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Abstract

The paper gives a polynomial description of the Rijndael Advanced Encryption
Standard recently adopted by the National Institute of Standards and Technology.
Special attention is given to the structure of the S-Box.
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1 Introduction

On November 26, 2001 the National Institute of Standards and Technology (NIST) an-
nounced that the Rijndael encryption algorithm becomes the Advanced Encryption Stan-
dard. The Rijndael system will be a Federal Information Processing Standard (FIPS) to
be used by U.S. Government organizations (and others) to protect sensitive information [1].
Detailed information can be found at the website:

http://csrc.nist.gov/encryption/aes/rijndael/
The description supplied in [3, 4] by Joan Daemen and Vincent Rijmen, the inventors

of the Rijndael encryption algorithm, is very detailed. A reader new to the subject will
probably need some time to understand all steps in the algorithm.

In this paper we show how the whole algorithm can be quite elegantly described through
a sequence of algebraic manipulations in a finite ring. We hope that this description will be
helpful in the proliferation of this new important standard.

We are aware of some attempts (e.g. [6, 9]) where authors tried to explore an algebraic
description of the so called ‘S-Box’, the main non-linear part of the Rijndael system. In
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particular in [5] several rounds of Rijndael have been described in a compact way. A compact
algebraic description of several rounds might actually reveal weaknesses of the standard.
Certainly, further thought must be given to this potential possible shortcoming.

However, we do not attempt to describe weaknesses of the Rijandael system, our goal is
simply to describe the Rijndael system in a transparent algebraic way.

The paper is structured as follows. In Section 2 we introduce a finite ring R and we
describe the Rijndael algorithm through simple algebraic manipulations in this ring. In
Section 3 we explain how the description in Section 2 relates to the standard description. In
Section 4 we will be concerned with the structure of the S-Box. We explain in the paper why
the ‘S-Box’ can be described through a sparse polynomial, something which has been well
known to the specialists. We also derive the interpolation polynomial of the inverse S-Box
and we describe the cycle decomposition of the S-Box.

The most detailed description of Rijndael can be found in the new book [4]. This book
gives many details on the design philosophy and implementation aspects, something we do
not address in this paper. During the preparation of this paper we found the description of
Rijndael as given in [10] useful. We want to thank U. Maurer for pointing us to an algebraic
description of Rijndael recently provided by H. W. Lenstra [7].

2 A Ring Theoretic Description of the Rijndael Algo-

rithm

Let Z2 = {0, 1} be the binary field and consider the irreducible polynomial

µ(z) := z8 + z4 + z3 + z + 1 ∈ Z2[z].

Let F := Z2[z]/ < µ(z) >= GF(256) be the Galois field of 28 elements and consider the
ideal:

I :=< x4 + 1, y4 + 1, µ(z) >⊂ Z2[x, y, z].

We will describe the Rijndael algorithm through a sequence of polynomial manipulations
inside the finite ring

R := Z2[x, y, z]/I = F[x, y]/ < x4 + 1, y4 + 1 > . (2.1)

The ring R has simultaneously the structure of a finite Z2-algebra and the structure of a
finite F-algebra as the above description makes it clear. The monomials{

xiyjzk | 0 ≤ i, j ≤ 3, 0 ≤ k ≤ 7
}

form a Z2-basis of the ring (algebra) R. In particular dimZ2 R = 128, i.e. |R| = 2128.
Computations in the ring R can be done very efficiently. Addition in R is done component-
wise and multiplication inR is done through multiplication in Z2[x, y, z] followed by reduction
modulo the ideal I.

