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Abstract— For a wireless communication system with
multiple transmit and receive antennas, the problem
of designing a good performing constellation (namely
a constellation with a large diversity) can be converted
into a packing problem in a complex Stiefel manifold.
In this paper we propose suitable algebraic structures
to obtain good packings in a complex Stiefel manifold
by numerical methods. The presented design methods
work for any dimension and any cardinality of the
constellations. The paper summarizes the main results
obtained in [7], [8].

Keywords— Space time codes, complex Stiefel mani-
fold.

I. INTRODUCTION

Some 10 years ago it has been recognized that mul-
tiple transmit and/or receive antennas can drastically
increase the transmission rate on a wireless channel.
As a consequence signals have not only to be spread
over time but also over space and this explains the
term space time coding.

After some normalization a codeword consists of
a collection of n unitary vectors which are pairwise
perpendicular, i.e. a point in a complex Stiefel man-
ifold. Crucial for the design of space time codes are
the diversity product and the diversity sum which we
will define in a moment. Codes perform well if the
diversity sum and diversity product of the code is
large.

In this paper we report on progress recently found
by the authors on how to derive tight upper bounds
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on the diversity by differential geometric means. The
presented upper bound was derived in [8]. We also
show how to derive lower bounds on the diversity by
numerical methods. The main references for this part
of the paper are [5], [6], [7].

Consider a wireless communication system with n
transmit antennas and N receive antennas operating
in a Rayleigh flat-fading channel. We assume time is
discrete and at each time slot, signals are transmitted
simultaneously from the n transmit antennas. We can
further assume that the wireless channel is static over
a time block of length τ . In this context, a codeword
can be represented by a τ × n unitary matrix, i.e., a
point in the complex Stiefel manifold. A unitary space
time constellation V := {Φ1, . . . ,Φm} consists of m
complex matrices having size τ×n and satisfying τ ≥
n and Φ∗

kΦk = In. The scaled matrices
√

τΦk, k =
1, 2, · · · , m, represent the code words used during the
transmission. A fundamental problem for this setting
is to design a good performing constellation. There
exist two important design criteria for unitary space
time constellations: The diversity product (DP) and
The diversity sum (DS).

Definition 1: (See [12]) The diversity product of a
unitary constellation V is defined as

∏
V = min

l �=l′

(
n∏

i=1

(1 − δi(Φ∗
l Φl′)2)

) 1
2n

,

where δi(·) denote the i-th singular value of a matrix.
An important special case occurs when τ = 2n. In

this situation it is customary to represent all unitary
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matrices Φk in the form:

Φk =
√

2
2

(
I

Ψk

)
. (1)

Since the columns of Φk are pairwise perpendicular
and have norm 1 it follows that the matrices Ψk are
n × n unitary matrices. In terms of unitary matrices
the diversity product as defined in Definition 1 has
the form: ∏

V =
1
2

min
l �=l′

|det(Ψl − Ψl′)|
1
n . (2)

A constellation V is called fully diverse constel-
lation if

∏V > 0. Many authors tried to construct
constellations with a large diversity product. (See
e.g. [12], [15], [6], [5], [20], [19], [21]). For the
particular situation τ = 2n with special form (1)
the design asks for the construction of a discrete
subset V = {Ψ1, . . . ,Ψm} of the set of n × n
unitary matrices U(n). One interesting special case
happens when this discrete subset has the structure
of a discrete subgroup of U(n). The condition that V
is fully diverse is then equivalent to the condition that
the identity matrix is the only element of V having
an eigenvalue of 1. In terms of geometry this means
that the constellation V operates fixed point free on
the vector space C

n. Shokrollahi et al. [19], [20]
were able to study the complete list of fully diverse
finite group constellations inside the unitary group
U(n) using a classical classification result of fixed
point free unitary representations by Zassenhaus [23].
Some of these constellations have the best known
diversity product for given fixed parameters n, N, m.
Unfortunately group constellations do not exist for
many set of parameters and new methods are needed
if one wants to construct constellations with near
optimal diversity product.

