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Abstract

In this paper, an efficient solver for high-dimensional lattice equations will
be introduced. We will present a new concept, the recovery method, to define
a bilinear form on the continuous level which has equivalent energy as the
original lattice equation. The finite element discretisation of the continuous
bilinear form will lead to a stiffness matrix which serves as an quasi-optimal
preconditioner for the lattice equations. Since a large variety of efficient solvers
are available for linear finite element problems the new recovery method allows
to apply these solvers for unstructured lattice problems.

1 Introduction

Lattice models are used in many applications such as models of heterogeneous ma-
terials ([22], [10]), fracture models ([23]), porous media ([7], [6]), biophysics ([17]).
For a survey of some applications, we refer to [22] and [24]. Lattices are becoming
more and more interesting for industrial production because these materials are light,
cheap, and can be designed to prescribed stiffness requirements.

Periodic lattices in R™ have been analysed in various papers by the Fourier trans-
form and by Green’s function (see, e.g., [11], [18], [21], [2]). This approach allows to
analyse theoretical questions as the existence and uniqueness and also it was the basis
for numerical treatments. Theoretical problems as the existence and uniqueness of
the solution of general unbounded unstructured lattice equations have been analysed
in [1] by using the ideas and results in the theory of partial differential equations of
elliptic type.
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In this paper, we will develop a novel concept for the efficient solution of (finite)
lattice equations. The efficient solution of unstructured lattice equations is not far
developed in the literature yet. In contrast, the literature on solvers for finite element
discretisations of partial differential equations (PDEs) is vast. (Among the most effi-
cient ones for finite element systems on unstructured meshes are the newly developed
versions of multi-grid methods (cf. [16], [8], [28], [3], [19], [4], [12]) or the H-matrices
(cf. [13], [14], [15])).

The new solution concept for lattice equations which we will introduce in this
paper is as follows. For the given (discrete) lattice equation, we will derive a continu-
ous partial differential equation (PDE) and a corresponding prolongation which maps
discrete grid functions to continuous finite element functions. Such a prolongation
allows to use the finite element discretisation of the associated PDE as a precondi-
tioner for the lattice equation and fast solvers (e.g., multigrid methods) are available
for the efficient realisation of this preconditioner.

Our concept (which we will denote as the recovery method) of transferring the
discrete lattice equation to a finite element discretisation of a continuous PDE is
quite general. In this paper, we will introduce the abstract concept along with the
simple linear, scalar model problem of heat conduction through a lattice. However,
we emphasize that the concept of the recovery method is by no means limited to this
model problem. Forthcoming papers will address the application to larger problem
classes such as vector-valued problems, indefinite problems, and parameter-dependent
or singularly perturbed problems.

Various averaging and agglomeration techniques for extracting coarser systems
from finite element stiffness matrices exist in the literature in the context, e.g., of
multi-grid methods. In contrast to these approaches, the lattices which will be con-
sidered here may have a much more complicated geometric structure compared to
lattices which are the set of edges of finite element meshes. Furthermore, the the-
ory which will be developed in this paper allows to predict, from simple geometric
quantities which can be computed in a preprocessing phase, the performance of the
recovery method to avoid the failure of the solution procedure. The underlying idea
of our approach is to match local energies in the lattices with local energies in finite
element meshes. In the context of discrete homogenisation, an alternative approach
which was based on averaged Taylor expansions has been presented (cf. [16, Sec. 7).

Our approach is an alternative to the algebraic multi-grid methods (see, e.g., [20],
[25]) which can be applied to discrete lattice equations as well. We do not elaborate
a comparison of the recovery method with the algebraic multigrid method but focus
here on the presentation of the fundamental concepts of the recovery method.

The paper is structured as follows.

In Section 2, we will introduce the problem of heat conduction in lattice materials
as our model problem for the development of the concept of the recovery method.

In Section 3, the recovery method will be presented which consists of the following
steps: First, a domain along with a finite element mesh is constructed where the



nodal points of the mesh coincide with the nodes in the lattice. In the second step,
a (discrete) bilinear form is constructed on the lattice defined by the edges of the
finite element mesh. This bilinear form will have equivalent energy as the given
bilinear form of the original lattice equation. In the third step, a bilinear form on
the continuous level is constructed which, again, has equivalent energy as the original
lattice system.

