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Abstract

In this paper we obtain a range of inverse-type inequalities which are applicable
to finite element functions on general classes of meshes, including degenerate meshes
obtained by anisotropic refinement. These are obtained for Sobolev norms of positive,
zero and negative order. In contrast to classical inverse estimates, negative powers of the
minimum mesh diameter are avoided. We give two applications of these estimates in the
context of boundary elements: (i) to the analysis of quadrature error in discrete Galerkin
methods and (ii) to the analysis of the panel clustering algorithm. Our results show that
degeneracy in the meshes yields no degradation in the approximation properties of these
methods.

1 Introduction

For d = 2 or 3, let Ω ⊂ R
3 denote either a bounded domain (d = 3) or a bounded surface with

or without boundary (d = 2). Suppose that Ω is decomposed into a mesh of tetrahedra/bricks
(d = 3) or curvilinear triangles/quadrilaterals (d = 2). Then classical inverse estimates give

‖u‖Hs(Ω) � h−s
min‖u‖L2(Ω) � h−2s

min‖u‖H−s(Ω) , s ≥ 0, (1.1)

for all functions u ∈ Hs(Ω) which are piecewise polynomials of degree ≤ m with respect to
this mesh. (Here the notation A � B means that A/B is bounded by a constant independent
of the mesh and independent of u - for a more precise statement, see §2.) The quantity hmin is
the minimum diameter of all the elements of the mesh and (1.1) holds under the assumption
of shape regularity, i.e. ρτ � hτ for each τ , where ρτ is the diameter of the largest inscribed
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sphere (see Definition 2.1). Such estimates are regularly used in finite element analysis. When
the mesh is quasiuniform (h � hmin, where h is the maximum diameter of all the elements),
they can be used to obtain convergence rates in powers of h for various quantities in various
norms. However, practical meshes are often non-quasiuniform and then the negative powers
of hmin in (1.1) may give rise to overly pessimistic convergence rates. In the recent paper [4],
less pessimistic replacements for (1.1) have been derived, a particular case being

‖u‖Hs(Ω) � ‖h−su‖L2(Ω) � ‖h−2su‖H−s(Ω) , s ≥ 0 , (1.2)

where h : Ω → R is now a continuous piecewise linear mesh function whose value on each
element τ reflects the diameter of that element (i.e. hτ � h|τ � hτ , where hτ is the diameter
of τ).

Estimates (1.2) have several applications, e.g. to the analysis of quadrature errors in dis-
crete Galerkin boundary element methods [8] and to the analysis of the mortar element method
[4]. In fact [4] contains more general versions of (1.2), e.g. in the Sobolev space W s,p(Ω) and
in related Besov spaces. While the left-hand inequality in (1.2) is well-known, at least in the
Sobolev space case, the right-hand inequality requires rather delicate analysis.

In this paper we obtain more general versions of (1.2) which do not require the mesh
sequence to be shape-regular. A typical estimate is

‖u‖Hs(Ω) � ‖ρ−su‖L2(Ω) � ‖ρ−2su‖H−s(Ω) , s ≥ 0 , (1.3)

where the mesh function ρ : Ω → R is now a continuous piecewise linear function whose
value on each element τ reflects the diameter of the largest inscribed sphere, introduced in
Definition 2.1. Estimates (1.3) hold under the rather weak assumptions that (i) the quantities
hτ and ρτ are locally quasiuniform (i.e. hτ/hτ ′ � 1 and ρτ/ρτ ′ � 1 for all neighbouring
elements τ, τ ′) and (ii) the number of neighbouring elements of any element remains bounded
as the mesh is refined (see Assumption 2.6). These assumptions admit degenerate meshes,
containing long thin “stretched” elements, which are typically used for approximating edge
singularities or boundary layers in solutions of PDEs. It is expected that these estimates will
have a range of applications similar to those already identified above for (1.2). In particular
we already used a special case of (1.3) to analyse quadrature errors for a Galerkin boundary
element discretisation of a model screen problem in [10]. In this paper we give as applications
a more general Galerkin quadrature error analysis, as well as an error analysis of the panel
clustering algorithm in the presence of degenerate meshes.

Our inverse estimates are proved in §3. We briefly introduce the well-known Galerkin
boundary element method in §4. The analysis of Galerkin quadrature is given in §5. Quadra-
ture almost always has to be employed in practical computations; a general analysis for
shape-regular meshes was included in [8]. In §5, with the help of (1.3), we generalise the
results of [8] to degenerate meshes. The results turn out to be qualitatively the same as those
in [8]: in the far field the degeneracy of the mesh has no effect on the required precision of
the quadrature needed to preserve the accuracy of the Galerkin method. The error analysis of
the panel clustering algorithm is given in §6. This algorithm [15, 20] provides an alternative
representation of the finite-dimensional Galerkin operator which has the same order of accu-
racy as the standard representation. The multiplication of the panel clustering representation
with any vector has complexity O(N logκ N), for some (small) κ, where N is the number of
degrees of freedom. This should be compared with the complexity O (N2) of the standard
matrix representation. Up till now the accuracy and complexity analysis for this algorithm
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was obtained only for quasiuniform meshes. In §6 we extend the accuracy analysis to the
case of much more general (including degenerate) meshes using (1.3). Again we find the error
estimate is qualitatively the same as in the quasiuniform case.

It turns out, however, that when the conventional panel clustering algorithm is applied
in practice to some discretisations on degenerate mesh sequences, it has a complexity higher
than the O(N logκ N) mentioned above. In the subsequent paper [11] we shall elaborate on
this and we shall propose a new variant of the panel clustering algorithm which is optimal for
this type of mesh. The results here, depending on (1.3), are crucial for the analysis which will
be given in [11].

2 Meshes and Finite Elements

Throughout the paper, Ω will denote a bounded d-dimensional subset of R
3, for d = 2 or 3.

More precisely, when d = 3, Ω will denote a bounded Euclidean domain in R
3 and for d = 2,

Ω will denote a bounded 2-dimensional piecewise smooth Lipschitz manifold in R
3 which may

or may not have a boundary. The case when Ω is a bounded 2-dimensional Euclidean domain
is then included as a special case, by trivially embedding it into R

3.
We define the Sobolev space Hs(Ω), s ≥ 0, in the usual way (see, e.g., [12]). Note that in

the case d = 2 the range of s for which Hs(Ω) is defined may be limited, depending on the
global smoothness of the surface Ω. Throughout, we let [−k, k] denote the range of Sobolev
indices for which we are going to prove the inverse estimates, and we assume that Hs(Ω)
is defined for all s ∈ [−k, k], with the negative order spaces defined by duality in the usual
way. We assume that Ω is decomposed into a mesh T of open pairwise-disjoint finite elements
τ ⊂ Ω with the property Ω = ∪{τ : τ ∈ T }.

Definition 2.1 (Mesh Parameters) For each τ ∈ T , |τ | denotes its d-dimensional mea-
sure, hτ denotes its diameter and ρτ is the diameter of the largest sphere centred at a point in
τ whose intersection with Ω lies entirely inside τ . For any other simplex or cube t ∈ R

d (not
necessarily an element of T ) we define ht and ρt in the same way.

In order to impose a simple geometric character on the mesh τ , we assume that each
τ ∈ T is diffeomorphic to a simple unit element. More precisely, let σ̂3 denote the unit
simplex with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), let κ̂3 denote the unit cube with
vertices {(x, y, z) : x, y, z ∈ {0, 1}}, and let σ̂2, κ̂2 denote the orthogonal projections of these
onto the xy plane.

Then we assume that for each τ ∈ T , there exists a unit element τ̂ = σ̂d or κ̂d and
a bijective map χτ : τ̂ → τ , with χτ and χ−1

τ both smooth. (Here, for simplicity, “smooth”
means C∞.) We also let |τ̂ | denote the d−dimensional measure of τ̂ and hτ̂ denote its diameter.
Since χτ is smooth, each element τ ∈ T is either a curvilinear tetrahedron/brick (d = 3) or
a curvilinear triangle/rectangle (d = 2). The mesh T is allowed to contain both types of
elements. Each element has nodes and edges and also (when d = 3) has faces. For suitable
index sets N0,N1, we let {cp : p ∈ N0} denote the set of all centroids1 of elements of T and
{xp : p ∈ N1} denote the set of all nodes of T . We assume the mesh is conforming, i.e. that
for each τ, τ ′ ∈ T with τ �= τ ′, τ ∩ τ ′ is allowed to be either empty, a node, an edge or (when

1When τ is curved, we replace the centroid of τ with the image of the centroid of the corresponding unit
element under the map χτ .
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d = 3) a face. The requirement χτ is smooth ensures that edges of Ω (d = 2) and edges of
∂Ω (d = 3) are confined to edges of elements τ ∈ T . Let Jτ denote the 3 × d Jacobian of χτ .
Then

gτ := {det JT
τ Jτ}1/2

is the Gram determinant of the map χτ , which appears in the change of variable formula:∫
τ
f(x)dx =

∫
τ̂
f(χτ (x̂))gτ (x̂)dx̂. To ensure that the map χτ is sufficiently regular we shall

make the following assumptions on Jτ :

Assumption 2.2 (Mapping Properties)

D−1|τ |2 ≤ det{Jτ (x̂)T Jτ (x̂)} ≤ D|τ |2, (2.1a)

Eρ2
τ ≤ λmin{Jτ (x̂)T Jτ (x̂)} (2.1b)

uniformly in x̂ ∈ τ̂ , with positive constants D, E independent of τ .

(Throughout this section, for a symmetric matrix A, λmin(A) and λmax(A) denote respectively
the minimum and maximum eigenvalues of A.) Assumption 2.2 is satisfied in a number of
standard cases.