Definition 2: The diversity sum of a unitary con-
stellation V is defined as

∑
V = min

l �=l′

√
1 − ‖Φ∗

l Φl′‖2
F

n
,

where ‖ · ‖ denote the Frobenius norm of a matrix.
Again one has the important special case where

τ = 2n and the matrices Φk take the special form (1).
For the form (1) the diversity sum assumes the
following simple form:∑

V = min
l,l′

1
2
√

n
‖Ψl − Ψl′‖F . (3)

Without mentioning the term the concept of diversity
sum was used in [11]. Liang and Xia [15, p. 2295] ex-
plicitly defined the diversity sum in the situation when
τ = 2n using equation (3). Definition 2 naturally
generalizes the definition to arbitrary constellations.

From arguments above, one sees that designing a
constellation with a large diversity (DP or DS) is
equivalent to finding good packings in a complex
Stiefel manifold under a suitable distance measure.

The paper is structured as follows.
In the next section we derive an upper bound for

the diversity sum as it has been derived in [8].
In Section III we parameterize constellations which

will be efficient for numerical search algorithms. For
this purpose we introduce the concept of a weak
group structure and we classify all weak group struc-
tures whose elements are normal and positive. We
follow in Section III the ideas as developed by the
authors in [7].

Section IV contains the main result of this paper.
We investigate an algebraic structure which led to
some of the best constellations which we were able
to derive. We explain a general method on how one
can efficiently design excellent constellations for any
set of parameters n, N, τ, m. For this we review the
Cayley transform. We conclude this section with an
extensive table where we publish a large set of codes
having some of the best diversity sums and diversity
products in their parameter range.

II. AN UPPER BOUND FOR THE DIVERSITY

In a recent paper Henkel [10] gives upper bounds
on the the diversity of a space time constellation (i.e.,
upper bounds on the minimal “distance” between
certain points in a complex Stiefel manifold).

For the special setting when τ = 2n and the
diversity sum and product are given by formulas (3)
and (2), we analyzed the geometry of U(n) in [8].
This led to new tight upper bounds. We start with a
simple lemma.

Lemma 3: When τ = 2n then for any unitary
space time code V ,∏

V ≤
∑

V.

Definition 4: Let ∆(n, m) be the infimum of all
numbers such that for every unitary space time code
V of dimension n and size m, one has∑

V ≤ ∆(n, m).
Remark 5: As pointed by Liang and Xia [15] there

exists a constellation V of dimension n and size m
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with
∑V = ∆(n, m). This is due to the fact that

U(n)m is a compact manifold.
The exact values of ∆(n, m) are only known in

very few special cases. In the case n = 1, one checks
that ∆(1, m) = sin π

m for m ≥ 2. When n ≥ 2 and
m = 3, one has ∆(n, 3) =

√
3

2 . When m = 2, we
have ∆(n, 2) = 1 for n ≥ 2. For n = 2, the following
values in I were computed in [15].

The main theorem in [8] provides a general upper
bound for ∆(n, m). For this let

D1 = {(θ1, θ2, · · · , θn)|
− π ≤ θj < π for j = 1, 2, · · · , n},

and

D2 = {(θ1, θ2, · · · , θn)|
n∑

j=1

sin2 θj

2
≤ r2

4
}.

Theorem 6:

∆(n, m) ≤
√

r2/n − r4/(4n2),

where r is the solution to the following equation:

m

∫∫
D1∩D2

∏
j<k

|eiθj − eiθk |2dθ1dθ2 · · · dθn = (2π)nn!.

(4)

III. CONSTELLATIONS WITH ALGEBRAIC

STRUCTURE

In this section we develop geometrical and numer-
ical procedures which allow one to construct unitary
constellations with excellent diversity for any set of
parameters n, N, τ, m. We follow [7].

Consider a general constellation of square unitary
matrices,

V = {Ψ1, Ψ2, · · · , Ψm}.
In order to calculate the diversity product, one needs
to do m(m−1)

2 calculations: |det(Ψi −Ψj)| for every
different pair i, j. The same statement can be said
about the diversity sum.

