
in order to obtain higher accuracy, can be refined and, furthermore, can be
adapted to the boundary by standard techniques (cf. [4, Section 8.2]). A full
mesh on a relatively coarse level is depicted in the second row of Figure 1.
Composite finite element spaces will be defined on composite finite element
grids. To be more concrete we have to choose a covering of ) which will be
a subset of 7, U Uf;;“;}_l_l Tm - The details are in the following

Definition 3 Let {7}, o,  be generated as explained above. The subset

of these grids lying inside of Q are denoted by T,, and defined by
Ti={K €7 |0 (K) =0}.

Finally, the composite finite element grid on level { is given by

Zmax

TZOFE = U U K.

U

A typical composite finite element grid is depicted in the last row of
Figure 1.

Remark 4 The grid tCFF contains those triangles of U™ 1,, which are not
refined furthermore, i.c., lie (essentially) inside of 1. The grid TFTF repre-
sents a proper resolution of the domain 2, while, in general, it cannot be
regarded as a standard finite element mesh since hanging nodes occur and
TEVE s highly non-uniform. We emphasize that the higher resolution near
the boundary is needed to describe the support of the coarse level basis func-
tions. The near-boundary meshes are not used, e.q., to add more degrees of

freedom to the coarse level space.

In the next section we will define the composite finite element space on
these grids.

3 Composite Finite Elements

In the previous section we have generated a sequence of near-boundary grids
{Tm Y og1<mer,.. and full grids {7}, <, Which covers the domain 2. On



these finite element grids 7 (either full grids or a near-boundary grid), we
can define standard finite element spaces S, by

Sy ={veC"(dom7)|VK €7 :v |k isa polynomial of degree px}.

In this paper, we will focus on the efficient realization of composite finite
elements. For this reason, we will formulate the method in terms of grid
functions and nodal values instead of finite element functions itself. In this
light, let {¢]}, o, denote the usual Lagrange basis of S, with ©, denoting
the set of corresponding nodal points, i.e., for all z,y € ©,, we have

992(y)={1 v

(0 otherwise.

A grid function is a mapping 3 : ©, — € while the space of grid functions
is denoted by € ©7. Each grid function § € € is linked to a finite element
function by the global finite element interpolation operator via

Bl (x)= > Bly)ey (),  w€domr.

y€®r

The local version of I'™ is defined on an element K and given by

LBl e)= D Blyey(x), wek

yEO K

with O := 0, N K. In the following, we will replace the index 7, frequently
by £. For example, we set

©,:=0,, [ém = [t c,oﬁ, =t

Te

and analogously for other quantities. We are now able to define intergrid
operators by using the finite element interpolation. Let 3, € € ©* denote a
grid function. We interpolate 3, recursively on the near-boundary grids by

Bpgr (z) := I [B] (x) Vo € 0,41, m=00+1,... loax — 1.
The intergrid operator (3,, — 3,41 is denoted by

Pt QO €O
1
ﬁm-l-l = P:nn-l— ﬁm
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We recall the definition of the interior grids Ty (see Definition 3). A grid
function 8, € €®¢ is linked to the corresponding composite finite element
function by, recursively, computing nodal values on the near-boundary grids

by

ﬁm = P:nn—lﬁm—la <m < lhax
and then interpolating these values on elements K € 7F1E :
ug () = I [Bm] (2), Yz € dom 7,, .

The corresponding operator 3, — uy is denoted by wu, := IFF¥ [3,]. We illus-
trate this definition by characterizing the basis functions of the corresponding
composite finite element space. Let ¢! € € ° denote the unit grid function
on the grid 7, characterized by

1 forx =y,
e (y) = { 0 otherwise,

and the corresponding basis function % (z) := [{TF {eﬁ,}. On an element
CFE

K €7, which is not refined furthermore, the basis function ¢¢

is given
by the standard finite element interpolation St |f:= [0t {eﬁ,}. Otherwise,
there exists children o (K) # () on the finer level £ + 1. Let K’ € o (K) with
nodal points Ok := K'NO1;. In these nodal points, the prolonged grid func-

1 is defined by evaluating the standard finite element interpolation

tion e
Iint {efg}. This interpolation process is well-defined since the near-boundary

grids satisfy ©y,; C domm. If K’ 679“_1, then I |k is given by inter-

polating the generated nodal values on K’. Otherwise, if o (K') # 0, the
interpolation process has to be iterated on finer levels. In Figure 3, a typical
basis function is depicted.

