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Abstract— Pseudocodewords of q-ary LDPC codes are exam-
ined and the weight of a pseudocodeword on the q-ary symmetric
channel is defined. The weight definition of a pseudocodeword
on the AWGN channel is also extended to two-dimensional q-ary
modulation such as q-PAM and q-PSK. The tree-based lower
bounds on the minimum pseudocodeword weight are shown to
also hold for q-ary LDPC codes on these channels.

I. INTRODUCTION

Low density parity check (LDPC) codes have been shown
to achieve near-capacity performance over several communica-
tion channels. Typically, they are binary linear codes described
by sparse, randomly, generated parity-check matrices. In [3]
and [4], the performance of non-binary LDPC codes, defined
over larger finite fields and over integer rings, is investigated
and compared with that of binary LDPC codes. For several
applications such as coded-modulation, codes over higher al-
phabets are more appropriate for system design. The popularity
of LDPC codes is due to their efficient and simple decoding.
Graph-based message passing iterative decoders have been
shown to achieve near-capacity performance with complexity
only linear in the length of the code. However, these iterative
decoders are sub-optimal and discrepancies between iterative
and maximum-likelihood (ML) decoding performance of short
to moderate block length binary LDPC codes has been at-
tributed to the presence of pseudocodewords of the LDPC
constraint graphs (or, Tanner graphs) [8]. Analogous to the role
of minimum Hamming distance, dmin, in ML-decoding, the
minimum pseudocodeword weight, wmin, has been shown to
be a leading predictor of performance in iterative decoding [8].
Furthermore, it has been observed that pseudocodewords with
weight wmin < dmin are especially problematic for iterative
decoding [6]. In this paper, we define pseudocodeword weights
for q-ary LDPC codes when the channel is a AWGN channel
or a q-ary symmetric channel and obtain lower bounds for the
minimum pseudocodeword weight.

The following section shows a tree-based lower bound on
the minimum pseudocodeword weight of binary LDPC codes.
In Section III, the pseudocodeword weight of q-ary LDPC
codes is defined for the AWGN and the q-ary symmetric
channels. Subsequently, the tree-based lower bound for binary
LDPC codes is extended to the q-ary setting. We note here
that we restrict our analysis to pseudocodewords arising from

finite-degree graph covers as described in [8]. Since these
pseudocodewords are the same as those occurring in the con-
text of linear programming (LP) decoding, the results obtained
here are applicable to pseudocodewords of LP decoding as
well. Section IV summarizes the paper and outlines some
other techniques that are being investigated for bounding the
pseudocodeword weight of q-ary LDPC codes.

II. BINARY LDPC CODES

Definition 2.1: The tree bound of a d left (variable node)
regular bipartite LDPC constraint graph with girth g is defined
as

T (d, g) :=

{
1 + d + d(d − 1) + d(d − 1)2 + . . . + d(d − 1)

g−6
4 ,

g
2 odd ,

1 + d + d(d − 1) + . . . + d(d − 1)
g−8
4 + (d − 1)

g−4
4 ,

g
2 even .

(1)

Theorem 2.1: Let G be a bipartite LDPC constraint graph
with smallest left (variable node) degree d and girth g. Then
the minimum pseudocodeword weight wmin is lower bounded
by

wmin ≥ T (d, g).

on the additive white Gaussian noise (AWGN) channel and the
binary symmetric channel (BSC).

The proof of this result is presented in [6]. The tree bound
was originally derived by Tanner in [10] to lower-bound the
minimum distance of the code. Since the set of pseudocode-
words includes all codewords, we have wmin ≤ dmin.