If one wants to compute the distance of a linear
block code then it is enough to compute the Ham-
ming distance between every nonzero vector and the
zero vector. Something similar happens when one
wants to compute the diversity product of a group
constellation. As pointed out in [20] one needs only
to calculate m − 1 determinants having the form
|det(I − Ψi)| in order to compute the diversity
product. This is a direct consequence of

|det(Ψi − Ψj)| = |det(Ψi) det(I − Ψ∗
i Ψj)|

= |det(I − Ψ∗
i Ψj)|,

where Ψ∗
i Ψj is still in the group. Group constellations

are however very restrictive about what the alge-
braic structure is concerned, and the constellations
found by this approach [20] are really few and far
between. In the following we are going to present
some constellations which have some small number
of generators and whose diversity can be efficiently
computed. This will ensure that the total parameter
space to be searched is limited as well. We start with
an example:

Example 7: Consider the constellation

V = {AkBl|A, B ∈ U(n), k = 0, · · · , p, l = 0, · · · , q}.
(We remark that more specified constellation of this
type has been considered in [20].) The parameter
space for this constellation is U(n) × U(n), this
is a manifold of dimension 2n2 and the number
of elements in V is (p + 1)(q + 1). If one has
to compute |det(Ψi − Ψj)| for every distinct pair

this would require
(

(p + 1)(q + 1)
2

)
determinant

calculations. We will show in the following that the
same result can be obtained by doing 2pq + p + q
determinant computations.

Let Ψi and Ψj be two distinct elements having the
form Ak1Bl1 and Ak2Bl2 respectively. We have now
several cases. When k1 = k2, then necessarily l1 �= l2
and the distance is computed as

|det(Ak1Bl1 − Ak2Bl2)| = |det(I − B|l2−l1|)|,
where |l2 − l1| is an integer between 1 and q. If l1 =
l2, then we have k1 �= k2 and the distance is computed
as

|det(Ak1Bl1 − Ak2Bl2)| = |det(I − A|k2−k1|)|,
where |k2 − k1| is an integer between 1 and p. If
(k1 < k2 and l1 < l2) or (k1 > k2 and l1 > l2),
we have

|det(Ak1Bl1−Ak2Bl2)| = |det(I−A|k2−k1|B|l2−l1|),

where 1 ≤ |k2 − k1| ≤ p and 1 ≤ |l2 − l1| ≤ q.
Similarly if (k1 < k2 and l1 > l2) or (k1 >
k2 and l1 < l2) then

|det(Ak1Bl1−Ak2Bl2)| = |det(A|k2−k1|−B|l2−l1|)|,
with 1 ≤ |k2 − k1| ≤ p and 1 ≤ |l2 − l1| ≤ p. The
total number of distances to be computed is in total
equal to 2pq + p + q.
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m 2 3 4 5 6 7 8 9 10 through 16

∆(2, m) 1 1
2

√
3 1

3

√
6 1

4

√
10 1

5

√
15 1

6

√
21 1

7

√
28 1

8

√
36 1

2

√
2

TABLE I
EXACT VALUES OF ∆(n, m)

Following [7] we are going to loosen the con-
straints imposed by the group structures. As demon-
strated in Example 7 it is desirable to have a small
dimensional manifold (in Example 7 it was U(n) ×
U(n)) which parameterizes a set of potentially in-
teresting constellations. Having such a parameteriza-
tion will help to avoid the problem of “dimension
explosion”. The set of constellations parameterized
by U(n) × U(n) in Example 7 are interesting as we
are not required to compute all pairwise distances in
order to compute the diversity product (sum).

Definition 8: Let X be the set {x1, x2, · · · , xn}
and F be the free group on the set X . A subset G ⊂
U(n) is called freely generated if there are elements
{g1, g2, · · · , gn} ⊂ G such that the homomorphism
φ : F −→ G with φ(xi) = gi is an isomorphism.

An immediate consequence of this definition is that
every element in G can be uniquely written as a
product of gi’s and g−1

i ’s. The elements gi are called
the generators of G. A freely generated subset G is
simply parameterized by the set:{

ap1
1 ap2

2 · · · apk

k | ai is one of g′is, pi ∈ Z
}

.