Remark 2.1 One readily verifies that x4 + 1, y4 + 1, µ(z) forms a reduced Gröbner basis of
the ideal I which is also a zero-dimensional ideal. As a consequence the reduction modulo I
is very easy. More details about finite dimensional algebras and zero dimensional ideals can
be found in [2, Chapter 2].
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Whenever r ∈ R is an element we will define elements ri,j ∈ F and rj ∈ F[x]/ < x4 + 1 >
through:

r =
3∑

i=0

3∑
j=0

ri,jx
iyj =

3∑
j=0

(
3∑

i=0

ri,jx
i

)
yj =

3∑
j=0

rjy
j. (2.2)

On an abstract level, a secret key crypto-system consists of a message space M , a cipher
space C, and a key space K together with an encryption map

ε : M ×K −→ C

and a decryption map
δ : C ×K −→M

such that δ(ε(m, k), k) = m for all m ∈ M and k ∈ K. It should be computationally not
feasible to compute the secret key k ∈ K from a sequence of plain-text/cipher-text pairs(
m(t), c(t) = ε(m(t), k)

)
, t = 1, 2, . . ..

In the Rijndael AES system one has the possibility to work with secret keys consisting
of 128 bits, 192 bits or 256 bits respectively. We will describe the system when |K| = 2128

and will indicate in Section 3 how to adapt the algebraic description to the other situations.
For the Rijndael algorithm we define

K = M = C = R.

Crucial for the description will be the following polynomial which appeared already in
Daemen and Rijmen’s original proposal [3, Subsection 8.5.]:

ϕ(u) :=
(
z2 + 1

)
u254 +

(
z3 + 1

)
u253 +

(
z7 + z6 + z5 + z4 + z3 + 1

)
u251

+
(
z5 + z2 + 1

)
u247 +

(
z7 + z6 + z5 + z4 + z2

)
u239 + u223 +

(
z7 + z5 + z4 + z2 + 1

)
u191

+
(
z7 + z3 + z2 + z + 1

)
u127 + (z6 + z5 + z + 1) ∈ F[u]. (2.3)

Assume Alice and Bob share a common secret key k ∈ R and Alice wants to encrypt the
message m ∈ R. In a first step both Alice and Bob do a key expansion which will result in
11 elements k(t) ∈ R t = 0, . . . , 10.

Key expansion: Using the notation introduced in Equation (2.2), both Alice and Bob
compute recursively 11 elements k(t) ∈ R, t = 0, . . . , 10 in the following way:

k(0) := k

k
(t+1)
0 :=

(
3∑

i=0

ϕ(k
(t)
i,3)x

i

)
x3 + zt + k

(t)
0 for t = 0, . . . , 9.

k
(t+1)
i := k

(t+1)
i−1 + k

(t)
i for t = 0, . . . , 9, i = 1, 2, 3.

In order to describe the actual encryption algorithm we define the ring element:

γ := (z + 1)x3 + x2 + x+ z ∈ R.
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Rijndael encryption algorithm: Using the round keys k(t) ∈ R and starting with the
message m ∈ R Alice computes recursively:

m(0) := m+ k(0)

m(t+1) := γ

3∑
i=0

3∑
j=0

ϕ(m
(t)
i,j )x

iy3i+j + k(t+1) for t = 0, . . . , 8.

c := m(10) :=
3∑

i=0

3∑
j=0

ϕ(m
(9)
i,j )xiy3i+j + k(10)

The cipher to be transmitted by Alice is c. Note that in the 10th round no multiplication by
γ happens. This will make sure that encryption and decryption can formally be described
by the same algebraic operations. We describe the decryption algorithm next.

Rijndael decryption algorithm: The polynomial ϕ introduced in (2.3) is a permutation
polynomial describing a permutation of the elements of F. See Sections 3, 4 for more details.

There is a unique permutation polynomial ψ(u) ∈ F[u] of degree at most 255 such that
ϕ ◦ ψ = ψ ◦ ϕ = idF and we will derive this polynomial in Section 4. The element γ ∈ R is
invertible with

γ−1 := (z3 + z + 1)x3 + (z3 + z2 + 1)x2 + (z3 + 1)x+ (z3 + z2 + z) ∈ R.