In Section 4 we will prove that the linear system which corresponds to the contin-
uous bilinear form serves as an quasi-optimal preconditioner for the original lattice
equation. Hence, standard solvers for linear finite element systems can be employed
to realise the application of the preconditioner.

In Section 5, we will develop the recovery method for problems with Dirichlet-
type constraints. More precisely, we will consider the problem where the values of
the solution of the lattice equations is prescribed in a subset of the lattice points.

2 Model Problem

In this section, we will formulate the model problem and introduce the relevant
notations.

Let © := {x1,29,..., 75} C R? denote the set of nodal points and let £ C © x ©
be a symmetric set of edges, i.e., e = (x,y) € € implies (y,x) € £. The set of nodal
points together with the set of edges £ form the graph G of the lattice.

From the physical point of view, we shall deal with equations on the lattice G which
are of the same (abstract) form as the equations of linear heat flow, i.e., are described
by scalar discrete potential equations of second order. First, we will consider the
case that no essential constraints at the nodes are described. The case of essential
constraints will be treated in Section 5.

The heat conductivity through an edge (z,y) € £ is described by a symmetric,
positive mapping a = (ae),.c With

Aay) = A(y,z)

Gy > 0 } V(x,y) € €.

Let S denote the space of (unconstrained) grid functions
S:=R°:={u|u:0 —=R}.

The quotient space S/R where the equivalence classes are formed by functions which
differ only by a constant grid function will be employed for the following Laplace-type
problem:

Let F € (S/R)’ be given. Find u = (uy),.o € S/R so that

B (u,v) = % > ) =) =F¥) Y= () € S/R
e=(z,y)€E (2'1>



where h, = ||z — y||.
This equation has a unique solution as can be seen from the following well-known
theorem.

Theorem 2.1 Let the lattice be connected. The variational problem (2.1) has a
unique solution u € S/R for any right-hand side F € (S/R)’.

Proposition 2.2 Let the lattice be connected. Then, F € (S/R)" is equivalent to
Fe S and F (1) =0, where 1 : © — R is the function with constant value 1.

The variational problem (2.1) can be interpreted as a system of finite difference
equations. We are testing equation (2.1) for all z € © with the unit vectors e, =
(€20),c0 € S, Where

- { 1 o=z
P10 e O\ {z}.
For z € ©, we obtain the relation

1 Qe 1 Qe
3 2 g wmuleyen =g 3 gl ow).

e
e=(z,y)e€ r€0:
(@) e=(z,x)e€

By setting F, := F'(e,) and

(D a/he ifu=y,
2€0:
e=(z,2)e€
Ay =
! —ae/he ifeeg,
[ O otherwise,

we obtain the finite difference equations

Y Agu,=F, Vree,

yeo

and use the short notation Au = F. To get an equivalent system to the variational
formulation (2.1), we have to restrict the right-hand side and the solution in (2.2) to
appropriate quotient spaces: For given F € (S/R)’, find u € S/R such that

Au=F. (2.2)



3 The Recovery Method

In this section, we will introduce the recovery method for transferring given lattice
equations into a continuous partial differential equation for which efficient solvers
are available. This efficient solver then serves, via the recovery method, as a pre-
conditioner for the given lattice equation. In this paper, we introduce the recovery
method for the simple model problem of heat conduction which was introduced in
the previous section.

The idea is to define a bilinear form for (continuous) finite element functions which
has in a certain sense equivalent energy. The construction consists of the definition
of a domain Q C R? for the continuous problem and the definition of the coefficient
function in the partial differential equation.

We begin with the definition of the domain €. For a subset M C R?, we write
int (M) for the interior of M.

Theorem 3.1 Let © C R?, d € {2,3}, denote a discrete set of points with card © >
d4+1. Then, the Voronoi method defines a triangulation Grg of d-dimensional, disjoint
simplices where the set of mesh points Opg satisfies Opp = O. For non-identical
elements T,t € Grp, the intersection TNt is either empty, a common point, a common
edge, or -for d = 3- a common face.