Take an element g ∈ G with its representation
g =

∏k
i=1 api

i , we say that the presentation is reduced
whenever ai �= ai+1 for i = 1, . . . , n − 1. We say
that an element g =

∏k
i=1 api

i in reduced form is
a normal element whenever ai �= aj for i �= j. A
subset V of the freely generated set G is said to be
a normal constellation if every non-identity element
in V is normal. An element g in G with the reduced
form g =

∏k
i=1 ai

pi is said to be a positive element
if pi > 0 for i = 1, 2, · · · , k. A subset V of the freely
generated set G is said to be a positive constellation
if every non-identity element in V is positive. Positive
normal constellations are desirable for space time
constellation de

Two unitary matrices A, B ∈ G are said to be
equivalent (denote by A ∼ B) if there is unitary
matrix U ∈ G such that A = UBU−1 or A =
UB−1U−1. [A] will denote all the matrices that are
equivalent to A. For a constellation V ⊂ G, we say
V = {Ψ1, Ψ2, · · · , Ψm} has a weak group structure

if for any two distinct elements Ψi, Ψj the product
Ψ−1

i Ψj is equivalent to some Ψk.
Note also that V has a group structure as soon

as Ψ−1
i Ψj is always another element of V and this

explains our wording. The following lemma was
proven in [7].

Lemma 9: Let V = {Ψ0 = I, Ψ1, Ψ2, · · · , Ψm−1}
be a constellation with a weak group structure. In
order to compute the diversity product (sum) it is
enough to do m − 1 distance computations.

Based on this lemma we are interested in finite
constellations inside G whose elements have a weak
group structure and are all normal. The following
theorem provides a complete characterization of all
these constellations:

Theorem 10: (See [7]) Let V ⊂ G be a finite posi-
tive normal constellation (including identity element)
with m ≥ 3 elements. If V has a weak group structure
then V takes one of the following forms:

• {I, A, A2, · · · , Am−1}
• {I, AB, A2B2, · · · , Am−1Bm−1}
where A = gpi

i , B = g
pj

j for some i �= j.
The proof of Theorem 10 is rather involved and

we refer to [7].

IV. UNITARY CONSTELLATIONS WITH LARGE

DIVERSITY

As pointed out in [7] for both forms of weak group
constellations in Theorem 10, one can always assume
that A is diagonal. We can further restrict the search
for good 2-dimensional constellations by assuming
(see [7]) that B is real orthogonal, i.e., we consider
the following 2 dimensional constellation:

V = {AkBk|A =
(

eix 0
0 eiy

)
,

B =
(

cos z sin z
− sin z cos z

)
, k = 0, 1, · · · , m − 1}.

(5)
A natural idea is to design the constellation with

the help of geometrical intuition. Note that a 2 × 2
complex matrix can be viewed as a vector in C

4.
In this context A and B can be viewed as “rotation
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transform” (induced by regular matrix multiplication)
acting on C

4. A constellation of form (5) can be
viewed as a set of rotated vectors under the transforms
AkBk, k = 0, 1, · · · , m − 1. Using this geometric
intuition we were able to find numerically many space
time codes with excellent diversity.

The problem of designing 2 dimensional constel-
lations with near optimal diversity was initiated by
Liang [15].
2-dimensional constellation design has been studied
in [15]. The codes shown in [15] can be achieved
by our design as well. In fact, most of Liang’s codes
belong to a special form of our parameterization (5).
To the best of our knowledge, most of our codes
shown on the web site [4] are the best codes ever
found or never found before.

The techniques described so far generalize to
higher dimensions. The geometric “rotation” idea can
be applied to derive other low dimensional constella-
tions. We illustrate it for a 3 dimensional weak group
constellation. For this assume that the constellation
has the form:

V = {AkBk|A =

⎛
⎝ cos x sin x 0

− sin x cos x 0
0 0 eiy

⎞
⎠,

B =

⎛
⎝ eiz 0 0

0 cos w sin w
0 − sin w cos w

⎞
⎠ , k = 0, 1, · · · , m−1}.

where x, y, z, w is assumed to take the multiple of
2π/m. Apparently algebraic design based on geomet-
rical symmetry can be applied to any other structure
as well. For instance consider the following specified
structures:

V =
{

AkBl|A =
(

eix 0
0 eiy

)
,

B =
(

cos z sin z
− sin z cos z

)
,

k = 0, 1, · · · , p − 1, l = 0, 1, · · · , q − 1}.
where we can take x, y to be multiple of 2π/p and
z to be multiple of 2π/q. Some of 2 dimensional
geometrically found constellations will be listed to-
gether with those numerically found in Table II and
Table III. We also refer to [4] for the designed low
dimensional constellations from these approaches.
However the approach above only works for low
dimension due to its computational complexity.