Example 2.3 Suppose either d = 2 and Ω is a planar polygon (assumed without loss of
generality to lie in the plane x3 = 0) or d = 3. Suppose also that χτ is an affine map. Then
the Jacobian Jτ can be identified with a d× d constant matrix and it is well-known (e.g., [3])
that det Jτ = |τ |/|τ̂ | and that ‖J−1

τ ‖2 ≤ hτ̂ρ
−1
τ , from which the estimates (2.1a,b) follow.

Proceeding to the case when Ω is a surface we have:

Example 2.4 Suppose d = 2 and let Ω be the surface of a polyhedron. Let τ be a triangle
with nodes x1,x2,x3 ∈ R

3 and choose χτ to be the affine map: χτ (x̂) = x1 + x̂1a+ x̂2b , where
a = x2 − x1, b = x3 − x1. Then

JT
τ Jτ =

[
|a|2 aTb
aTb |b|2

]
, det JT

τ Jτ = |a× b|2 = 4|τ |2 , (2.2)

from which (2.1a) follows. If we denote the eigenvalues of JT
τ Jτ by 0 < λ− < λ+, then we can

easily obtain the relations λ+ ≤ λ− + λ+ = |a|2 + |b|2 ≤ 2h2
τ and λ−λ+ = 4|τ |2 which imply

(2.1b).
Finite elements on curved surfaces can similarly be shown to satisfy Assumption 2.2, for

example when the map χτ is sufficiently close to affine.

In the case of a planar quadrilateral element (τ̂ = κ̂2 = (0, 1)2), the assumption that χτ

is affine forces τ to be a parallelogram. In that case, the results in Example 2.4 for triangles
carries over verbatim.

More general four-sided quadrilaterals can be obtained by a bilinear mapping χτ . In the
following example we will consider a planar convex quadrilateral τ with straight edges and
choose χτ to be the usual bilinear map from τ̂ to τ . We assume that x0,x0+a,x0+b,x0+a+b+
c are the vertices of τ. Without loss of generality (after a suitable permutation of the vertices),
we may assume that |a| ≤ |b| and that the parallelogram π = (x0,x0 + a,x0 + b,x0 + a + b)
is contained in τ (see Figure 1).
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Example 2.5 For a convex planar quadrilateral τ , the constants D, E, λmin in the estimates
(2.1a,b) depend only on the ratios |τ | / |π| and |π| / |τ |. If these ratios remain bounded for all
elements τ as the mesh is refined then (2.1a,b) hold. Note that these ratios can be moderately
bounded even if the quadrilaterals are degenerate, i.e., if either |a| 
 |b| or sin2(a,b) 
 1. In
both cases, |τ | 
 |b|2. In particular, a flat rhombus is degenerate but still satisfies |τ | / |π| =
|π| / |τ | = 1.

a+b

a+b+c

a

0 b

Rτ

π

a+b+2c

Figure 1: Quadrilateral τ (with x0 := 0), parallelogram π and bounding rectangle R

Proof. We give the proof of the above assertion in three steps.
a) |τ | ∼ |π| implies |c| � |b| and

∣∣P⊥c
∣∣ � ∣∣P⊥a

∣∣ , where P⊥x = x − b 〈b,x〉 / 〈b,b〉 is the
projection orthogonal to b.

b) Let R be the smallest rectangle containing π, τ , and the shifted vertices {x0 + a +
c,x0 + b + c,x0 + a + b + 2c}. The length of R is bounded by |b| + |a| + 2 |c| ∼ |b| , while
the height is ≤

∣∣P⊥a
∣∣ + 2

∣∣P⊥c
∣∣ ∼ ∣∣P⊥a

∣∣ due to part a). Hence, |τ | ∼ |π| = |b|
∣∣P⊥a

∣∣ ∼ |R|
holds.

c) The bilinear map is χτ (x̂) = x0 + x̂1a+ x̂2b+ x̂1x̂2c. With Jτ (x̂) denoting the Jacobian,
it is easily seen that JT

τ Jτ has the form (2.2) with a,b replaced by a′(x̂) := a + x̂2c, b′ :=
b+ x̂1c. Hence, det JT

τ Jτ (x̂) = 4|π(x̂)|2, where π(x̂) is the parallelogram with vertices x0,x0 +
a′(x̂),x0 +b′(x̂),x0 +a′(x̂)+b′(x̂). Since π(x̂) ⊂ R for all 0 ≤ x̂1, x̂2 ≤ 1, the right inequality
in (2.1a) follows from det JT

τ Jτ (x̂) = 4|π(x̂)|2 ≤ 4R2 � 4|τ |2 as in the case of Example 2.4.
The left inequality in (2.1a) uses the fact that |π(x̂)| ≥ |π| (for a proof use the fact that
a,b, c satisfy det(c, a) ≥ 0 and det(b, c) ≥ 0. Hence, |π(x̂)| = det(b′(x̂), a′(x̂)) = det(b, a) +
x̂1 det(b, c) + x̂2 det(c, a) + x̂1x̂2 det(c, c) ≥ det(b, a) = |π|). Also the proof of (2.1b) is
analogous to the proof of (2.1b) in Example 2.4.

Assumption 2.2 describes the quality of the maps which take the unit element τ̂ to each
τ . We also need assumptions on how the size and shape of neighbouring elements in our
mesh may vary. Here we impose only very weak local conditions which require the meshes to
be neither quasi-uniform nor shape-regular. Throughout the rest of this paper we make the
following assumption.

Assumption 2.6 (Mesh Properties) For some K, L ∈ R
+ and M ∈ N, we assume that,

for all τ, τ ′ ∈ T with τ ∩ τ ′ �= ∅,

hτ ≤ Khτ ′ , ρτ ≤ Lρτ ′ , (2.3a)

max
i∈N1

#{τ ∈ T : xi ∈ τ} ≤ M . (2.3b)
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Figure 2: Illustration of a graded mesh. Some elements become very long and thin as, e.g., the
shaded one in the figure. We have chosen here a smaller grading exponent g<5 for illustration
purpose only.

We denote the class of meshes which satisfy this assumption as MK,L,M . Note that condi-
tion (2.3a) require that hτ and ρτ do not vary too rapidly across neighbouring elements. This
allows elements with large aspect ratio, provided their immediate elements have comparable
aspect ratio. From now on, if A(T ) and B(T ) are two mesh-dependent quantities, then the
inequality A(T ) � B(T ) will mean that there is a constant C independent of T ∈ MK,L,M ,
such that A(T ) ≤ CB(T ). (The class of meshes MK,L,M depends on K, L, M , and we do not
claim that C is independent of K, L, M .) Also the notation A(T ) ∼ B(T ) will mean that
A(T ) � B(T ) and B(T ) � A(T ).

Example 2.7 Shape-regular meshes are easily shown to lie in the class MK,L,M , with mod-
erate K, L, M . Also, meshes which are anisotropically graded towards an edge typically lie
in this class. A classical example of these arises in the approximation of boundary integral
formulations of screen problems for elliptic PDEs, where the screen is a polygon. Near an
edge, but away from the corners, the solution typically is badly behaved only in the direction
orthogonal to the edge and efficient approximations require meshes which are anisotropically
graded.

For example, for the square screen [0, 1]× [0, 1], a typical tensor product anisotropic mesh
would be: xi,j = (ti, tj), where ti = (i/n)g/2 and t2n−i = 1 − (i/n)g/2 for i = 0, . . . , n, for
some grading exponent g ≥ 1. (For example, see [18], [19], [6], [10].) An illustration of such
a graded mesh is given in Figure 2. In this case the elements become very long and thin near
smooth parts of edges. In the hp version of the finite element method similar meshes but with
more extreme grading may be used (e.g. [22]) and these also satisfy Assumption 2.6.

Now we introduce finite element spaces on the mesh T .
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Definition 2.8 (Finite Element Spaces) For m ≥ 0 and τ̂ ∈ {σ̂d, κ̂d}, we define

P
m(τ̂ ) =

{
polynomials of total degree ≤ m on τ̂ if τ̂ = σ̂d,
polynomials of coordinate degree ≤ m on τ̂ if τ̂ = κ̂d .

Then, for i ∈ {0, 1} and m ≥ i, we set

Sm
0 (T ) = {u ∈ L∞(Ω) : u ◦ χτ ∈ P

m(τ̂), τ ∈ T } ,

Sm
1 (T ) = {u ∈ C0(Ω) : u ◦ χτ ∈ P

m(τ̂ ), τ ∈ T } .

We finish this section with a generalisation of a standard scaling argument which is used
several times in later proofs.

Proposition 2.9 Let τ ∈ T and let t̂ be any simplex which is contained in the associated unit
element τ̂ ∈ R

d. Let P̂ denote any d-variate polynomial on t̂ and define t = χτ (t̂), P = P̂ ◦χ−1
τ .

Then for all 0 ≤ s ≤ k,
‖P‖Hs(t) � ρ−s

t̂
ρ−s

τ ‖P‖L2(t) . (2.4)

The constant of proportionality in (2.4) depends on P̂ only through its degree.

Proof. The proof is a refinement of standard scaling arguments (e.g., [3]).
Consider first the case d = 3. Then Ω ⊂ R

3 is a bounded Euclidean domain and by the
chain rule we have ∇̂P̂ (x̂) = Jτ (x̂)T (∇P )(χτ(x̂)), where ∇̂ denotes the gradient with respect
to x̂ ∈ τ̂ and ∇ denotes gradient with respect to x ∈ τ . By (2.1a), JT

τ Jτ is invertible and

|P |2H1(t) =

∫
t̂

(∇̂P̂ )T (JT
τ Jτ )

−1(∇̂P̂ )gτ ,

where | · |H1(t) denotes the usual seminorm. Using (2.1b) we get

|P |2H1(t) � ρ−2
τ

∫
t̂

|∇̂P̂ |2gτ .

