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1 Introduction

Boundary element methods are popular in numerical engineering, especially for solv-
ing classical PDEs on complicated and or/infinite 3D regions, where (for example in
scattering problems) they are often preferred to finite elements. More generally, they
can be combined with finite elements in order to efficiently handle problems in which
different PDEs on different parts of a domain are coupled together. Boundary elements
can be used on the boundaries of linear homogeneous regions, with (domain) finite ele-
ment approximation in nonlinear or inhomogeneous regions. There is a large literature
on this topic in which fast solution strategies based on this type of decomposition have
been widely reported (e.g., [5]).

The inclusion of boundary elements in such a coupled solution strategy poses two
problems not found in the stand-alone finite element method: the calculation of com-
plicated (sometimes singular) integrals to form the stiffness matrix, and the solution
of full systems. Much recent work has been done on system solution, yielding almost
optimal solvers with close to O(N) complexity, where N is the number of degrees of
freedom. Less work has been done on optimising the assembly of the stiffness matrix
which (if it is fully assembled) costs C;N? + O(N) operations, where C is moder-
ately large and driven by the number of kernel evaluations required by the integrator.
In modern boundary element codes the cost of stiffness matrix assembly can be the
principle bottleneck. In this paper we describe a new procedure ([2, 3]) for computing
approximations to Galerkin stiffness matrices using only N2+ O(N) kernel evaluations
(i.e. €1 =1). The approximate stiffness matrix is guaranteed to be accurate enough so
that the corresponding numerical solution inherits the same stability and convergence
properties as are enjoyed by conventional Galerkin methods.

A key point in our method is the decomposition of the (closed) surface I' C R?
on which the integral equation is posed into a number of smooth closed components
{Ty : ¢ = 1,...L} (with the interiors of the I', assumed pairwise disjoint). As is
typical in the description of 2D manifolds in 3D space, each I', is here assumed to
be parametrised by a polygonal planar chart [,. We shall devise fast integration
techniques on the Iy, which then induce corresponding fast methods on I'. One of the
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novel contributions of this paper is to provide a more efficient way of implementing
the new algorithm when several parametrised pieces of a smooth surface have to be
stitched together. In order to explain the basic principles of the method and to present
the novel contribution in the least technical context we assume here that I' is a C*®
surface. Note that this is by no means essential and the technical details for general
piecewise smooth surfaces are given in ([2, 3, 4]). The new implementation described
here can also be used for integration over smooth portions of such piecewise smooth
surfaces.
We shall consider general boundary integral equations of the form

(AT 4+ K)u(x) := Au(x) +/Fk(x,y)u(y)dy = f(x), xel, (1.1)

where the real scalar A and function f are given and u is to be found. For convenience
we assume that T := U,T, forms the surface of a polyhedron (although, in principle
any standard chart system would also do) and we assume that the parametrisation is
via a bi-Lipschitz bijectiion i : I' — T. (Only action of the mapping n is explicitly
required in practice.)

A standard boundary element method for (1.1) then begins by triangulating T
using a family of meshes 75, with parameter h — 0 denoting the mesh diameter. As
the meshes are refined we assume that they remain shape-regular (see, e.g. [2]). We
denote the mesh nodes by {X, : p € N'} (where A is an index set), and we denote the
corresponding nodal basis for the continuous piecewise linear functions with respect
to T, on I by {¢, : p € N'}. The induced functions ¢, := ¢,on ' : I' — R are
used to approximate (1.1) using Galerkin’s method. The ¢, are piecewise smooth with
respect to the curvilinear triangular mesh on T with triangles (7) : 7 € 7 and nodes
X, :=1n(X,): pEN.