III. NON-BINARY LDPC CODES

Let H be a parity check matrix representing a q-ary LDPC
code C. Thus, H is sparse in the number of non-zero entries.
The corresponding LDPC constraint graph G that represents H
is an incidence graph of the parity check matrix as in the binary
case. However, each edge of G is now assigned a weight which
is the value of the corresponding non-zero entry in H . (In [3],
[2], LDPC codes over GF (q) are considered for transmission
over binary modulated channels, whereas in [4], LDPC codes
over integer rings are considered for higher-order modulation
signal sets.) For convenience, we consider the special case
wherein each of these edge weights are equal to one. This is
the case when the parity check matrix has only zeros and ones.
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Furthermore, whenever the LDPC graphs have edge weights
of unity for all the edges, we refer to such a graph as a binary
LDPC constraint graph representing a q-ary LDPC code C.

A. Bound on minimum distance

We first show that if the LDPC graph corresponding to H
is d-left (variable-node) regular, then the same tree bound of
Theorem 2.1 holds. That is,

Lemma 3.1: If G is a d-left regular bipartite LDPC con-
straint graph with unity edge weights, girth g, and represents
a q-ary LDPC code C. Then the minimum distance of the q-ary
LDPC code C is lower bounded as

dmin ≥ T (d, g).

Proof: The proof is essentially the same as in the binary
case. Enumerate the graph as a tree starting at an arbitrary
variable node. Furthermore, assume that a codeword in C
contains the root node in its support. The root variable node
(at layer L0 of the tree) connects to d constraint nodes in the
next layer (layer L1) of the tree. These constraint nodes are
each connected to some sets of variable nodes in layer L2, and
so on. Since the graph has girth g, the nodes enumerated up to
layer L g−2

2
when g

2 is odd (respectively, L g
2

when g
2 is even)

are all distinct. Since the root node belongs to a codeword,
say c, it assumes a non-zero value in c. Since the constraints
must be satisfied at the nodes in layer L1, at least one node in
Layer L2 for each constraint node in L1 must assume a non-
zero value in c. (This is true under the assumption that an edge
weight times a (non-zero) value, assigned to the corresponding
variable node, is non-zero in the code alphabet.)

Under the above assumption, there are at least d variable
nodes (i.e., at least one for each node in layer L1) in layer L2

that are non-zero in c. Continuing this argument, it is easy to
see that the number of non-zero components in c is at least
1 + d + d(d − 1) + . . . + d(d − 1)

g−6
4 when g

2 is odd, and
1 + d + d(d − 1) + . . . + d(d − 1)

g−8
4 + (d − 1)

g−4
4 when g

2
is even. This proves the desired lower bound.

Remark 3.1: A non-zero edge-weight times a (non-zero)
value, assigned to the corresponding variable node, may be
zero in certain code alphabets. Since we have chosen the edge
weights to be unity, such a case will not arise here. But also
more generally, such cases will not arise when the alphabet and
the arithmetic operations correspond to finite-field operations.
However, when working over other structures, such as finite
integer rings and more general groups, such cases could arise.

We note here that in general this lower bound is not met
and typically q-ary LDPC codes that have the above graph
representation have minimum distances larger than the above
lower bound.

B. Pseudocodewords of q-ary LDPC codes

Recall from [8], [6] that a pseudocodeword of an LDPC
constraint graph G is a valid codeword in some finite cover

(q−1)

ε

1− ε

(q−1)

ε

(q−1)

ε

(q−1)

ε

1− ε
0

1

2

q−1

output

q−1

2

1

0

input

Fig. 1. A q-ary symmetric channel.

of G. To define a pseudocodeword for a q-ary LDPC code,
we will restrict the discussion to LDPC constraint graphs that
have edge weights of unity among all their edges – in other
words, binary LDPC constraint graphs that represent q-ary
LDPC codes. A finite cover of a graph is defined in a natural
way as in [8] wherein all edges in the finite cover also have
an edge weight of unity. For the rest of this section, let G be
a LDPC constraint graph of a q-ary LDPC code C of block
length n, and let the weights on every edge of G be unity.
We define a pseudocodeword F of G as a n× q matrix of the
form

F =

⎡
⎢⎢⎢⎣

f0,0 f0,1 f0,2 . . . f0,q−1

f1,0 f1,1 f1,2 . . . f1,q−1

...
...