Using the map ψ, the element γ−1 and the round keys k(t) Bob can decipher the message m
of Alice through:

c(0) := c+ k(10)

c(t+1) := γ−1

3∑
i=0

3∑
j=0

ψ(c
(t)
i,j )x

iyi+j + γ−1k(9−t) for t = 0, . . . , 8.

c(10) :=
3∑

i=0

3∑
j=0

ψ(c
(9)
i,j )xiyi+j + k(0)

One readily verifies that m = c(10). Note that formally both the encryption schedule and
the decryption schedule follow the same sequence of transformations. ϕ is simply replaced
by ψ, multiplication by γ is substituted with multiplication by γ−1 and the key schedule is
changed replacing k(t), t = 0, . . . , 10 with k(10), γ−1k(9), . . . , γ−1k(1), k(0).

Remark 2.2 Both encryption and decryption can be done very efficiently. In practice the
polynomials ϕ and ψ are not evaluated and a look up table describing the permutations
ϕ, ψ : F −→ F is used instead. Substituting exponents xiyj 7→ xiy3i+j does not require any
arithmetic and adding a round key k(t+1) is efficiently done through Boolean XOR operations.
Arithmetic computations may be required when multiplying by γ respectively by γ−1. (This
can in principle also be implemented via look up tables). If algebraic operations are used
then in general multiplication by γ is slightly easier than multiplication by γ−1 and the
decryption algorithm is slightly more complex than the encryption algorithm.
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Remark 2.3 (Compare with [4, page 55] and [7]). γ was chosen such that multiplication
by γ can be done with a minimal branch number and in the same time a good diffusion of
F[x]/ < x4 + 1 > is guaranteed. We are not convinced that the choice of γ was optimal for
the latter as it has a very small order in R. A direct computation shows that γ has order 4.
With this we also have an easy expression for γ−1:

γ−1 = γ3 = γ2γ = (z2x2 + z2 + 1)γ. (2.4)

Instead of multiplying by γ−1 it is therefore possible to multiply three times by γ or alter-
natively one can pre-process the multiplication of γ by the multiplication of (z2x2 + z2 + 1).
This is more efficient than multiplying the full expression by γ−1.

Remark 2.4 We made a computer search for interesting factorizations of γ−1. Such fac-
torizations can lead to efficient implementations of the multiplication by γ−1. It seems that
the factorization (2.4) is probably the easiest for computation purposes. The following is a
related interesting factorization which we found:

γ−1 = (zx3 + z + 1)(x3 + (z2 + 1)x2 + x+ z2) (2.5)

3 Relation to the Standard Description

In the original description of the Rijndael algorithm the ring R was not used. Instead sets
of elements having 128 bits were described by a 4× 4 array each containing one byte, i.e. 8
bits. In order to relate the descriptions assign to each element r =

∑3
i=0

∑3
j=0 ri,jx

iyj the
4× 4 array

r0,0 r0,1 r0,2 r0,3

r1,0 r1,1 r1,2 r1,3

r2,0 r2,1 r2,2 r2,3

r3,0 r3,1 r3,2 r3,3

where each element ri,j ∈ F is viewed as one byte. Using a specific schedule the following
operations are applied:

SubBytes S-Box Transformation: In this operation each element ri,j ∈ F is changed us-
ing a permutation ϕ of the symmetric group of 256 elements. The permutation ϕ decomposes
into three permutations:

ϕ1 : F −→ F, f 7−→
{
f−1 if f 6= 0,
0 if f = 0.

(3.1)

L : F −→ F, f 7−→ (z4 + z3 + z2 + z + 1)f mod z8 + 1. (3.2)

ϕ3 : F −→ F, f 7−→ z6 + z5 + z + 1 + f. (3.3)

The permutation ϕ is defined as ϕ := ϕ3◦L◦ϕ1. It is possible to describe the permutation ϕ
using a permutation polynomial. For this note, every permutation of F can also be described
through a unique interpolation polynomial (an element of F[u]) having degree at most 255.
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We will denote this unique polynomial by ϕ(u). The context will always make it clear if we
view ϕ as a permutation or as a polynomial ϕ(u) ∈ F[u].

The unique permutation polynomial ϕ(u) can be computed in the following way. If α 6= 0
then

Tα(u) := u
254∑
i=0

αiu254−i

is the unique Lagrange interpolant having the property that

Tα(β) =

{
1 if α = β,
0 otherwise.