We can also introduce an affine map ν : τ̂ → t̂, introduce a new function P̂ ◦ ν and repeat the
previous argument, using also Example 2.3 to obtain:

|P |2H1(t) � ρ−2
τ ρ−2

t̂

∫
τ̂

|∇̃(P̂ ◦ ν)|2ggτ ,

where g is the Gram determinant for ν and ∇̃ denotes the gradient with respect to x̃ := ν−1(x̂).
Then, by equivalence of norms on finite-dimensional spaces,

|P |2H1(t) � ρ−2
τ ρ−2

t̂

∫
τ̂

|P̂ ◦ ν|2ggτ = ρ−2
τ ρ−2

t̂
‖P‖2

L2(t) .

This proves the result for s = 1. The result for higher integer s is obtained similarly and
non-integer s is obtained by interpolation.

Turn now to the case d = 2. When Ω is a bounded 2-dimensional Euclidean domain,
the proof is entirely analogous to that given above. When Ω is a general surface in R

3, the
element τ (since it forms a smooth part of a surface) can be written τ = η(τ̃) where τ̃ ⊂ R

2 is
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a planar, curvilinear triangle lying in one of the charts which determine Ω and η is a smooth
bijective map with smooth inverse. We consider η as the transformation of the surface metric
to a planar metric which is independent of the size of τ . We may write the mapping χτ as the
composition χτ = η◦χτ̃ , where χτ̃ is now a scaling from the unit element τ̂ to τ̃ . Introduce the
set t̃ := η−1 (t) ⊂ τ̃ and the function P̃ := P ◦ η on τ̃ . The above result on two-dimensional
Euclidean domains shows

‖P̃‖Hs(t̃) � ρ−s
t̂

ρ−s
τ̃ ‖P̃‖L2(t̃).

Since the constants in ρτ̃ ∼ ρτ only depend on the mapping η, and since we also have

‖P̃‖Hs(t̃) ∼ ‖P‖Hs(t), ‖P̃‖L2(t̃) ∼ ‖P‖L2(t) ,

the result follows.

3 Inverse Estimates

In this section we prove our inverse estimates, which were motivated in the Introduction (see
(1.3)). To define the scaling function ρ, recall the parameters ρτ introduced in Definition 2.1.
From these we construct a continuous mesh function ρ ∈ S1

1 on Ω as follows.

Definition 3.1 (Mesh Function) For each p ∈ N1, set ρp = max{ρτ : xp ∈ τ}. The mesh
function ρ is the unique function in S1

1 (T ) such that ρ(xp) = ρp, for each p ∈ N1.

Clearly ρ is a positive, continuous function on Ω and, by Assumption 2.6, it follows that
ρ(x) ∼ ρτ for x ∈ τ , and all τ ∈ T . The main results of this section are Theorems 3.2, 3.4 and
3.6. The first two of these provide inverse estimates in positive Sobolev norms for functions
u ∈ Sm

i (T ) with continuity index i = 1, 0 respectively. The third theorem provides inverse
estimates in negative norms.

Theorem 3.2 Let 0 ≤ s ≤ 1 and −∞ < α < α < ∞. Then

‖ραu‖Hs(Ω) � ‖ρα−su‖L2(Ω) ,

uniformly in α ∈ [α, α], u ∈ Sm
1 (T ).

Remark 3.3 Since Sm
1 (T ) ⊂ Hs(Ω) for all s < 3/2, it may be expected that the range of

Sobolev indices for which Theorem 3.2 holds may be extended. Such an extension has been
obtained in [4] for shape-regular meshes at the expense of working in Besov norms. We have
avoided such extensions here in order to simplify the present paper.

Proof. It is a generalisation of [4, Theorem 4.1]. First write

∇(ραu) = αρα−1u∇ρ + ρα∇u .

Using this, Assumption 2.6 and Proposition 2.9, we have

‖∇(ραu)‖2
L2(τ) � ‖ρα−1u‖2

L∞(τ)‖∇ρ‖2
L2(τ) + ‖ρα∇u‖2

L2(τ)

� ρ2α−4
τ ‖u‖2

L∞(τ)‖ρ‖2
L2(τ) + ρ2α−2

τ ‖u‖2
L2(τ)

� ρ2α−2
τ ‖u‖2

L∞(τ)|τ | + ρ2α−2
τ ‖u‖2

L2(τ).
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Now a simple scaling argument shows that

‖u‖2
L∞(τ)|τ | ∼ ‖u‖2

L2(τ) uniformly in u ∈ Sm
i (T ) , i = 0, 1. (3.1)

Hence
‖∇(ραu)‖2

L2(τ) � ρ2α−2
τ ‖u‖2

L2(τ) ∼ ‖ρα−1u‖2
L2(τ)

and the proof for s = 1 follows by summation over τ ∈ T . The proof for s ∈ [0, 1] follows by
interpolation.

Theorem 3.4 Let 0 ≤ s < 1/2 and −∞ < α < α < ∞. Then

‖ραu‖Hs(Ω) � ‖ρα−su‖L2(Ω) ,

uniformly in α ∈ [α, α], u ∈ Sm
0 (T ).

Proof. We give the proof for d = 2. It is a generalisation of [4, Theorem 4.2]. The proof for
d = 3 follows similar lines. By a result of B. Faermann [7, Lemma 3.1], the fractional order
Sobolev norm ‖ · ‖Hs(Ω) admits an estimate in terms of local norms which yields

‖ραu‖2
Hs(Ω) �

∑
τ∈T

⎧⎪⎪⎨⎪⎪⎩ρ2(α−s)
τ ‖u‖2

L2(τ) +
∑
τ ′∈T

τ ′∩τ �=∅

∫
τ

∫
τ ′

|(ραu)(x) − (ραu)(y)|2
|x − y|2+2s

dx dy

⎫⎪⎪⎬⎪⎪⎭ . (3.3)

Because of the local quasiuniformity, Assumption 2.6, the proof is finished, provided we can
show ∑

τ∈T

∑
τ ′∈T

τ ′∩τ �=∅

∫
τ

∫
τ ′

|(ραu)(x) − (ραu)(y)|2
|x − y|2+2s

dx dy �
∑
τ∈T

ρ2(α−s)
τ ‖u‖2

L2(τ) . (3.4)

To prove this, we decompose the left-hand side of (3.4) as∑
τ∈T

∑
τ ′∈T \{τ}
τ ′∩τ �=∅

∫
τ

∫
τ ′

|(ραu)(x) − (ραu)(y)|2
|x − y|2+2s

dx dy +
∑
τ∈T

∫
τ

∫
τ

|(ραu)(x) − (ραu)(y)|2
|x − y|2+2s

dx dy .

(3.5)
By definition of the Aronszajn-Slobodeckij norm on Hs (τ) (see, e.g., [7]) and by using Propo-
sition 2.9, the second term in (3.5) may be bounded by∑

τ∈T
‖ραu‖2

Hs(τ) �
∑
τ∈T

ρ2(α−s)
τ ‖u‖2

L2(τ) . (3.6)

Finally, following the proof of [4, Theorem 4.2], the first term in (3.5) may be bounded by∑
τ∈T

∑
τ ′∈T \{τ}
τ ′∩τ �=∅

{
‖ραu‖2

L∞(τ) + ‖ραu‖2
L∞(τ ′)

}
Jτ,τ ′ , where Jτ,τ ′ =

∫
τ

∫
τ ′
|x−y|−2−2s dx dy . (3.7)

Moreover, for all τ �= τ ′ with τ ∩ τ ′ �= ∅ the proof of Theorem 4.2 in [4] shows that Jτ,τ ′ �
min
{
ρ−2s

τ |τ |, ρ−2s
τ ′ |τ ′|

}
. Inserting this into (3.5) and using again Assumption 2.6 shows that
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the first term of (3.5) may be bounded by a constant times
∑

τ∈T ‖u‖2
L∞(τ) |τ | ρ2α−2s

τ . Using
(3.1), this can be bounded analogously to (3.6), completing the proof.

The final theorem in this section (Theorem 3.6) provides estimates in negative Sobolev
norms for finite element functions. Before we prove this, we require the following technical
lemma.

Lemma 3.5 Let τ̂ and P
m(τ̂) be as in Definition 2.8. Then for each integer m ≥ 0, there

exists δ = δ(m) ∈ (0, 1) with the following property:
For each u ∈ P

m(τ̂ ), there exists a simplex t̂ ⊂ τ̂ (which may depend on u and m), such
that

ρt̂ ≥ δ and inf
x∈t̂

|u(x)| ≥ δ‖u‖L∞(τ̂) , (3.8)

where ρt̂ is as defined in Definition 2.1.

Proof. By equivalence of norms on finite-dimensional spaces, there exists γ = γ(m) > 0 such
that, for all u ∈ P

m(τ̂ ),
‖∇u‖L∞(τ̂ ) ≤ γ‖u‖L∞(τ̂ ) . (3.9)

Now, by choosing δ0 = δ0(m) such that 0 < δ0 ≤ (1 + γ)−1 < 1, it follows that

0 < δ0 ≤ (1 + ‖∇u‖L∞(τ̂)/‖u‖L∞(τ̂))
−1 =

‖u‖L∞(τ̂ )

‖∇u‖L∞(τ̂) + ‖u‖L∞(τ̂)

(3.10)

for all u ∈ P
m(τ̂).