The mesh Grg covers the set

Remark 3.2 An algorithm for assembling a triangulation (Delaunay triangulation)
as in Theorem 3.1 is described, e.qg., in [9], [26], [27], [5].

Assumption 3.3 The set Q C R? is a polygonal (polyhedral for d = 3) Lipschitz
domain.

Note that in three space dimensions not every polyhedral domain is Lipschitz.

The existence of the triangulation Grg does not ensure that the parameters which
are measuring the quality of the triangles, e.g., the maximal/minimal angle or the
maximal ratio of diameters of neighbouring elements, is moderately bounded. In
this light, we will introduce some mesh-dependent parameters which may serve as
indicators for the performance of the recovery method.

Definition 3.4 The constant Cs, measures the shape regularity of the mesh Grp

h
Cy = max —, (3.1)

T€GFE Pr

where h, := diam 7 and p, is the radius of the largest inscribed ball in T.



We make an assumption on the “compatibility” of the meshes and introduce some
notation.

Let the edges in Grp be denoted by £pp. To distinguish in the notation the edges
in Epp from edges in the given lattice & we will use a tilde superscript for edges in
Epp. Foré = (x,y) € Epp, we have x,y € © and we may associate with € a minimal
path, i.e., a path with a minimal number of segments, 7 (€) = (el, €2y, eq(e)) cé&
such that

To =T, Tgey=y and e = (ri_1,2;), 1<i<q(e).

connecting x and y. In an analogous way, we associate such a path mpp (e) C Epp
for each e € €.

Assumption 3.5 The lattice G and the mesh Grp are connected.

Remark 3.6 The connectivity of the lattice G and the connectivity of the mesh Grg
imply that 7 (&) £ O for every € € Epp and wpp (e) £ for every e € £.

Assumption 3.7 (a) There exists a constant n > 0 such that,
1. for every é = (x,y) € Epp, we have
lz2 =zl <nlle =yl (21,22) €7 (),
where ||-|| denotes the Euclidean length of a vector,
2. for every e = (z,y) € €, we have
22 = z1ll < mllz =yl (21,22) € T (€) .
(b) There exists m < oo such that,
1. for every (x,y) € £, we have

card{€ € Epp : (r,y) e (6)} <7

2. for every (x,y) € Epp, we have

card{e € £ : (z,y) € mpp (e)} < 7.

(¢) There exists ¢ < oo such that

max {sup cardmpp (e), sup cardw (é)} <7q.
ecé eclrp
Our goal is to replace the lattice equations (2.1) by a finite element discretisation
of a Poisson equation on the mesh Grp. This is done in two steps.
(a) Define a system of lattice equations on the edges pp of Grp which has equiv-
alent energy.
(b) Replace the lattice equations on Epp by an averaged Poisson problem on 2.

6



3.1 Definition of a system of lattice equations on £pp with
equivalent energy

In this section, we will introduce a system of lattice equations on the set of finite
element edges which has equivalent energy as the original equations. Our approach
is based on a suitable local average of the conductivity coefficients (a.),., along the
paths 7 (e). In this light, we will introduce some notations.

Notation 3.8 Foré = (z,y) € Epp, let

af? := min a,, AL .= max a,,
ecm(€) ecm(é)

—FE ._ [AFE,FE , ._ FE/ FE
az v = /AELE pr=max max JAIF/ai".

e€f ecppecn(e)
We introduce the bilinear form

1 _rp (Uy —ug) (vy — vy)
Brp (u,v) =3 > oalk, TS : (3.2)

(zy)E€FE
Theorem 3.9 Let Assumptions 3.5 and 3.7 be satisfied. The bilinear forms Bpg
and B define equivalent energies:
1
—B (u,u) < Bpg (u,u) < ngnpB (u,u) Yu € R®. (3.3)
nqnp

Proof. First, we will consider the right inequality in (3.3).
For é = (x,y) € Epp, we get with ¢ = card 7 (€)