If α = 0 then Tα(u) = u255 + 1 is the unique Lagrange interpolant. The unique polyno-
mial ϕ(u) ∈ F[u] is then readily computed using a symbolic algebra program as ϕ(u) =∑

α∈F ϕ(α)Tα(u). This computation was already done in [3, Subsection 8.5.].

The ShiftRows Transformation: In this operation the bytes of the ith row are cyclically
shifted by i positions. Algebraically this operation has a simple interpretation. For this
consider the element r = r(x, y) ∈ R described in (2.2). The ShiftRow corresponds then
simply to the transformation:

r = r(x, y) 7−→ r(xy3, y).

This then translates in the encryption algorithm to replace the monom xiyj with the monom
xiy3i+j. The inverse of the ShiftRow transformation is r = r(x, y) 7−→ r(xy, y) which trans-
lates into the replacement of xiyj with the monom xiyi+j.

The MixColumns Transformation: In this transformation each column rj =
∑3

i=0 ri,jx
i

is multiplied by the element γ.

Add Round Key: In this step the t-th round key k(t) is added.

The schedule of operation is as follows: In the ‘zero round’ the round key k(0) is simply
added. In rounds 1-9 do the operations ‘S-Box’, ‘ShiftRow’, ‘MixColumn’ and ‘Add Round
Key’. In the 10th round do only ‘S-Box’, ‘ShiftRow’ and ‘Add Round Key’. We have given
the algebraic description for this schedule.

3.1 AES-192 and AES-256

Until now we described Rijndael when the key size and the message size have 128 bits. This
system is referred to as AES-128. In the original description [3] one had the possibility to
vary both the size of the message blocks and the size of the secret keys.

In the adopted standard [1] the size of the message blocks are always taken to be 128
bits. In AES-192 and in AES-256 the secret key size consists of 192 respectively 256 bits.
In order to run these presumably more secure algorithms it will be necessary to change the
key expansion schedule of the last section. In AES-192 13 elements k(t) ∈ R, t = 0, . . . , 12
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are computed from the original 192 bits and the Rijndael algorithm runs over 12 rounds. In
AES-256 15 elements k(t) ∈ R, t = 0, . . . , 14 are computed from the original 256 bits and
the Rijndael algorithm runs over 14 rounds. Other than this there seems to be no difference
and details can be found in [1, 4].

4 The Structure of the S-Box

Except for the transformation of the S-Box all transformations are Z2 linear. An under-
standing of the S-Box is therefore most crucial.

The permutation ϕ is the composition of the maps ϕ1, L and ϕ3. We will describe the
permutation polynomial for each of them.

The permutation polynomial for the map ϕ1 is simply given by ϕ1(u) = u254.
The permutation L is a Z2 linear map. Because of this reason there is a unique linearized

polynomial (see [8, Chapter 3]) L(u) =
∑7

i=0 λiu
2i ∈ F[u] such that

L(f) = L(f)

for all f ∈ F. If α1, . . . , α8 is any basis of F over the prime field Z2 then it is possible to
compute the coefficients λ0, λ1, . . . , λ7 through the linear equations:

L(αj) =
7∑

i=0

λiα
2i

j = L(αj), j = 1, . . . , 8.

This system of linear equations can be solved explicitly. For this let β1, . . . , β8 be the
dual basis (see e.g. [8, Chapter 3]) of α1, . . . , α8 characterized through the requirement:

TrF/Z2(αiβj) =

{
1 if i = j,
0 if i 6= j.

Introduce the matrices:

A :=


α1 α2

1 α4
1 . . . α27

1

α2 α2
2 α4

2 . . . α27

2
...

...
...

α8 α2
8 α4

8 . . . α27

8

 B :=


β1 β2 . . . β8

β2
1 β2

2 . . . β2
8

β4
1 β4

2 . . . β4
8

...
...

...

β27

1 β27

2 . . . β27
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Assuming that β1, . . . , β8 is the dual basis of α1, . . . , α8 simply means that AB = I8.