The definition of the composite finite element space on level 7 is given by
the span of the basis functions:

CFE . CFE ._ jCFE [ .t
Sy : I {el,}

= span {c,ol, = x € @g}.

In the following we will explain how the system matrix corresponding to a
Galerkin discretization of a boundary value problem can be assembled via
local Galerkin products.
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Figure 3: Two typical basis functions of SY¥®. The shape of the basis
functions is very similar to the standard hat functions where the support is
restricted to the domain ().

4 Assembling of the linear system

We have in mind that, on a domain Q C R, a differential equation has to
be solved by using the Galerkin method. As a model problem we consider
the Helmholtz problem in a variational setting. Let V := H' (Q) denote the
usual Sobolev space and V' the dual space of V. For given F' € V', we are
seeking u € V' such that

a(u,v)=F(v), YoeV (2)
with the bilinear form a : V- x V' — R defined by
a(u,v):= / (Vu, Vo) + k*uvdz (3)
Q
and a positive constant k. We assume that the linear form F' is given by
F = / d
()= [ fods

with suitable f € L* (). We state that more complicated problems can
be treated with composite finite elements as well but, in order to explain
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the main application, namely, the discretization of complicated domains, we
restrict to this simple model equation.
The Galerkin discretization to problem (2) is given by seeking u, € S¢*'F
such that
a(ug,ve) = F(vg), Y, € SfFE (4)

holds. Introducing the basis representation

ue(x) = 3 uey)e,"" (2), (5)

UISCY;

problem (4) is equivalent to solving the system of linear equation
A?FEUZ = fg
with the grid operator A§¥" defined by

ASTE (o) = a (¢57F G5 Yaye o,

and the right hand side f; (z) := F (c,ogFE) In the following, we will explain

how the grid operator AS*® and the right hand side can be generated effi-

ciently by using local Galerkin products. We use the fact that the images of
the unit grid functions ¢ form the columns of the grid operator ASTF. We
first compute an auxiliary fine grid operator A, __ corresponding to the near-
boundary grid 7. . To be more concrete, we define local versions a, of the
bilinear form a by replacing the integration domain € in (3) by dom 7. Let
7 denote a finite element grid and © the corresponding set of nodal points.
Then, the corresponding grid operator is given by

A (l’,y) = dar (99;799;)7 z,y € 0.

In the first step, we compute A, . This grid operator is recursively coars-
ened by employing the Galerkin product. For { < m < l,.«, We set

A (2,y) = A (2,y)+ <Pg+leg,Am+1Pg+lem>m+l . 2,y€0,

where, for i, € € °™, the scalar product (-, -, is defined by

(') = > n(@) (x).

TEOQ,
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More formally, we define the adjoint operator R , : C Omtr _ € Om of
Pm+1 with respect to the (-,-) scalar product by

<P77T+177’w> - <777 R2+1w>m ) Ve €% we CO.

m+1

Using this notation the system matrix ASTE can be computed recursively as

follows

Aémax = A'TZmaX7 (6)
Ay = Ay + RIGA P = b = s = 2, 0 (7)

It is easy to see that AYF® := A, holds. The algorithmic formulation of the
recursion is given below. The procedure coarsen is called by

for m = l.x — 1 downto ( + 1 do coarsen(m, 7, A,,);

coarsen (E, Te, AZOFE)

and defined by

procedure coarsen(m,7,A);
begin
for all z € ©,, do
compute A (-, ) 1= R)' A, Pl tlel;
for all K E;m do
for all z,y € O :=0,, N K do
A(z,y) = A(e,y) +ax (7 ¢0) ;
end;

The generation of the right-hand sides on level £ can be done analogously.
The result of these procedure is a system of linear equations

A?FEUZ = fg (8)

where the grid function u, is linked to the continuous solution of (4) by (5).
The algorithm is efficient in the sense that the computational cost of assem-
bling (8) is only moderately higher as the cost for generating the standard
finite element matrix on level /. The complexity of the presented algorithm
is discussed in detail in the following section.
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5 Complexity Analysis for Composite Finite
Elements

The work for generating the system of linear equations (8) strongly depends
on the complexity of the boundary I'. Let NV,, denote the number of elements
of 7,,,:

Ny i=#{1n}, m=L0/1+1,..., (hax.

