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Abstract

An efficient algorithm is developed for determining the greatest common left divisor
(GCLD) of two polynomial matrices. Knowing this divisor allows for several immediate
applications: In coding theory, a noncatastrophic convolutional encoder can be derived
from an arbitrary one. In systems theory, irreducible matrix fraction descriptions of
transfer function matrices can be found. In linear algebra, the greatest common divisor
can be seen as a basis for a free module generated by the columns of the matrices.

The approach taken is based on recent ideas from systems theory. A minimal state
space realization is obtained with minimal calculations, and from this the controllability
matrix is analyzed to produce the GCLD. It will be shown that the derived algorithm
is a natural extension of the Euclidean algorithm to the matrix case.

1 Introduction

Let F be an arbitrary field and consider the polynomial ring F[s]. If we are given two
polynomial matrices E(s) and F(s) each with p rows then we may define a greatest common
left divisor (GCLD) to be any p X p polynomial matrix L(s) satisfying:

1. There exists polynomial matrices E(s) and F(s) such that L(s)E(s) = E(s) and
L(s)F(s) = F(s).

2. If L(s) is any other divisor of E(s) and F(s) then there exists a polynomial matrix
D(s) such that L(s)D(s) = L(s).

By an arbitrary choice, we will work with left divisors. The theory holds mutatis mutandsis
for right divisors.

*Both authors were supported in part by NSF grant DMS-96-10389.



Notice that GCLD’s are not unique. For our applications we will assume that the matrix
[E(s) | F(s)] is full rank. This implies that all GCLD’s will be nonsingular and differ by
a unimodular right factor [11]. Note also that the columns of the GCLD of the full rank
polynomial matrix [E(s) | F(s)] form a basis for the free module spanned by the columns of
[E(s) | F(s)] in FP[s]. Two matrices are said to be coprime if their GCLD is a unimodular
matrix.

Instead of starting with two separate matrices and then combining them into one, we are
given a single full rank matrix P(s) of size p x (p + m). We can speak of the GCLD of this
single matrix by writing P(s) = [E(s)|F(s)] where usually E(s) is of size p x p and F(s) is
of size p x m, and hence the GCLD of P(s) is then the GCLD of E(s) and F(s). Obviously
the GCLD does not depend on how we choose the division. Equivalently, we could define a
GCLD of P(s) to be a matrix L(s) such that L(s)P(s) = P(s), where P(s) is a polynomial
matrix whose Smith or equivalently Hermite form is [, | 0].

With this last description we are able to see several immediate applications. First, if
we are given P(s) as a polynomial basis for a rational vector space [8], then by dividing
by L(s) (i.e. taking P(s)) we get a minimal polynomial basis for the vector space (as
defined in [8]). Secondly, if we are given P(s) as a generating set for its column module
over F[s|, then we observed earlier that the columns of the GCLD, L(s), of P(s) form a
basis of the column module of P(s). In particular if P(s) is of size 1 x 2 and has the form
P(s) = (p(s),q(s)), p(s),q(s) € F[s] then the GCLD of P(s) is nothing else than the greatest
common divisor (g.c.d.) of p(s),q(s). Moreover our algorithm is in this case equivalent to
Euclid’s algorithm. Finally, if we are given P(s) as a convolutional encoder, then P(s) is an
observable (i.e. non-catastrophic with delay 0) encoder if and only if L(s) is a unimodular
matrix [1, 7].

Closely related to this last application, we can think of P(s) as describing over the real
numbers R a linear behavior in the sense of Willems [17]:

B = {w(t) € C°(R, R™7) | P (%) w(t) = 0.
The computation of the GCLD is then needed for the computation of the controllable sub-
behavior of 3.

The approach that will be taken in this paper is to obtain a minimal state space rep-
resentation of the associated behavior ® with little or no calculation [15]. This state space
representation will be controllable if and only if our behavioral system (or encoder) is ob-
servable. Further, the contribution of this paper will be to calculate a GCLD of P(s) directly
from the controllability matrix of this state space representation.

As we shall see, the algorithm presented will be a natural generalization of the Euclidean
algorithm to polynomial matrices. The algorithm has been induced on the state space level
by an efficient Gaussian elimination and this explains our choice of title.