Let S be the change of basis transformation such that
α1

α2
...
α8

 = S


1
z
...
z7
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and consider the matrix

L :=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


which describes the linear map introduced in (3.2) with respect to the polynomial basis
1, z, z2, . . . , z7. Then one has:

Lemma 4.1 The coefficients λ0, λ1, . . . , λ7 of the permutation polynomial L(u) are given as:
λ0

λ1
...
λ7

 = BSLtS−1


α1

α2
...
α8

 . (4.1)

Proof: SLtS−1 describes the change of basis of the linear map L with regard to the basis
α1, . . . , α8.

In order to explicitly compute the coefficients λ0, λ1, . . . , λ7 we can work with the poly-
nomial basis 1, z, z2, . . . , z7 (in which case S = I8). Alternatively we can work with a normal
basis. We explain the computation for a normal basis. Let

α := z5 + 1 ∈ F.

One verifies with a computer program such as Maple that α is a primitive element of F and
that {αi := α2i−1 | i = 1, . . . , 8} forms a normal basis. Such bases are called primitive normal
bases. α is special in the sense that it is the first element of F with respect to lexicographic
order which is both a primitive and the generator of a normal basis.

The dual basis of {α1, . . . , α8} is readily computed using Maple as {βj := β2j−1 | j =
1, . . . , 8}, where β = z5 + z4 + z2 + 1. It is a well known fact that the dual basis of a normal
basis is normal as well. The change of basis transformation is computed in this case as:

S =



1 0 0 0 0 1 0 0
1 0 1 1 0 1 1 0
0 1 1 0 1 0 0 1
1 0 1 0 1 0 0 1
0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1
1 1 0 1 1 0 0 1
0 0 1 0 0 0 1 1


.
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With this one readily computes:


λ0

λ1
...
λ7

 = BSLtS−1


α
α2

...

α27

 =



z2 + 1
z3 + 1

z7 + z6 + z5 + z4 + z3 + 1
z5 + z2 + 1

z7 + z6 + z5 + z4 + z2

1
z7 + z5 + z4 + z2 + 1
z7 + z3 + z2 + z + 1


. (4.2)

The elements λi already agree with the non-constant coefficients of ϕ introduced in (2.3) up
to order. In order to get the exact form we need a polynomial description of the permutation
ϕ3 introduced in (3.3). Clearly the linear polynomial ϕ3(u) := u + 1 + z + z5 + z6 ∈ F[u]
interpolates the affine map ϕ3.

Concatenating the three polynomial maps we get:

ϕ(u) = ϕ3 ◦ L ◦ ϕ1(u) = 1 + z + z5 + z6 + L(u254) mod u256 + u.

Note that L has at most 8 nonzero coefficients. Reducing L(u254) by the relation u256 = u
will not change this and this explains the sparsity of the polynomial ϕ(u).

The fact that the permutation polynomial ϕ(u) is sparse does not imply that the inverse
polynomial ψ(u) is sparse. For this note,

ψ(u) = ϕ−1
1 ◦ L−1 ◦ ϕ−1

3 (u) mod u256 + u.

As before, the coefficients of the polynomial L−1(u) are computed from:

BS(L−1)tS−1


α
α2

...

α27

 . (4.3)

Using Maple we find:

L−1(u) =
(
z6 + z5 + z3 + z2 + z

)
u128 +

(
z7 + z6 + z4 + z3 + z + 1

)
u64

+
(
z6 + z4 + z3 + 1

)
u32 +

(
z6 + z5 + z4 + z3

)
u16

+
(
z6 + z4 + z3 + z

)
u8 +

(
z6 + z5 + z4 + z3 + z2 + z + 1

)
u4

+
(
z7 + z6 + z5 + z4 + z3 + z2 + z

)
u2 +

(
z2 + 1

)
u ∈ F[u]. (4.4)

Combining the result with the map ϕ−1
3 (u) one gets:

ρ(u) := L−1ϕ−1
3 (u) = L−1(u+ ϕ3(0)) = L−1(u) + L−1(ϕ3(0)) = L−1(u) + z2 + 1. (4.5)

A polynomial of the form ρ(u) is sometimes called an affine polynomial [8] reflecting the
fact that the map L−1ϕ−1

3 is affine linear over Z2.
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Concatenating ρ(u) with the polynomial ϕ−1
1 (u) = ϕ1(u) = u254 results in a non-sparse

polynomial ψ(u) = ρ(u)254 mod u256 + u. For completeness we provide the result of the
Maple computation. The coefficients are expressed in terms of the primitive α = z5 + 1.