We assume that the number of nodal points ©,, is of the same order as N,,,
le.,

#0, < CNy,

with a constant C' depending only on the degree of approximation p but
not on the level m. The complexity of the algorithm will depend on the sum
Yop = Zf;f;}_l_l N,, and the number of elements of the full grid N, := #7,. We
assume that the information whether an element K intersects the boundary
[" is available and also (approximations to) the pairs

(A, B) :==argmin{[|z —y[[ : (X,Y) € V(K) x I'r}

(cf. procedure adapt) either are already computed or require O (1) oper-
ations per element K. In the appendix we will describe algorithms which
meet these requirements. Then, it follows directly from the definition of
the procedures refine, adapt, reduce_mesh, and generate_full _grid that
the generation of the sequence of near-boundary meshes {7, },ccp , the

full grid 7, and the composite finite element grid 777" needs O (Ng + ZE)
arithmetic operations. The storage requirements are of the same order.

In order to control the work for assembling AS¥F it is necessary to make
appropriate assumptions on the localness of these operators. To formulate

these conditions we will need the following notation. The support of a grid
function € € °¢ is defined by

supp #:={z € O, | B(x) # 0}.

For subsets w C 2, we define recursively layers of finite elements about w.

L (w) :dom{KETm|FOE7E@},
L' (w) + =dom{K €7, | KN L (w) #0}.
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The corresponding spaces of grid functions with local support are defined by
Gl (w) = {p € €O | supp B C Ii, ()} -

Now, we can express the localness of the grid operators. We have to impose
the following

Assumption 5 We assume that there are constants cp, cr, and ¢4 such that

Vo € O,V € N :

PrtLGE () C Gt (L (@), VO <m < e — 1,
RE—I—IG%—I—I (w) C Gin-l—l"i/zJ-I—CR w) 9 \V% S m S gmax - 17
ATo Gt (w) C Gitea (w). VU< m < Lhax-

Under these assumption the operators AS¥F is local, independent of the

refinement levels £ and /.. The details are in the following

Theorem 6 Assume that the Assumption 5 is fulfilled with constants inde-
pendent of the refinement levels {, (nax. Then, the number of non-zero entries
per line and column of ASTY is bounded by a constant independent of { and

gmax .

Proof. The assertion is proved inductively. We employ the recursion (6, 7).
For m = {.x, we know that

Am — Aqg
holds and hence, for all w C 2, we have
A G (W) C G ().

Now, assume that, for fixed m, { < m < /., there exists a constant p,,11
with the property that, for all w C Q, ¢ € INg

A G (w) CGEm (W) (9)

In the following, we will investigate the sparsity of the operator A,, assuming
condition (9). Forw C Q, let 3 € G¢ (w) be an arbitrary grid function. From
Assumption 5, we know that Ao 8 € G'Fea (w). Furthermore,

Prtg e Gt (L, (w)
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and by (9) it follows that
A PI g e G (L (w)
and, finally again by using Assumption 5, we obtain
R, Ay PP € GLrertl(teptomt)/2] (Lin (w))
which is equivalent to
RZHAmHP;?“ﬁ c Gin+cR+L(1+cp+pm+1)/2J+i (w).
It follows that (9) implies that
AnG, (w) C G (w)
with p,, = max(ca, 1 + cp+ [(1 + ¢, + pmt1) /2]). This leads to the esti-

mate
1+ ¢ pm-l-l)

2+2

Clearly, this recursion implies that p,, is bounded independent of /.« and
£. A more detailed investigation shows that p,, < 3 4 2¢p + ¢, + c4. This
directly implies that the number of non-zero entries per row and column is
bounded by a constant depending only on the degree of approximation but
is independent on the refinement parameters ¢ and /.. R

From this theorem it follows directly that the work needed for assembling

the system matrix for composite finite elements is bounded by O (Ng + ZE)
Obviously, the cost of generating the system matrix for standard finite el-
ements on a grid with N, elements is of order N, implying that the addi-
tional amount of work is of order ). In the following, we will give es-
timates of Y} for two typical situations. We assume that the grids are
quasi-uniform and and express the estimates in terms of the step size h,, :=
max {diam K : K € 7,,}. Furthermore, we assume that the step sizes satisfy
hg_H < Crefhg with Cref < 1.