The chief computational task in assembling the resulting stiffness matrix is com-
puting the N? entries (where N = |N|):

Koy = [ [ Kx3)eu)0p(x)duds . prg € N (12)

Our new method adaptively partitions K into a “conventional Galerkin” part in which
K, 4 is computed by conventional quadrature and another part which is done by very
cheap unconventional rules (using typically between 10 and 100 times fewer kernel
evaluations). The complexity theory of the resulting “hybrid” algorithm (see §3) shows
that under appropriate conditions the cheap part dominates. In §4 we give a new set
of numerical results (for computation of the 3D harmonic Neumann-Dirichlet map)
which show that the algorithm can compute more than 90% of the matrix K using
the cheap method, without damaging the underlying convergence properties of the
numerical solution.

To motivate the quadrature techniques for (1.2), let us first of all ignore the fact
that the “kernel function” £ is normally singular at x = y and imagine that k is globally
smooth. Then both conventional and unconventional approaches to computing (1.2)
can be obtained as two applications of rules which compute, for general smooth F', the
“fundamental integral”:

| gyt = [ P& s (13)
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Here F(X) := F(n(X))g(X), g is the “Gram determinant” of i appearing in the area
element transformation dz = ¢(X)d# and we have used the fact that ¢,(n(X)) = ¢, (X).
Note our assumptions ensure that ¢ is a smooth and uniformly positive function on
each T, (although g may not be smooth globally).

The conventional approach to (1.3) separates the right-hand side into a sum of
integrals over each of the planar triangles in supp gz;p, on which standard rules (for
example from [8]) can be applied. This approach results in a fairly high complexity in
terms of kernel evaluations. For example, a popular rule which will be exact for (1.3)
when F is a bivariate polynomial on each triangle requires evaluations of F at the
nodes, edge mid-points and centroids of a triangle. Recalling that /N is the number of
nodes in the mesh, there are about 2V triangles and 3N edges and so use of this rule to
compute (1.3) for all p requires about 6N evaluations of F'. Computing all elements of
the matrix K by iterating this rule would then require about 36 N? kernel evaluations.
Higher order conventional rules will typically require C N? evaluations with C higher
still.

However we can obtain the same degree of precision in N24+O(N) kernel evaluations
using the following more unconventional approach. Note that the main reason for
separating (1.3) into a sum over triangles is the fact that gz~5p is only triangle-wise
smooth. However gz~5p is simple enough so that it can be integrated easily against any
polynomial over all of its support. Since k is (temporarily assumed) globally smooth,
this suggests that we should devise rules for (1.3) which work well for smooth F', and in
which gzgp is treated as a weight-function. This gives us the freeedom to use evaluations
of F' at any points, and if we use only nodal evaluations then we can compute (1.3)
for all p using only N evaluations of F'. Iterating this means that K can be computed
using exactly N? evaluations, namely k(x,,y,), p,q € N. Note also that, in contrast to
conventional rules, the N? evaluation count remains the same irrespective of the degree
of precision required, and each nodal evaluation of £ may be used in the computation
of K, , for several p, q.

Our task then is to devise quadrature approximations of the right-hand side of (1.3)
which take some subset of the nodes {X, : p € N'} as quadrature points and which are
exact for polynomials of some specified degree. However, since we are dealing here with
general meshes, and therefore quadrature rules with general abscissae (in 2D regions),
the weights of these quadrature rules are not known a priori and have to be computed
as part of the algorithm. For example, suppose supp &p is entirely contained inside one
of the charts Ty and suppose we wish to construct a quadrature rule which is exact for
(1.3) when F is a bivariate polynomial on I';. Then we would choose at least 6 nodes
{%;:j € J,}in Ty (with J, denoting a suitable index set) and (using the method of
undetermined coefficients), seek weights {w; : j € J,} such that the equation

> asllx) = [ TR0, ) 14

JE€Sp

where {II; : i = 1,...6} are a suitable basis for the bivariate quadratic polynomials
(e.g. 1,1,...42, in local coordiantes on I';). This yields 6 equations to solve for the
weights {w; : j € J,}.