ψ(u) = α163u254 + α76u253 + α195u252 + α186u251 + α234u250 + α194u249 + α248u248 + α255u247

+ α196u246 + α100u245 + α216u244 + α212u243 + α47u242 + α17u241 + α85u240 + α103u239 + α201u238

+ α184u237 + α235u236 + α215u235 + α170u234 + α74u233 + α15u232 + α2u231 + α185u230 + α89u229 + α26u228

+α231u227 +α137u226 +α110u225 +α230u224 +α20u223 +α126u222 +α35u221 +α117u220 +α48u219 +α141u218

+ α56u217 + α29u216 + α154u215 + α207u214 + α175u213 + α253u212 + α147u211 + α5u210 + α43u209 + α194u208

+α242u207 +α202u206 +α27u205 +α15u204 +α164u203 +α11u202 +α233u201 +α56u200 +α121u199 +α163u198

+ α69u197 + α113u196 + α235u195 + α225u194 + α152u193 + α227u192 + α9u191 + α78u190 + α234u189 + α57u188

+α136u187 +α115u186 +α128u185 +α57u184 +α223u183 +α228u182 +α110u181 +α249u180 +α83u179 +α55u178

+ α55u177 + α32u176 + α94u175 + α71u174 + α88u173 + α94u172 + α45u171 + α218u170 + α157u169 + α73u168

+α209u167 +α21u166 +α122u165 +α127u164 +α206u163 +α19u162 +α189u161 +α89u160 +α177u159 +α192u158

+ α211u157 + α99u156 + α195u155 + α14u154 + α172u153 + α67u152 + α136u151 + α6u150 + α122u149 + α102u148

+α198u147 +α14u146 +α130u145 +α102u144 +α129u143 +α246u142 +α187u141 +α85u140 +α181u139 +α169u138

+α230u137 +α21u136 +α234u135 +α138u134 +α104u133 +α26u132 +α229u131 +α177u130 +α168u129 +α245u128

+α13u127 +α142u126 +α96u125 +α240u124 +α224u123 +α32u122 +α228u121 +α68u120 +α125u119 +α147u118

+ α19u117 + α78u116 + α51u115 + α114u114 + α87u113 + α120u112 + α5u111 + α209u110 + α51u109 + α39u108

+ α47u107 + α109u106 + α159u105 + α203u104 + α202u103 + α9u102 + α238u101 + α44u100 + α188u99 + α234u98

+α59u97 +α15u96 +α131u95 +α173u94 +α135u93 +α244u92 +α216u91 +α50u90 +α218u89 +α250u88 +α108u87

+α192u86 +α45u85 +α53u84 +α186u83 +α92u82 +α74u81 +α157u80 +α172u79 +α99u78 +α209u77 +α236u76

+α212u75 +α44u74 +α209u73 +α175u72 +α101u71 +α41u70 +α51u69 +α163u68 +α183u67 +α245u66 +α169u65

+ α58u64 + α5u63 + α68u62 + α63u61 + α202u60 + α138u59 + α204u58 + α109u57 + α173u56 + α214u55 + α61u54

+α255u53 +α185u52 +α249u51 +α153u50 +α143u49 +α206u48 +α163u47 +α43u46 +α202u45 +α156u44 +α70u43

+ α2u42 + α45u41 + α81u40 + α43u39 + α121u38 + α90u37 + α101u36 + α252u35 + α42u34 + α176u33 + α201u32

+ α22u31 + α135u30 + α250u29 + α176u28 + α76u27 + α90u26 + α247u25 + α220u24 + α123u23 + α76u22 + αu21