First, let us assume that the full fine grid has to be generated due to
the required accuracy, i.e., { = f,.x holds. Then, the amount of work for
generating Agcmi XE is of order h[rix. In order to apply a multi-grid solver to the
s{ystem of linear equations, one has to generate the whole sequence of matrices

ACTE <<t by means of the Galerkin product. From the complexity
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analysis, it follows that the work needed for assembling the hierarchy of

matrices {ATCHFE}(K - is of order
SMSLCmax
lrax —d lrax m —d —d 1
D2t <0 (e (eres) ™) = i
m=0 m=0 - c7’6f

This implies that the work needed for assembling the full hierarchy of matri-
ces is of the same order as the generation of only the fine grid matrix.

Now, we will consider the following situation. Assume that the aim is
to generate directly the matrix AS"" while the finer matrices ACFF
required. Then, the amount of work is determined by the number of elements
of 7,,,m > { which intersects the boundary. Let cq := [, dx denote the area
(volume) of the domain and ¢ := [ dI'; the length (area) of the surface

I'. From the quasi-uniformity of the meshes, it follows that N, = O (thT_nd)
and, for m > {, we have N,, = O (CFh}n_d) with the space dimension d = 2, 3.

are not

Therefore, the quantity >} can be estimated by

Ja Ja Ja
F max max _ max _ 1_d c _
Y= X NSO Y ahlTt <O Y e (g () ") < Ot
m=L+1 m=£+1 m=£+1 1 — cref

This estimate can be interpreted, e.g., in two dimensions as follows. The
additional work for generating AS"" compared to standard finite elements is
h;! where h;” isthe amount of work which would be necessary to generate
the whole fine grid matrix. Note that the estimate above is too pessimistic in
cases where the micro-structures consist of a fixed number of very small holes
intersecting only O (1) coarse grid elements. The estimate is too optimistic,

e.g., in cases of porous media where the number of micro-structures is of
order h-9.

6 Numerical Results

In this section, we present results of numerical experiments performed with
composite finite elements. We have considered CFE-spaces based on linear
interpolation on triangulations. We have investigated

1. the approximation quality of this CFE-space for H?-functions,
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2. the performance of CFE coarse-level discretizations for multi-grid meth-
ods,

3. the locally homogenized partial differential operators.

6.1 Approximation Property

For composite finite elements based on linear interpolation, it was proved
in [9, Thms 8, 10] that, for quasi-uniform, shape regular triangulation and
additional weak but technical assumptions, the space S¢¥F has the approxi-
mation property for H*-functions. For all u € H? (), there exists u, € SFTF
such that

e = wello < CH ully,  m=0,1, (10)

where the constant (' is independent of u, / and /.. Furthermore, it was
proved in [15] that the constant €' depends only on the shape of the micro-
structures but not on the size of them. In order to check this estimate, we
have chosen u; as the Galerkin approximation to u by means of problem (2,
3) with appropriate chosen right-hand side and setting k* = 1. The domain
; was the unit sphere where 576 holes have been removed in the interior.
The domain together with the corresponding CFE-grid is depicted in Figure
4.

The right-hand side of (2) was chosen such that u (z) = z? + y* is the
exact solution. The following table reports the observed convergence rates.

llu=we1llg
llu—wello

Level  dof HU—WH1 %

1 4 4.88e-1 5.35e-2

2 9 2.91e-1 1.67 2.34e-2 2.28
3 24 1.57e-1 1.85 6.93e-3 3.38
4 74 8.28e-2 1.90 1.73e-3 4.00
5 245 4.27e-2 1.94 4.24e-4 4.08
6
7
8

[l = wellg

895 2.22e-2 1.93 1.15e-4 3.68
3323 1.17e-2 1.89 3.29e-5 3.50
12586 5.98e-3 1.96 8.09e-6 4.07

We see that, starting from the very coarse refinement levels, the observed
convergence rates are very close to the expected asymptotic rates. We point
out that, for the considered domains, the size of the holes are of the order
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Figure 4: On the left-hand side, the domain €2; containing 576 holes is de-
picted while on the right-hand side the anisotropic situation of the domain
)5 is shown.

of the step size of the fine grid h,_, confirming the assertion that the con-
stant of the estimate (10) is independent of the size of the micro-scales. In
the next subsection, we will study the performance of CFE-discretization in
combination with the multi-grid method.