More generally, if supp &p overlaps with two charts I', and Ty say, then T, UL, may
not be a smooth subset of T', even though T itself is smooth. In [2, 3] this situation



was dealt with by separating supp gz~5p into smooth components, each from one I'y, then
selecting at least 6 nodal quadrature points in each relevant Ty, and solving systems
of form (1.4) in each component for the weights. This approach is natural when an
edge of parameter space r corresponds to a true edge in I'. However when a smooth
(part of) T is parametrised by a piecewise smooth (part of) T it is more natural to use
an alternative approach, based on overlapping subdivisions of ', which is described
in §2. In any case it should be clear that we can in principle construct node-based
rules of precision 2 (or indeed any precision) for (1.3) and that the computation of
the corresponding weights requires the solution of (possibly underdetermined) systems
such as (1.4). The theory of solvability of these systems is an interesting problem in
its own right and in [3] stability is demonstrated in a wide range of practical situations
for rules with degree of precision 1 and 2. Computing one (or several) such node-based
rules for all p € N is an O(N) process.

Now recall that the “real” kernel function & in (1.1) is a fundamental solution of a
PDE (or a derivative of a fundamental solution) and so it can be expected to blow up
as x — y. To allow for this we shall assume here that k(x,y) is C* for x # y (more
general kernels are allowable [2, 3]), and also that there exists v > 0 such that for all
integers m > 0, there exists a constant B,, > 0 such that

|ID™{k(n(X),n(¥y)} < Bunlx—y| ™, forx#y, x,y€l. (1.5)
Here D™ denotes any mth order partial differential operator with respect to (X,y).
Most kernels in practice satisfy this and the general theory in [2] shows that, in order
for the quadrature error in computing K not to damage the overall convergence rate
of the Galerkin scheme, the degree of precision of the quadrature rules needed to
compute K, , must be higher if supp &p is close to supp éq compared to when they
are well-separated. Moreover special regularising transforms (e.g. [1]) are needed when
supp ép N supp éq # (. But (most importantly for this paper), only low degree of
precision rules (e.g. 1 or 2) are typically needed when the distance between supp ¢,
and supp ¢, is O(1) (as b — 0). This motivates the hybrid algorithm given in §3, which
uses cheap low order node-based rules when supp (;p and supp éq are far enough apart,
and uses the conventional approach elsewhere. In the experiments in §4 we see that in
standard applications the cheap method strongly dominates the computation, yielding
a complexity of exactly N? kernel evaluations (at pairs of node-points) together with a
additional O(N) evaluations due to the small part of the matrix done by conventional
methods. The solutions computed by the cheap method exhibit the same rate of
convergence as those computed by the conventional method. To the cost of the cheap
method we should also add O(N) operations needed to compute the weights of the
node-based rules in the first phase of the algorithm.

2 Overlapping Decompositions

In this section we describe an efficient method for computing node-based rules when T’
contains edges which do not correspond to edges of I'. We assume that each I, is ex-
tended to a slightly larger planar polygon f‘f, with the distance between the boundaries
of 'y and f? being bounded below by € > 0. Assume also that each parametrisation
map 1, := n|fl can be extended to a smooth map nj which takes fj into a neigh-
bourhood I'¢ of T'y. (Note that such an extended chart system would normally be part
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of the geometric description of a smooth manifold.) In order to use these extended
charts in the computation of (1.3), we need also to assume that the inverse maps
(n%)~! : I'¢ — I'¢ are known, and that, for each p € N, there exists ¢ (depending on
p) such that supp ¢, C I'j. Clearly the latter assumption holds if the overlap e is
sufficiently large compared to h (e.g. ¢ = Ch for a suitably large constant C' would
suffice). Then we can write, analogously to (1.3),

P, = [ B0, )i 2.1

with Fe(x¢) := F(n$(x°))gs(x°), and g denoting the Gram determinant of 7.