We show next how one can use the theory of
complex Stiefel manifolds and the classical Cayley

transform to obtain such a simple parameterization
for a unitary constellation.

A. The complex Stiefel manifold

Definition 11: The subset of τ × n complex ma-
trices

Sτ,n :=
{
Φ ∈ C

τ×n | Φ∗Φ = In

}
is called the complex Stiefel manifold.

¿From an abstract point of view a constellation
V := {Φ1, . . . ,Φm} having size m, block length τ
and operating with n antennas can be viewed as a
point in the complex manifold

M := (Sτ,n)m = Sτ,n × · · · × Sτ,n︸ ︷︷ ︸
m copies

.

The search for good constellations V requires hence
the search for points in M whose diversity is excel-
lent.

Stiefel manifolds have been intensely studied in
the mathematics literature since their introduction by
Eduard Stiefel some 50 years ago. A classical paper
on complex Stiefel manifolds is [2], a paper with a
point of view toward numerical algorithms is [3]. The
major properties are summarized by the following
theorem:

Theorem 12: Sτ,n is a smooth, real and compact
sub-manifold of C

nτ = R
2nτ of real dimension 2τn−

n2.
Some of the stated properties will follow from

our further development. The following two examples
give some special cases.

Example 13:

Sτ,1 =

⎧⎨
⎩x ∈ C

τ | ||x|| =

√√√√ n∑
i=1

xix̄i = 1

⎫⎬
⎭ ⊂ R

2τ

is isomorphic to the 2τ − 1 dimensional unit sphere
S2τ−1.

Example 14: When τ = n then Sτ,n = U(n), the
group of n×n unitary matrices. It is well known that
the Lie algebra of U(n), i.e. the tangent space at the
identity element, consists of all n×n skew-Hermitian
matrices. This linear vector space has real dimension
n2, in particular the dimension of U(n) is n2 as well.

A direct consequence of Theorem 12 is:
Corollary 15: The manifold M which parameter-

izes the set of all constellations V having size m,
block length τ and operating with n antennas forms
a a real compact manifold of dimension 2mτn−mn2.
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As this corollary makes it clear a full search over
the total parameter space is only possible for very
moderate sizes of n, m, τ . It is also required to
have a good parameterization of the complex Stiefel
manifold Sτ,n and we will go after this task next.

The unitary group is closely related to the complex
Stiefel manifold and the problem of parameterization
ultimately boils down to the parameterization of uni-
tary matrices. For this assume that Φ is a τ×n matrix
representing an element of the complex Stiefel man-
ifold Sτ,n. Using Gramm-Schmidt one constructs a
τ×(τ−n) matrix V such that the τ×τ matrix [Φ | V ]
is unitary. Define two τ×τ unitary matrices [Φ1 | V1]
and [Φ2 | V2] to be equivalent whenever Φ1 = Φ2.
A direct calculation shows that two matrices are
equivalent if and only if there is (τ − n) × (τ − n)
matrix Q such that:

[Φ2 | V2] = [Φ1 | V1]
(

I 0
0 Q

)
. (6)

Identifying the set of matrices Q appearing in (6)
with the unitary group U(τ − n) we get the result:

Lemma 16: The complex Stiefel manifold Sτ,n is
isomorphic to the quotient group

U(τ)/U(τ − n).
This lemma let us verify the dimension formula for
Sτ,n stated in Theorem 12:

dimSτ,n = dim U(τ) − dim U(τ − n)

= τ2 − (τ − n)2 = 2τn − n2.

The section makes it clear that a good parameter-
ization of the set of constellations V requires a good
parameterization of the manifold M and this in turn
requires a good parameterization of the unitary group
U(n).

Once one has a nice parameterization of the uni-
tary group U(n) then Lemma 16 provides a way
to parameterize the Stiefel manifold Sτ,n as well.
Parameterizing U(τ) modulo U(τ − n) is how-
ever an ‘over parameterization’. Edelman, Arias and
Smith [3] explained a way on how to describe a local
neighborhood of a (real) Stiefel manifold Sτ,n. The
method can equally well be applied in the complex
case. We do not pursue this parameterization in this
paper and leave this for future work.