...
...

...
fn−1,0 fn−1,1 fn−1,2 . . . fn−1,q−1

⎤
⎥⎥⎥⎦ ,

where the pseudocodeword F forms a valid codeword ĉ in a
finite cover Ĝ of G and fi,j is the fraction of variable nodes
in the ith variable node cloud, for 0 ≤ i ≤ n − 1, of Ĝ that
have the assignment (or, value) equal to j, for 0 ≤ j ≤ q − 1,
in ĉ.

A q-ary symmetric channel is shown in Figure 1. The input
and the output of the channel are random variables belonging
to a q-ary alphabet that can be denoted as {0, 1, 2, . . . , q−1}.
An error occurs with probability ε, which is parameterized by
the channel, and in the case of an error, it is equally probable
for an input symbol to be altered to any one of the remaining
symbols.

Following the definition of pseudocodeword weight for
the binary symmetric channel [5], we provide the following
definition for the weight of a pseudocodeword on the q-
ary symmetric channel. For a pseudocodeword F , let F ′

be the sub-matrix obtained by removing the first column
in F . (Note that the first column in F contains the entries
f0,0, f1,0, f2,0, . . . , fn−1,0.) Then the weight of a pseudocode-
word F on the q-ary symmetric channel is defined as follows.
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Definition 3.1: Let e be the smallest number such that
the sum of the e largest components in the matrix F ′, say,
fi1,j1 , fi2,j2 , . . . , fie,je , exceeds

∑
i�=i1,i2,...,ie

(1− fi,0). Then
the weight of F on the q-ary symmetric channel is defined as

wqSC (F ) =

{
2e, if fi1,j1 + . . . + fie,je

=
∑

i�=i1,i2,...,ie
(1 − fi,0),

2e − 1, if fi1,j1 + . . . + fie,je
>

∑
i�=i1,i2,...,ie

(1 − fi,0).

Note that in the above definition, none of the jk’s, for
k = 1, 2, . . . , e, are equal to zero, and all the ik’s, for
k = 1, 2, . . . , e, are distinct. That is, we choose at most
one component from every row of F ′ when choosing the e
largest components. The following sub-section provides an
explanation for the above definition of weight.

C. PSEUDOCODEWORD WEIGHT FOR q-ARY LDPC CODES

ON THE q-ARY SYMMETRIC CHANNEL

Suppose the all-zero codeword is sent across a q-ary sym-
metric channel and the vector r = (r0, r1, . . . , rn−1) is
received. Then errors occur in positions where ri �= 0. Let
S = {i| ri �= 0} and let Sc = {i| ri = 0}. The distance
between r and a pseudocodeword F is defined as

d(r, F ) =
n−1∑
i=0

q−1∑
k=0

χ(ri �= k)fi,k, (2)

where χ(P ) is an indicator function that is equal to 1 if the
proposition P is true and is equal to 0 otherwise.

The distance between r and the all-zero codeword 0 is

d(r,0) =
n−1∑
i=0

χ(ri �= 0)

which is the Hamming weight of r and can be obtained from
equation (2).

The iterative decoder chooses in favor of F instead of the
all-zero codeword 0 when d(r, F ) ≤ d(r,0). That is, if∑

i∈Sc

(1 − fi,0) +
∑
i∈S

(1 − fi,ri) ≤
∑
i∈S

1

The condition for choosing F over the all-zero codeword
reduces to { ∑

i∈Sc

(1 − fi,0) ≤
∑
i∈S

fi,ri

}

Hence, we define the weight of a pseudocodeword F in the
following manner.