Now since f‘; is planar, we can apply the procedure introduced in the previous sec-
tion to generate node-based rules for (2.1). To compute a rule with degree of precision
d, select at least (d+1)(d+2)/2 nodes {x; : j € J,} on I'{, pull them back to the set
{x5 = (nj)"'(x;) : j € Jp} of nodes on ¢, and then seek weights ; so that

Zwﬁ / (%) (S (X)), i =1, (d+1)d+2)/2,  (22)

where the II; are a basis for the polynomials of degree d on the planar domain f;. This
procedure yields a (possibly underdetermined) linear system for w:

Mw=b, (2.3)

where M is the trivially computed Vandermonde matrix containing the values of the
basis functions evaluated at the quadrature points. From (2.2) and the definition of
¢p, each element of the right-hand side b can be written

b= [ TGO o) ()

In the case when supp gz~$p c Iy, the map 1! o n¢ is the identity on supp qu, and so

b; is simply the integral of a piecewise polynomial over a set of planar triangles which
can be done exactly using triangle-based quadrature rules of appropriate order. By
contrast, if supp gz~5p contains triangles which are in other charts besides Ty, then we
have to write

- / ((n%) " o) (y)G(¥)dp(y)dy | (2.4)

where G is the Gram determinant of the map y — ((n$) 'o n)(y). The first two terms
in the integrand in (2.4) are smooth on the intersection of supp gzﬁp with each of the
T, and so b; can be approximated to arbitrary accuracy by appropriate triangle-based
rules on I'. We emphasise that the computation of b; is part of the process of computing
the weights for the node-based rules and it does not require any kernel evaluations. We
shall see in §4 that the computation of the weights (since it is an O(N) process) is a
small part of the overall computation time and the extra work that has to be done
is small compared to that saved in using the node-based rules for the assembly of K
instead of conventional rules.



In the following section we review the hybrid Galerkin algorithm and we also extend
its theory (]2, 3]) to the case where the weights of the node-based rules are taken to
be the solution w of the approximation to (2.2):

Mw=b, (2.5)

where b is an appropriately accurate approximation of b. This extension of the theory is
used in the computations in §4. In §3 we need following generalisation of [2, Lemma 2.7]
which can be proved by reworking the proof in this more general situation. To state this
lemma we let h, denote the diameter of any (curvilinear) triangle 7 € T, and we define
the mesh diameter “local” to the node x, by h, = max{h, : 7 € Ty, 7 C supp ¢,} .

Lemma 1 Suppose that the solution w of (2.5) is stable in the sense that 3=, [w;] <
0 ey, Wi » and that the points {x; : j € J,} are not too far from x,, i.e., max{[x; —

Xp| : j € J,} < 6h, . Suppose also that bisa sufficiently accurate approximation to b
in the sense that L
1b — bl < BRIT? (2.6)

where 0,0, 8 > 0 are bounded independently of h. Then the resulting node-based quadra-
ture rule for (2.1) satisfies:

|/ Fe(ﬁponz_
e

where C depends on 0,8, 3 and the d + 1st derivatives of F¢ on f‘j.

D i FexS)| < Ch;‘f“/r@, :

GET,

Remark. Conditions sufficient to ensure the above stability requirement follow from
the analysis in [3, §3].

3 Hybrid Galerkin Algorithm and Complexity

In this section we give a more precise description of the hybrid Galerkin algorithm
outlined in §1, together with an extension of its theory to the case of the overlapping
decompositions introduced in §2. Letting H*, i € [—1, 1], denote the usual the Sobolev
space on I, we shall assume that the operator in (1.1) satisfies \[+/C : H* — H~* and
that the corresponding bilinear form a(u,v) = (A +K)u, v) is H*—elliptic (where (-, -)
denotes the dual pairing between H# and H*). This assumption is widely satisfied
in practice (see, e.g. [2]). For the Laplace differential operator the standard boundary
integral equations are the single-layer potential and hypersingular equations (where
A=0in (1.1) and p = —1/2,1/2 respectively) and the classical second-kind equation
with the double-layer potential operator (where A = +1/2 and p = 0).