2 A Brief History of the Problem

The problem of finding GCLD’s is not new, and, indeed, there are several algorithms in
existence. The most obvious way is to append the two matrices together as [E(s) | F(s)]

2



and perform polynomial column operations (over F[s]) to bring the matrix to Smith or
Hermite form [4]. The obvious drawback is that polynomial column operations can become
quite tedious, especially if the degrees of the polynomial entries are high. This problem was
overcome by Kung et al. [12, 6] with their approach using generalized Sylvester matrices. A
problem with that algorithm is that the scalar matrices obtained from the original polynomial
matrices were often quite large.

Several more recent works, using somewhat similar but distinct methods to the one pro-
posed here, have appeared: Fuhrmann [9] obtained an algorithm using a matrix continued
fraction representation. Antoulas [3] has done considerable work on the subject using recur-
sive and partial realizations.

An excellent reference on the various techniques of computing GCD’s in the case p =1
can be found in [5]. In fact, the section on “G.C.D. Using Companion Matrix” from this book
give exactly our algorithm in the simple case p = 1. In this reference it was, unfortunately,
not observed by the author that the companion matrix was, in fact, a realization of the
polynomial matrix. This prevented the extension to the general case, where the author of
that paper instead presents the algorithm of Kung et al..

3 Realization

We now present the main result we will need, proceeded by some notation. For a more
thorough account of the ideas involved, please refer to [15].

Partition P(s) into P(s) = [E(s) | F(s)], where E(s) is p X p and F(s) is p X m. After
some unimodular row operations we can assume that P(s) is row proper with row degrees
(Kronecker indices) vy > -+ > v,. After a possible right multiplication by a (m+p) % (m+p)
invertible matrix we can assume that the high order coefficient matrix, P,, has the form
[I, | 0]. Assume that P(s) has no constant rows, i.e. v, > 1. For¢,j =1,...,p let

vi—1

v
eij(s) = Zezjsa fi(s) = fo‘sa
a=0 a=0

denote the polynomial entries of E(s) and the i*" row of F(s) respectively.

Define for ¢ = 1, ..., p matrices of sizes v; X v;, v; X m and 1 X y; respectively:
[ 0 DR e .. _6?1 ]
1 0 —e;, £
.z,z fil
Ai,i = 0 1 : s Bz = . 5 Cz = [O,,—]_] (31)
0 ff/i‘*l
[0 ... 0 1 —efit '
For ¢,7 =1,...,p, ¢ # j define matrices of size v; X v;:
: D —els
Aij = | . . M (3.2)
0 ... 0 eZ"J-_l



The matrices A;; are just the companion matrices for the polynomials e; ;(s), while the
matrices A;; are just v; — 1 columns of zeroes with the coefficient vector of the polynomial
e;,;(s) appended on the right. Similarly each B; is just the coefficient vectors of all the
polynomials in the i row of F(s). So these matrices are obtained with no calculations at
all, provided that the matrix P(s) meets the somewhat stringent conditions imposed. If
P, does not have the form P, = [, | 0] then it can be brought into this form with the
unimodular operations outlined above.

Notice also the requirement that P(s) has no constant rows. If P(s) has k constant rows
then the row and column operations outlined above will transform P(s) into:

P = | P B FO) (33)

and [ E,(s) | F(s)] has no constant rows.

Right unimodular operations will not affect the GCLD, however left operations will have
to be ‘undone’ once the GCLD of the resulting matrix is calculated. So all of these conditions
can be met at the expense of some efficiency. From here on, assume that P(s) meets these
requirements.

Theorem 3.1 ([18, 15]) Given P(s) = [E(s) | F(s)], satisfying P, = [I, | 0] and let
Aij, B;, C; be defined as above. Let

Al,l cee Al,p B1 Cl 0
Ap,l T Ap,p Bp 0 Cp
and let o represent either the shift operator or the differential operator %. Then
ox(t) = Ax(t) + Bu(t), (3.4)
y(t) = Cz(t) '
represents a minimal state space realization of the system
E(o)y(t) + F(o)u(t) = 0. (3.5)

In particular (3.5) represents a controllable behavior if and only if (A, B) is a controllable
pair, i.e. the controllability matriz

C(A, B) := [B AB ...A"*IB}
has full rank.

As usual, we call (3.4) an (A, B,C) representation of the system (3.5). We see that A
has size n X n (where n = >%_ 1), Bis n x m, and C is p x n.