(uﬂﬁ - uy)Z < q Z (uzz - uzl)Z < nq Z (UZQ - UZ1)2

||l‘ N y” e=(z1,22)€m(€) he e=(z1,22)€7(€) he
2
< q ae (Uzy — )
— alf h
€ e=(z1,22)€m(8) €
and, hence,
1 _ Uy — Uy _1 at'® Uy (Uy — )’
Brg (u,u) = - Z af,;,:Ey)M < ng- Z ¢ Z (z,y) Uy T
2, [l =yl 2.5 a oy ==
©,Y)EEFE eECFE (z,y)emn(é)

1 Az (u —ux)2 _
=g Z (z,y) \Yy Z agE/agE

e=(z,y)eE€ Hy B JJH eefrp:(z,y)en(€)

< ngqnpB (u, u).

The opposite estimate is derived by interchanging the roles of Grp and G. m
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Remark 3.10 (a) In the special case Epp = £, we may choose 7 (e) = mpg (e) = e.
Hence, all constants n, g, m, p in (3.3) equal one and the bilinear forms Brp and B
coincide.

(b) Note that the constant p in (3.3) is moderately bounded also for conductivity
coefficients with large global ratio maxX.cg a./ Mineee a. as long as the local variations

(measured by ~— max  y/ AgE/a§E> are moderately bounded.

éclppecm(é)

3.2 Recovery of the continuous variational form

In this step, we will define, for the given system of lattice equations, a bilinear form
on the continuous level along with a transfer mapping which has equivalent energy.
We start with some preliminaries on local finite element matrices and associated
finite difference operators.
Consider a simplex 7 = conv {X1, ..., X411} € Grr and denote by b;, 1 <i < d+1,
the corresponding local affine Lagrange basis (“hat functions”) on 7. The local finite

element matrix L, = (Li,j>?]+-i1 is defined by

Li,j = /<VbZ,Vb]> dx, 1<i,)<d+1.

Let u = (uz)fill € R™! be a grid function with values u; at x;, 1 < i < d + 1. For
simplicity, we set X412 := x; and Xy := X441 and use this convention also for u and
V.

Lemma 3.11 There exist constants 0 < co, Cy < 00 depending only on the constant
Cyr in (3.1) and the dimension d such that

d+1 d+1

2 Uipr — Ui—1)” < hy "uilpu < Oo Ujp1 — Uj—1)" . .

2 ) ) <hZuTLu < Gy Y ( )? (3.4)
i=1 1=1

Proof. We will work out the proof only in the case d = 2 and choose a counter-
clockwise numbering of the vertices of 7.

We obtain by using €; := X;11 — X;—1, V= = (v3,—v1)7, and || = area(7) the
representations
L lelll® (e1,ex) (e1,es)
Xit1 — Xi— 1
v, = ’“2|T|l U7 and L = p (e1,e)  leal)? (€2, €3)
(e1,€3) (e2,e3) |les|



Hence,

3
u'L,.v= Z u; Z
=1

J=1

3 3
1
=1

<(U3 Ul) es; + (UZ — Ul) €7, (U3 — Ul) es; + (UZ — Ul) 92>
1 Uy — ug > [ ||e3||2 —(eg,e2> ] < U1 — U3 >
T4 7] \ U2 —wy — (e3, €) ||ez||2 Uy — Uy
(mnye(an)
Uy — Uy Uy — U1
The eigenvalues Aj, Ay of iT can be estimated by

. 2 2
_win {Jles|®, les]*}

41|

2 2
les|” + [les|
41|

<A A < =: (.
The constants ¢1, C are positive depending only on the constant Cj, as in (3.1) and,
in general, on the space dimension d. Thus,

o ((u1 — U3)2 + (ug — ul)z) <u'L,u< ((u1 — u;»,)z + (ug — u1)2) )

[ |

We will use Lemma 3.11 to associate, for every triangle 7 € Gpg, a local bilinear
form which has an equivalent energy as the restriction of the global bilinear form
B g to the edges of 7.

The restricted bilinear form is defined by

d+1
1 U U; v V;
B;‘E (l.l, V) P Gtj;E( i+1 T h) ( +1 )7
; i
=1
where e; := x;;1 —X;_ is a simplex edge as in the proof of Lemma 3.11 and h; := ||e;]|.

