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Abstract

In this paper� we will present e�cient strategies how composite

�nite elements can be realized for the discretization of PDEs on do�

mains containing small geometric details� In contrast to standard ��

nite elements� the minimal dimension of this new class of �nite element

spaces is completely independent of the number of geometric details

of the physical domains� Hence� it allows coarse level discretization of

PDEs which can be used� e�g�� preferably for multi�grid methods and

homogenization of PDEs in non�periodic situations�

� Introduction

In many engineering situations� the physical objects under consideration have
an extremely complicated shape containing a huge number of geometric de�
tails� Any reasonable mesh generator will produce grids where the �minimal�
number of elements is strongly related to the number of these geometric
details� As a consequence� the �minimal� dimension of the corresponding
�nite element space is huge� too� This fact strongly reduces the e�ciency
of fast multi�level solvers for the arising system of linear equations since no
adequate coarse discretization is available� In ��	 and �
�	� Composite Finite
Elements have been introduced for these kinds of problems� Here� the �min�
imal� dimension of the �nite element space is completely independent of the
geometric details while the asymptotic approximation property is valid also






for the very coarse discretizations� In combination with multi�grid methods�
this new class of elements provides appropriate coarse discretizations for the
so�called coarse�grid corrections�
Composite �nite elements can also be applied for the homogenization of

partial di�erential operators in non�periodic situations� The �nite element
discretization of a di�erential operator can be re�interpreted as a di�erential
operator� Studying the behaviour of these operators on coarser and coarser
levels �relative to the size and number of micro�structures� gives insights on
the behaviour of homogenized di�erential operators�
This paper can be interpreted as part II of ��	� In the �rst part� we have set

up the spaces in a theoretical way proving the basic approximation results�
Here� we will focus on the implementation details and present numerical
experiments�
In the literature� there exist several approaches for coarsening �nite ele�

ment spaces and the corresponding systems of linear equations� see �
	� �
	�
�

	� �
�	� �
�	� ��	� ��	� For detailed comments on these references we refer to
part I of this paper�

� Grid Generation

In this section� we will explain how a sequence of grids for composite �nite
elements can be generated� In contrast to standard �nite element grids these
grids cannot be regarded as an approximation of the domains� However�
we will not de�ne standard �nite element spaces on these grids but include
the geometric details in the de�nition of �nite element function spaces in
an appropriate way� We assume that � � lR

d is a domain with piecewise
smooth boundary � �� ��� However� we have in mind that this boundary
might contain a huge number of micro�structures� We begin with outlining
the principal underlying ideas for the generation of composite �nite element
grids�
In the �rst phase� a hierarchy of auxiliary coverings f���g�����max of the

boundary is generated by re�ning only those elements of an initial covering
��� of � which intersect the boundary� Note that the possibly very coarse
auxiliary grid ��� cannot be regarded as an approximation of the boundary
but only has to satisfy � � dom ���� Here� and in the following dom � denotes
the interior of the domain covered by the grid� dom � �� int

�S
K�� K

�
�

The �nest �near�boundary� grid� ���max� should have the property that �small






distortions� of the elements and grid points results in an adapted grid ��max
which represents a proper resolution of the boundary� Proper resolution
means that � can be parametrized smoothly by edges and faces of elements
of ��max lying at the boundary�
Let us assume that we want to discretize a partial di�erential equation

on a re�nement level �� Then� in the second phase the full grids are gen�
erated up to level �� This is done by re�ning the initial grid ��� by using
any re�nement strategy for the elements lying inside of � and� for the el�
ements intersecting the boundary� by using the same re�nement pattern as
employed for assembling the near�boundary grids� This results in a full grid
on level � covering the whole domain and a sequence of near�boundary grids
on �ner levels �� � � resolving the boundary� It turns out that� by using this
construction of grids� the work for assembling the system of linear equations
on level � is essentially governed by the number of grid points on level �� If
all complete grids would be generated up to the �nest level �max � �� then�
the complexity of the method would be related to the number of grid points
on the �nest level� The de�nition of the composite �nite element spaces on
these grids will be given in the next section�
As mentioned above� for the grid generation� the decision whether an

element intersects the boundary plays an important role� This information
can be generated in various ways and strongly depends on how the geometric
information is supplied by the user� Since the generation of this information
is independent of the de�nition of composite �nite elements� we will explain
appropriate search algorithms in the appendix� In the following� we will
formulate the algorithms for the grid generation in an algorithmic way using
a pseudo computer language similar to PASCAL� We will need the following
de�nitions�

De�nition � Let � denote a �nite element grid� The neighbourhood of an
element K � � is de�ned by N �K� ��

n
K � � � j K � �K �� �

o
� The set of

vertices of a �nite element K � � is denoted by V �K� and the set of edges
by E �K��

Let ��� be a possibly very coarse� user�supplied coarse grid satisfying � �
dom ���� We assume that� for any elementK� there exists a regular re�nement
pattern de�ned on an a�ne equivalent reference element in a coordinate�free
way �cf� ��� Section ���	�� The set of children � �K� consists of �nite elements
�on the �ner level� satisfyingK ��K �� � � for all non�identicalK ��K �� � � �K�

�



and domK � dom� �K�� For a triangle K� the set of children is given by
the four triangles arising by connecting the midpoints of the edges�
Let tol denote a tolerance which is user�supplied and characterizes the

required resolution of the boundary� To be more concrete we assume that
the geometric details can be resolved by elements having diameter O �tol�
and the re�nement near the boundary can be stopped for elements satisfying
diamK � tol� The formal de�nition of the near�boundary grids is given by
the following recursion

��i���� �� fK � ��i j �K
� � N �K� � diamK � � tol 	K � � � �� �g �

��i�� ��
n
� �K� � K � ��i����

o
�

Since we will investigate the work needed for realizing composite �nite ele�
ments� we formulate this de�nition also in an algorithmic way� The procedure
re�ne is called by

�max � 

� re�ne�tol� �max� �

and de�ned by

procedure re�ne�tol� �� �
begin

while ����� �� � do begin
� �� �� 
�
for all K � ��� do begin
if fK � � N �K� � K � � � �� � 	 diamK � � tolg �� � then begin

re�ne K regularly and generate set of children � �K� �
for all K � � � �K� do begin

����� �� ����� �K ��
parent �K �� �� K

end end end end end�
A typical hierarchy of near�boundary grids is depicted in Figure 
�
Note that this re�nement algorithm can easily be generalized to the case

where the tolerance tol is varying over the domain�
In the next step the �nest near�boundary grid is adapted to the boundary

by small distortions of the elements and grid points� Let K � � denote a
�nite element and E �K� the set of edges� For e � XY � E �K�� we de�ne
the function � �e� by

� �e� ��

�
boundary if �x�� x� � fX�Y g � x� � � 	 x� �� �
� otherwise�

�



Figure 
� The �rst row shows a sequence of near�boundary grids on di�erent
levels� Only those triangles are re�ned which intersect the boundary� In the
second row the adapted near�boundary grid on level �max is depicted which
properly resolves the boundary� Then� a full grid �� is depicted which will be
used to de�ne the degrees of freedom of the �nite element space on level ��
Finally� in the last row� a CFE�mesh of the domain is presented which later
is referred to as ��

��

For elements K� the function is de�ned analogously by

� �K� ��

�
boundary if �e � E �K� � � �e� � boundary
� otherwise�

�
�

This function is depicted in Figure 
�
To adapt the �nest grid to the boundary one has to investigate all edges

having the attribute boundary� For such an edge e � XY � we assume that
there exists a point Z � � having the property that� if either X or Y is
replaced by Z� then� the diameters of the elements touching Z are increased at
most by a moderate factor and are still shape�regular� For example Z � e��

�
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Figure 
� Illustration of the functions 	� � and 
� In the depicted case�
there holds � �e�� � � �K�� � boundary and � �e�� � � �e�� � � �K�� �
� �K�� � � �K�� � �� However� all triangles intersect the boundary implying
	 �Ki� � boundary for all 
 � i � �� The triangle K� lies essentially outside
the domain� 
 �K � �� � �� and can be rejected�

might be a good choice or the orthogonal projection of X onto �� This
replacement can formally be expressed by employing a function 
 mapping
an edge e � XY with � �e� � boundary onto lRd � lR

d


 �e� �

�
�X�Z� if Y is replaced by Z�
�Z� Y � if X is replaced by Z�

The procedure adapt is called by

for all K � ��max with � �K� � boundary do adapt�K� �

and de�ned by

procedure adapt�K��
begin

for all e � XY � E �K� do begin

�



if � �e� � boundary then begin
replace the vertices X�Y by 
 �e� �

Comment� Note that this replacement changes the shape of K and all
other elements which have this point as a vertex on all levels�

end
end end�

Remark � Note that� for quadrilateral elements� the algorithm adapt could
result in the following situation �see the element K� in Figure ��� Let K be a
quadrilateral with vertices fXig��i�� in counter�clockwise ordering satisfying

X� � �� X� �� ��� and X�� X� � �� Then� � �e� �� boundary holds for all
edges e � E �K� and� hence� the procedure adapt does not move any point
Xi� The situation can easily be remedied by subdividing K into two triangles�
Similar constructions can be applied in ��d as well�

In the second row of Figure 
� the result of the adaptation procedure is
depicted applied to the near�boundary grid shown in the �rst row of the same
�gure�

It is important that� by this adaptation process� the logical parent�child
relations are preserved� However� the physical nestedness of the grids is vio�
lated� i�e�� dom� �K� � domK is not valid in general� The computation of
the set �� e in the algorithm adapt strongly depends on how the boundary
� is prescribed by the user� Appropriate search algorithms will be presented
in the appendix� We assume that the given tolerance tol is small enough such
that the mesh ��max is non�degenerate� i�e�� the interior angles of the elements
are not too large� Now� we will diminish the number of elements of the grid
��max by rejecting elements lying essentially outside of �� This is done by
the procedure reduce mesh� In the following� the function 
 denotes the
area measure of a set� Furthermore� we assume that a user�speci�ed tolerance
�depending on the required degree of approximation�� say �� is given to deter�
mine whether an element lying essentially outside of �� i�e�� 
 �K � �� � ��
can be rejected from a grid without reducing the approximation order�

procedure reduce mesh�
begin

for all K � ��max do begin
if V �K� � ��� or 
 �K � �� � � then

��max �� ��maxnK�

�



end�
for � � �max 
 
 downto � do begin

�� �� fK � �� j � �K� � ���� �� �g

�
�
K � �� j there exists a vertex x in ���� with x �

�

K

�
end end�

The element K� in Figure 
 is an example of a triangle which satis�es
V �K�� � �� but 
 �K� � �� � �� In the appendix� we will discuss strategies
for the computation of 
 �K � ���
This completes the generation of the hierarchy of near�boundary meshes�

We come now to the second phase of the algorithm where the full grid on
level � is generated� The full grids are generated by re�ning sequentially the
initial grid ��� using� for the elements which intersects the boundary� the same
re�nement pattern as for the generation of the �near�boundary� grids� Let
� � �max� The procedure for generating �� is de�ned by

procedure generate full grid��� �
begin

for m � � to �
 
 do begin
for all K � ��m do begin

if � �K� � � do begin
re�ne K and generate the set of children � �K� �
for all K � � � �K� do parent �K �� � K�

end�
��m�� �� ��m��� � �K�

end end end�

The �nal grids �� are given by replacing those grid points of ��� which
were adapted to the boundary in procedure adapt by the modi�ed grid
points� This step can conveniently be included in the procedure gener�
ate full grid such that �� is obtained in one stroke� We omit here the
algorithmic details�
The result of these algorithms is a hierarchy of near�boundary grids where

the �nest grid� ��max represents a proper resolution of the boundary� Further�
more� full grids up to a level � are generated by re�ning an initial coarse
grid ��� We emphasize that� for � � �max� the grids �� cannot be regarded as
approximations of the domain but simply satisfy

� � dom �m� � � m � ��
dom �� � dom ��� � � �� � � � �max�

�



However� we assume that the grid ��max properly resolves the boundary which�
in order to obtain higher accuracy� can be re�ned and� furthermore� can be
adapted to the boundary by standard techniques �cf� ��� Section ��
	�� A full
mesh on a relatively coarse level is depicted in the second row of Figure 
�
Composite �nite element spaces will be de�ned on composite �nite element
grids� To be more concrete we have to choose a covering of � which will be
a subset of �� �

S�max
m���� �m � The details are in the following

De�nition � Let f�mg��m��max
be generated as explained above� The subset

of these grids lying inside of � are denoted by
�
�m and de�ned by

�
�m�� fK � �m j � �K� � �g �

Finally� the composite �nite element grid on level � is given by

�CFE� ��
�max�
m��

�
K�

�

�m

K�

A typical composite �nite element grid is depicted in the last row of
Figure 
�

Remark � The grid �CFE� contains those triangles of
S�max
m�� �m which are not

re�ned furthermore� i�e�� lie �essentially� inside of �� The grid �CFE� repre�
sents a proper resolution of the domain �� while� in general� it cannot be
regarded as a standard �nite element mesh since hanging nodes occur and
�CFE� is highly non�uniform� We emphasize that the higher resolution near
the boundary is needed to describe the support of the coarse level basis func�
tions� The near�boundary meshes are not used� e�g�� to add more degrees of
freedom to the coarse level space�

In the next section we will de�ne the composite �nite element space on
these grids�

� Composite Finite Elements

In the previous section we have generated a sequence of near�boundary grids
f�mg����m��max

and full grids f�mg��m�� which covers the domain �� On

�



these �nite element grids � �either full grids or a near�boundary grid�� we
can de�ne standard �nite element spaces S� by

S� �� fv � Cr �dom � � j 
K � � � v jK is a polynomial of degree pKg �

In this paper� we will focus on the e�cient realization of composite �nite
elements� For this reason� we will formulate the method in terms of grid
functions and nodal values instead of �nite element functions itself� In this
light� let f��

xgx��� denote the usual Lagrange basis of S� with �� denoting
the set of corresponding nodal points� i�e�� for all x� y � �� � we have

��
x �y� �

�

 x � y�
� otherwise�

A grid function is a mapping � � �� � Cl while the space of grid functions
is denoted by Cl

�� � Each grid function � � Cl
�� is linked to a �nite element

function by the global �nite element interpolation operator via

I int� ��	 �x� �
X
y���

� �y���
y �x� � x � dom ��

The local version of I int� is de�ned on an element K and given by

I intK ��	 �x� �
X
y��K

� �y���
y �x� � x � K

with �K �� �� � �K� In the following� we will replace the index �� frequently
by �� For example� we set