The usual Galerkin method seeks U € S, := span{¢, : p € N'} such that a(U, V) =
(f,V) for all V € S. This is equivalent to a linear system with matrix AM + K, with
M an easy to compute sparse mass matrix and K given in (1.2) above. It is well-
known that U satisfies the quasi-optimal error estimate: |ju — U|[, < Ch*™* as h — 0.
The algorithm presented below provides an automatic procedure for computing an
approximation K to K in such a way that the corresponding discrete Galerkin solution
U also enjoys this convergence rate. The algorithm has a first phase in which the



weights of (relatively low-order) node-based rules are computed on the charts described
above and a second phase where these are used (where possible) to compute K, ;, with
conventional rules used otherwise. In determining what degree of precision should be

employed the following quantities become important: h, , := max{h,, h,}, and
Ppq =min{|x —y|:x €supp ¢, U{x;:j € J,}, y €supp ¢, U {x; : j € J,}} .

The algorithm requires the user to choose the following parameters: real numbers
d,0,C* > 1 and positive integers dpin < dmax. Also x =1 — p — min{u, 0}.

Theorem 2 provides a typical convergence result for the algorithm described below.
For simplicity we assume here that the mesh diameter ~ < 1 and that the mesh
refinement is such that Nh? is bounded above and below as h — 0. (Quasiuniformity
is sufficient but not necessary for this.) More general versions, including extensions
to anisotropically refined meshes are contained in [2, 3, 4]. The proof of Theorem 2
is obtained by extending the arguments in [3, 4], using Lemma 1 above to deal with
errors in approximate weights of node-based rules.

Theorem 2 If the stiffness matriz K is computed by the algorithm below, and if the
weights W are computed from (2.5), where b satisfies (2.6), then the corresponding
discrete Galerkin solution U € Sy, satisfies the optimal error estimate:

|w—Ul|ge < C(u,C*, 0,8, 3)h>* as h—0 . (3.1)

The algorithm is called a “hybrid” Galerkin algorithm because it can be viewed as a
blend of two traditional integral equation discretisations: the Galerkin and Nystrom
methods (for more details see [3]).

Hybrid Galerkin Algorithm

procedure generate_node_based_quadrature_rules;
begin
for all pe N' do
for all integers d € [dyin, dmax] dO
(i) Select at least (d+ 1)(d+2)/2 nodes {x; : j € J,(d)} on T’
with the property max{|x, — x| :j € J,} < dh,.
(it) Find {w; : j € J,(d)} by solving (2.5) with b satisfying (2.6).
(#77) If the w; satisfy > [w;| < o), w;, then
set B,(d) = “admissible” and store the J,(d) and ;.
Otherwise set B,(d) = “inadmissible”
end of loop over d
end of loop over p
end;

The second phase of the algorithm then follows:



procedure generate_hybrid_system_matrix;
begin
for all p,q € N do
begin
e Compute d,,, the smallest positive integer satisfying

> X + (1 + a) log(C*Pp,q)/ log 4

d 3.2
P = 1 —log(C*ppq)/ loghy 4 (3:2)
if (dp g € [dmin, dmax]) and (By(dy,) = “admissible”) and
(B,(d,q) = “admissible”)
then 3
e Compute K,, using the node-based rules obtained above.
else )
e Compute K,, using conventional triangle-based rules,
and ensure that
|Kp,q o f(p,q| < Ch’igl/rﬁbp/rﬁbq : (3-3)
end
end;