Let us introduce the constants and averages

af’? .= min al’®

: AFE = max al’®F

1<i<d 1<i<d

al't .= \Jal'’FAFE )\ := max \/AI'F/ql'E

TEGFE

and the local bilinear form

BT (u,v) :=aFpt / (Vu, Vv)dx Vu,v € Py.

T



Lemma 3.12 Let 7 € Gpg be a simplex with vertices (X,)fill For uw € Py, let

u= (ui>?:1 denote the nodal values of u at x;, 1 <i<d+1. Then,
csA 'Bhy (u,v) < B7 (u,v) < C3ABL, (u,v) Vu,v € Py,

where c3, Cs are positive constants depending only on the constant Cy, in (3.1) and
the dimension d.

Proof. Lemma 3.11 along with the definition of the averaged coefficient a@'™”
imply
. 4 d+1
XQ ZEZE (wip1 — ui,l)Q <afFht "uLyu < CZAZEZE (wip1 — ui,l)Q
= i=1
with ¢, Cy as in (3.11). The estimate ch, < h; < h, is valid with a constant ¢
depending only on Cf, (cf. (3.1)) leading to the proof of the assertion. m
By summing over all local bilinear forms B”™ we derive the global variational

formulation as follows.
Define the coefficient function a : 2 — R by

al_=at¥nt? (3.5)

T

The finite element space of continuous piecewise linear functions on G is denoted
by
—{UGCO()|VTGQFE'U| GPl} (3.6)

The standard local nodal basis is denoted by (b,),.o. The finite element interpolation
operator on Grp is denoted by by 1% : R® — VI'E:

int
IFEu E yby
yeo®

For u,v € VI'E the global bilinear form which is associated to the lattice equations
is defined by

B (u,v) = / o () (Vu, Vo) da. (3.7)
Q
We will prove next that this bilinear form has the same energy as the original lattice.

Theorem 3.13 Let Assumptions 3.3 and 3.5 be satisfied. For all u,v € R® and
w = I%u, v:=I"tv we have

csBrp (u,v) < B(u,v) < CsBpgp (u,v)

with

Cq
nqrpA
The positive constants ¢4, Cy only depend on Cy, (cf. (3.1)) and the dimension d.

cy 1= and Cs5 = CyAnqnp.
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Proof. The result for the bilinear form B instead of B™ simply follows by summing
over (3.4). m

If the ratio of the global bounds of the coefficient function a are moderately
bounded over the domain it is reasonable to introduce the global average

Umax ‘= max{al :7 € Gpp} amin:=min{a| :7 € Gpg}

a:= vV @min@max M=/ amax/amin

and the bilinear form B (-, ) with constant coefficient

(3.8)

B (u,v) = E/ (Vu, Vv)dx.
Q
In the energy estimate, the factor p has to be introduced.

Corollary 3.14 Let Assumptions 3.3, 3.5 be satisfied. For all u,v € R® and u :=
I, v = I"v we have

ﬁBFE' (u7 V) S B (U, U) S 05,UBFE' (u7 V)
M

with c5, Cs as in Theorem 3.135.

Corollary 3.15 Theorem 3.13 shows that the ellipticity of the continuous bilinear
form B (-,) (w.r.t. the quotient space VI'E /R (cf. (3.6)) carries over to the bilinear
form B (-, -).

4 A Finite Element Preconditioner based on the
Recovery Method

In the previous section, we have introduced the recovery method which associates a
variational formulation on the continuous level to the given lattice equations along
with a transfer mapping between discrete grid functions and finite element functions.
In this section, we will show that the stiffness matrix Az which corresponds to
the finite element discretisation of B (-,-) on the mesh Grp provides a quasi-optimal
preconditioner of the system of lattice equations (2.2).
The preconditioned system takes the form

A, Au=A_.F.
Recall that the matrix A is regular on the subspace S/R and we understand A, as

a mapping AL : (S/R)" — (S/R).