Let e be the smallest number such that the sum
of the e largest components in the matrix F ′, say,
fi1,j1 , fi2,j2 , . . . , fie,je , exceeds

∑
i�=i1,i2,...,ie

(1− fi,0). Then
the weight of F on the p-ary symmetric channel is defined as

wqSC(F ) =

{
2e, if fi1,j1 + . . . + fie,je

=
∑

i�=i1,i2,...,ie
(1 − fi,0)

2e − 1, if fi1,j1 + . . . + fie,je
>

∑
i�=i1,i2,...,ie

(1 − fi,0)

Note that in the above definition, none of the jk’s, for
k = 1, 2, . . . , e, are equal to zero, and all the ik’s, for
k = 1, 2, . . . , e, are distinct. That is, we choose at most one
component in every row of F ′ when picking the e largest
components. The received vector r = (r0, r1, . . . , rn−1) that

has the following components: ri1 = j1, ri2 = j2, . . . , rie =
je, ri = 0, for i /∈ {i1, i2, . . . , ie}, will cause the decoder to
make an error and choose F over the all-zero codeword.

Observe that for a codeword, the above weight definition
reduces to the Hamming weight. If F represents a codeword
c, then exactly w = wtH(c), the Hamming weight of c, rows
in F ′ contain the entry 1 in some column, and the remaining
entries in F ′ are zero. Furthermore, the matrix F has the entry
0 in the first column of these w rows and has the entry 1 in
the first column of the remaining rows. Therefore, from the
weight definition of F , e = w

2 and the weight of F is 2e = w.

D. TREE BOUND ON THE q-ARY SYMMETRIC CHANNEL

We define the q-ary minimum pseudocodeword weight of
G (or, minimum pseudoweight) as in the binary case, i.e., as
the minimum weight of a pseudocodeword among all finite
covers of G, and denote this as wmin(G) or wmin when it is
clear that we are referring to the graph G.

Theorem 3.1: Let G be a d-left regular bipartite graph
with girth g that represents a q-ary LDPC code C. Then
the minimum pseudocodeword weight wmin on the q-ary
symmetric channel is lower bounded as

wmin ≥ T (d, g)

Proof:

f0

f1 f2 fr−1

Fig. 2. Single constraint
code.

(1 − fi,0) ≤∑
j �=i(1 − fj,0)

d

d−1d−1
L 0

L 1

Root

Fig. 3. Local tree structure for a d-left regular
graph.

d(1 − f0,0) ≤
∑

j∈L0
(1 − fj,0),

d(d−1)(1−f0,0) ≤
∑

j∈L1
(1−fj,0)

:
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Case: g
2 odd. Consider a single constraint node with r

variable node neighbors as shown in Figure 2. Then, for
i = 0, 1, . . . , r − 1 and k = 0, 1, . . . , p − 1, the following
inequality holds:

(1 − fi,0) ≤
∑
j �=i

(1 − fj,0) (3)

Now let us consider a d-left regular LDPC constraint graph
representing a q-ary LDPC code. We will enumerate the LDPC
constraint graph as a tree from an arbitrary root variable node,
as shown in Figure 3. Let F be a pseudocodeword matrix for
this graph. Without loss of generality, let us assume that the
component (1 − f0,0) corresponding to the root node is the
maximum among all (1 − fi,0) over all i.

Applying the inequality in (3) at every constraint node in
first constraint node layer of the tree, we obtain

d(1 − f0,0) ≤
∑
j∈L0

(1 − fj,0),

where L0 corresponds to variable nodes in first level of the
tree. Subsequent application of the inequality in (3) to the
second layer of constraint nodes in the tree yields

d(d − 1)(1 − f0,0) ≤
∑
j∈L1

(1 − fj,0),

Continuing this process until layer L g−6
4

, we obtain

d(d − 1)
g−6
4 (1 − f0,0) ≤

∑
j∈L g−6

4

(1 − fj,0)

Since the LDPC graph has girth g, the variable nodes up to
level L g−6

4
are all distinct. The above inequalities yield:

[1 + d + d(d − 1) + . . . + d(d − 1)
g−6
4 ](1 − f0,0)

≤
∑

i∈{0}∪L0∪...L g−6
4

(1 − fi,0) ≤
∑
all i

(1 − fi,0) (4)

Let e the smallest number such that there are e maximal
components fi1,j1 , fi2,j2 , fi3,j3 , . . . , fie,je , for i1, i2, . . . , ie all
distinct and j1, j2, . . . , je ∈ {1, 2, . . . , q − 1}, in F ′ (the sub-
matrix of F excluding the first column in F ) such that

fi1,j1 + fi2,j2 + . . . + fie,je ≥
∑

i/∈{i1,i2,i3,...,ie}
(1 − fi,0)

Then, since none of the jk’s, k = 1, 2, . . . , e, are zero, we
have

(1−fi1,0)+(1−fi2,0)+ . . .+(1−fie,0) ≥ fi1,j1 + . . .+fie,je

≥
∑

i/∈{i1,i2,i3,...,ie}
(1 − fi,0)

Hence we have that

2((1 − fi1,0) + (1 − fi2,0) + . . . + (1 − fie,0))

≥
∑
all i

(1 − fi,0)

We can then lower bound this further using the inequality
in (4) as

2((1 − fi1,0) + (1 − fi2,0) + . . . + (1 − fie,0))

≥ [1 + d + d(d − 1) + . . . + d(d − 1)
g−6
4 ](1 − f0,0)

Since we assumed that (1 − f0,0) is the maximum among
(1 − fi,0) over all i, we have

2e(1− f0,0) ≥ 2((1− fi1,0) + (1− fi2,0) + . . . + (1− fie,0))

≥ [1 + d + d(d − 1) + . . . + d(d − 1)
g−6
4 ](1 − f0,0)

This yields the desired bound

wqSC(F ) = 2e ≥ 1 + d + d(d − 1) + . . . + d(d − 1)
g−6
4 .

Since the pseudocodeword F was chosen arbitrary, we also
have wmin ≥ 1 + d + d(d− 1) + . . . + d(d− 1)

g−6
4 . The case

g
2 even is treated similarly.

Since the inequality in (3), in the proof of Theorem 3.1, is
typically not tight, the above bound is rather loose.

E. PSEUDOCODEWORD WEIGHT ON THE AWGN CHANNEL

Following the definition of effective distance d2
eff (F, c),

between a pseudocodeword F and a codeword c on the AWGN
channel, presented in [5], the weight of a pseudocodeword F
is given by d2

eff (F,0). On simplifying the expression in [5],
the weight of pseudocodeword F on the AWGN channel is
given by

wq−AWGN (F ) =
(
∑n−1

i=0

∑q−1
m=0 fi,mm2)2∑n−1

i=0 (
∑q−1

m=0 fi,mm)2
(∗)

The above weight definition assumes q-ary pulse amplitude
modulation, i.e., the symbols sent across the channel belong
to the signal set {0, 1, 2, . . . , q − 1}.

Now if we assume a two-dimensional signal set for trans-
mission on the memoryless AWGN channel, then under the as-
sumption that the resulting signal-space code is geometrically
uniform [11], we can derive the weight of a pseudocodeword
F as the effective distance of F from the all-zero codeword
in signal space. The pseudocodeword weight of F is given by

wq−AWGN (F ) =
(R − M)2

V
,

where (xm, ym) is the coordinate in the two-dimensional
signal set corresponding to the symbol m ∈ {0, 1, . . . , q− 1},