6.2 Composite Finite Elements for Multi-Grid Meth-
ods

We have generated the coarse-level discretizations by composite finite ele-
ments for the multi-grid method to check how the number of iteration de-
pends on the complexity of the geometry of ). The approximation property
for multi-grid methods is strongly related to the approximation property of
the finite element space. The approximation property for multi-grid meth-
ods follows from the approximation quality of the finite element spaces and
assumptions on the differential equations on the continuous but not on the
discrete level (see [8, Section 6.3.1]). As a smoother we have employed the
symmetric Gauf}-Seidel smoother with one pre- and one post- smoothing
steps. Due to the scaling, the diagonal entries of the stiffness matrix are very
small if the support of a basis function is overlapping the domain only on a
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very short region. The situation is very similar to the Shortley-Weller finite
difference scheme considered in [6], [7]. The detailed proof of the smoothing
property of composite finite elements will be presented in a forthcoming pa-
per. The following table reports the performance of the multi-grid method
(V-cycle) for the same problem as described for the previous section. The
stopping criterion for all the following calculations was given by the condi-
tion that the {*norm of the residual is smaller than 1.0e—8. Alternatively,
we have considered the same equation on the parameter-dependent domain
(25 and the domain 25 defined as follows. 23 is the disc of radius 0.4 centred
at My := (0.5,0.5) with a circular hole with radius ¢ centred at My, too.
The domain €23 is given by the disc of radius 0.4 about M, containing two
circular holes of radius 0.09 centred at (0.4,0.5) and (0.6,0.5). The domains
25 and Q3 are depicted in Figures 1 and 4.

Level # of Iterations for 0y # of Iterations for 25 # of Iterations for {25

1 direct solver direct solver direct solver
2 5 5 5

3 7 9 8

4 8 11 10

5 8 11 13

6 8 10 12

7 8 9 11

8 9 8 10

We observe very high convergence rates being independent of the refinement
level and the number and size of the micro structures.
We come now to the investigation of the homogenized operators.

7 Composite Finite Elements for discrete ho-
mogenization

We have computed homogenized operators on different refinement levels in
order to get insights how these operators depends on the local geometry. To
explain the details, let ASTF denote the system matrix on the grid 7, and
z € O, a nodal point. Then, we define the application of AS*E to a smooth

function v € C'* (le) by

AT ] (2) = %AfFE (2, y)uly).
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Using Taylor expansion of u about x we obtain

AVFP ] (z) ~ DT AFTF (2,y) Z D” ) (y —x)”

ye® i<z ¥
- % %{29 ASTE (2,y) <y—x>”} Dula).

Using the coefficients ¢, (z) := & {ZyE@ ASTE (2,y) (y — :1;)”} we define the

homogenized differential operator at the nodal point = corresponding to the

scale £ by
Ahom( )= Z ¢, (x) D",
lv]<2
We have studied the dependence of the coefficients ¢, () on the geometry
and the refinement scales. First, we have considered the Laplace operator
discretized on the domain €25 and chosen © = M, = (0.5,0.5)T. Therefore,

we expect a rotational symmetric behaviour expressed by
A (My) = c(e) A.

We have sampled the function ¢ (¢) for different values of e. It was interesting
that, for the considered range of ¢ € [0.1, 3], the function ¢ (&) can perfectly
be fitted by a quadratic polynomial as shown in Figure 5.

Next, we have studied the anisotropic situation of domain Q5 on different
refinement levels. Again, we have chosen x as the midpoint of the disc.
It is clear that, for much larger step sizes h; compared to the holes, the
homogenized operator looks relatively isotropic. With decreasing step size
hy the situation becomes anisotropic while, for very small step sizes the local
operator does not “see” the holes and the situation is more isotropic again.
It turns out that the computed homogenized operator can be written in the
form

AP (Mo) = e1 (he) oy + 3 (he) Dy

In Figure 6 we have plotted these coefficients ¢; 2 (h¢) which clearly confirm
the considerations above.