11



The Richardson iteration for the preconditioned system is given by
ul = u® — nATL (Au(i) — F)
with some damping parameter . The error el := u(Y) — u satisfies the equation
el = (I- aApLA) e

and we will prove in Theorem 4.1 that the error converges exponentially with respect
to the energy norm, i.e.,

1
HI - O‘AFEAHAFE <c <L
For a vector x € R, the norm ||-||,, is
Il = (XTAppx)'?

and, for a grid operator M € R®*®, |[M[|, ~ denotes the corresponding operator
norm. The Euclidean norm is denoted by ||-||.

Theorem 4.1 Let Assumptions 3.3 and 3.5 be satisfied. Let o = C*%*l with Cs, cs
5 16
as in Theorem 3.13. Then
_ Cs —cs
I-aA LA < )
[T oAy HAFE = Cot s
Proof. Let ||-]| denote the standard Euclidean norm in R®. We have
1 Ix — aAzLAX], |y —aaL*an, Y|
HI—ozA;EAHA = sup EE = sup
FE - xere\{0} ||X||AFE y€ER®\{0} lyll

= max {|)\| : A is an eigenvalue of I — aA;}fAA;}E/Z} :

Theorem 3.13 implies that

1
<.

1 —1/2 —1/2
L atang < L

Thus, by choosing a = 2 —T, We obtain

—
Cs "+es

_ C5 —¢5
1= oARsAl,,, < G

]

Thus, we have transferred the lattice equation to a bilinear form B (-,-) such
that its finite element discretisation leads to a system matrix Apg which serves as
an quasi-optimal preconditioner. We have traced explicitly the dependence of the
bounds which describe the equivalence of energy on
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e the compatibility of the finite element mesh with the given lattice, (cf. (3.7)),
e the shape regularity of the finite element mesh (cf. (3.1)),

e the [ocal variations of the conductivity coefficients (cf. Notation 3.8, (3.8)).

Since these constants can be computed easily in a preprocessing phase of the
computations, the method allows to predict the efficiency of the recovery algorithm
in advance.

Note that the system App has the same dimension as the original system A.
Since A g corresponds to the variational form B (-, -) on the continuous level, a vast
supply of efficient solvers for the preconditioner A pg exists in the literature. The most
efficient solvers for systems of linear equations are multi-grid methods. In the recent
years, various multi-grid solvers have been developed for solving elliptic boundary
value problems on unstructured meshes.

Since the main objective of this paper is the introduction of the recovery method
for the transfer of unstructured discrete lattice equations to variational forms, we will
not present in detail linear solvers for the preconditioner. In [16], [8], [28], [3], [19],
[4], [20], [12], [25] various variants of multi-grid methods are described for solving
elliptic problems on unstructured meshes and/or discontinuous coefficients.

5 Dirichlet-type constraints

In this section, we will consider the problem where the values of the solution have
prescribed value zero on a subset ©g with () # 0y & ©.
In this case, the space of grid functions is given by

So:={u€eR®| Vo €Op:u(x)=0}.

The recovery method for the derivation of the bilinear form B (u,v) is applied ver-
batim as for the unconstrained problem (2.1) and the definition (3.5), (3.7) is used
without changes. However, the finite element space VI (cf. (3.6)) has to take into
account the essential constraints and we set

Vit ={ueV " |vaee Sy:u(x)=0}. (5.1)

Remark 5.1 (a) Note that the evaluation of functions u € H" (Q) at discrete points
x € Q is not defined since H' (Q) ¢ C°(Q2). However, for finite element functions
u € VIE  the point evaluation is well defined.

(b) The recovery method can be interpreted as the inverse of the transfer “boundary
value problem and basis of the finite element space— stiffness matriz” in the following
sense. Consider the special case G = Gpg, where Grg s a triangulation of a domain
Q with boundary I'. Assume the lattice equations originates from the finite element

13



discretisation of the continuous Laplace problem with homogeneous Dirichlet boundary
conditions at T' on the mesh Gpg. Then, the usual finite element space on Grg for
the Dirichlet problem coincides with the recovered space V{Eas in (5.1).

The proof that the bilinear form for the lattice equation and the bilinear form on
the continuous level have equivalent energies is a repetition of the proof of Theorem
3.13. The constants of equivalency are the same as in Theorem 3.13.

Similarly, Theorem 4.1 holds verbatim for the problem with Dirichlet constraints.
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