In the remainder of this paper we will concentrate
on constellations having the special form (1). From
a numerical point of view we require for this a good
parameterization of the unitary group and the next
subsection provides an elegant way to do this.

B. Cayley transformation

There are several ways to represent a unitary matrix
in a very explicit way. One elegant way makes use of
the classical Cayley transformation. In order that the
paper is self contained we provide a short summary.
More details are given in [18, Section 22] and [9].

Definition 17: For a complex n × n matrix Y
which has no eigenvalues at −1, the Cayley transform
of Y is defined to be

Y c = (I + Y )−1(I − Y ),

where I is the n × n identity matrix.
Note that (I + Y ) is nonsingular whenever Y has
no eigenvalue at -1. One immediately verifies that
(Y c)c = Y . This is in analogy to the fact that the
linear fractional transformation f(z) = 1−z

1+z has the
property that f(f(z)) = z. Note that the set of n×n
skew-Hermitian matrices forms a linear subspace of
C

n×n ∼= R
2n2

having real dimension n2. The main
property of the Cayley transformation is summarized
in the following theorem. (See e.g. [9], [18]).

Theorem 18: When A is a skew-Hermitian matrix
then (I +A) is nonsingular and the Cayley transform
V := Ac is a unitary matrix. Vice versa when V is a
unitary matrix which has no eigenvalues at −1 then
the Cayley transform V c is skew-Hermitian.

This theorem allows one to parameterize the open
set of U(n) consisting of all unitary matrices whose
eigenvalues do not include −1 through the linear
vector space of skew-Hermitian matrices. Many opti-
mization algorithm we considered require a parame-
terization of a neighborhood of one element in U(n).
The Cayley transformation can achieve this in a very
natural way.

C. Simulated annealing algorithm

The numerical task of searching constellations with
large diversity is very involved as there are a large
number of target functions and the ambient space
has a large dimension. For this reason optimization
algorithms such as Newton’s Methods [3], [16] and
the Conjugate Gradient Method [3], [16] are difficult
to implement. The method which had the most suc-
cess in our numerical experiments was the Simulated
Annealing (SA) Algorithm. For more details about this
algorithm, we refer to [1], [22], [17].

D. Square constellations design

In Table II and Table III we list the best 2-
dimensional constellations we found with the tech-
niques described in Sections IV (For results on the
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higher dimensional unitary constellation design, one
can check them on the web site [4]). The tabu-
lated constellations have some of the best diversity
sums and diversity products published so far. All
the constellations searched by simulated annealing
(SA) were based on the AkBk structure. For the
constellations with m elements and parameters x, y, z
being multiples of 2π/m, they are found by geo-
metrical methods using the parameterization (5). For
the constellations with m elements and parameters
x, y, z being decimals, they are found by Brute Force
with step size 0.1000 based on the same parameteri-
zation (5).

E. Non-square Constellation Design

As first illustrated in [14], one can construct τ ×n
unitary constellations by using the first n columns
of τ × τ unitary constellations. With this idea the
techniques used above for square unitary constella-
tions can be applied to design general form unitary
constellations too. For simplicity we describe the idea
with assumption τ = 2n and consider the following
structure:

{AkB|A ∈ U(τ), B =
(

In

0

)
, k = 0, 1, · · · , m−1}.

One can check at most 2m − 1 distance calculations
are needed to derive the diversity product (sum) with
this algebraic structure. We list some of numerically
found non-square constellations in Table IV. More
results can be found in [4].
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TABLE II
DIVERSITY PRODUCT OF 2 DIMENSIONAL CONSTELLATION BASED ON WEAK GROUP STRUCTURE: [7]

Number of
elements Diversity Product Codes and Comments

2 1 x = π, y = π, z = 0 (optimal)
3

√
3/2 x = 2π/3, y = 2π/3, z = 0 (optimal)

4 0.7831 x = 0.6000, y = 6.0000, z = 4.4000
5

√
5/8 x = 2π/5, y = 8π/5, z = 4π/5 (optimal)