8 Conclusions

In this paper, we have presented Composite Finite Elements for the dis-
cretization of PDEs on complicated domains. We have presented numerical
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Figure 5:

experiments which show the efficiency of the approach. The asymptotic
approximation property also holds for the very coarse discretizations. We
emphasize that the method is flexible in the sense that the realization in
three dimensions does not differ in principle from the two-dimensional ver-
sion. Also generalizations to higher order approximations and iso-parametric
modelling of the boundary is straightforward by using the canonical finite el-
ement interpolation operators for the definition of the intergrid operators.
In this paper we have considered a simple model problem with Neumann
boundary conditions. If essential boundary conditions are imposed the pro-
longation operators P! have to be slightly modified such that the CFE-
spaces satisfy the boundary condition, too. It turns out that the modified
prolongation for this situations is very easy to realize and cheap to evaluate.
This modification will be presented along with an analysis of the approxima-
tion property in a forthcoming paper. A similar situation arises if interfaces
are present. Also in this case the intergrid operators have to be modified.
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A Generation of Hierarchical Boundary In-
formation

In this section, we will describe how the information required in the algo-
rithms refine, adapt and reduce_mesh can be generated efficiently. As
mentioned earlier, the computation of this information strongly depends on
how the boundary is prescribed. If the boundary I' of the domain is available
by an explicit parametrization it is clear that the information whether, e.g.
an element K € 7 intersects the boundary or not can be assembled in O (1)
arithmetic operations per element. This was realized and described in [11].
In our paper, we will present search strategies which requires less structured
boundary information (at the cost of increased computing time). Here and in
the following, we require that, for any point « € R?, the information whether
x € ) holds can be computed in O (1) arithmetic operations. Such a situa-
tion typically arise if the domain € is defined via the characteristic function
Yq. The information whether a finite element K € 7 has non-zero cut with
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the boundary or not is needed in procedure refine. We define the function
v by p

) boundary it KNT #0,
7 (8) = { 0 otherwise

(see Figure 2). Since the boundary I' is not available as a parametrization,
we have to approximate the function v by a function 4 which is defined
recursively as follows. We recall the definition of the function v (K') (see

(1))

boundary if K € 7, and v (K) = boundary
Y(K) =< boundary if K € 1,y ANIK' € 0 (K) with 4 (K’) = boundary
0 otherwise

For the computation of ¥, we propose the following algorithm. Formally,
we put parent (K) = nil for all K € 7y and initialize the function ¥ as the
zero-function.

for all K € 7y with diam K > tol do check_boundary(K);

procedure check_boundary(K);
begin
if diam K > tol do begin
refine K regularly and generate the set of children o (K);
for all K’ € o (K) do begin
parent (K') .= K;
check boundary(K’)
end
end else begin
if v (K) = boundary then begin
while K" # nil do begin % (K') := boundary; K := parent (K)
end end end end;

We emphasize that the procedure above realizes only the principal idea
of the search algorithm. Some more details are concerned in the following

Remark 7 Obviously, the procedure check_boundary can be parallelized
straightforwardly since all elements K are treated independently.
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From the definition of the near-boundary grids it is clear that the elements
K satisfying 4 (K) = boundary directly can be incorporated in the near-
boundary grid of the corresponding level.

The elements K not having the attribute 4 (K) = boundary are only
needed temporarily and can be rejected afterwards.

In the algorithm adapt, grid points lying very close to the boundary are
projected onto the boundary. Let e := XY be an edge having the attribute
v (e) = boundary. Then, in many cases, a good candidate for replacing either
X or Y is given by the minimizer

(x1,29) := argmin{||[A — B||, (A, B) e {X,Y} x{enT}}.

This can be computed easily by a standard bisection algorithm. If the re-
quired precision is 0 < § < ||@ — y||, then, it is obvious that the complexity
of the bisection algorithm is of order log p(;iY'. Other choices as, e.g. the
othogonal projection of either X or Y onto I', can be computed in a similar
fashion.

Finally, we come to the computation of the intersection of elements K &€
T¢,.., with the domain €2 required in the procedure reduce_mesh. In view
of this procedure, we require that V (K) N Q = V (K) holds. The quantity
(K N Q) is approximated by the following algorithm. We subdivide K into
sub-elements K’ of size diam K’ < § with a prescribed tolerance §. We put

A(K) :{ 0 if V(K') ¢ Q,

pw(K') otherwise.

As an approximation to p (K N Q) we use i := Y g A(K'). Clearly, the
accuracy of i depends on the regularity of the boundary or, alternatively,
on the step size hy_,  of the finest near-boundary mesh. The complexity of
this algorithm is of order (hy,, /6)" where d denotes the space dimension.
In cases where the boundary is given explicitly by a parametrization the
quantity g (K N ) can be approximated with significantly reduced amount
of work.

Acknowledgment: Thanks are due to L. Grasedyck for the implemen-
tation of the algorithms.
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