The idea here is that controllability of the state space representation is equivalent to the
controllability of the behavioral system given by P(s) which is equivalent to P(s) being an
observable encoder [14, 15].



The relationship between the polynomial matrix P(s) and the matrices (4, B,C) is ex-
pressed in the following way: Consider the p x n matrix

1 s - st 00 - 0
00 -+ 0 1 s g2t
X(s) = o0 -+ 0 (3.6)
.00 --- 0
1 s gl
which was called a basis matrix of size v = [y, ..., 1] in [15] since it has the property that

every polynomial p-vector (s) € FP[s] whose i-th component has degree at most v; — 1 can
uniquely be described through ¢(s) = X (s)a, a € F™.
A direct calculation reveals that P(s) and the matrices (A, B, C) are related by:

o L (3.7)

X(s)sI—A|B] = P(s) [ ¢ 0 }
Of course, we can multiply X (s) by an invertible matrix SeG L, on the right and obtain
the equivalent realization (S~1AS,S 1B, CS). We will make use of this fact in Section 5 to

obtain a more suitable realization.

4 The Controllability Space

We are given a p X (p + m) full rank polynomial matrix P(s) and wish to determine its
GCLD, L(s). Write P(s) = L(s)P(s), where P(s) has Smith form [I, | 0. We will assume
that the rows of P(s) form a minimal basis in the sense of Forney [8]. The row degrees
(11, .., 1p) of P(s) are therefore the minimal indices of the rational vector space generated
by the rows of the matrix P(s). We will not assume that (u4,..., x,) are ordered by size.
Also write P(s) = [E(s) | F(s)] and let P, = [I, | 0] be the high order coefficient matrix.

Since L(s) is determined uniquely up to unimodular right multiplication, we have a choice
as to which L(s) to work with, and hence which P(s) to work with. The following lemma
relates L(s) and P(s) and it singles out a nice choice:

Lemma 4.1 If the rows of 15(8) form a minimal basis having row degrees p,. .., i, then
L(s) is uniquely determined from the identity P(s) = L(s)P(s). The (i,j)-entry of L(s) has
degree at most (v; — p;) or the entry is zero.

It is possible to choose P(s) such that the scalar matriz Lo, whose (i,j)-entry is the
coefficient of s¥i~Fi in the (i,7)-entry of L(s) is lower triangular.

Proof: The first part of the lemma is a direct consequence of [8]. The second part will be
established by induction. Using elementary column operations on L(s) (this corresponds to
elementary row operations on P(s)) it will be possible to eliminate all entries of the first row
of L, with the exception of one entry. After a possible permutation of the columns we can
assume that the first row of L, has with the exception of the entry (1,1) all entries equal
to zero. Proceeding inductively row by row will establish the claim. O



Let P, be the high order coefficient matrix of 15(3). From the fact that both P, and P,
have rank p and from the identity P, = L P, it follows that L., is invertible. As a direct
consequence we have:

Lemma 4.2 Let d :=_ j1; be the McMillan degree of P(s). Then
degdet L(s) =n —d =n —rankC(A, B).

Lemma 4.2 establishes a first relation between the GCLD, L(s), and the controllability
matrix C(A, B). It should be noted that this result, for the case p = 1, was known already in
1950 by MacDuffee [13] if not earlier. It is the goal of this and the next section to show that
under certain conditions it is possible to compute L(s) from the column space of C(A, B),
i.e. from the reachability space of (A, B).

Since the high order coefficient matrix of P(s) has the form [/, | 0] we can realize P(s)
by inspection to obtain the scalar matrices A, B, and C relative to the basis matrix X (s).
Hence the following equation holds:

X(s)[sI —A[B] = [E(s)C|F(s)] (4.1)

Note that in order to realize P(s), we need P, = [I, | 0] and that the row degrees, y;, of
P(s) are at least one. To satisfy the first requirement, in general, we will have to multiply
E(s) by T to obtain a realizable form. i.e. P.(s) = [E(s)T | F(s)]. The second requirement
cannot be guaranteed. For this section and the following one we will assume that P(s) has
no constant rows, and the case where there are constant rows is considered in Section 6.

Now, realize P, (s) to obtain matrices A, B, and C, relative to the canonical basis matrix
X (s). Hence the following equation holds:

X(s)[sI —A|B] = [B(s)TC | F(s)] (4.2)

The controllability matrix of the pair (A, B) can also be computed. However, the usual
definition of the controllability matrix is that of a d x dm matrix, where B is of size d X m.
We can, however, naturally extend the size of this matrix to d X nm. This is necessary for
the following key result.