Note that (3.3) is always possible, with C' independent of h, using triangle-based
rules (see, e.g. [1, 6]). In [3] we analysed (in the case of quasi-uniform meshes) the com-
plexity gains in using the hybrid algorithm compared with the conventional Galerkin
method in the case of the three standard examples from harmonic potential theory:
The single-layer, double-layer and hypersingular equations. For these three equations
we computed the ratio of the number of entries of the matrix which will be computed
by triangle-based rules to the number which will be computed by node-based rules.
The asymptotic behaviour of this ratio is given in the following table

dmax =1 dmax =2 dmax =3

single — layer — — const hA/5

double — layer const hA/5 hA/3

hypersingular ~ h?/® h R10/7
Table 1

Thus, provided we choose dy.x > 3 in the hybrid algorithm, then, for all three
model equations, the number of matrix entries computed by triangle-based quadrature
becomes negligible compared to the number computed by node-based quadrature as
h — 0 and then the number of kernel evaluations required by the whole algorithm
approaches N2. Only dp.c = 2 is needed to ensure this property in the case of the
double layer and d.x = 1 in the case of the hypersingular equation. Since using
triangle-based rules alone requires C'N? kernel evaluations with moderately large C
(see §1), we would expect that the hybrid algorithm would improve on conventional
algorithms by a factor approaching C' as h — 0. The results in §4 show that the
estimates Table 1 are realised in practice, even for moderately coarse meshes.



4 Numerical results

In this section we report on some numerical experiments for the the hybrid algorithm
applied to the computation of the harmonic Dirichlet-Neumann map corresponding to
a smooth bounded domain Q C R?® with boundary I'. If ® is harmonic in Q then it is
well-known that ® satisfies Green’s third identity on I':

0P 1

V——Wo =-0 4.1

on 2 (41)
where 9/0n denotes differentiation in the outward normal direction from Q and V, W
are, respectively, the single and double-layer potentials:

1 1 1 0 1
- d = | — dy . 4.2
Vo) = 1 [ oidn, W = [ oL (Yo (a2
If the Neumann data v of ® is given on I, the Neumann-Dirichlet map can be computed
by solving the integral equation

(ST +Wpu =V (4.3)

for the Dirichlet data u. Conversely if u is given, computation of the Dirichlet-Neumann
map requires the solution of (4.3) for v. Both these maps are commonly used in domain
decomposition procedures. These two equations constitute two different instances of
problem (1.1), with A = 1/2 in the first case and A = 0 in the second. It is well known
that the appropriate energy spaces for these equations is H* with (for the first equation)
pu = 0, and (for the second) = —1/2. Since the surface I" is here assumed smooth,
the parameter « introduced in §2 is a = 1 for both equations. Detailed experiments
on using the hybrid Galerkin method for approximating and inverting the operator V
(and hence computing the Dirichlet-Neumann map) which verify the theory above are
given in [3]. In this paper we concentrate on the Neumann-Dirichlet map.

For given v, (4.3) has a unique solution u only up to an arbitrary additive constant.
To avoid this difficulty we add the easily discretised term fr u to the right-hand side
of (4.3). The resulting equation has a unique solution which corresponds to one of the
solutions of (4.3).

In our experiments we consider the specific case where I' is the unit sphere {x €
R3 : |x| = 1} and ® is the harmonic function ®(x) = 1/|x — (2,0,0)T|. Using the
Neumann boundary data of this function as v we compute an approximation U to
the corresponding Dirichlet data u by solving (4.3) with Galerkin’s method, using the
hybrid algorithm to compute the stiffness matrix. In the tables below the Ly norm
of the error is approximated by the L, norm of the interpolant of the error, with the
necessary integrals done using 4 point conical Gauss rules in each triangle.

To parametrise [' we use 8 charts comprising the triangular faces of a double pyra-
mid T' with nodes (41,41, 41), inscribed in I'. The mapping  : I' — T is given
(globally in this case) by n(x) = x/|x|. For each chart T, the extension map 7§ is
again defined by this same formula. Meshes are constructed on I' by starting with the
triangles comprising I itself (Level 1) and performing 4 levels of hierarchical refine-
ment, with each new level obtained from the previous by standard quadrasection of
each triangle. This yields a sequence of five meshes on [ with 6, 18, 66, 258 and 1026



nodes, respectively. The finest level discretisations on [ and T are depicted in Fig. 1.
There are many nodes on chart edges and so the overlapping procedure in §2 is very
important to obtain optimal complexity here.
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Figure 1: The unit sphere I' and its 8 charts.