For any x ∈ R
3 and ρ > 0, let Bρ(x) denote the open ball centred at x with radius ρ.

We shall establish the statement: For all u ∈ P
m(τ̂), there exists ρ ≥ δ0 and x∗ ∈ τ̂ (both of

which may depend on u and m), such that

inf
x∈Bρ(x∗)∩τ̂

|u(x)| ≥ δ0‖u‖L∞(τ̂) . (3.11)

Then, with a suitable choice of α ∈ (0, 1), (depending only on the unit element τ̂ ), there is
always a simplex t̂ ⊂ Bρ(x

∗) ∩ τ̂ with ρt̂ ≥ αδ0. The required result follows with δ = αδ0.
To establish (3.11), consider any u ∈ P

m(τ̂). Suppose that ‖∇u‖L∞(τ̂ ) �= 0. Then
‖u‖L∞(τ̂) �= 0 and we can choose ρ = ρ(u, m) > 0 by setting

ρ = (1 − δ0)‖u‖L∞(τ̂)/‖∇u‖L∞(τ̂) . (3.12)

By (3.10), we then have δ0 ≤ ρ. Moreover, if we now choose any x∗ ∈ τ̂ such that

|u(x∗)| = ‖u‖L∞(τ̂) ,

then, for any x ∈ Bρ(x
∗) ∩ τ̂ , we have

|u(x) − u(x∗)| ≤ ‖∇u‖L∞(τ̂ )|x − x∗| < ‖∇u‖L∞(τ̂)ρ = (1 − δ0)‖u‖L∞(τ̂ ).

This implies that |u(x)| ≥ |u(x∗)|−|u(x)−u(x∗)| > δ0‖u‖L∞(τ̂). This establishes the statement
(3.11) when ‖∇u‖L∞(τ̂ ) �= 0. On the other hand, if ‖∇u‖L∞(τ̂) = 0, then u is constant on τ̂ ,

and (3.11) holds trivially with ρ = δ0 and any x∗ ∈ τ̂ .
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Theorem 3.6 Let i ∈ {0, 1}, m ≥ i, 0 ≤ s ≤ k and −∞ < α < α < ∞. Then the inequality

‖ρs+αu‖L2(Ω) � ‖ραu‖H−s(Ω) ,

holds uniformly in u ∈ Sm
i (T ) and α ∈ [α, α].

Proof. The result is clear for s = 0. We prove it for s = k and the theorem follows by
interpolation. Suppose u ∈ Sm

i (T ). The case u ≡ 0 is trivial, so from now on we assume that
u �≡ 0. Then, for any w ∈ Hk(Ω), we have, by definition,

‖ραu‖H−k(Ω) ≥
|(ραu, w)|
‖w‖Hk(Ω)

.

We shall construct w ∈ Hk(Ω) such that

|(ραu, w)| � ‖ρk+αu‖2
L2(Ω) (3.13)

and
‖w‖Hk(Ω) � ‖ρk+αu‖L2(Ω) , (3.14)

from which the result follows immediately.
The construction of w is a generalisation of the argument used to prove [4, Theorem 4.7].

For any τ ∈ T , we have u ◦ χτ ∈ P
m(τ̂), and by Lemma 3.5, there exists a simplex t̂(τ) ⊆ τ̂

such that:

ρt̂(τ) � 1 and inf
x∈t̂(τ)

|u ◦ χτ (x)| ≥ δ‖u ◦ χτ‖L∞(τ̂) � ‖u ◦ χτ‖L∞(τ̂ ) . (3.15)

(Recall that the constant δ in Lemma 3.5 was independent of u, hence δ � 1 .) It is clear from
this that u ◦ χτ does not change sign on t̂(τ) and that

|t̂(τ)| ∼ 1 . (3.16)

Using the Bernstein representation of polynomials (as described, for example in [4, §4.3]),
we can construct a non-negative function P̂t̂(τ) in Hk

0 (τ̂ ) such that supp P̂t̂(τ) = t̂(τ), P̂t̂(τ) is a

polynomial on t̂(τ) and such that

C2|t̂(τ)|1/p ≥ ‖P̂t̂(τ)‖Lp(t̂(τ)) ≥ C1|t̂(τ)|1/p , (3.17)

with C1, C2 independent of p and of t̂(τ). (This is done by constructing a positive-valued
polynomial on t̂(τ) to vanish with sufficiently high order on the boundary of t̂(τ).) Combining
this with (3.16), we have ∫

t̂(τ)

P̂t̂(τ) ∼ |t̂(τ)| ∼ 1 . (3.18)

Now set t(τ) = χτ (t̂(τ)) ⊆ τ and define a corresponding non-negative function Pt(τ) ∈
Hk(Ω) by setting Pt(τ) = P̂t̂(τ) ◦ χ−1

τ on τ and Pt(τ) = 0 on Ω\τ . It follows that

supp Pt(τ) = t(τ) and

∫
t(τ)

Pt(τ) ∼ |τ | , (3.19)

11



the proof of the second relation making use of (2.1a) and (3.18).
For each τ ∈ T , we introduce scalars

bτ = ρk+α
τ sign(u|t(τ)) inf

x∈t(τ)
|u(x)| , (3.20)

and we define w ∈ Hk(Ω) by

w =
∑
τ∈T

bτρ
k
τPt(τ) . (3.21)

Then, using (3.21), (3.19), we obtain

(ραu, w) =
∑
τ∈T

∫
t(τ)

(ρτ/ρ)k
{
ρk+αbτu

}
Pt(τ) .

By (3.20), (2.3a) and the non-negativity of Pt(τ), we have,

|(ραu, w)| �
∑
τ∈T

ρ2(k+α)
τ

{
inf

x∈t(τ)
|u(x)|

}2 ∫
t(τ)

Pt(τ) .

Then, by (3.15) and (3.19)

|(ραu, w)| �
∑
τ∈T

ρ2(k+α)
τ ‖u‖2

L∞(τ)|τ | ,

which, using (3.1), readily yields (3.13).
To obtain (3.14), we first obtain the estimate

‖w‖2
Hk(Ω) =

∑
τ∈T

‖w‖2
Hk(τ) ≤

∑
τ∈T

ρ2k
τ |bτ |2‖Pt(τ)‖2

Hk(t(τ)) �
∑
τ∈T

|bτ |2‖Pt(τ)‖2
L2(t(τ)) , (3.22)

where the final inequality follows from Proposition 2.9 and (3.15). Since∥∥Pt(τ)

∥∥2

L2(t(τ))
=

∫
t̂(τ)

∣∣∣P̂t̂(τ)

∣∣∣2 gτ ∼ |τ |
∫

t̂(τ)

∣∣∣P̂t̂(τ)

∣∣∣2 ,

(3.17) yields |τ |
∥∥Pt(τ)

∥∥2

L2(t(τ))
∼ |τ |

∣∣t̂ (τ)
∣∣ ∼ |t (τ)|. Using this together with the definition

(3.20) of bτ , we finally obtain

‖w‖2
Hk(Ω) �

∑
τ∈T

|bτ |2|t(τ)| ≤
∑
τ∈T

ρ2(k+α)
τ

{
inf

x∈t(τ)
|u(x)|

}2

|t(τ)| � ‖ρk+αu‖2
L2(Ω), (3.23)

i.e., (3.14).

Remark 3.7 When i = k = 1, a simpler construction for w can be given in terms of a
suitable element in Sm

1 (T ) (see [8] for the case m = 1).

12



4 Galerkin Boundary Element Method

In this section we review briefly the Galerkin boundary element method for elliptic PDEs,
which forms the basis of the applications in the proceeding sections. We consider a 2D surface
Ω in R

3 (i.e. the case d = 2 above). To conform with more usual notation in boundary
integral equations, we rename this surface Γ. To avoid technicalities, we assume that Γ is a
Lipschitz surface in R

3, consisting of planar pieces joined at corners and edges. (The extension
to a piecewise smooth curvilinear surface is standard.) Consider the general linear integral
equation

(λI + K)u(x) := λu(x) +

∫
Γ

k(x,y)u(y)dy = f(x) , x ∈ Γ ,

for some given scalar λ ∈ R kernel function k and sufficiently smooth right-hand side f . The
corresponding weak form is

Find u ∈ Hµ(Γ) such that a(u, v) := ((λI + K)u, v) = (f, v) for all v ∈ Hµ(Γ) , (4.1)

and we assume that a(·, ·) is elliptic in the energy space Hµ(Γ) for some µ ∈ R. (The
bracket (·, ·) denotes the continuous extension of the L2 (Γ) scalar product to the H−µ(Γ) ×
Hµ(Γ) duality pairing.) Typical examples are: the classical single layer, double layer and
hypersingular operators for the Laplacian:

Single layer potential: k(x,y) = 1/(4π |x − y|), (4.2a)

Double layer potential: k(x,y) = ∂/∂n(y) {1/(4π |x − y|)} , (4.2b)

Hypersingular operator: k(x,y) = ∂/∂n(x)∂/∂n(y) {1/(4π |x − y|)} . (4.2c)

For the operators (4.2a-b) we have µ = −1/2, 0 and λ = 0, λ �= 0 respectively. (Note
however that for the double layer potential in L2 (Γ) the ellipticity, in the sense of inf-sup
conditions, is proved for smooth surfaces while the generalisation to other classes of surfaces
is still open - see [5].)