�� �� ���� I int� �� I int��
� ��

x �� ���
x

and analogously for other quantities� We are now able to de�ne intergrid
operators by using the �nite element interpolation� Let �� � Cl

�� denote a
grid function� We interpolate �� recursively on the near�boundary grids by

�m�� �x� �� I intm ��m	 �x� 
x � �m��� m � �� � � 
� � � � � �max 
 
�

The intergrid operator �m � �m�� is denoted by

Pm��
m � Cl

�m � Cl
�m�� �

�m�� � � Pm��
m �m�


�



We recall the de�nition of the interior grids
�
� � �see De�nition ��� A grid

function �� � Cl
�� is linked to the corresponding composite �nite element

function by� recursively� computing nodal values on the near�boundary grids
by

�m �� Pm
m���m��� � � m � �max

and then interpolating these values on elements K � �CFE� �

u� �x� �� I int�

�m
��m	 �x� � 
x � dom

�
�m �

The corresponding operator �� � u� is denoted by u� �� ICFE� ���	� We illus�
trate this de�nition by characterizing the basis functions of the corresponding
composite �nite element space� Let e�x � Cl

�� denote the unit grid function
on the grid �� characterized by

e�x �y� �

�

 for x � y�
� otherwise�

and the corresponding basis function �CFE
x �x� �� ICFE�

h
e�x
i
� On an element

K �
�
� � which is not re�ned furthermore� the basis function �CFE

x is given

by the standard �nite element interpolation �CFE
x jK�� I intK

h
e�x
i
� Otherwise�

there exists children � �K� �� � on the �ner level �� 
� Let K � � � �K� with
nodal points �K� �� K ������� In these nodal points� the prolonged grid func�
tion e���x is de�ned by evaluating the standard �nite element interpolation

I int�

h
e�x
i
� This interpolation process is well�de�ned since the near�boundary

grids satisfy ���� � dom ��� If K � �
�
� ���� then �CFE

x jK� is given by inter�
polating the generated nodal values on K �� Otherwise� if � �K �� �� �� the
interpolation process has to be iterated on �ner levels� In Figure �� a typical
basis function is depicted�
The de�nition of the composite �nite element space on level � is given by

the span of the basis functions�

SCFE
� �� span

n
�CFE
x �� ICFE�

h
e�x
i���x � ��

o
�

In the following we will explain how the system matrix corresponding to a
Galerkin discretization of a boundary value problem can be assembled via
local Galerkin products�







Figure �� Two typical basis functions of SCFE
� � The shape of the basis

functions is very similar to the standard hat functions where the support is
restricted to the domain ��

� Assembling of the linear system

We have in mind that� on a domain � � lR
d� a di�erential equation has to

be solved by using the Galerkin method� As a model problem we consider
the Helmholtz problem in a variational setting� Let V �� H� ��� denote the
usual Sobolev space and V � the dual space of V � For given F � V �� we are
seeking u � V such that

a �u� v� � F �v� � 
v � V �
�

with the bilinear form a � V � V � lR de�ned by

a �u� v� ��
Z
�
hru�rvi� k�uvdx ���

and a positive constant k� We assume that the linear form F is given by

F �v� ��
Z
�
fvdx

with suitable f � L� ���� We state that more complicated problems can
be treated with composite �nite elements as well but� in order to explain







the main application� namely� the discretization of complicated domains� we
restrict to this simple model equation�
The Galerkin discretization to problem �
� is given by seeking u� � SCFE

�

such that
a �u�� v�� � F �v�� � 
v� � SCFE

� ���

holds� Introducing the basis representation

u� �x� �
X
y���

u� �y��
CFE
y �x� � ���

problem ��� is equivalent to solving the system of linear equation

ACFE
� u� � f�

with the grid operator ACFE
� de�ned by

ACFE
� �x� y� � a

�
�CFE
y � �CFE

x

�
� 
x� y � ��

and the right hand side f� �x� �� F
�
�CFE
x

�
� In the following� we will explain

how the grid operator ACFE
� and the right hand side can be generated e��

ciently by using local Galerkin products� We use the fact that the images of
the unit grid functions e�x form the columns of the grid operator A

CFE
� � We

�rst compute an auxiliary �ne grid operator A�max corresponding to the near�
boundary grid ��max� To be more concrete� we de�ne local versions a� of the
bilinear form a by replacing the integration domain � in ��� by dom � � Let
� denote a �nite element grid and � the corresponding set of nodal points�
Then� the corresponding grid operator is given by