Theorem 4.3

L(s)X(s)C(4,B) = X(s)C(4, B)
Proof: Repeated applications of (4.1) give:

X(s)C(A,B)=[F |sF—ECB|---|s"'F —s"?ECB — s" *ECAB — --- — ECA"*B]|
(4.3)
Repeated applications of (4.2) give:

L(s)X(s)C(A, B) =
[F | sF— ETCB |-+ | s"'F — s"2ETCB — s"*ETCAB — -+ — ETC‘A”‘ZB] .



By examining the above expressions, it is clear that the only step remaining in the proof
is to show that CA’B = TC A'B for all non-negative integer i.
We notice that (s/—A)~' = > 4. Starting with the equation X (s)(sI—A) = E(s)C,

1

we apply this inverse to obtain X (s) = E(s) 3.2°_ S4L Further:

1=0 SH‘I

F(s)=X(s)B=E(s) ) C;’:B .

=0

Similarly, we have the equations:

F(s)=X(s)B=E(s)T ) eAB

L gitl
Multiplying the last equation by L(s) results in
. TCA'B
Fio =563 T

=0

Since E(s) has high order coefficient matrix I,, the columns of E(s) are linearly independent
over F[s] and we get:

= CA‘B ~TCAB
2 T A

Equating coefficients in the above expression gives us the desired equality and completes the
proof. O
This theorem is the key to the entire algorithm as the following corollary shows.

Corollary 4.4 There exists an invertible matric W € Gl,,,, such that
X(s)C(A,B)W = [s""li...shi L | ... | s*7'L,...sL, 1, | Opxmn—a)] - (4.4)
In this representation the p X p matrix
L(s) =[l,..., 1]

represents a greatest common left divisor of [E(s) F(s)] and ui,...,u, are the row degrees

of [E(s) F(s)].

Proof: Since P,(s) is a minimal basis, its realization, (A, B), must be a controllable pair.
Therefore, there exists a scalar matrix W € Gl,,,, such that C ([1, B)W = [Id | Opx(mn,d)}.
Hence, the theorem implies that X (s)C(A, B) is column equivalent to a matrix whose columns
are exactly the columns of a GCLD and also multiples of these columns (as the multiplication
X(5)C(4, B) indicates). O



5 The Refining Algorithm

By Theorem 4.3 and Corollary 4.4, the columns of L(s) are contained in a matrix that is
column equivalent (over F) to X(s)C(A, B). The question is now, how to select these p
columns of L(s) from the nm columns of the controllability matrix? The answer is fairly
simple: column reduce and then choose the appropriate p columns in a manner that will
be described below. However, we must first reconsider our choice of basis matrix X (s).
The reason we have started with the one we have chosen is that it allows us to write down
the matrices A and B a little easier. The downside is that when we column reduce the
controllability matrix we start by eliminating the lower degree terms of the polynomials in
row 1 of the corresponding matrix X (s)C(A, B). It would make much more sense to start
eliminating the highest degree terms in each row. We accomplish this by replacing the
standard basis matrix X (s) introduced in (3.6) with the basis matrix

sl 172 cooogiit Q) 0
£(s) 0 gt 0 g2 e 0 g2
s) =
; 0
sl s72 ... 0 0 g™

In this representation, the monom s? and the corresponding column is omitted as soon as
the exponent 5 < 0. ¥(s) and X (s) are related by a simple permutation of the columns, i.e.
there is a permutation matrix U such that ¥(s) = X (s)U. This permutation transforms the
controllability matrix C(A, B) into U'C(A, B).

Although it is much simpler to explain the algorithm by performing the U transformation
as above, in practice the computer would automatically perform the realization with respect
to the new basis matrix ¥ and arrive at U~' AU and U~' B instead of A and B. The realization
with respect to the new basis matrix is just as simple to compute as the original, yet it is
in a more practical form and, by arriving at it directly, will not waste time by transforming
basis matrices.

As mentioned earlier, the basis matrix ¥(s) (as well as the basis matrix X(s)) has the
property that every polynomial p-vector ¢(s) € FP[s] whose i-th component has degree at
most v; — 1 can uniquely be described through ¢(s) = 2(s)a, a € F". It is therefore possible
to identify ¢(s) with the n-vector a. We will say that « is the coordinate vector of ¢(s) with
respect to the basis matrix X(s).