For the hypersingular operator (4.2c), we have λ = 0 and the bilinear form a (·, ·) in (4.1)
is elliptic and continuous in the subspace Ĥ1/2 (Γ) := Hµ (Γ) /R. In this case, the space
H1/2 (Γ) in (4.1) and throughout the rest of this paper has to be replaced by Ĥ1/2 (Γ) and the
approximating space Sm

i (T ) by Sm
i (T ) /R. To avoid notational complexity we shall, however,

simply write Hµ(Γ) for the energy space throughout, except in Section 6.2 where this operator
is considered in isolation.

In the standard, conforming Galerkin method we select a subspace Sm
i (T ) ⊂ Hµ(Γ) and

approximate (4.1) by seeking U ∈ Sm
i (T ), such that

a (U, V ) = (f, V ) for all V ∈ Sm
i (T ). (4.3)

In order to realise (4.3) numerically, we need to introduce a basis for the approximating space
Sm

i (T ). We denote this basis by {φp : p ∈ F}, where F is the set of freedoms. We shall
assume (for convenience) that the φp constitute a local nodal basis, i.e., there is a sequence of
nodes (xp)p∈F so that

φp(xq) = δp,q, and supp φp ⊆
⋃

{τ : xp ∈ τ} . (4.4)

The sequence of nodes can contain repeated entries, thus allowing discontinuous elements
(which may be used when µ ≤ 0).
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Moreover we assume that for each u ∈ Sm
i (T ), and τ ∈ T , the restriction u|τ is determined

uniquely by its values at the local nodal points {xp : p ∈ Fτ}, where Fτ := {p ∈ F : xp ∈ τ}.
If we introduce x̂p = χ−1

τ (xp), p ∈ Fτ , then a convenient criterion to ensure this is

(û = 0) ⇔ (∀p ∈ Fτ : û (x̂p) = 0) (4.5)

for all û ∈ P
m (τ̂ ).

Note that (4.5) implies that

the functional û →
{∑

p∈Jτ

|û (x̂p)|2
}1/2

is a norm on P
m (τ̂) . (4.6)

Writing U =
∑

p∈F Upφp, (4.3) is equivalent to the linear system∑
q∈F

(λMp,q + Kp,q) Uq = fp, p ∈ F , (4.7)

where fp = (f, φp), Mp,q = (φq, φp) is the mass matrix and

Kp,q =

∫
Γ

∫
Γ

k(x,y)φq(y)φp(x)dydx , p, q ∈ F . (4.8)

is the stiffness matrix. The mass matrix M is sparse and can be easily computed. The stiffness
matrix is dense and generally has to be approximated by quadrature. Replacing Kp,q by an
approximation K̃p,q leads to the discrete counterpart of (4.3): Find Ũ ∈ Sm

i (T ), such that

ã(Ũ , V ) = (f, V ) for all V ∈ Sm
i (T ) , (4.9)

where
ã (V, W ) :=

∑
p∈Ni

∑
q∈Ni

Wp

(
λMp,q + K̃p,q

)
Vq. (4.10)

The stability and convergence of the corresponding solution Ũ is provided by the first “Strang
Lemma” [3]. The lemma allows to make use of the possible regularity of the exact solution u
and we introduce the relevant parameters first.

• Assume the continuous problem (4.1) has regularity δ ≥ 0, i.e.

f ∈ H−µ+δ (Γ) =⇒ The solution u of (4.1) is in Hµ+δ (Γ) (4.11)

(Note that ellipticity and continuity of a (·, ·) in Hµ (Γ) imply regularity for δ = 0).

• We introduce a measure for stability of the perturbed bilinear form by

rstab := sup
V,W∈Sm

i (T )\{0}

|a (V, W ) − ã (V, W )|
‖V ‖Hµ(Γ) ‖W‖Hµ(Γ)

. (4.12)

• A measure of consistency depends on some parameter ν:

µ ≤ ν ≤ µ + δ with Sm
i (T ) ⊂ Hν (Γ) (4.13)

and is given by

rconv := sup
V,W∈Sm

i (T )\{0}

|a (V, W ) − ã (V, W )|
‖V ‖Hν(Γ) ‖W‖Hµ(Γ)

. (4.14)
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• For λ > 0, the distance of Sm
i (T ) from Hν+λ (Γ) is defined by

dν,λ (Sm
i (T )) := sup

w∈Hν+λ(Γ)\{0}
inf

Z∈Sm
i (T )

‖w − Z‖Hν(Γ)

‖w‖Hν+λ(Γ)

.

Lemma 4.1 Consider the problem (4.1), where a(·, ·) is a continuous and elliptic bilinear
form on Hµ(Γ). Assume that f ∈ H−µ+δ and assume (4.11) holds. Choose ν such that (4.13)
holds and define rconv as in (4.14). Suppose

rstab → 0 as h := max{hτ : τ ∈ T } → 0. (4.15)

Then, for sufficiently small h, the approximate Galerkin method (4.9) has a unique solution
Ũ ∈ Sm

i (T ) and we have the error estimate

‖u − Ũ‖Hµ(Γ) � dν,ν−µ (Sm
i (T )) inf

Z∈Sm
i (T )

‖u − Z‖Hν(Γ) + rconv ‖u‖Hν(Γ) . (4.16)

The possible choice ν = µ and δ = 0 in (4.13) shows that rconv can be replaced by rstab in
(4.16) and the assumption on the regularity is not used. However, for any ν in (4.13), there
holds rconv ≤ rstab and a proper choice of ν could lead to rconv 
 rstab, i.e., to an improved
error estimate provided the first term of (4.16) is also of higher order.
Proof. The proof is a simple consequence of the first Strang lemma (cf. [3, Theorem 4.1.1]).
The solvability for sufficiently small h follows directly from the lemma. For the error estimate
we employ, from the lemma,

‖u − Ũ‖Hµ(Γ) ≤ C

(
inf

Z∈Sm
i (T )

‖u − Z‖Hµ(Γ) + sup
W∈Sm

i (T )\{0}

|a (Z, W )− ã (Z, W )|
‖W‖Hµ(Γ)

)
.

The second term in the bracket can be estimated from above by rconv‖Z‖Hν(Γ).
Let ν be such that (4.13) holds. We introduce the Hν (Γ)-orthogonal projection P :

Hν (Γ) → Sm
i (T ) , i.e., (Pu, w)Hν(Γ) = (u, w)Hν(Γ) for all w ∈ Sm

i (T ).
The choice Z = Pu leads to

‖u − Ũ‖Hµ(Γ) ≤ C
{
‖u − Pu‖Hµ(Γ) + rconv ‖Pu‖Hν(Γ)

}
. (4.17)

Since P is the Hν (Γ)-orthogonal projection we obtain ‖Pu‖Hν(Γ) ≤ ‖u‖Hν(Γ).
In order to estimate the first term on the right-hand side in (4.17) we obtain by duality

and the orthogonality of P

‖u − Pu‖Hµ(Γ) = sup
w∈H2ν−µ(Γ)\{0}

∣∣∣(u − Pu, w)Hν(Γ)

∣∣∣
‖w‖H2ν−µ(Γ)

= sup
w∈H2ν−µ(Γ)\{0}

∣∣∣(u − Pu, w − Pw)Hν(Γ)

∣∣∣
‖w‖H2ν−µ(Γ)

≤ ‖u − Pu‖Hν(Γ) sup
w∈H2ν−µ(Γ)\{0}

‖w − Pw‖Hν(Γ)

‖w‖H2ν−µ(Γ)

= dν,ν−µ (Sm
i (T )) inf

Z∈Sm
i (T )

‖u − Z‖Hν(Γ) .
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Remark 4.2 In our applications (quadrature and panel clustering for the Galerkin boundary
element method), we can derive, as a first step, estimates of the form

|a (V, W ) − ã (V, W )| ≤ Ch ‖V ‖L2(Γ) ‖W‖L2(Γ) , for all V, W ∈ Sm
i (T ) ,

where Ch → 0 as h := max {hτ : τ ∈ T } → 0. If the underlying energy space Hµ (Γ) satisfies
µ ≥ 0, then the estimate

|a (V, W ) − ã (V, W )| ≤ Ch ‖V ‖Hµ(Γ) ‖W‖Hµ(Γ) for all V, W ∈ Sm
i (T )

is a trivial consequence. It also turns out that we cannot gain additional powers of h by
replacing ‖V ‖Hµ(Γ) by ‖V ‖Hν(Γ), for any ν > µ. Thus, for the double layer potential and the
hypersingular operator the simplest choice ν = µ and δ = 0 is optimal in Lemma 4.1, leading
to rconv = rstab, independent of any regularity in the problem.

The situation is different for the single layer operator. There µ = −1/2 and one has to
apply inverse inequalities for V and W to estimate rstab. If we assume L2-regularity, i.e.,
δ = 1/2, we obtain optimal convergence rates by choosing ν = 0. Under moderate assumptions
on the mesh we have

d0,1/2 (Sm
i (T )) ≤ Ch1/2

and the error estimate (4.16) takes the form

‖u − Ũ‖H−1/2(Γ) � h1/2 inf
Z∈Sm

i (T )
‖u − Z‖L2(Γ) + rconv ‖u‖L2(Γ) .

Since the estimate of rconv only requires one application of inverse estimates (for the function
W ), the term rconv converges faster to zero than rstab and this, exactly, is the gain from the
use of different measures for stability and consistency.

5 Galerkin Method with Quadrature

The effect of quadrature errors in Galerkin methods is analysed in [8], under the assumption
of shape-regular meshes. The following theory generalises these results, allowing also the
treatment of degenerate mesh sequences, provided they satisfy Assumption 2.6.