R =
∑

j

[
∑
m

fj,m(x2
m + y2

m) − x2
0 − y2

0 ],

M = 2
∑

j

[(
∑
m

fj,mxmx0) − x2
0 + (

∑
m

fj,mymy0) − y2
0 ],

V = 4
∑

j

[((
∑
m

fj,mxm)−x0)2 +
∑

j

((
∑
m

fj,mym)− y0)2],
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and j ∈ {0, . . . n − 1}.
Note that for q-ary pulse amplitude modulation as described

above, this weight definition reduces to the one in (∗).
Suppose we assume q-PSK modulation, then we have xm =

cos(2πm
q ) and ym = sin(2πm

q ). Note that x0 = cos(0) = 1
and y0 = sin(0) = 0. In addition, R = 0. Therefore, the
weight of a pseudocodeword F on the AWGN channel under
q-PSK modulation is given by: wq−AWGN (F ) = M2

V , where

M = 2
∑

j

((
∑

m

fj,m cos(
2πm

q
)) − 1)

V = 4

∑
j

[∑
m

f
2
j,m + 2(

∑
m,m′;m �=m′

fj,mfj,m′ (cos(
2π(m − m′)

q
)))

−2

∑
m

fj,m cos(
2πm

q
) + 1

]
.

F. TREE-BOUND OF q-ARY LDPC CODES ON THE AWGN
CHANNEL UNDER q-PAM

Theorem 3.2 (q-ary pulse amplitude modulation): Let G
be a d-left regular bipartite graph with girth g that represents
a q-ary LDPC code C. Then the minimum pseudocodeword
weight wmin on the AWGN channel is lower bounded as

wmin ≥ T (d, g).

(Note that we assume a slightly unconventional definition
of q-ary PAM in that the symbol m is mapped to the point m
rather than to the point 2m−1 as in the conventional definition,
for m ∈ {0, 1, 2, . . . , q − 1}.)

Proof: Let F be a pseudocodeword in G. Without loss
of generality, let (1−f0,0) be the maximum of (1−f0,i) over
all i. We will first lower bound the weight wq−AWGN (F ) as

wq−AWGN (F ) =
(
∑n−1

i=0

∑q−1
m=0 fi,mm2)2∑n−1

i=0 (
∑q−1

m=0 fi,mm)2

≥ (
∑n−1

i=0

∑q−1
m=0 fi,mm2)

1 − f0,0
(∗∗)

This lower bound is obtained by showing that the denomi-
nator in the weight expression can be upper bounded by using
the Cauchy-Schwartz inequality as follows

n−1∑
i=0

(
q−1∑
m=0

fi,mm)2

≤ (
n−1∑
i=0

(fi,1 + fi,2 + . . . + fi,q−1))(
n−1∑
i=0

q−1∑
m=0

fi,mm2).

Further, since fi,1 + fi,2 + . . . + fi,q−1 = 1− fi,0 ≤ 1− f0,0,
we obtain the lower bound in (∗∗).

Since
∑n−1

i=0

∑q−1
m=0 fi,mm2 ≥ ∑n−1

i=0 (fi,1+ . . .+fi,q−1) =∑n−1
i=0 (1 − fi,0), we have

wq−AWGN (F ) ≥
∑n−1

i=0 (1 − fi,0)
1 − f0,0

Now, the inequality (4) from the proof of Theorem 3.1 yields
the desired lower bound wq−AWGN (F ) ≥ 1 + d + d(d− 1)+
. . . + d(d − 1)

g−6
4 for the case g/2 odd. (The case g/2 even

follows similarly.)

IV. CONCLUSIONS

This paper examined the pseudocodeword weight of q-
ary LDPC codes on the q-ary symmetric channel and the
AWGN channel. A definition for the pseudocodeword weight
was derived on the q-ary symmetric channel and the AWGN
channel with two-dimensional q-ary modulation. The tree
bound from [6] for binary LDPC codes was extended to
the q-ary case. More sophisticated bounding techniques for
the pseudocodeword weight of q-ary LDPC codes remains
an open problem. It would be useful to also derive a cost-
function of the min-sum decoder for q-ary LDPC codes to
give an insight into which pseudocodewords are problematic
for iterative decoding.
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