A� �x� y� �� a�
�
��
y � �

�
x

�
� x� y � ��

In the �rst step� we compute A��max
� This grid operator is recursively coars�

ened by employing the Galerkin product� For � � m � �max� we set

Am �x� y� �� A�

�m
�x� y� �

D
Pm��
m emy �Am��P

m��
m emx

E
m��

� x� y � �m

where� for �� �� � Cl
�m � the scalar product h�� �im is de�ned by

h�� ��im ��
X

x��m

� �x� �� �x� �


�



More formally� we de�ne the adjoint operator Rm
m�� � Cl

�m�� � Cl
�m of

Pm��
m with respect to the h�� �im scalar product byD

Pm��
m �� �

E
m��

�
D
��Rm

m���
E
m
� 
� � Cl

�m � � � Cl
�m�� �

Using this notation the system matrixACFE
� can be computed recursively as

follows

A�max �� A��max
� ���

Am �� A�

�m
�Rm

m��Am��P
m��
m � m � �max 
 
� �max 
 
� � � � � �����

It is easy to see that ACFE
� �� A� holds� The algorithmic formulation of the

recursion is given below� The procedure coarsen is called by

for m � �max 
 
 downto � � 
 do coarsen�m� �m�Am� �

coarsen
�
�� ���A

CFE
�

�

and de�ned by

procedure coarsen�m� ��A� �
begin

for all x � �m do
compute A ��� x� �� Rm

m��Am��P
m��
m emx �

for all K �
�
�m do

for all x� y � �K �� �m �K do
A�x� y� �� A �x� y� � aK

�
�m
y � �

m
x

�
�

end�

The generation of the right�hand sides on level � can be done analogously�
The result of these procedure is a system of linear equations

ACFE
� u� � f� ���

where the grid function u� is linked to the continuous solution of ��� by ����
The algorithm is e�cient in the sense that the computational cost of assem�
bling ��� is only moderately higher as the cost for generating the standard
�nite element matrix on level �� The complexity of the presented algorithm
is discussed in detail in the following section�


�



� Complexity Analysis for Composite Finite

Elements

The work for generating the system of linear equations ��� strongly depends
on the complexity of the boundary �� Let Nm denote the number of elements
of �m�

Nm ��  f�mg � m � �� �� 
� � � � � �max�

We assume that the number of nodal points �m is of the same order as Nm�
i�e��

 �m � CNm

with a constant C depending only on the degree of approximation p but
not on the level m� The complexity of the algorithm will depend on the sumP

� ��
P�max

m���� Nm and the number of elements of the full grid N� ��  ��� We
assume that the information whether an element K intersects the boundary
� is available and also �approximations to� the pairs

�A�B� �� argminfkx
 yk � �X�Y � � V �K�� �Kg

�cf� procedure adapt	 either are already computed or require O �
� oper�
ations per element K� In the appendix we will describe algorithms which
meet these requirements� Then� it follows directly from the de�nition of
the procedures re�ne� adapt� reduce mesh� and generate full grid that
the generation of the sequence of near�boundary meshes f�mg�����max � the

full grid �� and the composite �nite element grid �CFE� needs O
�
N� �

P	
�

�
arithmetic operations� The storage requirements are of the same order�
In order to control the work for assembling ACFE

� it is necessary to make
appropriate assumptions on the localness of these operators� To formulate
these conditions we will need the following notation� The support of a grid
function � � Cl

�� is de�ned by

supp � �� fx � �� j � �x� �� �g �

For subsets � � �� we de�ne recursively layers of �nite elements about ��

L�
m ��� � � dom

n
K � �m j K � � �� �

o
�

Li��
m ��� � � dom

n
K � �m j K � Li

m ��� �� �
o
�


�



The corresponding spaces of grid functions with local support are de�ned by

Gi
m ��� ��

n
� � Cl

�m j supp � � Li
m ���

o
�

Now� we can express the localness of the grid operators� We have to impose
the following

Assumption 
 We assume that there are constants cP � cR� and cA such that


� � ��
i � lN� �

Pm��
m Gi

m ��� � G
��cp
m�� �L

i
m ���� � 
� � m � �max 
 
�

Rm
m��G

i
m�� ��� � G��bi��c�cR

m ��� � 
� � m � �max 
 
�
A�

�m
Gi
m ��� � Gi�cA

m ��� � 
� � m � �max�

Under these assumption the operators ACFE
� is local� independent of the

re�nement levels � and �max� The details are in the following

Theorem � Assume that the Assumption � is ful�lled with constants inde�
pendent of the re�nement levels �� �max� Then� the number of non�zero entries
per line and column of ACFE

� is bounded by a constant independent of � and
�max�

Proof� The assertion is proved inductively� We employ the recursion ��� ���
For m � �max� we know that