Theorem 5.1 Suppose the assumptions of Lemma 4.1 hold and suppose, for all p, q ∈ F the
approximate matrix entries K̃p,q are constructed so that the following error estimate holds:

|Kp,q − K̃p,q| ≤ hχ+1| supp φp| | supp φq| (5.1)

for some χ ≥ 0 where h = max {hτ : τ ∈ T } is the global mesh diameter. Then, for all
ν1, ν2 ∈ [−k, k] such that Sm

i (T ) ⊂ Hmax{ν1,ν2}(Γ),

|a(V, W ) − ã(V, W )|
‖V ‖Hν1 (Γ)‖W‖Hν2(Γ)

� hχ+1

√∑
τ∈T

ρ
2ν−

1
τ |τ |

√∑
τ∈T

ρ
2ν−

2
τ |τ | ,

uniformly in V, W ∈ Sm
i (T ) where ν−

i := min{νi, 0}.
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Proof. By the definitions (4.1) and (4.10) of a and ã, we have

|a(V, W )−ã(V, W )| ≤
∑
p∈F

∑
q∈F

|Vp||Kp,q−K̃p,q||Wq| ≤ hχ+1

{∑
p∈F

sp|Vp|
}{∑

p∈F
sp|Wp|

}
, (5.2)

where sp = | supp φp|. Now, using the Cauchy-Schwarz inequality, we obtain

∑
p∈F

sp|Vp| =
∑
p∈F

{ρν−
1

p s1/2
p }{ρ−ν−

1
p s1/2

p |Vp|} ≤
√∑

p∈F
ρ

2ν−
1

p sp

√∑
p∈F

ρ
−2ν−

1
p sp|Vp|2, (5.3)

where ρp = ρ (xp) , p ∈ F and ρ is as in Definition 3.1. Now, using (4.4) and then Assump-
tion 2.6 and , we have∑

p∈F
ρ2ν−

1
p sp ≤

∑
p∈F

ρ2ν−
1

p

∑
τ∈T
xp∈τ

|τ | =
∑
τ∈T

∑
p∈Fτ

ρ2ν−
1

p |τ | �
∑
τ∈T

ρ2ν−
1

τ |τ | , (5.4)

where the constant of proportionality in the last inequality depends on the polynomial degree
m, but not on the mesh T or on ν1.

A similar argument shows

∑
p∈F

ρ−2ν−
1

p sp |Vp|2 �
∑
τ∈T

ρ−2ν−
1

τ

{∑
p∈Fτ

|Vp|2
}
|τ | .

Thus, by a simple scaling argument based on (4.6),∑
p∈F

ρ−2ν−
1

p sp |Vp|2 �
∑
τ∈T

∥∥∥ρ−2ν−
1 V
∥∥∥2

L2(τ)
. (5.5)

Combining (5.3) with (5.4) and (5.5) we obtain

∑
p∈F

sp|Vp| �
√∑

τ∈T
ρ

2ν−
1

τ |τ | ‖ρ−ν−
1 V ‖L2(Γ) �

√∑
τ∈T

ρ
2ν−

1
τ |τ | ‖V ‖Hν1(Γ) ,

where the final relation follows from Theorem 3.6 when ν1 ≤ 0 and trivially otherwise. Using
this and an analogous estimate for

∑
p∈F sp|Wp| in (5.2), we obtain the theorem.

Remark 5.2 (i) In Theorem 5.1 the parameter χ can be chosen as required, in order that the
resulting estimates for rstab and rconv are suitable for the required application of Lemma 4.1.
Typically for kernels k(x,y) which blow up at x = y, the value of χ has to be increased when
supp φp and supp φq get closer together (see, e.g. [8]). Special transformation methods are
used when supp φp and supp φq intersect (cf. [14], [23]).

(ii) In [8, 9] we give a number of different quadrature schemes which can achieve (5.1) in
the case when the approximating space is S1

1 (T ). This analysis can be easily extended to more
general approximating spaces.

A general theory of quadrature approximation of Galerkin methods follows by combining
Lemma 4.1 and Theorem 5.1.
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Corollary 5.3 Under the conditions of Theorem 5.1, we have

rstab � hχ+1

{∑
τ∈T

ρ2µ−+1
τ hτ

}
, rconv � hχ+1

√∑
τ∈T

ρ2µ−+1
τ hτ

√∑
τ∈T

ρ2ν−+1
τ hτ .

Proof. It is a trivial application of Theorem 5.1, with ν1 = µ = ν2 for rstab and respectively
ν1 = ν, ν2 = µ for rconv.

When the energy space of the Galerkin method is Hµ(Γ), for µ ≥ −1/2, we have 2ν−+1 ≥
2µ− + 1 ≥ 0, and no negative exponent appears in the estimates in Corollary 5.3. Hence the
degeneracy has no effect on the stability and consistency estimates. This holds for all the
standard boundary integral equations for second-order elliptic PDEs. In particular, for the
three standard integral equations given by (4.2a-c), we have the following corollary, the proof
of which follows directly from Corollary 5.3.

Corollary 5.4 For the single layer potential µ = −1/2 and

rstab � hχ+1{
∑
τ∈T

hτ} ≤ hχ+2 {#T }.

With the regularity assumption δ = 1/2 we may set ν = 0 to obtain

rconv � hχ+1{
∑
τ∈T

hτ}1/2

{∑
τ∈T

|τ |
}1/2

� hχ+3/2{#T }1/2 .

To see why rconv may be smaller than rstab, assume, as is often the case, that (#T ) ≤ Ch−2.
Then, rstab � hχ, while rconv � hχ+1/2 and we see the gain of using different quantities for
measuring the stability and consistency.

For the double layer potential and hypersingular operator, we choose δ = 0 and ν = µ to
obtain in this case

rstab = rconv � hχ+1
∑
τ∈T

|τ | � hχ+1.

6 Galerkin Method with Panel Clustering

The panel clustering algorithm provides an alternative representation of the finite-dimensional
Galerkin operator described in §4 , so that multiplication of any vector by the corresponding
matrix representation has complexity O(N logκ N), for some (small) κ, where N (= #F) is
the number of degrees of freedom. This should be compared with the N2 complexity required
for multiplication by the exact matrix. Approximations of this sort are at the heart of many
fast methods for dense systems. As well as providing a fast multiplication, the approximation
needs also to be sufficiently accurate and so far this has only been shown for quasi-uniform
meshes. The purpose of this section is to extend the error analysis to (possibly) degenerate
meshes. Our results show that the panel clustering approximation satisfies stability and
consistency estimates which are independent of mesh degeneracy.

First, we will analyse standard formulations of integral operators in a unified setting. In
the final subsection we consider a special formulation of the hypersingular operator.
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6.1 Panel Clustering in the general case

To obtain this result we need to introduce the following concepts. (For a more complete
introduction, see [16, 14, 13, 21, 1, 2]).

Definition 6.1 (Cluster Tree) A cluster tree T is a tree2 whose vertices (called “clusters”)
consist of unions σ = ∪{τ : τ ∈ T ′} for certain subsets T ′ ⊂ T . These are required to satisfy
the following properties:

(i) Γ = ∪τ∈T τ is the root of T .

(ii) L(T) = T , where L(T) denotes the set of leaves of T.

(iii) If σ ∈ T is not a leaf, there is a set of vertices of T (denoted sons(σ)) such that:
(a) σ = ∪{σ′ : σ′ ∈ sons(σ)};
(b) If σ′, σ′′ ∈ sons(σ) and σ′ �= σ′′, then σ′, σ′′ intersect at most by their boundaries.

There are standard procedures for constructing cluster trees (see for example [1, Example
2.1]). Once T has been constructed, a second tree, T2, whose vertices are pairs of clusters
may be constructed with the following properties:

Definition 6.2 T2 is uniquely defined by
(i) (Γ, Γ) ∈ T2 is the root of T2,
(ii) For b = (σ′, σ′′) ∈ T2, the set of sons is defined as follows:

sons (b) :=

⎧⎪⎪⎨⎪⎪⎩
sons (σ′) × sons (σ′′) if σ′, σ′′ ∈ T\L (T) ,
{σ′} × sons (σ′′) if b ∈ L (T) × T\L (T) ,
sons {σ′} × {σ′′} if b ∈ T\L (T) × L (T) ,
∅ if b ∈ L (T) ×L (T) .

The key point in the panel clustering algorithm is to select pairs of clusters (σ′, σ′′) ∈ T2

and to approximate the corresponding integrals by replacing the kernel k in (4.8) with some
suitable separable expansion. This cannot be done on all pairs of clusters, but only on pairs
which are sufficiently far apart relative to their diameters. This leads to the definition of an
admissible pair of clusters:

Definition 6.3 (Admissible Pair) For η > 0, a pair (σ′, σ′′) ∈ T2 is called η-admissible if

η dist(σ′, σ′′) ≥ max{diam σ′, diam σ′′} .

Using the concept of admissibility, the integration domain Γ×Γ in (4.8) is split into a near
field and a far field, characterised by the subsets Pfar (“far field”) and Pnear (“near field”) of
T2, defined as follows.

First set Pnear = ∅ = Pfar, and then initiate a call divide(Γ, Γ) to the following recursive
procedure:

2Usually a tree is a graph (V, E) with vertices V and edges E having a certain structure. Here the structure
will be given by the sons of the vertices (defined below), while V is identified with T.
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procedure divide(σ′, σ′′);
begin if (σ′, σ′′) is η-admissible then Pfar := Pfar ∪ {(σ′, σ′′)}

else if (σ′, σ′′) is a leaf then Pnear := Pnear ∪ {(σ′, σ′′)}
else for all (c′, c′′) ∈ sons(σ′, σ′′) do divide(c′, c′′)

end;

As a result of this call, P := Pnear ∪ Pfar describes a non-overlapping covering of Γ × Γ in
the sense that ∪{σ′ × σ′′ : (σ′, σ′′) ∈ P} = Γ × Γ and all contributions σ′ × σ′′ in this union
intersect at most by their boundaries.