Theorem 5.1 Assume P(s) has Kronecker indices vy > -+ > v, and minimal indices
Ui, - - -, ty none of which equal zero. Let L(s) = [ly,...,1)] be a GCLD whose (i, j)-entry
has degree at most v; — pu; or is zero. Assume that the matriz Lo, is lower triangular (by
Lemma 4.1) and let d = Y 0_ p;. Then the n x d scalar matriz whose columns form the

coordinate vectors of
[s“ 7y skl || s .81, 1) (5.1)

is after a possible permutation of the columns in column echelon form.

Proof: Immediate consequence from the fact that L., is lower triangular, has nonzero diag-
onal elements and the specific choice of the basis matrix ¥(s). O



As a consequence of this theorem we can immediately read out the minimal indices
{1, - - -, tp from the pivot indices of the column echelon form of C(A, B). A priori it is not
true that ¥(s)C(A, B) has the particular form (5.1) even if C(A, B) is in column echelon
form. One observes however that elementary column operations on C(A, B) correspond to
unimodular operations on ¥(s)C(A, B). By Theorem 4.3 we also know that the columns of
X(s)C(A, B) are in the column module of L(s). By the above remarks it is possible to identify
p columns [¢y, . . ., ¢p] from the column echelon form of C(A, B) such that ¥(s)[cy, . .., ¢,] forms
a GCLD of P(s). In the sequel we make this selection process more precise.

Assume that the controllability matrix C(A, B) is in column echelon form. We can think
of the controllability matrix as being divided into row blocks. The top row block consists
of p rows and corresponds (under multiplication by ¥(s)) to coefficients of degree v; — 1 for
each respective row 7. The next lower block corresponds to coefficients of degree v; — 2. Each
lower block is similarly defined. If v; — 8 < 0 then no row corresponding to row j occurs in
row block 3 (or any subsequent blocks). Based on this we define:

Definition 5.2 1. A column in the controllability matrix C(A, B) is said to “take its
order in row ¢” if the leading coefficient occurs in a row which corresponds (under
multiplication by ¥(s)) to an entry in row ¢ of the resulting polynomial p-vector.

2. For each row i, 1 < i < p, consider all the column vectors of the controllability matrix
taking their order in row 7. From this set, the column vector whose leading coefficient
is lowest (in the matrix, not necessarily in value), is called the “row leader for row i”.

Theorem 5.3 If the column echelon form of C(A, B) has p row leaders [cy,...,c,| then
X(s)[c1,. -, cp] forms a GCLD of P(s).

Proof: 1t follows from our definition of row leaders [cy, ..., ¢,] that

p p
degdet X(s)[c1,...,¢p] = Zl/i — Z,ui =n—d.
i=1 i=1

Since ¥(s)[c1, . . ., ¢p] is a subset of the column module of L(s) it follows that the columns of
X(s)[c1, - - -, cp] generate this column module and this completes the proof. O

Remark 5.4 It can be shown and it is illustrated in an example in Section 8 that in the case
of m = p =1, i.e. in the situation where P(s) = (pi(s),p2(s)) the column reduction of the
controllability matrix C(A, B) is exactly the Euclidean algorithm. The presented algorithm
generalizes in this way Euclid’s algorithm.

Remark 5.5 The column reduction of C(A, B) can be done very efficiently by iteratively
computing the vectors A’b;, where b; is the j-th column of B. (See [16, 1] for more details).
Due to the very sparse structure of (A, B) the column reduction is even easier.



6 The Situation of Constant Rows

As remarked earlier, the matrix P(s) that is used in the proof of our algorithm could have
constant rows, and that poses problems when we try to realize this matrix. In this section
we will deal with this case. In particular, assume that P(s) has 0 < k < p constant rows
(u; =0for 1 <i<k).
Similar to before, we know that P(s) has (after possible right scalar multiplication) the
form:
~ I, O
Ps) = [ 0 E(s)

o | o1

Letting P,(s) = [E(s) | F(s)], we can obtain the realization matrices A, B, and C relative

to the basis matrix X (s) for P.(s). The following result can easily be shown using arguments
mirroring those in the proof of Theorem 4.3:

Theorem 6.1
L(s) [ <(s) ]C(A,B) = X (s)C(A, B)

In analogy to Corollary 4.4 we have:

Corollary 6.2 Let piyt1,. .., 1y be the nonzero minimal indices of P(s). Then there ezists
an invertible matriz W € Gl,,,, such that

X(S)C(A, B)W = [SMH'I_I]]C_H e Slk—|—1 1k+1 ‘ Ce | S“p_llp Ce Slp lp ‘ Opx(mn—d)] . (62)
In this representation the [lgii,...,L1,| represent p — k generators of the column module
of P(s).