Am � A�

�m

holds and hence� for all � � �� we have

A�maxG
i
m ��� � Gi�cA

m ��� �

Now� assume that� for �xed m� � � m � �max� there exists a constant �m��

with the property that� for all � � �� i � lN�

Am��G
i
m�� ��� � G

i��m��
m�� ��� � ���

In the following� we will investigate the sparsity of the operator Am assuming
condition ���� For � � �� let � � Gi

m ��� be an arbitrary grid function� From
Assumption �� we know that A�

�m
� � Gi�cA

m ���� Furthermore�

Pm��
m � � G

��cp
m��

�
Li
m ���

�


�



and by ��� it follows that

Am��P
m��
m � � G

��cp��m��
m��

�
Li
m ���

�

and� �nally again by using Assumption �� we obtain

Rm
m��Am��P

m��
m � � G��cR�b
��cp��m�����c

m

�
Li
m ���

�

which is equivalent to

Rm
m��Am��P

m��
m � � G��cR�b
��cp��m�����c�i

m ��� �

It follows that ��� implies that

AmG
i
m ��� � Gi��m

m ���

with �m � max�cA� 
 � cR � b�
 � cp � �m��� �
c�� This leads to the esti�
mate

�m � max
�
cA� 
 � cR �


 � cp



�
�m��




�
�

Clearly� this recursion implies that �m is bounded independent of �max and
�� A more detailed investigation shows that �m � � � 
cR � cp � cA� This
directly implies that the number of non�zero entries per row and column is
bounded by a constant depending only on the degree of approximation but
is independent on the re�nement parameters � and �max�
From this theorem it follows directly that the work needed for assembling

the system matrix for composite �nite elements is bounded by O
�
N� �

P	
�

�
�

Obviously� the cost of generating the system matrix for standard �nite el�
ements on a grid with N� elements is of order N� implying that the addi�
tional amount of work is of order

P	
� � In the following� we will give es�

timates of
P	

� for two typical situations� We assume that the grids are
quasi�uniform and and express the estimates in terms of the step size hm ��
maxfdiamK � K � �mg� Furthermore� we assume that the step sizes satisfy
h��� � crefh� with cref � 
�
First� let us assume that the full �ne grid has to be generated due to

the required accuracy� i�e�� � � �max holds� Then� the amount of work for
generating ACFE

�max is of order h
�d
�max� In order to apply a multi�grid solver to the

system of linear equations� one has to generate the whole sequence of matricesn
ACFE

m

o
��m��max

by means of the Galerkin product� From the complexity


�



analysis� it follows that the work needed for assembling the hierarchy of
matrices

n
ACFE

m

o
��m��max

is of order

�maxX
m��

h�dm �
�maxX
m��

�
h�max �cref �

�m
��d

� h�d�max




 
 cdref
�

This implies that the work needed for assembling the full hierarchy of matri�
ces is of the same order as the generation of only the �ne grid matrix�
Now� we will consider the following situation� Assume that the aim is

to generate directly the matrix ACFE
� while the �ner matrices ACFE

m are not
required� Then� the amount of work is determined by the number of elements
of �m�m � � which intersects the boundary� Let c� ��

R
� dx denote the area

�volume� of the domain and c	 ��
R
	 d�x the length �area� of the surface

�� From the quasi�uniformity of the meshes� it follows that N� � O
�
c�h

�d
m

�
and� for m � �� we have Nm � O

�
c	h

��d
m

�
with the space dimension d � 
� ��

Therefore� the quantity
P	

� can be estimated by

X	

�
�

�maxX
m����

Nm � C
�maxX

m����

c	h
��d
m � C

�maxX
m����

c	
�
h�max �cref �

�m
���d

� C
c	


 
 cd��ref

h��d�max�

This estimate can be interpreted� e�g�� in two dimensions as follows� The
additional work for generating ACFE

� compared to standard �nite elements is
h���max where h

��
�max is the amount of work which would be necessary to generate

the whole �ne grid matrix� Note that the estimate above is too pessimistic in
cases where the micro�structures consist of a �xed number of very small holes
intersecting only O �
� coarse grid elements� The estimate is too optimistic�
e�g�� in cases of porous media where the number of micro�structures is of
order h�dm �

� Numerical Results

In this section� we present results of numerical experiments performed with
composite �nite elements� We have considered CFE�spaces based on linear
interpolation on triangulations� We have investigated


� the approximation quality of this CFE�space for H��functions�


�




� the performance of CFE coarse�level discretizations for multi�gridmeth�
ods�

�� the locally homogenized partial di�erential operators�

��� Approximation Property

For composite �nite elements based on linear interpolation� it was proved
in ��� Thms �� 
�	 that� for quasi�uniform� shape regular triangulation and
additional weak but technical assumptions� the space SCFE

� has the approxi�
mation property for H��functions� For all u � H� ���� there exists u� � SCFE

�

such that
ku
 u�k� � Ch��m� kuk� � m � �� 
� �
��

where the constant C is independent of u� � and �max� Furthermore� it was
proved in �
�	 that the constant C depends only on the shape of the micro�
structures but not on the size of them� In order to check this estimate� we
have chosen u� as the Galerkin approximation to u by means of problem �
�
�� with appropriate chosen right�hand side and setting k� � 
� The domain
�� was the unit sphere where ��� holes have been removed in the interior�
The domain together with the corresponding CFE�grid is depicted in Figure
��
The right�hand side of �
� was chosen such that u �x� � x� � y� is the

exact solution� The following table reports the observed convergence rates�

Level dof ku
 u�k�
ku�u���k�
ku�u�k�

ku
 u�k�
ku�u���k�
ku�u�k�


 � ����e�
 ����e�


 � 
��
e�
 
��� 
���e�
 
�
�
� 
� 
���e�
 
��� ����e�� ����
� �� ��
�e�
 
��� 
���e�� ����
� 
�� ��
�e�
 
��� ��
�e�� ����
� ��� 
�

e�
 
��� 
�
�e�� ����
� ��
� 
�
�e�
 
��� ��
�e�� ����
� 

��� ����e�� 
��� ����e�� ����

We see that� starting from the very coarse re�nement levels� the observed
convergence rates are very close to the expected asymptotic rates� We point
out that� for the considered domains� the size of the holes are of the order