Now we describe how the matrix K is approximated, using this decomposition. For sim-
plicity, we assume that the integration in Pnear is done exactly although this could be ap-
proximated by quadrature. For the integration in Pfar, we approximate the kernel k(x,y)
as follows. Let b = (σ′, σ′′) ∈ Pfar. For x ∈ σ′, y ∈ σ′′, we use a separable approximation
kb(x,y) ≈ k(x,y) of the form:

kb(x,y) :=
∑

i∈Iσ′ , j∈Iσ′′

κi,j(b)Φ
(i)
σ′ (x)Ψ

(j)
σ′′ (y) (6.1)

with appropriate function systems {Φ(i)
σ′ : i ∈ Iσ′} and {Ψ(j)

σ′′ : j ∈ Iσ′′} and expansion
coefficients κi,j(b).

For kernel functions which are related to linear elliptic PDEs of second order with constant
coefficients one can prove (cf. [15], [23]) the exponential convergence estimate

|k(x,y) − kb(x,y)| ≤ C1
(η′)


dist(σ′, σ′′)s
, (6.2)

for all x ∈ σ′,y ∈ σ′′ and b = (σ′, σ′′) ∈ Pfar, where η′ = C2η for some constant C2 and s is
the blow-up rate of the kernel

|k (x,y)| ≤ C3 |x − y|−s , x,y ∈ Γ, x �= y. (6.3)

Note that the constants C1 and C2 are independent of � while the cardinality of the index sets
Iσ′ , Iσ′′ depends on �. In the following, we assume that (6.2) holds.

The panel-clustering approximation of the bilinear form a in (4.1) acting on the finite-
dimensional space Sm

i (T ) × Sm
i (T ) is given by

ã(V, W ) = ((λI + K̃)V, W ) , with K̃v(x) =

∫
Γ

k̃(x,y)V (y)dy , for V, W ∈ Sm
i (T ) , (6.4)

and

k̃(x,y) :=

{
k(x,y) x ∈ σ′,y ∈ σ′′ with b = (σ′, σ′′) ∈ Pnear ,
kb(x,y) x ∈ σ′,y ∈ σ′′ with b = (σ′, σ′′) ∈ Pfar .

(6.5)

Since we are concerned here only with error estimates for this approximation, we do not
discuss its implementation, but instead refer readers to [16, 14] for details.

Analogously to Theorem 5.1 we then have

Theorem 6.4 Suppose that the assumptions of Lemma 4.1 hold and suppose we use the panel
clustering algorithm described above to obtain an approximate bilinear form ã. Then

|a(V, W ) − ã(V, W )|
‖V ‖Hν1(Γ)‖W‖Hν2(Γ)

� (η′)
+s{#T }max
t,τ∈T

Λs
t,τ (6.6)
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uniformly in V, W ∈ Sm
i (T ), where

Λs
t,τ := max{ht, hτ}1−s

{
ρ

ν−
1 +1/2

t ρν−
2 +1/2

τ

}
and ν−

i := min{νi, 0} , i = 1, 2.

The asymptotic constant in (6.6) may depend on m.

Proof. By (6.4), (6.5) and (6.2),

|a(V, W ) − ã(V, W )| =

∣∣∣∣∣∣
∑

b=(σ′,σ′′)∈Pfar

∫
σ′

∫
σ′′

V (x)(k(x,y) − kb(x,y))W (y)dydx

∣∣∣∣∣∣
�

∑
b=(σ′,σ′′)∈Pfar

(η′)


dist (σ′, σ′′)s

∫
σ′
|V |
∫

σ′′
|W |

=
∑

b=(σ′,σ′′)∈Pfar

(η′)


dist (σ′, σ′′)s

∑
t,τ∈T

t⊂σ′,τ⊂σ′′

∫
t

|V |
∫

τ

|W | . (6.7)

Now if t, τ ∈ T , t ⊂ σ′, τ ⊂ σ′′ and (σ′, σ′′) ∈ Pfar, then (σ′, σ′′) is η-admissible and we have

η dist(t, τ) ≥ η dist(σ′, σ′′) ≥ max{diam σ′, diam σ′′} ≥ max{diam t, diam τ} , (6.8)

which shows that (t, τ) ∈ T2 is η-admissible. Since the procedure divide implies that each
such η-admissible (t, τ) belongs to a unique far field block (σ′

t, σ
′′
τ ) ∈ Pfar, we can rewrite (6.7)

as

|a(V, W ) − ã(V, W )| �
∑
t,τ∈T

(t,τ) η−admissible

(η′)


dist (σ′
t, σ

′′
τ )s

∫
t

|V |
∫

τ

|W | . (6.9)

Because of the properties of (σ′
t, σ

′′
τ ),

dist(σ′
t, σ

′′
τ ) ≥ η−1 max{diam(σ′

t), diam(σ′′
τ )} ≥ η−1 max{ht, hτ} � (η′)

−1
max{ht, hτ}, (6.10)

where the constant of proportionality is independent of η. Moreover, for any V ∈ Sm
i (T ) and

any τ ∈ T , we have, by Assumption 2.6, for any ν ∈ R,∫
τ

|V | ∼
∫

τ

ρν−
τ |ρ−ν−

V | ≤
√

|τ |ρ2ν−
τ ‖ρ−ν−

V ‖L2(τ) ,

where ν− = min{ν, 0}. Inserting these last two results into (6.9), we obtain

|a(V, W ) − ã(V, W )|

�
∑
t,τ∈T

(t,τ) η−admissible

(η′)
+s

max {ht, hτ}s

√
|t|ρ2ν−

1
t |τ |ρ2ν−

2
τ ‖ρ−ν−

1 V ‖L2(t)‖ρ−ν−
2 W‖L2(τ)

� (η′)
+s max
t,τ∈T

√
|t|ρ2ν−

1
t |τ |ρ2ν−

2
τ

max {ht, hτ}s

∑
t∈T

‖ρ−ν−
1 V ‖L2(t)

∑
τ∈T

‖ρ−ν−
2 W‖L2(τ) . (6.11)

21



Now observe that (since here Γ is a two-dimensional manifold), for all t, τ ∈ T ,√
|t|ρ2ν−

1
t |τ |ρ2ν−

2
τ

max {ht, hτ}s ∼
√

hthτ

max {ht, hτ}s

{
ρ

ν−
1 +1/2

t ρν−
2 +1/2

τ

}
≤ max{ht, hτ}1−s

{
ρ

ν−
1 +1/2

t ρν−
2 +1/2

τ

}
.

Hence the result follows from (6.11) on application of the Cauchy-Schwarz inequality and
using Theorem 3.6.

In Theorem 6.4, � and η are parameters which should be chosen to ensure the required
overall stability and consistency estimate in the Strang Lemma (Lemma 4.1). (They also have
to be chosen so that the complexity of the panel-clustering approximation is optimised.) With
respect to the former requirement, Theorem 6.4 leads to the following corollary.

Corollary 6.5 Under the assumptions of Theorem 6.4, we have

(i) For the single layer potential: rstab � (η′)
+1{#T } ,
(ii) For the double layer potential: rstab � (η′)
+2{#T } ,
(iii) For the hypersingular operator: rstab � (η′)
+3{#T }maxτ∈T {h−1

τ }.
According to Remark 4.2, the choice ν = µ and δ = 0 is optimal for the double layer

potential and the hypersingular operator. In this case rstab = rconv.
If we assume for the single layer potential L2-regularity, i.e., δ = 1/2 in (4.11) we may

choose ν = 0 to obtain
rconv � h1/2(η′)
+1 (#T ) .

Proof. Putting ν1 = µ = ν2 in the result of Theorem 6.4, we obtain

rstab � (η′)
+s{#T }max
t,τ∈T

{
max{ht, hτ}1−s{ρtρτ}µ−+1/2

}
. (6.12)

The estimate (i) follows easily since, for the single layer potential, s = 1 and µ = −1/2.
The estimate for rconv in the case δ = 1/2 and ν = 0 follows from (6.6) with s = 1,

ν1 = 0, ν2 = −1/2:

rconv � (η′)
+s{#T }max
t,τ∈T

{
ρ

ν−
1 +1/2

t ρν−
2 +1/2

τ max{ht, hτ}1−s
}

= (η′)
+1{#T }
(

max
t∈T

ρ
1/2
t

)
� h1/2(η′)
+1{#T }.

For the double layer potential (on a polyhedron) we have s = 2 and µ = 0. Then (6.12)
leads to

rstab � (η′)
+2{#T }max
t,τ∈T

{√
ρtρτ max{ht, hτ}−1

}
.

Since max{ht, hτ}−1 ≤ {hthτ}−1/2, and since ρτ ≤ hτ , for all τ ∈ T , the result (ii) follows.
In the hypersingular case s = 3 and µ = 1/2 and (6.12) readily yields

rstab � (η′)
+3{#T }max
t,τ∈T

max{ht, hτ}−1 ,

which yields the required result.
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Example 6.6 Consider the screen problem on Γ = (0, 1)2 ⊂ R
3 with the single layer potential

operator: For given f ∈ H1/2 (Γ), find u ∈ H−1/2 (Γ) such that∫
Γ

u (y) v (x)

4π |x − y| dx dy =

∫
Γ

f (x) v (x) dx ∀v ∈ H−1/2 (Γ) .