8 0.7071 x = 2.3562, y = 3.9270, z = 4.7124
9 0.6524 SA searched code

10 0.6124 x = 2π/5, y = 8π/5, z = π/5
16 4

√
2/2 x = π/4, y = 5π/4, z = 13π/8

17 0.5255 SA searched code
18 0.5207 SA searched code
19 0.5128 SA searched code
20 0.5011 x = 1.6500, y = 3.7500, z = 4.0500
24 0.5000 x = π/12, y = 5π/12, z = π/2
37 0.4461 x = 2π/37, y = 6π/37, z = 12π/37
39 0.3984 x = 8π/39, y = 34π/39, z = 36π/39
40 0.3931 x = 3π/10, y = 11π/10, z = 3π/4
55 0.3874 x = 2π/55, y = 68π/55, z = 6π/11
57 0.3764 x = 2π/57, y = 40π/57, z = 48π/57
75 0.3535 x = 2π/75, y = 98π/75, z = 96π/75
85 0.3497 x = 26π/85, y = 94π/85, z = 18π/17
91 0.3451 x = 2π/91, y = 128π/91, z = 42π/91
96 0.3192 x = 7π/16, y = 29π/16, z = π/6

105 0.3116 x = 2π/105, y = 68π/105, z = 84π/105
120 0.3090 x = π/30, y = 11π/30, z = π/4
135 0.2869 x = 2π/135, y = 28π/135, z = 68π/135
145 0.2841 x = 2π/145, y = 64π/145, z = 76π/145
165 0.2783 x = 2π/33, y = 20π/33, z = 2π/5
203 0.2603 x = 2π/203, y = 290π/203, z = 70π/203
225 0.2499 x = 82π/225, y = 118π/225, z = 126π/225
217 0.2511 x = 2π/217, y = 250π/217, z = 168π/217
225 0.2499 x = 82π/225, y = 118π/225, z = 126π/225
240 0.2239 x = π/40, y = 9π/40, z = π/6
273 0.2152 x = 2π/273, y = 208π/273, z = 142π/273
295 0.2237 x = 14π/295, y = 104π/295, z = 22π/59
297 0.1910 x = 242π/297, y = 548π/297, z = 54π/297
299 0.1858 x = 8π/299, y = 220π/299, z = 18π/299
300 0.1736 x = π/150, y = 51π/150, z = 5π/6
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TABLE III
DIVERSITY SUM OF 2 DIMENSIONAL CONSTELLATION BASED ON WEAK GROUP STRUCTURE [7]

number of
elements Diversity Sum Codes and Comments

2 1 x = π, y = π, z = 0 (optimal)
3

√
3/2 x = 2π/3, y = 2π/3, z = 0 (optimal)

5
p

5/8 x = 2π/5, y = 8π/5, z = 4π/5 (optimal)
9 3/4 x = 10π/9, y = 4π/3, z = 4π/9 (optimal)
16

√
2/2 x = π/4, y = 5π/4, z = 13π/8 (optimal)

18 0.6614 x = 4π/9, y = 2π/3, z = 7π/9
19 0.6391 SA searched code
20 0.6338 SA searched code
21 0.6307 SA searched code
22 0.6154 SA searched code
24 0.6124 x = π/6, y = π/4, z = 5π/12
28 0.5996 x = 3π/8, y = π/2, z = 2π/7
30 0.5934 x = 4π/15, y = π/3, z = 7π/15
31 0.5739 SA searched code
32 0.5734 SA searched code
39 0.5726 x = 14π/39, y = 40π/39, z = 18π/39
40 0.5499 x = 3π/20, y = 7π/20, z = 3π/10
42 0.5371 x = 4π/7, y = 13π/21, z = π/3
45 0.5342 x = 2π/9, y = 4π/9, z = 14π/15
52 0.5332 x = π/13, y = 2π/13, z = 9π/26
60 0.5000 x = π/15, y = 4π/15, z = 3π/10
64 0.4852 x = 3π/16, y = 53π/32, z = 55π/32
75 0.4850 x = 32π/75, y = 14π/75, z = 2π/75
76 0.4672 x = 3π/19, y = 4π/19, z = 11π/38
77 0.4595 x = 52π/77, y = 82π/77, z = 60π/77
85 0.4540 x = 2π/17, y = 8π/17, z = 14π/85
87 0.4460 x = 52π/87, y = 98π/87, z = 82π/87
95 0.4418 x = 6π/19, y = 2π/95, z = 36π/95
96 0.4390 x = 39π/48, y = 5π/12, z = 11π/24
99 0.4297 x = 62π/99, y = 192π/99, z = 142π/99