�



Figure �� On the left�hand side� the domain �� containing ��� holes is de�
picted while on the right�hand side the anisotropic situation of the domain
�� is shown�

of the step size of the �ne grid h�max con�rming the assertion that the con�
stant of the estimate �
�� is independent of the size of the micro�scales� In
the next subsection� we will study the performance of CFE�discretization in
combination with the multi�grid method�

��� Composite Finite Elements for Multi�Grid Meth�

ods

We have generated the coarse�level discretizations by composite �nite ele�
ments for the multi�grid method to check how the number of iteration de�
pends on the complexity of the geometry of �� The approximation property
for multi�grid methods is strongly related to the approximation property of
the �nite element space� The approximation property for multi�grid meth�
ods follows from the approximation quality of the �nite element spaces and
assumptions on the di�erential equations on the continuous but not on the
discrete level �see ��� Section ����
	�� As a smoother we have employed the
symmetric Gau!�Seidel smoother with one pre� and one post� smoothing
steps� Due to the scaling� the diagonal entries of the sti�ness matrix are very
small if the support of a basis function is overlapping the domain only on a


�



very short region� The situation is very similar to the Shortley�Weller �nite
di�erence scheme considered in ��	� ��	� The detailed proof of the smoothing
property of composite �nite elements will be presented in a forthcoming pa�
per� The following table reports the performance of the multi�grid method
�V�cycle� for the same problem as described for the previous section� The
stopping criterion for all the following calculations was given by the condi�
tion that the l��norm of the residual is smaller than 
��e
�� Alternatively�
we have considered the same equation on the parameter�dependent domain
��
� and the domain �� de�ned as follows� �

�
� is the disc of radius ��� centred

at M� �� ����� ���� with a circular hole with radius � centred at M�� too�
The domain �� is given by the disc of radius ��� about M� containing two
circular holes of radius ���� centred at ����� ���� and ����� ����� The domains
��
� and �� are depicted in Figures 
 and ��

Level  of Iterations for ��  of Iterations for ��
�  of Iterations for ��


 direct solver direct solver direct solver

 � � �
� � � �
� � 

 
�
� � 

 
�
� � 
� 


� � � 


� � � 
�

We observe very high convergence rates being independent of the re�nement
level and the number and size of the micro structures�
We come now to the investigation of the homogenized operators�

� Composite Finite Elements for discrete ho�

mogenization

We have computed homogenized operators on di�erent re�nement levels in
order to get insights how these operators depends on the local geometry� To
explain the details� let ACFE

� denote the system matrix on the grid �� and
x � �� a nodal point� Then� we de�ne the application of ACFE

� to a smooth

function u � C�
�
lR
d
�
by

ACFE
� �u	 �x� ��

X
y��

ACFE
� �x� y�u �y� �







Using Taylor expansion of u about x we obtain

ACFE
� �u	 �x� �

X
y��

ACFE
� �x� y�

X
j�j��




�"
D�u �x� �y 
 x��

�
X
j�j��




�"

	

�
X
y��

ACFE
� �x� y� �y 
 x��

�

�D�u �x� �

Using the coe�cients c� �x� ��
�
��

nP
y��A

CFE
� �x� y� �y 
 x��

o
we de�ne the

homogenized di�erential operator at the nodal point x corresponding to the
scale � by

Ahom
� �x� ��

X
j�j��

c� �x�D
� �

We have studied the dependence of the coe�cients c� �x� on the geometry
and the re�nement scales� First� we have considered the Laplace operator
discretized on the domain ��

� and chosen x � M� � ����� ����
T � Therefore�

we expect a rotational symmetric behaviour expressed by

Ahom
� �M�� � c ���#�

We have sampled the function c ��� for di�erent values of �� It was interesting
that� for the considered range of � � ���
� �	� the function c ��� can perfectly
be �tted by a quadratic polynomial as shown in Figure ��
Next� we have studied the anisotropic situation of domain �� on di�erent

re�nement levels� Again� we have chosen x as the midpoint of the disc�
It is clear that� for much larger step sizes h� compared to the holes� the
homogenized operator looks relatively isotropic� With decreasing step size
h� the situation becomes anisotropic while� for very small step sizes the local
operator does not �see� the holes and the situation is more isotropic again�
It turns out that the computed homogenized operator can be written in the
form

Ahom
� �M�� � c� �h�� �xx � c� �h�� �yy�

In Figure � we have plotted these coe�cients c��� �h�� which clearly con�rm
the considerations above�

� Conclusions

In this paper� we have presented Composite Finite Elements for the dis�
cretization of PDEs on complicated domains� We have presented numerical
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experiments which show the e�ciency of the approach� The asymptotic
approximation property also holds for the very coarse discretizations� We
emphasize that the method is $exible in the sense that the realization in
three dimensions does not di�er in principle from the two�dimensional ver�
sion� Also generalizations to higher order approximations and iso�parametric
modelling of the boundary is straightforward by using the canonical �nite el�
ement interpolation operators for the de�nition of the intergrid operators�
In this paper we have considered a simple model problem with Neumann

boundary conditions� If essential boundary conditions are imposed the pro�
longation operators Pm��

m have to be slightly modi�ed such that the CFE�
spaces satisfy the boundary condition� too� It turns out that the modi�ed
prolongation for this situations is very easy to realize and cheap to evaluate�
This modi�cation will be presented along with an analysis of the approxima�
tion property in a forthcoming paper� A similar situation arises if interfaces
are present� Also in this case the intergrid operators have to be modi�ed�
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A Generation of Hierarchical Boundary In�

formation

In this section� we will describe how the information required in the algo�
rithms re�ne� adapt and reduce mesh can be generated e�ciently� As
mentioned earlier� the computation of this information strongly depends on
how the boundary is prescribed� If the boundary � of the domain is available
by an explicit parametrization it is clear that the information whether� e�g�
an element K � � intersects the boundary or not can be assembled in O �
�
arithmetic operations per element� This was realized and described in �

	�
In our paper� we will present search strategies which requires less structured
boundary information �at the cost of increased computing time�� Here and in
the following� we require that� for any point x � lR

d� the information whether
x � � holds can be computed in O �
� arithmetic operations� Such a situa�
tion typically arise if the domain � is de�ned via the characteristic function
��� The information whether a �nite element K � � has non�zero cut with


�



the boundary or not is needed in procedure re�ne� We de�ne the function
	 by

	 �K� �

�
boundary if K � � �� ��
� otherwise

�see Figure 
�� Since the boundary � is not available as a parametrization�
we have to approximate the function 	 by a function �	 which is de�ned
recursively as follows� We recall the de�nition of the function � �K� �see
�
���

�	 �K� ��

	�

��

boundary if K � ��max and � �K� � boundary
boundary if K � �m�� 	 �K � � � �K� with �	 �K �� � boundary
� otherwise

For the computation of �	� we propose the following algorithm� Formally�
we put parent �K� � nil for all K � ��� and initialize the function �	 as the
zero�function�

for all K � ��� with diamK � tol do check boundary�K��

procedure check boundary�K� �
begin

if diamK � tol do begin
re�ne K regularly and generate the set of children � �K� �
for all K � � � �K� do begin

parent �K �� �� K�
check boundary�K�

end
end else begin

if � �K� � boundary then begin
whileK �� nil do begin �	 �K� �� boundary�K �� parent �K�

end end end end�

We emphasize that the procedure above realizes only the principal idea
of the search algorithm� Some more details are concerned in the following

Remark 
 Obviously� the procedure check boundary can be parallelized
straightforwardly since all elements K are treated independently�


�



From the de�nition of the near�boundary grids it is clear that the elements
K satisfying �	 �K� � boundary directly can be incorporated in the near�
boundary grid of the corresponding level�

The elements K not having the attribute �	 �K� � boundary are only
needed temporarily and can be rejected afterwards�

In the algorithm adapt� grid points lying very close to the boundary are
projected onto the boundary� Let e �� XY be an edge having the attribute
� �e� � boundary� Then� in many cases� a good candidate for replacing either
X or Y is given by the minimizer

�x�� x�� �� argminfkA
Bk � �A�B� � fX�Y g � fe � �gg �

This can be computed easily by a standard bisection algorithm� If the re�
quired precision is � � � � kx
 yk� then� it is obvious that the complexity
of the bisection algorithm is of order log �

jX�Y j � Other choices as� e�g� the
othogonal projection of either X or Y onto �� can be computed in a similar
fashion�
Finally� we come to the computation of the intersection of elements K �

��max with the domain � required in the procedure reduce mesh� In view
of this procedure� we require that V �K� � � � V �K� holds� The quantity

 �K � �� is approximated by the following algorithm� We subdivide K into
sub�elements K � of size diamK � � � with a prescribed tolerance �� We put

A �K �� �

�
� if V �K �� �� ���

 �K �� otherwise�

As an approximation to 
 �K � �� we use �
 ��
P

K� A �K ��� Clearly� the
accuracy of �
 depends on the regularity of the boundary or� alternatively�
on the step size h�max of the �nest near�boundary mesh� The complexity of
this algorithm is of order �h�max���

d where d denotes the space dimension�
In cases where the boundary is given explicitly by a parametrization the
quantity 
 �K � �� can be approximated with signi�cantly reduced amount
of work�
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