The Galerkin discretisation with discontinuous, piecewise linear boundary elements on the
graded mesh T as described in Example 2.7 leads to a solution U ∈ S1

0 (T ) which satisfies the
quasi-optimal error estimate (cf. [19], [23])

‖u − U‖H−1/2(Γ) ≤ CN−min{g−ε,5}/4,

where 0 < ε < 1 is arbitrary but fixed, N = dimS1
0 (T ), and g denotes the grading exponent.

The choice g > 5 leads to the optimal convergence rate of N−5/4.

For this problem, Corollary 6.5 (i) tells us that the condition (η′)
+1N
!

� N−5/4 is sufficient
for optimal convergence. Hence, the Galerkin solution converges with optimal rate if the
expansion order for the panel clustering algorithm is chosen according to

� =

⌈
9

4

log N

|log η′|

⌉
.

The estimates given in Corollary 6.5 for the single and double layer potentials are clearly
unaffected by any mesh degeneracy. However in the case of the hypersingular operator, a neg-
ative power of the minimum diameter occurs. This is not a severe deficiency, but nevertheless
it can be removed if we reformulate the hypersingular equation using the concept of partial
integration. This we describe in the following final subsection.

6.2 Hypersingular Operator with Partial Integration

The integral of the kernel of the hypersingular operator in (4.2c) does not exist as an improper
integral and has to be defined as a finite part integral. Various regularisation methods for hy-
persingular integrals exist in the literature and we choose here the method of partial integration
(cf. [17]). Since the constant functions span the kernel of the hypersingular operator, we intro-
duce the quotient space Ĥ1/2 (Γ) := H1/2 (Γ) /R with norm ‖u‖Ĥ1/2(Γ) := infc∈R ‖u − c‖H1/2(Γ).

The bilinear form a : Ĥ1/2 (Γ)× Ĥ1/2 (Γ) → R which is associated with the hypersingular op-
erator can be written in the form

a (u, v) =

∫
Γ×Γ

〈−−→
curlΓv (x) ,

−−→
curlΓu (y)

〉
4π |x − y| dx dy, (6.13)

where the tangential rotation
−−→
curlΓ is defined as follows (cf. [17]). For functions u ∈ H1/2 (Γ)

and surface vector fields having componentwise differentiable extensions ũ and ṽ, respectively,
in H1 (U), where U is some three-dimensional neighbourhood of Γ, we define the tangential
gradient ∇Γu as the restriction of the Euclidean gradient to the surface Γ

∇Γu := (∇ũ)|Γ .

This enables us to introduce the tangential rotation of u as

−−→
curlΓu := −n ×∇Γu.
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Since the energy space for (6.13) is Ĥ1/2 (Γ) we must use continuous piecewise polynomials

Ŝm
1 (T ) := Sm

1 (T ) /R for its discretisation. To control the effect of the approximation of the
bilinear form a (·, ·) by the panel clustering algorithm, the estimate of the quantities

rstab :=
|a (V, W ) − ã (V, W )|
‖V ‖Ĥ1/2(Γ) ‖W‖Ĥ1/2(Γ)

and rconv := sup
V,W∈Sm

i (T )\{0}

|a (V, W ) − ã (V, W )|
‖V ‖Ĥν(Γ) ‖W‖Ĥ1/2(Γ)

(6.14)

for all V, W ∈ Sm
1 (T ) \ {0} plays the essential rôle. The index ν of differentiation must satisfy

(4.13) with µ = 1/2 and Ĥν (Γ) := Ĥ1/2 (Γ) ∩ Hν (Γ).
For simplicity, we assume that Γ is the surface of a polyhedron

Γ =

q⋃
i=1

Γi where every Γi, 1 ≤ i ≤ q, is planar. (6.15)

As a consequence, the normal n is constant on every panel τ ∈ T and

−−−→
curlΓ Ŝm

1 (T ) =
−−−→
curlΓ Sm

1 (T ) :=
{−−−→

curlΓ u : u ∈ Sm
1 (T )

}
⊂
(
Sm−1

0 (T )
)3

. (6.16)

Theorem 6.7 Let rstab, rconv be defined as in (6.14) with respect to the bilinear form a (·, ·)
as in (6.13) and denote its panel-clustering approximation by ã (·, ·). Assume that Γ satisfies
(6.15). Then the stability estimate:

rstab � (η′)
+1{#T }
holds uniformly in V, W ∈ Sm

1 (T )\ {0}. The choice ν = 1/2 leads to rconv = rstab.
Assume that the continuous problem has regularity δ = 1/2. In this case, we have

rconv � h1/2 (η′)

+1

(#T ) .

Proof. It is well known that the bilinear form a (·, ·) is elliptic and continuous in Ĥ1/2 (Γ) (cf.
[17]). In view of the inclusion in (6.16) we may use the inverse inequality from Theorem 3.4
for s = 1, α = 1/2 and interpolate with the trivial identity ‖ρ1/2V ‖H1(Ω) = ‖ρ1/2V ‖H1(Ω) to
obtain ∥∥∥ρ1/2−−−→curlΓ V

∥∥∥
(L2(Γ))3

≤
∥∥ρ1/2V

∥∥
H1(Γ)

� ‖V ‖H1/2(Γ) for all V ∈ Sm
1 .

Since
−−−→
curlΓV = 0 for every constant function V , the estimate∥∥∥ρ1/2−−−→curlΓ V

∥∥∥
L2(Γ)

� ‖V ‖Ĥ1/2(Γ) for all V ∈ Sm
1

follows. Hence,

|a (V, W ) − ã (V, W )|
‖V ‖Ĥ1/2(Γ) ‖W‖Ĥ1/2(Γ)

� |a (V, W ) − ã (V, W )|
‖ρ1/2V c‖L2(Γ) ‖ρ1/2W c‖L2(Γ)

, (6.17)

where V c :=
−−−→
curlΓ V and W c :=

−−−→
curlΓ W . Now, by repeating the steps in the proof of

Theorem 6.4, we obtain the estimate for a − ã :

|a (V, W ) − ã (V, W )| =
∑

b=(σ′,σ′′)∈Pfar

∫
σ′

∫
σ′′

〈V c (x) , W c (y)〉 |k (x,y) − kb (x,y)| dx dy

�
∑
t,τ∈T

(t,τ) η−admissible

(η′)


dist (σ′
t, σ

′′
τ )

∫
t

|V c|
∫

τ

|W c| . (6.18)
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Moreover, for any V ∈ Sm−1
0 (T ) and any τ ∈ T , we have, by Assumption 2.6,∫

t

|V c| ∼
∫

t

ρ
−1/2
t

∣∣ρ1/2V c
∣∣ ≤ {|t| ρ−1

t

}1/2 ∥∥ρ1/2V c
∥∥

L2(t)
� h

1/2
t

∥∥ρ1/2V c
∥∥

L2(t)

Inserting this and (6.10) into (6.18), we obtain

|a (V, W ) − ã (V, W )| � (η′)

+1

max
τ,t∈T

{
(hthτ )

1/2

max {ht, hτ}

}∑
t∈T

∥∥ρ1/2V c
∥∥

L2(t)

∑
τ∈T

∥∥ρ1/2W c
∥∥

L2(τ)
.

(6.19)
Since

√
hthτ ≤ max {ht, hτ}, the maximum appearing in (6.19) is bounded from above by 1

and we obtain by the Cauchy-Schwarz inequality the final estimate

|a (V, W ) − ã (V, W )| � (η′)

+1

(#T )
∥∥ρ1/2V c

∥∥
L2(Γ)

∥∥ρ1/2W c
∥∥

L2(Γ)
.

Combining this with (6.17) yields the estimate for rstab.
Assume that the problem has regularity δ = 1/2. Repeating the proof for rstab but applying

the inverse estimate only for the function W , we obtain

|a (V, W ) − ã (V, W )| � h1/2 (η′)

+1

(#T ) ‖V ‖Ĥ1(Γ) ‖W‖Ĥ1/2(Γ) .

Remark 6.8 Theorem 6.7 shows that the negative power of h in Corollary 6.5 (iii) can be
avoided by applying the panel clustering algorithm to the kernel in (6.13) and not to the
hypersingular kernel function in its original form (4.2c). In addition, we gain an additional
factor h1/2 in the error estimate by employing the regularity of the solution.
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[1] S. Börm, L. Grasedyck and W. Hackbusch, An introduction to hierarchical matrices,
Mathematica Bohemica 127 (2002) 229-241
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A.-M. Sändig and W.L. Wendland (eds.). CRC Press, 1999.

[11] I.G. Graham, W. Hackbusch and S.A. Sauter, Panel-Clustering for Stretched Elements,
in preparation.

[12] W. Hackbusch, Elliptic Differential Equations. Theory and numerical treatment, vol-
ume 18 of SCM. Springer-Verlag, Berlin, 1992.

[13] W. Hackbusch, B. Khoromskij and S.A. Sauter, On H2 matrices. In: Lectures on Ap-
plied Mathematics, H.-J. Bungartz, R.H.W. Hoppe, C. Zenger (eds.), Springer-Verlag,
Heidelberg, 2000, pp. 9-30.

[14] W. Hackbusch, C. Lage and S.A. Sauter, On the efficient realization of sparse matrix
techniques for integral equations with focus on panel clustering, cubature and software
design aspects. Boundary Element Topics, (W.L. Wendland, ed.), Springer-Verlag, Berlin,
1997, pp. 51-76.

[15] W. Hackbusch and Z. Nowak, On the fast matrix multiplication in the boundary element
method by panel clustering, Numer. Math. 54 (1989) 463–491.

[16] W. Hackbusch and S.A. Sauter, On the efficient use of the Galerkin method to solve
Fredholm integral equations. Applications of Mathematics 38 (1993) 301-322.
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