105 0.4295 x = 2π/105, y = 16π/105, z = 28π/105
106 0.4161 x = 2π/53, y = 13π/53, z = 12π/53
120 0.4156 x = π/10, y = π/6, z = 5π/4
123 0.4077 x = 188π/123, y = 38π/123, z = 182π/123
130 0.4071 x = 26π/65, y = 5π/13, z = 2π/13
133 0.3971 x = 2π/133, y = 212π/133, z = 206π/133
138 0.3963 x = 16π/69, y = 19π/69, z = 4π/69
145 0.3949 x = 138π/145, y = 22π/145, z = 40π/29
150 0.3758 x = π/15, y = 8π/75, z = 19π/75
155 0.3828 x = 2π/5, y = 26π/31, z = 58π/31
156 0.3824 x = 5π/39, y = 8π/39, z = 15π/78
158 0.3823 x = 58π/79, y = 81π/79, z = 64π/79
160 0.3802 x = 69π/80, y = 59π/80, z = 37π/20
162 0.3770 x = 53π/21, y = 10π/9, z = 19π/81
165 0.3760 x = 24π/165, y = 26π/165, z = 34π/165
166 0.3699 x = 14π/83, y = 21π/83, z = 10π/83
171 0.3678 x = 32π/171, y = 294π/171, z = 6π/171
178 0.3664 x = 145π/89, y = 26π/89, z = 10π/89
180 0.3636 x = π/9, y = 97π/90, z = 127π/90
193 0.3598 x = 90π/193, y = 98π/193, z = 26π/193
204 0.3566 x = 13π/51, y = 4π/51, z = 5π/34
208 0.3501 x = π/13, y = 8π/13, z = 65π/104
214 0.3476 x = 98π/107, y = 67π/107, z = 59π/107
220 0.3459 x = 19π/11, y = 163π/110, z = 121π/110
222 0.3438 x = 19π/111, y = 22π/111, z = 15π/111
225 0.3420 x = 2π/225, y = 52π/225, z = 414π/225
240 0.3371 x = 71π/120, y = 11π/10, z = 187π/120
244 0.3335 x = 39π/122, y = 14π/61, z = 20π/61
245 0.3305 x = 16π/245, y = 186π/245, z = 46π/245
248 0.3291 x = 103π/124, y = 39π/31, z = 179π/124
262 0.3274 x = 142π/131, y = 215π/131, z = 87π/131
264 0.3247 x = 79π/66, y = 129π/66, z = 215π/132
276 0.3237 x = 23π/138, y = 15π/69, z = 6π/69
292 0.3164 x = 65π/146, y = 14π/73, z = 82π/73
295 0.3147 x = π/5, y = 50π/59, z = 22π/59
300 0.3126 x = π/75, y = 17π/150, z = 9π/25
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TABLE IV
DIVERSITY PRODUCT AND DIVERSITY SUM FOR NON-SQUARE CONSTELLATIONS (τ = 5, n = 2). [7]

Size DP
3 0.8527
4 0.8152
5 0.7171
6 0.7668
7 0.7493
8 0.7418
9 0.7183

10 0.6608
20 0.6240
30 0.5985
40 0.5552
50 0.5556
60 0.5088
90 0.4487
300 0.3563
600 0.2821
900 0.2472

3000 0.1867
6000 0.1545
9000 0.1296

10000 0.1426

Size DS
3 0.8693
4 0.8589
5 0.8243
6 0.7976
7 0.7960
8 0.7844
9 0.7659

10 0.7737
20 0.7243
30 0.6837
40 0.6576
50 0.6392
60 0.6237
90 0.5775
300 0.4369
600 0.3687
900 0.3358

3000 0.2461
6000 0.2163
9000 0.1874

10000 0.1735
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