In our implementation of the hybrid algorithm we set dyax = dmin = 2 and we com-
puted node-based rules of degree of precision 2 for p € N'. To simplify the computation
we omitted this computation for the 6 nodes which correspond to the vertices of the
level 1 mesh, but we did it for all other nodes. This omission will have minimal effect
on the complexity results reported below. For each p the quadrature points for the
rule of precision 2 are chosen as the node x,, itself together with the 6 nodes connected
to it. The resulting underdetermined systems were solved using the minimal norm
algorithm in [3]. Thus 6 = 1 in Lemma 1. Rather than specify ¢ in advance we com-
puted all quadrature rules and then recorded the observed values of ¢ below. In the
implementation of (3.2) we set h,, = h := 1/(2) * (2!~ 1) with levels = 1,2,3,4, 5,
and p,, = ||x, — X4/|]2 — 2 * h. When triangle-based rules are required we used conical
Gauss rules of appropriate order and regularising transforms for the singular integrals
(see [3]). For this problem o = 1 and the energy norm is H* with y =0 and so x = 1.
We ran the algorithm for various choices of C*. As C* increases, the number of entries
of the matrix computed by node-based rules increases. Nevertheless for fixed C*, as
the meshes are refined, the optimal error estimate in Theorem 2 will be realised.

In the tables below % is the percentage of the matrix actually computed with node-
based rules and % max is the maximum possible percentage which could be computed
in this way (i.e., the percentage of the matrix entries for which the supports of the
basis functions do not intersect). In all the tables, columns headed “EOC” contain
estimated orders of convergence (computed by extrapolation) for the numbers in the
column immediately to its left.

10

C*=1/4 C*=1/2
N 0 | Yomax || ||lu—Ullz, | EOC | % || ||lu—Ul|L, | EOC | %
66 | 3.7 73 3.38(-3) 0 3.97(-3) 59
258 || 2.6 93 7.31(—4) 2.2 0 1.69(—3) 1.2 | 68
1026 || 3.3 | 98 1.87(-4) 20 | 0 2.25(-4) 2.9 |70
Table 2




Cr =1 C* =3
N | o | %mae | 1t —Ullz, |EOC | % || lu—Ullz, | EOC | %
66 || 37| 59 || 3.97(-3) 59 | 3.97(-3) 59
258 |[2.6 | 88 || 1.60(-3) | 1.3 [87| 2.00(-3) | 1.0 |88
1026 || 3.3 | 97 || 2.55(-4) | 2.6 | 93| 843(-4) | 1.3 |97

Table 3

The results clearly confirm the complexity predictions in Table 1. For small enough
C* (namely when 1/C* > diam(I")) no entries of the matrix are computed with node-
based rules, the method is then the conventional Galerkin method and it converges
with O(h?). As C* increases more entries are computed with the node-based rules.
For each fixed C* the order of convergence approaches O(h?) but with an asymptotic
constant which increases with C*. For the largest value of C*, the rate of convergence
has not yet achieved h? but 97% of the matrix is done using the cheap method. The
moderate choice C* = 1 achieves O(h?) but still computes 93% of the matrix cheaply.
Table 4 compares the flops for the computation of the weights in the unconventional
node-based rules with those needed to compute the “Nystrém” matrix k(x,,x,), for
p # q, p,q € N. The first is growing with O(N) and the second with O(N?). The
number of flops for creating the stiffness matrix by triangle-based rules will on the other
hand be typically 10-100 times the second column. Thus the cost of solving the small
systems in phase 1 of the hybrid algorithm has a big pay-off in overall computation
times.

N | weights | Nystrom matrix
66 | 2.3(+5) 9.6(+4)
258 | 7.5(+5) 1.5(+6)
1026 | 2.5(+6) 2.3(+7)

Table 4: Comparison of flops for computing weights and Nystrom matrix
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