+α180u20 +α108u19 +α222u18 +α54u17 +α46u16 +α89u15 +α240u14 +α235u13 +α208u12 +α194u11 +α2u10

+ α201u9 + α67u8 + α247u7 + α56u6 + α132u5 + α16u4 + α242u3 + α223u2 + α243u+ α92

Other than the fact that ψ(u) = ρ(u)254 mod u256 + u the author did not observe some
regularity in the coefficients of ψ(u). The complicated algebraic structure of the inverse S-Box
shows that an algebraic attack on Rijndael which tries to recursively solve the decryption
equations might be very hard indeed. Since ϕ(u) is much more sparse it might be more
feasible to derive algebraic expressions of several rounds of the encryption schedule.

Ferguson, Schroeppel and Whiting [6] show a way to describe multiple rounds of the
Rijndael algorithm using some continued fraction expansion. The derived formulas look very
appealing. It is however not clear if there is any way to solve these formulas by algebraic
means. Although algebraic expressions for several rounds of Rijndael were derived it is our
belief that a compact polynomial description of several rounds of Rijndael will result in an
explosion of the variables. Further research on this question will be needed.
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In the last part of this section we provide the cycle decomposition for the permutation of
the S-Box. For this let α = z5 + 1. We describe the cycles [β, ϕ(β), ϕ(ϕ(β)), . . .] expressed
in terms of the primitive α:

[α, α113, α139, α115, α211, α233, α45, α150, α25, α6, α96, α133, α138, α80, α184, α130, α119, α116, α222, α164,

α79, α114, α9, α165, α160, α98, α81, α131, α215, α181, α200, α125, α143, α41, α179, α202, α157, α70, α146,

α92, 0, α210, α232, α117, α11, α192, α72, α185, α212, α21, α105, α163, α216, α78, α48, α174, α198, α209, α176, α]

[α2, α112, α37, α161, α242, α50, α240, α26, α0, α42, α245, α168, α10, α228, α229, α251, α29, α76, α247, α223, α243,

α17, α49, α197, α225, α3, α104, α106, α55, α32, α204, α203, α132, α206, α19, α226, α107, α84, α152, α231, α142,

α159, α140, α110, α162, α170, α248, α127, α82, α148, α180, α151, α31, α88, α227, α237, α85, α43, α95, α218, α71, α177,

α121, α65, α188, α186, α77, α23, α187, α238, α167, α52, α145, α136, α149, α147, α123, α224, α20, α134, α195, α2]

[α4, α16, α69, α7, α62, α34, α183, α172, α208, α129, α220, α91, α230, α153, α87, α102, α234, α93, α51, α73,

α155, α196, α253, α124, α101, α66, α235, α252, α193, α18, α94, α90, α144, α83, α5, α47, α194, α244, α118,

α173, α120, α199, α250, α63, α156, α109, α221, α30, α86, α46, α126, α56, α44, α249, α33, α24, α201, α205, α191,

α128, α67, α219, α239, α15, α217, α103, α141, α169, α241, α214, α59, α154, α207, α175, α178,

α36, α97, α13, α28, α12, α74, α182, α8, α14, α58, α108, α75, α4]

[α22, α135, α64, α158, α190, α189, α100, α40, α60, α39, α99, α61, α111, α166, α213, α27,

α89, α246, α171, α137, α122, α254, α35, α57, α53, α236, α68, α22]
[α38, α54, α38]

It follows that ϕ has cycle lengths 59, 81, 87, 27 and 2 and order

lcm (59, 81, 87, 27, 2) = 277, 182

confirming the result given by Lenstra [7]. We would like to remark that the largest order
an element of the symmetric group of 256 elements can have is 451,129,701,092,070. In
comparison to this the order of ϕ is not very large.

5 Conclusion

In this paper we provided a description of the Advanced Encryption Standard Rijndael which
involved a series of polynomial transformations in a finite ring R. Special attention was given
to derive the permutation polynomials describing the S-Box and the inverse S-Box of the
Rijndael system.
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