By Lemma 4.2 we know that the rankC(A,B) = Y7 y; = d. Combining this with

Corollary 6.2 and Theorem 5.3 results in:

Theorem 6.3 If P(s) has k zero minimal indices then the column echelon form of C(A, B)
has ezactly p — k row leaders [cgi1,- .-, Cp] and the columns of ¥(s)[ckt1,--.,¢p] form an
independent set of generators for a GCLD of P(s).

By this last theorem we will be able to compute the number, &, of nonzero minimal
indices of P(s) and we always will be able to identify p — k ‘row leaders’ from the echelon
form of C(A, B). This is very important. Otherwise, we could perform the algorithm, get
p columns and think we are done, when in reality we would have selected columns that are
unimodularly equivalent and ended up with a singular matrix!

The question now turns to: How do we select the remaining k£ columns to fill up our
matrix and arrive at a GCLD?

The answer is actually quite simple. For this consider the high order coefficient matrix H
of the p x (p — k) matrix ¥(s)[ckt1, .- -, ¢p]. This high order coefficient matrix is a submatrix
of the matrix L, introduced in Lemma 4.1. The high order coefficient matrix of P(s) is

10



assumed to be P, = [I,, 0]. It is therefore possible to augment H with columns from P}, such
that the overall matrix L., becomes invertible. Correspondingly we have a way of selecting
k columns from the first p columns of P(s) such that %(s)[ckt1, ..., cp] augmented by these
columns results in a GCLD of P(s). Simply put: For every row, i, which does not have a
row leader, simply select column ¢ from the matrix P(s) to be in L(s).

7 The Algorithm

We now present the algorithm of computing a GCLD in a concise form:

Step 1 We are given a full rank polynomial matrix P(s).

Step 2 Check if the high order coefficient matrix P, has the form [I | 0]. If not, then use
right and left unimodular operations to bring it into this form. Keep track of any
left unimodular operations in the matrix V (s).

Step 3 Check if P(s) has any constant rows. If P(s) has k constant rows and is in the
form (3.3) then the submatrix [E}’Es)] of (3.3) defines k generators of a GCLD L(s).

Continue the algorithm with the reduced matrix [ F;(s) | F\(s)] in order to find the
remaining p — k columns of the GCLD.

Step 4 Obtain the realization matrices A and B relative to the basis matrix ¥(s) ‘by
inspection’.

Step 5 Calculate the controllability matrix C(A, B) and column reduce it. (This may be
done simultaneously to greatly improve efficiency [16, 1].)

Step 6 Pick out the ‘row leaders’ from the column reduced controllability matrix C(A, B).
Multiply the ‘row leaders’ by ¥(s) and place them in the GCLD.

Step 7 If there are p row leaders, then go to step 8. If there are less than p row leaders,
then follow the algorithm of Section 6.

Step 8 Multiply the GCLD on the left by V! and stop.

Remark 7.1 The steps which take the most time are steps 2 and 5. Step 2 is not necessary
when P(s) is in the desired form. Of course, in general we will not know or can not guar-
antee what form a matrix will have. However, in certain applications, such as searching for
observable convolutional encoders [1, 7], we may prescribe what form the matrices will have.

After having computed the GCLD, L(s), there might arise the need to compute the
‘controllable part’ P(s) as well. Let p;(s) and p;(s) denote the ith column of P(s) and P(s)
respectively, 2 = 1,...,m + p. Consider for each index 7 the equation

L(s)Pi(s) = pi(s)- (7.1)
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We can view (7.1) as a system of n + p linear equations in d + p unknowns. We therefore
have to solve simultaneously m + p systems of equations in d + p unknowns. Due to the fact
that the matrix L., is already in lower triangular form it follows that the coefficient matrix
appearing in (7.1) is already in triangular form as well. A solution of (7.1) can therefore be
computed very efficiently and the method will be illustrated in the next section.

8 Examples
We have included some examples to aid in the understanding of the algorithm.

Example 8.1 First, take the case when P(s) is a 1 x 2 matrix. In this case we are just
determining the gcd of two polynomials. Notice that P(s) will trivially satisfy all of the
conditions unless the two polynomials have the same degree. In that case divide one into
the other, and take the remainder in place of the original polynomial.

Let us work through the following example:
P(s) = [s%+55°—4645*4+11235>—8875*+2345+72  s°—25*—3425°+11775*—11705+504 ]

We get the following realization:

~5 100 0 0 1
464 0 1 0 0 0 —2

~1123 0 0 1 0 0 —342

A=1 87000 1 0 B=1" 1nm
~234 0 0 0 0 1 ~1170

| -72.0 00 0 0| | 504

4 .3 .2

relative to the basis matrix ¥(s) = [s° s* s> s s1]. The corresponding column reduced con-

trollability matrix is:

1 0 000 0]
-2 1 0000
—342 =5 1000
C(4,B) = 1177 %1 -19 0 0 0
—1170 =22 23 0 0 0
| 504 32 —12 0 0 0

Since there is only one row of ¥(s)C(A, B), the row leader must be the rightmost nonzero
column. Hence the GCLD is s® — 19s% + 235 — 12.

Notice that the first column of the above matrix corresponds with polynomial of lesser
degree from our original matrix. The second column corresponds with the ‘first remainder’
that one obtains when applying the Euclidean algorithm to the two polynomials in our
matrix. The third column corresponds with the ‘second remainder’, and also the last nonzero
one, of the Euclidean algorithm. Because of this, our algorithm can be seen as an extension
of the Euclidean algorithm to matrices.
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Example 8.2 Now let us look at a more nontrivial example.

P(s) = s° st 4+ §2 st 4+ 252
97 s PB4+824s5+1 2543
Here 11 = 5,15 = 3 and the realization matrices are
0 -1 100000 1
0 -1 01 00O0D0O 0
0O O00O0O1O0O0U0 0
-1 -1 00 0100 2
A= 0 -1 00 0O0OT1TD0 B= 2
0 -1 00 0O0O0OTDO 3
0 0 0O0O0OO0OTOT1 0
| 0 0 00O0O0O0 0 | 0
relative to the basis matrix
s 0 20 s2 0 s 1
¥s)=19 2 0 s 0100
The column reduced controllability matrix is
1 00 0O0O0O0 O]
0 1 000 0O0TO
0 1000 0O0TO
0 01 00O0O0ODUO0
C(4,B) = 0 -1 100000
1 -1 100 00O
0 0 000O0OO0ODDO
| 0 000O0O0O0 O]

We see that columns 2 and 3 take their order in row 2, while column 1 is the only column
taking its order in row 1. Hence column 1 is the ‘row leader’ for row 1 and column 3 is the
‘row leader’ for row 2. It follows that y; = 1 and uo = 2. As an independent verification, we
can also see directly from ¥(s)C(A, B) that column 2 is just s — 1 times column 3 and hence
they are dependent.

so the GCLD is
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We can now also easily compute P (s) by solving the following linear system of equations:

10000 100
00100 010
01100 01 1
00110 0 ay as 010
00010 by by bs 00 0
Ci C C3 | =
10011 4 dy ds 11 2
0 00 01 €1 €2 e€3 01 2
01001 01 3
00000 00 0
(0000 0, [0 0 0]

This corresponds to the equation L(s)P(s) = P(s), where P(s) is represented by the matrix:

a8 + b1 a9S + bg ass + b3
18?2 +dis+e; c38?+dys+es 352+ dss+ e

The left-hand matrix in the above equation comes easily from the column reduced con-
trollability matrix. It consists of the ‘row leaders’ plus ‘shifts’ of the row leaders. To be
precise, for each i, the row leader for column 7 occurs, along with u; upward ‘shifts’ of the
row leader. Note that this necessitates adding another row block to the top of the scalar
matrix.

The right-hand matrix is simply the coefficients of the matrix P(s) with respect to the

5
Y i(s):|.

Not only is the left-hand matrix easily constructed, but it will be lower diagonal (up to
column permutations) so that the above system can be solved instantaneously! The resulting
matrix P(s) can now be stated:

P(S):[(S) 522@ H

‘augmented basis matrix’ [
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